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ABSTRACT OF THE DISSERTATION

Parallel CAD Algorithms and Hardware Security for VLSI Systems

by

Kai He

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, August 2016

Dr. Sheldon Tan, Chairperson

As integration scales to the 20nm regime and below, the integrated circuit (IC) design has

seen the billion transistor counts. For instance, the latest Pascal GPU using 16nm FinFET

technology from Nvidia has 150 billion transistors. As a result, it becomes very challenging

to verify those billion-transistor chips and there is an urgent need to develop advanced

and parallel simulation technique. On the other hand, the counterfeit ICs have become

a major security threat for commercial and mission-critical systems. In addition to the

huge economic impacts, they post significant security and safety threats on those systems.

The objective of this thesis is to develop new techniques to address above two tough issues

encountered in VLSI research: new fast parallel circuit simulation and potential solutions

to mitigate the counterfeit IC problem.

To accelerate the circuit simulation, we study several important linear algebra

operations in simulation steps, such as sparse matrix-vector multiplication (SpMV), direct

linear LU factorization and iterative general minimum residual linear solver. Parallel com-

puting such as general purpose GPU programs are good solutions for improving performance
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of these operations. We apply GPU for these tasks and attain impressive speedup over tra-

ditional or CPU methods. All algorithms and implementations are demonstrated with

representative numerical experiments and thorough comparisons among different methods

and platforms.

For various types of counterfeit ICs - recycled, remarked, cloned, out-of-spec, and

over-produced, we propose a multi-functional on-chip sensor and post-authentication policy

for detecting and preventing them. Especially for recycled ICs, we propose two kinds

of aging sensors, which are based on electromigration (EM)-induced aging effects and ring-

oscillator (RO)-based frequency aging effects. These two aging sensors can effectively detect

chip usage time for both short and long periods. Simulated results show the advantage of the

proposed multi-purpose sensor against the existing on-chip sensors in terms of functionality,

detection coverage and usage time estimation range and accuracy.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Parallel Sparse Linear Algebra for Circuit Simulation

The verification of today’s large linear global networks such as on-chip large power

grid networks is very challenging for chip designers. Fast verification of voltage drops and

other noises on power delivery networks is critical for final design closure. As the VLSI

technology proceeds into sub-65 nm scale [4], one challenging job of power grid network is

to predict and ensure a reliable on-chip power delivery.

Since the power grid network usually comes with a huge size, its simulation and

verification take a lot of time, and sometimes even make the analysis completely failed.

Intensive researches have been carried out to seek for efficient analysis of large power grid

networks in the past decade. Various algorithms have been proposed to improve scalability

in computing time and to reduce memory footprints [5, 6, 7, 8, 9]. But most of those tech-
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niques are based on the homogeneous single-core architectures, which means their resource

usage is still limited.

The course of computing has been permanently altered by the recent leap from

single-core to multi-core or many-core technologies. Among them, the graphics processing

unit (GPU), is one of the most powerful many-core computing systems arousing interests

and input from both research and industry community [10]. Today, more and more high

performance computing servers are equipped with GPUs as co-processors. These GPUs

work in tandem with CPUs (on same computing node) connected by high-speed link like

PCIe buses. GPU’s massively parallel architecture allows high data throughput in terms

of floating point operations (flops). For instance, the state-of-the-art NVIDIA Kepler K40c

chip has a peak performance of over 4 Tflops performance in comparison with about 80–

100 Gflops of Intel i7 series quad-core CPUs [11]. Currently, GPUs or GPU-clusters can

easily deliver tera-scale computing, which was only available on super-computers in the

past, for solving many large scientific and engineering problems.

Until now, dense linear algebra support on GPU is well developed, with its own

BLAS library [12], but sparse linear algebra support is still limited. Modern NVIDIA GPUs

are throughput-oriented many-core processors that can offer very high peak computational

throughput. They favor computations exhibiting sufficient regularity of execution paths and

memory access patterns. For sparse-matrix-based analysis, there are two kinds of solvers

in general: the direct LU solver and the iterative solver. Although there are some recent

efforts in this direction [13, 14], the sparse direct LU solvers on GPU is considered to be

difficult due to the irregular structure of matrices and the complicated data dependency
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during the numerical LU factorization. As a result, there remain a challenge for GPU-based

fine-grained parallel LU solver. On the other hand, iterative solvers, which mainly depend

on simple operations such as matrix-vector multiplication and inner product of vectors,

are more amicable for parallelization, especially on GPU platforms. There are some newly

published papers, such as [15, 16, 17, 18, 19], which confirm the practicality and effectiveness

of iterative solvers in solving large linear dynamic networks like power grid networks.

Several research efforts have been proposed for parallelizing sparse LU factorization

on shared memory multi-core CPU and GPUs. SuperLU [20, 21] implemented supernode-

based Gilbert-Peierls (G/P) left-looking algorithm [22], and SuperLU MT [21] is its multi-

threaded parallel version developed for shared memory multi-core architectures. However,

it is not easy to form super-node in some sparse matrix such as circuit matrix. KLU [23],

which is specially optimized for circuit simulation, adopts Block Triangular Form based on

G/P left-looking algorithm.

Recently, the KLU algorithm has been parallelized on multi-core architecture by

exploiting the column-level parallelism [24, 25]. However, for parallel LU factorization

solvers on GPU, existing works mainly focus on dense matrices including [26, 27, 28], very

few works on the sparse matrix have been proposed. Ren et al. recently proposed a

GPU-based sparse LU solver based on the G/P left-looking algorithm [14]. It exploits the

column-level parallelism due to sparse nature of the matrix. The left-looking based method,

which transforms the factorization computing into a number of triangular matrix solving,

seems more efficient on GPU computing. But it possesses higher data dependency coming

from solving the triangular matrices. The traditional right-looking LU factorization, which

3



involves only less data dependent vector operations, has not been well studied in GPU

implementation.

There are also some research works for GPU-based iterative solver for sparse sys-

tems [29, 30, 31, 32, 33, 34, 35, 36]. In [30], GMRES solver has been accelerated on

GPU by simply parallelizing the computing of polynomial preconditioners. In [31], Jacobi-

preconditioned conjugate gradient algorithm is parallelized based block compressed row

storage format. But this solver only works on single GPU and symmetric matrices. Work

in [36] proposed a parallel GMRES based on existing GPU-enabled BLAS library [12]. Also

a few existing works have been proposed to explore the hybrid accelerators such as GPUs

and Xeon Phi.

1.1.2 Recycled Integrated Circuits – Detection and Avoidance

The counterfeiting and recycling of integrated circuits (ICs) have become major

problems in recent years. These ICs potentially impact the security of electronic systems

especially for military, aerospace, medical and other critical applications. In addition to

diminishing system dependability and usability, counterfeiting reduces total revenue of com-

panies from their research and development efforts, discourages innovation through the theft

of intellectual properties (IPs), and produces low-quality products under established brand

names [37]. According to couterfeit IC categorization and definition in [38], an electronic

part is considered as as a counterfeit component which is not genuine if it is an unau-

thorized copy; or it does not conform to the original component manufacturer’s (OCM)

design, model, and/or performance; or it is not produced by the original component manu-

facturer or is produced by unauthorized contractors; or it is an off-specification, defective,

4



or used OCM product sold as “new” or working; or it has incorrect or false markings and/or

documentation.

Today the most widely reported type of counterfeit parts is the recycled type. It

is reported that in today’s supply chain, more than 80% of the counterfeit components are

recycled [39]. These used or defective ICs enter the market when electronic “recyclers”

divert scrapped circuit boards away from their designated place of disposal for the purposes

of removing and reselling the ICs on those boards. The recycling process involves removing

ICs from the board or even dies in the ICs. There are several security issues associated with

these ICs. Firstly, a used IC can act as a ticking time bomb [40] since it does not meet the

specification of the OCM of the ICs; secondly additional die on top of the recovered die can

carry a back-door attack, sabotage circuit functionality under certain conditions, or cause

a denial of service [41].

The detection methods for recycled chips can be classified into physical methods

and electrical methods [37]. Physical methods consist of incoming inspection methods

such as visual inspection, X-ray imaging, package analysis method such as laser scanning

microscopy, delid method, and the material analysis method such as using Fourier transform

infrared, and X-ray fluorescence. Electrical methods contain the parameter tests, function

tests, built-in tests and structural tests. In general, physical methods can be applied to all

part types, but some of the methods are destructive and take hours to test. As a result,

sampling is required to certify a batch of parts by observing a small number of parts. On

the other hand, conventional electrical test methods are non-destructive and time efficient,

yet they can be very expensive because such techniques are not necessarily designed for
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counterfeit detection. Electrical test techniques are advantageous because the sampling is

not required, and all parts can be tested. However, there are some issues associated with

electrical tests that must be addressed.

In order to fast detect and effectively prevent the recycled chip, one viable approach

is to insert a lightweight aging detecting sensor, which can directly tell the usage of the

chips and some early efforts have been explored [42, 43, 44]. Method in [43] designed the

ring-oscillator-based (OR-based) aging sensor that relies on the aging effects of MOSFETs

to change a ring oscillator frequency in comparison with the reference one embedded in

the chip. As the chip ages owing to the wear-out mechanisms such as negative biased

temperature instability (NBTI) and hot carrier injection (HCI), the shift threshold voltage

of MOSFET devices, thus the frequency of ring oscillator indicates the level of aging, and

provides a simple readout of the value. However, this method can only give very rough

estimation of the usage age of the chip as the shift of the frequency depends on many factors.

In order to mitigate this problem, the antifuse-based (AF-based) sensor was developed

in [37]. The AF-based sensor essentially is a counter, which counts the clocks or derivatives

of the clock events to log the usage of the chip. The antifuse memory is used to make sure the

data in the count will not be erased or altered by attackers. However, the AF-based sensors

suffer large area overhead especially when more accurate usage is required [37]. Another

problem with this method is that it may not reflect the true aging-dependent usage of a chip.

For instance, it will log the same usage time for a chip for different on-chip temperatures,

however, which can have dramatically impacts on the aging effects from electromigration,

NBTI and HCI [45].
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1.1.3 Goal and Dissertation Contributions

Implementation of efficient and scalable numerical methods on highly-parallel pro-

cessors is an interdisciplinary task. Our aim is to provide new highly parallel schemes and

algorithms for building different direct and iterative solvers for circuit simulation and more

general scientific computing on CPU-GPU platforms. Special focus goes to a hybrid right-

looking LU factorization algorithm and a general GPU-accelerated dynamic iterative solver

with fast sparse matrix-vector multiplication.

On the other hand, for hardware security aspect, our goal is to design a lightweight

on-chip sensor, which is based on electromigration-induced aging effects for fast detection

and prevention of recycled ICs.

The contributions of this dissertation are summarized as follows:

• GPU-accelerated sparse LU solver We propose a new column-based right-looking

LU factorization method, which is shown to be more amenable for exploiting the con-

currency of LU factorization. The new method preserves the benefit of column-level

concurrency and symbolic analysis in the left-looking method meanwhile, it allows

more parallelism to be exploited. We show that the new GLU LU solver allows the

parallelization of all three loops in the LU factorization on GPUs. In contrast, the

existing GPU-based left-looking LU factorization approach can only allow two-level

parallelization. We conduct comprehensive studies on the new GPU LU solver on a

number of published general matrices, circuit matrices and self-made large RLC cir-

cuit matrices against some existing LU solvers to demonstrate the advantage of the

proposed GLU solver.
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• Preconditioned GMRES iterative solver on CPU-GPU platform We propose

a new method called GPU-GMRES, which is based on the preconditioned Generalized

Minimum RESidual (GMRES) iterative solver. We implemented it on heterogeneous

CPU-GPU platforms with multiple GPUs. The proposed GPU-GMRES solver adopts

a very general and robust incomplete LU based preconditioner with tunable fill-ins.

We show that by properly selecting the right amount of fill-ins in the incomplete LU

factors, a good trade-off between GPU efficiency and convergence rate can be made

to achieve the best overall performance of the solver. Such tunable feature can make

this algorithm very adaptive and flexible for different problems.

• EM-based on-chip sensor for recycled IC detection Instead of using traditional

aging effects from devices (such as MOSFETs), the new EM-based aging sensor ex-

ploits the natural aging/failure mechanism of interconnect wires to time the aging of

the chip. The new sensor is based on a newly proposed hydrostatic stress evolution

model of EM effects for accurate prediction of the EM failure [46]. As a result, we can

design the interconnect wire structures based on the copper interconnect technology

so that the resulting wires can have detectable EM failure at a specific time with

sufficient accuracy.

• Multi-Functional on-chip sensor for comprehensive detection of couter-

feit ICs The proposed on-chip sensor can detect both recycled/remarked/out-of-spec

chips, as well as cloned and over-produced ICs. The new on-chip sensor, which com-

bines aging sensors with antifuse memory, can serve as a central on-chip security

hardware IP for counterfeit IC detection, on-chip timer and post-fabrication authen-
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tication and even activation module for ICs. On top of the new sensor hardware,

we propose a post-fabrication authentication process to detect and prevent the non-

detective counterfeit ICs.

1.1.4 Organization of the thesis

The rest of this thesis is organized as follows.

To carry out parallel linear sparse algebra for circuit simulation, Chapter 2 starts

from CPU-GPU based programming architecture, which is used to accelerate our proposed

solvers. Then, Chapter 2 describes a novel column-based right-looking LU factorization

method, and hence results in an efficient direct solver for circuit simulation and general

scientific computing. In Chapter 3 we present an efficient parallel dynamic linear solver,

called GPU-GMRES, for transient analysis of large linear dynamic systems such as large

power grid networks.

For the recycled ICs detection and avoidance, we present a new lightweight on-chip

aging sensor in Chapter 4. The EM effect and physics-based EM model is reviewed. Then

the aging sensor as well as the interconnect wire structures are presented. We investigate

the parameters of the sensor and show the trade-off between accuracy and area cost. In

Chapter 5, a multi-functional on-chip sensor for comprehensive detection of counterfeit ICs

is discussed. We also propose a post-authentication policy for detecting and preventing all

kinds of counterfeit ICs, including the recycled/ remarked/out-of-spec ICs, as well as cloned

and over-produced ICs.

Finally, Chapter 6 concludes the thesis with brief summaries of the works.
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Chapter 2

GPU-Accelerated Parallel Sparse

LU Factorization

2.1 Introduction

Transforming a sparse matrix into its LU form is of crucial importance in linear

algebra as it plays an important role in many numerical and scientific computing applica-

tions such as finite difference and finite element based methods. LU factorization operation

represents the dominant computing cost in those problems and it is very important to im-

prove the efficiency of the LU factorization algorithms. LU factorization for sparse matrices

is the most important computing step for general circuit simulation problems for circuit

designs. But parallelizing LU factorization on the popular many-core platforms such as

Graphic Processing Units (GPU) turns out to be a difficult problem due to intrinsic data

dependency and irregular memory access, which diminish GPU computing power.
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Modern computer architecture has shifted towards the multi-core processor [47, 48]

and many-core architectures [49]. The family of GPU is among the most powerful many-

core computing systems in mass-market use [10]. For instance, the state-of-the-art NVIDIA

Kepler K40 GPU with 2880 cores has a peak performance of over 4 TFLOPS versus about

80–100 GFLOPS of Intel i7 series Quad-core CPUs [50, 11]. In addition to the primary use

of GPUs in accelerating graphics rendering operations, there has been considerable interest

in exploiting GPUs for general purpose computation (GPGPU) [51].

Until now, dense linear algebra support on GPU is well developed, with its own

BLAS library [12], but sparse linear algebra support is still limited. Modern NVIDIA GPUs

are throughput-oriented many-core processors that can offer very high peak computational

throughput. They favor computations exhibiting sufficient regularity of execution paths

and memory access patterns. For sparse-matrix-based analysis, GPU acceleration has been

applied to parallelize the shooting-Newton method for transient radio-frequency circuit

analysis [52] and to speedup the generalized minimum residual analysis (GRMES) based

iterative method for large-scale thermal analysis [36] in the past. However, parallelizing

the sparse LU factorization operation is very difficult because of the irregular structure of

matrices and the high data-dependency during the numeric LU factorization. As a result,

they remain a challenge for GPU-based fine-grained parallel computing [50].

Several research efforts have been proposed for parallelizing sparse LU factorization

on shared memory multi-core CPU and GPUs. SuperLU [20, 21] implemented supernode-

based Gilbert-Peierls (G/P) left-looking algorithm [22], and SuperLU MT [21] is its multi-

threaded parallel version developed for shared memory multi-core architectures. However,
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it is not easy to form super-node in some sparse matrix such as circuit matrix. KLU [23],

which is specially optimized for circuit simulation, adopts Block Triangular Form based on

G/P left-looking algorithm.

Recently, the KLU algorithm has been parallelized on multi-core architecture by

exploiting the column-level parallelism [24, 25]. For parallel LU factorization solvers on

GPU, existing works mainly focus on dense matrices including [26, 27, 28], very few works on

the sparse matrix have been proposed. Ren et al. recently proposed a GPU-based sparse LU

solver based on the G/P left-looking algorithm [14]. It exploits the column-level parallelism

due to sparse nature of the matrix. The left-looking based method, which transforms the

factorization computing into a number of triangular matrix solving, seems more efficient

on GPU computing. But it possesses higher data dependency coming from solving the

triangular matrices. The traditional right-looking LU factorization, which involves only less

data dependent vector operations, has not been well studied in GPU implementation.

In this chapter, we propose a new sparse LU solver on GPUs for circuit simulation

and more general scientific computing. The new method, called GLU method, is based on

a hybrid right-looking LU factorization algorithm. We show that more concurrency can

be exploited in the right-looking method than the left-looking method, especially on GPU

platforms. We have the following contributions:

• We propose a new column-based right-looking LU factorization method, which is

shown to be more amenable for exploiting the concurrency of LU factorization. The

new method preserves the benefit of column-level concurrency and symbolic analysis

in the left-looking method meanwhile, it allows more parallelism to be exploited.
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• We show that the new GLU LU solver allows the parallelization of all three loops in

the LU factorization on GPUs. In contrast, the existing GPU-based left-looking LU

factorization approach can only allow two-level parallelization. We conduct compre-

hensive studies on the new GPU LU solver on a number of published general matrices,

circuit matrices and self-made large RLC circuit matrices against some existing LU

solvers to demonstrate the advantage of the proposed GLU solver.

Numerical results show that the proposed GLU solver can deliver 5.71× and 1.46×

speedup over the single-threaded and the 16-threaded PARDISO solvers [53] respectively,

19.56× speedup over the KLU solver [23], 47.13× over the UMFPACK solver [54] and

1.47× speedup over a recently proposed GPU-based left-looking LU solver [14] on the set

of typical circuit matrices from University of Florida Sparse Matrix Collection (UFL) [55].

Furthermore, we also compare the proposed GLU solver on a set of general matrices from

UFL, GLU achieves 6.38× and 1.12× speedup over the single-threaded and the 16-threaded

PARDISO solvers respectively, 39.39× speedup over the KLU solver, 24.04× over the UMF-

PACK solver and 2.35× speedup over the same GPU-based left-looking LU solver. Also

comparison on self-generated RLC mesh networks shows a similar trend, which further

validates the advantage of the proposed method over the existing sparse LU solvers.

This chapter is organized as follows. Section 2.2 reviews previous work that has

been done to factorize sparse matrices into LU form on GPU, in particular the left-looking

algorithm, GPU architecture and CUDA programming. In Section 2.3, we present the

new column-based right-looking algorithm and its parallel implementation on GPU. Several

numerical examples and discussions are presented in Section 2.4. Last, Section 2.5 concludes.
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2.2 Review of LU factorization algorithms and CUDA

Before we present our new approach, we first review the two main-stream LU

factorization methods: the left-looking G/P factorization algorithm [22] and a variant of

the right-looking algorithms such as the Gaussian elimination method. We then review

some recent works on LU factorizations on GPU and the NVIDIA CUDA programming

system.

The LU factorization of a n×n matrix, A, has the form A = LU , where L is a lower

triangular matrix and U is an upper triangular matrix. For a full matrix, LU factorization

has O(n3) complexity as it has three embedded loops.

2.2.1 Right-looking factorization method

The right-looking LU factorization is the traditional factorization including the

Gaussian elimination method. The algorithm can be explained by the following equation:
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, (2.1)

where l11 = 1 is the a scalar, and l21 and u12 are the column and row vectors respectively,

and L22 and U22 are the (n−1)× (n−1) submatrices. They can be computed by u11 = a11,

u12 = a12, l21 = a21/u11. After this, we end up with a (n − 1) × (n − 1) equation to solve:

L22U22 = A22−l21u12. The process repeats until we reach a 1×1 equation to solve. As we can

see, the traditional right-looking method solves one row for U matrix and then one column

for L matrix at each iteration. Then it updates the (n−1)×(n−1) submatrix A22 on the right

part of the whole matrix and solves the reduced matrix recursively (so it is called the right-
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looking method). Note that the right-looking method requires that Aii is first factored before

we can factor Ai−1,i−1, which indicates the sequential data dependency of this algorithm and

its limits for potential parallel implementations (although the multifrontal based hierarchical

schemes can be exploited for parallelization [56]). Note that we ignore all the reordering

steps for fill-in reduction and numerical pivoting as well as symbolic analysis steps as we

will visit them later.

2.2.2 Left-looking factorization method

The G/P left-looking method shows better performances for sparse matrices and

easier implementation than the traditional Gaussian elimination based methods. It also

allows the symbolic fill-in analysis of L and U matrices before the actual numerical com-

puting. Instead of computing one row of U and one column of L, the left-looking method

computes one column for both L and U instead. This is achieved by solving a lower triangu-

lar matrix. This lower triangular solution is repeated n times during the entire factorization

(where n is the size of the matrix) and each solution step computes a column of the L and U

factors. In this method, the matrix is traversed by columns from left to right. To compute

current column, the algorithm has to look at all the previous computed columns on the left

part of the L and U . So it is called left-looking method. Algorithm 1 shows one detailed

implementation of the left-looking LU factorization. In this pseudo code, the current col-

umn is indexed by j, and the columns to the left of the current column are indexed by k.

To compute the current column j, the algorithm looks left and finds all already factored

column k (k < j), where As(k, j) 6= 0, and then uses these columns to update current

column j. As(x, y) indicates the LU symbolically factorized A matrix, where all the fill-ins
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and non-zero elements are assigned with non-zero initial values and their memories are al-

located. Fig. 2.1 illustrates the basic idea of the left-looking algorithm. The key operation

of the left-looking algorithm is the triangular matrix solving, which is actually performed

by the so-called vector multiple-and-add (MAD) operations sequentially.

One important observation for the left-looking algorithm is that since all the fill-in

patterns of factored matrices are exploited, we know some columns can be solved indepen-

dently and in parallel, which is called column-level parallelism in the existing approaches.

Such concurrency does not exist in the existing traditional right-looking algorithms due to

the recursive nature of the algorithm as we mentioned before.
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Algorithm 1 The Gilbert-Peierls left-looking algorithm

1: for j = 1 to n do

2: /*Triangular matrix solving*/

3: for k = 1 to j − 1 where As(k, j) 6= 0 do

4: /*Vector multiple-and-add*/

5: for i = k + 1 to n where As(i, k) 6= 0 do

6: As(i, j) = As(i, j) − As(i, k) ∗ As(k, j)

7: end for

8: end for

9: /*Compute column j for L matrix*/

10: for i = j + 1 to n where As(i, j) 6= 0 do

11: As(i, j) = As(i, j)/As(j, j)

12: end for

13: end for

2.2.3 Related works

The G/P left-looking method shown in Fig. 2.1 has been parallelized on GPU

recently [14]. This method exploits the two-level concurrency in the left-looking algorithm

due to the sparsity patterns of the matrices. First, it exploits the column-level parallelism

in the left-looking algorithm as mentioned earlier. Based on the matrix sparsity pattern,

the independent columns can be grouped into levels. So the outer j loop of Algorithm 1

can be parallelized by processing columns level by level. The so-called cluster mode in this
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Figure 2.1: Left-looking update for column j
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algorithm is for levels with many independent columns, while the pipeline mode is for levels

with only a few columns. It also explores the parallelism within the vector MAD operation,

which is reflected in the i loop of Algorithm 1. However, the middle k loop of column-by-

column update, which is the key operation, is still in serial. The reason is that there is only

one column j of the U matrix and updating this column must be done sequentially.

2.2.4 Review of GPU Architecture and CUDA programming

In this subsection, we review the GPU architecture and CUDA programming.

CUDA, short for Compute Unified Device Architecture, is the parallel programming model

for NVIDIA’s general-purpose GPUs. The architecture of a typical CUDA-capable GPU is

consisted of an array of highly threaded streaming multiprocessors (SM) and comes with

up to a huge amount of DRAM, referred to as global memory. Take the Tesla C2070 GPU

for example. It contains 14 SMs, each of which has 32 streaming processors (SPs, or CUDA

cores called by NVIDIA), 4 special function units (SFU), and its own shared memory/L1

cache. The structure of a streaming multiprocessor is shown in Fig. 2.2.

As the programming model of GPU, CUDA extends C into CUDA C and sup-

ports such tasks as threads calling and memory allocation, which makes programmers able

to explore most of the capabilities of GPU parallelism. In CUDA programming model,

illustrated in Fig. 2.3, threads are organized into blocks; blocks of threads are organized as

grids. CUDA also assumes that both the host (CPU) and the device (GPU) maintain their

own separate memory spaces, which are referred to as host memory and device memory

respectively. For every block of threads, a shared memory is accessible to all threads in
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Figure 2.2: Diagram of a streaming multiprocessor in NVIDIA Tesla C2070. (SP is short
for streaming processor, L/S for load/store unit, and SFU for Special Function Unit.)

that same block. The global memory is accessible to all threads in all blocks. Developers

can write programs running millions of threads with thousands of blocks in parallel. This
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massive parallelism forms the reason that programs with GPU acceleration can be much

faster than their CPU counterparts. CUDA C provides its extended keywords and built-in

variables, such as blockIdx.{x,y,z} and threadIdx.{x,y.z}, to assign unique ID to all

blocks and threads in the whole grid partition. Therefore, programmers can easily map the

data partition to the parallel threads, and instruct the specific thread to compute its own

responsible data elements. Fig. 2.3 shows an example of 2-dim blocks and 2-dim threads in

a grid, the block ID and thread ID are indicated by their row and column positions.

Grid 1

Block
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Block
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(1,0)

Block
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Thread

Figure 2.3: The programming model of CUDA.
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2.3 Proposed GLU solver based on the hybrid column-based

right-looking LU method on GPU platforms

In this section, we explain our new hybrid column-based right-looking sparse LU

factorization method on the GPUs – GLU solver. GLU solver was originally inspired by

the observation that the existing left-looking LU factorization has inherent limitations for

concurrency exploitations due to the required solving of triangular matrices. To mitigate

this problem, we look at the traditional right-looking LU factorization method, which seems

more amenable for parallelization especially on GPU platforms. But we also want the

benefits of symbolic analysis for storage management of factorized matrices and column-

level concurrency in the left-looking based method. The resulting method is the hybrid

column-based right-looking LU method, which will be discussed in the following.

2.3.1 The column-based right-looking algorithm

Our starting point is still the left-looking algorithm as we want to keep the column-

concurrency and symbolic analysis and we still compute one column for both L and U

matrices. But unlike the left-looking algorithm, once a column of L is computed, its impacts

on the yet-to-be-solved columns will be updated right away (so we now start to look right

in this sense). Algorithm 2 shows the hybrid column-based right-looking LU factorization

algorithm, which turns out to be more amenable for GPU parallelization. In this pseudo

code, the current column are indexed by k, and the columns to the right of the current

column, which are updated immediately after the current column has been computed, are

indexed by j. After current column k is computed, the algorithm looks right and finds all
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column j (j > k) in the submatrix, where As(k, j) 6= 0, and then uses column k to update

these columns. As(x, y) indicates the LU symbolically factorized A matrix, where all the

fill-ins and non-zero elements are assigned with non-zero initial values and their memories

are allocated. Fig. 2.4 illustrates the basic idea of the hybrid column-based right-looking

algorithm. The key operation of the right-looking algorithm becomes submatrix update

now. But such change makes a major difference in terms of concurrency exploitation as we

will show soon.

Algorithm 2 The hybrid column-based right-looking algorithm

1: for k = 1 to n do

2: /*Compute column k of L matrix*/

3: for i = k + 1 to n where As(i, k) 6= 0 do

4: As(i, k) = As(i, k)/As(k, k)

5: end for

6: /*Update the submatrix for next iteration*/

7: for j = k + 1 to n where As(k, j) 6= 0 do

8: for i = k + 1 to n where As(i, k) 6= 0 do

9: As(i, j) = As(i, j) − As(i, k) ∗ As(k, j)

10: end for

11: end for

12: end for

In this column-based right-looking algorithm, we still have three loops. The outer

k-loop chooses the current column k that will be factorized; the middle j-loop chooses the
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Figure 2.4: The illustration of the hybrid column-based right-looking algorithm and the
submatrix update at each iteration

column j in the submatrix right to column k that depends on column k; and the inner

i-loop is used to perform MAD operations between column k and column j. But now, we

will show that these three loops can be parallelized because the submatrix is updated by

the i and j loops, which is more amenable for parallelization than the solving triangular

matrices in the left-looking method (see details in Subsection 2.3.3).

We remark the hybrid LU factorization method is similar to the multifrontal based

right-looking LU factorization method, in the sense that each independent column and its

connected columns can form a frontal matrix [56]. But in our approach, no elimination

tree is used to build the frontal matrices and the hierarchical matrix analysis structure.

The column-level parallelization is mainly based on the dependency graph (to be discussed

later).
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2.3.2 Preprocessing and symbolic analysis

As we mentioned earlier that the proposed method combines the benefits of both

left-looking method and the right-looking methods. As a result, it still follows the prepro-

cessing and symbolic analysis steps to improve the factorization efficiency. Hence the new

factorization algorithm can still be split into three phases. In the sequel, we give a brief

description of the first two steps for the self-contained purpose. Then we analyze the related

data dependency from the symbolic analysis step for GPU computing.

First, the preprocessing phase preorders the matrix A to minimize fill-in and to

ensure a zero-free diagonal. Second, the symbolic phase performs symbolic factorization

and determines the structure of lower triangular matrix L and upper triangular matrix U .

Then it groups independent columns into levels. Third, the numerical phase obtains the

resulting lower and upper sparse triangular factors by solving the columns level by level.

The preprocessing phase and symbolic phase are performed only once on CPU (which will

be discussed in this section). The numerical phase can be performed multiple times on

GPU. For the completion of the algorithm, we also present the first two phases.

In the preprocessing phase, we use HSL MC64 [57] to decrease the likelihood

of encountering tiny pivots and AMD (Approximate Minimum Degree) algorithm [58] to

reduce the fill-ins. The nonzero structure of the sparse matrix may dramatically change in

course of LU factorization. In this step, we perform a left-looking algorithm based symbolic

analysis [22] to determine the nonzero patterns of L and U . The core operation of left-

looking algorithm is to solve the lower triangular system Lkx = b in order to compute the

kth column, where Lk is lower matrix representing the already computed (k − 1) columns
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and the vector b is the kth column of matrix A. This pseudo core operation is shown in

Algorithm 3.

Algorithm 3 Forward substitution for solving sparse triangular matrices

1: x = b

2: for j = 0 to k − 1 where b(j) 6= 0 do

3: for i = j + 1 to n where L(i, j) 6= 0 do

4: x(i) = x(i) − L(i, j)x(j)

5: end for

6: end for

From the pseudo code, we can see that entries in x can become nonzero in only

two places, the first and fourth lines. We can represent these two relationships as a directed

graph G = (V, E), where the nodes V = 1...n represent the rows and the edges E = (j, i)

where L(i, j) 6= 0. Thus, line 1 is equivalent to marking all nodes that are nonzeros in

the vector b, whereas line 4 implies that if a node j is marked and it has an edge to a

node i, then the latter must be also marked. Fig. 2.5 graphically highlights these two

relationships. Therefore, the nonzero pattern can be computed by determining the nodes

that are reachable from the nodes of vector b, which is also the computed column vector of

U from the previous iteration of the left-looking method. This reachability problem can be

solved using a classical depth-first search in G. Then we can determine the nonzero pattern

of the new matrices L and U .

Fig. 2.6 shows a sparse matrix A and the predicted nonzero pattern of the LU

factors of A after symbolic analysis (L and U share the same space of A), in which the
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black circle and white circle represent original entries of A and fill-in entries respectively.

As a result, the matrix A now contains the fill-ins and elements in the original matrix.

When we copy A to GPU’s memory, we actually copy the L and U matrices (with their

values yet to be determined). After the factorization, the A becomes the resulting L and U

matrices physically and it doesn’t contain the original matrix any more.

Figure 2.5: Nonzero pattern for a sparse triangular solver.

Another important problem is the column dependencies. It is clear that any col-

umn dependencies in the overall left-looking algorithm only arise from the sparse triangular

solve step, the line 2 of Algorithm 3. However, when we compute column k, not all the

columns to its left are needed, as it was illustrated in Algorithm 3. In fact, the factorization

of column k only depends on the columns that satisfy aij 6= 0 for i < j. In other words,

the dependencies between rows are defined by the sparsity pattern of the upper triangular
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Figure 2.6: The original matrix A (left) and the matrix A (right) after symbolic analysis
with predicted nonzero pattern of LU factors of A

matrix U and are independent of the lower triangular matrix L.

We use a directed acyclic graph (also called dependency graph) to represent the

data dependencies in the LU factorization of the matrix in Fig. 2.6. In which, if column

k depends on column i, then a directed edge exists from node i to node k, where i < k.

Fig. 2.7 (top figure) illustrates the column dependencies of example matrix A. The graph

was computed using predicted nonzero structure of matrix U only. All the columns in the

same level are independent and can be computed in parallel. For instance, column 1, 2, 3,

5 can be evaluated in parallel; however, column 6 cannot be processed until columns 4 and

5 are computed.

Note that the concurrent computation resources (warps per streaming multipro-

cessor (SM), shared memory per block, threads per block) on GPU are limited. As a result,

the number of columns, which can be solved in parallel, in each level should be limited.

Hence, we propose a resource-aware levelization scheme, in which the number of columns

of each level will be limited by a fixed number. For instance, Fig. 2.7 (bottom figure) shows

the levelization result from the top figure in which the maximum number of allowed columns
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is 3. This resource-aware levelization scheme will be applied to parallelize the outer k-loop

of the proposed right-looking algorithm.

Figure 2.7: The illustration of the resource-aware levelization scheme.
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2.3.3 Numerical computing phase

The algorithm based symbolic analysis can be altered to expose the column-level

parallelism. Despite this exposed column-evaluation concurrency, in the numerical factor-

ization phase, it is possible to explore more parallelism available in each level using multiple

threads.

On GPU, the global memory access from the same CUDA warp (one warp consists

of 32 threads and it is scheduling unit on one SM on GPU) can be coalesced if they are

visiting the consecutive memory address. However, for sparse LU factorization, irregular

nonzero pattern leads to many uncoalesced global memory accesses, which greatly degrades

the performance. To maximize the coalescence, we use compressed sparse column (CSC)

format to store the A matrices (L and U share the same storage of A) and record all

nonzeros in L and U . In addition, to maximize parallelization during the factorization, we

also use compressed sparse row (CSR) format to record the nonzero positions of symbolic

U (but not its values), and its usage will become clear soon.

Now let us look at how the three loops in the proposed right-looking method can

be parallelized in GPU platforms. Algorithm 4 is the pseudo code for the proposed parallel

column-based right-looking algorithm. The first loop is to choose a number of columns of L

matrix in one level, which can be factorized in parallel. Both the proposed method and the

left-looking method enjoy this column-level parallelism as the proposed method is also based

on the symbolic left-looking level analysis. The difference is in the other two loops of the

two algorithms. Next, let us look at the computing steps inside the first loop (between line

2 and line 14). There are two stages. In the first stage, we compute the current column col
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of the L matrix by vector-scalar division and it can be performed in parallel easily. Due to

the first column-level parallelism, we may have several current column col’s to be updated.

In the second step, we perform the submatrix update (MAD operations) for the

current column col. We are concerned col’s that are needed by other columns of the subma-

trix (means that A(k, j) 6= 0 in line 7 of Algorithm 2) . We call the columns in submatrix

which depends on current column col, the subcol. To facilitate locating those subcol’s, we

need to access the dependency graph, which is represented by the symbolic upper trian-

gular matrix U . For instance, the subcol’s of a current column, say k, can be found by

using the nonzero position information of row k of L. This also explains why we need to

have symbolic U in the CSR format. Note that the current column col needs to be stored

into a un-compressed array and the subcol’s can access the un-compressed array to get the

col information to update themselves. Since the subcol’s only read information from the

un-compressed column, there’s no conflict.

Notice that each subcol only needs to be updated once by the current column. As a

result, all subcol’s in one submatrix can be updated in parallel. This parallelism in the loop

is called submatrix update parallelism. In the third loop, the core operation is vector MAD

operation, which is used to update a subcol. In contrast, the current column col needs to

be updated by all solved and relevant columns to its left in the left-looking algorithm in the

left-looking algorithm and the updates to column k must be performed sequentially. Hence

it cannot enjoy the submatrix update parallelism. As a result, we parallelize essentially all

the loops in LU factorization in the proposed new method.
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Algorithm 4 Parallel column-based right-looking algorithm on GPU

1: for level 1 to level m do

2: /*column-level parallelism*/

3: for all col’s in current level in parallel do

4: compute current col of L matrix

5: end for

6: synchronize threads

7: for all col’s in current level in parallel do

8: /*submatrix update parallelism*/

9: for all subcol’s in current submatrix which depends on col in parallel do

10: /*vector MAD operation parallelism*/

11: update elements in one subcol

12: end for

13: end for

14: synchronize threads

15: end for

2.3.4 Parallel implementation on GPU

In the parallel implementation of sparse LU factorization, the CPU is responsible

for initializing the matrix and doing the symbolic analysis. The GPU only concentrates on

the numerical factorization. The CPU is also responsible for allocating the device memory,

copy the host inputs to the device memory, and copy the computed device results back to

the host.
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In the proposed algorithm, the matrix A is divided into several levels. With

the resource-aware levelization scheme, the optimal number of thread blocks can be easily

determined (see experimental section for some study results). We use one thread block to

process one column in a level. In the first stage, we use one warp to compute one current

column in the L matrix. Multiple current columns will lead to multiple blocks invoked in

GPU in each kernel launch as each block can execute independently. Then we synchronize

the threads within the block to ensure the current column is solved. In the second stage,

we use one warp to update one subcol. There may be multiple active warps in one block

now. Within one block, there is no data conflict among warps because they update different

subcol. However, memory access conflict may occur between different blocks. For example,

column j depends on both column k1 and k2, while column k1 and k2 are in the same

level. In this case, the updates to the column j must be performed using atomic floating

point operations. Finally, each element in subcol’s is updated by one thread. In this way,

we can take the full advantage of the GPU powers. Fig. 2.8 illustrates the difference

for concurrency exploitation and warp scheduling schemes between the left-looking and the

proposed column-based right-looking algorithm. It can be seen that there is only one warp

sequentially updating current column with the already factored columns in the left-looking

algorithms. However, in the proposed right-looking algorithm, multiple warps can use the

current column to update many different sub-columns concurrently.
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Figure 2.8: The comparison of the concurrency exploitation on GPU in terms of warp
scheduling.

2.4 Numerical results and discussions

The proposed GLU LU factorization algorithm is implemented in C programming

language. The GPU part is incorporated into the main program with CUDA C programming

interface. The proposed method has been prototyped in CUDA 5.0 and the experimental

results are carried out in a Linux server with two 8-Core Xeon E5-2670 CPUs, DDR3-1600

64GB memory. The server also consists of one K40 GPU and one K20 GPU, which serve as

the GPU platforms for the proposed algorithms. Note that all the GPU results are obtained

from the K40 GPU.
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Table 2.1: The General Benchmark Matrices

Name N NNZ(A) NNZ(A)/N NNZ(L+U-I)

cage11 39082 59722 14.3 165367120

cant 62451 4007383 64.2 57830341

barrier2-11 115625 3897557 72.1 193180399

FEM 3D thermal2 147900 3489300 23.6 93097092

thermomech dK 204316 2846228 13.9 29085006

mc2depi 525825 2100225 4.0 54346411

epb3 643994 6175377 9.6 31698731

apache1 715176 4817870 3.9 8679783

ecology2 999999 4995991 5.0 45752523

thermal2 1228045 8580313 4.0 6330643
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2.4.1 Performance comparisons

The benchmark matrices are listed in Table 2.1. The general matrices set and the

circuit matrices set are from University of Florida Sparse Matrix Collection [55], which

are used to evaluate the proposed GPU sparse LU factorization against other LU solvers.

We also include a set of self-generated RLC mesh networks, which are used for providing

comparison results on large circuit matrices. In this table, N is the matrix size, NNZ(A)

means the number of nonzeros of the original matrix A, NNZ(A)/N shows the average

number of nonzeros per row and NNZ(L+U-I) shows the number of nonzeros of the L and

U matrices. Within each set, they are ranked with increasing number of N from top to

bottom. Although our intention is for circuit matrices, we also include some matrices from

wide applications to show that this GLU sparse solver can be applied for wide scientific and

engineering applications.

We compare the proposed GLU solver against the recently proposed GPU left-

looking algorithm (GPU-LL) [14], the UMFPACK solver [54], which is a right-looking multi-

frontal solver, the KLU solver [23] and PARDISO [53], which is a state of the art parallel

sparse LU solver, over the benchmark matrices in Table 2.1 and 2.3. In our performance

evaluation, we use the CPU time reported by UMFPACK 5.6.2, KLU 1.2.0 and PARDISO

5.0.0.

Table 2.2 and 2.4 summarize the performance comparison results over benchmark

matrices. And the listed time is only for numeric factorization, excluding preprocessing

and symbolic analysis because the numeric factorization can be done many times in circuit
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Table 2.2: The Performance Comparison Over General Benchmark Matrices

Bechmark GLU PARDISO KLU UMFPACK GPU-LL Speedup over

name Runtime T=1 T=16 Runtime Runtime Runtime PARDISO KLU UMFPACK GPU-LL

(s) (s) (s) (s) (s) (s) T=1 T=16

cage11 5.875 23.778 3.180 781.360 163.240 16.840 4.04 0.54 133.00 27.79 2.87

cant 3.662 3.543 0.491 33.741 18.1 11.03 0.97 0.13 9.21 4.94 3.01

barrier2-11 7.434 38.622 4.491 475.690 204.059 23.667 5.20 0.60 63.99 27.45 3.18

FEM 3D thermal2 0.898 5.658 0.864 85.201 40.94 2.583 6.30 0.96 94.88 45.59 3.71

thermomech dK 0.053 1.501 0.274 7.090 4.527 0.238 28.32 5.17 133.77 85.42 4.49

mc2depi 0.049 0.587 0.325 25.970 20.986 0.197 11.97 6.63 530.00 428.29 4.02

epb3 0.043 0.210 0.051 0.652 0.560 0.047 4.88 1.19 15.16 13.02 1.09

apache1 0.490 2.318 0.415 14.241 7.437 0.560 4.73 0.85 29.06 15.17 1.14

ecology2 6.940 6.604 0.928 38.131 25.330 8.990 0.95 0.13 5.49 3.64 1.30

thermal2 0.066 7.668 1.043 0.466 0.943 0.112 116.18 15.80 7.06 14.29 1.70

Arithmetic mean 18.36 3.20 102.16 66.56 2.65

Geometric mean 6.38 1.12 39.39 24.04 2.35
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Table 2.3: The Circuit Benchmark Matrices

Name N NNZ(A) NNZ(A)/N NNZ(L+U-I)

Circuit matrices

circuit 2 4510 21199 4.7 35612

rajat15 37261 443573 11.9 2028124

bcircuit 68902 375558 5.5 982513

ASIC 100ks 99190 578890 5.8 4271846

hcircuit 105676 513072 4.8 625958

scircuit 170998 958936 5.6 2518316

raj1 263743 1302464 4.9 10771367

ASIC 320ks 321671 1827807 5.7 4838888

rajat30 643994 6175377 9.6 31698731

ASIC 680ks 682712 2329176 7.2 4957172

G3 circuit 1585478 7660826 4.8 376618798

Freescale1 3428755 17052626 5.0 61281350

Self-generated RLC mesh networks

rlc1 1970204 5930208 3.0 10169818

rlc2 3940404 11900408 3.0 21669968

rlc3 5890604 15731208 2.7 29761652

rlc4 15880404 47720408 3.0 81367568

rlc5 35621204 95082408 2.7 180026381
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simulation and consume most of the simulation time while the other steps are not signif-

icant. For UMFPACK and KLU, it is difficult to see which one is better: KLU performs

relatively better for circuit matrices, but are slower for matrices which take longer time to

factor; UMFPACK beats KLU for general matrices which cost hundreds of seconds in their

factorization, but is much slower for circuit matrices; single-threaded PARDISO performs

very well on general matrices which are more dense than circuit matrices; The 16-threaded

PARDISO is very fast on some of the cases but not so impressive on some large circuit

matrices like ASIC 680ks and all of our self-generated RLC mesh networks; GPU-based

left-looking solver, GPU-LL, has very stable performance on all of the three sets.

The proposed GLU algorithm outperforms the above solvers on most the matrices

cases with various structures. For the general matrices set, compared to the KLU and

UMFPACK, our speedup can achieve 39.4× and 24.0× on geometric mean, respectively. In

addition, we can see in some cases such as mc2depi, the speedup over KLU solver can be

as high as 530×. Compared to the single-threaded and the 16-threaded PARDISO solver,

the speedup can be 6.38× and 1.12× on geometric mean, respectively. Compared to the

GPU-LL solver, the speedup ranges from 1.09× to 4.49×, with 2.35× on geometric mean,

which is still quite significant as the new solver is faster for all the matrices. On the other

hand, we also notice that the speedup highly depends the structures of benchmark matrices.

Speedup in some cases such as barrier2-11 is due to the fact that there are many

denormal floating point numbers (extremely small real numbers) when factorizing this kind

of matrix. CPU deals denormal numbers much slower than with normal represented num-

bers [59]. In contrast, the GPU can handle these numbers at the same speed as normal
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Table 2.4: The Performance Comparison Over Circuit Benchmark Matrices

Bechmark GLU PARDISO KLU UMFPACK GPU-LL Speedup over

name Runtime T=1 T=16 Runtime Runtime Runtime PARDISO KLU UMFPACK GPU-LL

(s) (s) (s) (s) (s) (s) T=1 T=16

Circuit matrices

circuit 2 0.008 0.002 0.004 0.004 0.006 0.011 0.25 0.50 0.54 0.78 1.43

rajat15 0.163 0.090 0.020 0.293 0.447 0.203 0.55 0.12 1.79 2.74 1.24

bcircuit 0.009 0.052 0.013 0.065 0.205 0.030 5.78 1.44 7.22 22.78 3.33

ASIC 100ks 0.031 0.292 0.090, 1.660 1.871 0.032 9.42 2.90 54.25 61.15 1.05

hcircuit 0.009 0.048 0.018 0.030 0.253 0.014 5.33 2.00 3.33 28.11 1.55

scircuit 0.056 0.13 0.031 0.339 0.829 0.106 2.32 0.55 6.05 14.80 1.89

raj1 0.189 0.355 0.078 73.842 125.799 0.211 1.88 0.41 390.69 665.60 1.12

ASIC 320ks 0.058 1.328 0.264 3.703 9.156 0.081 22.90 4.55 63.75 157.63 1.39

rajat30 1.234 6.309 1.468 0.317 230.59 1.864 1.19 0.26 15.58 186.86 1.51

ASIC 680ks 0.054 20.246 2.526 1.298 4.679 0.070 374.93 46.78 24.09 86.86 1.30

G3 circuit 0.672 26.464 3.467 516.882 133.358 1.054 39.38 5.16 769.16 198.44 1.57

Freescale1 0.235 4.004 0.689 13.486 67.414 0.284 17.04 2.93 57.45 287.20 1.21

Arithmetic mean 40.08 5.63 116.16 142.74 1.55

Geometric mean 5.71 1.46 19.56 47.13 1.47

Self-generated general RLC mesh networks

rlc1 0.080 0.730 0.326 0.558 1.746 0.135 9.13 4.08 7.02 21.96 1.70

rlc2 0.180 1.567 0.419 1.263 6.499 0.267 8.71 2.33 7.04 36.21 1.49

rlc3 0.213 2.493 0.684 1.504 6.892 0.359 11.70 3.21 7.05 32.39 1.69

rlc4 0.626 5.770 1.545 4.638 fail 0.996 9.22 2.47 7.41 - 1.59

rlc5 1.274 15.539 3.279 9.807 fail 1.985 12.20 2.57 7.70 - 1.56

Arithmetic mean 10.19 2.93 7.24 30.19 1.61

Geometric mean 10.09 2.87 7.24 29.53 1.60
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numbers [14]. So the GPU speedups for these matrices are very high. The performance

comparison on these matrices clearly demonstrates the advantage of the proposed method.

We then compare the proposed method against other solvers on a set of typical

circuit matrices which are also from UFL sparse matrix collection [55]. Compared with

the single-threaded and the 16-threaded PARDISO, KLU, UMFPACK and GPU-LL, the

proposed method achieves about 5.71×, 1.46×, 19.56×, 47.13× and 1.47× speedup, respec-

tively, which further validates the advantage of the proposed method over the existing LU

solvers. Please note that the proposed GLU can be slower than other solvers on very small

circuit like circuit 2 and rajat15. The possible reason is that the computation time is quite

small and overheads become more significant, which was also observed in [60].

Last, we perform the comparison on a set of self-generated general RLC meshed

networks. We notice that the KLU solver is highly optimized for the such circuit matrices

and it indeed shows better performance. But still the 16-threaded PARDISO gives the best

results among all the CPU sparse solver. However the new GLU method outperforms KLU

about 7.24× on average. And the UMFPACK solver runs out of memory on two largest

matrices. For the other 3 matrices, the proposed method also delivers about 29.53× speedup

compared to UMFPACK solver. Also GLU outperforms single-threaded and 16-threaded

PARDISO with 10.09× and 2.87× on average. Compared with the GPU-LL solver, GLU

achieves about 1.60× speedup and it again consistently outperform the GPU-LL solver on

all the examples, which further demonstrates the advantage of the proposed method over

the existing GPU-LL method.
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Figure 2.9: Speedup over KLU vs. number of warps per SM on K40c.

2.4.2 Impacts of warp number on performance

Next, we study one important design parameter and its impacts on performance

of the GLU solver. We observe that one important parameter for the proposed solver is the

number of warps allowed for each block or streaming multiprocessor (SM). Fig. 2.9 shows

the speedup over KLU on four matrices on K40 GPU, with different number of warps per

SM. The best performance is achieved when the number of resident warps per SM is around

8.

As we mentioned in Section 2.3.4, we use one warp to process one sub-column.

Although more active warps can attain a higher parallelism, processing too many sub-

columns simultaneously may decrease the performance. There are several reasons for this.
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First, there may not be enough sub-columns as the matrix is sparse, while more resident

warps mean more overhead on SM. Second, it may lead to more memory access conflicts

as the threads need to perform slow atomic operations. With a threshold warp number

set to 8, the performance reaches its best in terms of those trade-offs. When we further

increase the number of warp, although there are more threads, the parallelism will not be

further exploited so the performance starts to degrade. Note that such golden number of

warp number depends on the structure of sparse matrix, and a few tries are needed to find

the optimal number.

2.5 Summary

We have proposed a new sparse LU solver on GPUs for circuit simulation and

more general scientific computing. The new algorithm is based on a hybrid right-looking LU

factorization method, which we showed, is more suitable for GPU computing as it can exploit

more parallelism than the widely used left-looking LU factorization algorithm. We further

showed how the three loops of LU factorization can be parallelized based on the GPU thread

structures, while the existing GPU left-looking LU factorization method can only parallelize

two loops. Numerical results show that the proposed GLU solver can deliver 5.71× and

1.46× speedup over the single-threaded and the 16-threaded PARDISO solvers respectively,

19.56× speedup over the KLU solver, 47.13× over the UMFPACK solver and 1.47× speedup

over a recently proposed GPU-based left-looking LU solver on the set of typical circuit

matrices from University of Florida Sparse Matrix Collection (UFL). Furthermore, we also

compare the proposed GLU solver on a set of general matrices from UFL, GLU achieves
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6.38× and 1.12× speedup over the single-threaded and the 16-threaded PARDISO solvers

respectively, 39.39× speedup over the KLU solver, 24.04× over the UMFPACK solver and

2.35× speedup over the same GPU-based left-looking LU solver. Also comparison on self-

generated RLC mesh networks shows a similar trend, which further validates the advantage

of the proposed method over the existing sparse LU solvers.
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Chapter 3

Parallel GMRES Solver on GPU

Platforms

3.1 Introduction

The verification of today’s large linear global networks such as on-chip large power

grid networks is very challenging for chip designers. Fast verification of voltage drops and

other noises on power delivery networks is critical for final design closure. As the VLSI

technology proceeds into sub-65 nm scale [4], one challenging job of power grid network

is to predict and ensure a reliable on-chip power delivery. Since the power grid network

usually comes with a huge size, its simulation and verification take a lot of time, and

sometimes even make the analysis completely failed. Intensive researches have been carried

out to seek for efficient analysis of large power grid networks in the past decade. Various

algorithms have been proposed to improve scalability in computing time and to reduce
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memory footprints [5, 6, 7, 8, 9]. But most of those techniques are based on the homogeneous

single-core architectures.

The course of computing has been permanently altered by the recent leap from

single-core to multi-core or many-core technologies. Among them, the graphics processing

unit (GPU), is one of the most powerful many-core computing systems arousing interests

and input from both research and industry community [10]. Today, more and more high

performance computing servers are equipped with GPUs as co-processors. These GPUs

work in tandem with CPUs (on same computing node) connected by high-speed link like

PCIe buses. GPU’s massively parallel architecture allows high data throughput in terms

of floating point operations (flops). For instance, the state-of-the-art NVIDIA Kepler K40c

chip has a peak performance of over 4 Tflops performance in comparison with about 80–

100 Gflops of Intel i7 series quad-core CPUs [11]. Currently, GPUs or GPU-clusters can

easily deliver tera-scale computing, which was only available on super-computers in the

past, for solving many large scientific and engineering problems.

The NVIDIA CUBLAS libray [12] provides good dense linear algebra support

on GPU, but the sparse linear algebra support is still limited. Although there are some

recent efforts in this direction [13, 14], the sparse LU solvers on GPU is considered to

be difficult due to the complicated data dependency. On the other hand, iterative solvers,

which mainly depend on simple operations such as matrix-vector multiplication and inner

product of vectors, are more amicable for parallelization, especially on GPU platforms.

There are some newly published papers, such as [15, 16, 17, 18, 19], which confirm the

practicality and effectiveness of iterative solvers in solving large linear dynamic networks
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like power grid networks. But the existing approaches primarily focus on the multi-core

CPU. The investigation of GPU power on these iterative solvers receives less attention.

Recently, there are also some research works for GPU-based iterative solver for

sparse systems [29, 30, 31, 32, 33, 34, 35, 36]. In [30], GMRES solver has been accelerated on

GPU by simply parallelizing the computing of polynomial preconditioners. In [31], Jacobi-

preconditioned conjugate gradient algorithm is parallelized based block compressed row

storage format. But this solver only works on single GPU and symmetric matrices. Work

in [36] proposed a parallel GMRES based on existing GPU-enabled BLAS library [12]. Also

a few existing works have been proposed to explore the hybrid accelerators such as GPUs

and Xeon Phi.

In this chapter, an efficient parallel dynamic linear solver with application on

transient analysis of large power grid networks of VLSI systems is proposed. We aim at

developing a general GPU-accelerated dynamic linear solver, which not only can be applied

to analyze power grid networks with different structures and properties, but also can be used

to solve more general problems with asymmetric matrices. Examples include the power grid

networks or thermal circuits with compact models, which may consist of controlled sources,

constructed from model order reduction, subspace identification and other methods [61, 62].

Another example is the co-simulation of the power grids and voltage regulators. As a

result, the new method, called GPU-GMRES, is based on the preconditioned Generalized

Minimum RESidual (GMRES) iterative solver, and is implemented on heterogeneous CPU-

GPU platforms with multiple GPUs. The proposed GPU-GMRES solver adopts a very

general and robust incomplete LU based preconditioner with tunable fill-ins. We show that
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by properly selecting the right amount of fill-ins in the incomplete LU factors, a good trade-

off between GPU efficiency and convergence rate can be made to achieve the best overall

performance of the solver. Such tunable feature can make this algorithm very adaptive and

flexible for different problems.

In addition, since sparse matrix-vector (SpMV) multiplication is a key and the

most time-consuming operation in a preconditioned GMRES solver, we also propose a

new fast parallel SpMV algorithm on GPU platforms. The new algorithm, called segSpMV,

reduces the memory access by partitioning the rows, whose nonzero patterns are irregular in

general, into a number of fixed-length segments. As a result, the segSpMV method can enjoy

the fully coalesced memory access and outperform existing GPU-enabled SpMV methods.

To further improve the scalability and efficiency, segSpMV method is further extended to

multi-GPU platforms, which leads to more scalable and faster multi-GPU GMRES solver.

Furthermore, since many operations in the preconditioned GMRES solver such as SpMV

and sparse triangular solving are bandwidth limited operations, it is important to reduce

the data communication traffics. As a result, we properly partition the major computing

tasks in the GMRES solver to minimize the data traffic between CPU and GPU, which

further boosts performance of the proposed method.

Experimental results on the set of the published IBM benchmark circuits and

mesh-structured power grid networks show that the GPU-GMRES solver can deliver order

of magnitudes speedup over the director solver, UMFPACK [54]. The resulting multi-GPU-

GMRES can also deliver 3-12× speedup over the CPU implementation of the same GMRES

method on transient analysis. We also show that the matrix structures and property have
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a huge impact on the efficiency of GMRES solvers. Note that some preliminary results of

this article appeared in [63].

This chapter is organized as follows. Section 3.2 reviews power grid analysis prob-

lem and the GPU architecture. Section 3.3 describes the proposed GPU-GMRES parallel

algorithm and discussions of ILU preconditioner. In Section 3.4, we present a new fast par-

allel SpMV algorithm and its implementation on multi-GPU platforms, followed by several

numerical examples in section 3.5. Last, Section 3.6 concludes this chapter.

3.2 Review of power gird simulation and GPU architecture

3.2.1 The problem of power grid simulation

As shown in Fig. 3.1, a power grid network can be modeled as RLC (or RC)

networks with known time-variant current sources, which can be obtained by gate-level

logic simulations of the circuits. A typical power grid model has a tremendous size of

over million nodes, and up to hundreds of thousands of input current sources. There are

some nodes with known voltages in the grid, and are modeled as nodes connected with DC

voltage sources. For C4 power grids, the known voltage nodes can be internal nodes inside

the power grid.

The node voltages can be obtained by solving the differential equation which is

formulated by modified nodal analysis (MNA),

Gx(t) + C
dx(t)

dt
= Bu(t), (3.1)

where u(t) is the given current source vector, G ∈ R
n×n is the conductance matrix,
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Figure 3.1: An RLC model of power grid network.

C ∈ R
n×n is the matrix resulting from charge storage elements, B ∈ R

n×m is the input

selector matrix, x(t) ∈ R
n is the vector of time-varying node voltages and branch currents

of inductors and voltage sources, and u(t) ∈ R
m is the vector of independent power sources.

In general, the matrices G and C can be asymmetric. As a result, the conjugate gradient

(CG) method may not be applied to the given problem. So we adopt the more general

GMRES solver in this work to solve this problem.

With the backward Euler method, the transient behavior of the power grid can be

solved step by step from a given initial condition x(0) using

(G +
1

h
C)x(t + h) =

1

h
Cx(t) + Bu(t + h), (3.2)
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where h is the time step length. If a fixed time step h is chosen, then the left-hand side

matrix, G + 1

h
C, will remain the same along all time steps. Hence, when applying LU

solver on this case, LU factorization only needs to be done once to obtain the LU factors

of G + 1

h
C, and they can be reused for all the triangular solves in the following time steps.

3.3 Parallel GMRES solver on the GPU-CPU platform

3.3.1 ILU-based GMRES Solver

In general, our problem is how to solve a linear system

Ax = b, (3.3)

In our application, the coefficient matrix is A = G+(1/h)C, and the right-hand side vector

is b = (1/h)C · xi−1 + ui. The index of transient point is denoted by the subscript i , i.e.,

xi = x(ti) = x(i · h). The linear equation like Eq. (3.3) can be solved by applying the

LU factorization (direct) method or iterative methods. However, the implementations of

LU-factorization solver are considered to be difficult on GPU due to many inherent data

dependency and irregular memory access. On the other hand, the iterative solvers, are more

amenable for GPU computing as only sparse matrix-vector (SpMV) and triangular matrix

solving (in our implementation) operations are required, which are both GPU-friendly.

We investigate the GPU-accelerated GMRES iterative solver to solve the proposed

power grid analysis problem. Considering the following system equivalent to Ax = b,

CLACRy = CLb, y = C−1
R

x, (3.4)

where CL, CR ∈ R
n×n are non-singular. The CL and CR are referred as left preconditioner
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and right preconditioner, respectively. The intuitive idea of preconditioning is to choose

the matrices CL and CR so that CLACR can approximate the identity matrix. This can

be done by squeezing eigenvalues of CLACR close to unity. In Eq. (3.4), we express this

preconditioning process in the form of matrix multiplication. However, there can be other

operations involved in practice. For instance, in our proposed solver, the two matrices CL

and CR are actually the applications of lower and upper triangular solvers using the factors

derived from incomplete LU factorization.

The combined efforts of the left factor and right factor in this splitting style pre-

conditioning contribute to a more efficient GMRES, which is much better than using a

single side precondition factor. Existing works have shown that such kind of simple precon-

ditioners, e.g., diagonal (or Jacobi) preconditioner and approximate inverse preconditioner

(AINV), do not have ideal preconditioning quality and they may even fail on some cases [64].

Moreover, very attractive preconditioners are defined in terms of an incomplete LU (ILU)

factorization of A. That is, we use the simplified version (or say, the cheaper variant) of

LU method to compute L̃ and Ũ, where L̃ and Ũ are sparse triangular matrices achiev-

ing the approximation A ≈ L̃ · Ũ. Incomplete LU factorization is generally based on a

modified Gaussian elimination, where the number of fill-in elements during factorization is

strictly controlled below a preset limit. With row and column permutations, the generalized

ILU can be used in most cases for preconditioning. With the application of permutation

matrices, the preconditioned matrix system in Eq. (3.4) is

CLACR = (L̃−1P)A(QŨ−1) (3.5)

where L̃ and Ũ are ILU factors, and P and Q are permutation matrices. The construction
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of the two ILU factors shall satisfy the approximation

PAQ ≈ L̃Ũ,

which is equivalently to say that L̃−1PAQŨ−1 is an approximation to identity matrix I.

There is a critical trade-off between this approximation and the fill-in ratio of

the ILU factors. A closer approximation needs more efforts in factorization and results in

high fill-in ratio of LU factors. Therefore, it will incur a high computation cost during the

preconditioning process, i.e., calculating Eq. (3.5). On the contrary, ILU factors with low

fill-in ratio are cheap to be factorized, and they also require less effort in the triangular solves,

but it could take more iterations in GMRES since the spectral property of the preconditioned

system deteriorates. We will study this trade-off relationship in our experiment section.

The generalized minimum residual (GMRES) method is an iterative method for

solving large-scale systems of linear equations (Ax = b), where A is sparse in our case.

Algorithm 5 shows the standard Krylov-subspace based GMRES method with precondi-

tioner [64], which uses projection method to form the m-th order Krylov-subspace [65, 64],

e.g.,

Km = span(r0,MAr0, (MA)2r0, . . . , (MA)m−1r0), (3.6)

where r0 = b − Ax0 and M is the preconditioner. Note that for the sake of simplicity, we

represent the ILU preconditioning process as an operation M here, and from now on, all

the occurrence of MA should denote the operation in Eq. (3.5), which contains two sparse

triangular solves and one sparse matrix vector multiplication. After orthogonalization and

normalization, the orthonormal basis of this subspace is Vm. To generate the Krylov

subspace in GMRES, Arnoldi iteration is employed to form Vm. Each Arnoldi iteration

53



generates a new basis vector and is appended to the previous Krylov subspace basis Kj to

obtain the augmented subspace Kj+1. Arnoldi iteration also creates an upper Hessenberg

matrix H̃m used to check the solution at the current iteration. As a result, the approximated

solution x becomes the linear combination of xm = x0 + Vmym, where ym is calculated in

Line 12 of Algorithm 5.

The least squares problem is usually solved by computing the QR factorization of

the Hessenberg matrix. In fact, the Hessenberg matrix can be maintained in factorized form

by successively updating the factors. This procedure, which can be efficiently implemented

by Givens rotations, is numerically reliable. However, the Gram-Schmidt orthogonalization

inherent in Arnoldi method may be a source of numerical errors. Instead, we may use

the modified Gram-Schmidt processes, or better, apply Householder transformations. The

latter alternative is also well suited for parallel implementation.

3.3.2 Parallelization on GPU-CPU platforms

To parallelize the GMRES solver, we need to identify several computation intensive

steps in Algorithm 5. There exist many GPU-friendly operations in GMRES, such as

vector addition (axpy), 2-norm of vectors (nrm2), and SpMV multiplication (segSpMV).

With preconditioning process, the triangular solves (csrsv) using ILU factors are also the

beneficiaries of parallel computing, since many rows in ILU factors are independent and

the solving of these rows can be done in parallel [66]. Based on the examples we focus on,

we have noticed that SpMV multiplication and triangular solving take up to 70% of the

overall runtime to build the Krylov subspace shown in Eq. (3.6). Those routines are GPU-
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Algorithm 5 GMRES with left and right preconditioning.

Require: A ∈ R
n×n, b ∈ R

n, x0 ∈ R
n (initial guess), m (restart)

Ensure: x ∈ R
n: Ax ≃ b

1: r0 = b − Ax0

2: r̃0 = CLr0, β = ‖r̃0‖2
, v1 = r̃0/β

3: for j = 1, 2, . . . , m do {Arnoldi iteration on GPU}

4: w = CLACRvj {Eq. (3.5) using segSpMV and CUSPARSE csrsv}

5: for i = 1, 2, . . . , j do {using CUBLAS functions}

6: hi,j = wT
i vj

7: w = w − hi,jvi

8: end for

9: hj+1,j = ‖w‖
2
, vj+1 = w/hj+1,j

10: end for

11: Vm = [v1, . . . ,vm], H̃m = {hi,j}1≤i≤j+1, 1≤j≤m

12: ym = argmin
y
‖βe1 − H̃my‖2

13: xm = x0 + CRVmym

14: if not converge then

15: x0 = xm, go to Line 1

16: end if
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friendly (but they are bandwidth limited operations) and efforts have been made already

to parallelize these routines in generic parallel algorithms for sparse matrix computations

library CUSPARSE [67].

GPU programming for many engineering problems are typically limited by the

data transfer bandwidth as GPU favors computationally intensive algorithms [50]. This is

especially true for operations such as SpMV multiplication and sparse triangular solving,

which are bandwidth limited. For instance, SpMV has O(n) communication and O(n)

computing, so it has 1 to 1 computing and communication ratio (n is number of non-zero

elements in the sparse matrices). Hence, it is important to reduce the data communication

traffic for the proposed GPU-GMRES solver.

As a result, how to wisely partition the data between CPU memory (host side)

and GPU memory (device side) to minimize data traffic is crucial for GPU computing. In

the sequel, we make some detailed analysis first for GMRES in Algorithm 5. Although

GMRES tends to converge quickly for most circuit examples, i.e., the iteration number

m ≪ n, the space needed to store the subspace Vm with a size of n-by-m, i.e., m column

vectors with n-length, is still big. Therefore, transferring the memory of the subspace

vectors between CPU memory and GPU memory is not an efficient choice. In addition,

every newly generated matrix-vector product needs to be orthogonalized with respect to all

its previous basis vectors in the Arnoldi processes. To utilize the data intensive capability of

GPU, we keep all the vectors of vm in GPU global memory. In this case, GPU is allowed to

handle those operations, such as inner-product of basis vectors (dot) and vector subtraction

(axpy), in parallel.
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Figure 3.2: The proposed GPU-accelerated parallel preconditioned GMRES solver. We also
show the partitioning of the major computing tasks between CPU and GPU here.
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On the other hand, it is better to keep the Hessenberg matrix H̃, where inter-

mediate results of the orthogonalization are stored, at the CPU host side, because of the

following reasons. First, its size is (m + 1)-by-m at most, rather small if compared with

circuit matrices and Krylov basis vectors. Besides, it is also necessary to triangularize H̃

and check the residual in each iteration so the GMRES can return the approximate solution

as soon as the residual is below a preset tolerance. Hence, in light of the sequential nature

of the triangularization, the small size of Hessenberg matrix, and the frequent inspection of

values by the host, it is preferable to allocate H̃ in host memory. As shown in Algorithm 5,

the memory copy from device to host is called each time when Arnoldi iteration generates

a new vector and the orthogonalization produces a new vector h, which is the (j + 1)th

column of H̃, and is transferred to the CPU, where a least square minimization (a series of

Givens rotations, in fact) is performed to see if the desired tolerance of residual has been

met. Our observation shows that the data transfer and subsequent CPU based computation

takes up less than 0.1% of the total run time.

Fig. 3.2 illustrates the computation flow, the partitions of the major computing

steps and the memory accesses between CPU and GPU during the operations we mentioned

above.

3.3.3 GPU-friendly implementation of preconditioners

One important aspect of the iterative solver is the preconditioner. Preconditioners

increase the rate of convergence and thus reduce the number of iterations. A well chosen

preconditioner will potentially make GMRES much faster than the one without precondi-

tioner. In this section, we discuss the preconditioner for GPU GMRES.
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We know from the preceding discussion that in ILU preconditioning process of

Eq. (3.5), the two major participants are L̃ and Ũ, who are sparse triangular matrices

and approximate the L and U factors of A respectively. At the beginning of each Arnoldi

iteration in Line 4 in Algorithm 5, this preconditioning procedure is needed to modify the

property of a newly spanned Krylov subspace vector. For GMRES without preconditioner,

Line 4 only consists a matrix-vector multiplication Avj . In the new preconditioned GMRES

solver, applying the ILU preconditioner requires two more operations: the solving of two

sparse triangular systems (forward and backward substitutions).

For the two triangular ILU factors, we have two conflicting requirements. On

one hand, the two triangular factors in ILU are supposed to approximate the complete

LU factors as much as possible to increase the convergence rate. The more fill-in elements

there are in L̃ and Ũ, the more similarities there are between the preconditioned system

in Eq. (3.5) and the identity matrix I. Consider an extreme example in the other end. An

ILU is called ILU0 if no fill-in elements are tolerated, and existing researches have shown

that ILU0’s applicability on many cases is very limited due to its poor performance in

accelerating convergence of iterative solvers. On the other hand, when parallelizing the

triangular solving of L and U matrices in GPUs, the efficiency of the GPU solver requires

less data dependency (less dependency among rows) [66]. As a result, less fill-ins benefit

GPU triangular solvers [68].

As a result, in this work, we adopt the strategy of ILU with fill-in ratio control. The

ILU++ package we employ in our solver allows users to provide a threshold parameter and

fill-in elements smaller than this threshold will be dropped off. This parameter gives us the
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freedom to adjust and tune our ILU preconditioner, and delivers the optimal performance

of the resulting GPU GMRES solver. But selection of the best threshold is still done by

experiments and the best value is problem-specific in our work.

Once the circuit MNA matrix A is available, ILU is run to construct and set

up the preconditioner. Then we transfer the matrices to GPU global memory. Before

calling NVIDIA CUSPARSE’s triangular solve function in calculating Eq. (3.5), there is one

prerequisite step to analyze the structure of ILU factors L̃ and Ũ. According to CUSPARSE

document, this step, which is called csrsv_analysis, makes an exploration of the matrix

sparsity and the dependency between different rows (independent rows of triangular solve

can be compute in parallel), so that information is collected and saved for future use in

csrsv_solve. In a word, the analysis step is run only once for the whole simulation. The

triangular solves in all GMRES iterations and all transient steps of circuit simulation can

reuse this analysis information, and each time only csrsv_solve is called. More details will

also be described in experimental section.

3.4 Parallel SpMV algorithm on the GPU-CPU platform

As we can see, in the preconditioned GRMES solver, one key computing step is the

SpMV multiplication. In this section, we present the new GPU-accelerated parallel SpMV

multiplication method, segSpmV.
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3.4.1 Review of existing GPU-enabled SpMV algorithms

There are many sparse matrices formats such as DIA, ELL, CSR, HYB, PKT,

COO with applications ranging from highly structured matrices (DIA, ELL) to unstructured

matrices (HYB, COO) [69]. Among them, the compressed sparse row (CSR) can be used for

both structured and unstructured sparse matrices and has wide application for sparse matrix

computations. The CSR format is a popular, general-purpose sparse matrix representation.

CSR explicitly stores column indices and nonzero values in arrays col idx and data. A third

array of row pointers, row ptr, takes the CSR representation as shown in Fig. 3.3 for a 5×5

sparse matrix. For an M ×M matrix, the row ptr with length M + 1, stores the offset into

data for the start point of each row, with the convention that row ptr[M ] = Nnz, where

Nnz is the number of nonzeros in the matrix.

Figure 3.3: The CSR format of a sparse matrix

The SpMV computation consists of two phases: the first product phase, which

performs the element-element production between the matrix and the vector, the second
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summation phase adds the results for each row to get the final result. Several relevant

SpMV algorithms on GPU platforms can be summarized as follows:

The row-based B&G method

Bell and Garland [69] first propose a straightforward implementation, in which

each row will take care of all the computing (multiplication and summation) by a single

thread as shown in Fig. 3.4. The algorithm only requires one kernel launch (one kernel

launch means one CPU-to-GPU invocation). The main drawback of this approach is that

each thread will read many sequential data from a data vector in the CSR format from the

global memory of GPUs, which leads to slow non-coalesced memory access.

Figure 3.4: The illustration of the row-based B&G algorithm

The warp-based B&G method

The row-based B&G method is further improved by the warp-based B&G method [69]

in which one warp is assigned to each row of a matrix. After the multiplication phase, the

warp reduction is performed to compute the summation result. The algorithm is illustrated
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in Fig. 3.5. Compared to the row-based B&G method, its memory accesses can be coalesced

because 32 continuous threads in the same warp could work together to load the non-zero

elements in one row. This method, however, may suffer from low performance when the

number of nonzeros in each row is smaller than 32, which can be the case for many finite

difference and finite element based methods.

Figure 3.5: The illustration of the warp-based B&G algorithm

The P&S method

Deng et al later proposed an improved SpMV method, called P&S method, for

many electronic design automation (EDA) related problems [35] . The approach will not

directly operate on the CSR data structure. Instead, it creates a new vector, called expanded

vector, of the same size of the data first as shown in Fig. 3.6. The expanded vector consists

of the elements from the multiplication vector [b1, ..., b3]. And each element in the vector,

expended vector[i], corresponds to one element in data, which is data[i], and both of them

will be multiplied in the production phase.
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Figure 3.6: The vector expansion concept in the P&S method

After the generation of expanded vector, the remaining operations are two vector

multiplication and partial summation over rows. However, the method requires two se-

quential kernel launches, one for element-wise multiplication (or production) for the two

vectors, which can enjoy fast coalesced memory access. Another one is for carrying out

partial summation for each row after the vector multiplication as shown in Fig. 3.7. The

second phase, however, can not avoid irregular memory access because of varying length of

rows. Also only one thread per row is assigned to perform the addition. To mitigate the
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problem, the authors proposed to load the immediate production results into the shared

memory via the coalesced memory access. The threads only read from shared memory for

the addition operations. But due to the limited resources of shared memory in each stream-

ing multiprocessor (SM) in GPUs, the much slow global memory access will still be needed

in case of missing the data in the shared memory.

3.4.2 New parallel SpMV algorithm

Now we present a new parallel sparse matrix-vector algorithm on the GPU-CPU

platform, called segSpMV method. As we can see, the P&S method mitigates the irregular

memory access for the multiplication phase by using expanded vector. However, in the

summation phase, it still suffers the irregular memory access issue as the length of rows are

irregular. Using shared memory can partially mitigate this problem. However, given the

fact that the shared memory is limited, the number of nonzeros per row can’t be too large.

To see this, let’s assume that we need 48 KB data for each block. If we can only have 16KB

shared memory (for instance in Tesla T10 GPU). The hit rate (probability of required data

in the shared memory) would be only about 33%.

In addition, the P&S method uses only one thread per row for the summation

after loading the data into the shared memory. As a result, the row with less non-zero

elements would get the summation result faster compared to the row with more non-zero

elements. Therefore, the memory access cannot be full coalesced and the performance of

P&S method is limited by imbalanced workload. Furthermore, its GPU implementation

requires two sequential kernel launches. Although it can enjoy memory coalescing in the first
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Figure 3.7: The illustration of the P&S algorithm
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product kernel launch, in the second launch for the summation, one has to load intermediate

production result vector and the row ptr vector from global memory.

The segSpMV method can overcome the aforementioned problems in the existing

P&S method. The new algorithm is also based on the expanded vector concept for the

multiplication phase. But different from the P&S method, the new algorithm can mitigate

the irregular memory access problem in the summation phase, and thus lead to more simple

implementation and yet better performance. The main idea is to partition the rows into a

number of fixed-length regular segments before the operation. The length of the segment

typically is selected to be just bigger than the average number of nonzero elements per row

in the given matrix and they also should be the power of 2 for easy reduction operation.

For instance, if the average number of nonzero elements is 14, then segment length 24 = 16

is selected. For rows with more nonzeros than the average number, multiple segments will

be needed.

After the segment length is determined, each row is partitioned into a number of

regular segments. If a segment is not fully filled by the elements from the given row, 0 is

padded to the rest of the empty positions in the segment, as shown in Fig. 3.8. In this

figure, one 0 is padded at the end of segment2. We perform this segment-based expansion

for both original vector and the expanded vector of the matrix. After this step, the two

segment-expanded vectors are sent to GPU global memory for multiplication and addition

phases with just one kernel launch as shown in Fig. 3.8. Note that it takes O(Nnz) to do

the zero padding. In the product phase, each thread first will read two elements from the

two segment-expanded vectors respectively via the coalesced memory access from the GPU
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global memory. Then each thread multiplies this pair of elements. But it stores the product

result immediately into the shared memory instead. In this case, all the intermediate

product results from all threads are stored in shared memory, which is ready for the second

phase of addition operation right away.

In the summation phase, the new algorithm does not need to check the boundaries

of each row any more, which causes the irregular memory access, as it can simply add

all the results for each regular segment instead. Because the segment size is fixed, the

summation can be very easily done by one thread or by multiple threads via reduction.

Also the addition operation will take almost same time for all the threads. We add the

synchronize() to ensure all the partial results from each segment finish first before they

are written back into shared memory using the coalesced memory access. Finally, segSpMV

adds up the immediate results of segments corresponding to the same row to get the final

results in the CPU side, which can be done very efficiently.

We note that the new method will never run out of shared memory, which is the

major advantage of the proposed method over the existing approach. The reason is that

the amount of memory needed is 4 times of number of threads in each block, as the size of

each intermediate element is 4 Byte. So given 1K maximum thread allowed in each block

in K20c and K40c GPUs, the maximum memory is just 4KB, which is far less than the

48KB shared memory in each SM. This is also the case for other GPUs as well. As a result,

we do not need to write the product results back to global memory and then read them

back again, which leads to one more kernel launch. In the addition phase, each thread sums

products in one segment and each block is responsible of the same number of segments. The
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Figure 3.8: The proposed segment-SpMV method or segSpMV method

number of non-zero elements in each row may be different, but all segments are with the

same length. Compared to the P&S method, we do not need to check if a data is cached in
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shared memory and do not need to worry about the low hit rate when the number of non-

zero elements per row is large as we make full use of the shared memory and has equivalent

100% hit rate in this sense.

3.5 Numerical results and discussions

All the aforementioned methods are implemented in C programming language.

The GPU part of the proposed new method is incorporated into the main program with

CUDA C programming interface.

To put our new simulator’s performance into a right perspective, we compare

multi-GPU GMRES with CPU GMRES and a standard LU-based method based on UMF-

PACK [54]. We remark that we do not compare our multi-GPU GMRES solver with other

iterative solvers as most of existing iterative solvers are highly tuned to specific problems,

and are not general enough for general linear systems. On the other hand, the proposed

multi-GPU GMRES solver is a general solver for any linear dynamic systems, which in-

clude but do not limit to the examples of power grid circuits and thermal circuits for both

symmetric and non-symmetric matrices. In addition, it does not assume or exploit any

structures of the given systems. As a result, it will be more fair to compare our tool with

the general LU-based simulator.

These programs are tested on a Linux server with an Intel 2.4 GHz Xeon Quad-

Core CPU chip. The host (CPU) side has a total of 60 GBytes memory available. Mean-

while, the server has three GPU cards (devices) as mentioned earlier and are repeated here:

one Tesla K40c containing 2880 cores with 12 GBytes global memory, one Tesla K20c con-
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taining 2688 cores with 6 GBytes global memory and one Tesla C2075 containing 448 cores

with up to 5 GBytes global memory. But we only use the Tesla K40c and K20c in the new

multi-GPU GMRES solver.

3.5.1 segSpMV performance comparison on public matrices

To perform the comparisons, several mentioned algorithms have been implemented

or obtained from the published sources as listed below:

• segSpMV, the proposed method.

• P&S, the P&S method.

• B&G-s, the B&G method using single thread per row [70].

• B&G-w, the B&G method using one warp per row [70].

• cu, the NVIDIA CUSPARSE library SpMV function.

We perform the comparison on the set of matrices from University of Florida Sparse

Matrix Collection [55] as shown in Table 3.1 in which nzsize means number of nonzeros and

nzperrow is the average number of nonzeros per row. seg length is the segment length

used for the proposed methods. All the matrices are ranked with increasing number of

nzsize from top to bottom and those matrices represent various matrix structures from

wide applications.

Table 3.2 first shows the performance comparison on the matrices in Table 3.1 on

the latest Tesla K40c GPU for the five algorithms. It can be seen that the proposed segSpMV

method beats all the other algorithms on ALL the matrices with various structures. The
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Table 3.1: The matrices and their properties from UFL Sparse Matrix Collection

Matrices row nzsize nzperrow seg length

scircuit 170998 958936 5.61 8

mac-econ-fwd500 206500 1273389 6.17 8

cop20k-A 121192 1362087 11.24 16

qcd5-4 49152 1916928 39.00 32

cant 62451 2034917 32.58 32

mc2depi 525825 2100225 3.99 4

pdb1HYS 36417 2190591 60.15 64

rma10 46835 2374001 50.69 64

consph 83334 3046907 36.56 32

webbase-1M 1000005 3105536 3.11 4

shipsec1 140874 3977139 28.23 32

pwtk 217918 5926171 27.19 32
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Table 3.2: The performance comparison over UFL matrices on K40c GPU

1 2 3 4 5 6 7 8 9 10

Matrices Algorithm Speedup

name B&G-s (ms) B&G-w (ms) P&S (ms) cu (ms) seg (ms) B&G-s B&G-w P&S cu

scircuit 0.352 1.063 0.174 0.195 0.118 2.98 9.01 1.47 1.65

mac-econ-fwd500 0.435 1.757 0.242 0.254 0.153 2.84 11.48 1.58 1.66

cop20k-A 0.932 0.871 0.285 0.251 0.146 6.38 5.97 1.95 1.72

qcd5-4 1.903 0.762 0.523 0.263 0.188 10.12 4.05 2.78 1.40

cant 2.068 0.821 0.528 0.330 0.204 10.14 4.02 2.59 1.62

mc2depi 0.248 2.238 0.297 0.349 0.196 1.27 11.47 1.52 1.78

pdb1HYS 2.416 0.909 0.697 0.373 0.215 11.24 4.23 3.24 1.73

rma10 2.303 1.019 0.702 0.401 0.257 8.96 3.96 2.73 1.56

consph 3.087 1.218 0.791 0.401 0.303 10.19 4.02 2.61 1.32

webbase-1M 14.502 10.843 11.439 1.066 0.531 27.31 20.42 21.54 2.01

shipsec1 3.198 1.704 0.882 0.512 0.378 8.46 4.51 2.33 1.35

pwtk 5.167 2.299 1.256 0.662 0.565 9.15 4.07 2.22 1.17

Average 9.09 7.27 3.88 1.58

average speedups over B&G-s, B&G-w and P&S methods are 9.09×, 7.27× and 3.88×

respectively. Speedup in some cases such as webbase-1M can be order of magnitude faster

over three other algorithms. In addition, we also provide the comparison results between

the proposed segSpMV method and NVIDIA CUSPARSE library function. The speedup

ranges from 1.17× to 2.01×, with average 1.58×. Although the speedup highly depends on

the benchmark matrices, we see the > 1× speedup on all the cases.
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3.5.2 Multi-GPU segSpMV implementation and performance compari-

son

To further utilize the multiple GPU resources and make the proposed segSpMV

method more scalable for handling much larger problems, we further extended segSpMV

algorithm into the multi-GPU platforms.

Specifically, the segSpMV method can be easily divided into several tasks. First,

we partition the two expanded vectors into several segment groups, and each group is

managed by a CPU thread. The number of groups can be determined by the number of

GPU devices on the server. Second, each CPU thread passes the corresponding segments

to one GPU device, and GPU just finishes the computation of multiplication and addition

phases with one kernel launch. Since the sparse matrix and vector are already expanded into

several segments with a fixed length, the task partition and distribution become very simple.

Furthermore, the segSpMV method is very multi-GPU friendly as there is no inter-GPU

communication. Each GPU can still enjoy the full coalesced memory access and shared

memory utilization.

Our multi-GPU server consists of one Tesla K40c, one Tesla K20c, and one C2075

GPUs. The server also consists of two 8-Core Xeon E5-2670 CPUs, DDR3-1600 64GB mem-

ory. The Tesla K40c and K20c GPU are built on the NVIDIA Kepler compute architecture

and have 2880 and 2688 CUDA parallel processing cores respectively. The K40c is capable

of running 4.29 Tflops per second of single precision processing performance while K20c

has the peak 3.95 Tflops single precision floating performance. C2075 is based on previous

Fermi architecture GPU with 448 cores and 1 Tflops peak single precision performance.
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Figure 3.9: The performance comparison of multi-GPU segSpMV method

The resulting multi-GPU segSpMV method can gain further speedup as shown in

Fig. 3.9 in addition to the added scalability. The performance comparison is based on the

matrices in Table 3.1 for single GPU (K40c), 2-GPUs (K40c and K20c) and 3-GPUs (K40c,

K20c and C2075). It can be seen the performance differences are very small when the matrix

size is small. It is due to the overhead of creating new CPU threads, starting GPU and

performing synchronization. However, the speedups in larger cases are much better. For

example, for the largest matrix pwtk, the 2-GPUs and 3-GPUs implementations are 66%

and 87% faster than the single GPU implementation. We also notice that the 2-GPUs and

3-GPUs implementations have similar performance. We also notice that the K40c and K20c

75



are much more powerful than the C2075. So the computing speed of 3-GPUs implementation

is mainly determined by C2075, which limits the performance improvement. But the results

from Fig. 3.9 clearly demonstrates the advantages and benefits of the proposed multi-GPU

segSpMV over the single GPU segSpMV method.

3.5.3 Accuracy comparison and discussions

We first test the accuracy and efficiency of our solver on the power grid circuits

from IBM benchmark suite [71]. There are 6 benchmark circuits with sizes ranging from

forty thousand to three million nodes in the interconnection. The information of these

benchmarks can be retrieved from their website. We show the matrix sizes of their circuit

MNA models in Table 3.3. Also in the same table, the running time spent in LU factoriza-

tions and LU solves of the backward Euler equations are also listed. The equation solved

here is stated in Eq. (3.3). Since we use uniform discretization in the time domain, the time

step length h remains the same on all the steps. In addition, all of our examples are linear

circuits, and the matrices G and C do not change either. As a result, the LU factorization

only needs to be calculated once on G + (1/h)C and its triangular L and U are reused for

all the transient steps. The time measurements in Column “LU fact.” are the one time

cost of LU factorization, and those in Column “LU solve” are time spent on LU triangular

solve on one time step, i.e., solving Ax = b with reuse of LU factors.

The error tolerance of all of our GMRES solvers is set to 10−7. A smaller tolerance

guarantees higher accuracy, but also leads to more iterations and longer solving time. During

our extensive experiments with the benchmarks, we have found a 10−6 tolerance is good and

accurate for most cases. Nonetheless, we use 10−7 for all experiments as this will give us
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statistics according to the same standard. We do not push our tool only for a demonstration

of speed with the sacrifice of accuracy.
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Figure 3.10: Transient waveforms of LU and GPU GMRES at port node
n0 5480720 1102640 in ibmpg6t. The black curve with dots is from LU direct method.
All other colored curves are results of GMRES with preconditioners set to different ILU
threshold, i.e., from 0.1 to 3.0.
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Figure 3.11: The error of GPU GMRES result compared to LU golden result. This curve is
calculated at node n0 5480720 1102640 of ibmpg6t, whose waveform is shown in Fig. 3.10.

Fig. 3.10 shows the simulation results of a benchmark circuit ibmpg6t, from IBM.

It is a voltage waveform at node n0 2679 17913. We plot the waveforms of the direct LU

method and multi-GPU GMRES with preconditioner on the same figure, and the accuracy of

GMRES result is quite satisfactory since the two curves are closely overlapped. To further

show the accuracy, we plot the errors of the GMRES curve, i.e., the difference between

GMRES result and LU result, in Fig. 3.11, which shows about 1% maximum relative error.

We have verified all the examples, especially waveforms at the observation port nodes listed

by .print command in IBM netlists, and all the waveforms from GPU GMRES agree with

the LU golden results.
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Table 3.3: Statistics of IBM power gird benchmarks and solver performance. Column 14
lists the speed up of GPU GMRES over LU method on all the 1,000 time step points in a
transient simulation calculated as C3+1000·C4

C6+C9+1000·C12
.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LU GMRES sp. up DC sp. up

circuit matrix fact. solve ILU precond. solving on DC solving on tran. step (ave.)
C3+C4

C6+C9

name size (s) (s) thres. setup (s) # iter CPU (s) GPU (s) # iter CPU (s) GPU (s)

ibm1t 54,265 0.19 0.02 2.1 0.10 33 0.35 0.07 7 0.03 0.01 1.2 2.0

ibm2t 164,897 9.93 0.06 1.2 0.62 143 3.50 0.51 23 0.54 0.06 8.8 1.2

ibm3t 1,043,444 638.7 0.87 2.6 5.03 25 6.41 1.55 6 1.10 0.35 97 4.2

ibm4t 1,214,288 904.7 1.01 1.9 9.65 77 23.2 4.69 10 3.15 0.57 63 3.3

ibm5t 2,092,148 241.6 0.60 1.5 5.80 118 22.1 4.41 17 3.36 0.49 24 1.7

ibm6t 3,203,802 174.3 0.82 2.2 12.49 42 15.2 3.44 9 3.40 0.52 11 1.9

rlc80 32,064 6.97 0.01 1.8 0.12 29 0.12 0.28 4 0.01 0.003 17 5

rlc100 50,200 28.60 0.02 1.8 0.17 32 0.18 0.38 4 0.02 0.003 52 14

rlc120 72,384 102.2 0.05 1.9 0.26 32 0.28 0.44 4 0.02 0.008 146 18

rlc140 98,616 255.6 0.08 2.0 0.36 32 0.39 0.49 4 0.04 0.008 301 38

rlc160 128,896 726.3 0.15 2.0 0.48 34 0.51 0.52 4 0.06 0.008 726 97

rlc180 163,224 2,033.6 0.28 2.0 0.68 34 0.65 0.63 4 0.10 0.008 1552 248

rlc200 201,600 4,191.3 0.39 2.0 0.85 35 0.82 0.64 4 0.14 0.025 2813 173

rlc220 244,024 6,750.9 0.54 2.1 1.09 35 1.01 0.78 4 0.19 0.017 3610 386

rlc800 3,235,200 - - 2.1 25.93 35 16.86 0.63 5 1.56 0.13 - -

rlc1000 5,056,000 - - 2.0 91.88 36 28.09 0.75 6 3.66 0.22 - -

rlc1200 7,281,600 - - 2.2 139.06 36 46.43 1.39 5 5.12 0.33 - -

3.5.4 Computing time comparison and discussions

Table 3.3 lists the running time measurements in all the benchmarks, including

IBM examples and self-generated rlc grids. The Column 5 (C5) gives the threshold value

used for control the fill-ins in the ILU preconditioner. The C6 lists the preconditioner setup

time, the C9 is for the multi-GPU GMRES solving time without initial guess available, and

the C12 is for the multi-GPU GMRES solving time on each transient point, when good

initial guess is available. The speedup of multi-GPU GMRES over LU on DC solving is
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listed in the C13. The speedup of multi-GPU GMRES over LU on the whole simulation

(1000 time steps) is listed in the C14.

We first discuss the results on the IBM examples. Among the six IBM circuits,

multi-GPU GMRES brings reasonable speedup over LU factorization. To make a fair com-

petition with LU, the speedup on DC solving, i.e., the first GMRES solve without any good

initial guess available, shall be calculated as (C3 + C4)/(C6 + C9). The biggest speedup

for this initial DC solving is 97× , which happens in the case of ibmpg3t. We notice that

the speedup does not always go up with the size of the circuit as shown in Table 3.3. We

observe that these IBM benchmarks vary not just in sizes, but also in the circuit structure

and thus the their matrix structures. But still the proposed parallel GMRES solver show

decent speedup over the direct method on these industrial design examples. We also observe

that the multi-GPU GMRES solver will have about 4-5× speedup over their CPU version

of GMRES solver on those IBM benchmark circuits (not shown in the table), which clearly

shows the advantages and benefits of GPU based computing.

For transient analysis, we observe that when the LU factors are available, it seems

cheaper for LU triangular solve than iterative methods to compute the solution. Since fixed

time step is used in our simulator and the triangular LU factor matrices do not change as

we mentioned in the previous sections, it is very understandable that GMRES does not

superbly beat the triangular solve if the examples are relatively small. However, as the

average running time listed in C12 of GMRES solve is smaller than C4 of LU solve, the

total reduction of cost will still be favored when there are a lot of transient steps. If LU

factorization has to be done many times, as happens in transient simulation with changing
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time steps, GMRES solver will be faster than the LU factorization. Nowadays, power grid

simulation also needs to consider nonlinear effects and the MNA matrix is updated during

the transient simulation. With more running time spent on many factorizations, LU method

will definitely be outperformed by the GPU GMRES solver.

Now we discuss the results on some RLC mesh circuits, which are the middle

eight examples in Table 3.3 with “rlc” in circuit names. Those power grid networks are

generated based on RLC mesh grid circuit model shown in Fig. 3.1. We observe that the

speedups of the proposed method over LU factorizations in both DC and transient analysis

is much larger (ranging from 5 to 3610) and speedup goes up with the sizes of the circuits.

This indicates that the structures of the power grid networks has huge impacts on the

solving efficiency and their final computing speed. Similarly, we observe that the multi-

GPU GMRES solver will have about 3-12× speedup over their CPU version of GMRES

solver on those IBM benchmark circuits for transient analysis, although the speedup is

marginal for DC analysis. As a result, it seems that IBM examples favor the LU based

solver, while our mesh-structured RLC networks favor the proposed GMRES solver.

To show the added scalability of the new parallel GMRES solver on multi-GPU

platforms, we also provide three very large RLC mesh circuits, which are the rlc800, rlc1000

and rlc1200. They are all million-sized circuits and cannot be handled in single GPU card

with limited global memory. But our multi-GPU GMRES solver is able to handle such

large circuits easily. We notice that the LU factorization method is too slow for these

large circuits. As a result, we don’t show the results and speedup comparison for the LU

solver. We observe that the multi-GPU GMRES solver will have about 12-17× speedup
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over their CPU version of GMRES solver on those large circuits for transient analysis, and

the speedup for DC analysis is also between 30%-60%, which is better than the speedup on

small circuits.

3.5.5 Preconditioner study and discussions
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Figure 3.12: The impact of ILU threshold on fill-in ratio and GMRES solving time. The
blue curve in 3D space is GMRES solving time with respect to threshold and fill-in ratio,
and the red curve on the bottom plane reflects the changes of fill-in ratio caused by different
threshold values. All the measurements are from ibmpg4t.

Now, let us study the quality of an ILU preconditioner. The fill-in ratio is a good

indicator about the quality of incomplete LU preconditioner. It is calculated as the ratio

of the number of fill-in elements in incomplete LU factors L̃ and Ũ over the number of
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Table 3.4: The performance comparison of ILU preconditioners with different fill-in ratios.
The same circuit matrix from IBM power gird benchmark ibmpg4t is used in all the cases..
GMRES convergence tolerance is set to 10−7.

precond ILU # iter # iter per total

threshold setup (s) fill-in on DC tran step time (s)

0.1 5.46 0.31 3447 913 12531.6

0.3 5.69 0.53 1469 440 6413.9

0.5 5.28 0.65 690 310 4773.2

0.7 5.93 0.92 480 115 1905.8

0.9 6.18 1.29 366 68 1358.9

1.1 6.67 1.70 237 32 812.6

1.3 6.92 1.99 210 26 821.8

1.5 7.28 2.35 126 19 720.5

1.7 7.74 2.77 109 16 664.3

1.9 9.65 4.06 77 10 645.6

2.1 12.38 5.42 47 7 727.5

2.3 16.05 6.81 39 6 753.3

2.5 20.83 8.18 30 5 804.8

2.7 27.57 9.78 37 5 941.3

2.9 37.30 11.61 37 4 1132.7

3.0 42.68 12.55 19 4 1233.4

non-zero elements in the original coefficient matrix A, i.e,

fill-in ratio = [nnz(L̃) + nnz(Ũ) − n]/nnz(A).
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Notice that the diagonal of lower triangular factor nnz(L̃) is unitary and need not be stored

in practice. This also explains the subtraction of matrix size n in the equation above. For

the simplest incomplete LU preconditioner ILU0, which computes the LU factorization but

drops any fill-in elements in L̃ and Ũ outside of the nonzero pattern of A, the fill-in ratio

is 1.0. This means the number of non-zero elements in ILU0 factors are equal to that of

A’s. To the best of our knowledge, NVIDIA has released a function of ILU0 factorization

in the most recent CUSPARSE 5.0 version [67]. However, it has no fill-ins and does not

support row/column permutation, and our experiments show that the two limitations hurt

its applicability to the circuit cases here. Instead, we use the ILU package from [72],

who allows different fill-in ratios by modifying the dropping threshold. This threshold

parameter controls the dropping rule during incomplete LU factorization and affects the

behavior of ILU preconditioner. The detailed description of the dropping rule can be found

in [73]. Though low fill-in ratio implies a simple structure in the two triangular factors

and a possibly faster computation in GPU’s triangular solve, it results in more iterations in

GMRES solver and may not be optimal in terms of overall computation time of GMRES. In

addition, the time spent on preconditioner construction also grows up in order to compute

more fill-in elements. Table 3.4 shows the relationship among the threshold, fill-in ratio,

the iteration numbers, and the total GMRES CPU time. It can be seen that the CPU time

reaches the minimum value when the threshold is 1.9. Fig. 3.12 depicts the aforementioned

relationships. The data in this figure are measured from 30 runs of the same circuit ibmpg4t,

where only the threshold is changed from 0.1 to 3.0 with 0.1 increment. The effects of this

change on fill-in ratio and GMRES time on each time step are shown by two curves.
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3.6 Summary

In this chapter, we have proposed an efficient parallel solver GPU-GMRES for

large linear dynamic systems. The new solver is based on the preconditioned GMRES

solver implemented CPU-GPU platforms. The proposed GPU-GMRES solver is based on

the very general and robust incomplete LU based preconditioner. We have shown that by

properly selecting the right amount of fill-ins in the LU factors, a good trade-off between

GPU efficiency and convergence rate can be achieved for the overall best performance. In

addition, a new fast parallel SpMV multiplication algorithm is proposed to further accelerate

the GMRES solver. The new algorithm, called segSpMV, can enjoy full coalesced memory

access. To further improve the scalability and efficiency, segSpMV method is further ex-

tended to multi-GPU platforms. The resulting multi-GPU segSpMV can deliver further

performance enhancement for the resulting multi-GPU-GMRES solver. Furthermore, we

have properly partitioned the major computing tasks in GMRES solver to minimize the

data traffic between CPU and GPU, which further boosts performance of the proposed

method. Experimental results on the set of the published IBM benchmark circuits and

mesh-structured power grid networks have shown that the GPU-GMRES solver can deliver

order of magnitudes speedup over one direct LU solver. The resulting multi-GPU-GMRES

can also deliver 3-12× speedup over the CPU implementation of the same GMRES method

on transient analysis.
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Chapter 4

EM-Based on-Chip Aging Sensor

for Detection and Prevention of

Recycled ICs

4.1 Introduction

The counterfeiting and recycling of integrated circuits (ICs) have become major

problems in recent years, potentially impacting the security of electronic systems especially

for military, aerospace, medical and other critical applications. In addition to diminishing

system dependability and usability, counterfeiting reduces total revenue of companies from

their research and development efforts, discourages innovation through the theft of intellec-

tual properties (IPs), and produces low-quality products under established brand names [37].

A counterfeit component is defined as an electronic part that is not genuine because it is an
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unauthorized copy; it does not conform to the original component manufacturer’s (OCM)

design, model, and/or performance; or it is not produced by the original component man-

ufacturer or is produced by unauthorized contractors; it is an off-specification, defective,

or used OCM product sold as “new” or working; it has incorrect or false markings and/or

documentation [38].

Today the most widely reported type of counterfeit parts is the recycled type. It

is reported that in today’s supply chain, more than 80% of the counterfeit components are

recycled [39]. These used or defective ICs enter the market when electronic “recyclers”

divert scrapped circuit boards away from their designated place of disposal for the purposes

of removing and reselling the ICs on those boards. The recycling process involves removing

ICs from the board or even dies in the ICs. There are several security issues associated with

these ICs. Firstly a used IC can act as a ticking time bomb [40] since it does not meet the

specification of the OCM of the ICs; secondly additional die on top of the recovered die can

carry a back-door attack, sabotage circuit functionality under certain conditions, or cause

a denial of service [41].

The detection methods for recycled chips can be classified into physical methods

and electrical methods [37]. Physical methods consist of incoming inspection methods

such as visual inspection, X-ray imaging, package analysis method such as laser scanning

microscopy, delid method, and the material analysis method such as using Fourier transform

infrared, and X-ray fluorescence. Electrical methods contain the parameter tests, function

tests, built-in tests and structural tests. In general, physical methods can be applied to all

part types, but some of the methods are destructive and take hours to test. As a result,
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sampling is required to certify a batch of parts by observing a small number of parts. On

the other hand, conventional electrical test methods are non-destructive and time efficient,

yet they can be very expensive because such techniques are not necessarily designed for

counterfeit detection. Electrical test techniques are advantageous because the sampling is

not required, and all parts can be tested. However, there are some issues associated with

electrical tests that must be addressed.

In order to fast detect and effectively prevent the recycled chip, one viable approach

is to insert a lightweight aging detecting sensor, which can directly tell the usage of the

chips and some early efforts have been explored [42, 43, 44]. Method in [43] designed the

ring-oscillator-based (OR-based) aging sensor that relies on the aging effects of MOSFETs

to change a ring oscillator frequency in comparison with the reference one embedded in

the chip. As the chip ages owing to the wear-out mechanisms such as negative biased

temperature instability (NBTI) and hot carrier injection (HCI), the shift threshold voltage

of MOSFET devices, thus the frequency of ring oscillator indicates the level of aging, and

provides a simple readout of the value. However, this method can only give very rough

estimation of the usage age of the chip as the shift of the frequency depends on many factors.

In order to mitigate this problem, the antifuse-based (AF-based) sensor was developed

in [37]. The AF-based sensor essentially is a counter, which counts the clocks or derivatives

of the clock events to log the usage of the chip. The antifuse memory is used to make sure the

data in the count will not be erased or altered by attackers. However, the AF-based sensors

suffer large area overhead especially when more accurate usage is required [37]. Another

problem with this method is that it may not reflect the true aging-dependent usage of a chip.
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For instance, it will log the same usage time for a chip for different on-chip temperatures,

however, which can have dramatically impacts on the aging effects from electromigration,

NBTI and HCI [45].

In this chapter, we propose a new lightweight on-chip aging sensor, which is based

on the electromigration-induced aging effects for fast detection and prevention of recycled

ICs. Instead of using traditional aging effects from devices (such as MOSFETs), the new

EM-based aging sensor exploits the natural aging/failure mechanism of interconnect wires

to time the aging of the chip. As a result, comparing with existing the ring-oscillator-based

aging sensor, it has following two advantages: first, this structure is much simpler as it only

requires some metal interconnect wires, which will be driven by DC currents. In comparison,

the ring oscillator has to detect the threshold voltage shift first, which is more difficult, and

then estimate the aging of the chip. Second, it is more accurate as we can measure the

EM-induced failure (such as wire resistance changes) time with more accurate than the

frequency shift over time. The new sensor is based on a newly proposed hydrostatic stress

evolution model of EM effects for accurate prediction of the EM failure [46]. As a result,

we can design the interconnect wire structures based on the copper interconnect technology

so that the resulting wires can have detectable EM failure at a specific time with sufficient

accuracy. In order to mitigate the problem of the inherent variations in the metal grain sizes

and assess its impacts on the nucleation time of metal wires, a number of parallel properly

structured wires are employed in the sensor. The parameters of the wires are optimized

with using the new EM model. Our experimental results show that the proposed aging

sensor can accurately predict the targeted failure times in the presence of both inherent
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uncertainties. Our study also shows that more parallel wires will lead to more accurate

statistical predictions at costs of more areas.

This chapter is organized as follows. Section 4.2 reviews the EM effect and recently

proposed physics-based EM model. In Section 4.3, we present the new lightweight on-chip

aging sensor circuit as well as the interconnect wire structures. Several statistical and

variational analyses are presented in Section 4.4. Last, Section 4.5 concludes.

4.2 Review of EM effects and EM models

4.2.1 Review of EM-induced failure effects

The proposed on-chip aging sensor is based on the observation that the EM-

induced failure of interconnect wires can be designed such that the wires can fail at a

specific time frame detected by the increase of their resistances over a pre-defined thresh-

old. To understand this, let’s first have a brief review of the EM failure effects from the

first principles and then we present the problems and solutions to design the wire structure

for timed failure based on EM physics.

EM is a physical phenomenon of the migration of metal atoms along a direction

of the applied electrical field. Atoms (either lattice atoms or defects/impurities) migrate

toward the anode end of the metal wire along the trajectory of conducting electrons. This

oriented atomic flow, which is caused mostly by the momentum exchange between atoms

and the conducting electrons, results in metal density depletion at the cathode, and a

corresponding metal accumulation at the anode ends of the metal wire. This depletion and

accumulation happen because atoms cannot easily escape the metal volume.
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The rate of EM, as defined by the Nernst-Einstein equation, depends on the atomic

diffusivity, meaning different materials are characterized by different rates of EM. Typical

interconnect metals, such as copper (Cu) and aluminum (Al), are prone to EM, due to

their high self-diffusivity. Refractive metals, such as tungsten, tantalum, and titanium,

demonstrate strong resistance to EM.

The interconnect segment here means a continuously connected, highly conductive

metal within one layer of metallization, terminated by diffusion barriers. Thin layers of

refractive metals form these diffusion barriers for Cu atoms, preventing them from diffusing

into inter-layer (ILD) and inter-metal dielectrics (IMD). When metal wire is embedded

into a rigid confinement, which is the case with interconnect metallization, the wire volume

changes (induced by the atom depletion and accumulation due to migration) creating tension

at the cathode end and compression at the anode ends of the line. Over time, the lasting

unidirectional electrical load increases these stresses, as well as the stress gradient along the

metal line. Fig. 4.1(d) shows the stress evolution in a straight wire over time. The cathode

node has the tensile stress (positive stress) built up, while the anode node has compressive

stress generated (negative stress). In some cases, usually when a line is long, this stress can

reach a critical level, resulting in void nucleation at the cathode and/or hillock formation

at the anode end of line as shown in Fig. 4.1(d). Fig. 4.1(a) shows what the actual void

and hillock look like. Different physical mechanisms can be responsible for generating these

damages. In the case of voiding, existing cohesive or interfacial micro-cracks near or at the

barrier/Cu interfaces can develop into a void by action of the appropriate stresses. Hillock

formation, which is a compression-induced extrusion of metal into the surrounding dielectric
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that can cause a shortage between neighboring metal lines, can be initiated by micro-cracks

in the adhesion/barrier layers. However, typically the voids are the major defects from EM.

In addition to voids nucleated at the cathode end of line, where a divergence in

atomic flux happens (atom flux is terminated at the barrier interface), many voids are

nucleated down to the polycrystalline metal line toward the anode end at any location

characterized by the atom flux divergence. These are the triple points formed by intersec-

tions between grain boundaries (GB) and the top dielectric barrier (typically composed of

SiCN), or contacts between three neighbor grains (Fig. 4.1(b)). It is well known that atoms

diffuse much faster along GB and interfaces than through the grain interiors, making GBs

and interfaces the major venues for EM. Those triple points where the number of outward

diffusion channels exceeds the number of inward channels can develop depletion in metal

density, leading to possible void nucleation. Nucleated voids, depending on the local texture

of neighboring grains, can grow in size or disappear. As shown in Fig. 4.1(c), two major

mechanisms of void growth are: (i) scavenging the vacancies that migrate to the void due to

the stress gradient between the void surfaces (zero stress) and the surrounding metal (tensile

stress), (ii) agglomeration of voids travelling along the metal line toward the cathode end

(against the electron flow) due to the capillarity effect. GBs with different crystallographic

orientations are characterized by different atomic diffusivities, governed by a variation in

grain crystallography. This variation, together with a random distribution of grain sizes

inside metal lines, show that why identical metal lines, characterized by same geometries

and same electrical load, demonstrate different time-to-failure (TTF). This TTF represents

the instant in time when an increase in line electrical resistance caused by the void growth
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Figure 4.1: (a): TEM picture of voids nucleated at the top interface, [1], (b) and (c):
simulated kinetics of the void nucleation at the triple points and growth (electron flow from
right to left), [2], (c): simulated growth of the line corner void by scavenging the vacancy
flux and agglomerating with the small voids drifting along the top interface [3]. (d) The
EM-induced stress development and distribution of an interconnect wire.
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reaches a critical level (for example, a 10% increase over the original value). This inherent

uncertainties in TTF is one of the challenges to design accurate aging sensor. Traditionally

the EM effects are modeled by the Black’s equation:

MTTF = Aj−nexp{Ea/kT} (4.1)

which calculates the segment MTTF based on known current densities (j) and temperatures

(T ), is the subject of growing criticism. Here, k is the Boltzmann’s constant, Ea is the EM

activation energy. The symbol A is a constant, which depends on a number of factors,

including grain size, line structure and geometry, current density, thermal history, etc.

Black has determined the value of n as equals to 2. However, it is a todays common

understanding that n depends on residual stress and temperature [74], and its value is

highly controversial. In addition, as it was shown in a number of experiments, see for

example [74], Ea is a function of the current density. All these observations make rather

controversial the widely accepted methodology of calculating the MTTF at use condition,

represented by chip operational current density and temperature, while using n and Ea

determined at the stressed (accelerated) condition, characterized by high current densities

and elevated temperatures.

For the proposed aging sensor design, we need much more accurate and physics-

based EM model to estimate the failure times, which is critical to ensure the accuracy of

the aging sensor.
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4.2.2 Physics-based EM model

In the following, we review the recently proposed physics-based EM model for

accurate estimation of nucleation time and resistance change rate of a wire. We start

to review the well-known partial differential equation, which governs the stress evolution

process. It was first proposed by Korhonen [75] and further developed by other researchers;

see for example [76, 77]. Since the atomic flux divergence results in the volumetric strain, it

is easy to derive the one-dimensional diffusion-like equation for the hydrostatic stress field

σ(x, t) [75]:

∂σ

∂t
=

∂

∂x

[

κ

(

∂σ

∂x
+

eZρj

Ω

)]

(4.2)

Here, κ = DaBΩ/kT , where Da is the atomic diffusivity, and B is the bulk modulus.

Solution of this initial-boundary value problem is the infinite series [75].

Approximate value of void nucleation time (tnuc) extracted from this solution,

which is determined as an instant in time when stress at the cathode end of the line (x =

−l/2) reaches σcrit, corresponds well to an analytical formulation of tnuc derived from the

approximate solution of continuity equations for evolution of vacancy and plated atom

concentrations (see, for example [3]) in the confined 1D line [78]:

tnuc ≈ τ∗e
EV
kT e−

fΩ

kT (σRes+
eZρl
4Ω

j)ln

{

eZρl
4Ω

j

σRes + eZρl
4Ω

j − σcrit

}

(4.3)

where τ∗ = l2

D0
e

ED
kT

kT
ΩB

. Here, EV and ED are the activation energy of vacancy formation

and diffusion, f is the ratio of volumes occupied by vacancy and lattice atom. In this

model, we consider the residual stress of σRes = σT + (B/9)(R/δ)exp{−EV /kTZS} when

electrical stressing was applied. Here, σT is the thermal stress developed in the metal line
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confined in the ILD/IMD dielectric during cooling from the zero stress temperature TZS

down to the temperature of use condition, (B/9)(R/δ)exp{−EV /kTZS} is an additional

stress generated by vacancy relaxation to the equilibrium concentration corresponding to

new stress value and temperature [78], R is the mean grain size, and δ is the GB thickness.

Dependence of tnuc on grain size allows one to introduce a simple statistical model for void

nucleation at the line cathode edge. Note that in the new physics-based EM model, one

needs to explicitly consider the residual stresses, σRes, which can have huge impacts on the

nucleation time and thus the failure time of a wire. As a result, it is important to have an

accurate estimation of residual stresses and more accurate residual stress can be computed

using multi-scale numerical method [79].

The second problem we consider in the proposed EM model is how the wire re-

sistance change over time once void nucleation happens. We need to figure out how the

void grows and the growth rate, as well as the related resistance change rate. As we know,

voids are formed at tnuc and grow at t > tnuc. The wire resistance starts to increase over

time in the growth phase. Since the drift velocity of the void edge relates to atomic flux as

ϑ = Ωj [80], we can express it as: ϑ = D
kT

eZρj. Kinetics of the wire resistance change can

be approximately described as:

∆r(t) = ϑ(t − tnuc)

[

ρTa

hTa

(

1

2H
+

1

W

)

−
ρCu

HW

]

(4.4)

Here ρTa and ρCu are the resistivity of the barrier material (Ta/TaN) and copper, W is the

line width, H is the copper thickness, and hTa is the barrier layer thickness.
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4.3 Proposed EM-based aging sensor circuit

4.3.1 Wire structure for accurate EM-Induced aging detection

In the section, we investigate the new wire structures so that we can have more

accurate detection of the EM induced resistance changes based on the new physics-based

EM models. There are several factors we need to consider to design the right interconnect

wire structures as the critical component of the aging sensors. First, there are the inherent

variations in the metal wires, which will lead to the uncertainties in the nucleation time and

the growth time. For a metal wire, its grain boundaries (GBs) may have different crystallo-

graphic orientations, which are characterized by different atomic diffusivities. Second, the

grain sizes have a random distribution. As a result, the lifetime of the metal wires obeys the

lognormal distributions [81]. Hence, we cannot use only one metal wire as the aging sensor.

Third, how to design the geometry of the wires (length and width) to have a small area and

power overhead for the sensors. We want the sensors to have a small footprint with con-

sidering their power consumptions and areas. In addition, they will meet the design rules,

which are compatible with given design technologies. Fourth, we need to have an accurate

estimation of the residual stresses σRes (mainly the thermal stresses), which largely depend

on the temperature of the manufacturing process and even the packaging process.

In order to mitigate the inherent uncertainties in the atomic diffusivities in a metal

line, one solution is to use a number of wires connected in parallel as shown in Fig. 4.2,

in which each wire will have its own diffusion barriers at both ends (so they are treated

as individual wires in the EM sense). However, they are connected in parallel by another
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Figure 4.2: The proposed parallel multi-wire structure for the aging sensor and its stressed
condition.

Note: the j represents the direction of electron flow

metal layer through vias. The color in the figure shows the simulated stress distributions in

each wire. Those wires will be stressed all the time (with constant current running through

them). We can design the wires such that they will fail at a specific time such as one year,

two years, ..., or n years. Assume that the resistance value of the stressed wire at t = 0 is

r0. The failure time can be defined as the time when the wire resistance increases 10% of

its values, i.e. 1.1 ∗ r0, which can be predicted by the physics-based EM model. We also

need to design a reference wire, which is not normally stressed (unless its resistance value

is read during the detection time). The resistance value of the reference wire should be set

to 1.1 ∗ r0/k, k is the number of wires in the stressed wire set. For the reference wire, we
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only need one wire segment as it will not age (the uncertainties in the EM-induced aging

will not affect it). Our preliminary study shows that depending on the inherent variations,

we can determine the number of wires such that we can confine the lifetime variations to a

sufficient small range. The exact number wires used will be explored and validated by the

actual silicon data. We remark that the intra-die process variations will affect the resistance

values of those wires. However, if they are placed very closely, as this should be the case,

the impacts will not be significant.

4.3.2 Resistance detection sensor circuit

Fig. 4.3 shows the schematic of the proposed EM-based aging sensor circuit. The

circuit is composed of a constant current source, an EM stressed parallel wire (EMS) set,

an EM reference wire (EMR), which will not be stressed in normal operation, a one-bit

ADC (essentially an Opamp circuit), two resistors, one multiplex (MUX), one switch and

one register to store the sensor digital output. The EMS contains a number of parallel

wires (such as 6 in our initial analysis) with identical geometries. The EMR is just a single

wire. The constant current source provides the current to stress EMS when the power is

on. The one-bit ADC is used as a comparator to decide if the stressed EMS has a larger

resistance than the EMR. If the voltage on EMS is higher than the voltage on EMR, it

outputs 1, which indicates the failure happens, otherwise 0, which indicates that failure

has not happened yet. The MUX and the switch are controlled by the Read en signal from

outside. When Read en is off, the output of one-bit ADC will not be read into the register

and the there is no current on EMR as it is in an open circuit. When Read en is on, there

will be a voltage on EMR, which is 10% higher than the original voltage on EMS and the
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comparison result from one-bit ADC can be written into the register. As time going, the

resistance of the EMS will increase due to the EM effect, which means the voltage of the

non-inverting input of the one-bit ADC will increase. If the chip has been used for time

longer than the designed failure time, the output of one-bit ADC will be 1 instead of 0.
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Figure 4.3: The structure of the EM-based aging sensor.

We will design a number of such aging sensors for the specific years (for instance 1

year to 10 years) in this project for validation purpose. Similar to the other on-chip aging

sensors, the output registers can be connected by the JTAG circuits of the chip design so

that one can read the aging information out in-situ during the testing or diagnosis time.

The aging information can also be read out before the chips are put into the system. Note

that the proposed EM-based sensor can automatically consider the temperature impacts on

the lifetime of the chips as it is based on the EM aging effects.
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4.4 Performance analysis and experimental results

In this section, we will present the performance analysis of the proposed EM-based

aging sensor including simulation results.

4.4.1 Effect of number of wires

For the EM-based aging sensor, if the inherent variations are same for all the wires,

then the wire, which fails at longer time, will have less absolute accuracy. For instance, 10%

life time variation for a one-year wire will have an error of about one month, while 10%

lifetime variation for 10-year wire will lead to errors about one year. In order to mitigate this

problem, one solution is to add more wires for longer year wire set. Because more parallel

wires we have, the smaller lifetime deviation the whole wire set will have. Fig. 4.4(a) and

Fig. 4.4(b) show statistical analysis results for EM lifetime of stressed wire set connected

in parallel versus number of wires in each set and different variations. These results come

from 1000 Monte Carlo simulation runs and the aging sensor wires are set for the one-year

lifetime. The EM-induced lifetime follows the lognormal distribution [81] and the variance

are set to 0.001 and 0.002 respectively. With 0.001 variance and one wire, the EM lifetime

will fall into ±10% lifetime mean with 99.83% chance and into ±5% lifetime mean with

88.64% chance. If we use 6 wires, there is 100% chance to achieve ±10% life mean and

98.66% chance for ±5% life mean, which is good enough. If we increase the variance to

0.002, then one wire can reach 97.46% chance for ±10% life time mean; 6 wires can achieve

99.95% chance for ±10% lifetime mean and 92.00% chance for ±5% lifetime mean. For

10 wires, we can achieve 99.99% chance for ±10% lifetime mean and 95.33% chance for
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±5% lifetime mean. As we can see, for large inherent variations, we have to increase the

number of wires to mitigate lifetime variations. We remark that the intra-die environmental

variations will also affect the resistance values of those wires. However, if they are placed

very closely, as this should be the case, the impacts will not be significant.

Fig. 4.5 studies the lifetime variations versus the number of parallel wires used in

each wire set for specific years (1 year, 6 years, 10 years). If we use the constant 6 wires for

each set as shown in Fig. 4.5(a), we can see that the lifetime prediction variations in the

10-year wire set is quite significant for given variance (θ = 0.002). But if we use varying

numbers of wires for the same design (6 wires for 1 year, 10 wires for 6 years, and 14 wires

for 10 years), the variations for the wire sets at the longer time lifetimes will be reduced as

shown in Fig. 4.5(b).

4.4.2 Effect of length of wires

Fig. 4.6 shows the relationship between wire length L and wire EM lifetime. The

current density j is constant and set to 3 ∗ 1010A/m2. We show both the nucleation time

and the growth phase time predicted by the new EM models. As we can see, the total

lifetime increases with decreasing L (so does the area), which shows that shorter failure

time will need larger area compared to the longer failure time.

For a specific failure year designed, the area for the sensor wires can be estimated

as A = W ∗ L ∗ k, where W is the width of each stressed wire (assuming that all the

stressed wire are same) and L is the length of the stressed wire. The area of reference wire
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Figure 4.4: (a) and (b) the statistical study of stressed wires connected in parallel with
different wire numbers and variations.
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0.002

Figure 4.5: The statistical lifetime detections from the stressed wires: (a) using the constant
6 wires; (b) using the varying number wires (6 wires for 1 year, 10 wires for 6 years, and 14
wires for 10 years).

is 1.1 ∗ W ∗ L/k, which is typically less significant compared to stressed wires. The power

consumption for total stressed wires can be estimated as P = k ∗ I2 ∗ R=k ∗ (j ∗ A)2 ∗ ρ ∗

L/A=k ∗ j2 ∗L ∗ρ ∗A=k ∗ j2 ∗L ∗ρ ∗W ∗H, where ρ is the resistivity of the metal wire, j is

current density, and H is the height of the wire segment as shown in Fig. 5.5. From the two

formulas above, we can see that we should try to use the minimum width allowed by the

technology node to save both area and power in theory. Our initial study shows that area

and power are two performance metrics for trading-off in the design. Fig. 4.7 shows the

power values versus the possible wire length (L) and current density j. The 10 red curves

show the possible L and j values from 1 year to 10 years. We can clearly see the trade-off

between L (area) and power.

Bear in mind that tens of EM-based aging sensor can be inserted into commercial

chips, which would easily detect the counterfeit and recycled ICs and show the age of the
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Figure 4.6: Length versus EM lifetime of a wire.

chip. Such a method is practical because the area overhead is small. An EM-based aging

sensor with 10 stressed wires costs 100-500 um2 with an SMIC 180nm technology, which

depends on the length of the wire. Assuming a total of 10 sensors, the overhead is only

0.02% of the 25,000,000 um2 area available in a 5 mm × 5 mm chip.

4.4.3 Experimental results

The proposed EM-based aging sensor circuit has been designed and validated

using SPICE simulation. We performed 1000 Monte-Carlo simulation runs considering the

variation of the nucleation time for the stressed wires. We design the wires such that
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Figure 4.7: The power consumption of stress wires versus wire length and current density.

they will fail (its resistance increase just 10%) around one year with lognormal distribution

(standard deviation is set to 0.001) in their nucleation times.

Fig. 4.8(a) shows the voltage waveforms at the two inputs of the ADC. In the

beginning, the two inputs are clearly different. At the around 0.68 year, the voltages on

the stress wires start to increase, which is also the nucleation time for the wires. Then, the

voltage of the stressed wires starts to increase gradually until it runs across the 2.5 volts,

and then the ADC output will change ’1’ from ’0’. Fig. 4.8(b) shows that the ADC output

will start to change from ’0’ (zero volts) to ’1’ (5 volts) around one year. As we can see,

when the input voltage of stressed wires reaches the reference voltage, the output signal
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Figure 4.8: (a) The statistical voltage inputs for the ADC; (b) The statistical ADC output.

starts to change, which happens at one year in this case.

Figure 4.9: The statistical distribution of the lifetime of the sensor wires detected.

Fig. 4.9 shows the statistical distribution of the lifetime detection results of the

sensor wires at the output of the ADC. As we can see, the distribution is lognormal owing to

the lognormal distribution of the nucleation time of the wires. This clearly shows that the
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proposed aging sensor work well as the failures of the wires can be very accurately detected

around one year.

4.5 Summary

In this chapter, we have proposed a new on-chip aging sensor based on the EM-

induced failure mechanisms to fast detect the recycled integrated circuits, which is one of the

major hardware security issues facing the semiconductor industry. The new sensor is based

on failure detections of DC current stressed metal wires to time the usage of chips over time.

Compared with the existing ring-oscillator-based aging sensors, it can offer a simpler circuit

implementation and smaller area footprints. It also provides a more accurate prediction of

the chip usage time. The new aging sensor design is based on a newly proposed physics-

based EM model. Experimental results show that the proposed aging sensor can accurately

predict the targeted failure times in the presence of both inherent uncertainties. Our study

also shows that more parallel wires will lead to more accurate statistical predictions at the

cost of areas.
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Chapter 5

Multi-Functional On-Chip Sensor

for Comprehensive Detection of

Counterfeit ICs

5.1 Introduction

The counterfeiting of integrated circuits (ICs) have become major problems in re-

cent years, potentially impacting the security of electronic systems especially for military,

aerospace, medical and other critical applications. Based on the 2008 report by the Inter-

national Chamber of Commerce, the costs of the counterfeiting and piracy for G20 nations

was as much as $775 billion per year and will grow to $1.7 trillion in 2015 [82]. The problem

is getting worse due to deficiencies in the existing detection solutions and lack of effective

avoidance mechanisms in place. Over the past couple of years, numerous reports [83] have
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pointed to the counterfeiting issues in the U.S. electronics component supply chain. In

addition to diminishing system dependability and usability, counterfeiting reduces the total

revenue of companies from their research and development efforts, discourages innovation

through the theft of intellectual properties (IPs), and produces low-quality products under

established brand names [37].

Counterfeit ICs comes from different sources in the electronic supply chain. A

counterfeit IC is not genuine one because it is an unauthorized copy; it does not conform

to the original component manufacturer’s (OCM) design, model, and/or performance; or it

is not produced by the original component manufacturer or is produced by unauthorized

contractors; it is an off-specification, defective, or used OCM product sold as “new” or

working; it has incorrect or false markings and/or documentation [38, 84]. Therefore,

counterfeit ICs can be classified into several major categories: (1) the recycled and remarked

one, which is the most widely reported type of counterfeit parts; (2) the overproduced one,

which is fabricated ones outside of contract by foundries; (3) the out of spec/defective one,

which should be rejected during testing, but are stolen and sold on open markets; (4) The

cloned one, which just copy the legal part by reverse engineering or illegal obtaining of IPs.

From detection techniques’ perspective, the counterfeit ICs can also be categorized

into defect ones and non-defect ones. The defect ones are those such as recycled/remarked

ones and the out-of-spec/defective ones. Those counterfeit ICs will show some degrees of

physical or electrical defects and anomalies due to aging and inherent defects from fabrica-

tions. Also the recycled ICs can cause reliability and security problems for many critical

applications. Existing counterfeit detection techniques mainly focus on the detecting of the
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defect ones the as the recycled and used ICs account for the majority of the counterfeit

components [39].

On the other hand, the non-defect ones such as the overproduced, cloned ones are

unauthorized productions of IC without the legal license and document. These kind of ICs

may be exactly same as the authorized ones. The non-defect ones, however, undercut the

competition with the unlicensed ones, which can cause significant revenue loss and related

job loss for the original IC and IP owners and OCMs. Unfortunately, the existing detection

techniques can only detect one type of those counterfeit ICs, not both. Therefore, it is

urgently needed to develop new comprehensive, yet cost-effective, counterfeit IC detection

techniques.

5.1.1 Review of existing detection method

For defect types, especially recycled and remarked ICs, there exists many detec-

tion techniques, which can be classified into physical methods and electrical methods [37].

Physical methods consist of incoming inspection methods such as visual inspection, X-ray

imaging, package analysis method such as laser scanning microscopy, delid method, and the

material analysis method such as using Fourier transform infrared, and X-ray fluorescence.

Electrical methods contain the parameter tests, function tests, built-in tests and structural

tests. In general, physical methods can be applied to all part types, but some of the methods

are destructive and take hours to test. As a result, sampling is required to certify a batch

of parts by observing a small number of parts. On the other hand, conventional electrical

test methods are non-destructive and time efficient, yet they can be very expensive because

such techniques are not necessarily designed for counterfeit detection.
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One viable way for fast detect and effectively prevent the recycled chip is to insert

a lightweight aging detecting sensor, which can directly tell the usage of the chips and some

early efforts have been explored [42, 43, 44, 85].

Method in [43] designed the ring-oscillator(RO)-based aging sensor that relies on

the aging effects of MOSFETs to change a RO frequency in comparison with the reference

one embedded in the chip. As the chip ages owing to the wear-out mechanisms such as

negative biased temperature instability (NBTI) and hot carrier injection (HCI), the shift

threshold voltage of MOSFET devices, thus the frequency of RO indicates the level of aging,

and provides a simple readout of the value. However, this method can only give very rough

estimation of the usage age of the chip as the shift of the frequency depends on many factors.

In order to mitigate this problem, the antifuse(AF)-based sensor was developed in [37]. The

AF-based sensor essentially is a counter, which counts the clocks or derivatives of the clock

events to log the usage of the chip. The antifuse memory is used to make sure the data

in the count will not be erased or altered by attackers. However, the AF-based sensors

suffer large area overhead especially when more accurate usage is required [37]. Another

problem with this method is that it may not reflect the true aging-dependent usage of a chip.

For instance, it will log the same usage time for a chip for different on-chip temperatures,

however, which can have dramatically impacts on the aging effects from electromigration,

NBTI and HCI [45]. Recently, on-chip aging sensor based on the electromigration (EM)

failure mechanism of interconnect wires has been proposed [85]. The main advantage of

EM-based aging sensor over RO-based aging sensor is that it can provide more accurate

usage time estimation especially over longer period of time. The design is also simple and
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light-weighted with small area and power overhead. But the EM-based sensor has more

area overhead for estimation of short period time of usage as it needs longer interconnect

wires.

For detection of non-defective counterfeit ICs, existing physical, electrical and ag-

ing sensor based methods will not be effective as there is no traceable properties can be

detected. One potential solution is to have a post-fabrication authentication process in

which, each IC will be uniquely registered into a global database using challenge-response

pairs after fabrication and testing. The end users can verify the ICs for proper registra-

tion later. This post-fabrication authentication process is similar to the passive hardware

metering method, which enables the design house to achieve post-fabrication control of the

produced ICs [86, 87]. However, those methods cannot detect the recycled and used ICs.

5.1.2 New contribution

We develop an innovative multi-functional on-chip sensor and the related post-

fabrication authentication methodology for detecting and preventing the counterfeit ICs.

The proposed on-chip sensor can detect both recycled/remarked/out-of-spec chips, as well

as cloned and over-produced ICs. It can serve as a central on-chip security hardware IP

for counterfeit IC detection. In addition, it can be on-chip timer and post-fabrication

authentication module and even activation module for ICs. Our new on-chip sensor has the

following features:

• The new on-chip sensor combines an antifuse memory block, which is one-time pro-

grammable (OTP), with existing aging sensors. The memory block will not be used
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as a counter as in the existing methods. Instead, it will store unique chip ID, time

stamp of activation, and other important chip assets, which will be encrypted against

tampering and can be verified by challenge-response pairs.

• Second, the new on-chip sensor combines the two types of aging sensors to detect both

short-term and long-term aging effects so that it can be effective and area-efficient for

both cases. The RO-based sensor is more effective for short-timer usage detection

and EM-based aging sensor is more accurate for long term usage detection. The EM-

based aging sensor exploits the natural aging/failure mechanism of interconnect wires

to time the aging of the chip. It can serve as more accurate timer for the chip to

meter the usage of long period time. As a result, it can enable timed service for some

functionality of a chip and can also avoid the over-usage of authorized period for a

chip or a system for certain security requirements. On the other hand, it can use only

one of two sensors also based on the applications.

• Based on the new on-chip sensor, we propose a post-fabrication authentication method-

ology to detect and prevent the non-detective counterfeit ICs. All the fabricated ICs

will be uniquely registered and activated with a unique chip ID in a global database.

The unique chip ID will be written into the antifuse memory during registration pro-

cess and chip will be activated after this process. In this way, it can prevent the cloned

and over-produced ICs. In addition, it can get rid of the reference circuits in existing

aging sensor designs as the initial electronic properties of the sensor circuits can be

stored in the global database as well.
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Simulation results shows the advantage of the proposed multi-purpose sensor

against the existing on-chip sensors in terms of functionality, detection coverage, usage

time estimation range and accuracy.

This chapter is organized as follows. In Section 5.2, we present the new multi-

purpose on-chip sensor circuit architecture. Section 5.3 presents the overall authentication

flow of the proposed on-chip sensor and detection methodology. Several statistical and

variational analyses of the new sensors and comparison analysis are presented in Section 5.4.

Last, Section 5.5 concludes.

5.2 The proposed on-chip sensor circuit

In this section, we present the architecture of proposed on-chip sensor circuit,

which consists of one antifuse memory block, one aging sensor module, one encryption

module and one activation module as shown in Fig.5.1. Each module will be discussed in

detail in the following sections.

5.2.1 Antifuse memory block

An antifuse is an electrical device which performs the opposite function to a fuse.

An antifuse starts with a high resistance and is designed to permanently create an electrically

conductive path (typically when the voltage across the antifuse exceeds a certain level). It

is an OTP memory technology. The antifuse memory is a type of read-only memory (ROM)

meaning the data in them is permanent and cannot be changed. Antifuse is non-volatile,

area and power efficient and has high reliability.
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Figure 5.1: The architecture of proposed on-chip sensor

Most importantly, antifuse is confidential [88]. Before and after programming, the

change on antifuse is extremely small, usually within tens of nanometers. In addition, there

are millions of antifuse in one component. So the reverse engineering is almost impossible.

As a result, it is ideal for storage the unique chip ID and activation time in the encrypted

form. Additional, since the antifuse memory is on-chip, additional system design measures

may be taken to make the device tamper-proof, such as password protecting the antifuse

memory within the system chip. This newer memory technology provides unprecedented

physical layer security. The antifuse memory has the following advantages:

• It’s nonvolatile. Once we program the antifuse with a programming voltage, the

antifuse is changed from one state to another. This process is irreversible. And the

programmed antifuse state is permanent.
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• It has radiation resistance [89]. Antifuse is a natural anti-radiation component. It

can not only withstand the effects of nuclear radiation, but also be immune to the

radiation from space particles.

• It has high reliability [90]. There is research indicating that antifuse FPGA can be

an order of magnitude more reliable than the ASIC.

• It is confidential. Before and after programming, the change on antifuse is extremely

small, usually within tens of nanometers. In addition, there are thousands, even

millions of antifuse in one component. So the reverse engineering is almost impossible.

• It is area-efficient and power-efficient. With current technology, the antifuse can be

very small. After programming, the resistance of the antifuse is only tens of Ohm. So

the power consumption is also very small.

Credible evidence [88] of the CMOS antifuse’s ability to hide information in silicon

is illustrated in the three photographs in Fig 5.2. In the cross section view, the bit cell in the

yellow rectangle is programmed. But it is not visible even under strong microscopy. The top

view shows the deprocessing of XPM array. The diagonal bits in the yellow rectangle are

programmed. But they are also invisible under microscopy. In the FIB voltage contrast,

memory array in the yellow rectangle is programmed in a cheker-board pattern, but no

bits are visible. Additional, since the antifuse memory is on-chip, additional system design

measures may be taken to make the device tamper-proof, such as password protecting

the antifuse memory within the system chip. This newer memory technology provides

unprecedented physical layer security.
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Figure 5.2: CMOS logic antifuse physical layer security

The antifuse memory block is used to store the unique key and other assets for

each chip. The antifuse memories are programmed in a programming environment with

relative high voltage. Therefore, integrated charge pumps are used to provide sufficiently

high voltage in embedded antifuse memories. We use existing antifuse blocks instead of

designing a new one.

5.2.2 Aging sensor module

Two different aging sensors to identify recycled ICs are used in this aging sensor

module. The RO-based sensor is based on the aging effects on RO. The usage time can be

detected by degraded RO frequency. The EM-based sensor relies on the EM aging effects

on interconnect wires. The resistance change of the stressed wires can be used to estimate

the chip usage time. The RO-based aging sensor is used to detect short-term aging while

the EM-based aging sensor is used to detect long-term aging. In addition, the EM-based

aging sensor can serve as a timer which can be used to disable the chip after a certain time.

The two aging sensors will be discussed in detail in the following sections.
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Figure 5.3: Structure of RO aging sensor

RO-based aging sensor

In the new sensor design, the new RO-based sensor shown in Fig. 5.3 follows the

similar design in [43]. But different than the one in [43], the new RO-based sensor only has

one RO (compared to the two in the existing works [43], as the reference frequency will be

stored in the design house database and can be assessed when the chip ID is read back by

challenge-response pairs during the authentication process. The details of the whole flow

will be discussed in the following section. Fig. 5.4 shows the typical frequency change over

time for the RO-based sensor. As we can see, as time goes by, the frequency change rate

goes down, which means that the sensitive of frequency change become smaller and it will

more difficult and less accurate to estimate usage time based on the frequency changes for

long period of time.
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Figure 5.4: Frequency degradation of a 5-stages RO

EM-based aging sensor

Fig. 5.8 shows the schematic of the proposed EM-based sensor. The design follows

the recent work in [85]. Fig. 5.5 is the multi-wire structure to be stressed for a specific time

in one sensor. The EM-based sensor has two versions. One version is aging sensor shown

Fig. 5.6. In this case, we have a group of wires connected in parallel and stressed by DC

current. The current densities in the wires are setup so that the wires will be nucleated at

a specific time (e.g., one year or 10 years). The initial resistance of the wires will be stored

in the design house database as a references. When the resistance of wires changes by 10%,

it can be counted as the failure and time difference between the activation time and current

is the usage time. Another version of the EM-based sensor is the timer version as shown
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Figure 5.5: The multi-wire structure

Fig 5.7. In this case, the reference wire, which has the same geometry as the stressed wires

is used. The sensor can output the signal when the wire resistance change significantly (by

10%). The signal can be used to lock the chip or lock certain functions of the chip for

timed-service of the chip or the system.

5.2.3 Encryption and Activation module

The encryption module is used to encrypt the data from antifuse blocks with the

challenge from the design house database. This module can be any existing encryption

module, e.g., AES method. It is used to make sure the key information in the antifuse

block cannot be directly accessed by any adversary.

The proposed on-chip sensor also allows one-time activation of a chip or certain

chip functions. This is achieved by the activation module. Once the chip pass the post-

fabrication testing, design house can write the key into the anti-fuse blocks. There are many

ways to implement the chip-level activation process [91, 92]. For instance, we check the
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Figure 5.6: The EM sensor-only circuit

Figure 5.7: The whole aging sensor with multiple EM sensors and timers

parity of the bits of the stored key in anti-fuse memory. We can also check number of zeros

or number of ones as well (bit stream written into antifuse memory needs to enforce some

properties in this case). The checking circuit inside the activation module can be obfuscated

for further protection. The output of the activation module can drive a randomly scatted

XOR gates in a chip to enable the unlocking process. In this way, it is difficult to modify

layout by counterfeiters.
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Figure 5.8: The structure of EM aging sensor

5.3 The proposed counterfeit IC detection methodology

In this section, we present the proposed overall counterfeit IC detection method-

ology and the IC authentication flow based on our on-chip sensor with antifuse memory.

Fig.5.9 shows a typical lifetime process that an IC goes through, which include

the design, fabrication, assembly, distribution, usage in the system until end of its life. As

one can see, there are vulnerabilities associated with each step in this supply chain. In

the design stage, an IP can be stolen and cloned. In the fabrication process, an IC can be

overproduced. In the assembly phase, out-of-spec/defective ICs can be sold to open market

by an untrusted assembly. Illegal activities during distribution, in-the-system (lifetime)

may bring different types of counterfeits back into the supply chain (recycled, remarked,

etc.).

To detect the all non-defective counterfeit ICs, we propose a new supply chain

flow with post-fabrication authentication process as shown in Fig. 5.10. Basically, one
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Figure 5.9: The electronic component supply chain and vulnerabilities

needs to break the flow from assembly to the distribution. As shown in Fig. 5.11, once

chips has been tested and packaged in the assembly stage, they will be sent back to the

design house. After a functional test, for the non-defective ICs, a unique chip ID, activation

time and other assets will be written into the antifuse memory in the on-chip sensor. And

the initial aging reference properties will be stored into the design house global database for

future verification. All the information cannot be directly accessed and will be encrypted

using standard cryptographic method to prevent the attack and tampering. Also during

this process, the design house can activate the locked chip, which will not work after the

fabrication process, using the unique content in the antifuse memory. In this way, the design

house can have better control of the ICs to prevent cloning and other unauthorized use.

Fig. 5.12 shows the proposed comprehensive detection policy for counterfeit ICs.

In general, a newly fabricated chip needs to pass two tests to be proved as a fresh and

authentic IC. The first test is called fingerprint test. The design house device database

generates a random challenge which can be input into the IC. If the IC cannot generate any
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Figure 5.10: The proposed supply chain with post-fabrication authentication

response or just output a incorrect response, then it haven’t taken the official design house

antifuse activation. It means this IC never comes back to the design house after fabrication.

So it can be detected as overproduced or cloned IC. If the response of the IC matches the

information in the design house database, then we can get its production information. By

comparing the antifuse production information and the device footprint information, it’s

easy to detect it’s a remarked IC or not. The second test is called aging test. This test

is performed to detect recycled or used IC or tell the user the estimated usage time of the

chip. By reading the aging sensor output, we can detect if it’s recycled IC or not. Based

on the aging model of the aging sensors employed and aging output, we can determine time

usage of the chip accurately.
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Figure 5.11: The proposed post-fabrication authentication

5.4 Numerical results and discussions

In this section, we first summarize the feature comparison among different sensors,

then we will present the simulated results of the RO-based and EM-based sensors. The

performance and overhead analysis will be discussed.
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Figure 5.12: The proposed comprehensive detection methodology for counterfeit ICs

The feature and function comparison among different sensors

Table 5.1 summarizes the major feature comparison among the RO-based, EM-

based and the proposed hybrid aging sensor. The RO-based sensor has high short-term
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Table 5.1: Aging Sensor Comparison

Feature RO EM Proposed

Short-term usage accuracy high low high

Long-term usage accuracy low high high

Post-fabrication auth no no yes

Detect cloned and over-produced ICs no no yes

Reference circuit needed needed not needed

Activation no no yes

Timed-serviec no no yes

usage accuracy but low long-term usage accuracy. The EM-based sensor has high long-

term usage accuracy if we use multiple stressed wires. However, its design is not good

for short-term recycled IC detection. Our proposed hybrid aging sensor can maintain high

accuracy for both short- and long-term recycled IC detection. The proposed sensor can

also allow post-fabrication authentication to detect cloned and over-produced ICs. It also

allows activation of the chip and timed services for ICs when it is used as on-chip timer.

5.4.1 Results for RO-based aging sensor

The RO-based aging sensor has been implemented and simulated using HSPICE

MOSRA from Synopsys. In our implementation, we selected 7-stage and 15-stage ROs

to compare the results. In order to model the variation, we performed Monte Carlo(MC)

simulation with 1,000 samples of the RO in HSPICE.
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Similar to the simulation in [43], we considered two process variations to inves-

tigate the impact of variation on the detection of the recycled ICs. Table 5.2 shows the

different process variations used in our simulation. RO-based sensors with 7/15-stage ROs

are simulated at 25◦C with PV0/1. PV0 represents the expected process variation be-

tween ROs while PV1 is the worst-case scenario. Thousand sensors are generated using MC

simulation by HSPICE and the total aging time is set at 15 months with a 3-month step.

Table 5.2: Process variations used

Inter-die Intra-die

Vth(%) L(%) Tox(%) Vth(%) L(%) Tox(%)

PV0 5 5 2 5 5 1

PV1 20 20 6 10 10 3

Fig. 5.13 shows the simulation results for the RO-based aging sensor. The x-axis

represents the frequency difference (fdiff = finit−fstressed) between the initial value and the

stressed RO. Note that we don’t need reference RO because we store the initial frequency

in the global database. The y-axis represents the frequency of occurrence. The legend in

the figures denotes the aging time (for example, AT = 3M denotes the RO is aged for 3

months). The green distribution represents the fdiff distribution for the new ICs where the

RO has not been aged and is centered at 0 MHz. The light blue and dark blue distributions

represent 3 months and 15 months of aging respectively. It is clear that aging shifts the

distributions to the right as the stressed RO has aged more and become slower resulting in

the right shift of fdiff distribution.
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We can clearly identify recycled ICs when the two distributions (T = 0 and

T = 3, 15M) do not overlap with one another. In Fig. 5.13(a), after being used for 3

months, the stressed RO suffers from aging effects and its frequency became lower. The

lowest frequency difference between the new and the stressed ROs is larger than the largest

frequency difference present in the new IC set. Therefore, the recycled IC detection rate for

ICs aged for 3 months or longer is 100%. At 15 months, the frequency differences between

the new and the stressed ROs can be larger.

Fig. 5.13(b) shows the frequency difference occurrence rate between the 7-stage

new and stressed ROs with process variations PV1. Moving from PV0 to PV1, interdie

and intradie variations both become larger. As process variation increases, the variance in

fdiff grows, which results in an overlap between 0 and 3,15M distributions. In this case,

we should expect higher mis-prediction rates.

The simulation results for 15-stage ROs using same process variations are shown

in Fig. 5.13(c) and Fig. 5.13(d). Comparing to the 7-stage ROs, the frequency difference

between aged and new ICs is smaller because we use the larger stage ROs. Although

it impacts the absolute value of the frequency difference, the detection rate will not be

impacted significantly.

5.4.2 Results for EM-based aging sensor

The EM-based aging sensor circuit is designed and validated using SPICE simu-

lation. We performed 1000 Monte Carlo simulation considering the variation of the failure

time for the stressed wires. The failure time can be defined as the time when the wire
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(a) 7-stage RO with PV0
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(b) 7-stage RO with PV1

−20 0 20 40 60 80 100
0

20

40

60

80

100

120

Frequency Difference (MHz)

O
cc

ur
re

nc
e

 

 

AT=0
AT=3M
AT=15M

(c) 15-stage RO with PV0

−20 0 20 40 60 80 100
0

20

40

60

80

100

120

Frequency Difference (MHz)

O
cc

ur
re

nc
e

 

 

AT=0
AT=3M
AT=15M

(d) 15-stage RO with PV1

Figure 5.13: Process variation impacts on frequency spreading and recycled IC detection
probability.

resistance increases 10%, which can be predicted by the physical-based EM-model [78, 46].

To verify the effects of aging on an EM-based aging sensor, we performed 1,000 MC

simulation. The simulation is conducted using HSPICE and MATLAB with the physical-

based EM-model. The EM stressed wire sets are composed of 1, 3, 6 and 10 wires which

will fail around one year. The EM failure time follows lognormal distribution [81].
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The 1000 MC simulation results of the EM-based aging sensor are shown in

Fig. 5.14. The variance of the lognormal distribution is set to 0.001. With 0.001 vari-

ance, we can see that with one wire, the EM lifetime will fall into ±10% lifetime mean with

99.83% chance and into ±5% lifetime mean with 88.64% chance. If we use 6 wires, we can

have 100% chance to achieve ±10% life mean and 98.66% chance for ±5% life mean, which

is good enough. As we can see, we can mitigate the failure time variations by increase the

number of wires.
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Figure 5.14: The statistical study of stressed wire set with different wire numbers
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Figure 5.15: (a) Length versus EM lifetime of a wire. (b) The power consumption of stress
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Fig. 5.15(a) shows the relationship between wire length L and wire EM lifetime.

The current density j is constant and set to 3 ∗ 1010A/m2. We show both the nucleation

time and the growth phase time predicted by the physics-based EM models. As we can see,

the total lifetime increases with decreasing L (so does the area), which shows that shorter

failure time will need larger area compared to the longer failure time.

Fig. 5.15(b) shows the power values versus the possible wire length (L) and current

density j. The 4 red curves show the possible L and j values for 1 year, 3 years, 6 years

and 10 years. We can clearly see the trade-off between L (area) and power.

5.4.3 Performance analysis and comparison

Fig. 5.16 shows the typical frequency change over a long period of time for a 5-stage

RO-based sensor. As we can see, the frequency change rate is very high at the beginning,

which is helpful to detect recycled ICs for a short period of time. However, as time goes by,

the frequency change rate goes down, which means that it will be more difficult and less
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accurate to estimate usage time for long period of time. Considering the process variances,

1% frequency difference can lead to a big estimated usage time region (30 months as shown

in Fig. 5.16). So the RO-based sensor is not a good timer for long period use. In contrast,
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Figure 5.16: The RO-based aging sensor error rate for long period time

the EM-based sensor can be a good long-period time because of its accuracy. The estimated

usage time region for a long period can be very small if we use multiple stressed wires [85]. In

addition, in Fig. 5.15(b), comparing to the 1-year EM-based sensor, the 10-years EM-based

sensor has smaller L(area). So the EM-based sensor for long-term use is also area-efficient.

Bear in mind the hybrid aging sensor can be inserted into commercial chips, which

would easily detect the recycled ICs and show the age of the chip. Such a method is practical
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because the area overhead is small. The RO-based sensor only takes n invertors, where n is

the number of stages in RO. Its area is equal to tens of NAND2 gates, which is negligible to

the whole chip. An EM-based aging sensor with 10 stressed wires costs 100-500um2 with

an SMIC 180nm technology, which depends on the length of the wire. Assuming a total of

5 EM-based sensors, the overhead is only 0.01% of the 25,000,000 um2 area available in a

5 mm × 5 mm chip.

5.5 Summary

In this chapter, we have propose a multi-functional on-chip sensor and the corre-

sponding methodology for detecting and authenticating the counterfeit ICs. The proposed

on-chip sensor can detect both recycled/remarked/out-of-spec chips, as well as cloned and

over-produced ICs. The new on-chip sensor, which combines aging sensors with antifuse

memory, can serve as a central on-chip security hardware IP for counterfeit IC detection,

on-chip timer and post-fabrication authentication and even activation module for ICs. On

top of the new sensor hardware, we propose a post-fabrication authentication process to

detect and prevent the non-detective counterfeit ICs. All the fabricated ICs will be uniquely

registered and activated with a unique chip ID in a global database. The unique chip ID will

be written into the anti-fused memory during registration process and chip will be activated

after this process. Simulated results show the advantage of the proposed multi-purpose sen-

sor against the existing on-chip sensors in terms of functionality, detection coverage and

usage time estimation range and accuracy.
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Chapter 6

Conclusion

The linear algebra is an important part in circuit simulation. In spite of many

research works for parallel dense linear algebra support, the sparse linear algebra support

is still limited. GPU-accelerated sparse linear algebra as important technique for circuit

simulation is still far away from a wide industrial acceptance.

On the other hand, the counterfeit ICs have become a major security threat for

commercial and mission-critical systems. Counterfeit ICs comes from different sources in

the electronic supply chain and can be categorized into many types. Although there exist

many detection and prevention methods for each type of counterfeit IC, there’s no general

solution for all of them.

This thesis proposes several important parallel sparse linear algebra operations,

such as sparse matrix-vector multiplication, direct LU factorization and iterative general

minimum residual linear solver. The proposed algorithms and implementations have signifi-

cant speed-up over existing solutions. This thesis also establishes a counterfeit IC detection
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methodology. The corresponding multi-functional on-chip sensor and post authentication

policy are able to detect all counterfeit IC types with good accuracy. In this chapter, the

main contributions of the thesis are summarized.

6.1 Summary of Research Contributions

6.1.1 GPU-accelerated sparse linear algebra for VLSI systems

In Chapter 2, we propose a new sparse LU solver on GPUs for circuit simulation

and more general scientific computing. The new algorithm is based on a hybrid right-

looking LU factorization method, which we show, is more suitable for GPU computing as

it can exploit more parallelism than the widely used left-looking LU factorization algo-

rithm. We further showed how the three loops of LU factorization can be parallelized based

on the GPU thread-block structures, while the existing GPU left-looking LU factorization

method can only parallelize two loops. Numerical results show that the proposed GLU

solver can deliver 5.71× and 1.46× speedup over the single-threaded and the 16-threaded

PARDISO solvers respectively, 19.56× speedup over the KLU solver, 47.13× over the UMF-

PACK solver and 1.47× speedup over a recently proposed GPU-based left-looking LU solver

on the set of typical circuit matrices from University of Florida Sparse Matrix Collection

(UFL). Furthermore, we also compare the proposed GLU solver on a set of general matri-

ces from UFL, GLU achieves 6.38× and 1.12× speedup over the single-threaded and the

16-threaded PARDISO solvers respectively, 39.39× speedup over the KLU solver, 24.04×

over the UMFPACK solver and 2.35× speedup over the same GPU-based left-looking LU

solver. At last, comparison on self-generated RLC mesh networks shows a similar trend,
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which further validates the advantage of the proposed method over the existing sparse LU

solvers.

In Chapter 3, we propose an efficient parallel dynamic linear solver GPU-GMRES.

The new solver is based on the preconditioned GMRES solver implemented CPU-GPU

platforms. The proposed GPU-GMRES solver is based on the very general and robust

Incomplete LU based preconditioner. We have shown that by properly selecting the right

amount of fill-ins in the LU factors, a good trade-off between GPU efficiency and convergence

rate can be achieved for the overall best performance. In addition, a new fast parallel SpMV

multiplication algorithm is proposed to further accelerate the GMRES solver. The new

algorithm, called segSpMV, can enjoy full coalesced memory access. To further improve the

scalability and efficiency, segSpMV method is further extended to multi-GPU platforms.

The resulting multi-GPU segSpMV can deliver further performance enhancement for the

resulting multi-GPU-GMRES solver. Furthermore, we have properly partitioned the major

computing tasks in GMRES solver to minimize the data traffic between CPU and GPU,

which further boosts performance of the proposed method. Experimental results on the set

of the published IBM benchmark circuits and mesh-structured power grid networks have

shown that the GPU-GMRES solver can deliver order of magnitudes speedup over one

direct LU solver. The resulting multi-GPU-GMRES can also deliver 3-10x speedup over

the CPU implementation of the same GMRES method on transient analysis.

6.1.2 Potential solutions to mitigate the counterfeit IC problem

In Chapter 4, we have proposed a new on-chip aging sensor based on the EM-

induced failure mechanisms to fast detect the recycled integrated circuits, which is one of the
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major hardware security issues facing the semiconductor industry. The new sensor is based

on failure detections of DC current stressed metal wires to time the usage of chips over time.

Compared with the existing ring-oscillator-based aging sensors, it can offer a simpler circuit

implementation and smaller area footprints. It also provides a more accurate prediction of

the chip usage time. The new aging sensor design is based on a newly proposed physics-

based EM model. Experimental results show that the proposed aging sensor can accurately

predict the targeted failure times in the presence of both inherent uncertainties. Our study

also shows that more parallel wires will lead to more accurate statistical predictions at the

cost of areas.

In Chapter 5, we have propose a multi-functional on-chip sensor and the corre-

sponding methodology for detecting and authenticating the counterfeit ICs. The proposed

on-chip sensor can detect both recycled/remarked/out-of-spec chips, as well as cloned and

over-produced ICs. The new on-chip sensor, which combines aging sensors with antifuse

memory, can serve as a central on-chip security hardware IP for counterfeit IC detection,

on-chip timer and post-fabrication authentication and even activation module for ICs. First,

the new sensor adds an antifuse memory into existing aging sensors to reduce reference cir-

cuit related area overhead of those sensor circuits as initial electronic properties of sensor

circuits are stored in a global database, accessed by unique chip via challenge-response pairs.

Second, the new sensor can combine both the RO-based sensor with recently proposed EM-

based aging sensor so that it can be effective for chip usage estimation for both short and

long period. As a result, it can serve as more accurate timer for the chip to meter the usage

of long period time, which can allow for timed services of some functionality of a chip in
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addition to detection of the recycled/remark ICs. On top of the new sensor hardware, we

propose a post-fabrication authentication process to detect and prevent the non-detective

counterfeit ICs. All the fabricated ICs will be uniquely registered and activated with a

unique chip ID in a global database. The unique chip ID will be written into the anti-fused

memory during registration process and chip will be activated after this process. Simulated

results show the advantage of the proposed multi-purpose sensor against the existing on-

chip sensors in terms of functionality, detection coverage and usage time estimation range

and accuracy.
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