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Abstract 

Post-Silicon validation is a fundamental step in integrated circuits fabrication, 

and designing the setup is an essential step to the process. The setup requires a lot of 

design effort, especially under the specification and constraint of a many-core 

processor, which has a large state space and requires high speed and bandwidth of data 

communication. In this paper, a custom test station design is proposed for the Kilocore2 

many-core processor. It consists of a Linux test station that controls the instruments via 

GPIB, and communicates with an FPGA via UART and PCIe that act as the test driver 

and monitor for the DUT. Tests are performed using this setup and the results are 

presented. This setup shall establish the foundation for future validation efforts of the 

Kilocore2 chip. 
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1. Introduction 

1.1 Motivation 
Post-Silicon Validation is a fundamental step in integrated circuits fabrication. 

After the behavior of the RTL design is verified in pre-silicon verification, the design is 

synthesized and implemented into physical design floorplans, which could introduce 

potential design rule faults or missed timing faults that are not reported by the CAD 

tools. The fabrication process might also introduce faults due to defects. The faults 

introduced in these two steps calls for a validation process to ensure the behavior of the 

chip fabricated matches with specification.  

The setup for Post-Silicon Validation requires a lot of design effort, each with 

their own tradeoffs. The solution to interface the DUT with, the instruments to drive the 

high-speed data signals to the DUT and streaming data out of, the solution to connect 

the DUT to the instruments to conduct the high-speed data signals, and the test station 

to control the instruments – all requires consideration to match the specifications of the 

DUT. After confirming that the options match with the specifications, the choices 

should balance between cost, ease of use, future expandability, and various other 

factors. 

 

1.2 Thesis Organization 
This thesis is organized as follows.  

Chapter 2 introduces the concept of many-core processor, the background of post-

silicon validation, and the background and architecture of our DUT, the Kilocore2. 

Chapter 3 describes the requirements and specifications of a test station used for post-

silicon validation. 
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Chapter 4 explains the composition of our custom test station and the design 

considerations into creating this test station. 

Chapter 5 details the design of the FPGA board used as part of the test station to 

interface with the control and data ports of our DUT. 

Chapter 6 details the design of the Python setup as part of the test station to control the 

instruments interfacing with our DUT. 

Chapter 7 highlights the tests performed using our setup and the results of these tests. 

Chapter 8 provides some ideas for future work. 
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2. Background 

2.1 Many-core Processor 
A many-core processor is a processor array with many physical cores that 

provides high degree of parallelism. The processor cores on a many-core processor 

typically runs at a lower frequency than conventional processor cores to save power, or 

even turned off when unused. Due to the number of cores, the array often consists of 

more complicated interconnect networks to communicate with internal memory and 

between cores. The number of possible states of the processor increases exponentially 

with respect to the number of cores in the processor, as each core would interact with 

each other on a physical level that cannot be decoupled. The validation effort thus also 

scales with the number of possible states, with test automation essential to effectively 

verify design of such complexity. 

 

2.2 AsAP Architecture 
The asynchronous array of simple processors (AsAP) architecture focuses on a 

large amount of processor cores that can run in high clock frequency and are globally 

asynchronous locally synchronous (GALS) to implement hardware task-level parallel 

data streams at low power. The goals of AsAP are to target workloads that can be 

parallelized into simple tasks, and would be benefited by high throughput and low 

power, which applies to most digital signal processing (DSP) tasks, such as video 

streaming and telecommunication. The distinct features of this architecture is that the 

processing elements are simplistic in design such that it can be clocked at higher 

frequency to achieve high throughput; each processing element is paired with a packet 

router that forms a two-dimensional mesh grid that are clocked separate to the 
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processing element, allowing the clock of the core to halt if the block is only routing 

traffic; and completely asynchronous clocking as each core has its own clock oscillator, 

which eliminates global clock trees routed to potentially a thousand processor elements 

[1]-[3].  

 

2.3 Post-Silicon Validation 
Post-silicon validation points to the validation process after the chip is fabricated, 

as opposed to pre-silicon verification, the verification process before the chip is 

fabricated, usually in computer simulations. And unlike pre-silicon verification, the 

chip needs to be physically powered on and input vectors need to be set by a signal 

generator, and the output vectors are often streamed to a checker. The debugging 

process is also different as, with the scale of modern silicon transistors, it is very costly 

and potentially destructive process to probe the internal signals, as compared to 

viewing the waveform of a simulation. There is also more potential fault points as the 

physical design of the chip is also into question, where the placement and routing of the 

transistors or register-transfer level to gate level synthesis discrepancy could be the root 

cause of a fault. This leads to extensive analysis to be conducted when a fault is found, 

and tests to be designed to discover the root-cause of the problem. 

 

2.3.1 Wafer Test 
There are two stages of post-silicon validation: wafer test and package test. 

Wafer test is conducted before the wafer is diced and packaged. As the wafer is a slab of 

silicon that is fragile and easily contaminated, the testing of it is done in clean room 

with special instruments. The wafer is placed on a wafer chuck that uses vacuum to 
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hold the wafer in place, and mechanical probes are placed on the contact pads to 

conduct testing [4].  

 

2.3.2 Package Test 
Packaging refers to the process where after the wafer is diced, the die is 

embedded in a case known as a package, and its input and output contacts are routed to 

pins for the ease of soldering the chip to a printed circuit board (PCB) or installing the 

chip onto a socket. Package test, hence, refers to the testing after the packaging process. 

Packaging tests are often conducted using automatic test equipment (ATE) that 

connects to an integrated circuit socket or PCB to interface with the chip being the 

device-under-test (DUT). As packaging of IC varies widely in non-commercial products 

[5], custom PCB designs typically offer more freedom and capabilities from IC socket 

connections, as extra features such as power-on self-test can be added to the DUT board 

[6]. Power rails with decoupling capacitors and extra sense lines can be added to the 

DUT board to reduce noises between power lines while providing extra entry points for 

testing. High speed signals can be physically isolated on the board to minimize noise 

coupling, and custom parallel data ports to be connected to signal generators and logic 

analyzers as part of the ATE for testing. If feasible, it is possible to include 

programmable logic, such as an FPGA to perform some versions of built-in self-test 

(BIST) or batch programming through the configuration data bus for register 

configurations. It could also act as the return path for loopback testing to verify the ATE 

setup, which is also very valuable during debugging. 
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2.4 Kilocore and Kilocore2 Chip 
The VLSI Computation Laboratory at University of California, Davis designed 

and fabricated a many-core processor named Kilocore, which is the third generation of 

AsAP. It consists of 1000 RISC-based processing elements, each communicates with its 

neighbor in a 2D mesh network via packet routers. It contains all features and 

characteristics enabled by the AsAP architecture mentioned above [8]. Its successor, 

Kilocore2, would be the fourth generation of AsAP [9], and the DUT of this research.  

The Kilocore2 chip contains similar amount processor cores and packet routers, 

DSP accelerators, and memory modules as the Kilocore. And just like the Kilocore, each 

processor core inside this chip is paired with a packet router, and creates a two-

dimensional mesh network to efficiently route data between cores. A glue module act as 

a bridge between the chip’s configuration input and the processor array, and houses the 

temperature-voltage sensing (TVS) module, configuration packet assemblers and 

disassemblers, configuration acknowledgement logic and test signal generation and 

selection logic. External clocks can also be supplied as the clock signal for specific 

processor cores or packet routers. The packet routers are routed by a hardware-

implemented route shaping algorithm. Three levels of voltage, VHI, VMED and VLOW 

can be selected to each processor core for more options in voltage control [9], [10].  
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3. Test Station 

A test station setup provides the platform to validate the DUT that establishes 

high-speed connections to the DUT, creates test agents that initiate the tests and check 

the results, and preferably able to be remotely accessed. One solution would be 

purchasing an automatic test equipment (ATE) that shall handle all initial bring-up 

efforts and provide the test agents and high-speed connections to the DUT. The ATE 

architecture consists of a master controller, often a computer, to control instruments that 

are responsible for fundamental operations, such as power supplies, multimeters and 

oscilloscopes needed to verify the chip is powered-on properly and internal clocks are 

operational, and to control instruments that facilitates feature testing, such as pulse 

generators and logic analyzers needed to send configuration commands and input 

vectors and stream output vectors from the DUT.  

While this solution offers the ease and comfort that enables the chip validation 

team to concentrate their efforts on test generation, it often shifts the setup design effort 

to a third-party vendor like Teradyne and National Instruments with a cost. With the 

complexity of the design of our chip and its custom socket design, it is likely that it 

requires a lot of design effort, which in turn incur a huge cost. Thus, it is more feasible 

to design the validation setup in house.  
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4. Custom Test Station Design 

Besides cost, building the validation setup in-house also allow the 

implementation of extra features that provides efficiency or convenience during 

debugging. The output vectors can be processed into readable debug messages or 

values, such as floating-point numbers representation from a bitstring. Scoreboard 

checkers can be added to compare the output vectors to a golden reference, and only 

print out error messages to declutter the interface, and further automate the validation 

process. Allowing remote access also helps the validation process as physical access 

might not be feasible in some situations, as demonstrated by a global pandemic.  

 

Figure 1. Test Station Setup for Kilocore2 Chip 
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4.1 Linux-Based Operating System 
Linux-based Fedora Linux is installed on our test station master controller. While 

CAD tools and adapter drivers are best supported on Windows as compared to Linux, 

Linux offers more control over various settings like file system and security that made 

Linux more feasible. For our purpose, the difference between different Linux 

distributions, such as Fedora Linux as compared to, for example, CentOS, is negligible 

as the test station does not utilize any features unique to any Linux distribution.  

The server is installed with the CAD tools such as Vivado, ISE and iMPACT, 

which is required to synthesize our RTL designs, and thus create the bitstreams used to 

program the FPGA and the on-board CPLD used in our setup. Python is chosen as our 

programming interface for it is simple to program, and the language contains a lot of 

open-source libraries that can be used to simplify our design process. It also does not 

rely on compilation and can be launched from the terminal directly. 

 

4.2 GPIB 
GPIB is a common interface is utilized to communicate with instruments that are 

not impacted by the standard’s low throughput, such as power supplies and 

multimeters. Compared to other standards like PCIe 3.0 x8 that has a bandwidth of 

almost 8000 MB/s, the GPIB interface has its maximum bandwidth of less than 2 MB/s 

[7], making it undesirable for high-speed data transfer. These instruments are only 

responsible during powering on and taking measurements that are not sensitive to 

timing. GPIB also allow daisy chaining instruments, where after programming its 

address, instead of each instrument establishing separate connections with the master 

controller, only one is required for all instruments, freeing up port space and reducing 

cost in USB/GPIB adapters. With GPIB, the chip can be powered up in a specific power 
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sequence with voltage and current limit in place and set specific voltages, all contained 

within one Python script. 

 
Figure 2. Agilent 82357A USB/GPIB Interface 

 

4.3. Power Supplies 
Power supplies of lower current rating, such as the Agilent 6611C, are used for 

initial testing, as compared to power supplies that can reach maximum current rating of 

our DUT’s power rails. This intrinsically provides protection against misconfiguration 

when debugging the setup. In our setup, the chip core voltage uses the Agilent E3633A 

that provides a higher current limit than other power rails to reap this benefit while 

delaying the time when future tests demand a higher current. DUTs that are sensitive to 
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voltage levels might be damaged when faults occur and the power supplies switches to 

current-limited mode and should disregard this. 

 

4.4. Custom Kilocore2 PCB 
To access the pins of our chip easier, the Kilocore2 chip is soldered onto a custom 

designed Kilocore2 PCB, such that the package pins are routed to various power 

terminals and high-speed parallel data ports. The PCB improves connectivity to the 

chip during testing, with separate port connectors as opposed to exposed pins on the 

chip. The board provides clear indication of which ports correspond to compared with 

bare pins on the packaging that is difficult to distinguish between. The board can be 

fitted with high-current rated power terminals with decoupling capacitors that provides 

stability to core voltages. Mounting holes can be added to the board for mounting a heat 

sink to cool the chip under high loads. 

Dedicated ports for separate data bus provide better signal integrity, especially 

when two signal standards, LVDS and 1.8V CMOS, are both used in different data 

buses. Low Voltage Differential Signaling (LVDS) uses the difference in voltage as 

signal and thus by design is less susceptible to noise. Along with its lower voltage 

swing, it is anticipated to achieve higher data transfer rates than 1.8V CMOS. 1.8V 

CMOS, however, is still used in some data buses as expansion boards that utilizes these 

data ports might not be compatible with LVDS standard. The data ports are in a parallel 

configuration, as it provides higher bandwidth as opposed to serial, where digital signal 

processing uses would find beneficial. SMA connectors are added to provide low-noise 

external clock inputs.  

Extra features can be added by the board’s custom design. For the Kilocore2 

board, by daisy chaining multiple boards’ configuration ports, multiple chips can be 
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configured by only one host. This is achieved by assigning unique IDs to each board’s 

CPLD and multiplexing the configuration bus depending on ID selection. Ports for 

external memory module are also included on the board for future expansion.  

 
Figure 3. Kilocore2 Board with a VGA expansion board (top right) 

 

4.5. Xilinx VC709 FPGA 
To accommodate the high-speed signals and have more control over timing, 

instead of using multiple pulse generators and logic analyzers, a Xilinx VC709 FPGA 

will be sending input vectors to the board and receiving the output vectors streamed 

out of it.  

FPGA provides a reprogrammable platform that is useful for design changes and 

adding features, as well as temporarily reroute signals for debugging. The FPGA board 

chosen includes a PCIe port for fast data transfer and a UART port for control and less 

time-sensitive data signals. Both communication protocols shall be used by the test 
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station and controlled by the Python interface. The FPGA also includes an FMC 

connector that provides the bandwidth for routing the input and output ports from the 

Kilocore2 board to the FPGA board. 

 
Figure 4. VC709 FPGA with the Breakout Board (bottom right) 

 

4.6 Breakout Board 
Yet, the FMC connector itself with its exposed pins are not ideal to interface with 

our various port standards on our Kilocore2 board. Hence, a breakout board would 

route the pins to matching ports to the Kilocore2 board. The breakout board contains 

the same configuration ports and test port as the Kilocore2 board, and only two data 

ports that can be programmed as either an input or output during synthesis. With the 

LVDS standard requiring a pair of pins per bit, the 400-pin FMC connector is not 

sufficient to contain all the pins used in an entire Kilocore2 ports. Two data ports were 

chosen as it was the bare minimum for one as input and one as output. And after 

verifying some of the data ports, those ports can be used to verify other data ports, or 
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by using a verified board, use its data ports to generate the test sequence for another 

DUT board.  

Besides the basic connectivity, the breakout board also includes extra features 

that are useful for debugging. It adds two pairs of external clock outputs to be used to 

generate test clocks for the external clock inputs of the Kilocore2 board, providing a 

more convenient solution as compared to setting up the pulse generator through GPIB. 

The breakout board also features a 14-pin JTAG port that allows programming the 

CPLD through that instead of a Xilinx Platform Cable USB II cable.  

 
Figure 5. Xilinx 14-Pin JTAG Cable 
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5. FPGA Design 

The FPGA is responsible for decoding commands from the Linux test station, 

and set configuration signals and input buses to the Kilocore2 board accordingly, as 

well as receiving data from the Kilocore2 board and sending it back to the Linux test 

station, via UART or PCIe. 

 
Figure 6. FPGA Top Module with PCIe 

 

5.1. UART Interface 
With its simplistic design, UART is used for sending configuration words to the 

FPGA. After receiving the bits from the serial bus of the FPGA, the bits are assembled to 

32-bit words by a shift register and a counter, which is then sent to a FIFO. The FIFO is 

needed as the downstream block may backpressure this block, but the UART block has 

no mechanism to backpressure the Python host to halt. It is expected, however, that 
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with the serial nature of the input bus and the slow baud rate as compared to the FPGA 

clock, a buffer with a depth of 2 should be sufficient, which further saves FPGA space 

for other features. The datapath for sending words back to the Python host, however, 

should have an adequate FIFO depth, depending on the baud rate to the FPGA clock 

ratio, as the producer from the FPGA side has a significantly higher bandwidth than the 

consumer through the UART interface. This indicates that the bandwidth of UART is 

not sufficient for high-speed data transfer, and thus is not used for streaming data into 

and out of the Kilocore2, and PCIe is used instead.  

As the 32-bit configuration words need to be sent to their corresponding 

modules, the first three bits are encoded as the destination of the word, which is 

decoded by the switch during routing. 

 

Figure 7. Datapath of UART Module 

 

5.2. Switch 
The switch module is responsible for sending data between modules inside the 

FPGA. To simplify the design, no FIFOs are implemented inside switch. Instead, the 

switch uses valid ready interface and backpressures the sender if the receiver is not 
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ready. In other words, the switch pairs the sender’s valid with the receiver’s ready, and 

routes the data words if the sender has valid data and the receiver is ready. This is 

uncommon as stalling at the switch might stall multiple blocks at once, and is to be 

avoided in most cases. In our case, however, all traffic either originates from or 

destinates to the UART module, which contains a FIFO in both directions. If the depth 

of the UART FIFO is sufficient, this guarantees that no traffic would be stalled by the 

switch. Along with the simplistic nature of other modules that can complete most 

transactions within one cycle, implementing FIFOs inside switch or other blocks 

appears to be unnecessary. 

For blocks that send data back to the Python interface, a unique header ID is still 

assigned as it is used to differentiate between different senders. Therefore, some blocks 

that does not intend to receive any data, such as the test port module, still has a valid 

receive input port. While the Python interface does not allow sending data to these 

blocks, as these blocks never intend to accept any input data, to simplify the hardware 

design, it is possible to send data to it by setting the input ready signal to be always 

high, but promptly disregarded by leaving the input bus open. This preserves 

consistency and the simplistic design of the switch without causing any potential 

stalling in the datapath.  
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Figure 8. Timing Diagram of Switch 

 
5.3. Kilocore Programmer 

The Kilocore Programmer module is responsible for sending configuration 

subwords to program the Kilocore2 chip. It achieves this by turning on the 

configuration clock and sending the 18-bit subword along with a valid bit through the 

configuration port of the Kilocore2 board whenever it receives a valid configuration 

word from the Python interface via UART. Through the configuration port of the 

Kilocore2 board, the glue module inside the Kilocore2 chip receives this subword to 

assemble a complete 64-bit instruction to program the processor array. To acknowledge 

receiving the subword, glue contains a bit selector and a counter that returns one bit per 

cycle of the subword received, starting with the least significant bit. The Kilocore 

Programmer module would receive this return bit, and assemble the complete 18-bit 

subword with a shift register, a simplistic way to compare and verify if the Kilocore2 

chip received the correct bits. The Kilocore Programmer module will also send the 
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subword back to the Python test station. Although an LED is implemented to light up if 

the subword returned does not match with the subword sent, considering the situation 

where the test station is being accessed remotely, the LED would not be conceived by 

the user. However, the fixed length of 32-bit words to be sent through UART indicates 

the fixed cost of sending data to be the same if it is a single status bit or 18 bits of the 

returned subword. Thus, the returned subword is sent to the Python test station after 

padding the header bits. In turn, the Python test station also compares the two 

subwords and raise an exception if a mismatch is found.  

As mentioned in Chapter 4, the CPLD added to the Kilocore2 board also allow 

daisy chaining Kilocore2 boards to allow multiple boards to be programmed by a single 

host. This is achieved by setting a chip select ID in Kilocore Programmer, which when 

matched with the programmed parameter in the CPLD of the board, will route the 

configure subword into the chip’s glue module, as well as the return bit back to the 

Kilocore Programmer.  

 

 

Figure 9. Return Bit Timing Diagram 
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Figure 10. Glue Return Bit Logic 

 

 

Figure 11. Chip Select Logic 

 
5.4. Test Port 

This module samples data from the test port and sends the data to the test station 

via UART. There are two modes of sampling, automatic and manual, where automatic 

mode sends data whenever there is a positive edge of the valid bit at the test port, 

whereas manual mode sends one data after the request is received and a positive edge 

of the valid bit at the test port is received. While automatic sampling is convenient in 
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simple tests, manual sampling should be chosen to avoid congesting the switch 

network and cluttering in the Python terminal.  

 

Figure 12. Timing Diagram of Test Port 

 

5.5. IO Delay and IO Delay Controller 
The input and output delay modules each contain an IP block that delays the 

data from the input and output of the data port with respect to the skew of individual 

pins. Take the output delay module as example. The output skew is controlled by 

ODELAYE2, an IP block by Xilinx that uses a 31-tap chain to delay the output signal, 

and the tap can be loaded or increased by a custom value set by IO Delay Controller. As 

the output standard can be changed between 1.8V CMOS and LVDS, an output buffer is 

added to accommodate this variance, which thanks to the re-programmability of FPGA, 

can be synthesized differently depending on which ports are connected to it. 

This module is needed as the length and the delay of each trace connecting the 

Kilocore2 chip to the data ports on the Kilocore2 board could be different, resulting in 

signal skew. While the trace lengths of most data ports are matched, the length for 

Packet Input 1 and Packet Output 1 could not be matched [10]. This module thus 

compensates the skew by delaying each bit by different amounts.  
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Figure 13. Timing Diagram of Output Delay 

 

5.6. PCIe Module and Data Port FIFO 
The PCIe module is responsible for sending and receiving data via the PCIe Gen3 

x8 bus on the FPGA. It contains the Xillybus IP block, which handles all PCIe 

handshakes, and two FIFOs handling input and output traffic. The FIFOs are needed as 

the data ports use separate clocks to the FPGA clock. 

In early stages of debugging, when bandwidth of data port is not a concern, the 

Data Port FIFOs were connected to the switch module. Obviously, sharing the switch’s 

bandwidth with the data ports is non-ideal, and this configuration should only be used 

for early stages of debugging to verify the data port FIFOs and the delay taps 

configuration.  

When using the PCIe bus exclusively for data ports, the input and output 

modules fully utilize the high bandwidth that PCIe offers. The delay taps configuration, 

while uses UART to configure, should be considered a static register input, and thus 

does not affect the bandwidth of the data port buses. As the data transfer path is 

separated from the slower UART switch network, PCIe should be used as the default 
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data transfer protocol for the data ports in the expense of higher utilization of LUTs in 

the FPGA. 

 
Figure 14. FPGA Top Module with UART Only, Used During Debugging 
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6. Python Setup 

Python is used to control GPIB instruments, and to send and receive data words 

to the FPGA’s UART and PCIe port. Python is chosen as this scripting language 

provides a simple and readable format for its scripts, making it clear to collaborators, 

and thus easier to debug during testing. When compared to other languages like C, 

Python scripts can be launched without compiling, which saves time and effort when 

scripts are changed to reproduce a trace that previously caused a fault during testing.  

 
6.1. GPIB 
 As mentioned in Chapter 4, GPIB is used to connect the Linux test station to the 

instruments that does not connect to the high-speed data buses of the DUT, such as 

power supplies, multimeters, oscilloscopes, and pulse generators. The Linux test station 

can turn on/off instrument outputs, set voltage/current limit of power supplies, set 

output values of the instruments, and request readings from the instruments. 

GPIB commands are launched from the test station to each instrument to program them 

and request data from. The commands are composed of the unique primary address of 

the instrument was programmed to, and a command that either complies with SCPI 

standard or is defined by the vendor of that instrument.  

On our Linux test station, Python is unable to send GPIB commands directly 

without using existing libraries or launching subroutines using libraries compiled in a 

different programming language. In our case, for simplicity, the C library that 

complements the Agilent 82357A USB/GPIB adapter was compiled to create 

subroutines that the Python scripts would later launch. This eliminates the need of 

debugging any potential incompatibility issues when using third-party libraries.  
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A custom Python object that contains the GPIB address was created such that 

instruments can be addressed by variable names instead of their GPIB primary 

addresses in the scripts, so to improve readability and avoid the potential of 

misconfiguration by a typo in the address field. Common functions, such as turning 

on/off the instrument, are also added to the object to further improve readability, as 

GPIB commands are often obscured in their simplified form, and thus often calls for 

comments to explain its use. For example, to check the connection to an instrument, one 

SCPI command that is often used is *IDN?, which asks the target device for its 

identification string. The mnemonic itself does not describe its function, which 

prompted for custom Python functions with more descriptive names to improve 

readability of the script. Therefore, this transforms the action of pinging the power 

supply responsible for our IO power rail into this one line of Python code: vddio.ping(), 

which is much more descriptive than the subroutine syntax this function launches:  

gpib 6 *IDN?.  

GPIB instruments cannot send error messages back to the host actively, and thus 

queries to the instruments to check error status should be performed often during 

setup. For example, when setting the voltage and current maximum of a power supply 

via GPIB, if the value provided should exceeds the maximum ratings of the instrument, 

the instrument might disregard the command. The instrument would flag it as error, 

and some instruments might light up an indicator LED; but the Linux test station does 

not know the error status until it queries the instrument.  

When using GPIB during remote setting, queries to the instruments should be 

made to verify the command is set, along with extra consideration on the accuracy of 

the reading from the instruments. For example, after enabling the output of a power 

supply, the voltage and current reading from the power supply should be queried as a 
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sanity check. But, due to voltage drop-off from power cables, the voltage reading from 

the power supply is likely an upper estimate. A separate multimeter can be connected 

to the terminal, or in the case of the Kilocore2 board, separate test pads on the board, to 

obtain a more accurate reading of the power rail voltage.  

 

Figure 15. Datapath of Sending and Receiving GPIB Commands to Instruments 

 

Figure 16. DC Power Supply with “Err” light on 

 
 
6.2. FPGA Control 

The Python scripts control and configure the FPGA hardware by sending 

configuration words through UART. This is achieved in Python by using the PySerial 

library to interface with the serial port and setting the baud rate agreed with the FPGA’s 

UART module. By sending 4-Byte bitstrings with the write() function of the PySerial 

library, the UART module in the FPGA will receive and assemble the 32-bit bitstrings 

that will then be routed by switch to their respective destinations, such as setting the 
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reset signal of the Kilocore2 chip, or turning on the external clock port on the breakout 

board. Messages returned from the FPGA can be received with the read() function, 

which then can be decoded and further processed in Python. 

A custom Python package is created, with commonly sent configuration words 

are implemented as Python functions to reduce error by writing bitstring directly and 

improve readability. For example, a custom function of prog.Unreset_Kilocore() would be 

replacing the PySerial function of write(b’\x2f\x00\x00\x00’), where this bitstring 

cannot be comprehended by anyone beside the designer without comments. Other 

functions can be assembled by referring to the field of the command and specifying the 

value of such to further discourage writing in bitstring that harms the debugging 

process. This also allows more sanity checks to be performed at the Python layer, such 

as disallowing sending configuration words to modules that are not designed to accept 

inputs, and thus simplify the FPGA design and decrease FPGA utilization.  

 

Figure 17. Datapath of Sending and Receiving Configuration Words 

 

6.3. PCIe 
The Python scripts send high-speed data to the data ports on the Kilocore2 board 

via the PCIe port of FPGA. This is achieved in Python by sending data directly to the 

ports instantiated in the Linux test station by the Xillybus driver, which complements 

the Xillybus IP block used in the FPGA that the PCIe port connects to.  

Of its simplistic nature, the Python interface to write to and read from the PCIe 

ports does not require custom Python objects and functions to be written to improve 
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readability and reduce potential errors. However, due to our design that allows the 

FPGA synthesis to change between using UART and PCIe to send and receive data 

from the data ports, the function to write and read data from the data ports are 

currently bundled with the package that sends control words as mentioned above. The 

Python library shall read from the FPGA defines Verilog header and choose to send 

data between using PCIe or UART accordingly.  

 

Figure 18. Datapath of Sending and Receiving High-speed Data 
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7. System Bring-up and Testing 

Tests are performed to validate the behavior of our setup and our DUT. Testing 

our setup is important as faults from the setup will poison the results obtained from 

DUT testing and create more uncertainty in our fault model. Loopback tests are useful 

as cut points are created in the middle of the datapath to verify the integrity of data to 

that point, and extend it to the next block in the datapath until the test covers the entire 

datapath, essentially creating a divide-and-conquer methodology.  

This testing philosophy is applied to our DUT tests. After confirming that the 

glue module is able to accept configuration instructions with return bits, as detailed in 

Chapter 4, the next test would be extending one block further from glue. The TVS 

module fits this description, and also returns the temperature and the core voltage of 

the chip, values that can be cross-checked. External clock is a feature of the Kilocore2 

chip that overrides the local clock of a specified core, and combined with the test pads 

on the Kilocore2 board to show the clock waveform of the core, also can be tested with a 

simple test. 

 
7.1. TVS 
 The TVS test is performed as follows. By configuring the TVS module out of 

sleep and reset, the temperature or the core voltage of the chip will be sent to the test 

port of the Kilocore2 board, and then be sent back to the Python test station via UART. 

The values are converted into Celsius or millivolts by equations specified by the vendor 

that created the TVS module in Python. The sampled temperature values are verified by 

spraying cold air onto the chip packaging and observe that the temperature values drop 
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after. The sampled voltage values are confirmed by measuring and matching the 

voltage across the test pads that corresponds to chip voltage on the Kilocore2 board.  

 

Figure 19. Datapath of Configuring TVS 

 

7.2. External Clock 
 The external clock test is performed as follows. The test starts with turning on the 

external clock output on the FPGA breakout board, which is verified beforehand with 

an oscilloscope. The positive and negative SMA terminals are connected from the 

breakout board to the Kilocore2 board correspondingly. Then, by programming core 0 

inside the Kilocore2 chip to use the external clock, the test pads on the Kilocore2 board 

should be showing the waveform of the clock on the oscilloscope, which the frequency 

reading would be sent to the Python test station via GPIB.  

 Instead, the external clock is currently only implicitly validated by correlation. 

The differential probes on the test pads currently only detects noise when the board is 

powered on, and the waveform does not change after various programming attempts 

that changes the core it probes from, or switching between internal clock and external 

clock. Therefore, the testing approach changed to minimize influence from other cores 

and modules inside the chip, and measure the change in core current draw as the 

external clock is turned on and increases in frequency. The anticipated positive 

correlation between external clock frequency and core current draw is observed. But we 
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hope to rectify the issue that caused the test pads to not show the waveform, redo the 

tests and verify programming processor cores to clock with external clock with 

waveforms. 

 

Figure 20. External Clock Datapath 

 

Figure 21. 100MHz Clock Output from FPGA Breakout Board 

f (MHz) 50 75 100 150 200 300 400 600 

I (A) 1.786 1.883 1.970 2.146 2.321 2.658 2.983 3.579 

Table 1. Current Reading of Core Voltage Power Rail with respect to External Clock Frequency 
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8. Future Work 

8.1. Kilocore2 Validation 
The Kilocore2 board still has a lot to be verified. It is suggested to test the packet 

routers feature as they are of less complexity yet crucial for operation. The packet 

routing algorithm is implemented in hardware; and while the specific route can’t be 

specified, shunts can be programmed to constrain routing hardware, which provides 

more insight during testing and debugging. Then, the functionality of each processor, 

where the feature list also differs from the fast processors and regular processors, the 

Viterbi and FFT accelerators and the internal memory modules are all in need of 

validation. Examining the power draw from the processors, and thus benchmarking the 

chip would be the next step after that. As the Kilocore2 board reserved the port for a 

TE0712 FPGA to be used as external memory, validation of that setup can also be 

performed in parallel of that.  

 

8.2. FPGA Features 
It’s expected that more features would be added into the VC709 FPGA for future 

validation efforts. The current post-implementation utilization of the FPGA is less than 

1% of logic units and BRAM, which hints to the potential of tests written in the future, 

such as data bandwidth stress testing between the FPGA and the Kilocore2 board’s 

external memory with some of the FPGA BRAM used as buffer. The initial 

programming of static registers of the Kilocore2 chip with default values can be added 

to the FPGA to streamline the power-on sequence. It might also be feasible to develop a 

sanity check routine to be implemented in FPGA that will initialize the static registers, 



 33 

perform some basic operations on some processors, and return the status of those tests 

through UART to the Python interface. 

 

8.3. Test Automation 
The Python package and interface allows automating the testing process. Along 

with the Kilocore2 assembler and program loader script, it might be feasible to develop 

a verification interface, where after loading the program and input data, this script shall 

also take in reference data and compare the output data streamed from the FPGA with 

it, and report mismatches automatically. It might also be useful for debugging if the 

reference data is generated by a Verilog simulation of the chip, which combined with 

the simulation waveform, could provide us insights to where the potential failure 

originates from. 

 

8.4 Daisy Chain KC2 Boards 
The CPLD on the Kilocore2 board enables a common configuration bus for a 

daisy chain configuration of boards. As the breakout board only consists of two data 

ports, testing multiple ports simultaneously sending data may be achieved by this daisy 

chain configuration, by utilizing one validated board as part of the test setup and thus 

send data words from its multiple output data ports simultaneously to the DUT board’s 

multiple input data ports. The validated board may also be programmed as an 

automated test pattern generator for future testing purposes.  
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Glossary 

AsAP Asynchronous Array of Simple Processors. An architecture designed to implement 

an array of simple cores that clocks independently to achieve high throughput. 

ATE Automatic Test Equipment. An equipment that performs automated tests. 

BRAM Block Random Access Memory. Hardware memory modules in FPGA. 

CMOS Complementary Metal-Oxide Semiconductor. The technology used in constructing 

integrated circuit chips. 

CPLD Complex Programmable Logic Device. A device that is reprogrammable to emulate 

hardware, often less complex than an FPGA. 

DUT Device-Under-Test. Refers to the device that is being tested. Within the context of 

this thesis, refers to the Kilocore2 chip. 

DSP Digital Signal Processing. The field where signals are processed in the digital 

domain, such as video encoding and decoding, and data compression. 

FIFO First-in-first-out. A hardware module that implements a queue. 

FMC FPGA Mezzanine Card. A parallel standard that connects expansion cards to 

FPGAs. 

FPGA Field-Programmable Gate Array. A device that can be reprogrammed to emulate 

hardware designs. 

GALS  Globally Asynchronous Locally Synchronous. An architecture where the physical 

cores of the processors can be clocked independently without a synchronous 

global clock. 

GPIB General Purpose Interface Bus. A parallel connection standard used in connecting 

various test instruments, such as power supplies and oscilloscopes. 
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JTAG Joint Test Action Group. Within the context of this thesis, a serial standard used to 

program CPLD and FPGA devices. 

LVDS Low-Voltage Differential Signalling. A signalling standard that uses a pair of wires 

to send symbols represented by the difference in voltage between the pair. 

PCB Printed Circuit Board. A component that connects various electrical devices with 

printed traces between the layers on the board. 

PCIe Peripheral Component Interconnect Express. A serial connection bus that provides 

multiple lanes for high-bandwidth connections.  

RISC Reduced Instruction Set Computer. A computer architecture that favors a more 

simplistic instruction set to increase the execution speed of each instruction. 

SCPI Standard Commands for Programmable Instruments. A set of commands that are 

implemented to instruments that are compatible with. 

SMA SubMiniature version A. A type of coaxial connector used for low noise high 

frequency signals. 

TVS Temperature-Voltage Sensing. A module inside the Kilocore2 chip that senses the 

temperature and voltage of the chip. 

UART Universal Asynchronous Receiver-Transmitter. A serial standard that transmits and 

receives data through an agreed baud rate without the use of a clock. 

USB Universal Serial Bus. A serial connection standard found in computers and test 

stations. 
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