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Abstract

A Metamodeling Approach for Bias Estimation of Biological Reference Points

by

Nicholas Grunloh

Stock assessments often assume a two-parameter functional form (e.g. Beverton-Holt,

Ricker, or Logistic) for the expected recruitment produced by a given level of spawning

output. Mangel et. al. [44] and others have shown that biological reference points (RP)

such as F∗

M and B∗

B̄(0) are largely determined by a single parameter (steepness) when

using two-parameter relationships. These functions introduce strong correlations be-

tween RPs that are pre-determined by the functional form, rather than a biological

characteristic of the stock. Mangel et. al. note that use of a three-parameter stock-

recruitment relationship allows for independent estimation of these RPs. Built around

these ideas, a novel simulation framework is developed to investigate the nature of bi-

ases in RP estimates that results from fitting a two-parameter functional form when the

true relationship is more complicated. First methods for generating space-filling simu-

lation designs in the RP space of three-parameter models are developed. By simulating

misspecified RP inference under common two-parameter models over these simulation

designs a Gaussian Process metamodel of two-parameter RP inference is developed to

control for a spectrum of common ways that two-parameter models are misspecified.

This analysis demonstrates the useful limits of commonly used population dynamics

xii



models, informs the utility of reducing RP bias, and suggests mechanisms for under-

standing how, and when, the most common two-parameter models fail to estimate RPs.

The studied models vary in complexity from the Schaefer model to delay differential

models including dynamics of individual growth and lagged maturity. Additionally, the

methods presented can easily be extended to further include age-based frameworks.
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Introduction
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Modern fisheries management is a multi-armed system based upon stock assess-

ment. Stock assessments characterize stock dynamics by collecting the available data

for a particular stock and analyzing those data with population dynamics models. Pop-

ulation dynamics models are then used to quantify the effect of fishing on the stock and

estimate long term sustainable catch levels which are then used by fisheries managers.

In the United States the Magnuson-Stevens Act1 (MSA) dictates that stock assess-

ment be a primarily scientific endeavor, and requires stock assessment to report the

best available science to fisheries managers. Furthermore, the MSA requires fisheries

managers to base management decisions upon the best available science. There are

a number of checks and balances between the scientific and management arms, but

ultimately it is fisheries managers that set the actual catch limits (based on science de-

veloped by stock assessments) that govern the amount of fish that can be harvested.

This system has proven to be effective, but it can create an information bottleneck at

the interface of stock assessment and management.

While stock assessment scientists do their best to bracket models with uncertainty,

and contextualize results, inevitably not all of the modeling subtlety understood by

scientists makes it into the management arm. Fisheries are very often managed based

upon reference points (RPs) which serve as simplified heuristic measures of population

behavior, and subtlety in how these measures are calculated can get lost in the transfer.

Mangel et. al. [44] and others have shown that RPs can be structurally limited by

1Magnuson-Stevens Fishery Conservation and Management Act, 2007. Pub. L. No. 94-265.
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the most commonly used assessment models. When these limitations are propagated

to management these limitations can directly bias how catch limits for fisheries are

set. The nature of these limitations manifests from the assumed mathematical form

of production which is among the most foundational components of most population

dynamics models.

This thesis develops a metamodeling simulation framework for evaluating RP esti-

mates under misspecified two-parameter models of productivity. Analytical and numer-

ical methods are developed for simulating data broadly in RP space under the Schnute

and Pella-Tomlinson (PT) three-parameter models. By simulating from three-parameter

models and observing RP estimation under misspecified two-parameter models, a meta-

model of the RP estimation process makes the consequences of RP estimation with the

most common models explicit. The metamodel demonstrates the types of stocks where

RP estimation may fail, indicates how RP estimation fails, and quantifies the scale of

biases with current models.

The most fundamental model in stock assessment is the surplus-production model

(SPM). These models focus on modeling population growth via nonlinear paramet-

ric ordinary differential equations (ODE). Data for a typical surplus-production model

comes in the form of an index of abundance through time which is assumed to be pro-

portional to the reproducing biomass for the modeled population that is vulnerable to

fishing. The index is often observed alongside a variety of other known quantities, but

3



at a minimum, each index will be observed in the presence of some known catch for the

period. Figure (1.1) shows the classic Namibian Hake data set [59, 34, 43] exemplifying

the form.

Figure 1.1: (left) Index of abundance data, catch per unit effort (CPUE), for Namibian
Hake from 1965 to 1987. (right) The associated catch data for Namibian Hake over the
same time period.

Indices are assumed to have multiplicative log-normal errors, and thus the following

observation model arises naturally,

It = qBteε
ε ∼ N(0,σ2). (1.1)

Above q is often referred to as the “catchability parameter”; it serves as the propor-

tionality constant mapping between the observed index of abundance and biomass. σ2

models residual variation. Biologically speaking q and σ2 are often treated as nuisance

parameters with biological productivity parameters entering the model through a pro-

4



cess model on biomass.

Biomass is assumed to evolve as an ODE through time. The class of models is

largely based on the following form,

dB
dt

= P(B(t);θ)−Z(t)B(t). (1.2)

Here biomass is assumed to change in time by two processes, net production of biomass

into the population, P(B), and various sources of biomass removal, Z, from the population.

Firstly, the population grows through a production function, P(B). Production in

this setting is defined as the net biomass increase due to all reproduction and growth

processes. The production function is assumed to be a parametric (generally non-linear)

function relating the current biomass of the population to an aggregate production of

biomass.

Secondly, the population decreases as biomass is removed by various sources that

are assumed to remove biomass linearly with biomass. Above, Z(t), is an aggregate

rate of removal. Often the fishing rate, F(t), is the only explicitly modeled source of

removal Z(t) = F(t), however some models will also included other linear terms in

Z(t). Commonly the rate of natural mortality (M) is also included as an additional

term so that Z(t) = M+F(t).

The general structure in Eq. (1.2) is the conceptual basis for most modern fisheries

models used in management [32, 49, 84]. As data permit this general structure is often

5



expanded to model age, weight, and/or length classes [70, 22] in the population via

models called age structured models (ASM). ASMs are currently considered best prac-

tice when there is considered enough quality data to establish length/age relationships

and the vulnerability of each class to fishing mortality (i.e. selectivity) [46, 12]. Model-

ing age and length/weight structure in the population allows for individual growth and

lagged maturity to be modeled as cohorts that age through time. Despite this added

complexity, at their core ASMs rely on similar dynamics as seen in Eq. (1.2), however

in ASMs the above ODE is expanded to a system of interrelated equations describing

how cohorts age through time.

Delay-differential models (DDM), as described in more detail in Chapter (4), can

provide an intermediate modeling infrastructure between SPMs and ASMs. By sim-

plifying the model assumptions around growth and maturity, simple ASMs may be

represented exactly by DDMs [17, 32]. Furthermore, SPMs can be represented as a

limiting case of DDM growth and maturity parameters [82]. This makes DDMs ideal

for “data-limited” assessment settings and as a simplified model for understanding the

role of growth in stock assessment models. Despite the useful bridge that DDMs pro-

vide, their use in stock assessments has been sparing due to the complexity of deriving

key management quantities under these models [19, 51].

From a management perspective a major goal of modeling is to accurately infer

a quantity known as maximum sustainable yield (MSY). One could maximize simple

6



yield at a particular moment in time (and only for that moment) by fishing all available

biomass in that moment. This strategy is penny-wise but pound-foolish (not to mention

ecologically devastating) since it doesn’t leave biomass in the population to reproduce

in the future. We seek to fish in a way that allows (or even encourages) future produc-

tivity in the population. This is accomplished by maximizing the equilibrium level of

catch over time. Equilibrium yield is modeled by Ȳ = FB̄(F), where B̄ is the steady

state biomass implied by Eq. (1.2), and ¯ indicates quantities at steady state. MSY is

then found by maximizing Ȳ (F) with respect to F , and F∗ is the fishing rate at MSY.

Going forward let ∗ decorate any value derived under the condition of MSY.

Most RPs revolve around the concept of MSY (or robust ways of measuring MSY

[33, 60]). Here the focus is primarily on the RPs B∗

B̄(0) and F∗

M (or F∗ when appropriate)

for their pervasive use in modern fisheries [61]. Here F∗ is the afore mentioned fish-

ing rate which results in MSY, M is natural mortality, B̄(0) is the equilibrium biomass

in the absence of fishing, and B∗ is the equilibrium biomass when fishing at F∗ (i.e.

B̄(F∗)). Thus, F∗

M describes the fraction of mortality due to fishing when the population

is expected to yield MSY and B∗

B̄(0) describes the fraction of the unfished population that

will remain at MSY. In general F∗

M ∈ R+ and B∗

B̄(0) ∈ (0,1), however under the assump-

tion of two-parameter production, models will be structurally unable to capture the full

theoretical range of RPs.

Many of the most commonly used production functions depend only on two-parameters.

7



For example, the Schaefer model depends only on the biological parameters r and

K, and limits RP inference so that under the Schaefer model
(

F∗, B∗

B̄(0)

)
∈
(
R+, 1

2

)
.

The two-parameter Fox model [23] limits
(

F∗, B∗

B̄(0)

)
∈
(
R+, 1

e

)
. Similarly the two-

parameter Cushing [15, 16], Beverton-Holt [4, BH] and Ricker [65] production func-

tions do not model the full theoretical space of RPs. Mangel et. al. [44] show that

this is a consequence of two-parameter production functions and suggests the use of

three-parameter functions instead.

Figure 1.2: Schaefer and PT RP MLEs
and associated interquartile confidence re-
gions. The PT curve models the entire
two-dimensional RP space shown and the
Schaefer model limits RP estimates to the
horizontal line at B∗

B̄(0) =
1
2 .

By fitting the Namibian Hake data

from Figure (1.1) with a two-parameter

Schaefer model, as compared with a

three-parameter PT model, the restric-

tive RP estimation under two-parameter

models can be seen. As will be de-

veloped further in Section (2.2.2), both

models can be reparameterized directly in

terms of their RPs, allowing for straight-

forward RP inference. Figure (1.2) shows

RP estimates in relation to the respec-

tive two/three-parameter RP spaces under

each model. A number of quirks in these
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data have been noted including small sample size, the possible presence of outliers, and

changes in the fishing fleet over the modeled period [59, 34, 64]. That said, the use

of the Schaefer model here is a classic SPM example and it commonly outperforms

more complex models on these data. While the use of the PT model here may well

be disputed when compared with the Schaefer model, in many ways the PT model is

far more honest about the short-comings of the data in its RP inference. The Schaefer

model does not admit many shortcomings in its RP estimates, with unrealistically tight

uncertainty bounds in F∗, absolute certainty that B∗

B̄(0) =
1
2 , and estimating MSY to be

about 259 with 95% confidence bounds ranging from 243 to 274. The fact that the PT

curve can model B∗

B̄(0) more generally than the Schaefer model lets the PT model reflect

the shortcomings of these data to provide a more honest representation of RP estimates

with wider uncertainty bounds as seen in Figure (1.2). Under the PT model MSY is

estimated very similarly at 254 (verse the Schaefer model’s 259) but with wider 95%

confidence bounds ranging from 185 to 270. These models make similar point esti-

mates of MSY, but understand the role of F∗ differently by allowing B∗

B0
to be estimated.

Even with the small size of these data and the additional parameters of the PT, the PT

model demonstrates evidence to explore models that allow B∗

B̄(0) to be estimated below

1
2 , with only a 10% confidence that B∗

B̄(0) ≥
1
2 marginally.

The bias-variance trade-off [63] makes it clear that the addition of a third parameter

in the production function will necessarily reduce estimate bias. However the utility of
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this bias reduction is still under debate because the particular mechanisms and behavior

(direction and magnitude) of these biases for key management quantities are not fully

understood or described [51]. Lee et. al. [39] provide some evidence that estimation

of productivity parameters are dependent on changes in biomass trends through time

(i.e. contrast) as well as model specification. Conn et. al. [11] come to similar conclu-

sions via calibration modeling techniques. These studies indicate important factors that

contribute to inferential failure. However they do not offer mechanisms of model fail-

ure, nor do their experimental designs allow for the control of different types of model

misspecification.

In Chapters (2) and (3) of this thesis I consider the behavior of RP inference when

index data are simulated from three-parameter PT and Schnute models of productivity,

but the simulated data are fit using intentionally misspecified two-parameter Schaefer

and BH models respectively. RP inference is simulated in the SPM setting, and the

results are then extended to the context of models that include individual growth and

maturity by developing a Schnute DDM in Chapter (4). In each simulation setting equa-

tions for RPs and associated quantities under the three-parameter models are derived.

Under the PT model simulation design is entirely analytical. Under the Schnute model

fully analytical designs are not possible. Thus in Chapter (3) a method is presented for

generating simulation designs under the Schnute model that is based on the parametric

form of RPs, but does not require analytical inversion of RPs. In Chapter (2) a Gaussian
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Process (GP) metamodel [26, 56] is constructed for the analysis of Schaefer RP biases,

and in Chapters (3) and (4) this model is extended for the exploration of BH RP biases

in each of the SPM and DDM settings.

A key insight of this approach is that bias is considered broadly across RP-space to

uncover patterns and correlations between RPs. Developing simulation designs broadly

over RP space serves as a necessary control on the nature of the simulated model mis-

specification that other studies have not considered. Furthermore, the GP metamodel

used to analyze RP biases is explicit about trade-offs between RPs so as to inform the

full utility of reducing bias, as well as to suggest mechanisms for understanding what

causes bias. Additionally, the effect of contrast on estimation is considered together

with model misspecification.
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Chapter 2

The Schaefer Model and

Pella-Tomlinson Generalization

12



2.1 Introduction

The Schaefer model is a canonical model in fisheries. The basis of the Schaefer

model is ripe with debate [38], and the debate continues within modern fisheries mod-

eling [57, 45, 58]. While the Schaefer model is based on a nonlinear ODE, it still

manages to retain an appealing simplicity and instructive interpretability. The nonlin-

earity of the model gives the model its conceptual relevance to the biological systems,

while retaining an approachable quadratic form that allows much of the analysis of the

model to be closed form.

The Schaefer model is formed by choosing P, from Eq. (1.2), to be the logistic

production function [43] parameterized by θ = [r,K] so that the family of production

functions take the following form,

P(B; [r,K]) = rB
(

1− B
K

)
. (2.1)

r is a parameter controlling the maximum rate of net population growth (biomass pro-

duction) for a population in the absence of competition for resources (i.e. the slope of

production function at the origin). K is the so-called “carrying capacity” of the popula-

tion. In this context the carrying capacity can be formally stated as steady state biomass

in the absence of fishing (i.e. B̄(0) = K). The model is typically stated without natural

mortality, M, so that Z(t) = F(t) (Appendix (B) shows a slightly more complicated
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case where M may be included explicitly). The typical form of the model makes the

logistic production interpretable as modeling surplus biomass production directly, and

thus RPs may be visualized directly on the logistic curve.

Figure 2.1:
The logistic production function
in black plotted with depictions
of the key biological parame-
ters and reference points. The
slope at the origin (and thus r)
is shown in blue, catch resulting
in MSY in red, biomass at MSY
in green, and K in purple at the
right x-intercept. MSY is seen
at the peak of the parabola, and
is attained with a fishing rate of
r
2 and biomass equilibrating to
K
2 .

The logistic production function produces idealized parabolic production with RPs

taking very simple forms that can be easily understood from the graphical construc-

tion seen in Figure (2.1). Positive productivity is observed when B ∈ (0,K). Due to the

parabolic shape of the logistic production function it is straightforward to see that yield

is maximized by fishing the stock down to B∗, where the stock attains its peak produc-

tivity. By symmetry of the logistic parabola it is clear that this peak occurs at B∗ = K
2 .

The fishing rate required to hold the stock at MSY is F∗ = r
2 , which is half of the stock’s

maximum rate of productivity. MSY is then the product of F∗ and B∗so that MSY = rK
4 .
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While this idealized form is instructive, and convenient, these simplistic dynamics

are also potentially problematic. The symmetry of the logistic functional form that

provides its relatively straight-forward RP analysis also assumes very rigid dynamics.

It assumes dynamics at smaller population sizes (B ∈ (0, K
2 )) mirror the dynamics of

larger population sizes (B ∈ (K
2 ,K)). Maunder [45] argues that the Schaefer model is

insufficient in large part due to the restriction it places on B∗

B̄(0) , at 1
2 , and further argues

that the three parameter Pella-Tomlinson (PT) model [55] should replace the Schaefer

model to avoid biased parameter estimates.

The PT model is a three-parameter generalization of the Schaefer model that uses its

extra parameter to explicitly control the location of B∗

B̄(0) . In doing so, the PT model can

model the entire space of RPs and does so in a way that retains much of the analytical

appeal of the Schaefer model. While there are some oddities of the functional form

[61, 21], the model has been very useful in generalizing the analysis of RPs [84].

In this chapter the PT model is used to generate index data simulated broadly in

RP-space but fit with an intentionally misspecified Schaefer model. This parameterizes

a broad set of misspecified situations for the Schaefer model where the simulated data

have well understood dynamics in the fisheries community. A GP metamodel of the

simulation is developed to demonstrate how misspecification of the Schaefer model

forms biases in RP estimation. First, analytical expressions for RPs are derived under

the PT model for use in deriving a fully analytical simulation design. Next, a GP
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metamodel is developed and catch is parameterized in terms of contrast to demonstrate

how the nature of bias is controlled by the information content in the data.

2.2 Methods

2.2.1 Model

Figure 2.2: The Pella-Tomlinson pro-
duction function plotted across a vari-
ety of parameter values. The special
case of logistic production is shown in
black, and the left-leaning and right-
leaning regimes are shown in blue and
red respectively.

The three-parameter Pella-Tomlinson (PT)

family has a convenient form that includes,

among others [23, 64], the logistic produc-

tion function as a special case. PT production

function is parameterized so that θ = [r,K,γ]

and the family takes the following form,

Pp(B; [r,K,γ]) =
rB

γ−1

(
1−
(

B
K

)(γ−1)
)
. (2.2)

The parameters r and K maintain the same

interpretation as they do in the logistic pro-

duction function. γ is a parameter which

breaks PT out of the restrictive symmetry of the logistic curve. In this parameteri-

zation γ ∈ (1,∞), with the logistic model appearing in the special case of γ = 2 (the Fox
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model [23] appears as a limiting case as γ → 1). In Figure (2.2) PT production is shown

for a range of parameter values so as to demonstrate the various productivity shapes

that can be achieved under the PT model.

While the form of the PT curve produces some limitations [61, 21] importantly the

introduction of a third parameter allows enough flexibility to fully describe the space of

RPs. To see this, the reference points are analytically derived for the PT model below.

2.2.2 Reference Points

With B(t) representing biomass at time t, under PT production, the dynamics of

biomass are defined by the following ODE,

dB
dt

=
rB

γ−1

(
1−
(

B
K

)γ−1
)
−FB. (2.3)

An expression for the equilibrium biomass is attained by setting Eq (2.3) equal to

zero, and rearranging the resulting equation to solve for B. Thinking of the result as a

function of F gives,

B̄(F) = K
(

1− F(γ−1)
r

) 1
(γ−1)

. (2.4)

At this point it is convenient to notice that B̄(0) = K. The expression for B∗ is given

by evaluating Eq (2.4) at F∗. To get an expression for F∗, the equilibrium yield is
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maximized with respect to F ,

F∗ = argmax
F

FB̄(F). (2.5)

In the case of PT production this maximization can be done analytically, by differenti-

ating the equilibrium yield with respect to F as follows,

dȲ
dF

= B̄(F)+F
dB̄
dF

(2.6)

dB̄
dF

=−K
r

(
1− F(γ−1)

r

) 1
γ−1−1

. (2.7)

Setting Eq (2.6) equal to 0, substituting B̄(F) and dB̄
dF by Equations (2.4) and (2.7)

respectively, and solving for F produces the following expression for the fishing rate

required to produce MSY,

F∗ =
r
γ

(2.8)

Plugging the above expression for F∗ back into Eq (2.4) gives the following expres-
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sion for biomass at MSY,

B∗ = K
(

1
γ

) 1
γ−1

. (2.9)

The above derived expressions for B̄(0), B∗, and F∗ can then be used to build a

specific analytical form for the biological reference points in terms of only productivity

parameters.

F∗ =
r
γ

B∗

B̄(0)
=

(
1
γ

) 1
γ−1

(2.10)

2.2.3 Simulation

Generating simulated indices of abundance from the PT model requires inverting

the relationship between
(

F∗, B∗

B̄(0)

)
, and (r,γ). It is not generally possible to analyt-

ically invert this relationship for many three-parameter production functions [61, 71].

Most three-parameter production functions lead to RPs that require expensive numeri-

cal methods to invert; more over the numerical inversion procedure can often be unsta-

ble. That said, for the case of PT this relationship is analytically invertible, and leads to
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the following relationship

r = γF∗
γ =

W
(

B∗

B̄(0) log
(

B∗

B̄(0)

))
log
(

B∗

B̄(0)

) . (2.11)

Above W is the Lambert product logarithm function [40, 13]. More details about this

derivation, and the Lambert product logarithm, are given in Appendix (A).

Using Eq. (2.11) to obtain production parameters, a PT production model can be

fully defined for any combination of the RPs F∗ and B∗

B̄(0) . Since B̄(0) alone does not

enter the RP calculation its value is fixed arbitrarily at 10000.

Indices of abundance are simulated from the three-parameter PT production model

broadly over the space of F∗ and B∗

B̄(0) via a space filling design as described in Section

(2.2.4). A small amount of residual variation, σ = 0.01 in Eq. (1.1), is added to the

simulated index, and these data are then fit with a Schaefer model, at various degrees

of misspecification, so as to observe the effect of productivity model misspecification

upon RP inference. Tests were performed with larger values of σ leading to similar

overall results albeit requiring substantially more simulation runs.

2.2.4 Latin Hypercube Design

The goal of the space-filling design in this setting is to extend the notion of the ran-

dom sample (and its desirable parameter estimation properties) across the simulated RP
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domain so as to represent the simulated space as well as possible [26]. The simple ran-

dom sample is the classical approach to unbiased parameter estimation, however simple

randomness is patchy, often sampling some regions of design space quite densely, while

leaving other regions of design space empty. Space-filling designs aim to preserve (or

enhance) parameter estimation properties across the simulated domain [18, 79], while

constraining samples to be spread over the entire space. Latin Hypercube Sampling

[47, LHS] is among the most foundational methods of generating the designs for use in

computer experiments. A Latin Hypercube Design [67, LHD] is thus an experimental

design based on a LHS.

A LHS of size n distributes samples so as to spread points across a design region

in a broadly representative way. A LHD extends the notion of a univariate random uni-

form sample across multiple dimensions so that each margin of the design space enjoys

a uniform distribution. LHDs achieve this notion of uniformity by first partitioning

each dimension of the design space into regular grids of size n. By intersecting the

grids of each dimension, cells are produced that evenly partition the design space. In

two dimensions n2 cells are produced, from which a total of n samples are taken. Cru-

cially only one point is randomly sampled from a given element of each grid in each

dimension so as to reduce clumping of the n samples across the design space.

In the 2 dimensional space defined by the PT RPs a LHD is defined by first let-

ting F and B be regular grids, of size n = 150, on F∗ ∈ (0.1,0.7) and B∗

B0
∈ (0.2,0.6)
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respectively. A LHS, of size 150, is then collected among the cells produced by F ×B .

Figure 2.3: LHS grids with n=9. Intersect-
ing F and B produces n2 cells; a particular
cell Fi ×B j is shown in grey. One point is
in each of the marginal Fi and B j grid ele-
ments.

Each of the sampled locations repre-

sent a unique PT model with the sam-

pled RP values. Since the relationship

mapping RPs analytically to productiv-

ity parameters can be found for the PT

model, LHS designs for the PT model are

computed directly in RP space and Eq.

(2.11) is used to map the sampled RP de-

sign locations to PT productivity param-

eters.

2.2.5 Gaussian Process Metamodel

At its core, a metamodel is simply a model of some mapping of inputs to outputs

(the mapping itself is typically defined by a computer model) [66]. By modeling the

mapping with a statistical model (that explicitly defines the relevant features of the

mapping) a metamodel defines a specific ontology for the mapping. By simulating

examples of the mapping, the inferential infrastructure of the statistical model is used

to empirically learn an effective emulation of the mapping within the ontology defined

22



by the statistical model [26]. The predictive infrastructure of the statistical model is

then useful as an approximate abstraction of the system itself to better understand the

system through further data collection, cheap approximation of the mapping, and/or

study of the mapping itself [24].

In this setting, the aim of metamodeling is to study how well RPs are inferred when

typical two-parameter models of productivity are misspecified for populations that are

actually driven by more complicated dynamics. Thus the goal of metamodeling in

this setting is not typical Bayesian calibration [37] of RPs, but rather to aid in the

description (and simulation) of RP model misspecification consequences. Correcting

these RP biases is clearly a goal, but the best estimates of RPs will likely be come from

using the understanding developed by these metamodels to inform better, and more

adequately flexible, models of productivity directly.

To that end the simulation design, X , provides a sample of different population

dynamics that are driven by three-parameter production functions broadly in RP space.

By simulating index of abundance data from the three parameter model, and fitting

those data with the two-parameter production model, we observe particular instances

of how well RPs are inferred at the given misspecification of the two-parameter model

relative to the true three-parameter production model. By gathering all of the simulated

instances of how RPs are inferred under the two-parameter model, we form a set of

example mappings to train a metamodel which represents the mapping of true RPs
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(under the three-parameter model) to estimates of RPs under the misspecified two-

parameter production model. The metamodel is essentially a surrogate for inference

under the misspecified two-parameter production model that controls for the specific

degree of model misspecification.

A flexible GP model is assumed for the structure of the metamodel to describe

the mapping of RPs under misspecified two-parameter models of productivity. A GP

is a stochastic process generalizing the multivariate normal distribution to an infinite

dimensional analog. GP models are often specified primarily through the choice of a

covariance (or correlation) function which defines the relationship between locations

in the input space. Typically correlation functions are specified so that inputs closely

related in space result in correlated effects in the model. In this setting the inputs to the

GP metamodel are RPs from the full theoretical range of RPs under the three-parameter

production model.

Indices of abundance are generated from three-parameter models; by fitting these

data with the restricted two-parameter model maximum likelihood estimates (MLE; and

associated estimation uncertainty) of each of the productivity parameters, and thus RPs,

are obtained. To simplify the specification of the metamodel, let y be a vector collecting

the fitted MLEs for log(F∗), and let ω be a vector of estimates of the estimator variances

(via the inverted Fisher information) at each y. The transformed RP estimates are then

modeled using the following GP metamodel.
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y = β0 +Xβ+v+ϵ

v ∼ Nn(0,τ
2Rℓ) (2.12)

ϵ∼ Nn(0,ω
′I)

X is the n x 2 LHS design matrix of RPs for each simulated three-parameter data

generating model as described in Section (3.2.3.1). ϵ models independent normally

distributed error, which provides an ideal mechanism for propagating uncertainty from

inference in the simulation step into the metamodel. By matching each yi with an ob-

served ωi variance term, ϵ serves to down weight the influence of each yi in proportion

to the inferred production model sampling distribution uncertainty. This has the effect

of smoothing the GP model in a way similar to the nugget effect [28], although the

application here models this effect heterogeneously.

The term, v, contains spatially correlated GP effects. The correlation matrix, Rℓ de-

scribes how RPs close together in the simulation design are more correlated than those

that are far away. This spatial effect is modeled with a squared exponential correlation

function,

R(x, x̃) = exp

(
2

∑
i=1

−(xi − x̃i)
2

2ℓ2
j

)
. (2.13)

R has an anisotropic separable form which allows for differing length scales, ℓ1
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and ℓ2, in the different RP axes. The flexibility to model correlations separately in

the different RP axes is key due to the differences in the extent of the RP domains

marginally. The matrix Rℓ is filled out by evaluating the correlation function R at each

pairwise combination of simulated design locations. The metamodel parameters β0, β,

τ2, ℓ1 and ℓ2 are fit via MLE against the observations y, X , and ω from simulation fits.

Fitting the metamodel allows for a full predictive description of inference under the

misspecified two-parameter model. Predictive estimates are obtained via kriging [14]

ŷ(x⋆) = β0 +x⋆β+ r(x⋆)′R−1
ℓ

(
y−
(
β0 +Xβ

))
(2.14)

ŷ(x⋆) is the metamodel’s predicted value of the modeled log(RP) estimates under

the two-parameter production model, when the index of abundance is generated from

the three-parameter production model at RP location x⋆. Finally, r(x⋆) is a vector-

valued function of correlation function evaluations for the predictive location x⋆ against

all observations in X(i.e. r(x⋆) =R(x⋆,xi) ∀ xi ∈X).

Recall that under the Schaefer model B∗

B̄(0) = 0.5; by transforming metamodel pre-

dictions of log(F∗) back to F∗, metamodeled predictions of Schaefer RPs are obtained.

By further subtracting the PT RPs from these predicted Schaefer RPs at each point in

RP space a pattern of RP estimation biases, induced by model misspecification of the

Schaefer model, can be visualized as will be seen in Figure (2.6).
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In order to investigate metamodeled bias surfaces for B∗ or MSY individually it is

necessary to separate the quantity B∗ from the ratio B∗

B0
. In order to do this, the additional

metamodeled quantity log(B0) was considered using the same structure as seen in this

section. Ultimately those results were found to be consistent with the results presented

throughout and thus were not included.

2.2.6 Catch

It is known that contrast in the observed index and catch time series can effect

inference on the productivity parameters [32]. In this setting contrast refers to changes

in the long term trends of index data. Figure (2.4, right) demonstrates an example of

biomass that includes contrast induced by catch. It is not well understood how contrast

may factor into inferential failure induced by model misspecification. Thus catch is

parameterized so as to allow for a spectrum of possible contrast simulation settings.

Catch is parameterized so that F(t) can be controlled with respect to F∗. Recall

that catch is assumed to be proportional to biomass, so that C(t) = F(t)B(t). To control

F(t) with respect to F∗, C(t) is specified by defining the quantity F(t)
F∗ as the relative

fishing rate. B(t) is defined by the solution of the ODE, and F∗ is defined by the

biological parameters of the model. By defining F(t)
F∗ , catch can then be written as

C(t) = F∗
(

F(t)
F∗

)
B(t).

Intuitively F(t)
F∗ describes the fraction of F∗ that F(t) is specified to for the current
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B(t). When F(t)
F∗ = 1, F(t) will be held at F∗, and the solution of the ODE brings B(t)

into equilibrium at B∗. When F(t)
F∗ is held constant in time biomass comes to equilibrium

as an exponential decay from K approaching B∗. When F(t)
F∗ < 1, F(t) is lower than F∗

and B(t) is pushed toward B̄ > B∗. Contrarily, when F(t)
F∗ > 1, F(t) is higher than F∗

and B(t) is pushed toward B̄ < B∗; the precise values of B̄ can be calculated from the

steady state biomass equations provided above and depend upon the specific form of

the production function.

For the simulations presented here, a family of fishing behaviors are considered

where the fishing rate accelerates as technology and fishing techniques improve rapidly

until management practices are applied, which ultimately brings fishing into equilib-

rium at F∗. This is parameterized as three distinct phases, over a total of 45 units of

time, with each phase lasting 15 time units. The specific form is given below.

F(t)
F∗ = aebt10≤t<15 + (d − ct)115≤t<30 + 130≤t≤45 (2.15)

The first term of Eq (2.15) is an exponential increase in fishing, the second term is a

linear decline in relative fishing as initial management practices are applied, and the

third term, 130≤t≤45, simply holds the fishing rate at F∗ there after. These three phases

are controlled by the four parameters a, b, c, and d. By enforcing that the interface

of the phases meet at χmax and 1 respectively the relative fishing series is reduced to a
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two-parameter family.

a = elog(χmax)−15b b =
1

t −15
log
(

χmin

χmax

)
(2.16)

c =
χmax −1
15−1

d = 15c+χmax (2.17)

By further specifying χmax = 1.6χ and χmin = 0.4χ the two-parameters χmax, and χmin

can be reduced to the single parameter χ. The tuning parameter χ then singularly con-

trols contrast that appears in time series data. The constants 1.6 and 0.4 may be tuned

to simulate more or less contrast, however the values chosen should be > 1 and < 1 re-

spectively and should be chosen in coordination with the number of simulated epochs

so at to avoid introducing an aliasing effect between the index sampling frequency and

the higher frequency (i.e. sharp) features induced by fishing [74, 48]. For the 45 epoch

simulation presented here the constants 1.6 and 0.4 are tuned to avoid aliasing high

contrast features of index samples in the most dramatic simulations. By increasing

the sampling frequency, or number of simulated time periods, the constants may be

increased/decreased accordingly.

When χ = 0, the relative fishing rate is a constant at 1 to create a low contrast

simulation environment. As χ increases Eq (2.15) induces more and more contrast in

the observed index and catch time series until χ = 1 which produces a high contrast

simulation environment. Figure (2.4) demonstrates a spectrum of contrast simulation
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Figure 2.4: (le f t) Relative fishing with low, medium, and high contrast. (right) Popu-
lation biomass and catch at each associated level of contrast.

environments as well as the time series data they induce in the solution of the production

model ODE.

2.2.7 Two-Parameter Production Model Inference

The simulated mapping results from fitting an intentionally misspecified two-parameter

production model to index of abundance data that are generated from a more complex

three-parameter model of productivity. Thus, let It be an index of abundance simu-

lated from the three-parameter PT model at time t ∈ {1,2,3, ...,T}. However the fitted

model is specified to be intentionally misspecified so that the fitted model is driven by

a two-parameter Schaefer model.
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The observation model for the fitted model is log-normal such that,

It |q,σ2,θ ∼ LN(qBt(θ),σ
2). (2.18)

Bt(θ) is defined by the solution of the ODEs defined by the Schaefer model with θ =

[r,K]. From the perspective of the fitted model, the observed It are assumed independent

conditional on q, σ2, r, K and the two-parameter ODE model for biomass. Thus the log

likelihood can be written as

logL(q,σ2,θ; I) =−T
2

log
(
σ

2)− 1
2σ2 ∑

t
log
(

It
qBt(θ)

)2

. (2.19)

In this setting q is fixed at 0.0005 to focus on the inferential effects of model mis-

specification on biological parameters. Furthermore, estimating both q and K intro-

duces identifiability issues in low contrast settings since both parameters are responsi-

ble for setting the scale of dynamics. In low contrast settings when Bt ≈ B̄(θ) for most

t, the product qBt(θ) is essentially qB̄(θ). In turn, qB̄(θ) can be written as qK(1−F/r)

to reveal the product qK. Since the likelihood will take the same value when swapping

the values of K and q in these cases, only their product may be identified. This identi-

fiability issue may be resolved by adding informative priors (i.e. essentially choosing a

value for one of the parameters), or by adding enough contrast so as to inform the cor-
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relation structure between the rest of the model parameters well enough to indirectly

inform K and q individually.

Beyond these identifiability issues, the parameters σ2 and θ are reparameterized

to the log scale and fit via MLE. Reparameterizing the parameters to the log scale

improves the reliability of optimization, in addition to facilitating the use of Hessian

information for estimating MLE standard errors. Given that the biological parameters

enter the likelihood via a nonlinear ODE, and further the parameters themselves are re-

lated to each other nonlinearly, the likelihood function can often be difficult to optimize.

A hybrid optimization scheme is used to maximize the log likelihood to ensure that a

global MLE solution is found. The R package GA [72, 73] is used to run a genetic

algorithm to explore parameter space globally. Optimization periodically jumps into

the L-BFGS-B local optimizer to refine optima within a local mode. The scheme func-

tions by searching globally, with the genetic algorithm, across many initial values for

starting the local gradient-based optimizer. The genetic algorithm serves to iteratively

improve hot starts for the local gradient-based optimizer. Additionally, optimization is

only considered to be converged when the optimum results in an invertible Hessian at

the found MLE.
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2.2.8 Continuous Model Formulation

An important (and often overlooked) implementation detail is the solution to the

ODE which defines the progression of biomass through time. As a statistical model it

is of paramount importance that this ODE not only have a solution, but also that the

solution be unique. Of primary concern, uniqueness of the ODE solution is necessary

for well conditioned inference.

If the form of dB
dt is at least Lipschitz continuous, then the Cauchy-Lipschitz-Picard

theorem provides local existence and uniqueness of B(t). Recall from Eq(1.2) that dB
dt is

separated into a term for biomass production, P(B), and a term for removals, Z(t)B(t).

For determining Lipschitz continuity of dB
dt , the smallest Lipschitz constant of dB

dt will

be the sum of the constants for each of the terms P(B) and Z(t)B(t) separately. Typ-

ically any choice of P(B) will be continuously differentiable, which implies Lipschitz

continuity. At a minimum Z(t) typically contains fishing mortality as a function of time

F(t) to model catch in time as C(t) = F(t)B(t). Z(t) may or may not contain M, but

typically M is modeled as stationary in time and does not pose a continuity issue, unlike

some potential assumptions for C(t).

In practice C(t) is determined by a series of observed, assumed known, catches.

Catch observations are typically observed on a subannual basis, but in practice may not

be complete for every epoch of the modeled period. It is overwhelmingly common to

discretize the ODE in time. This is often computationally convenient when the underly-
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ing species dynamics are reasonably well behaved, however when the dynamics model

is used as a statistical model, with the goal of inferring the behavior of the underly-

ing species dynamics, the regularity of the dynamics are not guaranteed. An implicit

assumption of continuity of catch in time provides the necessary regularity for the sta-

tistical model. Furthermore a continuous handling of the dynamics provides improved

accuracy in evaluating the ODE, particularly when inferring productivity parameters

which largely control the regularity of the dynamics.

While there are many ways to handle catch continuity, here I assume that catches

accrue linearly between observed catches. This assumption defines the catch function

as a piecewise linear function of time, with the smallest Lipschitz constant for the catch

term defined by the steepest time segment of the catch function. This assumption rep-

resents one of the simplest ways of handling catch, while retaining Lipschitz continuity

overall. Furthermore linearly interpolated catch is adequately parsimonious for the typ-

ical handling of catches.

2.2.8.1 Integration and Stiffness

As previously mentioned, the overwhelming majority of implementations of stock

assessment models discretize the ODE with the integration step sized fixed so as to

match the observation frequency. In this setting we investigate model parameteriza-

tions that explore the full extent of biologically relevant reference points. This exercise
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produces some combinations of parameters that result in numerically stiff ODEs.

The concept of stiffness in ODEs is hard to precisely characterize. Hairer and Wan-

ner [83, p.2] describe stiffness in the following pragmatic sense, “Stiff equations are

problems for which explicit methods don’t work.” It is hard to make this definition

more mathematically precise, but due to the explicit discretization of the ODE this is a

consistent issue for models of very productive species in the low contrast simulations.

In these stiff regions it is necessary to integrate the ODE with an implicit integration

method.

Several of the most common implicit methods were tried including the Livermore

Solver for ODEs (lsode), and the Variable Coefficient ODE Solver (vode) as imple-

mented in the deSolve package of R [76]. The difference between implicit solvers is

negligible, while explicit methods result in wildly varying solutions to the ODE in stiff

regions of parameter space. Results shown here are computed using the lsode inte-

gration since it runs relatively quickly and has a relatively smaller footprint in system

memory.
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2.3 Results

2.3.1 An MSY -Optimal Catch History

When F(t) is held constant at F∗, as it is in the “low contrast” simulation setting,

B(t) comes to equilibrium as an exponential decay from K to B∗. Understanding model

misspecification bias is simplified in this setting due to the relative simplicity that this

induces in B(t). However this simplicity is known to poorly inform estimates of r, and

thus F∗, due to the limited range of the production function that is observed [32].

Figure 2.5: A comparison of the true PT
production function (in black) and the esti-
mated logistic curve (in red) with 95% CI
shown. The examples shown represent the
four corners of maximum model misspec-
ification in the simulated RP-space. Ob-
served biomasses are plotted in the rug plots
below the curves.

Figure (2.5) shows four of the most

misspecified example production func-

tion fits as compared to the true data gen-

erating PT production functions. The rug

plots below each set of curves show how

the observed biomasses decay exponen-

tially from K to B∗ in each case. In par-

ticular, notice how observations only ex-

ist where the PT biomass is greater than

B∗. Due to the leaning of the true PT

curves, and the symmetry of the logistic

parabola, the logistic curve only observes

information about its slope at the origin
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from data observed on the right portion of the PT curves. The top two panels of Figure

(2.5) show PT data generated such that B∗

B̄(0) > 0.5; in these cases PT is steeper to the

right of B∗ than it is on the left, and so the the logistic curve overestimates r, and con-

sequently also overestimates F∗. The bottom two panels of Figure (2.5) show PT data

generated with B∗

B̄(0) < 0.5 and where the vice versa phenomena occurs. PT is shallower

to the right of B∗ than it is on the left and so the logistic parabola estimate tends to

underestimate F∗.

2.3.2 Metamodeled Trends

Each point in the space of the RPs F∗ and B∗

B̄(0) uniquely identifies a complete PT

model with different combinations of parameters values. Recall that when γ = 2 for the

PT model, the PT curve becomes a parabola and is equivalent to the logistic curve of

the Schaefer model. Since the logistic curve is symmetric about B∗, the Schaefer model

must fix the value of B∗

B̄(0) at the constant 0.5 for any value of F∗. The line through RP

space defined by B∗

B̄(0) = 0.5 ∀ F∗, defines the subset of RP space where γ = 2 and

where the PT model is equivalent to the Schaefer model. For brevity this subset of RP

where B∗

B̄(0) = 0.5 will be referred to as the “Schaefer set”. Thus simulated data that are

generated along the Schaefer set will be the only data that are not misspecified relative

to the Schaefer model; as PT data are simulated farther and farther away from this line

at B∗

B̄(0) = 0.5 model misspecification of the Schaefer model becomes worse and worse.
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While Figure (2.5) demonstrates a real trend in simulation results, individual sim-

ulation runs will at best show jittery trends due to the stochastic nature of statistical

inference. The GP metamodel accounts for this stochasticity to focus analysis on the

signal in the simulation results.

Figure 2.6: Joint bias direction for (F∗, B∗

B0
) estimates under the misspecified Schaefer

Model. The intensity of color represents the excess bias relative to the shortest possible
mapping. Results in the low contrast setting are shown (right), and the high contrast
setting is shown (le f t).

Figure (2.6) shows the pattern of biases the Schaefer model creates when fit to PT

data generated at each point of RP space. An equivalent way to think of Figure (2.6)

is the mapping that is created by inferring RPs under a misspecified Schaefer model fit

to PT data generated at each point over the pictured region. Since the Schaefer model

must estimate RPs in the Schaefer set, the head of each arrow points to the location in

the Schaefer set where the metamodel expects the Schaefer model to estimate its RPs.

The tail of each arrow indicates the PT data generating RPs, and thus the location of
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each arrow specifies a unique misspecification of the Schaefer model. The direction

and magnitude of each arrow then indicates the combined bias in the Schaefer model’s

estimates of F∗ and B∗

B0
when measured jointly at each misspecified RP location to fully

describe the mapping.

Since B∗

B0
must be 0.5 under the Schaefer model, biases in the B∗

B0
direction must

simply map vertically onto the Schaefer set. Due to this simplified RP geometry under

the Schaefer model, the degree of bias in B∗

B0
estimation is defined solely by the degree of

model misspecification irrespective of F∗. Furthermore, the closest possible point along

the Schaefer set that Schaefer model inference could map RPs would be the perfectly

vertical mapping. This pattern only contains the strictly necessary bias present in B∗

B0
,

and zero bias in F∗. Any deviation from this minimal bias pattern is necessarily due to

added bias in F∗.

The two simulation settings shown in Figure (2.6) are identical except for the amount

of contrast present in the simulated index. The right panel of Figure (2.6) shows RP

biases in the low contrast setting, while the left panel shows the high contrast setting.

Notice that in the low contrast setting the RP bias pattern is far from the minimum

distance mapping, however when contrast is added the mapping becomes much closer

to a minimal vertical bias mapping. In the low contrast setting the observed bias is

consistent with the pattern and mechanism described in Figure (2.5), where F∗ is un-

derestimated for data generated below the Schaefer line and overestimated above the
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Schaefer set. In the high contrast simulation the mapping is nearly minimal distance

with the exception of PT data generated with simultaneously low B∗

B0
and high F∗.

2.3.3 Contrast & F∗ Bias

Figure 2.7: Bias in F∗ as estimated under
the Schaefer model when PT data are gener-
ated with increasing contrast at three select
RP locations.

Figure (2.7) demonstrates how bias

in F∗ estimation decreases as contrast is

added to PT data as generated in the low

B∗

B0
and high F∗ regime. By including ad-

ditional contrast F∗ bias is decreased. To

fully extinguish F∗ bias, additional con-

trast may be added by adjusting the time

resolution to commensurately avoid sam-

ple aliasing issues as discussed in Sec-

tion (2.2.6). Furthermore a more complex

model of fishing may be necessary.
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2.4 Discussion

The metamodeled trends in RP estimation under the Schaefer model are consistent

with what is known about estimating population productivity parameters [39, 11, 42].

These studies focus on productivity parameters, but since RPs in the Schaefer model

are entirely determined by population productivity parameters, there is a direct relation-

ship between bias in RPs and productivity parameters. Previous studies do not directly

control for the structure of model misspecification and as a result do not come to a

complete mechanistic understanding of the model failure they observe. The LHD of

this simulation adds to what is known about estimating RPs by organizing model mis-

specification so as to enlighten the mechanisms of how bias in productivity, and thus

RPs, manifest under the Schaefer model. Figure (2.5) demonstrates that the observed

RP biases are tied directly to the shape of the data generating PT production function

relative to the symmetric case of the Schaefer model; a trend which is more generally

described by the metamodel in Figure (2.6).

The metamodeled RP bias trends indicate that the Schaefer model may present sys-

tematic management risks that are yet unrecognized. It is understood that the Schaefer

model will induce biases in B∗

B0
so as to hold B∗

B0
= 0.5 [45, 58], but the structure of

biases in F∗ estimation is less well understood. These results suggest that populations

coming from B∗

B0
< 0.5, will tend to have F∗ underestimated by the Schaefer model.

Complimentary, when the population comes from the RP regime where B∗

B0
> 0.5, these
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results suggest that F∗ is likely to be overestimated by the Schaefer model. The Schae-

fer model thus poses a risk for populations coming from B∗

B0
> 0.5, since overestimation

of F∗ may lead to management that results in overfishing. For the populations com-

ing from B∗

B0
< 0.5 the underestimated F∗ would make management based on Schaefer

model estimates more conservative with respect to the possibility of overfishing, but

would also reduce the expected long-term yield of the fishery. Our ultimate goals in

modeling should be to provide an accurate summary of the stock with a complete con-

textualization of our models’ deficiencies. To that end, this work contextualizes RP

estimation under the Schaefer model, and suggests that understanding the degree of

contrast in index data is important due to its influence on the degree of bias in F∗ esti-

mates.

This work reiterates the role of contrast [32] in estimating stock productivity. Since

the structure of the Schaefer model does not induce strong correlations between RPs1, it

provides an exceptional modeling environment for understanding the estimation char-

acteristics of F∗. In the presence of contrast, F∗ estimation can enjoy very low bias

even for a wide range of poorly specified models; conversely in the absence of contrast

F∗ estimation can suffer very large bias even for slightly misspecified models. This pat-

tern is exemplified in the low-contrast setting where the Schaefer model imposes little a

priori structure on F∗ and the low contrast index data poorly informs F∗, through r, via

a biased view of the upper biomass range of the PT curve. In the high contrast setting

1A luxury not granted under the BH model introduced in Chapter (3).
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the GP metamodel demonstrates a straightforward vertical mapping of F∗, indicated

minimal bias in F∗ estimates.

The relative fishing rate parameterized in Section (2.2.6) is broadly representative

of many California fisheries [53, 54]. The form used here captures a useful notion of

contrast and provides a seamless form that reveals how model failure behaves as con-

trast is removed from the data. While the relative fishing rate parameterized in Section

(2.2.6) captures a useful spectrum of relevant fishing behaviors, it is still limiting in the

amount of information that it can induce. Generally improved methods for quantify-

ing contrast in fisheries data, and/or methods of discovering more informative fishing

behavior, could improve this analysis.

While the Schaefer model is among the simplest models in fisheries, the concepts

it develops form the foundation of models that are commonly used in practice. In

the following chapters the dynamics models considered layer in model complexity one

piece at a time and the behavior of RP estimation is described in each case so as to

understand the influence of each subsequent modeling component.
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Chapter 3

The Beverton-Holt Model and

Schnute Generalization
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3.1 Introduction

The perspective of Beverton-Holt [4] has been foundational to the structure of mod-

ern fisheries models [35]. Evolving from the work of von Bertalanffy [81] (and before

that Baranov [3, 75]), alongside the Ricker [65] and Schaefer [68] models, the perspec-

tive of Beverton and Holt shaped the following decades of fisheries research. To this

day, it is practically incumbent upon many stock assessments in the United States to

view the BH model of recruitment as a default [49, 20].

Similarly to the Schaefer model, the Beverton-Holt (BH) model [4] is founded on a

notion of density dependence [25] (albeit to a lesser extent). Unlike the Schaefer model,

the BH approach to modeling productivity factors the density dependence related to

recruitment separately from terms relating to natural mortality in the adult population,

behooving a more explicit model of natural mortality [5]. Similarly to the Schaefer

model, the derivation of the recruitment relationship assumes that density dependence

appears as a quadratic logistic differential equation. However the BH model formulates

this as a model of the change in recruitment over time, rather than as a direct model

of net productivity as seen in the Schaefer model. They then solve this equation in

discrete time and reparameterize to argue for the generality of the resulting recruitment

relationship that we use today.

For purposes of this chapter their recruitment relationship is reparameterized as a
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production function to model adult biomass production as,

P(B) =
αB

1+βB
. (3.1)

The parameter α here has a similar interpretation as the r parameter, from the Schaefer

model, in that it represents the slope at the origin of the production function. The β

parameter here is also related to K, from the Schaefer model, however the BH model is

not parameterized directly in terms of carrying capacity but rather K ∝
1
β

. The primary

role of β in this parameterization is to scale the population, and β is largely responsible

for controlling carrying capacity in practice.

Figure 3.1: (le f t) BH production function plotted along side a linear model of natural
mortality. (right) Surplus production implied by the combined BH model of production
and linear natural mortality.

As seen in Figure (3.1, le f t) the BH model is an asymptoting curve, such that as
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limB→∞ PBH(B) = α

β
. This makes the inclusion of an explicit handling of natural mor-

tality, M, pertinent for the modeling of surplus production. In this case, MB represents

linear natural mortality, but it also constitutes a replacement line where biological pro-

duction must exceed this rate of mortality to persist. Figure (3.1, right) demonstrates

how when the typical linear handling of natural mortality is taken together with the

BH model a left-leaning surplus production curve is produced that is reminiscent of PT

curves for γPT < 2 as can be seen in Figure (2.2).

Under the PT model recall when γPT ≤ 2 the RPs lie in the lower B∗

B0
≤ 0.5 region

of RP space. Under the BH model this is also the case, although due to two-parameter

form of the BH model, the set of BH RPs is a curve passing through B∗

B0
≤ 0.5. Myers

et. al. [52], Brooks et. al. [8], and Mangel et. al. [44] show how this limitation arises

analytically via steepness. Mangel et. al. [44], further demonstrates the generality of

this phenomena, and shows how these functional limitations limit fisheries management

based on MSY -based RPs.

Deriso [17] and Schnute [69] developed slightly different (but conceptually equiv-

alent) three-parameter generalizations of the BH model1. This model generalizes the

BH model by controlling the nature of density dependence; allowing production to

increase or decrease beyond that of the BH model for large spawning biomass. The

Schnute model not only generalizes the BH model, but in doing so it frees the RP lim-

1The later form in [69] is preferred here due its interpretability and the improved regularity of closed
form RPs it produces.
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itations presented above. The three-parameter Schnute model has the two-parameter

BH, Ricker, and Schaefer models, as special cases. Each of the two-parameter models

limits RPs similarly to the BH model, but in particular each of them models a different

set of RPs. As the Schnute model transitions between these models it takes intermedi-

ate forms which can model all of the intervening RPs, thus representing all of the most

biologically relevant hypotheses commonly discussed in stock assessments.

In this chapter the Schnute model is used to generate index data simulated broadly

in RP-space but fit with an intentionally misspecified BH model. This parameterizes

a broad set of misspecified situations for the BH model where the simulated data have

well understood dynamics in the fisheries community. A GP metamodel of the simula-

tion demonstrates how misspecification of the BH model forms biases in RP estimation.

First, as many as possible of the necessary RP expressions are derived analytically un-

der the Schnute model. The remaining RPs do not have analytical expressions. There-

fore, a numerically stable method is then developed that allows an adaptive simulation

design to be computed without the remaining closed-form RP expressions. The GP

metamodel (as developed in Section (2.2.5)) is then used to demonstrate the nature of

RP biases under the BH model.
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3.2 Methods

3.2.1 Model

The Schnute production function is a three-parameter generalization of many of the

most common two-parameter production functions [17, 69]. It can be written in the

following form, with parameters α, β, and γ,

Ps(B; [α,β,γ]) = αB(1−βγB)
1
γ . (3.2)

Figure 3.2: The Schnute production func-
tion plotted across a variety of parame-
ter values. Regimes of similarly behaving
curves are grouped by color.

The BH and Logistic production

functions arise when γ is fixed to -1 or 1

respectively. The Ricker model is a limit-

ing case as γ → 0. For γ < −1 a family

of strictly increasing Cushing-like [15]

curves arise, culminating in linear pro-

duction as γ → −∞. These special cases

form natural regimes of similarly behav-

ing production functions as seen in Figure

(3.2).

The behavior of RP inference under the BH model is of particular interest due to
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the overwhelming popularity of the BH assumption in stock assessment models. Since

Schnute production models can represent a quantifiably wide variety of possible pro-

ductivity behaviors, they present an ideal simulation environment for inquiry of the

reliability of inference under the BH assumption.

Under Schnute production, biomass dynamics evolve according to the following

ODE,

dB
dt

= Ps(B;θ)− (M+F)B. (3.3)

This equation largely takes the same form as previously described, except that Ps is

the Schnute production function and natural mortality, M, is modeled explicitly here.

Natural mortality models the instantaneous rate of mortality from all causes outside

of fishing. While Eq. (3.3) models M explicitly, natural mortality is implicit to the

structure of the previously described Schaefer, Fox, and PT production models. Explic-

itly modeling natural mortality in this way allows Ps to model the production function

in such a way so as to allow production to increase for large spawning biomass (or

asymptote, e.g. BH production), and still retain well defined RPs so long as α > M.

This handling of M is typical for age structured models under BH or Ricker recruitment

(or even BH/Ricker production models), but it is uncommonly used with the Schaefer

model (γ = 1) as is possible in this setting. Appendix (B) shows that while explicit M
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may not be typical under the Schaefer model, the assumption of linear natural mortality,

−MB, produces a mathematically valid Schaefer model with an admissible interpreta-

tion.

The derivation of RPs under Eq. (3.3) follows a similar logic as under the PT model.

An expression for equilibrium biomass is attained by setting dB
dt = 0 and rearranging the

resulting expression to solve for B

B̄(F) =
1
γβ

(
1−
(

M+F
α

)γ)
. (3.4)

The above expression quickly yields B0, B∗ by evaluation at F = 0 and F∗ respec-

tively,

B0 =
1
γβ

(
1−
(

M
α

)γ)
(3.5)

B∗

B0
=

1−
(

M+F∗

α

)γ

1−
(M

α

)γ . (3.6)

Attaining an expression for F∗ requires maximization of equilibrium yield, Ȳ = FB̄(F),
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with respect to F . Analytically maximizing proceeds by differentiating Ȳ to produce

dȲ
dF

= B̄(F)+F
dB̄
dF

(3.7)

dB̄
dF

=−1
β

((M+F
α

)γ

F +M

)
. (3.8)

Setting dȲ
dF = 0, filling in the expressions for B̄(F) and dB̄

dF , then rearranging to solve for

F∗ is less yielding here than it was in the case of the PT model. This procedure falls

short of providing an analytical solution for F∗ directly in terms of θ, but rather shows

that F∗ must respect the following expression,

0 =
1
γ
−
(

1
γ
+

F∗

F∗+M

)(
F∗+M

α

)γ

. (3.9)

The lack of an analytical solution here is understood. Schnute & Richards [71,

pg. 519] specifically point out that F∗ cannot be expressed analytically in terms of

productivity parameters, but rather give a partial analytical expression for the inverse

relationship. Although parameterized slightly differently, Schnute & Richards derive

expressions for α and β as a function of RPs and γ.

Since RPs are left without a closed form expression, computing RPs from produc-

tivity parameters amounts to numerically solving the system formed by collecting the

expressions (3.9), (3.5), and (3.6).
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3.2.2 Simulation

For the purpose of simulation, it is not necessary to completely know the precise

relationships mapping RPs 7→ θ or θ 7→ RPs. Simulation only requires enough knowl-

edge of these mappings to gather a list of (α,β,γ) tuples, for data generation under

the Schnute model, and the corresponding RPs in some reasonable space-filling design

over RP space.

Similarly to Schnute & Richards [71], expressions (3.9) and (3.5) are solved for α

and β respectively. This leads to the partial mapping
(
F∗,B0

)
7→
(
α(·,γ), β(·, ·,γ)

)
in

terms of RPs and γ. By further working with Eq. (3.6), to identify γ, the following

system is obtained,

α = (M+F∗)

(
1+

γF∗

M+F∗

)1/γ

β =
1

γB0

(
1−
(

M
α

)γ)
(3.10)

B∗

B0
=

1−
(

M+F∗

α

)γ

1−
(M

α

)γ .

For a population experiencing natural mortality M, by fixing F∗, B0, and B∗

B0
the

above system can fully specify α and β for a given γ. Notice for a given γ a cascade

of closed form solutions for α and β can be obtained. First α(γ) can be computed, and

then β(α(γ),γ) can be computed. If α(γ) is filled back into the expression for B∗

B0
, the
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system collapses into a single onerous expression for B∗

B0
(α(γ),γ). For brevity, define

the function ζ(γ) = B∗

B0

(
α(γ),γ,F∗,M

)
based on Eq. (3.6).

Inverting ζ(γ) for γ, and computing the cascade of α(γ), and then β(α(γ),γ), fully

defines the Schnute model for a given (F∗

M , B∗

B0
). However inverting ζ accurately is diffi-

cult. Inverting ζ analytically is not feasible, and numerical methods for inverting ζ are

unstable and can be computationally expensive. Rather than numerically invert precise

values of ζ(γ), γ is sampled based on the form of ζ so that the overall simulation design

is space filling. Ultimately this produces a similar LHD as described in Section (3.2.3),

however bypassing inaccurate numerical methods.

Each design location defines a complete Schnute production model with the given

RP values. B0 and q are fixed as in Chapter (2), and M is fixed at a 0.2. Various values

of M were tested leading to similar overall results. Indices of abundance are simulated

from the Schnute model at each design location, a small amount of residual variation,

σ = 0.01, is added to the simulated index, and the data are then fit with a misspecified

BH production model. The design at large captures various degrees of model misspec-

ification relative to the BH model, so as to observe the effect of productivity model

misspecification upon RP inference.
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3.2.3 Design

Figure 3.3: ζ(γ) Plotted for F∗ = 0.1 and
M = 0.2. The point (γmin,ζmin) shows the
lowest theoretical value of γ before surplus
production becomes negative.

Due to the lack of an analytical rela-

tionship mapping RPs 7→ θ, analogous to

the PT model’s Eq. (2.11), producing a

LHD over Schnute RPs requires a more

tactful approach. The structured relation-

ship between the RPs and productivity

parameters, described in Section (3.2.2),

allows an approximate LHD to be ob-

tained by a careful navigation of the sys-

tem of equations seen in Eq. (3.10).

Under the Schnute model, let F

and B represent regular grids on F∗

M ∈ (0.25,4) and B∗

B0
∈ (0.15,0.7) respectively.

Marginally this corresponds to α

M ∈ (2,50) with the most typical values lying be-

low 17. The grids F and B serve as the scaffolding for computing an approxi-

mate LHD. Furthermore, let the full design space be defined on the rectangle R f ull =

(0.25,4)× (0.15,0.7).

Since it is not practical to invert ζ(γ), a uniform sample in B∗

B0
can be obtained

by modeling γ as a random variable, with realization γ′, and thinking of ζ(γ) as its

cumulative distribution function (CDF). The aim is to model γ as an easily sampled
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random variable with a CDF that closely approximates ζ, so that ζ(γ′)∼̇U(ζmin,1) as

closely as possible. The point (γmin,ζmin) are the lowest theoretical values of γ and B∗

B0

respectively (for a given F∗

M ) before surplus production becomes negative[52, 61]. There

may be many good models for the distribution of γ, but in this setting the following

distribution is very effective,

γ
′ ∼ ζminδ(γmin)+(1−ζmin)t(µ,σ,ν)1γ>γmin. (3.11)

Above, t(µ,σ,ν)1γ>γmin is the density of the truncated location-scale family Stu-

dent’s t distribution with location µ, scale σ, and degrees of freedom ν. 1γ>γmin is an

indicator function truncating the Student’s t distribution at the lower bound γmin. δ(γmin)

is the Dirac delta function evaluated at γmin, which is scaled by the known value ζmin;

this places probability mass ζmin at the point γmin. Since sampling from a Student’s

t distribution is straightforward, sampling from a truncated Student’s t mixture only

requires slight modification.

Let T be the CDF of the modeled distribution of γ. Since the point (γmin,ζmin) is

known from the dynamics of the Schnute model at a given RP, full specification of

Eq. (3.11) only requires determining the values for µ, σ, and ν which make T best

approximate ζ(γ). Thus, the values of µ, σ, and ν are chosen by minimizing the L2

distance between T (γ) and ζ(γ).
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[µ̂, σ̂, ν̂] = argmin
[µ,σ,ν]

∫
Γ

(
T (γ;µ,σ,ν)−ζ(γ)

)2dγ (3.12)

Algorithm 1 LHS of size n on rectangle R.
1: procedure LHSn(R)

2: Define n-grids F ,B ∈ R

3: for each grid element i do
4: Draw F∗

M ∼Uni f (Fi)

5: Compute [µ̂, σ̂, ν̂] given F∗ & M

6: while B j not sampled do
7: Draw γ′ ∼ T (γ|µ̂, σ̂, ν̂)
8: Compute ζ′ = ζ(γ′)

9: Compute j such that ζ′ ∈B j

10: end while
11: Compute α′ = α(γ′,F∗,M)

12: Compute β′ = β(α′,γ′,M,B0)

13: Save (F∗

M ,ζ′)⇔ (α′,β′,γ′) in Fi ×B j

14: end for
15: end procedure

The distribution T (γ|µ̂, σ̂, ν̂) is fit for

use in generating the random variates, γ′,

at specific values F∗ and M. This ap-

proximation releases the need to invert ζ

w.r.t. γ by using the γ′ samples to gen-

erate approximately uniform samples of

ζ(γ′). By sampling approximately uni-

form ζ(γ′) random variates in this way,

and making use of the structure in Eq.

(3.10), an approximate LHS can be col-

lected via Algorithm (1).

For a given i, F∗

M is drawn uniformly

from within Fi. Conditioning on the sample of F∗, and M, T (γ|µ̂, σ̂, ν̂) is fit and γ′ is

sampled. ζ′ is then computed and placed into the appropriate grid element B j. Given γ′,

the cascade α(γ′), and β(α(γ′),γ′), can be computed. The algorithm continues until all

of the design elements, (F∗

M ,ζ′)⇔ (α′,β′,γ′), have been computed for all i ∈ [1, ...,n].

In the simulations presented here an initial design of size n = 150 is always collected.
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3.2.3.1 Design Refinement

Since the behavior of RP inference, under misspecified models, will vary in yet-

unknown ways, the exact sampling design density may be hard to know a priori. Several

factors, including the particular level of observation uncertainty, high variance (i.e.

hard to resolve) features of the response surface, or simply "gappy" instantiations of

the initial LHD may necessitate adaptive design refinement, to accurately describe RP

biases. Given the temperamental relationship between RPs and productivity parameters

in the Schnute model, a recursive refinement algorithm that makes use of the previously

described LHS routine, is developed.

While LHS ensures uniformity in the design margins, and a certain degree of spread,

it is widely recognized that particular LHD instantiations may leave substantive gaps

in the simulation design. To correct this, LHD are often paired with design elements of

maximin design [50, 18]. Maximin designs sample the design space by maximizing the

minimum distance between sampled points. This has the advantage of definitionally

filling holes in the design, however because no points are ever drawn outside of the

design domain, samples tend to clump around edges (particularly corners) of the design

domain. Since LHS ensures uniformity in the margins and maximin designs enjoys a

certain sense of optimality in how they define and fill gaps [36], the methods are quite

complimentary when combined.

Making use of this complimentary relationship, holes in the existing RP LHD are
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identified based on maximin design principles. New design points are collected based

on areas of the RP design space which optimize the maximin distance between all pairs

of points in the current design, based on the following distance function

d(x,x′) =
√

(x−x′)TD−1(x−x′) (3.13)

D = diag
[(

max(F )−min(F )
)2
,
(
max(B)−min(B)

)2
]
.

Above, d is a scaled distance function that defines the distance between points in

the differing scales of B∗

B0
and F∗

M . D is a diagonal matrix that measures the squared size

of the domain in each axis of so as to normalize distances to a common scale.

If Xn is the initial design, computed on R f ull , let xa be the augmenting point which

maximizes the minimum distance between all of the existing design points,

xa = argmax
x′

min{d(xi,x
′) : i = 1, ...,n}. (3.14)

The point xa is used as an anchor for augmenting Xn. An additional LHSn′ (via

Algorithm (1)) is collected, adding n′ design points, centered around xa, to the overall

design. The augmenting region , R(xa,da), is defined based on the square centered at xa

with side length 2da, where da = min{d(xi,xa) : i = 1, ...,n}, in the space defined by

the metric d.
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Due to the tendency of maximin sampling to cluster augmenting points on the edges

of the design space, R(xa,da) is truncated by the outer most limits of R f ull so as to focus

design augmentation within the specified domain of the simulation. Furthermore, since

the design space has a nonlinear constraint at low values of B∗

B0
, the calculation of xa is

further truncated based on a convex hull defined by the existing samples in the overall

design.

Design refinement then proceeds as follows. An initial design is computed on the

full RP design space, Xn = LHSn(R f ull). The maximin augmenting point, xa, is com-

puted at a maximin distance of da from the existing samples. An augmenting design

Xn′ = LHSn′(R(xa,da)) is collected and added to Xn. Design refinement carries on re-

cursively collecting augmenting designs in this way until stability of the metamodel.

Typically design refinement in Chapters (3) and (4) converged after the addition of

about 60 augmenting designs of size n′ = 5.

3.2.3.2 Metamodel Convergence

To demonstrate how convergence of the metamodel is identified Figure (3.4) shows

the convergence process using the results from Section (2.3.2) as an example. The

metamodel trends shown in the first column are made with an intentionally sparse initial

design (50 samples) to exemplify an unconverged metamodel. As more samples are

added to the initial sparse design, the pattern originally shown in Figure (2.6) emerges.
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As more samples are added beyond this point the metamodel trends are stable and do

not change with additional densification of the underlying design. A nearest neighbor

interpolation of the raw data from the densest design is shown to demonstrate that the

converged metamodel follows the same basic mappings described by the simulated

models.

3.2.4 Metamodeling

The GP metamodeling method previously developed in Section (2.2.5) is also ap-

plied in Chapters (3) and (4) for the analysis of BH RP inference with the following

modifications.

Recall that each design location of the simulation uniquely represents a three-

parameter Schnute model. Index of abundance data are generated from the Schnute

model at each design location to be fit with a two-parameter BH model. For the specifi-

cation of the metamodel in this case, let y be a vector collecting the fitted BH MLEs for

log(F∗), and let ω be a vector of estimates of the estimator variances (via the inverted

Fisher information) at each y. These quantities are then modeled by the GP metamodel

described in Section (2.2.5) with all other details remaining the same.

Under the BH model B∗

B̄(0) =
1

F∗
M +2

; by transforming metamodel predictions of log(F∗)

to F∗

M and B∗

B̄(0) , via this relationship, metamodeled predictions of BH RPs are obtained.

The deterministic restriction that the BH model places on RPs allows a GP with a one
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dimensional response to model both BH RPs simultaneously through the B∗

B̄(0) =
1

F∗
M +2

RP relationship. By further subtracting the Schnute RPs from these predicted BH RPs

at each point in RP space a pattern of RP estimation biases, induced by model misspec-

ification of the BH model, can be visualized.

3.3 Results

3.3.1 Design

Figure 3.5: Uniform Q-Q plot for ζ

plotted for F∗ = 0.1 and M = 0.2.

Algorithm (1) enforces uniform marginals

in F∗

M directly, as well as the adherence of the

overall design to Latin squares. Figure (3.5)

shows a uniform Q-Q plot for sampled ζ, us-

ing Algorithm (1), against theoretical uniform

quantiles. As evidence by the excellent coher-

ence to the theoretical uniform quantiles, the

approximation in Section (3.2.3) for sampling

γ (and therefore ζ(γ)), is very effective. Furthermore since numerical inversion of ζ(γ)

is costly and unreliable, the relative speed and accuracy that this approximate LHS

sampling method provides is pivotal for the rest of the work presented here.

Figure (3.6) shows how Schnute production has different behaviors in regimes of
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RPs space that are entirely defined by the value of γ. When γ ≥ 1 the Schnute model

produces a family of Logistic-like curves that are increasingly right leaning as γ in-

creases. For 0 < γ < 1, Schnute production takes a family of left leaning Ricker-like

curves that all approach the x-axis. For −1 < γ < 0 there are a family of BH-like curves

that do not approach the x-axis but still have decreasing productivity for large biomass

stocks. When γ is exactly −1 Schnute reduces to BH production which has asymptot-

ing production for large biomass. Finally when γ < −1 Schnute produces a family of

increasing Cushing-like curves that do not asymptote, and produces linear production

as γ →−∞.

Figure 3.6: A Schnute RP design. Colors
indicate different regimes of Schnute pro-
duction. The black curve shows the BH set.

Modeling index data that are simu-

lated broadly over the theoretical space

of RPs with misspecified BH produc-

tion greatly limits the range of pos-

sible RPs that can be inferred. Un-

der BH production the full theoretical

space of RPs are limited to the curve

B∗

B0
= 1

F∗/M+2 . Going forward I refer to

this curve as the “BH set”. That is to say,

the BH set is the set of RPs defined by{(
F∗

M , B∗

B0

) ∣∣∣ B∗

B0
= 1

F∗/M+2

}
. The BH set is visualized by the green curve in Figure
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(3.6). The farther away from this set that Schnute data are simulated, the more the BH

model is misspecified for those data.

3.3.2 Metamodeled Trends

Unlike the Schaefer model, the BH set is not a constant in B∗

B0
. Under the BH model,

bias in B∗

B0
is no longer entirely defined by the degree of model misspecification, but

rather the structure of BH RPs allows bias in both B∗

B0
and F∗

M to interact as a function of

contrast in the data.

3.3.2.1 High Contrast

Figure (3.7) shows metamodeled RP bias surfaces for inference under the BH model

in the high contrast setting (i.e. χ = 1 as defined in Section (2.2.6)). The (left) and

(bottom) panels focus only on the B∗

B̄(0) and F∗

M components of bias respectively. In

these panels bias is shown as relative bias, R̂P−RP
RP , similar to a percent error calculation.

Where RP represents the true value of the three-parameter RP, and R̂P refers to the

metamodel estimate.

Figure (3.7, top-right) combines the components of bias to show the overall map-

ping of RPs under BH inference in the high contrast simulation setting. Unlike high

contrast RP inference under the Schaefer model, where mainly bias in B∗

B̄(0) occurred,

the BH model shows bias in both RPs here. Despite the bias in B∗

B̄(0) and F∗

M these re-
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Figure 3.7: Heatplots showing the bias
in RP estimation induced by model mis-
specification of the BH model in the
high contrast simulation setting. In all
cases the restricted RP-space of the BH
set is shown as the black curve. (left)
Relative bias in B∗

B̄(0) . (top-right) Bias in
RP-space shown directionally. Arrows
point from the location where data is
generated, toward the location in the BH
set where MLE projects estimated RPs.
The intensity of color represents the ex-
cess bias relative to the shortest possible
mapping. (bottom) Relative bias in F∗

M .

sults are similar to that of the Schaefer model in that the overall mapping of RPs is

similar to a minimal distance mapping onto the constrained set of RPs. The primary

difference between Schaefer model and BH RP inference is the geometry of their lim-
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ited RP spaces. Unlike the Schaefer model the BH set encourages bias in both RPs for

misspecified models even in very well informed setting.

The speckled region in the bottom left corner of each panel of Figure (3.7) repre-

sents RP combinations with negative surplus production [52, 61]. A theoretical stock

governed by Schnute RPs in this region would have a vanishing small possibility of per-

sisting to the point of being assessed. Thus these theoretical stocks are irrelevant to the

study of RP bias beyond the recognition that the Schnute model includes the theoretical

existence of such a stock.

3.3.2.2 Low Contrast

Figure 3.8: Joint bias direction of RP in-
ference in the low contrast simulation set-
ting. The intensity of color represents the
excess bias relative to the shortest possible
mapping.

Figure (3.8) shows the mapping of

RPs in the low contrast (i.e. χ = 0 as

defined in Section (2.2.6)) simulation set-

ting. Figures (3.8) and (3.7, top-right)

share a common scale for the intensity of

color to facilitate comparison. In Figure

(3.8) notice that the mildly misspecified

area around the BH set produces map-

pings onto the BH set which resemble

the minimal distance mapping seen in the
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high contrast setting. The primary difference in this low contrast setting, is the break

point around B∗

B̄(0) = 0.4 above which F∗

M is sharply underestimated.

Figure 3.9: Yield curves for data generated
with F∗

M = 1.97 and B∗

B̄(0) = 0.46.

The region of RPs where the BH

model manages to recover the minimal

distance mapping is a regime of dynamics

where RP inference of remains “intact”

for both RPs. That is to say both RPs are

well enough modeled by a BH model in

this intact region to recover the minimal

distance mapping. Figure (3.9) demon-

strates example yield curves of the in-

tact minimal distance mapping in the high

contrast simulation as compared with the

catastrophic underestimation of F∗

M in the low contrast simulation. By comparison of

Figure (3.8), with Figure (3.6), the intact regime of the BH RP inference occurs for data

simulated with Cushing-like or BH-like production. While bias of RPs estimation in

this region can still become concerningly large, this region still produced RPs estimates

where the data informs both RPs.

Outside of this region of intact RP inference, RP estimation breaks from the minimal

distance mapping around the interface between BH-Like and Ricker-Like regimes of
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the Schnute model (see Figure (3.6)). The Ricker model lies along this regime interface,

and represents the first model to approach the x-axis for large biomasses as γ increases.

This markedly unBH-like productivity in the low information simulation setting breaks

MLE inference from the minimal distance mapping and instead maps RPs to extremely

low values of F∗

M ; consequently B∗

B̄(0) is estimated near the limiting value under the BH

(i.e. limF∗→0
1

F∗/M+2 = 0.5). Similarly the set of Ricker RPs (as well as the Schaefer

set) include this trivial limiting point in common (F∗

M = 0, B∗

B̄(0) = 0.5).

Interestingly, in the high contrast setting this trivial mapping for highly misspecified

BH models is not present. The fact that removing contrast produces larger biases in F∗

M

for the sake of preserving B∗

B̄(0) (as best as possible within the BH set) suggests that

contrast is fundamental to informing F∗

M under the BH model. A similar observation

was made under the Schaefer model and the mechanism driving this phenomenon is

established in Section (2.3.1). Due to the lack of symmetry of the BH yield curve such

explicit mechanisms are more difficult to access in the BH setting, however extending

this notion under the BH model is consistent with existing analyses under BH ASMs

[11, 39]. Thus when contrast is present, improved estimates of F∗

M drive compromised

estimates of B∗

B̄(0) in accordance with B∗

B̄(0) =
1

F∗/M+2 . This phenomenon balances RP

estimation within the constrained BH set as mediated by the information content of the

data and the degree of model misspecification. When not enough contrast is present in

the data to drive a compromised RP estimate, inference completely disregards accurate
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estimation of F∗ in order to better estimate B∗

B̄(0) by exploiting the common limiting

behavior of the BH set and that of Ricker/Logistic-like models.

3.4 Discussion

This chapter reinforces and expands the understanding of how RPs are estimated

and demonstrates a vexing risk profile to BH RP inference. Similar to the Schaefer

model, contrast clearly plays an important role in estimating RPs, but under the BH

model the geometry of the RP set complicates the role of model misspecification in

biasing RP estimates. The approximate LHD methods presented in this chapter extend

the scope of the simulation methodology to handle the analysis of models where fully

analytical designs are not possible, and the design refinement methods further allow the

GP to resolve more complicated response surfaces. The GP metamodeling approach

when applied in this setting generalizes the RP bias pattern previously observed under

the Schaefer model to demonstrate how RP inference is oriented to the geometry of the

two-parameter BH model.

As seen in all of the metamodeled trend figures (3.7 and 3.8), even with weakly

informative data, when data are generated from RPs immediately around the BH set RP

estimates are unbiased and well estimated. Thus contrast alone is not the only factor

leading to inferential failure. The particular RP bias depends on the RP geometry of the
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fitted model relative to the data, and the degree of contrast present in the data directs

the mapping. The available information in the data produces a region of intact RP

estimation for misspecified models with an approximately shortest distance map on to

the BH set. Outside of this intact region the observed contrast cannot overcome the

degree of model misspecification resulting in catastrophic failure of RP estimation as

observed in the low contrast simulation setting. This catastrophic failure mode is akin

to self regulation of RPs where F∗

M is almost completely ignored for the purposes of

preserving B∗

B̄(0) estimates as best as possible within the BH set. This failure mode

produces models that attempt to only focus on high-level biomass tends in the data.

Within the intact region the geometry of the BH set and the nearly shortest distance

map onto the BH set correlates F∗

M and B∗

B̄(0) inference in a way that is not observed for

the Schaefer model. Under the BH model this not only makes contrast important for

the estimate of F∗

M , but also means that the observed contrast will influence the estimate

of B∗

B̄(0) (as opposed to the Schaefer model where B∗

B̄(0) =
1
2 for all F∗

M .

If the utility of RP estimation is measured in terms of minimizing the total joint RP

bias, the observed approximately minimal distance RP mapping might be considered a

nearly best-case scenario. However when combined with the geometry of the BH RP

set this behavior may lead to unintuitive implications in RP estimation. For example,

due to the shape of the BH RP set a minimal distance mapping ensures that if there is

bias in one of B∗

B0
or F∗

M , there will necessarily be bias in the other RP. This is an issue
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that the Schaefer model2 does not encounter.

When one considers the implications of RP bias, overestimation of F∗

M carries the

severe implication of management recommendations potentially leading to overfishing,

while underestimation leads to overly cautious management. In this sense, when the

true model is not known the geometry of the BH set together with the metamodeled bias

trends makes the BH model a naturally cautious model for most of the stocks modeled

here. The one notable exception to this tend stands for data generated in the Cushing-

like regime of Schnute RPs. In this regime the BH model tends to be fairly unbiased

overall, however the bias that is present for these populations tends to overestimate

F∗

M . These stocks have relatively small surplus production compared with most stocks

outside of this regime. This leads to the regrettable situation where some of the more

vulnerable stocks simulated here are subject to subtle but systematic overestimation of

F∗

M , while more productive stocks are managed in an overly cautious way.

It is important to fully recognize the limitations that the BH model of productivity

poses structurally, but also how statistical inference interfaces with those structural lim-

itations. We should not merely accept the potentially cautious RP estimation regimes

as a rational of accepting the pervasive use of the BH model in American fisheries. By

moving toward three-parameter models we can release these underlying structural lim-

itations [44]. While three-parameter production functions have their own complicating

factors [61], the flexibility that three-parameter production functions offer may be used

2Or any PT model with a fixed value of γ.
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in a number of ways outside of direct parameter estimation. For example, Appendix

(C) describes a method of using the Schnute model to solve a structural inconsistency

presented by RP proxies. Furthermore, the Schnute model analyzed here makes an

intuitive bridge model for developing the use of three-parameter models going forward.
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Chapter 4

A Delay Differential Model
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4.1 Introduction

The simplified dynamics of SPMs capture a broad range of RP variation, how-

ever RP behavior can be complicated by the inclusion of individual growth. The SPM

captures the net effect of biomass production by assuming all aspects of biomass pro-

duction (i.e. maturity, recruitment, growth, etc.) are modeled by the the production

function. There are a number of approaches to model these dynamics to explicitly tease

out these processes [62, 32], but for the purpose of stock assessment, when data limi-

tations are not too severe, age structured models, ASM, [49] are often considered best

practice.

ASMs separate the dynamics of the population into cohorts moving between age

classes through time. Cohorts are governed by a system of equations such that each co-

hort is modeled in a way that resembles the SPM in time. By tracking the average size,

and relative contribution to production, of individuals in the population as they age,

ASMs inform models of individual growth. ASMs require the specification of many

parametric forms for describing the recruitment, growth, maturity, selectivity, etc. that

enmesh the system of equations at their core. These complex structures allow ASMs

to capture a wide range of dynamics, however the simultaneous accurate specification,

implementation, and estimation of all of these forms, and the parameters they imply,

requires a lot of expensive data of many different types to fit.

Delay differential models, DDMs (or delay difference models in discrete time)
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are an intermediate approach between SPMs and ASMs. At their simplest, DDMs

do not necessarily model individual growth [19, 1], but still these models are benefi-

cial in modeling the lag between egg production and recruitment into the reproducing

population. By linking selectivity and maturity together with a simplified knife-edge

lagged model, more complex DDMs are capable of exactly representing simple ASMs

[17, 22, 69, 70]. When information about individual growth is available these DDMs

have enough growth, lagged maturity, and lagged selectivity modeling infrastructure to

make use of the information without requiring the use of heavily parameterized ASMs.

The relatively smaller size, and yet flexible dynamics, of DDMs makes them ideal for

modeling “data-limited” stocks, while still entertaining varied hypotheses that relate

growth and maturity.

DDMs are effective and flexible data-limited models, however there use in stock

assessments have been limited by the accessibility of RP calculations [51]. This chap-

ter expands the previous chapters’ analyses of RP biases under the two-parameter BH

model using the DDM outlined by Walters [82] to account for RP bias as individual

growth and maturity dynamics vary. The simulation design using this DDM requires

a derivation of analytical RPs that account for individual growth and maturity dynam-

ics under a Schnute model of recruitment. Munyandorero [51] gives RP expressions

using this same DDM under BH, Ricker, and Shepard recruitment. My work in this

chapter adds to that work by deriving RP calculations under the Schnute model. The
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Munyandorero results are reiterated by the BH and Ricker model special cases of the

Schnute DDM. The Schnute model further unifies these results with a single analytical

form that also extends RP results to include Schaefer and Cushing-like models. These

analytical expressions form the basis of the simulation-based inquiry of RP biases as

they are influenced by individual growth and maturity dynamics.

These analytical expressions form the basis of the simulation-based inquiry of RP

biases under BH recruitment, when the data are generated broadly under the Schnute

model. Additionally, the DDM setting allows for a probe into how recruitment and

growth interact to effect RP estimation. This work begins with a derivation of RPs under

the three-parameter Schnute DDM. Analytical RP calculations are then structured so as

to fit into the simulation design methods presented in Section (3.2.3), and RP biases are

then analyzed via the GP metamodel developed in Sections (2.2.5) and (3.3.2).
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4.2 Methods

4.2.1 Delay Differential Model

Figure 4.1: The typical composition
of allometric weight (b = 3) with VB
growth in length, as approximated by
VB growth in weight directly.

ASMs typically assume von Bertalanffy

[81, VB] growth in length with age. To

model weight the assumption of VB growth in

length, l(a) = l∞(1− e−κ(a−a0)), is composed

with a power law relating length to weight,

w = alb. Since weight is typically propor-

tional to volume, b is usually ∼ 3. When b

takes a value around 3 this composition of as-

sumed functional forms results in a monoton-

ically increasing sigmoidal curve of weight

with age. When b ≤ 1 weight at age takes a VB-like form with b = 1 resulting in

an exact correspondence of simultaneous VB-growth in length and weight.

The DDM slightly abridges these relationships by directly assuming VB growth in

weight as follows,

w(a) = w∞(1− e−κ(a−a0)). (4.1)
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Here κ is a parameter that controls the instantaneous rate of individual growth (in

weight) with age. w∞ is the maximum weight of individuals in the population, and

w(a) is the average weight of an individual at age a. The parameter a0 controls the

age at which individuals are assumed to have zero weight; by letting a0 < 0 this allows

fish of age zero to have positive weight. Rather than taking a sigmoidally increasing

function, VB growth directly in weight results in a monotonically increasing curve that

asymptotes with a strictly decreasing growth rate with age. This results in a curve that

can approximate the composite VB-allometric growth assumption very well except at

very young ages, see Figure (4.1).

Together with VB growth, the DDM is derived from the assumption that both natu-

ral mortality and fishing selectivity are both proportional to a common Heaviside step

function with age. That is to say, before a threshold age of selectivity, as, no explicit

mortality is modeled outside of what is implied by the stock-recruitment relationship,

but all fish older then as experience the same rate of natural mortality. Simultaneously

all fish older than as are equally vulnerable to fishing (i.e. knife edge selectivity at age

as), although fishing effort may vary through time. Maturity is also assumed to be knife

edge at age as, with only mature fish recruiting into the population.

Together the parameters κ and as control individual growth and maturity of the

stock. Larger values of κ represent faster growing individuals; in the limiting case

where κ → ∞ individuals recruit at w∞. Since this DDM ties maturity and selectivity
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together, as can also be thought of as controlling the average age of maturity into the

reproducing stock. Since faster growing stocks tend to mature at younger ages, κ and as

tend to be negatively correlated. Furthermore when κ → ∞ simultaneously with as → 0,

as consistent with the negative correlation between the parameters, the DDM converges

to the previously studied SPM.

Walters [82] (preceded with similar discrete time models by Deriso [17] and Schnute

[69]) shows that within the above assumptions, the following delay-differential system

of equations describes the population dynamics of the total mature, exploitable biomass

B(t) and number of individuals N(t) through time.

dB
dt

= w(as)R(B;θ)+κ [w∞N −B]− (M+F)B (4.2)

dN
dt

= R(B;θ)− (M+F)N (4.3)

This formulation separates the number of individuals in the population from the

biomass of the population. The dynamics of N, as seen in Eq (4.3), are very similar

to that of the production model in Section (3.2.1), however the role of the production

function is now filled by a “recruitment” function, R(B), which describes the number of

new individuals recruiting into the exploitable population as a function of exploitable

biomass. In turn, the biomass dynamics are coupled to the numbers dynamics by the

assumption of VB growth with growth parameters appearing in Eq (4.2), converting
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population numbers into biomass and accounting for the growth of biomass with age.

Eq (4.2) of the above model expands the notion of biomass production into the

processes of recruitment, individual growth, and maturity. The term w(as)R(B;θ) rep-

resents the biomass of new recruits; with w(as) representing the weight of individuals at

the age of maturity/selectivity, as, and R(B;θ) representing the number of new recruits

entering the exploitable population at time t. The negative term, (M+F)B, represents

all causes of mortality as it is applied to biomass. Finally, the term κ [w∞N −B] ac-

counts for the net growth of the existing biomass by discounting the limiting maximal

individual growth rate by metabolic weight loss proportional to B(t). This structure, as

derived from the assumption of simultaneous knife-edge maturity and selectivity, and

the delay structure in R, provides the major computational savings of the delay dif-

ferential setting, as compared with full ASMs. The mean size and growth associated

with changes in recruitment as cohorts mature into the population are automatically

described by the DDM equations rather than the numerous numerical arrays used by

ASMs to track quantities across all age classes in time.

Often a BH functional form is assumed for the stock recruitment relationship, but

many families of functions may model this relationship. For the sake of evaluating

the adequacy of assumed BH recruitment, the simulation described in the following

sections is derived for the DDM under the assumption of generalized three-parameter
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Schnute recruitment,

R(B; [α,β,γ]′) = αB(t −as)(1−βγB(t −as))
1
γ . (4.4)

The parameters θ′ = [α,β,γ] function similarly in this setting as previously described in

Section (3.2.1). That said, since the DDM explicitly parses out growth in its dynamics,

these parameters only describe the net processes of reproduction where as the produc-

tion model uses these parameters to also model the net effects of growth on biomass

production. The γ parameter generalizes the family to model varying degrees of de-

creasing recruitment for large biomasses as γ increases. The Schnute function is again

exactly equivalent to BH recruitment at the special case when γ =−1, it passes through

the Ricker model as γ → 0, and Logistic recruitment occurs when γ = 1.

Since the DDM assumes knife edge selectivity, at age as, the term B(t−as) appears

in R. That is to say, fish recruiting into the exploitable population are the result of larval

production of biomass as time units in the past. This is because fishing selectivity is

only assumed to occur for fish that are at least as time units old and thus fish younger

than as are not exploitable. This waiting period requires that new recruits be the result

of spawning biomass as time units in the past. Modeling maturity and selectivity in this

way results in dynamics equations which are a system of delay differential equations as

opposed to the simple ODEs that arise in the production model setting.
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4.2.2 Reference Points

Deriving reference points for the DDM under Schnute recruitment is conceptually

similar to the SPM setting. The additional nonlinear VB growth assumption, along-

side Schnute recruitment, quickly makes the expressions look somewhat unwieldy. Al-

though complicated by growth parameters, analytical solutions can still be derived for

most of the same quantities as was done in Chapter (3).

Starting from Eqs. (4.2) and (4.3), setting both dB
dt and dN

dt simultaneously equal to

zero, and solving for B and N as a function of fishing, gives the equilibrium biomass

and numbers equations.

B̄(F) =
1
βγ

(
1−
( (F +M)(F +M+κ)

αw(as)(F +M+ κw∞

w(as)
)

)γ

)
(4.5)

N̄(F) =
αB̄(F)(1−βγB̄(F))1/γ

F +M
(4.6)

Eq. (4.6) is just R(B̄)
F+M , and is coupled to B̄(F) where most of the dynamics appear. Eq.

(4.5) resembles Eq (3.4) from the simple production model setting although the growth

parameters κ, w∞ and w(as), make slight adjustments to the balance of the maximum

rate of recruitment and mortality rate to give an expression for equilibrium biomass that

accounts for the factors of individual growth.

Expressions for B0 and B∗ are attained by evaluating B̄(F) at F = 0 and F = F∗

respectively. The calculation of F∗ typically involves maximization of equilibrium
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yield, Ȳ = FB̄(F). Just as was the case under the Schnute SPM in Chapter (3), it is again

not possible to analytically maximize Ȳ under the Schnute model in the DDM setting.

However stable numerical solutions for calculating F∗ were obtained by numerically

solving for the roots of the analytical derivative of equilibrium yield with respect to

F . Below a greatly simplified expression for dȲ
dF is shown; the substitution Z = F +M

(total mortality rate) has been made to produce a more compact expression.

dȲ
dF

=
1
βγ

1−

(
Z(Z +κ)

αw(as)(Z + κw∞

w(as)
)

)γ

−
(

γF
αw(as)

)(
Z(Z +κ)

αw(as)(Z + κw∞

w(as)
)

)γ−1
1+

(
κw∞

w(as)

)(
κ− κw∞

w(as)

)
(Z + κw∞

w(as)
)2

 (4.7)

F∗ is calculated as the numerical root, w.r.t. F , of the above expression. The numerical

root is calculated using the base R uniroot function which employs a derivative free

search given by [7].

4.2.2.1 BH Constraint

In the SPM the BH constrained RPs are fixed to 1
x+2 , where x = F∗

M . In the DDM

the constrained BH RP set is complicated by the growth parameters as and κ. Un-

der BH recruitment these parameters slightly influence this relationship as seen in

Figure (4.2). That said, the influence of as and κ on RPs is still largely limited to

a confined region of reference point space which resembles the 1
x+2 form. In fact

the confined region of RPs is bounded above by 1
x+2 . In Figure (4.2) notice that for

values of as and κ that result in high w(as) (high values of κ and small values of as
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Figure 4.2: The space of BH RPs for the
delay model as a function of κ and as. The
RP space is plotted for 80 × 80 combina-
tions of κ ∈ [0.1,2] and as ∈ [0.1,10]. The
color drawn is the resulting value of w(as)
mapped between blue and red. 1

x+2 is plot-
ted in black for reference.

seen in red) the BH RP space converges

to 1
x+2 as derived in the simple produc-

tion model setting. Opposing the SPM

limit, when w(as) is low (as seen in the

more blue region of Figure(4.2)), RPs de-

crease as the influence of growth in the

dynamics increases (i.e. slower individ-

ual growth). This is another way (this

time in RP space) of noticing that the

DDM converges to the previously stud-

ied SPM as κ → ∞ and as → 0 simultane-

ously.

4.2.3 Simulation Design

Similarly as previously described in Section (3.2.2) the relationship between RPs 7→ θ

cannot be fully expressed analytically for the Schnute DDM. However, just as in the

SPM setting, simulation only requires enough knowledge of these mappings to gather

a list of (α,β,γ) tuples and the corresponding RPs in some reasonable space-filling

design over RP space.

In the DDM a partial mapping for
(
F∗,B0

)
7→
(
α(·,γ), β(·, ·,γ)

)
can be derived
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analytically in terms of RPs and γ. The substitution Z∗ = F∗+M is made where F∗ and

M appear together to produce a more compact expression.

α =

( Z∗(Z∗+κ)

w(as)(Z∗+ κw∞

w(as)
)

)γ

+

(
γF∗

w(as)

)(
Z∗(Z∗+κ)

w(as)(Z∗+ κw∞

w(as)
)

)γ−1
1+

(
κw∞

w(as)

)(
κ− κw∞

w(as)

)
(Z∗+ κw∞

w(as)
)2


1
γ

(4.8)

β =
1

γB0

(
1−
( M(M+κ)

αw(as)(M+ κw∞

w(as)
)

)γ

)
(4.9)

Above Eq. (4.8) results from setting Eq. (4.7) equal to zero and solving for α, and

Eq. (4.9) results from solving the B̄(0) expression, as derived from Eq. (4.5), for β.

The system is completed by further working with the B̄(F∗)
B̄(0) expression, as seen below,

to identify γ.

B∗

B0
=

1−
(

(F∗+M)(F∗+M+κ)
αw(as)(F∗+M+ κw∞

w(as)
)

)γ

1−
(

M(M+κ)
αw(as)(M+ κw∞

w(as)
)

)γ (4.10)

The system formed by collecting Eqs. (4.8), (4.9), and (4.10) can be navigated simi-

larly to Eq. (3.10) in the Schnute production model setting. For a population experienc-

ing natural mortality M, VB growth with parameters κ and w∞, and age of selectivity

as the above system can fully specify α and β for a given γ, by fixing F∗, B0, and B∗

B0
.

For a given γ a cascade of closed form solutions for α and β can be obtained, just as in

Section (3.2.2). First α(γ) can be computed, and then β(α(γ),γ) can be computed. If

α(γ) is filled back into the expression for B∗

B0
, the system collapses into a single onerous

expression for B∗

B0
(α(γ),γ). For brevity, define the function ζ(γ) = B∗

B0

(
α(γ),γ,F∗,M

)
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based on Eq. (4.10).

Again rather than inverting ζ(γ) for γ, γ is the sampled so that the overall simulation

design is space filling as described in Section (3.2.3). Given the sampled γ, the cascade

of α(γ), and then β(α(γ),γ), can be computed, and the Schnute DDM is fully defined

by a given (F∗

M , B∗

B0
). While conceptually this framing is similar to the Schnute SPM, the

analytical expressions are more complex, and numerically treacherous, since growth

parameters appear explicitly here. Other ways of navigating the RPs 7→ θ system are

possible, but for the sake of numerical stability this strategy has proven the most reliably

accurate by limiting exposure to numerical error propagation which quickly becomes

significant using other schemes.

Each design location defines a complete Schnute DDM with the given RP values.

Just as in Chapter (3), B0 is fixed at 10000, q is fixed at 0.0005, and M is fixed at 0.2;

furthermore a0 and w∞ (of VB growth) were fixed to -1 and 1 respectively throughout.

The values of κ and as are varied roughly along the line w(as) = w∞ − as
3 so as to pro-

duces a negatively correlated relationship between κ and as representing fast (κ = 10,

as = 0.1), medium (κ = 0.5, as = 1) and slow (κ = 0.1, as = 2) individual growth sim-

ulation settings. Indices of abundance are simulated from the Schnute model at each

design location, a small amount of residual variation, σ = 0.01, is added to the simu-

lated index, and the data are then fit with a misspecified BH model. σ is later relaxed to

0.12 in Section (4.3.5). The design captures various degrees of model misspecification
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relative to the BH model, so as to observe the effect of recruitment misspecification

upon RP inference.

4.2.4 Metamodeling

The GP metamodeling method previously developed in Section (2.2.5), and later

adapted for analysis of the BH model in Chapter (3), is also used in the DDM setting here.

4.2.5 Delay Differential Integration

The delay model belongs to a class of differential equations known as delay differ-

ential equations (DDE). The delay arises from the B(t −as) terms found in the recruit-

ment function. Solving DDEs require special care which depends on the nature of the

time delay. The addition of time-varying delays, many different delays, or very small

delays (delays below the step size of the numerical integrator) results in some of the

more challenging settings for solving DDEs. However with a single stationary model

of the age of selectivity and maturity, the DDM used here represents one of the most

straightforward numerical DDE settings. The most numerically challenging case pre-

sented here arises in the case of the limiting SPM when as → 0 while κ → ∞. That said

the limiting SPM can be approximated for values of as ≈ 0.1, and it was straightforward

to ensure that the step size of the integrator remained reasonably below 0.1.

The DDE presented here is integrated with the initial values fixed at B0 and N0 as
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given by Eqs. (4.5) and (4.6) with F = 0 at any given configuration of θ and growth

parameters. The system given in Eqs. (4.2) and (4.3) are then solved numerically using

the implicit Livermore Solver (lsode) as implemented in the dede function of the R

package deSolve [76]. The dede solver provides many methods for integrating DDEs,

but lsode was chosen because it is an implicit method that runs relatively quickly with

a relatively smaller footprint in system memory as compared with other methods. The

radau method was also tried in more computationally challenging settings with good

results (albeit running more slowly that lsode). Ultimately the simulated parameter

space did not produce DDEs that require the more expensive radau integrator to solve

accurately.

4.2.6 Parameter Estimation

Let It , t ∈{1,2,3, ...,T}, be a series of indices of abundance, proportional to biomass,

as simulated from the Schnute DDM. These data are modeled with the following log-

normal observation model that has been intentionally constrained to BH recruitment,

It ∼ LN(qBt(θ,ϕ),σ
2). (4.11)

Bt(θ,ϕ) is the biomass solution of the BH constrained DDE system. The BH constraint

is implemented by fixing γ = −1 so that θ′ = [α,β,γ = −1]. ϕ is a vector of growth
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and maturity parameters, ϕ′ = [κ,w∞,a0,as]. The nuisance parameter q models the

proportionality constant of the index with process biomass, and σ2 models residual

variation of the index.

In this setting, ϕ is fixed to focus on the inferential effects of model misspecification

on recruitment parameters and RPs. Typically ϕ is not well informed by index data and

would be estimated externally to the DDM for data-limited stocks.

σ2 and θ are reparameterized to the log scale and fit via MLE. Transforming the

parameters to the log scale improves the reliability of optimization, in addition to fa-

cilitating the use of Hessian information for estimating MLE standard errors. Given

that the biological parameters enter the likelihood via a nonlinear differential equation,

and further the parameters themselves are related to each other nonlinearly, the like-

lihood function can often be difficult to optimize. A hybrid optimization scheme is

used to maximize the log likelihood to ensure that a global MLE solution is found.

The R package GA [72, 73] is used to run a genetic algorithm to explore parameter

space globally. Optimization periodically jumps into the L-BFGS-B local optimizer to

refine optima within a local mode. The scheme functions by searching globally, with

the genetic algorithm, across many initial values for starting the local gradient-based

optimizer. The genetic algorithm serves to iteratively improve hot starts for the local

gradient-based optimizer. Additionally, optimization is only considered to be converged

when the optimum results in an invertible Hessian at the found MLE.
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4.2.6.1 Numbers Indices

While not utilized here, ASMs may model indices as proportional to numbers rather

than (or simultaneously to) biomass. When solving the DDE, Eq. (4.3) points out that

the full DDE solution will expose a numbers solution simultaneously with a biomass

solution that may be used for these purposes. These solutions are often quite similar

since the main driver of process behavior comes from the form of R which is shared

among N and B. However, it is common on the west coast of the US that indices

derived from commercial fisheries are measured as weights while indices derived from

recreational fisheries are often measured as counts. If a numbers index, Jt , is observed

alongside the previously mentioned biomass index, the following likelihood component

can be added as a conditionally independent component of the likelihood,

Jt ∼ LN(pNt(θ,ϕ),τ
2). (4.12)

Nt(θ,ϕ) is the numbers solution of the DDE system. θ and ϕ are the productivity

and growth parameters shared in common with the biomass component. p and τ2 are

then the analogous proportionality constant and residual variation of the numbers index

respectively.
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There may be many other useful ways to build observation models from the num-

bers and biomass DDE solutions. For example, one may develop models around the

quantity B(t)
N(t) to model the average size of individuals in the population through time.

By including average size data, with stationary models of mortality, this model may

resolve uncertainty around latent recruitment in time. That said, for the purposes of the

simulations run here the observation model is expressed only in terms of biomass as

stated in Eq. (4.11) of the previous section.

4.3 Results

Figure 4.3: Three hypothetical individual-
growth curves, demonstrating fast (i.e.
SPM limit), medium and slow individual
growth in red, purple, and blue respectively.

Figure (4.3) shows the VB growth

curves in weight described at the end

of Section (4.2.3). The larger values of

w(as) correspond to larger recruits rela-

tive to maximum size; by comparing the

RPs of models with larger values of w(as)

in Figure (4.5) we can see that these mod-

els result in SPM-like RPs. When w(as)

is large, recruits are near maximum size

and thus there is little growth left to be
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evaluated by the biomass dynamics equations. In Figure (4.3) the red curve demon-

strates a stock with fast growing individuals that provides an example of the SPM

limit (as → 0 and κ → ∞). In this setting individuals recruit so near maximum

size that growth does not meaningfully effect the biomass dynamics in this setting

(i.e. w(as)≈ w(as +1)≈ w(as +2)...). The cases shown with smaller w(as) values (the

purple and blue curves) correspond to incrementally slower growth behaviors. The

slowest growth stock simulated is the blue curve, where as = 2 and κ = 0.1, emphasiz-

ing the effect of growth on the biomass dynamics.

Figure 4.4: Biomass dynamics of BH (le f t), Ricker (center), and Logistic (right)
DDMs in the low contrast simulation setting. In all cases α = 1.2 and β is chosen so
that each model shares the same B∗ within each given γ.

Figure (4.4) demonstrates a range of biomass dynamics that the Schnute DDM can

display under this spectrum of growth behaviors with fishing held consistent at F∗. The

three special cases of γ = −1 (BH), γ → 0 (Ricker), and γ = 1 (Logistic) recruitment

are shown in each of the above growth configurations.
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Figure 4.5: Restricted RP-space under
each recruitment models, with each growth
curve.

Figure (4.5) shows the range of

RPs that can be modeled with each of

the BH, Ricker, and Logistic recruit-

ments over the spectrum of individual-

growth/maturity models simulated here.

Notice for smaller values of w(as)
W∞

the

further the RP curve lies from the

SPM, and each recruitment model re-

acts slightly differently under each of the

given growth parameters. The Ricker and BH RP-spaces are qualitatively similar in

shape with smaller values of w(as) decreasing B∗

B0
relative to the SPM. The Logistic

model on the other hand increases B∗

B0
relative to the SPM as w(as) decreases. It is also

worth noting that the Ricker model’s RPs are much less influenced by growth parame-

ters as compared with that of the BH or Logistic model.

4.3.1 Fast Individual Growth (SPM Limit)

Under the delay differential’s limiting SPM (as = 0.1 and κ = 10), the expectation

is that RP inference should be identical to that of the model seen in Chapter (3). By way

of verifying this equivalence, Figure (4.6) demonstrates a virtually identical pattern of

RP biases as previously seen in Figures (3.7) and (3.8) (under both of the high and low
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contrast settings).

Figure 4.6: RP mapping of BH DDM fit to Schnute DDM data under the fast individ-
ual growth setting (SPM limit) (le f t) High contrast simulation. (right) Low contrast
simulation.

Indeed in the high contrast setting, Figure (4.6, le f t) shows how the BH model

induces the same pattern of bias as seen in Chapter (3). There is bias in both RPs (in

accordance with the B∗

B̄(0) =
1

F∗/M+2 RP-set) so as to produce a nearly minimal distance

mapping of RPs onto the constrained BH set of RPs. Similarly, in the low contrast

setting, Figure (4.6, right) again shows the same two regime pattern of RP inference.

Firstly, there is a region of relatively small model misspecification where a similar

nearly minimal distance mapping is preserved. Secondly, as model misspecification

becomes greater (around the Ricker set) F∗

M begins to be sharply underestimated. Above

this break point in RP estimation inference appears to be driven toward the trivial RP

F∗

M = 0, B∗

B̄(0) = 0.5) that is shared in common among all of the two-parameter models

described here.
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These results confirm that the expected theoretical limiting dynamics do indeed

behave nearly identical to RP inference patterns previously described. Given the im-

plementation differences between the DDM and the SPM this result also provides repli-

cability of the results in Chapter (3).

4.3.2 Moderate Individual Growth

Moving past the SPM, other values of as and κ provide a probe into the effects indi-

vidual growth dynamics may have on RP inference. Individual growth is a multifaceted

phenomena that is not easily reduced to a single number, but for the purposes here w(as)

serves as a decent proxy for the extent of the model dynamics that are due to individual

growth. This follows from the intuition that individuals maturing at a smaller fraction

of w∞ demonstrate the dynamics of growth during an observable (to the model) phase

rather than growth occurring prior to selection.

That said, w(as) is not a one-to-one map of κ and as. A level curve of w(as;κ) = c is

attained by increasing the value of as and decreasing κ correspondingly, or vice versa.

The case where as = 1 and κ= 0.5 (resulting in w(as)≈ 0.6) represents a reasonable ex-

ample of moderate individual growth. Similar examples of the w(as) = 0.6 level curve

result in much larger lags (discussed in Section (4.3.5)) or larger κ’s which quickly tend

toward behaviors previously described in the SPM setting.

The RP mappings seen in Figure (4.7) show very similar RP mappings to that of

96



Figure 4.7: RP mapping of BH DDM fit to Schnute DDM data under moderate growth
(as = 1 and κ = 0.5). (le f t) High contrast simulation. (right) Low contrast simulation.

the SPM, with the biggest differences occurring around the location of the break point

where the low contrast model begins to dramatically underestimate F∗

M . In the high

contrast simulation setting Figure (4.7; le f t) shows the RP mappings again demonstrate

a similar nearly minimal distance mapping of RPs onto the constrained BH RP set. In

the low contrast setting Figure (4.7; right) shows a very similar two regime pattern

of RP inference is observed, however the location of the break between these regimes

appears at lower values of B∗

B̄(0) . In this moderate growth setting the break point occurs

around values of B∗

B̄(0) just below 0.4 as opposed to the SPM where the break point

occurs at values of B∗

B̄(0) just above 0.4.
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4.3.3 Slow Individual Growth Dynamics

The slow individual growth setting simulated here fixes as = 2 and κ = 0.1, to

simulate a species that grows quite slowly and matures into the reproducing stock rel-

atively later than the previously describe simulations. This combination has the effect

of exaggerating the components of the model dynamics which are related to individual

growth since individuals recruit at a smaller size and slowly grow over the extent of the

modeled period.

The slow growth of these dynamics oppose the simple production model setting in

the sense that they move the constrained RP set a large distance (largest among the

spectrum of decreasing w(as) populations simulated here) away from the 1
x+2 limiting

case.

Despite the heavily growth influenced biomass dynamics in this setting, the RP

mappings seen in Figure (4.8) obviously bear a huge resemblance to the previously

seen RP mappings. Again the biggest differences in the RP mappings occur around the

location of the break point where the low contrast model begins to dramatically under-

estimate F∗

M . In this low contrast setting the break point in RP estimation occurs around

values of B∗

B̄(0) well below 0.4 with the behavior extending as far down as B∗

B̄(0) = 0.3.

This regime shift occurs well below that of the Ricker set, as initially observed in the

production model setting. This reduced range of acceptable RP inference indicates

that for slow growing stocks misspecified BH models becomes increasingly brittle with
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Figure 4.8: RP mapping of BH DDM fit to Schnute DDM data under dramatic growth
(as = 2 and κ = 0.1). (le f t) High contrast simulation. (right) Low contrast simulation.

respect to RPs.

Interestingly this pattern only follows for the low contrast setting. In the high con-

trast setting inference returns to a pattern resembling the minimal distance mapping

onto BH RP set, further pointing to the importance of contrast for informing these

models.

4.3.4 Clustering Catastrophic Model Failure

Considering the behavior observed in Sections (4.3.1-4.3.3), where F∗

M is dramati-

cally underestimated, it is natural to ask where specifically in RP space we might expect

to see this catastrophic failure of the BH model as growth assumptions change. Below a

hypothesis testing inspired classifier is derived in terms of the GP predictive structures

for identifying where BH inference fails in this way.
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Recall that the metamodel models MLEs of log(F∗) under the misspecified BH

model. Thus, for a given predictive set of RPs, x⋆, the BH metamodeled quantity is

given by kriging prediction as N(ŷ(x⋆), σ̂2(x⋆)), where ŷ(x⋆) is the kriging mean (as

previously described in Eq. (2.14)) and σ̂2(x⋆) provides estimate uncertainty via the

kriging predictive variance given by,

σ̂
2(x⋆) = R(x⋆,x⋆)− r(x⋆)′R−1

ℓ r(x⋆). (4.13)

Model failure with respect to estimating F∗

M under the BH model is measured by

the percent error as previously described in Section (3.3.2.1). When the BH model

estimates F∗

M well, the percent error is expected to be small in the following sense,

F∗

M − F̂∗

M
F∗
M

≤ P. (4.14)

P defines the extent of model failure on the scale of percent error. For measuring

catastrophic model failure P was chosen to be 0.5, but smaller values of P may be

chosen to emphasize regions of more subtle model failure. Since F∗

M is generally under-

estimated for stocks above the BH set, a one-sided test is used to identify model failure.

Thus, when the percent error is statistically greater than P the notion that the BH model

estimates F∗

M well (in the sense defined by P) is rejected.

For statistical evaluation, it is convenient to rearrange Eq. (4.14) as F̂∗ ≥ (1−P)F∗.
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F̂∗ is then distributed as LN(ŷ(x⋆), σ̂2(x⋆)), and catastrophic model failure is predicted

in regions of RP space where the 5th percentile of the Log-normal distribution falls

below (1−P)F∗.

Figure 4.9: BH RP estimation catastrophic
model failure (P = 0.5) thresholds with de-
creasing individual growth dynamics.

Figure (4.9) shows the clustering

thresholds for the low contrast simula-

tions of each of the fast, medium, and

slow growth simulation settings. Each

line separates hypothetical stocks where

simulations would expect the BH model

to catastrophically fail in RP estimation.

A percent error of 50% was chosen to

represent the threshold of catastrophic

model failure so that the nearly minimal

distance mapping occurs below the lines and dramatic underestimation of F∗

M occurs for

data generated above each line.

In general clustering thresholds are oriented to the shape of the BH RP set in each

of the simulated individual growth settings. As individual growth slows from the SPM

limit (in red) to the most emphatically slow growing simulation in blue, the BH model

fails catastrophically for an increasingly large range of RP space. This indicates that the

slower growing simulation makes the BH model more brittle to model misspecification.
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In particular the fragility of the BH model is exacerbated most for high F∗

M stocks as

individual growth slows. For low F∗

M stocks the failure thresholds for each simulated

individual growth setting converges around the common value B∗

B0
= 0.5.

Model misspecification of the BH model is compounded in the slower individual

growth settings, indicating an interaction between the functional form of recruitment

and growth dynamics. In the following section, this interaction is exemplified by ex-

ploring oscillatory dynamics that arise outside of the more biological regimes explored

here.

4.3.5 Oscillatory Growth. The Road to Chaos.

While the above patterns of RP estimation follow for the negatively correlated

growth and maturity parameters (i.e. corr(as,κ) < 0), as as increases to weaken (and

eventually reverse) this negative correlation between as and κ, a regime of oscillatory

dynamics appear. While RP estimation behaves somewhat similar in this oscillatory

regime there are unique features in this setting. Below consider the oscillatory example

of a logistic DDM with as = 10, κ = 0.1 and fishing fixing at F∗ (i.e. low contrast:

χ = 0).
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Figure 4.10: top le f t : Logistic DDM biomass over 30 epochs of time with as = 10.
Green, red, and blue colors indicate three 10 epoch long windows of biomass. v indi-
cates local biomass oscillation maxima. top right : Surplus biomass production plotted
over the range of biomasses shown. The biomass range of each 10 epoch window is
shown in the vertical colored lines. bottom le f t : Surplus biomass production plot-
ted through time. Colors correspond to the lagged biomass region that results in the
evaluated yield. The black horizontal line demonstrates the pre-model assumption of
biomass fixed at B0.
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Figure (4.10) demonstrates the mechanism of how these oscillatory dynamics form.

Oscillatory dynamics appear when fishing pushes biomass past B∗ within the lagged

as window. When t ≤ 0 the delay model assumes that biomass is fixed in equilibrium

at B0. Therefore in the green region of the biomass series, 0 < t < 10, the population

recruits at R(B0). Figure (4.10) shows that in this initial period R(B0) results in zero

surplus yield for that period, and biomass falls as a result.

Once t exceeds as, the lagged recruitment refers to the integrated biomass series

to evaluate recruitment based on Bt−as . The red region of the biomass series is the

result of surplus biomass production (i.e. evaluation of the yield curve) over the initial

green biomasses. Figure (4.10) shows that the surplus biomass production over the

green biomass series first increases, as biomass decreases to approach B∗ (B∗ ≈ 5000

here). As biomass decreases below B∗, surplus biomass then decreases to create the

local maximum in the red biomass series.

Furthermore, the blue region of the biomass series is then based on surplus biomass

over the red biomasses. Notice that since the red biomasses first increase and then

decrease, surplus biomass increases as the red biomass increases and surplus biomass

subsequently decreases following the descending leg of the red biomass series. This

surplus biomass pattern carries the oscillation of the red biomass region forward into

the blue region despite the red biomasses never increasing past B∗.

This process of biomass oscillation carries on in this manner nonetheless approach-
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ing equilibrium at B∗. Equilibrium is reached in an oscillatory manner set off by the

green biomass series crossing over from above B∗ to below it. The example shown in

Figure (4.10) exemplifies the oscillatory phenomena simulated here, but the mechanism

that produces these oscillations may occur with other forms of recruitment, or fishing,

outside of logistic recruitment whenever fishing causes biomass to cross over B∗ within

the lagged recruitment window. By repeatedly forcing the population biomass over the

B∗ threshold, in this manner, the dynamics can quickly resemble the behavior of chaotic

equations [2, 77].

4.3.5.1 RP Estimation

Statistical inference in the oscillatory regimes of individual growth can be chal-

lenging. Depending on the parameters inferred, the likelihood can have multiple lo-

cal modes which require global optimization techniques to distinguish. Furthermore,

parameter estimation is more uncertain in this setting as the likelihood may confuse

oscillations with residual noise.

Figure (4.11) shows the BH RP mapping fixing w(10;0.1)≈ 0.6 in the high contrast

simulation setting. This places the dynamics firmly in the oscillatory regime, but the

high contrast setting provides significant information for inferring recruitment parame-

ters.

105



Figure 4.11: RP mapping of BH DDM fit
to high contrast Schnute DDM data under
oscillatory growth (as = 10 and κ = 0.1).

Interestingly in this high contrast set-

ting, a very similar two regime pattern

of RP inference is observed as previously

seen in low contrast settings. That said

the boundary between the regimes in this

setting is much smoother and the location

of the break between these regimes ap-

pears around higher values of B∗

B̄(0) .

This higher B∗

B̄(0) break point, hovering

around 0.5, is consistent with the mechanism which induces oscillation. For fixed B0

increased B∗

B̄(0) will tend to exacerbate oscillatory behavior by increasing B∗ so that

biomass is more easily pushed past B∗ by fishing within the initial lagged window

of recruitment. This produces more dramatic oscillations in the higher B∗

B̄(0) region of

RP space. This phenomena may also be understood in terms similar to the notion of

elasticity described by Yeakel and Mangel [85] and its relationship with γ and B∗.
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Figure 4.12: Example BH fits (red) to
Schnute data (black). Each example plot is
arranged to mirror its location in RP space.

The fitted BH model does not pro-

duce significant oscillations because un-

der the BH model B∗

B̄(0) is constrained be-

low 0.5 with the majority of the simu-

lation BH B∗

B̄(0) RPs falling between 0.4

and 0.2. Therefore, the fitted BH model

will not tend to push biomass past BMSY

and thus is incapable of modeling oscilla-

tory biomass series. Figure (4.12) shows

a subset of example BH fits, which demonstrates the limited oscillatory capacity of the

BH fits. Furthermore, since the BH model has a limited oscillatory capacity in this

setting, the BH model tends to explain the oscillations with artificially high residual

variation and artificially low α, focusing fits on overly simplistic trends in the data.

4.3.5.2 Estimating More

Figure (4.13) shows a subset of example model fits to Schnute data simulated

broadly over RP space with residual variation, σ = 0.12, resulting in a CV of about

6%. Model fits are shown both under the two-parameter BH model as well as under the

three-parameter Schnute model, each model estimating all of its recruitment parameters

as well as the individual growth and maturity parameters κ and as.
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Figure 4.13: κ and as estimation under BH
(blue) and Schnute (green) fits to Schnute
data (black) arranged to mirror RP space.

While estimating κ and as is not typi-

cally done in practice, these parameters

are estimated here to demonstrate the in-

teraction that can be present between re-

cruitment and growth parameter estima-

tion. Notice that the BH model, even

when additionally estimating κ and as,

does not gain the flexibility to properly

model Schnute data.

On the one hand the lack of oscilla-

tory dynamics produced by the BH model causes the misspecified BH fits in Figure

(4.13) to largely estimates κ and as so as to approximate the SPM limiting case. The

fitted Schnute model on the other hand, can produce the oscillatory dynamics and thus

the information in the oscillatory data well inform estimates of κ and as under the

Schnute model. Furthermore, the Schnute model has no issue learning its γ parameter.

While statistical inference in the oscillatory regime can be challenging in the highly

constrained BH model, the Schnute model can easily estimate its extra γ parameter. The

flexibility of estimating γ simplifies inference by correctly specifying RPs, and also by

opening up the model dynamics to reveal additional information about κ and as in the

data.
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4.4 Discussion

The addition of individual growth, lagged maturity and selectivity dynamics, via

the DDM, to the previous SPM results further reiterates the general patterns observed in

Chapter (3). The added individual growth dynamics, and the modest effect they have on

modifying the BH RP set as seen in Figure (4.2), expands the notion that RP estimation

under two-parameter recruitment models are largely oriented to the geometry induced

by the restricted recruitment model rather than adult growth. Furthermore, the added

individual growth dynamics of the DDM demonstrates that the BH model can become

very brittle for slower growing species, most notably resulting in underestimation of F∗

in low contrast settings.

The general behavior of the RP mapping in the DDM setting is very similar to that

observed under the SPM in Chapter (3). In the presence of contrast RPs consistently

map onto the BH set in a manner resembling a shortest distance map inducing bias in

both F∗

M and B∗

B̄(0) . In the low contrast setting the RP mapping has two primary regimes,

a region of relatively minor BH model misspecification with intact nearly shortest dis-

tance RP estimation, and a region of catastrophic failure of RP estimation where F∗

M is

dramatically underestimated outside of the intact region. This poses the same general

risk profile for fisheries management with BH RP estimates in the DDM setting as for

the SPM. The primary difference in RP estimation of the DDM as compared with the

SPM is the degree of allowable model misspecification of the BH model before the
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catastrophic failure mode of RPs sets in. As growth becomes a larger component of

the dynamics, the BH model becomes more brittle with a decreased range of model

misspecification resulting in intact RP estimation.

The flexibility of the recruitment function is the primary driver of the space of RPs

that can be modeled by these fisheries models. While individual growth contributes to

RP flexibility, the effects of growth dynamics on the range of modeled RPs is secondary

to the model of recruitment. By specifying a BH model of recruitment, we a priori

reduce the space of RPs dramatically and the RP flexibility offered by individual growth

and maturity dynamics is heavily influenced by the model of recruitment. Furthermore

the mapping that statistical inference produces onto these restricted spaces is a function

of this interaction between individual growth and recruitment. The brittleness observed

under the BH model in the slower individual growth settings indicates that not only does

the BH model limit the space of RPs, but even when as and κ are correctly specified an

incorrect specification of the BH model dampens the effects of those growth dynamics.

The analysis of oscillatory dynamics demonstrate how individual growth interacts

with the form of recruitment. This interaction under the BH model exacerbates model

misspecification by dampening the information that individual growth contributes to

biomass dynamics. At this time it is not best practice to estimate individual growth

parameters from index of abundance data as done in Section (4.3.5.2). This analysis

is consistent with that practice when the BH model of recruitment is misspecified (as
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it so often may be). However if recruitment is made more flexible by the use of a

three-parameter model, such as the Schnute curve, not only is the γ parameter possible

to estimate, but the flexibility that this adds to the model of recruitment is vital to

tapping into the information about as and κ that may be available in index data. Of

course if index data is sufficiently noisy there may not be much discernible information

available about as and/or κ since the features they control in biomass dynamics may

easily be confused with residual variation, and the observed behavior of the BH model

demonstrates that overly restricted models of recruitment worsen this effect.

The results presented here suggest that future work should be done to investigate the

feasibility of using three-parameter recruitment models in stock assessments. Firstly,

this study makes it clear that two-parameter recruitment models can induce significant

biases in RPs, and the use of three-parameter models of recruitment can certainly con-

tribute to better RP estimates. Three-parameter models of recruitment can be directly

estimated to allow better estimates of RPs (even when growth dynamics are dominant

in the model). Alternatively, the increased flexibility of three-parameter models can be

used to improve RP estimation without direct estimation of γ by resolving structural

inconsistencies presented by RP proxies as seen in Appendix (C). Secondly, the results

presented here suggest that better specification of recruitment may make models less

brittle. Particularly for slow growing, data-limited stocks, where the available data does

not demonstrate good contrast, the use of three-parameter models may improve the reg-
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ularity of parameter estimation and allow stock assessment models to better access the

information that is available in limited datasets. Furthermore, results presented here

suggest that three-parameter recruitment models may be useful for supplementing the

inference of individual growth and maturity parameters beyond the external analysis of

age data.

The DDE structure given in [82, 17, 69], together with Schnute three-parameter

recruitment, makes the DDM presented here an extraordinarily general, and compact,

model for analysis of a wide range of dynamics. This one DDE can exactly represent

everything from the simplest Schaefer model, to Ricker, BH, or Cushing-like models,

all with a wide range of individual growth and maturity dynamics ranging from simple

SPMs, lag-only models (similar to [19]), ranging up to simple ASMs. While not all RPs

can be represented analytically, under many common models the RPs are analytical.

The methods presented here for navigating RPs across the variety of different models

representable by this compact DDM open the door to countless future uses in stock

assessment.
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Chapter 5

Conclusion
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This thesis develops a metamodeling simulation framework for evaluating RP esti-

mation under misspecified two-parameter models of productivity. By developing three-

parameter models in the SPM and DDM settings, analytical and numerical methods are

provided for generating data broadly in RP space under the Schnute and PT models. A

GP metamodel is presented for explicit analysis of RP biases under two-parameter mod-

els. The analytical methods for navigating the relationship between three-parameter

models and RPs form the foundation of a paper under review based on the work pre-

sented in Appendix (C). The implementation and analytical results for the DDM is

particularly novel and contributes to further expansion of the use of DDM models in

data-limited stock assessment. Additionally involvement in these projects have lead to

my contributions in recent stock assessments[20].

The simulation setting under the PT/Schaefer models in Chapter (2) demonstrates a

simplified and fully analytical setting for developing the conceptual basis of how two-

parameter productivity models may bias RP estimation. A useful notion of contrast is

developed here, and the simplified geometry of the Schaefer model aids in understand-

ing mechanisms by which a lack of contrast contributes to RP biases. The simulation

and metamodel developed in this setting forms the basis of the metamodeling analysis

to be extended into the more challenging simulation settings presented in the following

chapters.

Chapter (3) generalizes the simulation framework to handle SPMs where F∗ is not
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analytical by extending the LHD methods to generate data under the Schnute produc-

tion function. Furthermore, due to the relatively more complicated RP response surface

induced by the BH geometry an adaptive method of augmenting the simulation design

is developed for refining hard to resolve features. The metamodel analysis of RP esti-

mation under the BH model generalizes the RP mapping developed under the Schaefer

model to more complex RP sets. Under the BH model RP inference demonstrates an

approximately shortest distance mapping onto the constrained RP space as mediated

by the information content provided by the available contrast in the data. For the BH

RP geometry (unlike the Schaefer model) this shortest distance mapping ensures that

if there is bias in one of B∗

B0
or F∗

M , there will necessarily be bias in the other RP. These

biases would tend to result in potentially overly cautious management for stocks that

are more density dependent than the BH model, but leads to overestimation of F∗

M for

stocks that are less density dependent than the BH model. Furthermore, the low con-

trast simulation setting demonstrates that heavily misspecified BH models demonstrate

a catastrophic failure mode that dramatically underestimations F∗

M so as to prioritize

high level biomass tends in the data.

The development of the DDM in Chapter (4) further extends the simulation-based

analysis of RPs to account for the effects of individual growth and lagged maturity/se-

lectivity dynamics. While F∗ is not analytical under the general Schnute DDM, many

of the special cases of the Schnute model do provide analytical RP calculations for the
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DDM. Furthermore the analytical results derived under the general Schnute DDM pro-

vide stable methods for navigating RP space to describe RP behavior for general density

dependence simultaneously accounting for individual growth and maturity. The effects

of individual growth and maturity on RPs are found to be small relative to the form

of recruitment, but differ by the level of density dependence. The behavior of BH RP

estimation in the DDM setting is generally very similar to the SPM setting. The rela-

tionship between the form of recruitment and individual growth interact under the BH

model to make RP estimation more brittle for slower growing stocks. This indicates

that better, and/or more flexible, models of recruitment may be required to develop

more complex DDMs as useful and practical models in stock assessment.

In most of the simulation settings described, the stationarity of the GP is a rea-

sonable and well motivated assumption of the metamodel structure. In both the high

and low contrast settings, RP estimates under the Schaefer model are smoothly varying

over RP space with a steady linear mean and spatial correlation structure. Similar well

motivated stationarity is observed in the high contrast BH simulations in both of the

SPM and DDM settings. However, in the low contrast BH simulations the catastrophic

failure mode in F∗

M results in a distinct behavior that likely implies a different mean

and correlation structure than the intact mode implies. The flexibility of the GP still

accurately captures the very distinct RP estimation pattern in these regions, but due

to the change in the underlying mechanism of model failure in these cases, the simu-
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lation requires more design samples to produce convergence of the metamodel when

the catastrophic failure mode in F∗

M is present. While nonstationary metamodels could

improve the modeling of these situations, nonstationary metamodels will themselves

become more expensive to fit. For the stock assessment models considered here, it

is likely that this added expense may be more costly than simply simulating a denser

design, as was done.

5.1 Future Work

While the work presented here provides a novel understanding of how RPs are

biased by two parameter models of productivity, there are always improvements that

can be made in future study. There are two major directions for interrelated future

work. Firstly, there is always a desire to study additional biology dynamics. Secondly,

the results presented here suggest that studying these more complex biologies would be

aided by extensions to the metamodeling techniques.

Given the role of contrast for informing productivity parameters, and thus RPs,

improved notions of understanding contrast could improve this analysis. This analy-

sis develops some mechanisms by which the lack of contrast fails to inform RPs, but

developing a deeper understanding of how contrast informs parameters, or at least de-

veloping methods of quantifying observed contrast, more generally is clearly important
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for contextualizing model fit. The notion of contrast developed in Section (2.2.6) is rep-

resentative of many California fisheries and is useful for the simulation purposes here,

but methods of understanding the notion more generally would be extremely valuable.

The catchability parameter, q, is fixed throughout this work due to the weak iden-

tifiability between q and K (or β as the case may be). As described in Section (2.2.7),

this issue arises when estimating both quantities in low contrast simulations. This work

explores the lower extent of contrast by fixing q to focus on the estimation properties

of θ, and therefore RPs, in the weakest information settings. That said, many stock

assessments enjoy more informative data than the minimal contrast setting simulated

here, and often q is not known. By tuning χ to the lowest value that allows identification

of q over the range of simulated RPs, one may extend this work to estimate q, albeit

over a smaller range of contrast. This is a natural direction for future work and would

also contribute to developing a more specific understanding of the role of contrast in

fisheries models.

While the DDM developed in Chapter (4) parsimoniously develops the most foun-

dational biological processes in fisheries management, further developing RP analyses

that account for additional biological processes are always desired. The addition of

recruitment deviations to the DDM is clear a next step. Thorson et. al. [80] show

that modeling recruitment deviations as a random effect composed with BH recruit-

ment can reduce bias in estimates of depletion and improve uncertainty quantification
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for data-limited models of Pacific hake. The methods presented in this thesis are an

ideal framework for understanding those results more broadly in terms of RP model

misspecification. Furthermore, the simulation framework developed here provides a

straightforward path for extending into the analysis of more complex ASMs such as

Stock Synthesis [49] or FIMS [78].

The metamodeling structures developed here have proven effective tools for un-

derstanding RP biases in the SPM and DDM settings presented. That said, several

improvements may be made to the metamodeling simulation framework itself to facili-

tate this analysis in more complex settings. Improving the speed of simulations would

allow for more easily relaxing the simulation assumptions around estimating q and in-

creasing the simulated values of residual variation. Decreasing simulation run time

to the order of days in more complex settings would allow the analysis to condition

on specific stock assessment models and data (i.e. catches, ages, lengths) to consider

how RP model misspecification may manifest in a given stock assessment. It was not

considered a priority for the work presented in this thesis but by more effectively re-

fining the simulation design through the use of more pointed acquisition functions[56],

fewer simulations may be collected 1. In particular, since optimization is not a goal of

the metamodel in this setting, developing entropy-based acquisition functions [30, 31]

could be useful here. Furthermore, given the catastrophic model failure that was ob-

served under low contrast BH models, particularly in the slower growing examples, it

1The primary factor for determining the run time of these simulations

119



could be valuable to consider nonstationary GP metamodels [27, 6, 29]. These meta-

models will come with much more complexity and expense on the metamodeling side

of this framework, but for the analysis of more computationally expensive stock assess-

ments these costs may be outweighed by a more efficient identification of catastrophic

failure modes.
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Appendix A

Inverting B∗

B̄(0) and γ for the PT Model
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Under the PT model, as parameterized in Chapter (2), an expression for B∗

B̄(0) in

terms of γ is given by Eq. (2.10). Letting ζ = B∗

B̄(0) , and inverting Eq. (2.10) to express

γ in terms of ζ proceeds as follows,

ζ =

(
1
γ

) 1
γ−1

ζ = γζ
γ

ζ = γeγ log(ζ)

ζ log(ζ) = γ log(ζ)eγ log(ζ).

The Lambert product logarithm, W , is defined as the inverse function of z = xex such

that x =W (z) [40, 13]. Applying this definition allows for the isolation of γ,

γ log(ζ) =W (ζ log(ζ))

γ =
W (ζ log(ζ))

log(ζ)
. (A.1)

The Lambert product logarithm is a multivalued function with a branch point at −1
e .

The principal branch, W0(z), is defined on z ∈
(
−1

e ,∞
)
, and the lower branch, W−1(z),

is defined on z ∈
(
−1

e ,0
)
. Taken individually, each respective branch is analytic, but

cannot be expressed in terms of elementary functions.

When ζ ∈
(
0, 1

e

)
the solution of interest in Eq. (2.11) comes from W0. When ζ → 1

e ,
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the Fox Model emerges as γ → 1. When ζ ∈
(1

e ,1
)

the solution of interest comes from

W−1. For the use case presented here, Eq. (2.11) is to be interpreted as,

γ =


W0(ζ log(ζ))

log(ζ) ζ ∈
(
0, 1

e

)
W−1(ζ log(ζ))

log(ζ) ζ ∈
(1

e ,1
) . (A.2)
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Appendix B

A Schaefer Model with Explicit M
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The Schaefer model is typically stated as discussed in Chapter (2)

dB
dt

= rB
(

1− B
K

)
−FB. (B.1)

However under model 3.3, when γ = 1, Ps(B; [α,β,1]) reduces to quadratic logistic

production and draws a parallel to the logistic production of the typical Schaefer model.

The typical Schaefer model does not explicitly include M, but rather natural mortality is

assumed to be implicit in the quadratic form of surplus production. That said, if natural

mortality is explicitly included in a model with logistic production, as seen in Chapter

(3) under the Schnute model when γ = 1, it is straight forward to show that the result is

in fact a Schaefer model with updated parameters that explicitly model M.

dB
dt

= αB(1−βB)− (M+F)B

= αB−αβB2 −MB−FB

= (α−M)B−αβB2 −FB

= (α−M)B
(

1− αβ

α−M
B
)
−FB (B.2)

The linear MB term naturally combines with the quadratic form of Ps(B; [α,β,1]) to

simplify into another quadratic form that is now directly analogous with the typical

Schaefer model seen in Eq. (B.1). This process produces a Schaefer model with the
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following updated parameters

dB
dt

= r′B
(

1− B
K′

)
−FB (B.3)

r′ = α−M K′ =

(
α−M

α

)
1
β
. (B.4)

Ps(B; [α,β,1]) represents the biomass production independent of mortality. By com-

bining MB into the quadratic form, a new intrinsic population growth rate, r′, is derived

which represents the maximum rate of biomass production less natural mortality. Sim-

ilarly, carrying capacity is shrunk by the factor α−M
α

which can be interpreted as the

percent decrease of α by removing M.

Furthermore working with γ = 1 in the analytical expression of Schnute RPs, as

given in Chapter (3), analytical RPs take the expected values. For example, working

with the equation for α from Eq. (3.10), with γ = 1, F∗ is shown to takes the expected

form for a Schaefer model.

α = (M+F∗)

(
1+

F∗

M+F∗

)
= M+2F∗

F∗ =
α−M

2
=

r′

2
(B.5)

Working with Eq. (3.5) from the text gives the expected carrying capacity.
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B0 =
1
β

(
1− M

α

)
=

α−M
αβ

= K′ (B.6)

Furthermore, Eq. (3.5) for B∗ gives,

B∗ =
1
β

(
1−

M+ α−M
2

α

)

=
1
β
− M+α

2βα

=
α−M
2αβ

=
K′

2
. (B.7)

Finally BMSY
B0

in the case of explicit mortality is indeed also 1
2 ,

B∗

B0
=

K′/2
K′ =

1
2
. (B.8)

This is a similar model as the logistic model discussed by Aalto et. al. [1], albeit

their model includes additional dynamics. In terms of the complexity of dynamics, the

model presented by Aalto et. al. prioritizes differing lags of recruitment and mortality

to increase complexity over the SPM presented in Chapter (3). The special case of

logistic recruitment in the DDM presented in Chapter (4) has a simplified lag structure

as compared with the Aalto et. al. model but would be similar to their logistic model

albeit with an explicit handling of individual growth.
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Appendix C

The Schnute Model’s Relationship to

RP Proxies
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Due to the difficulty of calculating RPs, in particular F∗ as exemplified by the

Schnute model as seen in Sections (3.2.1) and (4.2.2), proxies of RPs have been devel-

oped [9, 41, 10]. One such proxy is the fishing rate that brings the Spawning Potential

Ratio (SPR) to x% of B0, also known as FSPRx . This definition implies the following

relation between total mortality, B0 and R0.

(FSPRx +M)xB0 = R0

By setting x appropriately the hope is that FSPRx is a easily calculable proxy for F∗.

Calculating FSPRx is relatively more straightforward than F∗ because it is independent

of the functional form of productivity. Since R0 is defined as R0 = MB0, FSPRx can then

be written as,

FSPRx =
R0

xB0
−M

=
MB0

xB0
−M

= M
(

1
x
−1
)
. (C.1)

Another proxy used manages fishing so as to target an equilibrium biomass that

is y% of B0, denoted By. When By is combined with the FSPRx proxy (of FMSY ), By

is thought of as a proxy for BMSY
B0

. Enforcing both proxies simultaneously implies
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x FSPRx
M

[
F∗(y)

M

]
BH

y
(of By)

[
B̄(FSPRx)

B0

]
BH

RF 0.50 1 0.5 0.40 0.33
GF 0.45 1.22 0.5 0.40 0.31
FF 0.30 2.33 2 0.25 0.23

Figure C.1: Management targets and BH RP projec-
tions for Rockfish, Groundfish, and Flatfish management
categories.

B̄(FSPRx)
B0

= y. By managing the population so as to target these two proxies simulta-

neously it is thought that the population is approximately managed to a state of MSY

(erring conservatively).

Under a two parameter BH SPM, enforcing these two proxies uniquely specifies a

single BH α parameter to make the recruitment relationship consistent with both prox-

ies. As a statistical model, this only leaves β free to estimate the scale of the population

B0 with no additional degrees of freedom to learn anything about RPs from data. Fur-

thermore, fixing α to match the management proxies over-constrains MSY RPs. The

table in Figure (C.1) lists the current proxy targets, along with BH RPs projected from

the proxies, for Rockfish (RF), Groundfish (GF) and Flatfish (FF) management cate-

gories.

In Figure (C.1) notice that y >
[

B̄(FSPRx)
B0

]
BH

consistently for all categories. This is a

conservative management approach from the BH perspective since species are managed

to biomasses that are greater than the BH B∗, but it also admits that proxy values are

inconsistent with the underlying dynamics used to estimate biomass in the first place.
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Furthermore the BH SPM necessitates that the chosen proxy values will never equal the

RPs they are intended to approximate.

Under the three-parameter Schnute model the γ parameter provides an additional

degree of freedom that can be used to resolve the limiting issues presented by the BH

model in any of a number of ways. One potentially compelling use of this extra degree

of freedom is to engineer the values of α and γ to demand consistency of the prox-

ies and MSY . This necessitates that RPs are always equal to their measurable proxy

approximations, and it resolves the inconsistency between proxies and the underlying

dynamics used to estimate the biomasses to which they are compared. The Schnute

model can do this by using γ to tie proxies directly to the true RPs that they are in-

tended to approximate. This makes the proxies easily calculable quantities that truly

represent Schnute MSY RPs.

To derive the values of α and γ that will result in consistency of the proxies with

MSY we first consider the expression of B̄(F)
B0

under the Schnute SPM (similar to Eq.(3.6))

evaluated at FSPRx (as given in Eq. (C.1))

B̄(FSPRx)

B0
=

1−
(

M+[M( 1
x−1)]

α

)γ

1−
(M

α

)γ

y =
1−
(M

xα

)γ

1−
(M

α

)γ . (C.2)

Solving Eq. (C.2) for α gives a relation between α, and γ that defines an infinite
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Figure C.2: α-γ relationships between
Schnute MSY RPs, Eq. (C.5), and proxies,
Eq. (C.3), for the Rockfish management
category. The discrepancy that the BH
model presents between MSY RPs and
proxies is shown by the difference in the
implied values of α respectively (shown in
blue) when γ =−1 under the BH model.

family of Schnute curves that respect the

proxy values x and y.

α = M

[
1
xγ − y
1− y

]1/γ

(C.3)

Now to align the proxy α-γ values

given by Eq. (C.3) with MSY RPs we re-

call Eq.(3.10) from the text,

α = (M+F∗)

(
1+

γF∗

M+F∗

)1/γ

. (C.4)

While this expression for α was previously used in simulation design, here it is used as

a relation between α and γ that defines an infinite family of Schnute curves that respect

a given value of F∗. Eqs. (C.3) and (C.4) each define different sub-families of Schnute

curves that respect the proxies and MSY respectively. When taken together, the curves

intersect to uniquely identify a single pair (α,γ) that both respect the proxies and MSY

simultaneously. With the aim of isolating this point, Eq. (C.3) and Eq. (C.4) can be

equated to find the value of γ that brings proxies into agreement with MSY . When RPs

and proxies are in agreement, F∗ = FSPRx and thus F∗ in Eq. (C.4) may be replaced by
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Eq. (C.1) to write the MSY relation in terms of x and y as,

α =
M
x

(
1+ γ(1− x)

)1/γ

. (C.5)

Now equating Eqs. (C.3) and (C.5) and then simplifying with the aim of solving for

γ gives,

[
1
xγ − y
1− y

]1/γ

=
1
x

(
1+ γ(1− x)

)1/γ

1− yxγ =
(

1+ γ(1− x)
)
(1− y)

1 =

[
1− γ

(1− x)(1− y)
y

]
x−γ.

At this point it convenient to make the substitution r(x,y) = y
(1−x)(1−y) . Making this

substitution, and factoring, simplifies the above form as,

r(x,y) =
(

r(x,y)− γ

)
x−γ. (C.6)

Recall the Lambert product logarithm, W , is defined as the inverse function of xex

such that x =W (xex) [40, 13]. Isolating γ requires that the above expression be placed

into the form xex to apply the definition of W .
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r(x,y)xr(x,y) =
(

r(x,y)− γ

)
xr(x,y)−γ

r(x,y)xr(x,y) log(x) =
(

r(x,y)− γ

)
log(x)e

(
r(x,y)−γ

)
log(x)

W−1

(
r(x,y)xr(x,y) log(x)

)
=
(

r(x,y)− γ

)
log(x)

γ = r(x,y)−
W−1

(
r(x,y)xr(x,y) log(x)

)
log(x)

(C.7)

The solution of interest for the γ (bringing proxies into agreement with MSY) comes

from W−1 branch of the Lambert product logarithm. To complete the point (α,γ), α

may be computed by substituting γ from Eq. (C.7) into either of Eqs. (C.3) or (C.5) to

give α in terms of only the proxies and the Lambert product logarithm.

Figure C.3: BH MSY RP curve, along side
Schnute MSY RP curves with γ chosen to
match the management proxies.

Figure (C.3) demonstrates how the BH

RPs can be generalized by the three pa-

rameter Schnute model to bring MSY RPs

into alignment with the proxy values. The

colored curves show Schnute RPs with γ’s

fixed by Eq. (C.7). Notice that the proxy

values fall along the colored curves, with

the specific location of the the proxy point

given by the α as derived by plugging γ

back into either of Eqs. (C.3) or (C.5).
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In concept, other three-parameter models should allow similar flexibility, but the

results may not be analytical as given here for the Schnute model. While other three-

parameter models should be able to bring RPs into correspondence with their proxies,

the differing functional forms of various three-parameter models may result in yield

curves that behave in unexpected ways. A beautiful feature of the Schnute model used

in this way is that the derived γ values generalize the BH model in a way that results in

familiar production models such as the Cushing-like, BH, Ricker, or Logistic models

each with well studied risk characteristics and dynamics.
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Appendix D

Delay Differential Replacement Line
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The replacement line is the rate of productivity which exactly balances biomass loss

in the absence of fishing. In the SPM, productivity must simply balance biomass loss

due to M. Thus when R(B;θ) > MB there will be some surplus productivity to enable

fishing.

In the DDM, productivity is complicated by biomass changing, both with the re-

cruitment of young into the reproducing population, as well as biomass accumulation

due to the growth of existing individuals in the population. To derive the replacement

line in the case of the DDM in Chapter (4) the equilibrium equations in the absence of

fishing are considered and the R(B) that this implies is then isolated.

0 =
dB
dt

= w(as)R(B)+κ [w∞N −B]−MB (D.1)

0 =
dN
dt

= R(B)−MN. (D.2)

Eq(D.2) quickly gives N̄ = R(B)/M. Substituting this equilibrium value into Eq(D.1)

to rewrite N in terms of B,

0 = w(as)R(B)+κ

[
w∞

R(B)
M

−B
]
−MB. (D.3)
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Collecting like terms,

R(B)
[
w(as)+

κw∞

M

]
= [M+κ]B. (D.4)

Finally solving for R(B), and simplifying, gives the equation of the replacement line as,

R(B) =
[

M(M+κ)

w(as)M+κw∞

]
B. (D.5)
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