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ABSTRACT OF THE DISSERTATION 
 

Phage and bacterial ecology in marine holobiont disease and competition 

 

 

by 

 

Mark Little 

 

Doctor of Philosophy in Biology 

University of California San Diego, 2022 

San Diego State University, 2022 

 

Professor Forest Rohwer, Chair 

 
 

This dissertation work contains the following chapters: Chapter 1 revealed that bacterial 

pathogens of marine animals contain a higher abundance of prophages in their genomes than 

non-disease-causing host-associated bacteria. The work highlights the importance of horizontal 

gene transfer between bacteria and phages in the context of marine fauna, and reviews what is 
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known about prophages in the context of marine diseases. Additionally, a comparison of the 

prophage-encoding genes between pathogens and non-pathogens, found that predicted 

prophage-encoded genes in disease-causing bacteria are enriched for carbohydrate and nitrogen 

metabolism, virulence factors, and membrane transport. Chapter 2 consisted of utilizing multi-

omics and microscopy to characterize coral-turf algal interactions in situ that led to a working 

model of the ecology of these benthic holobiont interactions. I applied metagenomic 

sequencing in parallel with metabolomics to uncover the underlying bacterial, viral, and 

biochemical processes associated with coral-turf algal competition and reef decline. This work 

emphasizes the important role of host-associated bacteria and viruses in the ecological outcome 

of competing coral-algal interactions. In this context, the study fits into what was coined the 

“Algal Feeding Hypothesis”, which posits that changes in coral-algal interface communities 

are driven by bacteria that feed on algal-derived compounds. Chapter 3 focused on the 

molecular and microbial cartography of massive coral colonies using a multi-omics approach 

to understand the natural history of endangered massive coral colonies competing with benthic 

algae. In this work I combined 3D photogrammetry with metatranscriptomics, metabolomics, 

and metabarcoding to investigate all portions of the massive coral Orbicella faveolata visually 

and spatially in situ. 
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Chapter 1: Bacteriophage can drive virulence in marine pathogens 

 

 

Introduction 

 

Marine ecosystems around the globe are in dramatic decline caused by anthropogenic 

impacts such as pollution, overfishing, climate change, and increasingly prevalent diseases in 

ecologically important macro-organisms (Bateman et al., 2022; Bojko et al., 2022; Burge and 

Hershberger 2022). Many marine disease ecologists are reconsidering the strategies used to 

understand and investigate the etiology of these diseases. Recent studies incorporate the notion 

that an array of stressors can disrupt natural holobiont communities, leading to a variety of 

detrimental ecological outcomes often potentiated by microbial pathogenesis (Egan and Gardiner 

2016; Morrow et al., 2022; Bateman et al., 2022; Morton et al., 2022). While microbial diseases 

can be caused by a variety of organisms, most bacteria involved in pathogenicity in marine 

environments contain horizontally acquired elements that are largely overlooked and play 

essential ecological and evolutionary roles. These elements are often carried by phage genomes 

integrated in the genome of the bacterial host. The expression of these prophage-encoded genes 

can confer pathogenicity and dysbiosis, the latter defined by an unbalanced composition of the 

host-associated microbial community. 

Bacteriophages, or simply “phages,” are viruses that infect bacteria and have the unique 

ability to undergo one of two lifestyles, lytic or lysogenic. In the lytic cycle, upon infection, the 

phage uses the machinery of the bacterial host to replicate, synthesize new viral particles, and 

release its progeny, often killing the bacterial host by cell lysis (Echols 1972). During the 

lysogenic cycle, the phage genome is integrated into the bacterial genome and its replication 

occurs only as part of the normal cell cycle (reviewed in Young 1992). Interestingly, different 



2 

 

environmental and cellular cues can trigger the switch from one cycle to the other (Wommack 

and Colwell 2000). 

Through infection, phages have the capability to move host genes between bacteria. 

When fragments of the host chromosome are packaged within the viral particles, bacterial DNA 

is shared through infection to a recipient bacterial cell. This horizontal transfer is termed 

transduction, and it can be the generalized transfer of a DNA sequence from a random position in 

the bacterial genome, or the specialized transfer of DNA from a specific location in the bacterial 

chromosome. In either case, the amount of packaged DNA is limited by the size of the viral 

capsid and hence of the original viral genome (Cui et al., 2014). In addition to phages, other 

mechanisms of horizontal gene transfer between bacteria occur via the transfer of transposons 

and plasmids. Transposons are DNA sequences that can jump from one location in the bacterial 

genome to another, generating gene duplications or truncating genes when their insertion 

interferes with the coding sequence of the gene. Plasmids, on the other hand, are small DNA 

molecules, often circular and double-stranded, that can replicate independently of the bacterial 

genome and can be transferred between bacterial hosts through conjugation. 

Phages, generalized transducing agents, transposable elements, and plasmids are some of 

the major drivers of microbial evolutionary processes and therefore likely play a key role in 

microbial pathogenicity and dysbiosis. This chapter focuses on the role of phage-encoded 

elements in the context of the etiology of economically and ecologically relevant marine 

pathogenesis and dysbiosis. This section also provides a meta-analysis of all known, fully 

sequenced, marine bacterial host-associated pathogenic and non-pathogenic genomes that serve 

as a baseline for understanding how the ecology of horizontal gene-transfer carried out by phage 

contributes to the evolution of marine pathogens. 
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Transduction in the marine environment occurs at high rates and has been suggested to 

have the minimum capacity to move 1024 genes from viruses to host per year globally (Rohwer 

and Thurber 2009). Within the past 5 years, the influence of horizontally acquired genetic 

elements from viruses has gained traction in the field of marine disease ecology. Recent analyses 

of the genomes of multiple pathogenic Vibrio strains revealed prophage-encoded elements that 

contribute to the pathogenicity of the bacteria (Weynberg et al., 2015, Figure 1.4). These 

tripartite eukaryote–microbe–phage interactions likely determine many marine disease 

mechanisms. When a bacterium incorporates in its genome a viral genome, or acquires a 

prophage through infection, it is called a lysogen. Viral replication and survival occur through 

bacterial cell division, thus producing more lysogens as progeny. Phages that can initiate their 

incorporation into the chromosome of the host are known as temperate phages. It is well known 

that temperate phages have considerable gene repertoires that may enhance bacterial host fitness, 

and since phages are the most abundant biological entities on the planet, with an estimated 

4.80×1031 phages on Earth, it is reasonable to predict that these viruses strongly influence the 

unfolding of marine pathogenesis across a variety of organisms and ecosystems (Cobián Güemes 

et al., 2016). 

While prophages encompass around 25 percent of phages in the global phage gene pool, 

only forty-one prophage-mediated phenotypes have been observed or experimentally 

demonstrated (Bondy-Denomy and Davidson 2014; Casjens 2005). Prophages or temperate 

phages can enhance the fitness of their bacterial hosts in a variety of ways (Figure 1.1A-E), such 

as (1) conferring metabolic capacities through the acquisition of photosynthetic genes in 

Cyanobacteria (Rohwer and Thurber 2009), (2) encoding functional proteins such as anti-

CRISPR systems in Pseudomonas aeruginosa which allow the bacteria to outcompete other 
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bacteria (Bondy-Denomy et al., 2014), and (3) exclusion factors like the Imm protein of the 

famous phage T4 in Escherichia coli that prevents other phages from infecting the lysogen (Lu 

and Henning 1994; Obeng et al., 2016). Horizontally acquired mutualistic viruses therefore allow 

lysogens to broaden their ecological niche space (Figure 1.1A-E). In many instances, the 

prophage can encode exotoxins that directly affect the host (Figure 1.1B). In addition, some 

prophage-encoded proteins have been shown to inhibit predation from bacterivorous protists 

(Figure 1.1D). We are only starting to shed light on the functional roles of integrated phage, but 

the fact that most bacterial genomes harbor about one to two prophages (Casjens 2003) indicates 

that these are significant players in a plethora of ecological dynamics. An assessment of 

temperateness, or the ability to initiate lysogeny or a lysogenic conversion of viruses in seawater, 

revealed that within phage communities, 80 percent of the members contain the potential for a 

temperate lifestyle (Breitbart et al., 2004). Clearly, there are more functions to be discovered 

considering the high prevalence of lysogeny, where most bacterial genomes harbor multiple 

prophage and at a maximum have been observed to comprise 20 percent of bacterial genomic 

sequence space (Canchaya et al., 2003; Casjens 2005). 

 

The role of prophages in disease 

 

In 1951, the first report of phage-mediated virulence was described in the bacterium 

Corynebacterium diphtheriae, the disease-causing agent of diphtheria. When non-virulent strains 

of C. diphtheriae were challenged with phages, the next generation of bacterial progeny 

presented a virulent phenotype (Freeman 1951). Since this first discovery of prophage-mediated 

bacterial fitness enhancements, it has been revealed that a large portion of strain-to-strain 

differences are due to phage-mediated horizontal gene transfer (Lawrence 2002). 
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Bacterial strains exhibiting pathogenicity have been shown to contain a higher proportion 

of phage genes compared to non-pathogenic strains, and currently twelve prophages encoding 

virulence genes have been discovered among seven relevant bacterial pathogens including C. 

diptheriae, E. coli, S. enterica, P. aeruginosa, S. mitis, C. jejuni, and V. cholerae (Busby et al., 

2013; Davies et al., 2016). Temperate phages can produce a variety of exotoxins such as cholera, 

Shiga toxin, and botulism, and these types of prophage-mediated functions are extremely 

relevant in the case of marine disease pathogenesis. Since the first phage-mediated phenotype 

was observed in diphtheria, the E. coli prophage system has been studied extensively. This E. 

coli prophage encodes Shiga toxin (Stx) whose production is independent of phage lytic activity. 

Conversely, in the case of C. diphtheriae, the production and secretion of the toxin does not 

require lysis of the lysogen (Holmes 2000). 

Some bacterial toxins, many of which contribute to pathogenicity, likely evolved to evade 

predation from other microorganisms, such as protists (Figure 1.1D). An example of this survival 

strategy is the aforementioned Shiga toxin, which confers E. coli anti-predatorial defense against 

the bacteriovore Tetrahymena thermophila (Lainhart et al., 2009). In the marine environment, a 

study on Serratia marcescens challenged a population of this bacterium against two 

bacterivorous predators with different feeding mechanism—Acanthamoeba castellanii, a surface 

feeder, and Tetrahymena thermophila, a particle feeder—and observed that the S. marcescens 

population became more resistant to the infection by lytic phages, presumably due to the 

acquisition of a prophage in their genome (Örmälä-Odegrip et al., 2015). These findings may 

suggest that predation pressure by bacterivores selects for bacteria carrying prophage in their 

genomes. These prophages potentially encode for proteins that either are directly toxic to 

bacteriovores or indirectly deter them from predating on the bacterial host. These phenomena are 
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relevant when considering the ability of pathogens to evade protist predation as well as infection 

by lytic phages in the marine environment. 

 

Prophages in marine diseases 

 

Understanding the distribution and role of temperate phages in marine bacterial 

pathogens is of high relevance considering their ability to exhibit superinfection exclusion to 

other phages targeting the same host range. This is important to consider because it allows for 

pathogenic lysogens to prevent lytic control (i.e., bacterial death via cell lysis) by other phages 

naturally present or introduced to the community as phage therapeutics. These dynamics are 

likely at large in instances of bacterially mediated marine disease and pathogenesis. To test this 

hypothesis, we searched for predicted temperate phages in publicly available marine bacterial 

pathogen and non-pathogen genomes from host-associated marine environments on a global 

scale. This meta-analysis utilized bioinformatic tools to demonstrate significantly higher 

proportion of prophages in pathogenic than in non-pathogenic marine host-associated bacteria 

(Figure 1.2). 

The results mentioned above were not unexpected since virus-like particles have been 

identified as playing a role in ecologically relevant marine diseases. For example, putative phage 

hyperparasites have been described to be associated with the bacterium Candidatus Xenohaliotis 

californiensis (WS-RLO), which causes withering syndrome in abalone (Friedman and Crosson 

2012). These virus-like particles have similar morphology to that of the Siphoviridae family of 

phages, although their genomes have not been sequenced (Cruz-Flores et al., 2016). While the 

function of these intracellular viruses in pathogenesis is not yet understood, due to their 50 nm 

size and the pleomorphic traits conferred to bacteria, it is possible that they constitute 
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generalized transducing agents. Furthermore, this system may be an example of how lytic viruses 

play a role in bacterial pathogenesis. 

 

Evolutionary implications of prophages in marine diseases 

 

Temperate phages are present in 40–50 percent of all known microbial genomes and in 

twenty-one of thirty known bacterial phyla (Canchaya et al., 2003; Touchon et al., 2016). In 

addition, lysogen abundance is more prevalent in pathogens and negatively correlated with 

spacer acquisition across CRISPR-Cas systems in respective host microbial genomes (Touchon 

et al., 2016). The contribution of phages in structuring microbial communities through predation 

and lysogeny is apparent, but the need for understanding functional roles in microbial disease 

ecology is often overlooked. Researchers have only begun to understand the roles of lysogens in 

nature in either pathogenic or ecological contexts. In this chapter we seek to shed light on what is 

known about phage-encoded function in bacterial pathogenesis and dysbiosis in marine disease. 

While bacteriovore anti-predation conferred by horizontal gene transfer or phage 

infection has yet to be assessed in marine host-associated pathogenic bacteria, it is likely to 

explain the selection of systems that can lead to microbial disease in macro-organismal hosts. 

This process would require receptor-mediated endocytosis (RME), via cell-surface receptors of 

the eukaryotic host, where the exo-toxins against bacteriovore predation have a secondary effect 

on the macro-organismal host. These dynamics should be considered as marine disease 

ecologists investigate and attempt to address problems and develop or apply therapies in 

aquaculture and the environment. Here, prophages, the microbiological Trojan Horse, are clearly 

an important overlooked component of disease etiologies. Opportunely, genomics and 
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bioinformatics advance rapidly and allow for the evaluation of the contribution of prophage-

encoded traits to the global pool of marine diseases (Frasca et al., 2022). 

The events associated with the acquisition of a potentially mutualistic phage require lytic-

to-temperate switching during an active infection event and this is defined as lysogeny. 

Lysogeny can introduce novel phenotypes to the bacterial host via gene expression (Brüssow et 

al., 2004). Recent metagenomic-based studies on lytic-to-temperate switching dynamics in 

marine ecosystems demonstrate that at high microbial abundances and within certain 

environments, there is a higher presence of integrase and excisionase genes, suggesting an 

ecological lytic-to-temperate switch in these viral communities (Knowles et al., 2016). Integrases 

are phage-encoded proteins that enable viruses to incorporate their genome into bacterial 

chromosomes, while excisionases allow prophages to exit the chromosome during induction to 

the lytic cycle. Therefore, the relative level of integrase and excisionase genes in viral 

communities suggests the functional potential for lysogeny (Knowles et al., 2016). Mathematical 

modeling further demonstrates that temperate phage lifestyles can be more prevalent under 

environmental conditions that favor bacterial growth (Maslov and Sneppen 2015). Although 

marine bacterial pathogeneses are currently increasing at unprecedented rates, these are relatively 

isolated phenomena when considering the spatial scale at which organisms exist in any given 

ecosystem. 

The life history of temperate phages can shed light on the understanding of how 

prophages are distributed across bacterial phyla. The abundance of bacterial mechanisms that 

protect against phage infection, such as CRISPR-Cas systems, has been negatively correlated 

with the presence of prophages in a global dataset of bacterial genomes (Touchon et al., 2016). 

In this study, the bacteria with minimal doubling time, meaning those with genomes with the 
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fastest growing capability, were strongly correlated with the occurrence of lysogeny (Touchon et 

al., 2016). This finding adds further support to the observed increases of lysogeny in certain 

environments, as described in the Piggyback-the-Winner (PtW) model, where lysogen 

occurrence is correlated with higher microbial abundance (Knowles et al., 2016). In contrast, an 

alternative scenario can take place when virion numbers increase with bacterial abundance via 

lytic activity, and these dynamics are explained by the “Kill-the-Winner” (KtW) model 

(Thingstad 2000). In either case, bet-hedging strategies of allocating bacterial resources to viral 

lytic production and others to lysogeny greatly influence ecological dynamics where phage 

impact bacterial growth and function (Morton et al., 2022). 

 

Meta-analysis of prophage-encoded functions 

 

Prophage-encoded functions have yet to be assessed in pathogenic and dysbiotic host-

associated system dynamics. This meta-analysis covers a total of eighty-nine publicly available 

complete marine genomes of host-associated bacteria, with sequences coming from thirty-two 

non-pathogenic and fifty-seven pathogenic isolates found in algae, invertebrates, and vertebrates 

(Klemetsen et al., 2018). The reference database used is the most extensive marine bacterial 

genome resource to date and includes comprehensive metadata on the source of the isolates, 

organismal pathology at the species level, bacterial genome length, data on encoded proteins per 

genome, and many other useful metadata (Klemetsen et al., 2018). The results of our analysis 

revealed a significantly higher abundance of prophage in marine pathogens when compared to 

non-pathogens (Figure 1.2). 

A comparison of the number of hits to prophage-encoded genes between pathogenic and 

non-pathogenic host-associated marine bacteria revealed a significantly higher level of 
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prophages per genome across two different normalization methods (Figure 1.2). The log 

abundance of prophage hits was divided by either the respective bacterial genome length (Figure 

1.2A) or the predicted number of bacterial-encoded proteins in the respective genomes (Figure 

1.2B). Both normalization methods revealed a significantly higher number of prophage genetic 

elements in the pathogenic host-associated bacteria (Figure 1.2). 

To understand the functional relevance of these predicted prophage-encoded elements, 

we analyzed the results with a computer program (PhiSpy) designed to find prophages in 

bacterial genomes. The predicted prophage-encoded gene hits were annotated against the SEED 

project subsystems database, which integrates the data generated by the Rapid Annotation of 

microbial genomes using Subsystems Technology (RAST), to gain insight into what known 

functions may be prophage-encoded in these ecologically relevant marine pathogens. The SEED 

database uses a system that organizes families of functional genes into categories. To determine 

which functions were positively enriched in prophage-encoded genes carried by pathogenic 

bacteria, the relative abundance of subsystems was averaged, and the averaged abundance of 

non-pathogenic bacteria was subtracted from that of pathogenic bacteria (Figure 1.3). The three 

highest positively enriched subsystems in pathogens were carbohydrate utilization, membrane 

transport, and virulence. The observation of carbohydrate utilization and membrane transport 

suggests that prophages within pathogenic marine bacteria encode other functions, beyond 

virulence factors, that are ecologically interesting (e.g., fitness enhancement), and that have a 

direct or indirect effect on host disease. Interestingly, ~ 50 percent of the prophage hits did not 

match to any known function in the SEED subsystems database, which confirms that there is still 

much more to learn about these ecologically relevant prophages and prophage-encoded elements. 

The results suggest PtW dynamics, where the functional genes acquired via lysogeny would 
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enable these pathogenic strains to outcompete the natural holobiont bacterial community 

members and ultimately lead to diseased states. 

The tripartite eukaryote–microbe–phage dynamics discussed in this chapter are essential 

for marine biologists to consider when trying to understand the etiology and ecology of marine 

infectious diseases. While this chapter considers all fully sequenced host-associated marine 

bacterial pathogens at a more general level across global scales, it offers a baseline for future 

targeted studies on marine bacterial pathogenesis and prophage-encoded phenotypes. Future 

approaches include determining the specific protein or function that these genes encode to 

predict their role in fitness, pathogenicity, metabolism, competition, and microbial as well as 

ecological dynamics. This knowledge could inform researchers and clinicians when designing 

strategies to enrich desired bacterial traits, for instance to reverse dysbiosis in different 

ecosystems or directly beat pathogenesis. 

 

Case study: The role of prophage in a coral pathogen 

 

Vibrio coralliilyticus is a bacterial pathogen implicated in coral and oyster disease. All 

five documented strains of V. coralliilyticus harbor at least one or multiple prophages and are 

implicated in diseases of the corals Pocillopora damicornis, Montipora aequituberculata, and 

Acropora cytherea, and of the Pacific oyster Crassotrea gigas. These bacterial strains are 

associated with different pathogenic phenotypes across coral species, such as bleaching and 

white syndrome (WS) (Kimes et al., 2012; Ushijima et al., 2014). Traditionally, 16S rDNA is 

used as taxonomic marker gene for bacterial species-level identification; however, the field of 

metagenomics and whole-genome sequencing is expanding the ability to analyze these genomes 

and understand the functional capacity of horizontal gene transfer between prophages and 
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bacteria. Bioinformatic analyses show that V. coralliilyticus can carry integrated in its genome a 

complete prophage that codes for a Zona occludens toxin (ZOT) (Rohwer and Thurber 2009; 

Weynberg et al., 2015). This exotoxin gene has striking homology to that of Vibrio cholerae 

prophage-encoded cholera toxin (CTX) gene. Vibrio cholerae infection in humans causes 

cholera, an acute diarrheal illness that results from the incorporation and expression of the 

prophage CTXφ in the bacterial genome (Waldor and Makalanos 1996). This homology suggests 

that ZOT could play a role in coral and oyster disease through a mechanism similar to that of 

CTX (Figure 1.4). 

 

Summary 

 

1. Phages, the viruses that infect bacteria, can confer functions to the bacterial host that 

contribute to pathogenicity and dysbiosis through the lysogenic lifestyle. 

2. Bacterial pathogens in the marine environment contain higher abundances of prophages in 

their genome than non-pathogenic bacteria. 

3. A comparison of prophage genetic content between marine pathogens and non-pathogens 

revealed that pathogen associated prophages are enriched in genes encoding for carbohydrate 

metabolism, membrane transport, nitrogen metabolism, virulence, and others. 

4. Horizontally acquired prophage-encoded DNA regions may play a large role in the ecology 

and evolution of marine diseases, due to the functions they confer. 

5. Future studies on the bacteria that are associated with diseases should examine the regions of 

prophages in the genome for insights into the etiology and ecology of pathogenicity. 
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6. These approaches are relevant to non-genome associated datasets (e.g., metagenomic data), 

and much is to be discovered about the ecology and evolution of prophages in diseases as these 

types of analyses become better explored and implemented 
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Figure 1.1 Conceptual overview of genes encoded by temperate phages that enhance lysogen 

fitness in ecologically relevant marine holobionts. (A) Prophage-encoded proteins that inhibit 

competing bacteria and enable expansion of the lysogen’s niche space. (B) Prophage-encoded 

virulence factors that directly affect the host. (C) Superinfection immunity prevents lytic control 

of lysogens by lytic phages. On mucosal metazoan epithelium the progeny of spontaneous 

prophage inductions can cause lytic infection in competing commensal or pathogenic non-

lysogens (Barr et al 2013; Silveira and Rohwer 2016). (D) Prophage-encoded proteins inhibit 

predation by unicellular protists that could have a negative secondary effect on the multicellular 

host. (E) Prophage-encoded genes that allow bacteria to expand their metabolic repertoire and 

niche. 
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Figure 1.2 Prophage gene abundance in publicly available host-associated bacterial genomes in 

marine ecosystems. (A) Comparison of number of hits to predicted prophage-encoded genes in 

marine bacterial genomes normalized by the respective genome length for host-associated non-

pathogens and pathogens. (B) Comparison of number of hits to predicted prophage-encoded 

genes in marine bacterial genomes normalized by total number of bacterial genes in the 

respective non-pathogen or pathogen classification. Data were accessed from public databases in 

March 2018. *** p ≤ 0.001; two-sample Wilcoxon test. 
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Figure 1.3 Subsystems level 1 functional profiles of prophage-encoded functions in publicly 

available host-associated bacterial genomes between non-pathogens and pathogens. Average 

abundance of subsystem level 1 genes of pathogens relative to the corresponding genes in non-

pathogenic bacteria. Data were accessed from public databases in March 2018. 
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Figure 1.4 Prophage-encoded ZOT toxin of Vibrio coralliilyticus disrupting intercellular 

occluding junctions (tight junctions) that maintain integrity of epithelium during coral infection 

and disease. 
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CHAPTER 2: A MULTIOMIC ANALYSIS OF IN SITU CORAL-TURF ALGAL INTERACTIONS 
 

Abstract 

 

Viruses, microbes, and host macroorganisms form ecological units called holobionts. 

Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence 

microscopy was used to investigate how the different components of the holobiont including 

bacteria, viruses, and their associated metabolites mediate ecological interactions between corals 

and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-

turf algae interface displaying higher microbial abundances and larger microbial cells. This was 

consistent with previous studies showing that turf algae exudates feed interface and coral-

associated microbial communities, often at the detriment of the coral. Further supporting this 

hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we 

found that the turf algal metabolites were significantly more reduced (i.e., have higher potential 

energy) compared to the corals and interfaces. The algae feeding hypothesis was further 

supported when the ecological outcomes of interactions (e.g., whether coral was winning or 

losing) were considered. For example, coral holobionts losing the competition with turf algae 

had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in 

bacterial growth and division. These changes were similar to trends observed in the obese human 

gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the 

long-term health of the metazoan host. Together these results show that there are specific 

biogeochemical changes at coral–turf algal interfaces that predict the competitive outcomes 

between holobionts and are consistent with algal exudates feeding coral-associated microbes. 
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Introduction 

 

Coral and algae holobionts are assemblages of the macroorganisms and their associated 

viruses, bacteria, archaea, and protists (Knowlton and Rohwer 2003). The microbial portion of 

the holobiont, the microbiome, is often species-specific, temporally stable, and distinct between 

microhabitats within the host (Bourne et al., 2016; Frias-Lopez et al., 2002; Littman et al., 2009; 

Mouchka et al., 2010; Rohwer et al., 2002; Sunagawa et al., 2010; Sweet et al., 2011; Hester et 

al., 2016). The microbiome performs a wide array of functions that influence both host 

physiology (Rosenberg et al., 2007; Bourne et al., 2009; Lynch et al., 2016) and the 

biogeochemical cycling of matter and energy (Lesser et al., 2004; Wegley et al., 2007; Beman et 

al., 2008; Siboni et al., 2008; Raina et al., 2009; Fiore et al., 2010; Kimes et al., 2012; Haas et al., 

2016; Ferrier-Pagès et al., 2016; Roach et al., 2017). The health of the holobiont is linked to the 

composition of its microbial constituents, which can be disrupted by various stressors and lead to 

dysbioses (Bourne et al., 2008; Mao-Jones et al., 2010). Host-associated microbes may also 

increase holobiont resistance and resilience to both local and global stressors (Ziegler et al., 

2017). For instance, viral and bacterial symbionts may ward off potential pathogens through 

lysis, niche exclusion, and production of antibiotics (Ritchie 2006; Nissimov et al., 2009; Rypien 

et al., 2010). These interacting biological entities will influence the chemistry of holobionts, 

which will be reflected in the metabolites.  

Understanding the roles of holobionts in ecosystem function has become increasingly 

important as many reefs that were formerly dominated by coral have been shifting to systems 

dominated by turf and fleshy macroalgae (McCook 1999; McCook et al., 2001; Hughes et al., 

2003; Hughes et al., 2007; Smith et al., 2016). Turf algae are among the most abundant algal 

competitors that corals face (Barott et al., 2009; Barott et al., 2012; Haas and Wild 2010) and, as 
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such, play an important role in initiating algal phase shifts on coral reefs. Competition with turf 

algae is known to alter the microbial communities associated with corals (Barott and Rohwer 

2012). However, the role of the microbiome and its associated metabolome in determining the 

outcome of these events (i.e., whether a coral wins or loses against its algal competitor) is still 

relatively unknown. 

To examine how microbial diversity, metabolic capacity, and biochemistry affect 

ecological interactions between macroorganisms, both surface-associated water (n =18) and 

tissue (n = 36) samples were taken at a centimeter-scale spatial resolution across in situ coral–

turf algal interactions from reefs on the island of Curaçao. All of these interactions involved turf 

algal holobionts interacting with either Diploria strigosa or Orbicella faveolata (formerly 

Montastraea faveolata) corals. Tissue samples were processed for metagenomic sequencing and 

metabolomic profiling, and the surface-associated samples were analyzed by epifluorescence 

microscopy (SI Appendix, Supplementary Methods). Microbial and viral abundance in the 

holobiont were directly quantified through microscopy. The microbiome was taxonomically and 

functionally profiled through metagenomic sequencing, and the molecular composition of the 

holobiont was assessed by untargeted metabolomic analysis. A machine learning approach was 

applied to identify which bacterial taxa, functional genes, and metabolites were most important 

for determining whether a coral was winning (i.e., had no algal overgrowth and no visible signs 

of paling or necrosis) or losing (i.e., had algal overgrowth and had visible signs of paling or 

necrosis) against its turf algal competitor. The results of this study show that there are specific 

functional genes, microbial taxa, and metabolites which distinguish coral, turf algae, and 

interface communities and that these functions, taxa, and metabolites are also linked to the 

competitive outcomes of these interactions. Specifically, the data demonstrate that there is an 
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emergent microbial community that forms at the interface between coral and turf algae, which is 

characterized by larger and more numerous bacterial cells, a greater proportion of Bacteroidetes, 

and a lower proportion of Firmicutes, as well as an enrichment in genes involved in bacterial cell 

growth and division. Furthermore, the same taxa and functional genes (i.e., Bacteroidetes, 

Firmicutes, and bacterial cell growth and division genes) are also significant predictors of 

whether the corals in these interactions were winning or losing against their turf algal competitor 

(i.e., whether the coral in the interaction was being overgrown by algae and showed visible signs 

of paling and/or tissue necrosis). In sum, the data presented here provide a comprehensive 

multiomic analysis of in situ coral–turf algal interactions, which illustrates the ecological role of 

the holobiont in organismal interactions in one of the most diverse and economically valuable 

ecosystems on Earth: coral reefs. 
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Results  

 

Site Selection and Water Chemistry 

 

All samples were collected from the Caribbean island of Curaçao in November 2015 (SI 

Appendix, Figure S2.1, Table S2.1, and Supplementary Methods). Site level water chemistry 

data including inorganic nitrogen, phosphate, and dissolved organic carbon (DOC) 

concentrations are shown in SI Appendix, Table S2.2. No sites were identified as outliers in the 

dataset for any of the measured water chemistry parameters, and these parameters were not 

significantly different between coral species (n = 6, all ANOVA P values ≥ 0.34) or competition 

outcome (n = 6, all ANOVA p-values ≥ 0.27) (SI Appendix, Table S2.2). 

 

Concentrations of Surface-Associated Viruses and Microbes Across Coral–Algal Interactions 

 

Samples for microscopic direct counts were taken by suctioning water and mucus directly 

off the surface of the coral, the turf algae, and the coral–turf algal interface with a syringe 

(Figure 2.1A). There was a general trend for the interfaces (4.80 × 106 ± 2.46 × 106 cells·mL−1; 

mean ± SEM) to exhibit higher microbial abundances than corals (1.45 × 106 ± 2.12 × 106 

cells·mL−1; mean ± SEM) or turf algae (2.50 × 106 ± 5.19 × 106 cells·mL−1; mean ± SEM (Figure 

2.1B). Coral-associated (8.24 × 106 ±1.56 × 106 VLPs·mL−1; mean ± SEM) and interface-

associated (9.64 × 106 ± 2.44 × 106 virus-like particles [VLPs]·mL−1; mean ± SEM) samples had 

a significantly higher concentration of viruses than turf algal-associated (4.04 × 106 ± 2.14 × 106 

VLPs·mL−1; mean ± SEM) samples (Figure 2.1C). Furthermore, coral-associated (6.270 ± 2.222; 

mean ± SEM) samples had a significantly higher virus-to-microbe ratio (VMR) than the 

interface-associated (2.465 ± 1.156; mean ± SEM) or turf algae-associated (1.674 ± 0.470; mean 

± SEM) samples (Figure 2.1D). Overall, VLPs and microbial cells exhibited a significantly 
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positive correlation (R2 = 0.116, p = 0.0008) with a slope of less than one (m = 0.268), and the 

VMR showed a significantly negative correlation (R2 = 0.495, p = 0.0016) with microbial cells 

(Figure 2.1E), indicating a reduced lytic production of viruses at higher microbial concentrations. 

Epifluorescence micrographs were also used to determine microbial cell size (SI 

Appendix, Supplementary Methods), and the results showed that there were significantly larger 

microbes (p < 0.001) associated with the coral–algal interface (0.351 ± 0.0094 μm3; mean ± 

SEM) when compared to the microbes associated with either the coral (0.212 ± 0.0134 μm3; 

mean ± SEM) or the turf algae (0.248 ± 0.0146 μm3; mean ± SEM) alone (Figure 2.1F). Cell 

sizes were used to calculate a predicted community metabolic power output via metabolic theory 

of ecology (MTE). MTE calculations demonstrated that the combination of cell size and 

concentration yielded a significantly (p < 0.001) higher predicted community power output at the 

coral-algal interface (280,389.167 ± 140,518.682 W·m−2; mean ± SEM) (Figure 2.1G). 

 

Holobiont and Interface-Specific Bacterial Taxa, Functions, and Metabolites.  

 

Biopsies for multiomic analysis were taken using an underwater power drill in a transect 

perpendicular to the coral–turf algal interface (Figure 2.1A) and processed for metagenomes (see 

SI Appendix, Table S2.3 for details on metagenomic libraries) and metabolomes (SI Appendix, 

Supplementary Methods). Ward’s hierarchical clustering method was used to distinguish trends 

in the bacterial taxonomic and functional composition of metagenomes as well as for 

metabolomes. Overall, samples clustered by microorganism (Figure 2.2). Functional genes 

(Figure 2.2A), bacterial taxa (Figure 2.2B), and metabolites (Figure 2.2C) showed the strongest 

support for two groups, namely, coral and noncoral (i.e., turf algae plus interface). Functional 

genes and bacterial taxa also showed support for two subgroups within both the coral and 
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noncoral clusters. Within the coral cluster, the two different species of coral studied, D. strigosa 

and O. faveolata, were observed as distinct groups. Within the noncoral cluster, there was a 

subclustering of interaction interfaces versus turf algae (Figure 2.2A and B). These trends were 

recovered from the functional annotations at both level 1 (SI Appendix, Figure S2.2) and level 3 

(Figure 2.2A and SI Appendix, Figure S.23) of the SEED database (Overbeek et al., 2005), and 

the taxonomic trends were observed at both the phylum (SI Appendix, Figure S2.4) and order 

(Figure 2.2B and SI Appendix, Figure S2.5) levels. No trends were observed in clustering by 

sample site. 

Two-way cluster analysis showed that the interaction interface group was not merely a 

mix of the coral and algal groups, but rather had its own unique functional, taxonomic, and 

metabolomic profiles (SI Appendix, Figures S2.2–S2.6); however, the interface samples were 

more similar to the algal samples than to coral samples. The unique microbiome at the interface 

had a significantly higher relative abundance of Bacteroidetes, specifically those in the order 

Flavobacteriales (p < 0.0001), and a significantly lower relative abundance of Firmicutes (p = 

0.003) when compared to the coral or turf algal microbiome (SI Appendix, Figure S2.7). 

Functional gene annotations demonstrated that there was a significant overrepresentation of 

genes involved in cell cycle and cell division (p < 0.0001) and a significant underrepresentation 

of genes involved in protein metabolism (p = 0.006) at the interface (SI Appendix, Figure S2.8). 

In the metabolomic dataset, 182 molecules were significantly more abundant at the interface 

relative to both coral and turf algae. All of these molecules were unknown (i.e., there were no 

spectral matches to the reference libraries) except for ceramide 18:1/16:0 (p = 0.0039; Figure 

2.3A). This was a level 2 annotation according to the 2007 metabolomics standards initiative 

(39–41) (SI Appendix, Figure S2.9). Ceramide 18:1/16:0 and its less saturated form, ceramide 
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18:2/16:0 (level 2) were found in coral and interface samples but were completely absent in turf 

algal samples. The less saturated (18:2/16:0) form was found in equal abundance in both coral 

and interface, whereas the more saturated form (18:1/16:0) was found to be significantly higher 

at the interface (Figure 2.3A and B and SI Appendix, Figure S2.10).  

To further investigate the metabolomic samples, each metabolite was assigned a nominal 

oxidation state of carbon (NOSC) and a Gibbs free energy of carbon oxidation under standard 

conditions (ΔGoCox) based on their putative molecular formula (with mass accuracy of <1 ppm) 

(SI Appendix, Supplementary Methods). Overall, 7,751 of the total 8,427 features (i.e., ∼92%) 

were assigned a putative molecular formula using SIRIUS4, with a mass accuracy cutoff of 

0.0020 ppm. Metabolites in turf algal samples had significantly lower NOSCs and significantly 

higher ΔG°Cox values than did interface or coral samples (NOSC p = 0.0486; ΔGoCox p = 

0.0201) (Figure 2.3C and D). This indicates that the biochemical compounds in turf algal 

samples were more reduced and were thus more energy rich. No difference in NOSC or ΔG was 

found between interactions where corals were winning or losing the competition with turf algae. 

 

Machine Learning to Identify Bacterial Taxa, Functions, and Metabolites that Best Predict 

Competition Outcomes 

 

Coral–turf algal interactions were classified as winning (i.e., coral winning) or losing 

(i.e., coral losing) based on the criteria proposed in Barott et al. (2012). Briefly, losing corals 

were classified as those corals that had significant algal overgrowth along with visible paling 

and/or tissue necrosis, whereas winning corals were corals that did not have algal overgrowth 

and did not show any signs of paling or necrosis. To distinguish which holobiont variables were 

linked to the competitive outcomes of the interactions, a random forests classification analysis 

was used. Random forests analysis showed that there were important functional genes (SI 
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Appendix, Figures S2.11–S2.13), bacterial taxa (SI Appendix, Figures S2.14–S2.16), and 

metabolites (SI Appendix, Figures S2.17–S2.19), which distinguished winning and losing 

interactions. 

The top 10 most important variables in each analysis (SI Appendix, Figures S2.11-S2.19) 

were used to construct a two-way hierarchical dendrogram (Figure 2.4) to visualize 

distinguishable groups of winning and losing corals, interfaces, and algae. Using these important 

taxa (Figure 2.4D-F and SI Appendix, Table S2.4), functional genes (Figure 2.4A-C and SI 

Appendix, Table S2.5), and metabolites (Figure 2.4 G-I), samples clustered significantly by 

winning or losing interactions. Notably, all of the bacterial orders associated with losing 

interfaces were from a single bacterial phylum, Bacteroidetes. 

To further elucidate the taxonomic and functional mechanisms involved in winning and 

losing coral–algal interactions, one-way ANOVAs were performed on all bacterial phyla and 

level 1 SEED metabolic categories followed by Tukey post hoc analysis on all significant 

variables (ANOVA p-values ≤0.05). This analysis revealed that there were only two phyla and 

two SEED subsystems that were significantly different at the interface relative to both coral and 

turf algal samples (i.e., ANOVA p-value ≤ 0.05 and Tukey p-value ≤ 0.05). The phylum 

Bacteroidetes was significantly enriched in interface samples, while the phylum Firmicutes was 

significantly depleted in the interface samples (Figure 2.5A and SI Appendix, Figure S2.7). 

Functionally, genes involved in cell division were significantly enriched in interface samples 

(Figure 2.5B and SI Appendix, Figure S2.8). The taxonomic shift toward Bacteroidetes and 

concomitant enrichment in cell division-related genes, as observed at the interface, was also 

observed on coral tissue of losing colonies (Figure 2.5A and SI Appendix, Figure S2.7). These 

results demonstrate a significantly higher Bacteroidetes-to-Firmicutes ratio at the interface and in 
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losing corals (Figure 2.5A). Regression analysis showed that the Bacteroidetes to Firmicutes 

ratio was significantly correlated with genes involved in cell division (Figure 2.5C) (R2 = 0.560, 

F(1,16) = 20.4, p = 0.0004) as well as being significantly correlated with total microbial biomass 

(Figure 2.5D) (R2 = 0.402, F(1,16) = 10.76, p = 0.0047). Taken together, these results suggest 

that an increase in Bacteroidetes is linked to an increase in cell division, greater bacterial cell 

size, and total biomass and that this shift toward faster growing, larger Bacteroidetes is linked to 

whether corals win or lose in their competitive interactions against benthic algae. 

Discussion 

 

The data presented herein illustrate that there are significant differences in the size, 

abundance, and community composition of microbes across in situ coral–turf algal interfaces 

(Figure 2.1). These differences show there is an emergent community that forms at the interface 

between coral and turf algae, which is characterized by larger and more numerous bacterial cells, 

a higher proportion of Bacteroidetes, a lower proportion of Firmicutes, an enrichment in genes 

involved in bacterial cell growth and division, and an increase in the potentially proapoptotic 

compound ceramide 18:1/16:0. 

 

Microbial and Viral Abundances 

 

The highest viral abundance was in the coral holobiont. The increased viral abundance in 

the coral-surface holobiont may be due to the bacteriophage adherence to mucus (BAM) 

dynamics described in Barr et al. (2013). BAM dynamics imply that bacterial viruses 

(bacteriophage or phage) adhere to mucus glycoproteins through noncovalent interactions with 

capsid proteins. Corals may use these mucus-attached phages to defend against invading 

bacterial pathogens. The combination of the differences in viral and bacterial abundances leads 
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to a significant difference in the VMR across the interface, where coral holobionts have the 

lowest microbial load but the highest VMR (Figure 2.1D). Furthermore, metagenomic analyses 

demonstrated higher levels of prophage in algal samples (SI Appendix, Figure S2.20), where 

VMR was the lowest (Figure 2.1D). Taken together, these data suggest a trend toward a decrease 

in lytic activity and an increase in viral lysogeny at higher microbial concentrations (Figure 2.1E 

and SI Appendix, Figure S2.20). A similar trend has been seen in other environments (Knowles 

et al., 2016; Coutinho et al., 2017), including the water column of tropical coral reefs, and has 

been described as Piggyback-the-Winner dynamics (Knowles et al., 2016). Piggyback-the-

Winner posits that when VMRs are low, such as in interface and turf algal samples, there are 

more bacterial cells harboring lysogenic phage. This means that the bacterial assemblages at the 

interface and turf algae harbor a higher proportion of phage-encoded genes, which has been 

linked to increased pathogenicity of the overall community (Brüssow et al., 2004; Brüssow 2007; 

Munro et al., 2003; Aziz et al., 2005; Weynburg et al., 2015; Little et al., 2020). These microbe-

phage dynamics may be another mechanism at play in the complex interactions of coral and algal 

holobionts. 

 

Microbial Biomass and Energetics 

 

The results also demonstrate that there are significantly larger microbial cells at the 

interface between coral and turf algae (Figure 2.1F). This change in cell size coupled to the cell 

concentrations leads to a higher predicted metabolic power output at the coral–algal interface 

(Figure 2.1G). This trend of higher power output has also been reported using calorimetry in 

controlled laboratory experiments (Roach et al., 2017). A higher microbial power output at the 

coral–algal interface means that the microbial populations here are using energy at a faster rate 
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and are dissipating more of that energy as heat (Roach et al., 2017; Roach et al., 2018). The 

increase in metabolic rate at the interface may be responsible for the reported decreased oxygen 

levels at the interface (Roach et al., 2017; Silveira et al., 2019; Haas et al., 2013; Gregg et al., 

2013; Jorrisen et al., 2016). Understanding the direct links between bacterial taxa, cell size, 

power output, and biological oxygen demand may provide a more complete conceptual model of 

the way bacterial metabolism is involved in competitive interactions between benthic 

macroorganisms. 

 

Emergent Microbiome and Metabolome at the Coral–Turf Algal Interface 

 

Metabolomic samples showed clear differences between coral and noncoral holobionts. 

The interface exhibited a unique chemical signature, however, the metabolites driving 

differences at the interface were mostly unknown compounds. One known compound (level 2 

according to the metabolomics standards initiative) was the potentially proapoptotic molecule, 

ceramide 18:1/16:0 (Figure 2.3A). Other bioactive lipids and proapoptotic inflammatory 

modulators have previously been shown to play a role in the coral holobiont (Quinn et al., 2016; 

Galtier d’Auriac et al., 2018; Roach et al., 2021), suggesting that non-self-recognition among 

some of the oldest extant holobionts (i.e., corals) involves bioactive lipids identical to those in 

highly derived taxa like humans. The data here further strengthen the hypothesis that major 

players of the immune response evolved during the pre-Cambrian era (Quistad et al., 2014). 

Furthermore, turf algal metabolites were found to have more negative nominal oxidation states of 

carbon and higher ΔG of carbon oxidation (Figure 2.3C and D), suggesting that the biochemicals 

in the turf algal holobiont are more reduced and, thus, more energy rich. It may be the 

combination of naive coral microbes being exposed to high-energy turf algal compounds at the 
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interface, which leads to the increase in size and power output of the bacterial cells at the 

interface (Figure 2.1F and G). The feeding of coral microbes on turf algal metabolites at the 

interface may also be in part responsible for the decrease in oxygen levels previously observed at 

the coral–algal interface (Roach et al., 2017; Haas et al., 2013). Thus, we propose the “algae 

feeding hypothesis” where reduced, high-energy turf algae exudates feed interface and coral-

associated microbial communities, often to the detriment of the coral animal. 

The metagenomic and metabolomic data show that there are specific bacterial taxa, 

functional genes, and metabolites that distinguish coral, turf algae, and interfaces (Figure 2.2), as 

well as winning and losing interactions (Figure 2.4 and SI Appendix, Tables S2.4 and S2.5). 

Furthermore, these data indicate that the interface is not merely a mix of coral and turf algal 

holobionts, but rather has its own emergent signature (SI Appendix, Figures S2.2–S2.6), which is 

more similar to the turf algal holobiont than the holobiont of coral (Figure 2.2). Specifically, 

members of the Bacteroidetes clade are overrepresented at the interaction interface, while the 

phylum Firmicutes is underrepresented at the interface (Figure 2.5 and SI Appendix, Figure 

S2.7). A similar trend is observed in coral samples, where Bacteroidetes are enriched in losing 

corals and Firmicutes are depleted in losing coral samples (SI Appendix, Figure S2.7). Thus, the 

data demonstrate that the Bacteroidetes-to-Firmicutes ratio is a significant predictor of whether a 

coral will win or lose in a competitive interaction with algae. The ratio of Bacteroidetes to 

Firmicutes is also a significant predictor of health status in other systems such as the human gut 

where this ratio has been linked to obesity (Ley et al., 2006) and in the human lung where it is 

linked to disease states in cystic fibrosis patients (Garg et al., 2017). The Bacteroidetes-to-

Firmicutes ratio was a significant predictor of the amount of cell division genes and total 

microbial biomass in these holobionts (Figure 2.5D). Studies in mice and humans have shown 
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that the change in the Bacteroidetes-to-Firmicutes ratio can have significant impacts on energy 

output and biomass of microbial communities, with Bacteroidetes having an increased capacity 

to harvest energy from reduced compounds (Turnbaugh et al., 2006). Given that the abundance 

of Bacteroidetes and the Bacteroidetes-to-Firmicutes ratio was higher at the interface and in 

losing coral samples, we propose a working model (Figure 2.6) whereby the reduced metabolites 

released by turf algae select for an increase in Bacteroidetes relative to Firmicutes, which, in 

turn, leads to a faster growing bacterial community with larger cells and higher energy use rate. 

These fast-growing microbes can outcompete the corals for resources such as oxygen, which 

weaken the coral and lead to eventual algal overgrowth. This link between the energy content of 

algal metabolites, bacterial taxonomic composition, community metabolism, and coral health 

provides interesting insight into the ways that different components of the holobiont affect the 

outcome of ecological interactions and eventually shape entire community assemblages. 

Despite the current progress in the field, it is worth noting that environmental multiomics 

still has a long way to go. Metabolomics databases are sparsely populated in regard to 

environmental metabolites making annotation difficult and leaving the majority of compounds 

unclassified. As this work and others (e.g., Robbins et al., 2019) have demonstrated the need to 

consider all components of the holobiont, it is clear that new methods and increased sequencing 

efforts will be needed to provide the amount of microbial coverage necessary to properly 

describe the roles of the less abundant components of the holobiont such as archaea and viruses. 

Thus, we highlight that future work is needed to provide more robust analyses of the coral and 

algal holobionts and their associated metabolites. 
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Conclusions 

 

Overall, this study demonstrates that there are differences in both the surface-associated 

microbial community and the total holobionts of coral and turf algae, and that when these 

organisms interact, there is an emergent interface community. We hypothesize that this emergent 

community is driven by the coral microbiome feeding on the energy-rich exudates released by 

the adjacent turf algae, a phenomenon we term the algae feeding hypothesis. The data also show 

that specific bacterial groups such as Bacteroidetes and Firmicutes play a role in determining the 

competitive outcome of coral–turf algae interaction events. However, what this role is remains 

an open question and will require further investigation. In sum, we emphasize the role of host-

associated microbial communities in ecological processes and highlight that the holobiont plays 

an important part in determining the outcome of coral–turf algal interactions and overall reef 

health. 

 

Significance 

 

All plants and animals are associated with communities of viruses and microbes that 

interact via a suite of metabolites. These components play critical roles in the success of these 

assemblages; however, the role of individual components (i.e., bacteria, viruses, metabolites) and 

how these govern ecological interactions between macroorganisms is not understood. This study 

investigates the role of holobiont components in coral–turf algal interactions. The data 

demonstrate that an emergent microbiome and metabolome form at the interface between coral 

and turf algae in competitive interactions. Machine learning analyses show that this emergent 

community predicts the outcome of these interactions. These results provide insight into rules of 
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community assembly in microbiomes and the roles of holobiont components in mediating 

ecological interactions. 
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Methods 

 

Methods Overview 

 

All samples were collected from in situ coral–turf algal interactions by divers on SCUBA 

around the Caribbean island of Curaçao in November of 2015. Surface-associated water samples 

and tissue biopsies were collected to assess the surface-associated epibiont and the tissue-

associated microbial communities of corals and turf algae in direct competitive interactions with 

one another. Surface-associated water samples were processed for microscopy using both SYBR 

Gold and DAPI stains to quantify the abundance of bacteria and virus-like particles as well as the 

size of bacterial cells. Tissue biopsies were processed for metagenomics sequencing on a MiSeq 

platform and untargeted metabolomics via liquid chromatography tandem mass spectrometry. A 

machine learning approach was applied to metagenomic and metabolomic datasets to identify 

which bacterial taxa, functional genes, and metabolites were most important for determining 

whether a coral was winning or losing against its turf algal competitor. See SI Appendix, 

Supplementary Methods for a detailed explanation of all methods.  

 

Data availability 

 

Metagenomic sequence data from this study has been deposited into the Sequence Read 

Archive under the study accession code PRJNA597953. Metabolite library spectra files are 

available through the GNPS at the following link: 

(https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=7d1e1045428548bbad575ff12445a48c&view

=advanced_view). 
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Supplemental Methods 

 

Sample collection 

 

All samples were collected by divers on SCUBA in November 2015 around the island of 

Curaҫao (12.1696° N, 68.9900° W). Samples for microscopy were taken by suctioning water and 

mucus directly off the surface of the coral, the algae, and the coral-algal interface using a 3 mL 

blunt tip syringe. Coral and algal samples were taken 10 cm away from the interface (Figure 2.1) 

by suctioning 100 μL of surface-associated water and mucus every 0.5 cm over a 10 cm transect 

parallel to the interface, yielding a total sample volume of 2 mL. A similar process was 

conducted along a 10 cm transect of the interface. 

Biopsies for metagenomic and metabolomic analysis were taken using an underwater 

power drill (Nemo Power Tools, Santa Clara, CA, USA). Biopsies, 1 cm in diameter and 1 cm in 

length, were collected in a transect perpendicular to the coral-algal interface (Figure 2.1). The 

coral and algal samples were taken 10 cm away from the interface on their respective sides. The 

Interface samples were taken directly at the interface of the coral and turf algae. Biopsies for 

metabolomic analysis were placed into 10 mL of LCMS grade 70% methanol and 30% water for 

metabolite extraction and later analyzed via liquid chromatography tandem mass spectrometry 

(LC-MS/MS). Samples for Metagenomic analysis were placed in RNA Later (Thermo Fisher 

Scientific, Waltham, MA, USA) and stored at -80° C after 30 min. 

 

Epifluorescence microscopy 

 

Microscopy samples were divided into two aliquots in order to analyze both viral 

abundance and microbial size via SYBR and DAPI staining respectively. SYBR aliquots were 

fixed with microscopy grade paraformaldehyde at 1% final concentration, vacuum filtered onto a 
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0.02 µm Anodisc filter (Whatman Inc., Florham Park, NJ, USA), stained with SYBR Gold (5 X 

final concentration; Invitrogen, Carlsbad, CA, USA), and mounted on microscope slides. DAPI 

aliquots were fixed with microscopy grade glutaraldehyde at 2% final concentration, vacuum 

filtered onto a 0.2 µm Anodisc filter (Whatman Inc., Florham Park, NJ, USA), stained with 

DAPI (5 μg∙mL-1 final concentration; Invitrogen, Carlsbad, CA, USA), and mounted on 

microscope slides. The stained filters were imaged using an epifluorescence microscope 

(excitation/emission: 358/461 nm) at 600X magnification and were quantified using Image Pro 

software (Media Cybernetics).  

 

Calculation of metabolic power output 

 

Metabolic power was calculated using the methods of McDole et al., 2012. Briefly, 

whole organism metabolic rate (I), defined as the amount of energy per unit time that an 

individual organism requires, was calculated using Equation 1: 

𝐼 = 𝑖0𝑀𝛼𝑒−𝐸⁄𝑘𝑇 

Where 𝑖0 is the mass-independent normalization constant, M is the wet weight of the 

organism in grams, and α is the scaling exponent. The effects of temperature on metabolic rate 

are accounted for by 𝑒−𝐸⁄𝑘𝑇 where E is the activation energy, k is Boltzmann's constant (8.62 × 

10−5 eV∙ K−1), and T is the water temperature (in Kelvin) at the site at the time of collection. 

Community-level metabolic rates were calculated by summing the individual metabolic rates (I) 

for all microbes in a sample. 
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Metagenome generation and analysis 

 

Total DNA was extracted from coral punches using the AllPrep DNA/RNA kit (Qiagen). 

Metagenomic libraries were constructed using Illumina Nextera XT library preparation kits and 

sequenced at the SDSU sequencing facility via 96-plex sequencing with 600 cycles using the 

MiSeq platform with 2 x 300 pair-end read chemistry. Raw reads were quality-filtered by 

removing short reads (< 60 bp), reads with quality scores < 20, reads with >1% ambiguous bases, 

low complexity reads (entropy > 70), and duplicate reads, using the program PRINSEQ 

(Schmieder and Edwards 2011). Quality filtered metagenomic libraries were aligned using 

SUPERFOCUS (Silva et al., 2016) and the SEED hierarchical database of BLASTX-translated 

protein orthologs classified according to putative functional families (Overbeek et al., 2014). 

Relative abundances of taxa and functional gene classifications within each metagenome were 

used as input to the multivariate statistical and distance-based analyses described in the statistical 

analysis section. 

Shotgun sequence metagenomic libraries generated a total of 19,388,513 raw reads with 

an average of 1,077,140 reads per sample (+ 148,402 raw reads per sample). This resulted in 

18,819,251 quality-filtered reads with an average of 1,045,514 quality-filtered reads per sample 

(± 144,414 reads) of which an average of 12.3% (± 3%) were bacterial and < 0.5% (± 0.07%) 

were non-bacterial microbes. More information and statistics on metagenomic libraries can be 

found in Table S2.3. 

 

Bioinformatics search for prophage in metagenomes 

 

Unassembled metagenomic reads were queried using Fragment Recruit Assembly 

Purification (FRAP, https://github.com/yinacobian/frap) against a prophage protein database and 
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bacterial genome reference dataset. FRAP uses the SMALT pairwise sequence alignment 

program where we chose an ≥80% nucleotide identity for the complete query read against both 

databases (Ponstingl and Ning 2010). The prophage protein dataset consisted of 1.5 million 

contigs from PhiSpy predicted proteins in the NCBI RefSeq database and the bacterial genome 

database contained 66,000 complete bacterial genomes from NCBI RefSeq (Akhter et al., 2012; 

Pruitt et al., 2007). Our metric for percent prophage was determined by dividing the number of 

hits to the PhiSpy predicted protein database by the hits to the NCBI bacterial genome reference 

set. 

 

Ultra-Performance Liquid Chromatography – Tandem Mass Spectrometry 

 

The extracted metabolites were separated with UltiMate 3000 Ultra-Performance Liquid 

Chromatography (UPLC) system (Thermo Scientific) using a KinetexTM 1.7 mm C18 reversed 

phase UHPLC column (50 mm x 2.1 mm). The gradient used for the chromatographic separation 

consists of two solvents, solvent A (2% acetonitrile and 98% of 0.1% formic acid in LC-MS 

grade water) and solvent B (98% acetonitrile and 2% of 0.1% formic acid in LC-MS grade 

water). The gradient started with 90% - 10% of solvent A and B respectively for 1.5 minutes 

followed by a step wise gradient change of 10% every 30 sec. for 2 minutes. Then the 50%-50% 

mixture was held for 2 min., followed by the increase of solvent B from 50% (50%-50%) to 

100% (0%-100%) in 6 min. The 100% solvent B was held for 30 sec. Within the next 30 sec., the 

mixture changed from 0%-100% to a 90%-10% mixture and was kept at this mixture for another 

30 sec. Throughout the run, the flow rate was kept constant at 0.5 mL∙min-1. 

A Maxis Q-TOF mass spectrometer (MS) (Bruker Daltonics) was coupled to the UPLC 

system, directly measuring the compounds coming off the LC-column. The spectrometer was 
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equipped with an electrospray ionization (ESI) source (200°C). Positive ion mode acquired MS 

spectra in the range of 50 – 2000 m/z. Prior to data collection, the spectrometer was externally 

calibrated with ESI-L Low Concentration Tuning Mix (Agilent technologies, Santa Clara, CA, 

USA). Throughout runs, Hexakis (1H,1H,3H-tetrafluorpropoxy) phosphazene (Synquest 

Laboratories, Alachua, FL, USA; m/z 922.0098) was used as the internal calibrant. Both MS1 

and MS2 had a nebulizer gas pressure (nitrogen) of 2 bar, dry gas flow of 9 L∙min-1 source 

temperature, and a capillary voltage of 4500 V. MS1 had a spectral rate of 3 Hz, and MS2 a 

spectral rate of 10 Hz. To obtain MS/MS fragmentation, the ten most intense ions per MS1 scan 

were introduced into the MS2, where they were fragmented using collision-induced dissociation. 

Automatic exclusion was used where an ion would be ignored in more than 3 scans, but when 

intensity was 2.5x the previous scan it would be re-fragmented. 

 

Feature Table Generation 

 

The raw datafiles from the MS machine were converted into .mzXML files with the 

Bruker Data Analysis software version 4.1. The .mzXML files are available on the MassIVE 

database (massive.ucsd.edu) under number MSV000080597 and MSV000080632 (same dataset). 

The .mzXML files were imported into MZmine (Pluskal et al., 2010). Mass detection threshold 

for MS1 was 3.00E+03, and 1.00E+02 for MS2. For building the chromatogram a minimum 

peak height of 6.00E+03, with a minimum peak duration of 1.00E-2 was set, together with a 

mass error of 2.50E+01 ppm, and 5.00E-02 m/z. For deconvolution, we used a baseline cutoff, 

with the minimum peak height of 4.00E+03, peak duration range of 0.01 to 3 min., and a 

baseline level of 1.00E+03. The m/z range for MS2 scan paring was set to 5.00E-02 Da, and the 

retention time range was set to 0.2 min. Isotope peaks were grouped with the m/z tolerance set to 



45 

 

5.00E-02 or 25 ppm, and a retention time tolerance of 0.1 and a maximum charge of 4. The 

representative isotope would be the most intense one. Features of different samples are aligned 

with an m/z tolerance of 5.00E0.2 m/z or 25 ppm with a weight for m/z of 75. Retention time 

tolerance for alignment was set to 0.1 with a weight of 25. The peak list is filtered for a 

minimum of 2 peaks in a row, and 2 peaks in an isotope pattern. Only peaks with an MS2 scan 

were kept. Duplicated peaks were filtered out using the m/z tolerance of 5.00E-02 m/z or 25 

ppm, and a retention time tolerance of 0.1. Gap filling occurred with an intensity tolerance of 

10%, m/z tolerance of 5.00E-02 m/z or 25 ppm, and a retention time tolerance of 0.15. The data 

was exported into a .CSV file (feature table) and a .mgf file for GNPS. 

 

Molecular Network Generation 

 

Molecular networks were created on GNPS using the molecular networking workflow 

with a cosine score above 0.65 and more than 4 matched peaks. Further edges between two 

nodes were kept in the network if and only if each of the nodes appeared in each other's 

respective top 20 most similar nodes. The spectra in the network were then searched against 

GNPS's spectral libraries. The library spectra were filtered in the same manner as the input data. 

All matches kept between network spectra and library spectra were required to have a score 

above 0.7 and at least 4 matched peaks. The GNPS buckettable was downloaded after network 

analysis and spectral intensities used to identify differential metabolites between coral, algae and 

interface. 

The molecular network used to identify the ceramide molecule is available here: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=15cfb993ddb24c4986f40c62510b9661. 
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Molecular Formula assignment and calculation of Nominal Oxidation State of Carbon 

 

For formula assignment the .mgf file generated by MZMine2 (9) was imported into 

SIRIUS 4.0.1 (https://bio.informatik.uni-jena.de/sirius/) for molecular structure identification. 

SIRIUS 4.0.1 was used to generate putative molecular formulas with an allowed mass deviation 

of 0.0020 ppm. The formula with the highest probability (nr 1 predictor as identified by SIRIUS 

4.0.1) was used to calculate the Nominal Oxidation State of Carbon (NOSC) as described in 

Graham et al. (2017) using: 

𝑁𝑂𝑆𝐶 =  −(
−𝑍 + 4𝑎 + 𝑏 + 3𝑐 − 2𝑑 + 5𝑒 − 2𝑓

𝑎
) + 4 

 

where a, b, c, d, e, and f are the numbers of C, H, N, O, P, and S atoms respectively in a given 

organic molecule and Z is net charge of the organic molecule. These NOSCs were then used to 

calculate the Gibbs Fee Energy of Carbon Oxidation (∆G°Cox) of these compounds using the 

methods described in LaRowe and Van Cappellen (2011). 

 

Statistical Analysis 

 

All tests were conducted with an alpha of 0.05 (95% confidence level). A one-way 

analysis of variance (ANOVA) followed by a Tukey post hoc analysis were used to test for 

significant differences in viral abundance, bacterial abundance, bacterial size, bacterial metabolic 

power output, virus to microbe ratio, bacterial taxa, functional genes, NOSCs, ∆GoCox, and 

ceramide abundance by treatments (i.e., an effect of coral, algae, interface). Data were further 

analyzed with linear regression comparing log (viral abundance) and virus to microbe ratio to log 

(bacterial abundance) and comparing cell division genes and total bacterial biomass to the 

Bacteroidetes to Firmicutes ratio. All the statistical analyses were performed using JMP 14 
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software (SAS Software). All dendrograms were produced using the Wards hierarchical 

clustering function in JMP 14. Two-way dendrogram heat maps, were produced by using the 

two-way clustering function in JMP 14. 

All random forests analyses were performed in R using the 'rfPermute' in combination 

with the ‘randomForest’ package (Archer 2016). In supervised random forests, the competition 

outcome (i.e., winning or losing) of each sample was given and used for the learning process to 

identify winning or losing samples based on the metabolomic, taxonomic, and functional gene 

data. 

Supervised random forests were done within a group of samples identified as either coral, 

algae, or interface. The variable importance plots (VIPs) from the random forests were used to 

identify the molecules, taxa, and functional genes that best distinguished winning and losing 

interactions within the three groups (i.e., coral, algae, interface). The top ten variables from each 

VIP were used to construct two-way dendrograms for distinguishing winning and losing 

interactions in each sample type in JMP 14.  
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Figures  
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Figure 2.1 Analysis of coral-, interface-, and turf algal-associated virus and microbe 

communities by epifluorescence microscopy. (A) Sampling schematic. Separate surface-

associated water samples for microbial and viral counts and tissue biopsies for multiomics were 

taken from the coral, the turf algae, and the interaction interface between the two 

macroorganisms. Interface samples were taken at the coral–turf algae interaction zone, and coral 

and turf algae water and tissue samples were taken 10 cm away from the interface. All samples 

were taken from coral–turf algal interactions at a 10–15 m depth. (B) Concentration of microbial 

cells per milliliter. (C) Concentration of VLPs per milliliter. (D) VMR. (E) Linear regression 

analysis of the concentration of VLPs (blue line) and VMR (red line) as a function of microbial 

cell concentration. (F) Microbial cell size. (G) The community power output in W/m2 as 

predicted by MTE. For B–D and G, triangles (▲) represent coral losing interactions, circles (•) 

represent coral winning interactions, orange symbols represent interactions with D. strigosa, and 

green symbols represent interactions with O. faveolata (n = 18, **p ≤ 0.05, ***p ≤ 0.01) 
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Figure 2.2 Hierarchical clustering of samples. Metagenomic and metabolomic data from coral, 

turf algae, and interface tissue samples were clustered using Ward’s hierarchical clustering 

method based on the functional genes (A), bacterial taxa (B), and metabolites (C). The branch 

tips are labeled to describe the site number (1–6), the sample type (A, algae; C, coral; I, 

interface), the type of coral (D = D. strigosa, O = O. faveolata), and whether the coral in the 

interaction was winning (W) or losing (L). 
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Figure 2.3 Metabolites across the coral-algal interface. The ceramide 18:1/16:0 abundance (A), 

the less saturated form, ceramide 18:2/16:0 (B) represented as the area under the curve (AUC). 

The average nominal oxidation state of carbon (NOSC) (C), and the average Gibbs free energy 

of carbon oxidation (ΔG°Cox) (D) (n = 18, ***p < 0.01). Triangles (▲) represent coral losing 

interactions and circles (•) represent coral winning interactions. Orange symbols represent 

interactions with D. strigosa and green symbols represent interactions with O. faveolata. 
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Figure 2.4 Two-way clustering of winning and losing interactions. Samples were clustered with 

Ward’s hierarchical clustering method using the top random forest predictors for winning and 

losing corals (A, D, and G), interfaces (B, E, and H) and algae (C, F, and I) using functional 

genes (A–C), bacterial taxa (D–F), and metabolites (G–I) as inputs for the random forests. 

Abbreviations are as follows: A, algae; C, coral; D, D. strigosa; I, interface; L, losing; M, O. 

faveolata; W, winning. For metabolites, all the significant predictors of the coral–turf algal 

competition outcome were unannotated in the GNPS database. Thus, the first number is the 

GNPS cluster index, the following number is the mass-to-charge ratio, the third number is the 

retention time, and finally, the network subcluster ID where −1 indicates a single looped 

compound. For all heat maps, redder indicates relatively higher abundances and bluer indicates 

relatively lower abundances.  
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Figure 2.5 Results of ANOVA and subsequent regression analysis. Bacteroidetes-to-Firmicutes 

ratio (A), genes involved in cell division (B), regression analysis of the Bacteroidetes-to-

Firmicutes ratio versus genes involved in cell division (C), and total microbial biomass in grams 

(D). n = 18. For A and B, triangles (▲) represent coral losing interactions and circles (●) 

represent coral winning interactions, and orange symbols represent interactions with D. strigosa 

and green symbols represent interactions with O. faveolata (***p < 0.001). 
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Figure 2.6 Working model of how different components of coral and turf algal holobionts 

mediate ecological interactions on the reef. Viruses are most abundant in the coral epibiont while 

bacteria are most abundant at the interface. This leads to the highest VMR in the coral holobiont 

and the lowest VMR in the turf algal holobiont. When coupled to the increased abundance of 

prophage found in the turf algal metagenomes this suggests increased lysogeny in the turf algal 

holobiont and increased lytic activity in the coral holobiont. Bacterial cell size, microbial 

metabolic power output, bacterial cell division, and the Bacteroidetes-to-Firmicutes ratio is 

highest at the interface. The potentially proapoptotic metabolite ceramide 18:1/16:0 is found only 

in the coral and interface samples but is most abundant at the interface. 
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Supplementary Figures and Tables 
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Supplemental Figure 2.1 Map of sampling sites around the island of Curaçao. Surface-associated 

samples were taken at each site by suction from the surface of the coral, the algae, and the 

interface over a 10 cm transect parallel with the interface. Tissue samples were taken at each site 

using an underwater power drill taking a biopsy 1 cm in diameter and 1 cm in depth. All samples 

were taken from coral-algal interactions at a 10-15 m depth. 
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Supplemental Figure 2.2 Two-way heat map constructed using functional genes at level 1 of the 

SEED hierarchical database. Green, red, and blue branches represent the three significant 

clusters. The branch tips are labeled to describe the site number (1-6), the sample type (C: coral, 

I: interface, A: algae), the type of coral (D = D. strigosa, O = O. faveolata, and whether the coral 

in the interaction was winning (W) or losing (L). Redder indicates relatively higher abundances 

and bluer indicates relatively lower abundances.  
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Supplemental Figure 2.3 Two-way heat map constructed using functional genes at level 3 of the 

SEED hierarchical database. Green, red, and blue branches represent the three significant 

clusters. The branch tips are labeled to describe the site number (1-6), the sample type (C: coral, 

I: interface, A: algae), the type of coral (D = D. strigosa, O = O. faveolata, and whether the coral 

in the interaction was winning (W) or losing (L). Redder indicates relatively higher abundances 

and bluer indicates relatively lower abundances. 
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Supplemental Figure 2.4 Two-way heat map constructed using bacterial phyla. Green, red, and 

blue represent branches the three significant clusters. The branch tips are labeled to describe the 

site number (1-6), the sample type (C: coral, I: interface, A: algae), the type of coral (D = D. 

strigosa, O = O. faveolata, and whether the coral in the interaction was winning (W) or losing 

(L). Redder indicates relatively higher abundances and bluer indicates relatively lower 

abundances. 
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Supplemental Figure 2.5 Two-way heat map constructed using bacterial orders. Green, red, and 

blue branches represent the three significant clusters. The branch tips are labeled to describe the 

site number (1-6), the sample type (C: coral, I: interface, A: algae), the type of coral (D = D. 

strigosa, O = O. faveolata, and whether the coral in the interaction was winning (W) or losing 

(L). Redder indicates relatively higher abundances and bluer indicates relatively lower 

abundances. 
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Supplemental Figure 2.6 Two-way heat map constructed using metabolites. Green and red 

branches represent the two significant clusters. The branch tips are labeled to describe the site 

number (1-6), the sample type (C: coral, I: interface, A: algae), the type of coral (D = D. strigosa, 

O = O. faveolata, and whether the coral in the interaction was winning (W) or losing (L). Redder 

indicates relatively higher abundances and bluer indicates relatively lower abundances. 
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Supplemental Figure 2.7 Box plots of the percent relative abundance of the two phyla where the 

interface samples were significantly different than both the coral and the algal samples. (n = 18, 

Tukey post hoc **p ≤ 0.05, ***p ≤ 0.01) 
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Supplemental Figure 2.8 Box plots of the percent relative abundance of the two level 1 SEED 

subsystems where the interface samples were significantly different than both the coral and the 

algal samples. (n = 18, Tukey post hoc *p ≤ 0.1, **p ≤ 0.05, ***p ≤ 0.01) 
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Supplemental Figure 2.9 Mirror plot of spectral match for ceramide 18:1/16:0. The GNPS library 

reference is on the bottom in green with the spectra for the compound in the coral and interface 

samples is shown above in black. Note, the high intensity peak at 264.2 is decisive for the 18:0 

backbone. 
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Supplemental Figure 2.10 Molecular network of ceramides in coral, algal, and interface 

metabolomics data from GNPS. The structure of known ceramide is shown along with its less 

saturated form. Edges are labeled by the mass difference between related nodes and known 

biochemical transformations are highlighted. The nodes are colored in a pie chart based on the 

total spectral intensity between coral, algae, and interface according to the color legend. 
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Supplemental Figure 2.11 Variable importance plot of functional genes (SEED level 3) from 

random forest classification analysis based on winning and losing corals. Variable are ranked 

from highest to lowest according to their mean decrease in accuracy. 

 

 

 

  



67 

 

Supplemental Figure 2.12 Variable importance plot of functional genes (SEED level 3) from 

random forest classification analysis based on winning and losing algae. Variable are ranked 

from highest to lowest according to their mean decrease in accuracy. 
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Supplemental Figure 2.13 Variable importance plot of functional genes (SEED level 3) from 

random forest classification analysis based on winning and losing interfaces. Variable are ranked 

from highest to lowest according to their mean decrease in accuracy. 
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Supplemental Figure 2.14 Variable importance plot of bacterial orders from random forest 

classification analysis based on winning and losing corals. Variable are ranked from highest to 

lowest according to their mean decrease in accuracy. 
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Supplemental Figure 2.15 Variable importance plot of bacterial orders from random forest 

classification analysis based on winning and losing algae. Variable are ranked from highest to 

lowest according to their mean decrease in accuracy. 
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Supplemental Figure 2.16 Variable importance plot of bacterial orders from random forest 

classification analysis based on winning and losing interfaces. Variable are ranked from highest 

to lowest according to their mean decrease in accuracy. 
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Supplemental Figure 2.17 Variable importance plot of metabolites from random forest 

classification analysis based on winning and losing corals. Variable are ranked from highest to 

lowest according to their mean decrease in accuracy. The first number is the GNPS annotation 

number, the following number is the mass to charge ratio, the third number is the retention time, 

the fourth number is the network subcluster ID where -1 indicates a single looped compound. 

This is followed by the putative molecular formula for all molecules where annotation was 

possible. 
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Supplemental Figure 2.18 Variable importance plot of metabolites from random forest 

classification analysis based on winning and losing algae. Variable are ranked from highest to 

lowest according to their mean decrease in accuracy. The first number is the GNPS annotation 

number, the following number is the mass to charge ratio, the third number is the retention time, 

the fourth number is the network subcluster ID where -1 indicates a single looped compound. 

This is followed by the putative molecular formula for all molecules where annotation was 

possible. 
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Supplemental Figure 2.19 Variable importance plot of metabolites from random forest 

classification analysis based on winning and losing interfaces. Variable are ranked from highest 

to lowest according to their mean decrease in accuracy. The first number is the GNPS annotation 

number, the following number is the mass to charge ratio, the third number is the retention time, 

the fourth number is the network subcluster ID where -1 indicates a single looped compound. 

This is followed by the putative molecular formula for all molecules where annotation was 

possible. 
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Supplemental Figure 2.20 Relative abundance of prophages in metagenomes. (n = 18, **p ≤ 

0.05, ***p ≤ 0.01) 
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Supplemental Table 2.1 Sample metadata. 

Sample 

Site 

Latitude Longitude Coral Algae Competition 

type 

1 12.06529 -68.7606812 D.strigosa Turf Coral losing 

2 12.0431461 -68.767952 O. faveolata Turf Coral winning 

3 12.035203 -68.795311 D.strigosa Turf Coral losing 

4 12.050662 -68.8342896 D.strigosa Turf Coral winning 

5 12.1903019 -69.0226288 O. faveolata Turf Coral winning 

6 12.2352629 -69.1032791 O. faveolata Turf Coral losing 
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Supplemental Table 2.2 Site-level water chemistry data. Site-level data including phosphate, 

nitrite, nitrite + nitrate, ammonium, and dissolved organic carbon (DOC) concentrations reported 

in micromolar (µM). Note, there were no significant differences between coral species, or 

between competition outcomes for any of the site level variables recorded. 

 
Site Coral type Phosphate 

(µM) 

Nitrite 

(µM) 

Nitrite + 

Nitrate (µM) 

Ammonium 

(µM) 

DOC 

(µM) 

1 D. strigosa 

losing 

0.04495 0.17145 0.3715 1.029255 69.66 

2 O. faveolata 

winning 

0.0955 0.1813 0.466 0.33099 67.96 

3 D. strigosa 

losing 

0.13575 0.8605 9.22 1.1420925 79.08 

4 D. strigosa 

winning 

0.010011 0.08565 0.4925 0.934164 72.89 

5 O. faveolata 

winning 

0.0546 0.179 0.342 2.325 91.05 

6 O. faveolata 

losing 

0.123 0.1828 1.325 8.18537  

ANOVA p- 

value for 

winning 

and losing 

 0.2722 0.3276 0.3168 0.4075 0.7828 

ANOVA p- 

value 

for coral 

species 

 0.5526 0.4785 0.491 0.3356 0.5883 
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Supplemental Table 2.4 Microbial taxa that are significantly enriched in winning and losing 

interactions. Prokaryotic orders of bacteria that were significantly enriched as determined 

ANOVA are listed in the first column with the ANOVA p-value listed in the second column. 
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Supplemental Table 2.5 Functional genes that are significantly enriched in winning and losing 

interactions. Functional genes from Level 3 of the SEED database thawere significantly enriched 

as determined by ANOVA are listed in the first column with the ANOVA p-value listed in the 

second column. 
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CHAPTER 3: Three-dimensional molecular cartography of the caribbean reef-building coral 

Orbicella faveolata 

 

 

Abstract  

 

All organisms host a diversity of associated viruses, bacteria, and protists, collectively 

defined as the holobiont. While scientific advancements have enhanced the understanding of the 

functional roles played by various components of the holobiont, there is a growing need to 

integrate multiple types of molecular data into spatially and temporally resolved frameworks. To 

that end, we mapped 16S and 18S rDNA metabarcoding, metatranscriptomics, and metabolomic 

data onto three-dimensional reconstructions of coral colonies to examine microbial diversity, 

microbial gene expression, and biochemistry on two colonies of the ecologically important, reef-

building coral, Orbicella faveolata and their competitors (i.e., adjacent organisms interacting 

with the corals: fleshy algae, turf algae, hydrozoans, and other corals). Overall, no statistically 

significant spatial patterns were observed among the samples for any of the data types; instead, 

strong signatures of the macroorganismal hosts (e.g., coral, algae, hydrozoa) were detected, in 

the microbiome, the transcriptome, and the metabolome. The 16S rDNA analysis demonstrated 

higher abundance of Firmicutes in the coral microbiome than in its competitors. A single 

bacterial amplicon sequence variant from the genus Clostridium was found exclusively in all O. 

faveolata samples. In contrast to microbial taxa, a portion of the functionally annotated bacterial 

RNA transcripts (6.86%) and metabolites (1.95%) were ubiquitous in all coral and competitor 

samples. Machine learning analysis of microbial transcripts revealed elevated T7-like 

cyanophage- encoded photosystem II transcripts in O. faveolata samples, while sequences 

involved in bacterial cell division were elevated in turf algal and interface samples. Similar 

analysis of metabolites revealed that bacterial-produced antimicrobial and antifungal compounds 
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were highly enriched in coral samples. This study provides insight into the spatial and biological 

patterning of the coral microbiome, transcriptome, and metabolome. 

 

Introduction   

 

The holobiont is the sum of an organism and all of its associated microbes and viruses, 

which interact through a complex suit of biochemicals. Technologies recently adopted for marine 

molecular ecology have widened the lens with which ecologists can investigate a holobiont, 

including standard marker amplicon sequencing, metabarcoding, metagenomics, 

metatranscriptomics, metaviromics, metaproteomics, metabolomics, and others. Each of these 

molecular approaches on their own offer a unique view into facets of macroorganismal, 

microbial, viral, or biochemical dynamics (Hasin et al., 2017; Pinu et al., 2019; Roach et al., 

2020, 2021a). For example, 16S and 18S rDNA amplicon sequencing have allowed for targeted 

taxonomic profiling of prokaryotic and eukaryotic microbiomes in many systems from corals to 

humans (e.g., Rohwer et al., 2002; Turnbaugh et al., 2007). Metagenomics, or the shotgun 

sequencing of DNA, has allowed for the identification and quantification of microbial and viral 

taxa, and functional genes (Handelsman et al., 1998; Breitbart et al., 2002; Edwards and Rohwer, 

2005; Franzosa et al., 2018). Metagenomics also provides the ability to assemble genomes de 

novo from community-level sequencing, and identify and describe new gene families (Parks et 

al., 2017; Ovchinnikov et al., 2017). Furthermore, purification-based metagenomic methods, 

such as metaviromics, utilize physical and chemical properties to isolate and sequence specific 

gene pools (e.g., viral pool, archaeal pool) that would otherwise comprise small percentages of 

total DNA present in the holobiont (Thurber et al., 2009; Poulos et al., 2018). Together, these 

emerging approaches have improved the capacity for understanding the complex nature of 
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holobiont biology and ecology, by providing the means to investigate all of the holobiont 

constituents in situ. 

Metatranscriptomics, or the shotgun style sequencing of RNA, allows for the 

quantification of total gene expression in a community (Wang et al., 2009). In addition, amplicon 

sequencing of conserved coding regions of the genome (of both macroorganisms and microbes) 

has provided species-level and higher taxonomic identifications of operational taxonomic units 

(OTUs) or amplicon sequence variants (ASVs) to single nucleotide differences (Callahan et al., 

2016; Thompson et al., 2017). Metabolomics provides insight into the physiological and 

metabolic activity of a holobiont by identifying and quantifying small molecules present in the 

holobiont (Quinn et al., 2016; Sogin et al., 2016; Hartmann et al., 2017; Matthews et al., 2020). 

Many of these methods complement each other, for example, open-reading frame protein 

predictions from metagenomic data can provide information for new proteins or molecules in 

metabolomic datasets (Wang et al., 2014). High throughput sequencing of amplified DNA or 

environmental DNA (eDNA) using standard gene markers, known as metabarcoding, has 

allowed for a massive number of censuses of single and multicellular marine eukaryotes such as 

algae, invertebrates, and vertebrates (Blaxter et al., 2005; Taberlet et al., 2012; Leray and 

Knowlton, 2015). Integrating these tools is essential for understanding the roles of microbes, 

viruses, and biochemicals in large-scale ecological processes. Combining these approaches can 

improve the capacity for scientists to observe and link states and processes from all aspects of the 

central dogma of biology in an ecosystem. 

In addition to molecular approaches for ecology, developments in the literal ‘lens’- i.e., 

photographic imaging technology- have also increased the amounts and types of information that 

can be obtained from natural environments (Burns et al., 2015; Roach et al., 2021b). 
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Photogrammetric three- dimensional modeling provides a more realistic visualization and 

representation of environments than traditional two- dimensional image collections and has 

allowed for new types of spatial analysis (Burns et al., 2016; George et al., 2021). For example, 

analyses of 3D reconstructions of corals and their competitors have demonstrated that the 

geometric properties of corals ‘in part’ determine the outcome of competitive coral- algal 

interactions in several coral genera (George et al., 2021). Similar techniques for 3D 

reconstruction have also been used in terrestrial landscapes (Schneider et al., 2014) and 

freshwater ecosystems (Marazuela et al., 2018). 

The combination of molecular data with spatially explicit 3D cartography tools are now 

allowing for unprecedented insight into pattern and process in many systems. For example, 

metabolite mapping on the human body demonstrated that the composition of molecules on the 

human skin varied depending on people’s daily routine (Bouslimani et al., 2015). These 

technologies have yet to be fully utilized in marine environments due to the technological 

difficulties of in situ sampling and data collection. Here, we combine 16S rDNA amplicon 

sequencing, 18S rDNA amplicon sequencing, metatranscriptomics, and metabolomics with 

three-dimensional molecular cartography tools to provide 3D molecular maps of several 

components of coral and algae holobionts, allowing us to investigate the spatial distribution and 

ecological drivers of microbial taxa, transcripts, and small molecules. 

The goal of this study was to use cutting edge -omics and imaging techniques to explore 

the processes occuring where different benthic holobionts meet (i.e. interfaces), providing insight 

into the benthic interaction ecology of the ecologically important, reef-building coral Orbicella 

faveolata. O. faveolata (previously Montastraea faveolata), or the mountainous star coral, is 

native to the Caribbean Sea and Gulf of Mexico. 
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O. faveolata is a massive reef-building coral currently listed as endangered by the 

International Union for Conservation of Nature (IUCN) (Aronson et al., 2008), with an estimated 

50% abundance loss in the last 30 years. On healthy reefs, O. faveolata often dominate the reefs 

at depths of 10–20 m, and these corals face several threats including coral bleaching, algal 

overgrowth, and diseases such as yellow band disease, black band disease, and white plague 

(Kimes et al., 2013). 

Here, several different molecular techniques were used to investigate specific 

components of O. faveolata holobionts. 16S and 18S rDNA sequencing data served as a metric 

to assess total bacterial and protistan taxonomic diversity, and to provide a general overview of 

the three-dimensional composition of O. faveolata’s microbiome. A total RNA sequencing 

approach was used to establish holobiont gene expression profiles, and metabolomic profiling 

allowed for the detection of small molecules, yielding a snapshot of the holobiont’s 

biochemistry. We combined these approaches to test the hypothesis that holobiont taxa and 

function may be driven by spatial patterns (e.g., physical distance), but found no evidence 

supporting this. Rather, biological variables (e.g., the macroorganismal hosts) proved to be more 

important for taxonomic, functional, and molecular composition. Integration of multiple data 

types in a spatial framework provides a better understanding of the distinct components of the 

holobiont and how they mediate ecological interactions between macroorganisms. Future work 

should focus on scaling these methods both in terms of higher sampling resolution and sampling 

across larger spatial scales to further explore unique molecular profiles for specific organisms or 

physiological states (e.g., stress, disease, competition) and to examine if there are breakpoints 

where spatial patterns do exist. 
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Results 

 

Three-Dimensional Photomosaics and Spatial Analysis 

 

 Analysis of the 3D photomosaic models allowed for the calculation of geometric 

properties of the corals and revealed that the East Point O. faveolata colony had a maximum 

height of 1.80 m and a maximum diameter of 1.70 m with a total surface area of 196,388 cm2, 

whereas the Water Factory colony was smaller with a maximum height of 1.06 m and a 

maximum diameter of 0.70 m with a total surface area of 8,973 cm2. The East Point O. faveolata 

colony had an interface length of 969 cm (colony perimeter length), and the main competing 

organism interacting with the O. faveolata colony included turf algae (46.81% of the interface), 

along with a closely related species of coral, Orbicella annularis (17.80% of the interface). Coral 

overhangs where competitors were absent made up 24.12% of the interface, and interactions with 

crustose coralline algae (CCA) were limited to 11.27%. The Water Factory O. faveolata colony 

had an interface length of 545 cm, and the main interactions involved turf algae (27.36%), along 

with a direct interaction between the coral colony and Millepora complanata (fire 

coral/hydrozoan, 32.24%). The remainder of the interface consisted of coral overhangs (32.36%) 

and interactions with CCA (8.04%). The coral colonies and interacting organisms were within a 

2.5 m 2.5 m (6.25 m2) reef plot at East Point and a 1 m x 1 m (1 m2) reef plot at Water Factory. 

Molecular cartography and subsequent linear regression analysis of spatial patterning 

demonstrated no evidence for spatial autocorrelation or isolation by distance, as there was no 

significant correlation between pairwise physical distance and pairwise sample similarity for any 

data type within the coral colonies (16S rDNA, 18S rDNA, metatranscriptomes, or 

metabolomes) (all R2s < 0.04 and all p values > 0.38, Figure 3.2). Additional sampling may have 

improved these correlations; however, a power analysis revealed that 28 samples would be 



96 

 

required to see a significant trend (p < 0.05) using a strong effect size (0.5) and a power of 80% 

(Supplementary Table 3.1). Since 21-29 samples for each data type were used in this study, 

additional sampling would not likely improve the weak correlations observed between physical 

distance and sample similarity (Supplementary Table 3.2). 

 

Diversity of Bacterial Communities: 16S rDNA 

 

 A total of 656,698 16S rDNA sequences were generated with an average of 24,322 

sequences per sample (n = 27). A total of 3,034 amplicon sequence variants (ASVs) were 

identified, and ASVs identified as chloroplasts, mitochondria, and long branching chimeras were 

removed. Overall, 16S rDNA sequencing demonstrated that samples were not spatially 

structured (p = 0.42, Figure 3.2A) but were rather found to cluster by community type (Figures 

3.3A,B; Supplementary Figure 3.1). At the ASV level, there was significant clustering of coral 

samples separate from all other samples (Figures 3.3A,B PERMANOVA p < 0.003) as well as 

significant differences between corals and interface samples (Figures 3.3A,B, PERMANOVA p 

= 0.003). This was largely driven by the differences in the O. faveolata microbiome compared to 

the microbiome of turf algae and interface samples (Figure 3.3B, PERMANOVA p = 0.02 and 

0.02, respectively). Similar trends were observed at the phylum level, though PERMANOVA p-

values were generally less significant than at the ASV level (Supplementary Figure 3.2). 

Furthermore, when comparing between colony versus within colony variance, there was a 

significant difference in 16S rDNA annotations between colonies at the ASV level (Figure 3.3B 

PERMANOVA p = 0.04), but not at the phylum level (Supplementary Figure 3.2 

PERMANOVA p = 0.73). Interestingly, the bacterial microbiome of the two hydrozoan 
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competitor samples did not cluster separately as an outgroup, but were rather more similar to turf 

algae than to O. faveolata (Figures 3.3A,B). 

At the ASV level, there was an overall trend for the coral microbiome to be less diverse 

than interfaces or competitor (turf algae and M. complanata) microbiomes (Figure 3.3D), with 

coral samples having the lowest Shannon entropy (4.43 ± 0.92), followed by the interface (5.11  

± 2.34), and finally the competitor samples (5.31 ± 1.55). It is also notable that turf algal samples 

had the highest entropy (6.24 ± 0.65) of all sample types. An even stronger trend of diversity was 

observed for rarefaction species richness (referred to as richness), with coral samples being 

significantly less rich than interface (p = 0.002) or competitor samples (p = 0.01). This pattern 

was also observed at the phylum level (Supplementary Figure 3.2). 

Random forests analysis demonstrated that the bacteria in the phyla Firmicutes 

(specifically Clostridium), Bacteroidetes (specifically Flavobacterium) and Proteobacteria 

(specifically Alphaproteobacteria) were among the most important bacterial ASVs in predicting 

the sampling area (i.e., coral, interface, competitor). This was further supported by 9 of the top 

10 most important random forests predictors at the ASV level coming from these same three 

bacterial phyla (i.e., Firmicutes, Bacteroidetes, and Proteobacteria) (Supplementary Figure 3.3). 

Interestingly, many of the top BLAST hits were to previously sampled O. faveolata 

(Supplementary Figure 3.3). 

The ubiquity-abundance analysis revealed that a single ASV, in the genus Clostridium 

was uniquely ubiquitous in O. faveolata (i.e., a Clostridium sp. was found in all O. faveolata 

samples and only in O. faveolata samples, Figure 3.3C). The relative abundance of the 

Clostridium ASV (d6d6d57d15072e10d222a16f3e6d97e9) in O. faveolata samples ranged from 

1.31% to 0.03% with an average of 0.47%. The Clostridium ASV was also one of the top ten 
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predictors in the random forest analysis, indicating the potential importance for this ASV in the 

core microbiome of O. faveolata (Supplementary Figure 3.2). BLAST results showed that the 

Clostridium ASV shared 100% sequence identity with an uncultured bacterium clone collected 

from O. faveolata in Panamá in 2008 (Sunagawa et al., 2010). The Clostridium ASV was highly 

abundant and ubiquitously distributed across all O. faveolata samples, but absent from any and 

all interface or competitor samples (Video S3.1). The phylum Firmicutes, which includes 

Clostridium, also showed a similar distribution across the coral colonies and their competitors, 

however Firmicutes was highly abundant in all corals including O. annularis (Figure 3.4). Other 

phyla, such as Cyanobacteria, displayed the opposite pattern, with low relative abundances in O. 

faveolata and higher relative abundances in turf algal competitors and interfaces (Figure 3.4C). 

Several rare bacterial taxa were also present at both sites. Four unique ASVs belonging to 

Endozoicomonas, a symbiont of marine animals, were found at low relative abundances (0.02– 

0.99%) in the O. faveolata colonies from both sites, and the bacterial symbiont was present in 

60% of the coral samples. Five different Endozoicomonas ASVs were present in the hydrozoan 

competitor, M. complanata, at higher relative abundances (0.65–7.49%), suggesting O. faveolata 

and M. complanata specific symbionts. ASVs belonging to the understudied TM6 phylum were 

also identified at low relative abundances (0.01– 0.26%), specifically from two interface samples 

and one turf algae sample at Water Factory along with one East Point O. faveolata sample.  

 

Diversity of Microbial Eukaryotes: Non-metazoan 18S rDNA 

 

A total of 2,972,176 18S rDNA sequences were generated with an average of 102,488 

sequences per sample (n = 29). A total of 541 ASVs were identified and ASVs identified as 

bacteria and long branching chimeras were removed. Symbiodiniaceae, specifically 
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Cladocopium spp., was the most abundant taxon in coral samples, whereas red 

(Florideophyceae) and green (Ulvophyceae) algae were the dominant taxa in turf algae samples 

(Supplementary Figure 3.4). ASVs belonging to these taxa were also the main drivers of the 

clustering observed in the PCoA and NMDS (Supplementary Figures 3.1, 3.4). The majority of 

the ubiquitous ASVs unique to O. faveolata were also Symbiodiniaceae (Supplementary Figure 

3.5), and a phylogenetic analysis showed no clustering of ASVs based on coral colony or coral 

species (Supplementary Figure 3.6). However, Symbiodiniaceae ASVs from M. complanata 

samples formed a well-supported clade that was distinct from the coral Symbiodiniaceae clade, 

suggesting hydrozoan-specific and coral-specific eukaryotic symbionts (Supplementary Figure 

3.6). BLASTn results showed that the coral Symbiodiniaceae ASVs shared a 99.01% identity 

with several Clade C symbionts (Cladocopium spp.) whereas M. complanata ASVs had a 

98.77% identity to Clade A symbionts (Symbiodinium spp.). 

Corallicolid, an intracellular apicomplexan symbiont of coral, was present at low 

abundances in three coral samples including the competing O. faveolata colony at East Point 

(northern transect, sample V, relative abundance = 0.075%), the competing O. annularis colony 

at East Point (southern transect, sample V, relative abundance = 0.29%) and the interface 

between O. faveolata and M. complanata at Water Factory (western transect, sample III, relative 

abundance = 0.36%). This symbiont has been reported in O. faveolata, O. annularis, and several 

other cnidarians (Kwong et al., 2019), but its presence in some coral colonies and absence from 

nearby conspecific colonies suggests a sporadic association with specific coral species.  
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Function of Bacterial Communities: Metatranscriptomes 

 

 Similar to 16S and 18S rDNA, the functional annotation of bacterial metatranscriptomes 

also demonstrated significant clustering of samples by host organism, with O. faveolata samples 

being significantly different than interface (PERMANOVA p < 0.01) and competitor samples 

(PERMANOVA p < 0.001) (Figures 3.5A,B and Supplementary Figure 3.1). In stark contrast to 

16S rDNA data where the hydrozoan outgroup (pink triangles in Figure 3.5A) grouped with turf 

algae, the bacterial transcriptomes group hydrozoan samples with coral, suggesting a potential 

taxonomic, functional decoupling in these microbiomes. Of the 5,206 functionally annotated 

bacterial RNA transcripts from all host organisms, 357 (6.86%) were ubiquitous to all samples, 

and no functions were unique to O. faveolata; a strong contrast to the 16S rDNA results (Figure 

3.3C). Of the ubiquitous transcripts, the NAD(P)H-quinone oxidoreductase function was the 

most abundant, with a mean relative abundance of 12.4% in all samples; furthermore, NAD(P)H-

quinone oxidoreductase was also shown to be the most important predictor for determining 

sample type in the random forests classification analysis (Supplementary Figure 3.7). 

 In agreement with the 16S and 18S rDNA results, the distribution of the functionally 

annotated bacterial transcripts across samples resulted in significantly lower diversity in coral 

samples (Shannon, 5.08 ± 0.74; Richness, 939.55 ± 356.53) and significantly higher diversity in 

other sample types (Shannon, 5.63 ± 0.77; Richness, 1289.83 ± 359.25), in particular turf algal 

competitors (Shannon, 5.88 ± 0.56; Richness, 1404.71 ± 262.29) (Figure 3.5D).  

Random forests analysis revealed that microbial transcripts were enriched in phage-

encoded photosystems in coral samples and enriched for transcripts involved in bacterial cell 

division, motility, and chemotaxis in turf algal and interface samples (Figure 3.6). At all levels of 

the SEED hierarchy (i.e., Levels 1,2,3, and function) phage related genes were found to be 
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significantly enriched in coral samples and a driver of the clustering seen in the data (Figure 3.6). 

Specifically, we found the photosystem II protein D1 (PsbA) transcript to be driving the T7-like 

cyanophage pattern at higher levels (Supplementary Figures 3.8, 3.9). This has been visualized in 

a two-way dendrogram in Figure 3.6A and via a 3D molecular heatmap in Figure 3.6B. Other 

random forests top predictors included bacterial respiration along with cell regulation and 

signaling, both of which were more abundant in coral than the interface or competitors. The 

opposite pattern was observed for functions involving membrane transport, cell wall and capsule, 

iron acquisition and metabolism, virulence, dormancy and sporulation, and phages (prophages, 

transposable elements, plasmids) (Figure 3.6A). 

 

Associated Biochemicals:  Metabolomes 

 

 The metabolomic data set consisted of 2,315 unique features of which 53 (2.28%) had a 

spectral match to a known compound in the GNPS database with another 230 analog hits (i.e., 

contains a known mass shift and has a similar spectrum). Similar to 16S and 18S rDNA, and 

transcriptomic data, metabolites demonstrated significant clustering of O. faveolata samples 

versus their competitors (Figures 3.7A,B and Supplementary Figure 3.1, PERMANOVA p = 

0.03). However, unlike other data types, metabolomic analysis was not able to distinguish 

interfaces as separate groups (Figure 3.7B, PERMANOVA p = 0.102). The main drivers of the 

observed clustering included several unknown metabolites along with a glycerophosphocholine 

(m/z 963.71, ClassyFire subclass) and phenylalanine (m/z 166.09, library hit) (Figure 3.7A). The 

unknown metabolites had mass-charge ratios of 146.10, 229.15, 482.36, and 510.39, and the 

unknown metabolites with mass-charge ratios of 482.36 and 510.39 had similar ratios to C16 

Lyso-PAF (m/z 482.36) and C18 Lyso-PAF (m/z 510.42), respectively (Quinn et al., 2016). The 
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C18 Lyso-PAF metabolite (m/z 510.39) was also the second top predictor of coral, turf algae, 

and interface groups in the random forests analysis on all metabolites (Figure 3.8 and 

Supplementary Figure 3.10). 

The ubiquity-abundance analysis revealed that out of 2,315 metabolites, 45 were found in 

all samples (1.94%) while 219 and 39 metabolites were unique to coral (O. faveolata and O. 

annularis) and turf algae, respectively. Of the coral specific metabolites, 136 were only present 

in O. faveolata. (Figure 3.7C). Of those compounds found only in O. faveolata, the 

cyanobacterial-produced antifungal compound lobocyclamide (dereplicator hit) and the 

Streptomyces-produced antimicrobial coleimycin (analog hit) were among the most ubiquitous 

compounds (Supplementary Figure 3.10). Five unknown metabolites with mass to charge ratios 

of 467.31, 240.10, 432.34, 1149.74, and 397.21 were also uniquely ubiquitous in O. faveolata 

(ubiquity = 0.92). Unlike 16S, 18S, and transcriptome samples, the random forests analysis of 

metabolites did not find the ubiquitous molecules among the top compounds for predicting 

sample type. Instead, the random forests analysis identified two fatty acid esters (ClassyFire 

annotation) connected in the network, a tyrosine-proline dipeptide (analog hit), and a ceramide 

(analog hit) to be the top predictors of sample type (Figure 3.8 and Supplementary Figure 3.9). 

Richness and entropy in metabolomic samples behaved opposite to that of the 16S rDNA, 

18S rDNA, and RNA datasets (Figure 3.7D), with corals generally possessing a more diverse 

metabolome (Shannon = 6.03 ± 0.41, Richness = 1607 ± 364) compared to interfaces (Shannon = 

5.43 ± 0.74, p = 0.03, Richness = 1067 ± 578, p = 0.11) or competitors (Shannon = 5.32 ± 0.55, p 

= 0.005, Richness = 727 ± 389,  p < 0.001). 
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Relationship Between Diversity of Molecular Data Types 

 

 There were no significant correlations between the entropy (H’) (all R2s 0.07 and p-

values 0.33, Supplementary Figure 3.11) or richness (all R2s 0.02 and all p-values 0.52, 

Supplementary Figure 3.11) among different data types, indicating potential decouplings in 

taxonomic, functional, and biochemical profiles. An analysis of all data types sampled within the 

2.5 m × 2.5 m reef site at East Point (6.25 m2) and a 1 m x 1 m reef area at Water Factory (1 m2) 

also showed differences in entropy between sites. The Water Factory site had the most diverse 

18S rDNA (entropy = 3.71) and bacterial function (transcriptomes, entropy = 6.22), whereas East 

Point had the highest diversity of 16S rDNA (entropy = 4.33) and metabolites (entropy = 6.75) 

(Supplementary Figure 3.12). Furthermore, when all samples were considered, metabolomes 

were seen to be the most diverse of all data types (entropy = 6.76), while 18S rDNA was the 

least diverse (entropy = 3.83) (Supplementary Figure 3.12). 

 

Integration of Molecular Data Types 

 

A mmvec neural net analysis was used to generate conditional probabilities of features in 

the different data types (i.e., 16S rDNA, transcripts, and metabolites) (Morton et al., 2019). This 

analysis revealed broad patterns amongst all data types with conditional probabilities ranging 

from 1.05 x 10−06 - 0.720 for 16S rDNA vs transcripts, from 6.7 x 10−10 - 0.297 for 16S rDNA vs 

metabolites, and from 1.93 x 10−08  - 0.301 for transcripts vs metabolites (Figure 3.9 and 

Supplementary Figure 3.13). To further analyze these patterns, we selected the top predictors 

from the previous random forests analyses to construct two-way heatmaps (Figure 3.9). The 

highest of all conditional probabilities from this analysis was between Chlamydiae and 

transcripts for dormancy and sporulation (0.720), which was an order of magnitude higher than 
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the average conditional probability for this data set (0.030 - 0.065). Other notably high 

conditional probabilities for 16S genes vs transcripts include the following: Nitrogen metabolism 

and Planctomycetes (0.525), phosphorus metabolism and Proteobacteria (0.210), photosynthesis 

with Cyanobacteria (0.122), and potassium metabolism and Planctomycetes (0.118). Notably low 

conditional probabilities included the relationships between Plantomycetes and stress response 

(9.93 x 10−6), secondary metabolism (1.05 x 10−6), phosphorus metabolism (1.33 x 10−5), 

motility and chemotaxis (2.71 x 10−5), dormancy and sporulation (6.36 x 10−5), and virulence 

(9.13 x 10−5). 

When relating metabolomic profiles to 16S genes, the average conditional probability 

was much lower (1.35 x 10−3 - 0.00217). Notably high conditional probabilities between 16S and 

metabolites included glycerophosphoethanolamine and Firmicutes (0.019), terpene lactones and 

Chloroflexi (0.012), quinuclidines and Firmicutes (0.007). Notably low conditional probabilities   

included   the   following relationships with Spirochaetes and fatty acyls (1.35 x 10−07), peptides 

(4.51 x 10−07), and glycerophosphoethanolamine (4.46 x 10−07). 

The conditional probabilities of several microbial transcripts and metabolites varied 

between Firmicutes and Bacteroidetes (Figure 3.9), two of the main phyla identified in the 

previous analyses. Dormancy and sporulation along with cell division and cell cycle had a 

greater conditional probability with Bacteroidetes (0.270 and 0.039) relative to Firmicutes (0.010 

and 0.007), whereas the conditional probability of phosphorus metabolism, RNA metabolism, 

and virulence was higher with Firmicutes (0.134, 0.060 and 0.097) than with Bacteroidetes 

(0.027, 0.004 and 0.002). The conditional probability of Phage group 1 (phages, prophages and 

transposable elements) with Firmicutes (0.040) was also higher than with Bacteroidetes (0.009). 

For metabolites, glycerophosphoethanolamine and cis-9- hexadecenoic acid (8S-HETrE) had a 
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higher probability with Firmicutes (0.019 and 0.001) than with Bacteroidetes (0.002 and 7.04 x 

10−4). Firmicutes and these metabolites were also more abundant in corals than in other 

organisms (Figures 3.4, 3.8), highlighting a potential association between the coral microbiome 

and metabolome. 
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Discussion  

 

Coral and algal competition has been studied extensively utilizing molecular techniques, 

such as amplicon sequencing, metagenomics, and metabolomics (Barott et al., 2012; Haas et al., 

2016; Quinn et al., 2016; Pratte et al., 2018; Silveira et al., 2019; Clements et al., 2020; Roach et 

al., 2020). Here, we integrate bacterial and protistan metabarcoding, metatranscriptomics, and 

metabolomics across 3D models of the endangered reef-building coral Orbicella faveolata and 

its competitors. This approach allowed us to integrate and visualize molecular data in a spatial 

framework to investigate spatial and biological patterns within and between O. faveolata 

colonies and their competitors (Figure 3.1). 

All molecular profiles (DNA, RNA, and metabolites) revealed ecologically relevant 

differences between the O. faveolata colonies, the interface, and the corresponding benthic 

competitors (Figures 3.2–3.8). Holobionts clustered by microbial composition (16S and 18S), 

bacterial gene function (transcriptomes), and metabolites (Figures 3.3, 3.5, 3.7). Many uniquely 

ubiquitous microbes and metabolites, and sporadic microbial symbionts were found to be 

associated with O. faveolata. No spatial patterns were observed, suggesting that a single coral 

colony is a diverse and dynamic consortium of host, microbes, and associated 

functions/metabolites (Figure 3.2). However, larger sampling efforts may be warranted to 

investigate this further and the scale of sampling should be taken into consideration. We also 

utilized machine-learning algorithms to compare thousands of variables from different data types 

(Figures 3.4, 3.6, 3.8) and found potential associations between molecular functions and various 

members of the coral holobiont (Figures 3.9, 3.10).  
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Uniquely Ubiquitous and Sporadic Coral Symbionts 

 

A putative Clostridium sp. ASV was uniquely ubiquitous to the O. faveolata colonies, 

pointing to it as a core member of the O. faveolata holobiont (Figure 3.3C and Supplementary 

Video 3.1). Our findings are corroborated by a previous study that reported this same 

Clostridium sp. ASV to be present in O. faveolata from Panamá in 2008 (Sunagawa et al., 2010), 

which suggests stability of the ASV as an O. faveolata symbiont in the Caribbean Sea.    

Clostridium are commonly found in corals, likely inhabiting hypoxic portions of the O. faveolata 

holobiont. They have been found in a wide variety of coral species across large geographic 

spatial scales, where they may occupy low-oxygen mucosal microniches generated by the 

breakdown of complex carbon (McKew et al., 2012). Our findings highlight the need for future 

studies on compartmentalization of the coral holobiont, for example, using multi-omics with 

respect to different anatomical regions of the coral (Sweet et al., 2011). 

 Other microbial symbionts showed differential associations with the coral holobionts and 

their respective competitors. Endozoicomonas, a bacterial symbiont of marine animals (Neave et 

al., 2016), was found at low abundances in the majority of O. faveolata samples at both sites. 

Conversely, Endozoicomonas were highly present in the hydrozoan competitor, M. complanata. 

Endozoicomonas ASVs were unique to each cnidarian host, suggesting at least two species of 

Endozoicomonas, each specific to O. faveolata and M. complanata. Endozoicomonas is likely 

involved in the cnidarian sulfur cycle (Tandon et al., 2020), and may play a relevant functional 

role in the holobionts. Corallicolid, an apicomplexan coral symbiont, was also present in some 

coral colonies and absent from nearby conspecific colonies, showing a potential sporadic 

association with specific coral species. At East Point, corallicolids were found in the O. faveolata 

and O. annularis colonies interacting with the coral of interest, while it was present in only one 
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O. faveolata interaction sample at the Water Factory site. Corallicolids are known to infect a 

diverse range of cnidarian hosts, however, their ecological role remains unknown (Kwong et al., 

2019), and additional sampling is required to determine the apicomplexan’s association with 

various coral species. 

Several bacterial patterns at the phylum level were observed to be specific to the coral 

holobionts. Broadly, abundances of the phylum Firmicutes, which contains the genus 

Clostridium, were higher in the coral samples, and abundances of Bacteroidetes were higher in 

turf algae samples resulting in significantly higher Bacteroidetes-to-Firmicutes ratios at the 

interface between coral and turf algae (Figure 3.4). Interestingly, Bacteroidetes-to- Firmicutes 

ratios have been linked to coral health; in specific, this ratio has been shown to be elevated in 

coral holobionts that are losing against turf algal competitors and also in disease states (Closek et 

al., 2014; Roach et al., 2017, 2020). The differential abundances of these phyla have been 

studied more in depth with regards to human health, where the gut microbiome profile of obese 

individuals is linked to a decrease in Bacteroidetes-to- Firmicutes ratios (Turnbaugh et al., 2006). 

This suggests that the correlation between the relative abundances of Bacteroidetes and 

Firmicutes, and host physiology is potentially specific to the animal host, and likely has to do 

with the delicate balance of anaerobic and aerobic respiratory processes. 

 

Relevant Transcripts and Metabolites 

 

Other bacterial phyla, such as Cyanobacteria, displayed relatively low abundances in 

coral samples compared to the interface and competitor samples. Conversely, transcripts from a 

T7-like cyanophage (family Podoviridae, Cyanopodovirus), specifically, photosystem II psbA 

transcripts, were found in high abundance in coral samples compared to interface and competitor 
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samples (Figures 3.4, 3.5). Other coral studies have found abundant cyanobacterial photosystem 

genes, including psbA and psbD, that were potentially acquired through phage infections 

(Weynburg et al., 2017). Viral-mediated horizontal gene-transfer of photosystems genes, and 

other genes, from and to the bacterial host has been observed (Chénard and Suttle, 2008; 

Thompson et al., 2011; Little et al., 2020); furthermore, a bacteriophage- adherence-to-mucus 

model suggests that phage interact with mucosal surfaces, such as the surface of a coral, through 

outer capsid protein domains (Hoc) previously identified in Cyanophage (Sullivan et al., 2005; 

Barr et al., 2013; Silveira and Rohwer, 2016). Our observation of the expression of T7- like 

cyanophage photosystem genes may suggest these viruses are active in coral mucus and possibly 

a widespread feature of coral holobionts. 

Metabolomic analysis highlighted 136 known molecules as being unique to the O. 

faveolata holobiont (Figure 3.7C). Among the metabolites unique to O. faveolata, the bacterial 

produced metabolites, lobocyclamide, a known antifungal compound produced by Cyanobacteria 

(MacMillan et al., 2002), was one of the most ubiquitous (Supplementary Figure 3.10). 

Bacterial-produced antifungals have been found previously in Gorgonian octocorals, where 

Pseudoalteromonas sp. have been shown to produce them in a light-dependent manner (Moree et 

al., 2014). Another uniquely ubiquitous O. faveolata metabolite was the Streptomyces-produced 

antimicrobial coleimycin (Supplementary Figure 3.10). The significant enrichment of these 

bacterial-produced antimicrobials highlights the potential for bacterial modulation of the host 

microbiome. 

Other compounds found to be elevated in the O. faveolata holobiont included several 

putatively bioactive lipids such as lyso-platelet activating factor and a ceramide analog (Figures 

3.7, 3.8, 3.9). These lipids can serve as modulators of the coral immune system, and have been 
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shown to play a role in corals’ response to various stressors including turf algae overgrowth and 

temperature stress (Quinn et al., 2016; Galtier d’Auriac et al., 2018; Roach et al., 2020, 2021a). 

Our findings highlight the importance of these and other bioactive lipids and bring into question 

the role of the coral immune system in ecological interactions (Quistad et al., 2014). 

 

Diversity and Spatial Patterns 

 

 Overall, corals had lower diversity of microbial composition and function, but displayed 

higher metabolite diversity compared to interfaces and turf algae. This is consistent with 

previous studies on coral and algae interactions where the bacterial consortium within corals was 

found to be less taxonomically rich and diverse than algal holobionts (Figure 3.3D; Barott et al., 

2011). In terms of spatial patterns of the taxonomic, functional, and metabolite data, we observed 

no evidence for significant isolation by distance or spatial autocorrelation (Figure 3.2). Several 

other environmental factors may impact spatial patterns within a coral colony, such as water 

movement over the coral surface (e.g., boundary layers) or incident light; molecular factors such 

as gene regulation and post-translational modifications could also affect this spatial patterning. 

 

Co-occurrence Networks Linking Omics Datasets 

 

 Understanding the distribution of various components of the holobiont in context to each 

other remains a largely under investigated aspect of molecular ecology in host-associated 

systems. To this end, an artificial neural network approach (mmvec) was used to calculate the 

conditional probabilities of the multi-omics annotations produced in this study (Morton et al., 

2019). The network analysis revealed strong co- occurrences between Cyanobacteria and 

photosynthesis along with Planctomycetes and nitrogen metabolism transcripts (Figure 3.9). 
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Planctomycetes is one of the only known bacterial groups to perform anaerobic ammonium 

oxidation (anammox), a process that significantly contributes to the nitrogen cycle (Jetten et al., 

2009). Interestingly, increased levels of bacterial nitrogen fixation in the coral holobiont have 

been hypothesized to contribute to coral disease states and disrupture in the stability between 

corals and their endosymbiotic partners (Shashar et al., 1994; Santos et al., 2014; Rädecker et al., 

2015). Because most Planctomycetes have strong associations with macroalgae, lack 

peptidoglycan walls (e.g., exhibit resistance to antimicrobials produced by other bacteria), and 

possess holdfasts for attachment, it is probable that members of this phylum contribute to 

processes associated with algal competition and coral bleaching. Additionally, the highest co-

occurrence found was between transcripts for dormancy and sporulation and the bacterial 

phylum, Chlamydiae (Figure 3.9). All members of Chlamydiae are obligate intracellular 

symbionts of eukaryotes and infect a wide range of hosts including protists and animals (Horn et 

al., 2000; Roulis et al., 2013). The relationship between these symbionts and dormancy and 

sporulation functions provides insight into the lifecycle of these intracellular bacteria. The 

human pathogen, Chlamydia, can exist in a metabolically reduced state known as an elementary 

body that allows for long- term survival in nutrient-poor conditions (Hogan et al., 2004). This 

‘spore-like state’ would likely be common on coral reefs where host conditions vary due to the 

fluctuating environment. However, the potential hosts of these specific Chlamydiae symbionts 

remain unknown, as is the case for the majority of Chlamydiae (Dharamshi et al., 2020). 

The neural network analysis also linked the presence of specific transcripts and 

metabolites with Firmicutes and Bacteroidetes. As previously mentioned, Firmicutes were highly 

abundant in coral samples (Figure 3.4), and this group co-occurred with phage, prophage, and 

transposable element transcripts (Figure 3.9) which were also highly abundant in coral samples 
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(Figure 3.6). On the other hand, cell division and cell cycle transcripts were more abundant in 

interface and algal samples, and the transcripts co-occurred with Bacteroidetes (Figure 3.9). 

These patterns where Bacteroidetes and cell division/growth associate with the interface and 

algae, whereas Firmicutes and phage related functions associated with coral provide further 

evidence of the functional roles of these taxonomic groups. The co-occurrence of 

glycerophosphoethanolamine and cis-9-hexadecenoic acid (8S-HETrE), two highly abundant 

coral metabolites, with Firmicutes (Figure 3.9) also suggests a potential association between the 

coral microbiome and metabolome (Figure 3.10). 

 

Current Limitations and Future Directions 

 

Here, we highlight the novelty and robust power of incorporating multi-omics into 

natural history and ecological frameworks (Figure 3.10). However, among the limitations of our 

findings is the use of database-dependent analyses. In the future, tools such as artificial neural 

networks (Mendez et al., 2019; Cantu et al., 2020) can be used in bioinformatic and 

chemoinformatic approaches to shed light on sequence and mass-spectrometry data that is absent 

in repositories. Furthermore, less invasive sampling techniques could be used to capture 

molecular dynamics over relevant temporal scales (e.g., before and after stress events). Our data 

reveals important in situ molecular ecology of the coral holobiont, and follow-up studies should 

extend these sampling schemes to entire reefs to investigate holobionts over multiple spatial and 

biogeographic scales. 

This study focused on investigating the spatial and ecological drivers of two coral 

colonies in unprecedented detail using four different omics techniques combined with 

photogrammetric spatial reconstruction. The lack of spatial patterns observed is potentially a 
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result of other uninvestigated variables such as environmental factors or boundary layer 

processes. The lack of spatial structuring at this scale may also be due to the resolution and scale 

of sampling. For example, samples could be collected more densely or distributed over larger 

areas to investigate these trends at other scales such as host-associated microenvironments or 

across whole reef systems. Because these methodologies are becoming more affordable (i.e., the 

cost of DNA/RNA sequencing and mass spectrometry), scaling these approaches to address 

holobiont spatial aspects at the whole reef- level or even the level of island chains or ocean 

basins is now feasible. In addition, 3D image reconstruction has been applied at the reef-scale 

and is relatively straightforward to implement (e.g., Edwards et al., 2017; Roach et al., 2021b). 

Future molecular- mapping methods combined with environmental and temporal data will 

elucidate additional functions performed by the diverse members of the coral holobiont that, in 

turn, influence molecular to reef-scale processes. 
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Conclusions 

 

The data herein revealed that microbial composition, function, and molecular profiles are 

strong drivers of differences between coral and algae holobionts, and at the spatial scales 

examined, no evidence of spatial patterns within the O. faveolata colonies were observed for the 

various data types. This dataset revealed uniquely ubiquitous microbes and metabolites, along 

with potentially sporadic microbial symbionts associated with this endangered reef-building 

coral. The 16S rDNA data from O. faveolata demonstrated that a single ubiquitous Clostridium 

ASV was present in all colony samples, and abundant T7- like cyanophage transcriptional 

functions were also found in O. faveolata, adding new insight into the viral fraction of the coral 

holobiont. Metabolomics profiling displayed high levels of bioactive lipids in the O. faveolata 

samples, highlighting their role in coral immune responses. In addition, the co-occurrence of 

bacterial taxa, microbial transcripts, and small molecules revealed specific bacterial phyla with 

strong associations to various metabolic functions, such as Planctomycetes and nitrogen 

metabolism along with Chlamydiae and dormancy functions. These methodologies provide a 

new framework to examine holobiont structuring and the molecular ecology of the coral 

holobiont. 
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Methods 

 

Sample Collection 

 

Two individual colonies of Orbicella faveolata were selected as “corals of interest” at 

two separate dive sites (Water Factory, 12◦06 31.7 N 68◦57 13.4 W and East Point, 12◦02 35.1 N 

68◦45 43.5 W) on the island of Curaçao in the southern Caribbean (Figure 3.1). Samples from the 

O. faveolata colonies and their interacting organisms (turf algae, Millepora complanata, 

Orbicella annularis, and one conspecific O. faveolata) were collected along transects using the 

cardinal directions (Figure 3.1). For each North, East, South and West transect, two coral 

samples (I and II), one interaction/interface (III) and two competing organism (IV and V) 

samples were collected. The interaction/interface sample was taken from the border where the 

two organisms touch, and includes tissue from both of the organisms. Three tissue biopsies (1 cm 

diameter × 1 cm depth) from each location (I, II, III, IV, and V) were sampled for metabolomics, 

metatranscriptomics and microbial diversity (i.e., 16S and 18S rDNA sequencing). The tissue 

biopsies were collected by divers on SCUBA using a diamond encrusted core drill bit (Lasco 

Diamond Products). Samples were stored in ziploc bags until their return to a moored vessel with 

indoor laboratory space where samples for metatranscriptomics (RNA) were fixed with 

RNAlater (ThermoFisher Scientific cat# AM7020) in cryovials and flash frozen in liquid 

nitrogen. Samples for mass spectrometry (metabolomics) were stored in 70% LC/MS grade 

methanol/water in glass vials and stored at 20◦C. Samples for metabarcoding (DNA) were also 

flash frozen in liquid nitrogen. All molecular samples were later moved to −80◦C prior to 

processing and analysis. 
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Photogrammetry, 3D Model Construction and Molecular Cartography 

 

Over 200 photographs were taken of each O. faveolata colony and their interacting 

organisms at the two separate sites (Water Factory and East Point) using a Canon Rebel T4i with 

a 35-mm lens and two Keldan 800 lumen video lights to illuminate the corals uniformly (George 

et al., 2021). A ruler, placed along the interface of the coral colonies, was photographed to set the 

scale for the resulting 3D digital models. Pre-sampling images were used for the 3D coral 

reconstruction, and post-sampling images were taken to map the sample location on the 3D 

models. Photos from each coral colony were color corrected and subsequently imported into 

AutodeskQR ReCapTM Photo 21.0 to create spatially accurate 3D coral reconstructions (Burns 

et al., 2015; Leon et al., 2015). The models were scaled using the in-reef ruler incorporated into 

the 3D-model and the ReCapQR Photo ‘set scale and units’ tool. The models were exported as a 

STL file as well as an OBJ file that included corresponding MTL and JPG files. 

The STL models were then imported into MeshLab 2020.03, and the spatial coordinates 

for each sampling point in the 3D models were determined using methods from Protsyuk et al. 

(2018). The location of each sample was selected on the 3D model surface using the ‘reference 

scene’ tool in MeshLab, and the x, y, z coordinates for each sample location were recorded. The 

corresponding sample data was then added to the spatial coordinates in a CSV file. Three-

dimensional molecular heatmaps were generated using the online software platform ili (Protsyuk 

et al., 2018). These maps were constructed with the OBJ files with corresponding MTL and JPG 

files as the input for the 3D surfaces and CSV files for the -omics data and spatial coordinates. 

Colored mesh was overlaid using the JPG file, and a linear ‘hot’ color scale was used for all 3D 

molecular heatmaps. The data was displayed using a spot border capacity and radius of 1.  
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DNA/RNA Extraction 

 

DNA was extracted from tissue biopsies using DNeasy PowerBiofilm kit (Qiagen Cat 

No./ID: 2400-50) and quantified using Qubit DNA HS assay kit. Total RNA was extracted from 

the samples using the AllPrep DNA/RNA kit (Qiagen Cat No./ID: 80204). DNA was used for 

amplicon sequencing and the RNA portion was dedicated for metatranscriptomes. RNA was 

quantified using Qubit RNA HS assay kit and checked on an Agilent Bioanalyzer 2100 (Cat. 

5067-1513) before proceeding to library preparation. 

 

Amplicon Sequencing 

 

To determine the bacterial diversity of O. faveolata and its competitors, extracted DNA 

was sent to the Integrated Microbiome Resource (IMR) at Dalhousie University where the V6-

V8 region of the 16S rDNA was amplified, and the amplicon samples were sequenced with 

Illumina MiSeq using 300 x 300 bp paired end V3 chemistry, resulting in 656,698 reads. To 

study the protist diversity, PCR amplification of 18S rDNA was performed using non-metazoan 

18S rDNA primers (UNonMet). The cleaned and purified PCR products were also sent to the 

IMR at Dalhousie University where the V4 region of the 18S rDNA was amplified, and the 

amplicon samples were sequenced with Illumina MiSeq using 300 300 bp paired end V3 

chemistry, resulting in 2,972,176 reads. 

The paired-end reads were demultiplexed and denoised using DADA2 as part of the 

Qiime 2TM pipeline (Bolyen et al., 2019), and sequences were trimmed using the parameters “-

p-trim- left-f 19 -p-trim-left-r 20 -p-trunc-len-f 290 -p-trunc-len-r 290” for 16S amplicon 

sequences and “-p-trim-left-f 15 -p-trim-leftr19 -p-trunc-len-f 290 -p-trunc-len-r 290” for 18S 

amplicon sequences. Taxonomic classification was performed using the q2-feature-classifier 
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(Bokulich et al., 2018) trained against the SILVA database version 132, and phylogenetic trees 

were built with FastTree as part of the Qiime 2TM pipeline. Long branching amplicon sequence 

variants (ASVs) were removed from 16S and 18S rDNA datasets, along with ASVs classified as 

plastids and mitochondria in the 16S rDNA dataset. For 16S rDNA, ASVs were collapsed into a 

Qiime 2 taxonomy table at the phylum level, and analyses were conducted on both bacterial 

ASVs and phyla.  

 

Metatranscriptomics 

 

RNA libraries were generated using Illumina TruSeq RNA Library Prep Kit v2 (Cat: RS-

122-2001) and spiked into 3 lanes of an Illumina Hiseq 2500 run using 150 x 150 bp paired end 

(PE) chemistry, yielding a total of 282,578,680 quality- filtered PE reads with an average of 

7,436,281 PE reads per sample (Supplementary Table 3.1). Samples were demultiplexed using 

the manufacturer’s software (basespace.illumina.com). Reads were quality filtered using 

PRINSEQ with parameters “-ns_max 0 -derep -lc_entropy = 0.5 -trim_qual_right = 15-

trim_qual_left = 15 -trim_qual_type mean -trim_qual_rule lt -trim_qual_window 2 -min_len 30 -

min_qual_mean 20 - rm_header” (Schmieder and Edwards, 2011). Only read 1 sequences were 

used in the microbial functional annotation. 

Bacterial transcripts were identified in our metatranscriptomic sequence dataset using the 

mapping algorithm SUPER-FOCUS against the RAST-SEED database for microbial functions 

with default parameters (Overbeek et al., 2014; Silva et al., 2016). Annotations for specific 

eukaryote coding regions were conducted using FRAP, which utilizes SMALT mapping, with a 

96% identity over 100% of the length of the quality- filtered and trimmed sequence read 

(Ponstingl and Ning, 2010). Sequences mapping to coral and Symbiodinium reference genomes 
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were removed prior to the microbial subsystem annotation (Supplementary Table 3.2). A 

compilation of publicly available coral genomes and Symbiodinium genomes from 

reefgenomics.org were used to identify coral and Symbiodinium- associated reads (Liew et al., 

2016). 

 

Ultra-Performance Liquid Chromatography – Tandem Mass Spectrometry 

 

 Methanolic extracts were analyzed as described in Roach et al. (2020). Analysis was 

done using Ultra Performance Liquid Chromatography (UPLC) with a Kinetex C18 reverse 

phase column (Phenomenex Inc.) connected to a Maxis Q-TOF Mass Spectrometer (Bruker 

Daltonics). The raw datafiles from the MS machine were converted into .mzXML files with the 

Bruker Data Analysis software version 4.1. The .mzXML files are available on the MassIVE 

database (massive.ucsd.edu) under numbers MSV000080597 and MSV000080632 (same 

dataset). The .mzXML files were imported into MZmine2 (Pluskal et al., 2010) of which a beta 

version was used (2.37.1.corr17.7, see Supplementary Methods). Thresholds used were the same 

as in Roach et al. (2020) only the ADAP chromatogram builder function was used with the 

following settings: a minimum height intensity was 3.00 x 103, the group intensity threshold 3.00 

x 103, minimum group size in number of scans was set to 3, together with a mass tolerance of 25 

ppm or 0.05 m/z. 

In addition to the MZmine workflow, the MZmine metacorrelate function was used 

which performed a Pearson correlation analysis with the following settings: Retention time 

tolerance: 0.1 min, the minimum height: 4.00 x 103and noise level: 3.00 x 103. The minimum 

number of samples in all was set to an absolute value of 2, and there was no minimal number of 

samples per group. 60% of the intensity overlap was set as a minimum and gap filled features 

were excluded. Minimum number of data points was set to 5, and two points on the edge. The 
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shape correlation was set to 85% minimum. Ion Identity networking function searched for all 

modifications and all adducts from the positive ion mode within a 0.05 – 25 ppm, with a 

minimum height of 4.00 x 103. The maximum charge was set to 4, and there was a maximum for 

3 molecules per cluster. For more details on the MZmine workflow and specific settings see 

Supplementary Materials. 

 

Metabolomics: Molecular Networking and Spectral Library Searching 

 

The Feature-Based Molecular Networking (FBMN) workflow (Nothias et al., 2020) in 

the GNPS environment (Wang et al., 2016) was used to create the Ion Identity Network (IIN) 

(job ID: 415d51c0fd25492187b2d822eaa6f217). All fragment ions within 17 Da of the precursor 

m/z were removed. MS/MS spectra were filtered by selecting the top 6 fragment ions within a 50 

Da window throughout the spectrum. Mass tolerances were set for both the precursor ion and the 

MS/MS fragment ion to 0.05 Da. A molecular network was created with edges having a cosine 

score above 0.7 and more than 4 matched peaks. Nodes had to appear in each other’s top 20 of 

most similar nodes, and the maximum size of a molecular family was set to 500. If a molecular 

family was larger than 500, the lowest scoring edges were removed.  

Library spectra were filtered in the same way as the input data. For a positive library 

match the spectra needed a minimum of 4 matching peaks and a cosine score above 0.7. Analog 

search mode was used by searching against MS/MS spectra within a difference of 100.0 Da of 

the precursor ion. The edges from the IIN were added separately by the output file of MZmine. 

Information on the chemical structure was enhanced using different workflows within the GNPS 

environment. Network Annotation Propagation (job ID: 729d9f96b8614ba9a18d751 7926d2462) 

(da Silva et al., 2018; Kyo Bin Kang et al., 2018), Dereplicator (job ID: 
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ada96df6153e4b5e9be24423cc4ff760) (Mohimani et al., 2017) and MS2LDA_MotifDB (job ID: 

16f297cc335644349f85440fc9af89d6) (van der Hooft et al., 2016; van der Hooft et al., 2017; 

Wandy et al., 2018; Rogers et al., 2019) were combined with the GNPS Library search and 

incorporated to the network using GNPS MolNetEnhancer (Ernst et al., 2019), assigning 

Chemical Class annotations using the ClassyFire (Djoumbou Feunang et al., 2016) chemical 

ontology (job ID: beee6b518aa54bc1aaaa7ba9d1f9ec1c). The network was downloaded into 

Cytoscape (Shannon et al., 2003) for further network visualization. 

GNPS annotated 53 features based on MS2 spectra as known compounds by matching 

MS2 spectra to library spectra. Another 238 features were highly similar to MS2 spectra and 

marked as analog hits. Information on feature structures from the different workflows were 

integrated with MolNetEnhancer and resulted in 564 Classyfire annotations on the level of 

Kingdom and Superclass, 562 on class level, and 420 on subclass level. A total of 265 runs were 

used as input for MZmine, which detected 3355 features. Analysis on MS1 level was done on 31 

samples and 24 blanks. Contaminant features were flagged and removed if the maximum peak 

area in one of the blanks was larger than half of the mean peak area of all samples. Peak area 

background noise level was set on 4929 as was the smallest peak area before the gap filling step 

in MZmine. Features needed to pass the peak area background noise level threshold in at least 2 

samples. In addition, feature peak areas smaller than two-fold background noise (peak area of 

10000) were set to 0, but features were kept. This resulted in 2315 features. 
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Statistical Analyses 

 

For the 16S and 18S rDNA amplicon sequencing, the abundance tables were rarefied by 

subsampling the reads to account for library size and imported using QIIME 2R1. The 

transcriptome abundance data tables were taken using read hits counts normalized by the total 

number of hits per library, the metabolomic data table consists of areas under the curve. 

Maximum likelihood trees of 18S rDNA were built in IQ-TREE v1.5.4. (Nguyen et al., 2015). 

The spatial analysis was conducted using physical distances measured over the 3D coral’s 

surface. The shortest 3D topological distance between two sample points was calculated using 

the ReCap® Photo ‘measure distance’ tool, and a pairwise physical distance matrix was 

generated for all samples within the coral colonies. The spatial patterns of the different data types 

were then analyzed using linear regression analyses in R version 3.4.4 (R Core Team, 2017) with 

ggplotRegression (Wickham and Chang, 2016), and power analyses were conducted using the R 

pwr package 1.3-0 (Champely et al., 2017). 

All statistical analyses were conducted in R version 3.4.4 (R Core Team, 2017). 

Abundance data tables of each data type were manipulated with dplyr and tidyverse and used to 

create Bray-Curtis dissimilarity matrices with the Vegan package 2.5-2 (Oksanen et al., 2016). 

Additionally, the Vegan and pairwise Adonis packages were used to generate PERMANOVA 

test statistics on the Bray-Curtis dissimilarity matrices and provided pairwise comparisons 

between variables. The Principle Coordinates and eigenvectors were generated by the Ape 

package 5.4-1 with a Cailliez correction for negative eigenvalues (Paradis and Schliep, 2019) 

and the Non-metric Multi-dimensional Scaling (NMDS) analysis was conducted using the 

metaMDS function of the Vegan package 2.5-2 (Oksanen et al., 2016). Principal Coordinate 

Analysis coordinates with eigenvectors and NMDS were plotted with ggplot2 (Wickham and 
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Chang, 2016), and heatmaps of relative abundances were plotted using the heatmap function in 

R. Supervised and unsupervised random forests analyses were run using rfPermute 2.1.81 

(Archer, 2016), and 3,000 trees were built using a set seed of 25. Shannon entropy and 

rarefaction species richness was calculated using the Vegan package 2.5-2. F-Tests (two-sample 

for variances) and t-Tests (two-sample assuming equal variance or assuming unequal variance) 

were used for diversity metrics. 

 

Co-occurrence Analysis 

 

To integrate the different datasets, the mmvec tool3 was used to calculate conditional 

probabilities of the occurrence of transcriptomes or metabolites with the occurrence of specific 

bacteria on a phylum level (Morton et al., 2019). The standalone version of mmvec was used and 

co-occurrence probabilities were extracted by applying a softmax transformation. The 

conditional probabilities of the top predictors were visualized in a two way heatmap using JMP 

(JMP, Version 14. SAS Institute Inc., Cary, NC, United States, 1989-2021). 

 

Ubiquity Calculations 

 

The methods from Hester et al., 2016 were used to calculate the ubiquity and relative 

abundance of the 16S and 18S rDNA ASVs, bacterial transcripts, and metabolites. Briefly, the 

ubiquity of an individual ASV/transcript/metabolite was determined by the number of samples 

the ASV/transcript/metabolite was present in divided by the total number of samples. For 

example, a ubiquity of 1 resulted from the ASV/transcript/metabolite appearing in 100% of the 

samples. The relative abundance was calculated as a proportion of the entire community (e.g., 
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proportion a specific ASV/transcript/metabolite to all ASVs/transcripts/metabolites from all 

samples). Ubiquity-abundance was plotted using ggplot2 (Wickham and Chang, 2016). 
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Figure and Tables 
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Figure 3.1 Images (A,C) and 3D models (B,D) of the Orbicella faveolata corals with sampling 

points overlaid for visualization. Inset in panels (A,C) show the geographic location of the 

sampling efforts. Compass insets indicate the orientation of the coral colonies for cardinal 

direction. Three samples were taken from each sampling point (I-V), one for 16S and 18S rDNA 

amplicon sequencing, one for metatranscriptomic sequencing, and one for LC MS/MS 

metabolomic analysis for a total of 60 samples (24 coral, 12 interface, and 24 competitor) taken 

at each site (Water factory and East Point). Models were created using Autodesk ReCap Photo 

and 3D molecular mapping was performed using ili (scale bar = 20 cm). White arrows indicate 

the interface between O. faveolata and the interacting competitors (turf algae, Orbicella 

annularis, Millepora complanata). White arrows indicate the interface between O. faveolata and 

the interacting competitors (turf algae, Orbicella annularis, Millepora complanata). 
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Figure 3.2 Bray-Curtis dissimilarity of (A) 16S rDNA, (B) 18S rDNA, (C) bacterial 

transcriptomes, and (D) metabolomes as a function of the physical distance 

between samples of the East Point Orbicella faveolata colony. The physical distance represents 

the shortest distance between two sample points along the 3D coral 

model surface. No significant correlations were observed (p > 0.05) and similar results were 

found for the Water Factory O. faveolata colony. Black lines represent 

the fit line and gray areas represent the fit confidence (95%). 
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Figure 3.3 Overview of the 16S rDNA amplicon data. (A) Principal components plot of the 16S 

rDNA ASVs from the coral colonies of interest along with interfaces and their respective benthic 

competitors. EP, East Point coral of interest; WF, Water Factory coral of interest. (B) 

PERMANOVA results based on Bray-Curtis dissimilarities. (C) Relative abundance (proportion 

of the entire community) versus ubiquity of each ASV from all samples (bottom plot) and those 

unique to O. faveolata samples (top plot). Ubiquity for unique O. faveolata ASVs is normalized 

to total O. faveolata samples. The star represents the most ubiquitous ASV found only in O. 

faveolata (i.e., a taxa that is uniquely ubiquitous in O. faveolata). (D) Diversity metrics of coral, 

interface and other (turf algae and M. complanata) samples. Interface and other samples had 

significantly higher bacterial richness than coral samples (** p ≤ 0.01, *** p ≤ 0.001). 
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Figure 3.4 Heatmap and 3D cartography of bacterial phyla from Orbicella faveolata colonies, 

competitors and interfaces. (A) Heatmap of phyla selected from the supervised random forests 

analysis. Relative abundances are log-transformed and colors are normalized to columns with red 

representing the lowest relative abundance and white representing the highest. Asterisks 

highlight phyla shown in 3D models. 3D coral models mapped with the relative abundances of 

(B) Firmicutes and (C) Cyanobacteria from both sampling sites. The relative abundance of 

Firmicutes ranges from 0.21–93.5% at East Point and 0.0–89.7% at Water Factory. For 

Cyanobacteria, the relative abundance ranges from 0.0–14.4% at East Point and 0.0–0.49% at 

Water Factory. 
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Figure 3.5 Overview of the bacterial metatranscriptomes at the SEED functional level. (A) 

Principal components plot of the coral colonies of interest along with interfaces and their 

respective benthic competitors. EP, East Point coral of interest; WF, Water Factory coral of 

interest. (B) PERMANOVA results based on Bray-Curtis dissimilarities. (C) Relative abundance 

as a function of ubiquity of each bacterial transcript from all samples. The majority of bacterial 

transcripts were found in most samples (ubiquitous), and no Orbicella faveolata specific 

bacterial transcripts were observed. (D) Diversity metrics of coral, interface and other (turf algae 

and Millepora complanata) samples at the SEED functional level. Richness of bacterial 

transcripts was significantly higher in interface and other samples than in corals (* p ≤ 0.05, ** p 

≤ 0.01). 
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Figure 3.6 Molecular heatmap of bacterial metatranscriptomes from Orbicella faveolata 

colonies, competitors and interfaces. (A) Heatmap of SEED Level 1 categories selected from the 

supervised random forests analysis. Phage Group 1 includes phages, prophages and transposable 

elements while Phage Group 2 also includes plasmids. Colors are normalized to columns with 

red representing the lowest relative abundance and white representing the highest. Asterisks 

highlight Level 1 categories shown in 3D models. 3D coral models mapped with the relative 

abundance of bacterial transcripts belonging to (B) Phage Group 1 and (C) Cell Cycle and Cell 

Division at both sampling sites. The relative abundance of Phage Group 1 transcripts range from 

0.06–0.74% at East Point and 0.002–0.42% at Water Factory. For Cell Cycle and Cell Division, 

the relative abundances range from 0.03–0.53% at East Point and 0.02–0.28% at Water Factory. 
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Figure 3.7 Overview of metabolome data. (A) Principal components plot of the coral colonies of 

interest along with interfaces and their respective benthic competitors. Main driving metabolites 

shown along with mass to charge ratios for unknown metabolites. EP, East Point coral of 

interest; WF, Water Factory coral of interest. (B) PERMANOVA results based on Bray-Curtis 

dissimilarities. (C) Relative abundance versus ubiquity of each metabolite from all samples 

(bottom plot) and those unique to Orbicella faveolata samples (top plot). Ubiquity for unique O. 

faveolata metabolites is normalized to total O. faveolata samples. (D) Diversity metrics of coral, 

interface and other (turf algae and M. complanata) samples (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 

0.001). 
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Figure 3.8 Heatmap and 3D cartography of metabolites from Orbicella faveolata colonies, 

competitors and interfaces. (A) Heatmap of metabolites selected from the supervised random 

forests analysis. Mass to charge ratios are shown for unknown metabolites. Abundances (Area 

Under the Curve/AUC) are log-transformed and colors are normalized to columns with red 

representing the lowest abundance and white representing the highest. Asterisks highlight 

metabolites shown in the 3D models. 3D coral models mapped with the abundances of (B) 

ceramide and (C) an unknown metabolite (277.09) from both sampling sites. Ceramide 

abundance ranges from 0-124,247 AUC at East Point and 0-69,148 AUC at Water Factory. For 

the unknown metabolite (277.09), the abundance ranges from 0-338,137 AUC at East Point and 

0-137,151 AUC at Water Factory. 
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Figure 3.9 Heatmaps from the neural network (mmvec) analysis. The conditional probability 

(dark red/black for low and yellow/white for high) that the presence of a transcript or metabolite 

corresponds to the presence of a specific bacterial phylum is shown. (A) Top SEED Level 1 

transcript predictors from supervised random forest analysis; (B) Top known metabolite 

predictors from supervised random forest analysis. For metabolites the number in front of the 

annotation is the mass to charge ratio. 
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Figure 3.10 Summary of the Orbicella faveolata holobiont and its main competitor, turf algae. 

Core microbial members of O. faveolata are shown along with their potential functions and 

interactions with the coral host (red circle). Question marks represent functions that are 

unknown. The change in abundance of specific bacterial groups, bacterial and phage functions, 

and metabolites across coral and turf algae competitors are illustrated by orange and green 

triangles. 
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Supplemental Figures and Tables 
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Supplemental Figure 3.1 Non-metric Multi-dimensional Scaling (NMDS) plot of coral colonies 

of interest along with interfaces and their respective benthic competitors. Stress values for all 

datasets are less than 2. A/ 16S rDNA. B) 18S rDNA. C) Transcripts at the SEED functional 

level. D) Metabolites. 
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Supplemental Figure 3.2 Overview of the 16S rDNA amplicon data at the phylum level. A) 

Principal components plot of the coral colonies of interest along with interfaces and their 

respective benthic competitors. B) PERMANOVA results based on Bray-Curtis dissimilarities. 

C) Relative abundance (proportion of the entire community) versus ubiquity of each phylum 

from all samples. D) Diversity metrics of coral, interface and other (turf algae and M. 

complanata) samples. 
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Supplemental Figure 3.3 Random Forest and ubiquity metrics for 16S rRNA amplicon data. A) 

Top ten ASV predictors of coral, interface and other categories from the supervised random 

forest. Taxonomy shown at the phylum level and at the lowest taxonomic rank possible based on 

Qiime2 taxonomy and BLAST analysis. B) silhouette plot from the unsupervised random forest. 

C) The most abundant, uniquely ubiquitous ASVs found in and only O. Faveolata samples. 

Ubiquity ranges from 0-1. 
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Supplemental Figure 3.4 Overview of the 18S rDNA amplicon data. A) Principal components 

plot of the 18S rRNA gene ASVs from the coral colonies of interest along with interfaces and 

their respective benthic competitors. B) PERMANOVA results based on Bray-Curtis 

dissimilarities. C) Relative abundance (proportion of the entire community versus ubiquity of 

each ASV from all samples (bottom plot) and unique to O. faveolata samples (top plot). Ubiquity 

for the unique O. faveolata ASVs is normalized to total O. faveolata samples. D) Diversity 

metrics of coral, interface and other (turf algae and M. complanata) samples (**p ≤ 0.01, ***p ≤ 

0.001) 
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Supplemental Figure 3.5 Random Forest and ubiquity metrics for 18S rRNA amplicon data. A) 

Top ten ASV predictors of coral, interface and other categories from the supervised random 

forest. Taxonomy shown at the lowest taxonomic rank possible based on QIIME2 taxonomy and 

BLAST analysis. B) Silhouette plot from unsupervised random forest. C) The most abundant, 

uniquely ubiquitous ASVs found in and only O. faveolata samples. Ubiquity ranges from 0-1. 
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Supplemental Figure 3.6 Maximum likelihood tree inferred under the TIM2+I+G4 of the 18S 

rRNA gene sequences of symbiodiniaceae and Dinophyceae. 
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Supplemental Figure 3.7 Random Forest and ubiquity metrics for bacterial transcripts at the 

SEED functional level. A) top ten transcript predictors of coral, interface and other categories 

from the supervised random forest. B) Silhouette plot from unsupervised random forest. C) The 

top 10 most relatively abundant transcripts present in all samples (ubiquity of 1). No transcripts 

were unique to O. faveolata. 
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Supplemental Figure 3.8 Overview of the bacterial transcriptome data at the third SEED level 

(Level 3). A) Principal components plot of the coral colonies of interest along with interfaces and 

their respective benthic competitors. B) PERMANOVA results based on Bray-Curtis 

dissimilarities. C) Diversity metrics of coral, interface and other (turf algae and M. complanata) 

bacterial transcripts. D) Heatmap of selected SEED level 3 categories. These subcategories. 

These subcategories belong to the following SEED level 1 groups: phage-related, cell division 

and cell cycle, motility and chemotaxis. 
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Supplemental Figure 3.9 Heatmap of selected SEED functional categories. The photosystem II 

protein D1 (PsbA) drove the T7-like cyanophage pattern seen at level 3 (previous figure). 

Several functional SEED categories contributed to the increased relative abundance of cell 

division and cell cycle along with motility and chemotaxis in turf and interface. However, only a 

few of those functional categories are included here. 
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Supplemental Figure 3.10 Random Forest results for annotated metabolites. A) Top ten 

annotated metabolite predictors of coral, interface and other categories from the supervised 

random forest. Supervised random forest 483.38 and 510.39 as the top predictors (mean decrease 

in accuracy, 4.83 and 4.76, respectively). B) Silhouette plot from unsupervised random forest. C) 

The most abundant, uniquely ubiquitous annotated metabolites found in and only in O. faveolata 

samples. Five unknown metabolites with a mass to charge ratio of 467.31, 240.10, 432.34, 

1149.74, and 397.21 were also uniquely ubiquitous (0.92) in O. faveolata. Ubiquity ranges from 

0-1. 
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Supplemental Figure 3.11 Regression analyses of metabolomic, 16S rDNA amplicons, and 

microbial functional Shannon Entropy (H’) and Richness (s). 16S amplicon relative abundances 

for these analyses were conducted from ASV relative abundances. Microbial functions for these 

analyses were from SEED subsystems functional level relative abundances. No significant 

correlations were found across the three data types. For metabolomes, relative abundance of all 

hits were used. Blue lines represent the fit line and blue areas represent the fit confidence (95%). 
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Supplemental Figure 3.12 The range of Shannon Entropy of all sample types from East Point, 

Water Factory and both sites combined. The size of the circles represent the reef area sampled at 

East Point (6.5 m2), Water Factory (1 m2), and total area (7.5 m2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



149 

 

Supplemental Figure 3.13 Heatmaps from the neural network (MMVEC) analysis. The 

conditional probability (dark red for low and yellow/white for high) that the presence of a 

metabolite co-occurs with a bacterial phylum or transcript is shown. A) All metabolites related to 

all bacterial phyla. B) All metabolites related to all SEED level 1 transcripts. 
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Supplemental Table 3.1 Power analysis of the sampling size (n) required to be statistically 

significant (p ≤ 0.5) with variable effect sizes (r) and a power of 80%. 
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Supplemental Table 3.2 Power analysis using sample sizes (n) from this study to determine the 

power at variable effect sizes (r) that are statistically significant (p ≤ 0.05). 

 

Data n r p power 

18S rDNA 21 0.5 0.05 0.66 

18S rDNA 21 0.3 0.05 0.27 

18S rDNA 21 0.1 0.05 0.07 

16S rDNA 21 0.5 0.05 0.66 

16S rDNA 21 0.3 0.05 0.27 

16S rDNA 21 0.1 0.05 0.07 

Metabolites 28 0.5 0.05 0.79 

Metabolites 28 0.3 0.05 0.35 

Metabolites 28 0.1 0.05 0.08 

Transcripts (Lvl 3) 21 0.5 0.05 0.66 

Transcripts (Lvl 3) 21 0.3 0.05 0.27 

Transcripts (Lvl 3) 21 0.1 0.05 0.07 

     

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 

 

Supplemental Table 3.3 Sequence mapping identification results including the percentage of 

reads assigned to microbial subsystems, coral reference genomes, and Symbiodinium reference 

genomes. 
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