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The overall picture of molecular recognition covers the thermodynamic and kinetic 

properties of molecular systems. Regarding thermodynamics, binding affinity or free 

energy, which can be decomposed into enthalpy and entropy, determines the strength of 

binding. Binding kinetics, the association and dissociation rate constants, describe the 

rates for molecular binding and unbinding. In this thesis, I carried out various molecular 

mechanics modeling tools to understand binding thermodynamics and kinetics of host-

guest systems and protein-ligand systems.  

The work includes both novel method development and applications using existing tools. 

Here we computed the binding free energy of the surfactant-silver nano-plate complexes 

using the M2 method and to understand how a capping ligand helps grow shaped 

nanomaterials. Several factors were determined to be crucial, and our findings allow 

rational design of capping surfactants in addition to the magic compound citrate. In 
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addition, a molecular dynamics (MD) and docking were applied to find the inhibitor 

binding site on protein TIM44 to assist cell biology studies. I examined the inhibitor 

selectivity of wildtype TIM44 and its mutants using energy calculations. 

The binding/unbinding processes are carefully investigated for β-cyclodextrin and its 

guests to thoroughly study the thermodynamics and kinetics of binding. I applied MD 

simulations, post-analyzed the MD trajectories and developed and implemented methods 

such as the cell method to compute binding enthalpy, solute entropy and solvent entropy. 

Notably, the latter two entropy components are known to be very challenging to obtain 

computationally. I also computed the kinetic rate constants and investigated the influence 

of force fields used. It is the first work that illustrates all entropy and enthalpy 

components of binding in great details. 

Realizing how crucial conformational sampling can be in answering fundamental 

scientific questions and valuable applications, a novel method to accelerate searching 

molecular conformations and ligand dissociation pathways was developed. The method 

uses a multi-layer internal coordinate and an internal PCA search algorithm to post-

analyze a given MD trajectory and then guide motions of a molecular system. This 

algorithm is able to find possible dissociation pathways with high efficiency. Five 

examples are discussed to illustrate the functionality and capacity of this new method. 
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Chapter 1 Introduction 

1.1 Overview 

Molecular modeling of ligand-receptor systems is the study which focuses on the 

microscopic structures and dynamics that determine the macroscopic properties including 

selective binding affinity, association/dissociation rates and binding pathways. Its 

research combines the concepts and techniques from chemistry, biology, computer 

science and pharmacology. It originated from the early models of ball and stick model 

and evolved into modern molecular modeling with the appearance and development of 

computer science, especially since the 21th century 1-3. Nowadays it is an important 

component in fundamental studies in chemistry and biology, playing both explanatory 

and predictive roles. The objective of this work is to understand the binding process of 

bimolecular systems from the aspects of thermodynamic and kinetic properties such as 

enthalpy and entropy, association/dissociation rates and binding pathways using 

molecular modeling. Smaller host-guest systems containing only a few hundred atoms 

were studied to develop theoretical and practical benchmarks for the methods and 

protocols. These methods and protocols were applied in the larger protein-ligand systems 

that contain tens of thousands of atoms. Subsequent sections in this chapter describe the 

theories and techniques of molecular modeling. The chapters that follow present several 

studies of the binding/unbinding of bimolecular systems and a novel algorithm which 

specifically models the dissociation of bimolecular systems.  
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The thermodynamics of ligand-receptor binding has been intensively studied for decades. 

However, a fundamental understanding of kinetics is still absent, because kinetic studies 

require static snapshots of the initial and final states and a description of the entire 

transition process between the two states. To start with the relatively simple case, the 

study of facet selectivity of ligands on silver nanoplates is presented in Chapter 2. This 

work focused on the selective binding of several surfactants on the two silver facets. It 

was done by using a conformational search method which is aggressive in finding global 

conformation minimum in implicit solvent model with high efficiency. 

Moving from small host-guest systems to protein-ligand systems, the increased scale in 

system size and number of atoms results in challenging technical issues, such as the 

exponential increase in computational cost. To overcome this challenge, a compensation 

between accuracy and computational cost has to be made. Chapter 3 demonstrates a 

molecular dynamic and docking study on inhibitor binding to TIM44 wildtype and its 

mutants.  

Since the implicit solvent model is unable to result in a satisfactory description on solvent 

effects, especially on the estimation of the entropic contribution, an explicit solvent 

model needs to be utilized to obtain more accurate descriptions of solvent entropy via 

molecular dynamics simulations. In Chapter 4, solvent entropy evaluation methods are 

discussed and compared for the performance and limitations. 

Among several entropy calculation methods available, the cell method stands out for its 

capacity to evaluate the entropy of single water molecule in addition to its ease of 
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implementation. Therefore this method is chosen for an enthalpy-entropy calculation of a 

host-guest system, β-cyclodextrin complexes, in explicit solvent model. The fast kinetics 

of β-cyclodextrin complexes allows for a direct evaluation of the association/dissociation 

rates via molecular dynamics. The investigation of this host-guest system provides useful 

insights into the thermodynamic-kinetic relationships for larger protein-ligand systems. 

Chapter 5 presents a study on the evaluation of thermodynamics and kinetics of ligands 

binding to β-cyclodextrin in explicit solvent.  

Lastly, after obtaining accurate methods for evaluating the enthalpy and entropy of 

different size systems, another major challenge in molecular modeling is conformational 

sampling of systems in great size. Current sampling methods either suffer from absence 

of atomistic description of the system or the lack of temporal efficiency. To contribute to 

this issue, Chapter 6 introduces a novel conformational sampling method based on a new 

technique named internal Principle Component analysis or internal PCA.  

1.2 Modeling with Molecular Mechanics 

1.2.1 Force Fields 

Molecular mechanics differs from quantum mechanics because the former models the 

structure and behavior of the molecular systems based on classical mechanics and 

empirical parameters. In molecular mechanics, the atoms are usually described by 

spheres with either hard potential or soft potential on the surface while they are connected 

by certain topology which governs the behavior of the entire molecule 4, 5. Starting from 

the all-atom molecular model, different levels of coarse graining can be achieved for 
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efficiency reasons 6, 7, but in this work, an all-atom non-polarizable description of the 

system is utilized.  

To describe the molecular model in a mathematical framework, the system under study is 

assigned with a force field. A typical atomistic force field has a potential energy function 

defined as follows:  

 𝐸 = (𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛) + (𝐸𝑒𝑙𝑒𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠) 

 

eq.  1.1 

where the first parenthesis denotes the bonded terms and the second denotes the non-

bonded terms. Although the interactions between two molecules involved in binding is 

usually non-bonded interaction, the bonded terms also play important roles because they 

determine the internal behaviors of the two interacting molecules.  

Consider a force field widely used for protein simulations, the AMBER force field 4. Its 

potential energy function obeys the equation below:  
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eq.  1.2 

  

The chemical bonds are modeled as harmonic springs with a reference value equal to the 

equilibrium length of the bond, and a force constant describing the strength of the bond. 
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In the first term of the functional form, 𝑘𝑏 is the force constant, 𝑟 is the measured 

distance between the two atoms involved in the bond, and 𝑟0 is the equilibrium distance 

between the two atoms.  

The angle term is introduced to further set up the internal structure of molecules. This 

term is similar to the bond term, where a harmonic potential is used to describe the angle 

between the two bonds sequentially connecting the three atoms. In the second term of the 

function, similarly, 𝑘𝑎 is the force constant describing the rigidity of the angle, 𝑎 is the 

measured position of the angle, and 𝑎0 is the equilibrium position of the angle. 

The torsion term is the pivotal term which further defines the structure and differentiates 

the conformations of the molecule. In the third term of the function, 𝑉𝑛 is the force 

constant which governs the strength of the torsion, 𝑝 is the periodicity of the rotation of 

the torsion, 𝜃 is the measured value of the torsion and 𝜑 is the phase angle determining 

the minima and maxima of the potential.  

This torsion term consists of two major types of torsions: dihedral angle, and improper 

torsion angle. The dihedral angle directly defines the rotation of chemical bonds (Figure 

1.1). For example, a methyl rotation in ethane will be defined as 𝑝 = 3 and 𝜑 = 180°, 

where the three minima of the methyl rotation fall to 0°, 120°, -120°.  



 6 

 

Figure 1.1 Dihedral torsion angle 𝜑 defined by a set of four sequentially bonded atoms i, 

j, k and l 

The improper torsion angle has the same functional form as dihedral angle in AMBER 

force field, and it defines the angle at which the fourth atom deviates from the plane 

defined by the first three atoms (Figure 1.2). The improper torsion is the least frequent 

term in the potential energy function and is only used to enforce the planar geometry, for 

example, an 𝑠𝑝2 hybridized atom.  

 

Figure 1.2 Improper torsion angle 𝜑 defined by a set of three atoms j, k and l bonded to 

the same atom i. 
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The non-bonded term are included to model electrostatic and van der Waals interactions. 

In molecular dynamics, the electrostatic interaction is modeled in a partial charge based 

monopole approach. The partial charge of the atom is usually assigned by empirical 8, 9, 

semi-empirical 10, or quantum 11 calculations. Both electrostatic and van der Waals 

interaction are truncated at two body interactions and higher order of interactions are 

captured by empirically tuning the two body interaction parameters. The behavior of any 

pair of atoms in a system is under the government of non-bonded forces unless the two 

atoms are involved in a bond or angle term.  

The last term in the potential energy functional describes the non-bonded interactions. 

The double summation loops over all pairs of atoms. 𝑓𝑖𝑗 is 1 is a scaling factor if the two 

atoms are the two ends of a torsion; a value of one means that the two atoms are not in 

the same bond, angle or dihedral, or is 0 if the two atoms are in the same bond or angle. 

In the outer parenthesis, the left term is the van der Waals force in the form of a 12-6 

Lennard-Jones potential, where 𝜖𝑖𝑗 is the potential depth, 𝑟0𝑖𝑗 is the equilibrium position 

of the two atoms, and 𝑟𝑖𝑗 is the measured distance between the two atoms. The right term 

is the electrostatic force derived from the Coulomb’s law, where 𝑞𝑖𝑞𝑗 is the product of 

the partial charges of the two atoms, 𝜖0 is the electric permittivity of the free space, and 

again, 𝑟𝑖𝑗 is the measured distance between the two atoms. 

The functional form of the potential energy may vary in different force field. For 

example, in CHARMM force field 5, the improper torsion angle is a harmonic function 

instead of a cosine function, and there are several other additional terms describing 
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certain specific geometric interactions. Hydrogen bond used to be included in the force 

field explicitly but now it is described implicitly. Overall, the trend of force field 

development is towards more accurate but mathematically simpler models. However 

some force fields focus more on accuracy while others focus more on efficiency. 

1.2.2 Solvent Models 

Many chemical reactions occur in the liquid phase and for the majority of biologically 

relevant processes, an aqueous environment is necessary. Therefore an appropriate 

description of the solvent is crucial for accurate evaluation of the liquid phase processes. 

In this work, the solvent is only limited to water because it is a common solvent used in 

chemistry, and more importantly, in biology. Existing solvent model ranges from 

computationally less expensive but also less accurate implicit solvent model, like 

generalized Born model (GB) 12 and Poisson Boltzmann (PB) 13, 14 solvent model, to 

more straightforward but more expensive explicit solvent model. Some examples of 

explicit solvent models which are commonly used are TIP3P 15, TIP4P 15, 16 and TIP5P 17. 

The implicit solvent models describes the solvent as a continuum, based on the 

electrostatic properties of the solute. They are usually computationally efficient and 

suitable for fast evaluation of the solvent effect. However they fail to capture the local 

orientation of the solvation shell. On the other hand, the explicit solvent models describes 

the solvent via presence of water molecules. Thus this type of model is capable of 

obtaining the anisotropic details of the solvent shell around the solute, but the 

computational costs are much higher than the implicit solvent model. A third type of 

solvent model is the RISM family of methods 18-21. These methods enable a local 
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description of the orientation of the solvation shells with an implicit solvent model and 

thus serves as a bridging method between implicit solvent model and explicit solvent 

model. The following paragraphs discuss about the various solvent models in greater 

details. 

An implicit solvent model uses the generalized Born (GB) equation 12 shown below to 

approximate the solvation free energy,  

 
∆𝐺𝑝𝑜𝑙 = −166 (1 −

1

𝜖
) ∑ ∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵

𝑛

𝑗=1

𝑛

𝑖=1

 eq.  1.3 

   

where 𝑖 and 𝑗 denote the indices of a pair of atoms, 𝜖 is the solvent dielectric constant, q 

is the partial charge on the atoms. The function of 𝑓𝐺𝐵 is typically in the following form, 

 

𝑓𝐺𝐵 =
√

𝑟𝑖𝑗
2 + 𝛼𝑖𝛼𝑗𝑒

(−
𝑟𝑖𝑗

2

4𝛼𝑖𝛼𝑗
)

 
eq.  1.4 

   

where 𝑟𝑖𝑗 is the distance between the atoms in a pair, 𝛼𝑖 and 𝛼𝑗 are the effective Born 

radii of the two atoms. For an isolated particle, the Born radius is equal to the van der 

Waals radius. However for an atom in a typical molecule, the effective Born radius is 

smaller than its van der Waals radius. The values of the Born radii effect the accuracy of 

GB calculation significantly. For example, an atomic anion has a greater radius than the 

neutral atom, so the GB free energy will deviate from experimental value significantly if 

the radius of the neutral atom is used. 
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The Poisson Boltzmann (PB) theory assumes that the dimensionless electrostatic 

potential ∅(𝑥) can be solved from the non-linear partial differential equation (eq 1.5) 

because the charged solutes in the solution follow a Boltzmann distribution in the mean 

field approximation 22, 

 
−∇ ∙ 𝜀(𝑥)∇∅(𝑥) − ∑ 𝑐𝑖𝑞𝑖𝑒

−𝑞𝑖∅(𝑥)−𝑉𝑖(𝑥)

𝑚

𝑖=1

=
4𝜋𝑒𝑐

2

𝑘𝑏𝑇
𝜌(𝑥) eq.  1.5 

   

where 𝜀(𝑥) is the dielectric coefficient of the solvent, 𝑐𝑖 is the number concentration of 

ion species 𝑖, 𝑞𝑖 is the charge of ion species 𝑖, 𝑉𝑖(𝑥) describes steric interactions between 

the solute and ions of species 𝑖, 𝑒𝑐 is the electron charge, 𝑘𝑏 is the Boltzmann constant, 𝑇 

is the absolute temperature and 𝜌(𝑥) is the fixed charge distribution of the solvent in 

units of electrons. The solution to the linear form of PB equation is usually used instead 

of the non-linear form in real applications of solvent free energy calculations, but the 

linear solution of PB equation is known to overestimate the ionic strength near the 

charged surface 23, 24. The PB solvent model is used in static solvent free energy 

calculation due to its computational expense, rather than in the molecular dynamics 

simulations. 

The reference interaction site model (RISM) theory is an integral equation theory of 

molecular liquids 18. It has been successfully applied to many dynamics in aqueous 

solutions while it failed to describe the excluded volume effect correctly 21. Its variant, 

3D-RISM theory 19, 20, 25, corrected the unphysical access to buried solute surface, and 
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thus witnessed wider applications in the past twenty years. It solves the 3D-RISM 

equation, 

 ℎ𝛾(𝑟) = ∑ 𝑐𝛾′(𝑟) ∗ (𝑤𝛾′𝛾
𝑣𝑣 (𝑟) + 𝜌ℎ𝛾′𝛾

𝑣𝑣 (𝑟))

𝛾′

 eq.  1.6 

   

where ℎ𝛾(𝑟) is the solvent 3D total correlation function of site 𝛾, 𝑐𝛾′(𝑟) is the 3D direct 

correlation function, 𝑤𝛾′𝛾
𝑣𝑣 (𝑟) is the intramolecular matrix, 𝜌 is the number density of 

solvent species, ℎ𝛾′𝛾
𝑣𝑣 (𝑟) is the site-site total correlation function. The solution is coupled 

with the 3D-HNC closure including corrections (∆𝑄) for the supercell periodicity artifact 

to the 3D correlation functions, 

 ℎ𝛾(𝑟) = 𝑒𝑥𝑝(−𝛽𝑢𝛾(𝑟) + ℎ𝛾(𝑟) − 𝑐𝛾(𝑟) − ∆𝑄𝛾) + ∆𝑄𝛾 − 1 eq.  1.7 

   

where 𝑢𝛾(𝑟) is the interaction potential between solvent sites, 𝛽 = (𝑘𝑏𝑇)−1 the 

Boltzmann factor, with the 𝑘𝑏 the Boltzmann constant and 𝑇 the temperature. The 3D-

RISM method is an implicit solvent model which describes the local structure of the 

solvent shell rather than pure continuum, and therefore provides more accurate results 

than the continuum methods like PB or GB. 

Despite the relatively expensive computational cost, an explicit solvent model is capable 

of accurately modeling the solvent effect especially for the first few solvation shells of 

the solutes. This is born from the facts that the orientation, local density change and 

hydrogen bond of water molecules are sometimes the determinant factor in dynamics. For 

example, a molecular dynamic study on the ligand binding to HIV-protease revealed that 

the strength of breaking of solvation shell hydrogen bonding contributes to the slow and 
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fast kinetics in different ligands 26. Therefore, it is also desirable to model the solvent 

using explicit solvent models depending on the specific application. The most commonly 

used explicit water model is the TIP3P model, which depicts the water molecule as three 

monopole centered on the three atoms and one Lennard-Jones sphere centered on the 

oxygen. This model is able to successfully reproduce water properties including hydrogen 

bond, density, volume, heat capacity and the like 15, but it is also well known to fail in the 

correct description of the vibration of local density from the second water layer. This is 

due to the insufficient strength of the tetrahedral iceberg like orientation provided in the 

force field. TIP4P with the negative charge moved from the oxygen to a fourth site, and 

TIP5P with two additional sites of negative charges were introduced to enhance the 

tetrahedral geometry so that better radial distribution function can be reproduced from 

those later models. However to model the behavior or dynamics of the solutes, TIP3P is 

capable of capturing the effect from the first solvation shell and thus, more widely used in 

biological simulations. TIP4P and TIP5P, due to their higher computational cost 

compared to TIP3P, are often used in study of water properties. 

1.3 Techniques in Molecular Modeling 

1.3.1 Minimization 

The conformation of a molecular system consists of a set of coordinates positioning the 

atoms in the Cartesian space. Under the government of molecular mechanics, where the 

forces on each atom are modeled by an assigned force field, the atoms may feel 

extraordinarily strong force from their neighbors and undergo abnormal motions if the 

initial set of coordinates is not reasonable. Conformational optimization, or potential 
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energy minimization is a technique that removes unphysical contacts and any remaining 

thermal energy from the initial conformation. This is accomplished by iteratively 

optimizing the coordinates with respect to the forces in the system. The minimization 

algorithms may utilize the gradient or hessian to minimize the potential energy. 

Mathematically, at a minimized conformation, the gradient, which contains the forces on 

the atoms, is 0, and the hessian, which contains the changes of forces, has a positive 

determinant. Therefore a straightforward idea of minimization is to find a set of solution 

to the linear equations obtained by setting the gradient to zero. However, the gradient of 

the potential energy function of molecular systems does not result in an analytical or 

linear form. Thus more sophisticated mathematical methods are employed to solve for the 

minimized conformation iteratively.  

The first class of minimization methods includes the second order Newton-Raphson 

algorithm 27 and the quasi-Newton method 28. The Newton-Raphson method calculates 

the exact gradient and hessian at each cycle of iteration. Therefore this method converges 

to the local minimum with high efficiency. However the downside of this methods comes 

from the computational cost of evaluating the exact hessian at every step and the intrinsic 

problem of being only capable of finding local minimum starting from the vicinity of it. 

To solve the problem of computational cost, the quasi-Newton method was introduced in 

which the exact hessian is only calculated at the initial step while the hessian is 

approximated in sequential steps.  
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The second class of minimization methods includes the first order methods which only 

utilize the gradient of the potential energy function. These methods are gradient descent, 

conjugate gradient 29 and BFGS methods 30-33. The gradient descent searches for a local 

minimum by moving the system towards the direction of gradient in every step but 

practically this often results in zigzag behavior of the search route and inefficient 

convergence. Similarly, the conjugate gradient also searches for a local minimum by 

using the gradient, but it updates the search direction based on the past history of search 

directions and thus avoids the zigzag behavior for higher efficiency. BFGS method, or 

Broyden-Fletcher-Goldfarb-Shanno algorithm, is a quasi-Newton method in which the 

hessian is never calculated exactly. It approximates the hessian at each iteration from the 

exactly calculated gradient. The BFGS method has a slightly better efficiency than the 

conjugate gradient method.  

The first order minimization methods are not as efficient as the second order methods, 

but the advantage is that the starting point does not have to be near the minimum. This 

allows the combination of first order and second order methods to be used in the same 

application. With a random or coarse initial conformation of the molecular system, the 

first order methods are used to bring the conformation closer to the minimum and then 

the second order methods are used to fully minimize the system with high efficiency. 

1.3.2 Docking 

At the level of molecular dynamics simulation and MMPB/SA calculation, a high 

accuracy of the protein-ligand binding affinity can be achieved. However in the field of 
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drug discovery, efficiency is also an important factor due to the need to screen hundreds 

of thousands of ligands for a lead discovery. For this purpose, molecular docking was 

invented for fast estimation of the protein-ligand binding affinity. A docking method 

typically consists of a conformational search algorithm and a conformation scoring 

function. 

The goal of the conformational search algorithm for docking is to generate reasonable 

conformations efficiently. There are three levels of conformational search algorithms in 

current docking methods: rigid body docking, flexible ligand docking and flexible protein 

docking 34. In rigid body docking, the internal degrees of freedom of both ligand and 

protein are not considered, and thus the efficiency is favored over the accuracy. In the 

flexible ligand docking, every degree of freedom in the ligand is considered while the 

protein is still kept fixed in the conformational search. Flexible ligand docking can be 

further broken down to three categories of algorithms: systematic search, random or 

stochastic search and simulation search. Flexible ligand docking is successful in half of 

its applications, leaving the other half for more accurate flexible protein docking. The 

flexible protein docking allows the ligand and some portions of the protein to be flexible 

to account for the conformational change of the protein induced by the ligand binding. 

This is accomplished by MD or MC methods, rotamer libraries, protein ensemble grids, 

or soft-receptor modeling. Among the three types of conformational search algorithms, 

the most commonly used are flexible ligand docking and flexible protein sidechain 

docking. Multiple protein conformations are usually used in docking runs for better 

conformational search result. 
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With the conformations found by the search algorithm, the scoring function determines 

the ranking of them. This is not necessarily done by exact free energy calculation due to 

the efficiency concerns. The first category of scoring function is the force field based 

methods. These methods calculate the binding interaction energy based on assigned force 

field while normally neglecting the solvent contribution or estimating the solvent effect 

by implicit solvent model. The second category is the empirical scoring functions. These 

methods use several uncorrelated empirical terms to evaluate the ranking of the 

conformations. They are generally faster than the force field based scoring functions and 

include contributions that are beyond the description of molecular force fields. The third 

category of scoring functions is the knowledge-based scoring functions. These methods 

are designed based on the successful binding from databases following the rules and 

general principles statistically derived that aim to reproduce experimentally determined 

structures. Consensus scoring is the last category of scoring functions. They combine the 

advantages from various scoring functions for improvement of the probability of finding 

the correct binding pose. 

In addition to the drug discovery applications, docking is also an important tool in 

molecular modeling. It is often used to generate the initial conformations of MD 

simulations in the situation when a crystal structure of ligand bound protein is 

unavailable or perturbation to the tightly bound structure is desirable. It has the advantage 

of fast binding conformational search and at the same time eliminating the bias from 

manual placement of the ligand to the protein-binding site. However it is not used for free 

energy evaluation due to the low accuracy of scoring functions, and this task is executed 
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by more sophisticated methods, like Mining Minima 2 (M2) method which will be 

discussed in later sections. 

1.3.3 Molecular Dynamics 

1.3.3.1 Model Preparation 

An all atom molecular dynamics simulation requires careful preparation of initial 

coordinates, protonation state, force field, solvent model and proper equilibrium because 

the potential energy function is very sensitive to the details of the model.  

Generally there are two ways to build the initial coordinates of the model, either from the 

crystal structure database or built from scratch. The crystal structures can be directly used 

as the initial structure if it exists in a database. For protein structures, the Protein Data 

Bank 35 is a publicly available database which stores the experimentally determined apo 

protein and protein-ligand crystal structures. For generic molecules, the Cambridge 

Crystallographic Data Centre 36 is an academically available database. If the crystal 

structure is not available, careful work is necessary to build the structure. For proteins, 

homology modeling 37 is a tool which builds the undetermined protein structure based on 

a template of similar protein and its sequence. In the case of small molecules, various 

visualization and editing programs such as VEGA ZZ 38 can build the structure manually. 

If the protein and ligand structures are obtained by either means while the bound state 

structure has not been determined, docking 34 is the tool to search for the best reasonable 

bound conformations. 
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With the initial structure, the next step is to determine the protonation state of the 

molecules. For small molecules with known pKa, and pH of the desired simulation, one 

can directly edit the protonation state by adding or removing hydrogen atoms. For a 

protein molecule, the pKa of relevant residues must be calculated in a specific chemical 

environment for the correct protonation state with programs like MCCE 39. The 

protonation state effects the dynamics and protein-ligand interactions such as hydrogen 

bonding and electrostatic interaction, and therefore must be assigned correctly for 

meaningful simulations. 

The next step is to assign a proper force field to the molecules. A general force field 

applies to the small molecules, but carefully parameterized force fields must be assign to 

the protein for proper secondary and tertiary structure behaviors. Specialized force fields 

also exists for lipids or other macromolecules.  

The solvent model is usually built after the force field assignment. In the case of the 

implicit solvent model, no additional molecule is added to the system, but a flag in the 

simulation is turned on for specification of GB, PB, or even 3D-RISM solvent model. In 

the case of explicit solvent model, water molecules for the chosen solvent model, for 

example, TIP3P, are added to solvate the solutes. Collectively the shape of the added 

solvent is usually in a box shape with three dimensions measured for the periodic 

conditions in the MD simulation. 

The last step before production run is to equilibrate the system. This includes a 

minimization stage, a water equilibrium stage, and a heating stage if applicable. The 
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minimization removes any possible clashes and brings the system to a local energy 

minimum. In the water equilibrium stage, the positions of the solutes are constrained 

while the water molecules are allowed to move freely to fully solvate the solutes and fill 

the empty space near the solutes. In the heating stage, the entire system is heated up from 

low temperature to the temperature of the production run, which is usually the room 

temperature. The purpose of gradual heating is to switch the velocity of the atoms 

gradually to avoid local overheating and the resulting unphysical movements. Once the 

system reaches equilibrium, production run can be performed. 

1.3.3.2 Molecular Dynamics 

Molecular dynamics (MD) is a standard and robust technique that is well established. It 

evolves the studied system under the government of Newton’s equations of motion based 

on the assigned force field,  

 Fxi

mi
=

d2xi

dt2
 eq.  1.8 

   

where F is the force on the particles (atoms), m is the mass, x is the position and t denotes 

the time. At each step, the force on each atom is calculated by an analytical method 40. 

Integration over time is accomplished by finite difference numerical method, such as 

Verlet 41, velocity-Verlet 42, and Leapfrog algorithms 43, 44. In this way, the coordinates of 

atoms in the system are updated correspondingly so that the motion of the system is 

produced. The temperature of the isolated system is maintained by enforcing an external 

heat bath environment with Langevin thermostat 45, 46, Andersen thermostat 47 or Nose-



 20 

Hoover thermostat 48. In isothermal-isobaric ensemble (constant temperature constant 

pressure, or NPT) simulations, a constant pressure is maintained by similar algorithms. 

The time step in an all-atom simulations is usually limited to 1 or 2 femtoseconds due to 

the fast motions of hydrogen atoms. A SHAKE algorithm 49 is often employed to fix the 

motion of hydrogen atoms, allowing utilization of 2-femtosecond time step in protein 

simulations increasing efficiency. With such a small elemental time step, the concurrent 

limitation of timescale in molecular dynamics simulation is up to microseconds even with 

modern parallelization and acceleration techniques.  

1.3.3.3 Acceleration Techniques 

The three major acceleration techniques in conventional MD are parallelization 50, 51, 

graphic processing unit (GPU) acceleration 52 and specialized machine (ANTON 

machine) acceleration 53, 54. The parallelization calculation was developed for MD 

simulation from the fact that the force felt by each atom and the motion of each atom are 

independent on one another. At each step, the calculation of forces and update of 

coordinates are distributed on the available CPU threads without significant mutual 

communications. The GPU accelerated MD appeared within a decade with the 

development of programmable graphic card. The idea behind GPU acceleration is similar 

to CPU parallelization, but for GPU acceleration the parallelization is realized by 

thousands of processors on the GPU card. The specialized ANTON machine approaches 

the acceleration by molecular dynamics oriented hardware design. With these 

acceleration techniques, the upper limit of current conventional MD reaches to 
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microsecond level, but the gap to second level relevant biology still hinders the direct 

application of conventional MD to many biomolecular problems.  

To overcome this concern, variants of molecular dynamics were developed over the past 

twenty years. Among them the first category relies on the fact that the conformational 

changes happen slowly due to higher free energy barriers, and thus aims to lower the 

energy barrier or smoother the potential energy surface itself. The most obvious approach 

is to coarse grain the atomistic model into a residue bead model 6, 55, 56, but this method 

loses the atomistic details and can only provide a reference about the overall motions of 

the system. Other early works used the locally enhanced sampling technique that focused 

on residues important to binding to accelerate the dissociation pathways 57, 58. 

Hyperdynamics was the first implementation of an algorithm to shoal the potential energy 

well of the dihedral torsions so that the conformational changes happens faster 59. 

Accelerated MD 60 was built on similar principals. Similarly its natural variant RaMD-db 

61 aims at accelerating the most relevant portion of the system. Regarding the force field, 

a softcore force field was developed to allow easier motion at the region of interest 62. A 

scaled potential was used to estimate the kinetics of ligand dissociation 63. Recently, a 

Gaussian accelerated MD (GaMD) method was developed by using Gaussian functions to 

boost the conformational transition in protein systems, in a way similar to accelerated 

MD 64, so that the Gaussian functions elevate the potential energy wells. 

A second group of MD variants enhance sampling by employing additional forces that 

pull a ligand from its binding site. This group includes steered MD 65, 66 and target MD 67 
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methods, which drive the conformational change to or away from some predefined states, 

respectively. A popular method in the past decade for enhanced sampling is 

metadynamics 59, 68, 69. Instead of using Gaussian functions to systematically alleviate the 

potential energy surface of the system, it utilizes the Gaussian functions to raise the 

potential energy surface of the readily sampled regions so that the sampling evolves to 

unvisited, originally high energy portion of the potential energy surface, such as an 

energy barrier. However, collective variables must faithfully reproduce the reaction 

coordinates and distinguish the states of interests efficiently, which limits the 

applicability of metadynamics. Another method related to metadynamics is known as 

self-guided Langevin dynamics (SGLD) 70, 71. It distinguishes from metadynamics in that 

it needs no pre-knowledge of the system. It accumulates the random force on the system 

for a directional accumulative force and enhances the low frequency motion of the 

system by applying that additional force back to the system.  

Another class of methods build upon the replica exchange strategy. Replica exchange 

molecular dynamics (REMD) 72, 73 was developed on the idea that in high temperature or 

low interaction ensembles the system evolves with a faster speed than room temperature 

ensemble. Since its appearance, similar methods 74-80 were developed building upon the 

replica exchange principals, and allowed for many applications with this type of methods 

in, for example, helix formation 81-84, ligand binding 85-89, accurate free energy evaluation 

90-92 . 
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1.3.4 Post Analysis 

Creating data is straightforward, but post analyzing it is not trivial. Post analysis is 

carried out on the specific conformations or the continuous trajectory from either the 

processed results or the raw data. 

1.3.4.1 Structural Analysis 

The root mean square deviation (RMSD) is a standard analysis used to calculates the 

deviation of the measured quantities, like the coordinates, the distance of a shift, or 

whatever is meaningful, from the average value or a designated reference, with the 

equation, 

 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑(𝑥𝑖 − 𝑥0)2

𝑁

𝑖=1

 eq.  1.9 

   

where, x is the measured quantity, 0 denotes the reference and N is the number of counts. 

The alignment of molecules is performed based on the minimization of RMSD of 

coordinates. 

Similar to RMSD, root mean square fluctuation (RMSF) is defined as the deviation of 

one atom or one group of atoms over a period of time from its average position, with the 

equation, 

 

𝑅𝑀𝑆𝐹 = √
1

𝑇
∑(𝑥𝑖,𝑡 − 𝑥𝑖,0)

2
𝑇

𝑡=1

 eq.  1.10 
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where x, again, is the coordinate of the target atom or group of atoms, t denotes the time, 

and 0 denotes the reference average and T is the total time. This technique is especially 

useful in characterizing the flexibility of residues in a protein system in a trajectory 93.  

Hydrogen bond analysis is usually performed to characterize the stabilizing factors of 

ligand binding or the internal structure of a protein. Typically a hydrogen bond is defined 

as X-H…Y, where X-H is the hydrogen bond donor and the Y is the acceptor. A 

hydrogen bond is considered to be formed when the complementary angle of X-H…Y is 

less than 20° and the distance between H and Y is smaller than 2.50 Å 94 although various 

cutoffs may be used in different applications. The energy of a hydrogen bond can be 

defined mathematically 95. 

A general structural analysis relies on the collective variables which refer to any 

measurable quantities from the trajectory, for instance, the distance between certain 

atoms, and the angle of rotation between any user-defined centers of masses of groups of 

atoms. A general definition of collective variables includes the RMSD of certain groups 

of atoms. The collective variables can serve as a projection of the intrinsic reaction 

coordinates depending on the efficiency of the choice of them and thus could be used as 

the dimensions of free energy surface. In certain MD acceleration methods, for instance, 

metadynamcis, the collective variable is a set of fundamental parameters that must be 

defined prior to the application of the method. 
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1.3.4.2 Energetic Analysis 

MMPBSA (Molecular Mechanics Poisson Boltzmann/Surface Area) 96 is a technique for 

evaluating specific interactions and binding energy of a ligand-receptor system from an 

MD simulation. For energetic evaluation, MMPBSA removes the explicit solvent, and 

implements an implicit PB solvent model. This enables the program to separate the 

complex system into the receptor, the ligand and the original complex. A similar but less 

expensive version is MMGBSA (Molecular Mechanics Generalized Born/Surface Area) 

in which the PB solvent model is replaced by more efficient but less accurate generalized 

Born solvent model. In addition to reporting the different interaction energies for the 

ligand-receptor complex, it can also break the interaction energy down to residue-residue 

interactions. 

1.3.4.3 Principal Component Analysis 

Principal component analysis (PCA) 97 is another common tool to extract useful 

information from the random motions of the systems in a long MD trajectory. It is similar 

to quasi-Harmonic approximation, in which the eigenvectors of the covariance matrix are 

calculated for intrinsic motion creation. Mathematically, it calculates the covariance 

matrix from the atom coordinates in the trajectory aligned to the structure under study, 

diagonalizes it for eigenvectors, and applies the eigenvectors on the average atom 

positions to create the motion of each principal component mode. Usually only the α-

carbon atoms in each residue of the protein are considered in the covariance matrix 

construction due to the minimal data required for convergence. Therefore the commonly 
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used PCA is termed as α-carbon PCA. The principal component of each conformation 

along the PC mode can be obtained by, 

 𝑞𝑖 = 𝑅𝑇(𝑥𝑖 − 𝑥𝑎) eq.  1.11 

   

where the 𝑥 denotes the conformation along the trajectory, 𝑖 denotes the conformation 

number, 𝑎 denotes the average conformation of the trajectory, 𝑞 denotes the principal 

component on one PCA mode, and 𝑅𝑇 is the transpose of the eigenvector matrix of the 

covariance matrix. It is able to produce the free energy surface on by projecting the 

trajectory onto the space of N principal component modes and calculating the free energy 

from population on the N dimension space 98. 

Another PCA algorithm constructs the covariance matrix using the ψ and ϕ angles of 

protein backbone instead of the α-carbon atoms and this technique is usually termed as 

dihedral PCA (dPCA) 99. The advantage of dPCA over α-carbon PCA is that it further 

eliminates any possible contribution from external degrees of freedom remaining in the 

alignment process and express the PCs in the dihedral subspace of internal coordinate 

space. Various works have illustrated the advantage of the dPCA technique 99-103.  

In Chapter 6 of this work, a variant of the dPCA, which is termed as internal PCA, 

developed by the author, is introduced. The internal PCA first constructs the internal 

coordinate by a novel mapping from Cartesian coordinate developed by the author. Then 

it constructs the covariance matrix from selected dihedral angles and bonds and angles in 

limited numbers. The purpose of internal PCA is to reproduce atomistic PCA motions. It 
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does not aim to illustrate any minima or create a free energy surface diagram. Details will 

be discussed in Chapter 6. 

1.3.5 Free Energy and Entropy 

From the classical view of statistical mechanics, the macroscopic quantities, which 

includes free energy, enthalpy and entropy can be expressed by the partition function of 

the microstates of the system in equilibrium. The classical partition function is defined by 

quantities like temperature and volume. In molecular modeling, such calculations of 

thermodynamic quantities reveals important information on the binding or relative 

binding of the ligand-receptor systems, such as binding affinity, selectivity and entropy-

enthalpy balance. 

One widely used ensemble in molecular dynamics is the canonical ensemble, where the 

number of particles is fixed, and the temperature and the volume are specified to certain 

values. The classical canonical ensemble partition function Z is given by, 

 
𝑍 = ∫ 𝑒−𝛽𝐸(𝑥)𝑑𝑥 eq.  1.12 

   

where, x is the condition of the system that defines the microstate, or specifically, the 

momentum and position. β is the Boltzmann factor that equals to (𝑘𝑏𝑇)−1, with the 𝑘𝑏 

the Boltzmann constant and T the temperature. E denotes the total energy of the system. 

The probability of the system in a microstate defined by x is given by,  

 
𝑃(𝑥) =

𝑒−𝛽𝐸(𝑥)

𝑍
=

𝑒−𝛽𝐸(𝑥)

∫ 𝑒−𝛽𝐸(𝑥)𝑑𝑥
 eq.  1.13 
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The probability function can be used to calculate the ensemble averages, or expectation 

values of an observable, such as the total energy, E of a system, 

 
〈𝐸〉 = ∫ 𝐸(𝑥)𝑃(𝑥)𝑑𝑥 =

∫ 𝐸(𝑥)𝑒−𝛽𝐸(𝑥)𝑑𝑥

∫ 𝑒−𝛽𝐸(𝑥)𝑑𝑥
 eq.  1.14 

   

In the canonical ensemble, the free energy A (Helmholtz free energy) is given by, 

 𝐴 = −𝑘𝑏𝑇𝑙𝑛𝑍 eq.  1.15 

   

The entropy is defined according to the probability function, 

 
𝑆 = −𝑘𝑏 ∫ 𝑃(𝑥)𝑙𝑛𝑃(𝑥) eq.  1.16 

   

or from the free energy and average energy, 

 
𝑆 =

−𝐴 + 〈𝐸〉

𝑇
 eq.  1.17 

   

Because of the difficulty in complete sampling of the phase space of complex systems, 

approximations are necessary in the calculation of the thermodynamic values. For 

example, the entropy a protein, which usually has more than a thousand atoms, can be 

estimated by calculating the entropy of individual dihedral angles from probability 

distributions and adding a correction from correlation map of the dihedral to account for 

the concerted motions 104. 

Another common approximation is to build the partition function of a molecular system 

via contributions from the minimum energy conformational states, 
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 𝑍 = ∑ 𝑍𝑖 eq.  1.18 

   

By integrating the local partition function 𝑍𝑖 the total partition function can be obtained.  

One method that utilizes this approximation is the Mining Minima generation 2 (M2) 

method 105. It calculates the configurational integral, which is effectively the partition 

function, of the solute in implicit solvent resulting in the entropy of the solute. First it 

searches for minima including the global minimum aggressively by normal mode based 

algorithm and filters out the repeated conformations. Afterwards it calculates the partition 

function for each minimum by harmonic approximation and integrating the probability of 

conformations along each normal mode. Finally it calculates the total partition function 

of the system. Different from other similar methods, M2 does the calculation in internal 

coordinate instead of Cartesian coordinate, resulting in more physical normal modes. 

For solvent entropy evaluation, other methods exist like distribution correlation based 

methods 106, velocity correlation function 107 based method and harmonic approximation 

method. A detailed discussion on this topic is given in Chapter 4. 

1.3.6 Kinetics 

Compared with thermodynamics, kinetics is less well-studied with molecular modeling. 

Ligand-receptor binding/unbinding usually involves conformational changes that occur 

on the timescale of microseconds 108 or even longer. High energy barriers to binding and 

rough free energy surfaces naturally contribute to slow association/dissociation rates, 

which sometimes may be on the scale of seconds or even days. Both of these assert 
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challenges to contemporary computational power in sampling the dynamics of ligand-

receptor binding, which can only simulate conformational changes up to microseconds 54, 

109-111. Furthermore, even if the conformational changes are sampled, the extraction of 

kinetics, or probability of state transitions, remains as a second obstacle before fully 

understanding the kinetics of the system.  

Currently, the most important and successful method that tackles this topic is the Markov 

State model (MSM) 112. This method does not require the sampling of a complete 

binding/unbinding event, but instead, it only requires a thorough sampling of the relevant 

states along the transition pathway, even from discrete trajectories. It clusters the 

reservoir of conformations by certain criteria and the transition rate between states can be 

assessed naturally from the trajectories. Finally these transition rates between states are 

stored into a matrix for diagonalization yielding the probabilities of the individual states, 

and the macroscopic transition rate, or the association/dissociation rates. This method is 

successful not only because it defines the calculation of transition rates, but also because 

it can be easily combined with distributed computing 113, which is a powerful way to 

improve the computational power. 

Another method that addresses the challenges of kinetics is the transition path sampling 

method 114. In contrast to the MSM, this method provides a clear way to enhance the 

sampling of the transition path while providing a recipe to calculate the transition rate. 

Theoretically this method requires only an initial guess of the intermediate on the 

transition path, and thousands of sampling can be started stochastically from the 
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intermediate with randomized initial velocities. The transition path itself can be adjusted 

from the trial sampling of the intermediate. Some of the sampling will fall into the initial 

state of the transition, while others will fall into the final state of the transition. Through 

this method, the transition rate can be directly estimated from the probabilities of the two 

ending states. The downside of this method is that a large amount of sampling needs to be 

done. Also, the transition path can only consist of one major energy barrier. These limit 

the application of this method to the studies of transitions between one well-defined free 

energy barrier. 
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Chapter 2 The Facet Selectivity of Ligands on Silver Nanoplates: A Molecular 

Mechanics Study 

2.1 Introduction 

Inorganic nanostructures often display shape-dependent physiochemical properties1, 

which promise them for many elegant and practical applications in fundamental sciences 

and industry 2. Silver nanoplates, a classic example of shape-controlled nanostructures, 

show tunable surface plasmon resonance 2, 3 and can find uses in biomedicine4, catalysis5, 

microelectronics and data storage6, single-molecule labeling-based biological assays 7, 8, 

LED materials 9 and lasers 7. Because of the numerous applications, substantial efforts 

have been spent on synthesis of silver nanoplates with well controlled dimensions. 

Reported methods include ligand-assisted chemical reductions 10-12, electrochemical 

synthesis 13, 14, photo-induced method 3, 15-20, sonochemical routes 21, solvothermal 

method 22, 23, and templating method 24-26. The ligand-assisted chemical reduction method 

has been the most popular one because of its high yield and relatively simple setup. 

Citrate, often considered as a “magic” reagent in the solution phase synthesis of silver 

nanoplates, has been studied for years, but its role in directing plate growth remains 

unclear. Selective surface protection is one of the hypotheses for explaining the 

mechanism 27. In this theorem, a core with both (111) and (100) facets is used, and citrate 

preferentially protects the (111) facet in a non-bonded manner; thus Ag atoms deposit on 

other facets such as (100) and (110) selectively 27, 28. During the process, (111) facet 

actually grows thicker to some extent, so the interaction between citrate and the Ag 
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surface is non-covalent rather than covalent or ionic 28. Several other di-carboxylates or 

tri-carboxylates are eligible ligands and presumably play the same roles as citrate in 

protecting a facet selectively 29. However, one needs to show that good ligands can 

tightly bind to the Ag nanoplate non-covalently and discriminate one facet for anisotropic 

plate growth.  

Previous studies modeled interactions between ligand molecules and metal nanoplates 

with ab initio calculations or classical molecular mechanics (MM) methods. Density 

functional theory (DFT) was used to study interactions between ligands and Ag 

nanoplates. For example, the DFT electronic structure calculations were applied to study 

the binding of citric acid on Ag nanoplates 30. The calculation showed preferential 

binding of citric acid to the (111) rather than (100) facet, with stronger binding to the 

(111) facet promoting crystal growth along the (100) facet. The work also provided a 

structure of citric acid on the Ag nanoplate surface. However, the DFT calculations need 

to assume that citric acid is in its neutral form, which differs from actual synthesis 

conditions where the ligand molecules are in the deprotonated form 29. In addition, the 

DFT calculation focused on only one conformation of citric acid, not considering 

possible contributions from other molecular conformations. The DFT method was also 

used to study the role of polyvinylpyrrolidone (PVP) in the shape-selective synthesis of 

Ag nanoplates 31. In contrast to citrate, PVP binds more strongly to the (100) than (111) 

facet 32. The DFT calculations suggested that electrostatic or van der Waals (vdW) forces 

govern the ligand–Ag nanoplate binding. Although experimentally, the synthesis of Ag 

nanoplates was carried out in solvent, DFT studies treated the ligands and silver plate 
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systems in vacuum and neglected the influence of solvents. DFT has also been used to 

explain the surface-enhanced Raman scattering (SERS) results of adenine 33, 34 and 5-

amino tetrazole 35 absorptions on a Ag or gold (Au) surface. In these works, the 

interaction between adenine and the noble metal surface was treated as the interaction 

between adenine and the active site metal atoms, and the binding geometry was 

predicted. Similarly, DFT was also combined with Fourier transform-infrared (FTIR) to 

explore the two distinct binding modes of p-nitroaniline on aqueous and dry Au 

nanoparticles 36. Besides being used for investigating the interaction with small organic 

molecules, DFT has been used to investigate the interaction of Ag clusters with chlorine 

atoms 37, alkali ions 38 and nitric oxide 39. 

For sampling more conformations and model dynamic natures of molecules on metal 

nanoplates, molecular dynamics (MD) provides a powerful tool for investigating motions 

and interactions of molecule and nanoplate complexes. Force-field parameters used in 

MM methods for metal nanoplate systems are less well established 40-44. Therefore, 

various tests have been used to examine sets of charges and vdW parameters for metal 

nanoplate surfaces, e.g. by simulating nanoparticle movement on the Au surface 45. MD 

simulations may involve explicit solvent models. To reduce computational costs, water 

molecules may be modeled implicitly. For example, an implicit solvent model for 

modeling protein–metal surface interactions has been developed 42, 46, and a sequential 

multilevel computational protocol was developed to study the interaction between 

peptides and Au surfaces 47. Studies have provided insights into peptide and protein 

conformations on Au surfaces 41, 48, 49. MD trajectories also suggested possible 
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supermolecular configurations of tetraphenylporphyrins on a silver (111) facet 50. An MD 

study of the mechanism of the growth of Ag nanoparticles suggested some 

conformational and energy reasons for the final stage of ligand-aided formation of 

nanoparticles 51 by sampling the binding geometry from randomly placed initial 

conformations. Surface diffusion and growth on Ag and Au clusters were studied by 

using many-body potentials, and the mobility of atoms on the facets was found to be the 

key factor of growth of nanoparticles 52.  

In the present paper, we used the mining minima (M2) method to compute the binding 

free energy of citrate and other ligands to Ag nanoplates. The method involves an MM 

force field and an implicit solvent model to compute free energy that efficiently searches 

local energy minima and computes the configuration integral of a molecular system as a 

sum of the contribution from its local energy minima 53, 54. The same as other classical 

MM methods, the M2 method cannot capture quantum effects such as electron transfers 

between a ligand and the metal surface. However, the methods can be used to study 

systems with thousands of atoms and provides insight into changes in energy and 

configuration entropy on binding 55-58. From experimental results and computational 

studies of molecules on Au surfaces, force-field parameters for the Ag surface were 

established 45. In this paper, we studied nine existing and two designed ligands on both 

(111) and (100) Ag facets. We computed relative binding free energies for the 

compounds and focused on ligand conformations and the interactions between ligands 

and Ag nanoplate surfaces. Charge states of the carboxylate group in the ligands may 
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have a crucial effect on the anisotropic synthesis of Ag nanoplates. We also examined the 

ionic states of citrate in the plate synthesis. 

2.2 Methods 

2.2.1 Description of Systems 

We selected nine ligands with experimental data available for the synthesis of Ag 

nanoplates 29 and designed two ligands. The molecules were prepared via Vega ZZ 59. 

Since experimental conditions indicated that the ligands are completely deprotonated, the 

molecules have a basic form (COO-). In normal experimental conditions yielding Ag 

nanoplates, the pH of the solution was typically 9.0 initially and increased to ~9.7 near 

the end of the experiments. No Ag nanoplate was synthesized if the pH of the solution 

was < 7. The Ag surface is described with three atomic layers for the accurate calculation 

of ligand–Ag interactions. In total, 192 Ag atoms were used to represent both the Ag 

(111) (8×8×3) and (100) (6×10×3+12) facets, for a fair comparison between molecular 

interactions with the two facets. From our calculations, we designed two potential 

ligands, cyclohexane-1,3,5-tri-carboxylate and 2,2',2''-(cyclohexane-1,3,5-triyl)triacetate, 

and the coordinates were prepared by use of Vega ZZ.  

2.2.2 Force-Field Parameterization 

The initial force-field parameters were assigned by using the CHARMM22 force field 60. 

The equilibrium position of the bond angles of the ligands were modified according to the 

crystal structures in the Cambridge Crystallographic Data Center (CCDC) database 
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except for the two designed ligands, whose experimental structures are not available. The 

CCDC IDs are listed in Table 2-1.  

Ligand CCDC ID 

Acetate AMACET 

Oxalate AMOXAL 

Malonate BIFVAN 

Succinate BURWEQ 

Glutarate ROGQEK 

Pimelate KYRIL 

Citrate FATTID 

Isocitate N/A 

Trimesic aicd N/A 

Table 2.1. Cambridge Crystallographic Data Centre (CCDC) IDs for small molecules. 

The CCDC IDs of the crystal structures used to modify the bond angles of the ligands. 

Partial charges of the ligands were computed with use of the program Vcharge with the 

VC/2004 parameter set 61. Because the parameters of the Ag clusters are not defined in 

the standard CHARMM force field, the bond length between the Ag atoms was set to 

2.88 Å on the basis of the experimental lattice constant (4.09 Å) 62, 63. The bond force 

constant was set to 300.0 kcal/mol and the angle and dihedral parameters to 0. The vdW 

interactions are described by the 12-6 LJ-Potential in equation, 

 
𝐸𝑣𝐷𝑊 =  𝜀 [(

𝑟𝑚

𝑟
)

12

−  2 (
𝑟𝑚

𝑟
)

6

] eq.  2.1 

   

where ε was assigned to 0.094 kcal/mol reported by Alexei, et. al 45, and 𝑟𝑚𝑖𝑛 to 1.444 by 

halving the Ag-Ag bond length. Because all the ligands have negative charges, we 

considered a model accounting for charge polarization of the Ag nanoplate by setting a 
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0.5 unit charge for the Ag atoms 64, 65. Details regarding the charge models are in result 

and discussion. 

2.2.3 Computational Details 

M2 method is based on thorough conformational search and modified harmonic 

approximation using the bond-angle-torsion coordinates. The standard chemical potential 

of species X can be written as Equation 1. Q stands for canonical partition function, and 

V is the volume. The subscribe N,X means the system containing N solvent molecules 

and one solute molecule X, and similarly N,0 means the system with N solvent molecules 

but no solute. 𝐶° is the standard concentration. The explicit solvent molecules are 

replaced by an implicit solvent model, GBSA or PBSA, to avoid numerous 

configurations generated by the solvent molecules.  

 
𝜇𝑋

° = −𝑅𝑇 (
1

𝑉𝑁,𝑋𝐶°

𝑄𝑁,𝑋(𝑉𝑁,𝑋)

𝑄𝑁,0(𝑉𝑁,0)
) eq.  2.2 

   

Because there are multiple local minima in the canonical ensemble, the total standard 

chemical potential is described by Equation 2.3 where 𝜇𝑋,𝑖
°  is the chemical potential of 

each local minimum.  

 𝜇𝑋
° = −𝑅𝑇 ln ∑ 𝑒−𝛽𝜇𝑋,𝑖

°

𝑖

 eq.  2.3 

   

By introducing Rigid Rotor Approximation, the standard chemical potential 𝜇𝑋,𝑖
°  of 

species X is given by Equation 2.4. In this equation, 𝑀𝑋 is the total mass of X, 

𝐼𝑋,𝑎, 𝐼𝑋,𝑏 , 𝐼𝑋,𝑐 are its principle moments of rotational inertia. 𝑛𝑋 is the number of atom in 
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the molecule. h and k are the Planck’s and Boltzmann’s constants. The first two brackets 

are translational and rotational contributions, and are straight forward in calculation. The 

most computationally intensive part is the third bracket, which is the vibrational part, and 

is further calculated by Equation 2.5. In Equation 2.5, U and W are the potential and 

solvation energies, and q is the vibrational coordinates. A more specific detailed 

explanation can be found in the original work 54. 

 

𝑒−𝛽𝜇𝑋,𝑖
°

= [
1

𝐶°
(

2𝜋𝑀𝑋𝑘𝑇

ℎ2
)

3
2

] 

× [8𝜋2 (
2𝜋𝑘𝑇

ℎ2
)

3/2

(𝐼𝑋,𝑎𝐼𝑋,𝑏𝐼𝑋,𝑐)
1/2

] × [(
2𝜋𝑘𝑇

ℎ2
)

(3𝑛𝑋−6)/2

𝑍𝑋
𝑣𝑖𝑏] 

eq.  2.4 

   

 

 
𝑍𝑥

𝑣𝑖𝑏 = ∫ 𝑒−𝛽(𝑈(𝑞)+𝑊(𝑞))𝑑𝑞 eq.  2.5 

   

The M2 method is different from MMPBSA or other MD based analysis method. It uses 

analytical integration from the diagonalized Hessian matrix (modified harmonic 

approximation). According to Equation 2.3, the total standard chemical potential of 

species X is the sum of those of local minima weighed by the Boltzmann factor. 

Therefore, there is no fluctuation or standard deviation in the results from M2 method. 
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Figure 2.1. Flow chart of applying M2 method to silver plate-ligand systems. 
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Binding affinity of each ligand was calculated by using the second-generation mining 

minima method (M2 method) 53-55. A flow chart of M2 method is given in Figure 2.1. 

The method starts by using the Tork search algorithm for thorough conformational 

searches for each ligand. Various conformations of a ligand were used to construct initial 

conformations of the complex to perform conformational searches for ligand–nanoplate 

complexes, where the Ag nanoplate was held fixed. Because the program may find a 

conformation multiple times, repeat conformations were filtered out. The details of 

filtering are in Section 2.4. The method then involved computing the configuration 

integral zi for each unique conformation i found by the Tork search, and the free energy 

of this local energy minima was Gi = -RT ln zi., where R is the gas constant and T was set 

to 300 K. The standard free energy of each molecular species Gx, where x may be a 

ligand, a complex, or the nanoplate, is then the Boltzmann weighted sum of each 

computed Gi. Several iterations were performed to ensure that no new conformations 

with lower free energy were found, and the computed free energy, Gx, was converged. 

The binding affinity of each ligand was computed by ∆G = Gcomplex – Gligand - Gnanoplate.  

The free energy obtained in M2 was computed for systems in the standard condition, i.e. 

1 atm pressure and 1 mol/L concentration. In experiments, though the overall 

concentrations of reagents and ligands are the same in all systems, the local 

concentrations of different ligands around the Ag surface may not be exactly identical. 

However, because experiments cannot detect minor changes of the local concentration, it 

is reasonable to approximate that the local concentrations of ligands near the Ag surface 

are similar, resulting in a constant in the M2 calculations. The values are canceled when 
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computing the related binding free energy. During the calculations, the standard pressure 

and concentration are separated as external degrees of freedom based on the Rigid Rotor 

Approximation 54, 66, and the analytical integration results in 8π2/C° 54, where C° is the 

standard concentration that can be presented as 1660 Å3 under standard pressure 1atm. 

We used a distance dependent dielectric constant (DDD) model, which is widely applied 

in docking applications 67-69 to avoid unrealistic in vacuo Columbic interactions. This is 

because Poisson Boltzmann (PB) or generalized Born (GB) implicit solvent models are 

not yet fully developed for Ag plates. Because the distance dependent dielectric constant 

model is unable to provide an accurate description of desolvation energy 70, 71, we 

performed MD simulations of citrate and succinate using NAMD 2.9 72 to estimate the 

full picture of desolvation energies of di- and tri-carboxylates from the average 

interaction potential energies between succinate or citrate and the water molecules 73-75. 

In this simulation, the ligands were parameterized by the CHARMM22 force field 

extracted from the M2 method. The solute was first solvated by a standard TIP3P water 

box, which is about 20 Å from the solute itself, and then neutralized by Na+ ions. For 

both succinate and citrate, the water box contains 2721 water molecules. The entire 

system was equilibrated at 50, 100, 150, 200, 250 and 298 K for 10 ps at each step in the 

constant temperature, constant pressure canonical (NPT) ensemble. A product run was 

performed at 298 K in NPT for 5 ns with time step 1 fs. In these simulations, temperature 

and pressure were controlled by using Langevin dynamics. We used VMD 76 to calculate 

the potential energy of the entire system, the solute, and the water box of the simulation 

and then used the formula,  
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 𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑠𝑜𝑙𝑢𝑡𝑒 − 𝐸𝑤𝑎𝑡𝑒𝑟 𝑏𝑜𝑥 eq.  2.6 

   

to calculate the average interaction energy. 

2.2.4 Conformation Filtering 

Because the search algorithm finds the same conformation multiple times, to avoid 

double counting a conformation for the free energy calculation, we used a symmetry 

detection routine 77 to filter the repeats for the free ligands. Conformations are considered 

distinct if any dihedral angles differ larger than 15˚. For the complex, in addition to 

applying the detection routines used for the free ligands, more criteria were used to 

identify repeats for the complexes. The criteria included distance between the center of 

mass of the ligand and the Ag nanoplate, the position of the projection point of the center 

of mass of the ligand on the plate surface in a periodic cell, and the orientation of the 

ligand relative to the nanoplate. Because the nanoplate has a periodic nature, the 

periodicity was considered in the filtering processes. The cutoff parameters were the 

same in the previous routine. 

2.2.5 Explicit Solvent Validation of the Distance Dependent Dielectric Constant  

MD simulation was performed to optimize the arrangements of water molecules on the 

silver plate-ligand complex binding region, in order to investigate how many water 

molecules are replaced by the ligand upon binding. Releasing bound waters from the Ag 

surface may gain solvent entropy but lose solvent enthalpy upon ligand binding. 

However, the implicit solvent model may not be able to capture the effects for different 

ligand binding.  
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The global energy minima of each silver plate-ligand complex are used as an initial 

conformation for MD simulations using NAMD 2.9 72. A complex conformation is 

solvated by a TIP3P water box, which is about 21 Å from the complex. In order to focus 

on water replacement, no counterions were placed on the Ag surface. The plate and 

ligand were held fixed during the simulations. The system is gradually heated at 50K, 

100K, 150K, 200K, 250K and 298K in NPT for 10 ps. Finally a product run in NPT for 

20 ps is performed and a trajectory is saved every 20 fs. This 1000 frame trajectory was 

processed to count how many water molecules on average were present at the first layer 

(defined by a distance 3.2 Å from the plate) on the silver plate within a region with radius 

10 Å from the projection of the center of geometry of the ligand on the plate.  

2.2.6 Synthesis Method 

The synthesis of silver nanoplates was conducted based on a previous reported method 29. 

In a standard synthetic approach, the total volume of the reaction solution is fixed at 

25.00 mL. Typically, a 24.75 mL aqueous solution combining silver nitrate (0.05 M, 50 

µL), carboxylates (75 mM, 0.5 mL), and H2O2 (30 wt %, 60 µL) was vigorously stirred at 

room temperature in air. Sodium borohydride (NaBH4, 100 mM, 250 µL) was rapidly 

injected into this mixture to initiate the reduction, immediately leading to a light yellow 

solution. After ~ 3 min, the colloidal solution turned to a deep yellow due to the 

formation of small silver nanoparticles. Within the next several seconds, the morphology 

started to change from particles to nanoplates accompanied by the solution color 

changing from deep yellow to red, green, and blue. The entire transition from 

nanoparticle to nanoplates typically took 2-3 minutes. 
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2.3 Results and Discussion 

2.3.1 Overview of Ligands on the Ag Surface 

The conformations of global energy minima for each ligand and the Ag surface complex 

are in Figure 2.2. The electrostatic attraction dominates the binding free energy and is the 

major driving force. The negatively charged oxygen atoms of the carboxylate ions all 

point to the (111) or (100) facet. Notably, the carboxylate group was modeled by the 

deprotonated form, because experiments showed that the acid form is necessary for the 

ligands to non-covalently bind to the surfaces. With pH changed from 9 to < 7, the 

carboxylate ions (COO-) were protonated (COOH) and the plate formation vanished. 

Although the classical force field cannot model the potential electron transfers between 

the Ag and oxygen atoms, the strong ionic interaction may capture some characteristics 

of partial covalent bonds for the adsorption of a ligand on the Ag surface. The distance 

between an oxygen atom of the carboxylate group and its nearest Ag is < 3 Å, whereas 

the oxygen atoms of the hydroxyl group typically position toward the solvent (Figure 

2.2). We modeled both (111) and (100) facets as 192-atom three-layer (8×8×3) and 

(6×10×3+12) Ag clusters. Because the facets are symmetric, exactly the same ligand 

orientation/position and conformation on the first and third layers are repeats, and only 

the complex conformations of ligands on the first layer were retained for further analysis 

and free energy calculation.  
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Figure 2.2. Top view of the bound geometry of the ligands on two silver (Ag) facets (top 

for [111] facet, bottom for [100] facet). a) acetate, b) oxalate, c) malonate, d) succinate, 

e) glutarate, f) pimelate, g) citrate, h) isocitrate, i) trimesic acid, j) designed ligand #1, k) 

designed ligand #2. The oxygen atoms are color mapped to represent the average distance 

between the oxygen atom and the closest three Ag atoms according to the color bar (in 

Å). 
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Table 2.2. Binding free-energy calculations and experimental data for nine ligands. Data 

were grouped by number of carboxylate groups. Experimental yields 29 were obtained 

from the experimentalists. ∆Gcomp: binding affinity of ligands on (111) facet; ∆∆Gcomp: 

relative binding affinity of ligands on (111) facet within each group. (For ∆∆G, the 

reference for Group 2 is succinate and for Group 3 citrate.) 
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COO- 

group 

number 

Ligand Structure 

Experiment

al yield 

(%)[2] 

∆Gcom

p 

∆∆Gcom

p 

1 Acetate 
 

0 -129.0  

2 

Oxalate 

 

0 -239.6 10.0 

Malonate 
 

80 -251.6 -2.0 

Succinate 

 

100 -249.6 0.0 

Glutarate 
 

50 -248.0 1.6 

Pimelate 
 

0 -244.0 5.6 

3 

Citrate 

 

100 -361.2 0.2 

Isocitrate 

 

90 -361.0 0.2 

Trimesic acid 

 

0 -345.5 15.7 

New 

ligands 

#1 

 

 -353.6 7.6 

#2 

 

 -361.3 -0.1 
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# of 

COO- 

group  

Ligand Facet ∆G ∆ETot 
∆EBond

ed 
∆EvdW ∆EElec -T∆S 

∆G111-

∆G100 

1 Acetate 
111 -129.0 -130.9 -0.5 3.3 -133.7 2.0 

-2.8 
100 -126.2 -129.3 -0.6 3.3 -132.0 3.1 

2 

Oxalate 
111 -239.6 -246.5 -0.7 5.9 -252.4 6.9 

-11.1 
100 -228.4 -235.0 -0.9 5.4 -240.2 6.6 

Malonate 
111 -251.6 -256.2 -0.8 6.0 -261.7 4.6 

-10.1 
100 -241.5 -247.9 -0.8 5.9 -253.4 6.4 

Succinate 
111 -249.6 -257.6 -0.7 6.5 -263.5 8.0 

-6.9 
100 -242.6 -251.5 -0.4 7.2 -258.5 8.9 

Glutarate 
111 -248.0 -255.8 -0.5 5.6 -260.9 7.9 

-5.9 
100 -242.1 -251.5 -0.2 6.1 -257.4 9.4 

Pimelate 
111 -244.0 -253.1 -0.5 5.1 -257.7 9.2 

-5.8 
100 -238.1 -249.7 -0.8 5.3 -254.3 11.6 

3 

Citrate 
111 -361.2 -374.9 3.0 10.3 -388.2 13.7 

-10.2 
100 -351.1 -363.3 2.7 12.4 -378.5 12.3 

Isocitrate 
111 -361.1 -372.7 4.0 10.9 -387.7 11.7 

-7.9 
100 -353.1 -363.4 3.5 14.3 -381.2 10.2 

Trimesic 

acid 

111 -345.5 -357.8 4.3 6.1 -369.2 12.3 
-14.9 

100 -330.6 -340.5 3.9 4.5 -350.0 9.9 

New 

1 
111 -353.6 -365.4 9.0 7.8 -382.3 11.8 

-5.1 
100 -348.5 -361.1 8.9 8.7 -378.7 12.5 

2 
111 -361.3 -375.0 -1.0 7.5 -381.4 13.7 

-8.0 
100 -353.3 -367.8 1.3 8.7 -377.8 14.5 

Table 2.3. Binding energy components of ligands. The unit of this table is kcal/mol. The 

last column, ∆G111-∆G100, indicates the ability of the ligands to distinguish the two Ag 

facets, where ∆G111 and ∆G100 represent the binding free energy of the same ligand to the 

(111) and (100) facet, respectively. 
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In this system, a good ligand must show reasonably strong binding affinities to the Ag 

surface and prefer the (111) facet. The stronger binding free energy suggests better 

protection on the (111) facet, thus resulting in higher yield experimentally. The absolute 

values of Columbic attractions are considerably different because of different numbers of 

the carboxylate ions. As a result, this study classified the ligands as three groups based on 

the number of carboxylate acids for better comparison. As shown in Tables 2.2 and 2.3, 

the calculated trend of binding free energies agrees with that in experimental data for 

each group of ligands and shows that good ligands, such as succinate and citrate, bind 

more tightly to the (111) than (100) facet. The following subsections detail the 

geometries in the bound states and changes of conformations, energy components, and 

configuration entropy. 

2.3.2 Binding Preference of Ligand to the (111) and (100) Facets 

All ligands bind tighter to the (111) than (100) facet (Table 2.3). Ligands that lead to high 

yields of anisotropic silver plate, i.e. succinate, citrate and isocitrate, the preference on 

(111) facet is stronger than ligands that show low yields, and the differences, ∆G111-

∆G100, are generally larger than 10 RT. The calculations support that ligands have better 

coverage and protection on the (111) facet from exposure to the solvent than the (100) 

facet, thus promoting the plate to grow on the (100) facet. Instead of covalently binding 

to the surface, the ligands bind to the Ag plate non-covalently and are in chemical 

equilibrium (Keq=C kon/koff, where Keq is the equilibrium constant, C is the concentration 

and kon and koff are the association and dissociation rate constants, respectively). As a 

result, the plate still can grow slowly on the (111) facet during a long experimental 
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process because a ligand does not permanently protect the (111) facet. Electrostatic 

attractions are the major contribution to stronger (111) facet–ligand binding because of 

the greater Ag density on the (111) facet. The Ag cluster is cubic closest-packed, and the 

atom density on (111) facet is ~1.155 (
2

3
× √3) times that on the (100) facet (Figure 2.3). 

The closely packed (111) facet results in more non-bonded pairs between the Ag atoms 

and a ligand in a (111) facet–ligand complex, which yield stronger electrostatic 

attractions to stabilize the complex. Except for acetate, all ligands bind considerably 

stronger to the (111) than (100) facet, with binding free energies more negative than -6 

kcal/mol and the difference comes mainly from the electrostatic interactions. Less 

distinguishable binding between acetate and both facets may be one reason why acetate 

cannot serve as a good ligand (0% plate yield). 

 

Figure 2.3. Top-down view of the (111) (left) and (100) facet (right). The atom density is 

greater for the (111) than (100) facet. 

The higher atom density in the (111) facet also provides a geometry for all the ligands to 

fit better on the surface. The mean oxygen–Ag distances are shorter on the (111) than 

(100) facet (Table 2.4 and Figure 2.2), which contribute to stronger ionic attractions. 
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 (111) facet  (100) facet 

Ligand 
Global 

Minima 

Boltzmann 

Mean 
SD  

Global 

Minima 

Boltzmann 

Mean 
SD 

Acetate 2.52 2.54 0.01494  2.6 2.60 0.00688 

Oxalate 2.67 2.67 0.00073  2.85 2.85 0.00075 

Malonate 2.59 2.60 0.00247  2.69 2.69 0.01128 

Succinate 2.59 2.58 0.00875  2.63 2.64 0.00989 

Glutarate 2.56 2.55 0.00537  2.61 2.60 0.00889 

Pimelate 2.57 2.55 0.01359  2.61 2.61 0.00696 

Citrate 2.57 2.58 0.00130  2.68 2.69 0.00823 

Isocitrate 2.57 2.57 0.00229  2.69 2.70 0.02963 

Trimesic 

Acid 

2.69 2.69 0.00167  2.87 2.89 0.02589 

Table 2.4. Computed distances between oxygen and Ag atoms. The average oxygen–Ag 

distance was calculated by averaging the distances between the oxygen atoms of the 

ligands and the three Ag atoms that are closest to each of the oxygen atoms. The unit is 

Å. The distances were consistently shorter on the (111) than (100) facet. On the (111) 

facet, the distances decrease from oxalate to pimelate. This finding can be explained by 

more flexible molecules fitting the periodic surface better than less flexible ones. As well, 

because of this factor, oxalate and malonate are unfavorable to the (111) facet. 

Because the ligands have negative formal charges, and most of the negative charges are 

distributed on the oxygen atoms of the carboxylate group, ionic attractions can be 

optimized if the oxygen atoms are placed as close as possible to the positively charged 

Ag atoms. The ligands in this study are flexible molecules, and our study illustrated that 

the molecules could adjust their configurations to maximize the intermolecular 

attractions. The denser and shorter periodicity length of (111) facet provides a better 

geometry for the ligands to have closer contacts to the surface than the (100) facet. 

2.3.3 Relative Binding Affinities of Various Ligands 

Table 2.3 illustrates the computed relative binding free energies (∆∆Gcomp) of three 

groups of ligands: mono-carboxylate, di-carboxylate and tri-carboxylate. Here we focus 
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on ligand binding affinities to the (111) facet because this determines the coverage 

offered by a ligand and the corresponding experimental yield. Comparing ∆∆Gcomp for 

ligands within each group provides a correct ranking of the affinities, with a stronger 

binder able to form a more stable (111) facet–ligand complex to protect the (111) facet 

against growing in this direction (high % plate yield). The absolute values of the 

computed Columbic energies are on a different scale because of different formal charges 

of the ions in different groups. In typical energy calculations, the Columbic term is 

usually compensated by the desolvation penalty modeled by the implicit solvent models, 

either GB or PB. However, classical GB and PB models are not applicable to the highly 

charged small ionic molecules and the metal plates, and the calculations overestimate the 

desolvation penalty. The remarkably large desolvation penalty prevents the ligands from 

binding to the Ag nanoplate. A known problem is that the linear PB model overestimates 

the ionic strength near the charged surface 78-82, and further improvement has involved 

the nonlinear PB equation 83, 84. Notably, the M2 method for computing the binding free 

energies relies on implicit solvent models because the method needs a well-defined 

distinct energy well. The explicit water model is not applicable to the method because 

counting numerous water configurations and explicitly integrating them over the 

coordinates of solvent molecules to compute a configuration integral zi is impractical. 

Therefore, we used the distance-dependent dielectric (DDD) model that provides crude 

solvent effects to compute ∆Eelec.  

Because use of implicit solvent models, i.e. GB or PB, is not practical to compute the 

solvation free energy, we used MD simulations and linear interaction energy (LIE) 
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methods to approximate the desolvation penalty. We used MD simulations with an 

explicit solvent model for citrate and succinate to compute the average Columbic 

interactions between waters and each ligand to approximate the solvation enthalpy 

without considering the solvation entropy. The interaction energy is approximated by 

∆<EColu(water-succinate)> and ∆<EColu(water-citrate)>, where < > denotes the average 

interaction energy during the MD simulations. Having one more carboxylate ion largely 

increases the Columbic attractions between a ligand and water molecules, which yields 

values for ∆<EColu(water-succinate)> and ∆<EColu(water-citrate)> of -437.4 (20.5) and -

808.4 (24.9) kcal/mol, respectively, where the standard deviation is shown in the bracket. 

The LIE method is then used to approximate the electrostatic contribution to the solvation 

free energy, ∆Gel
sol, and the value equals half of the corresponding ion–water interaction 

energy: ∆Wel
sol = ½ ∆<EColu(water-ligand)> 73-75. The difference in electrostatic 

contribution to the solvation free energy, ∆∆Wel
succinate-citrate, between succinate and citrate 

is ~185.5kcal/mol. This has similar magnitudes of ∆∆Eelec between the two groups 

computed with the DDD model. Use of more sophisticated solvent models developed for 

ions and metal plates is necessary to accurately compute absolute ∆G. For example, an 

implicit solvent model for protein and Au (111) associations developed by Wade and 

colleagues may be modified and further developed for chemicals and Ag plate 

associations 41, 42, 85.  

In addition, we investigated gaining solvent entropy upon ligand binding by computing 

the number of waters on the Ag surface that had been replaced by a ligand. Our 

calculations showed that similar numbers of water molecules were replaced by different 
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ligands, which suggests that gaining solvent entropy upon ligand binding is not a critical 

term that determines the relative binding affinities. The result of number of waters in 

defined region is given in Table 2.5. The differences in numbers of water in defined 

region reveal the differences of number of waters replaced by two different ligands. For 

example, comparing with ligands within the di-carboxylate and tri-carboxylate groups, 

the differences are lesser than 5.5 and 2.3 waters, respectively. Considering the standard 

deviation, the difference is insignificant. We therefore concluded that the solvent effects 

from releasing waters on the surface are similar among ligands in each group; therefore, 

this term does not affect results of related binding affinities. 
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No. of 

Carboxylate 

Group 

Ligand 
No. of 

Water 

Standard 

Deviation 

1 Acetate 59.33 1.79 

2 

Oxalate 62.81 2.20 

Malonate 61.72 2.28 

Succinate 57.27 1.82 

Glutarate 61.39 2.01 

Pimelate 58.31 2.15 

3 

Citrate 55.71 1.84 

Isocitrate 53.45 1.77 

Trimesic Acid 53.40 2.06 

 

Table 2.5. Numbers of water in the region that is the first layer (here cut off at 3.2 Å from 

the surface) water that is within 10 Å from the projection of center of geometry of the 

ligand on silver surface of silver plate-ligand complexes. 

To ensure that the simple DDD solvent model brings similar conformations to those from 

MD simulations using the explicit solvent model, we compared the conformations of 

succinate obtained by MD simulations and from M2 conformation search. We computed 

the root-mean-square-deviation (RMSD) of MD trajectories using the first four lowest 

energy conformations from M2 search as the reference frames (see Figure 2.4). The 

comparison illustrated highly similar conformations from both methods, which suggests 

that the conformations are largely determined by the force field parameters instead of 

solvent models used in these systems 86 .  
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Figure 2.4. Plots of RMSD (in Å) computed by all atoms, including hydrogen atoms, for 

succinate from MD simulations. Each plot used one local energy minima found by M2 as 

a reference structure. . The frame was saved every 1 ps, and the MD simulation length is 

5 ns.  
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To optimize the non-bonded interactions between a ligand and the (111) facet, ligand 

flexibility is necessary for a ligand to arrange fitting conformations on the Ag plate 

(Figure 2.2). For small or more rigid molecules such as oxalate and trimesic acid, the 

compounds cannot arrange themselves to fit nicely on the Ag plate; thus the ∆EElec is 

largely reduced (Table 2.3 and Figure 2.2). Because the ionic attraction is the main factor 

that determines the relative binding affinities of a series of ligands on the (111) facet, the 

distribution of partial charges contributes to the strength of ionic attraction. We examined 

the charge distribution in the di-carboxylate group with the Vcharge model, which is 

based on atom electronegativity. All ligands in this group carry -2 formal charge; 

however, compounds with fewer carbon chains show greater negative charge density in 

the oxygen atoms (Table 2.6). For example, glutarate has a chain of 5 carbon atoms, and 

the partial charge on the oxygen atoms is -0.72, whereas pimelate has a chain of 7 carbon 

atoms, and the partial charge on the oxygen atoms is -0.70. To ensure that correlation 

between the carbon chain lengths and the charge distribution is not an artifact of the 

Vcharge program, we examined other charge models. The same trend held (Table 2.7). 

The different charge distribution is a factor of different ionic attraction. For example, the 

average oxygen–Ag distance for glutarate and pimelate were similar, but the computed 

binding ∆EElec for two ligands to the (111) facet differed by ~3 kcal/mol.  
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Ligand No. of Carbon Partial Charge on Oxygen 

Oxalate 2 -0.77 

Malonate 3 -0.74 

Succinate 4 -0.73 

Glutarate 5 -0.72 

Pimelate 7 -0.70 

Table 2.6. The partial charges (Vcharge model) on oxygen atoms in the ligands. The 

values of partial charges decrease because as a molecule becomes larger, the -2.0 formal 

charges must be distributed on more atoms, and thus each of the oxygen atoms carries 

less negative charges.  
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Ligand 
ccpvDZ-

b3lyp 
AMMP AM3 PM3 MNDO 

Oxalate -0.492 -0.55 -0.64 -0.69 -0.66 

Malonate 
-0.489/ 

-0.475 
-0.54 -0.64/-0.63 

-0.69/-0.69/ 

-0.68/-0.67 

-0.68/-0.67/ 

-0.63/-0.61 

Succinate 
-0.487/ 

-0.453 
-0.54 -0.64/-0.61 -0.69/-0.66 -0.65/-0.63 

Glutarate 
-0.470/ 

-0.442 
-0.54 -0.62/-0.61 -0.67/-0.66 -0.63 

Pimelate 
-0.462/ 

-0.431 
-0.54 -0.62/-0.59 -0.67/-0.64 -0.63/-0.61 

Table 2.7. Partial charges from other calculation methods. The ccpvDZ-b3lyp is ab initio 

calculated, whereas the remainder are semi-empirical methods. Multiple values indicate 

that the partial charges for oxygen atoms slightly differed from one another.  
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Ligand 
No. of 

Atoms 

No. of 

Rotatable 

Bond 

Free Conf. 

within 3 

kcal/mol 

Binding 

Conf. within 

3 kcal/mol 

-T∆S 

(kcal/mol) 

Oxalate 7 0 1 1 7 

Malonate 5 2 1 3 5 

Succinate 8 3 6 6 8 

Glutarate 8 4 16 11 9 

Pimelate 9 6 296 115 9 

Table 2.8. Computed configuration entropy loss. The entropy loss increases as the ligands 

become more flexible. The table lists numbers of free ligand conformations and the 

bound complexes within 3 kcal/mol of the global energy minimum. 

Binding is usually accompanied by a loss of configuration entropy, -T∆S, which opposes 

the complex formation. Because the Ag plate is held rigid, the configuration entropy loss 

is solely from reducing the motions in translation, rotation, and vibration degrees of 

freedom and the number of low-energy conformations of the ligand. Entropic penalty 

follows a trend whereby molecules with longer chains show larger configuration entropy 

loss (Tables 2.3 and 2.8). In addition, enthalpy-configuration entropy compensation is 

observed in this system; stronger binding energy, ∆Epotential, also shows a greater loss of 

configuration entropy, as seen previously 56, 87-89. Conceptually, more flexible molecules 

lose configuration entropy more because they reduce larger numbers of conformations 

when moving from the free to the bound form. In contrast, rigid molecules show 

insignificant changes in number of states in both the free and bound forms, thus resulting 

in smaller changes of conformation entropy. Although reducing more numbers of energy 

wells contributes to larger entropic penalty, the loss of translation, rotation and 
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vibrational entropy governs the major component of configuration entropy loss. Although 

the configuration entropic penalty is not the main factor that determines the strength of 

binding affinities in the systems studied here, the insights are useful for future molecular 

design. 

2.3.4 Partial Charge Investigation 

Experiments suggested that the surface of the silver nano-plate should carry partial 

positive charges. In this study, a partial charge model in which all silver atoms were 

assigned a +0.5 partial charge was used to parameterize the silver plate. In addition to 

that, we also performed the same calculations with several other partial charge models, 

i.e. in which the silver atoms were assigned +0.2, +0.3 or +0.4 partial charge, 

respectively.  

The calculated binding affinities are summarized in Table 2.9 (+0.2 charge), Table 2.10 

(+0.3 charge), and Table 2.11 (+0.4 charge).  
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# of 

COO- 

group  

Ligand Facet ∆G ∆ETot 
∆EBonde

d 
∆EvdW ∆EElec -T∆S 

∆G111-

∆G100 

1 acetic 
111 -50.25 -52.07 0.00 -0.51 -51.56 1.82 

-0.35 
100 -49.90 -51.19 0.02 -0.56 -50.65 1.30 

2 

oxalate 
111 -93.34 -97.64 0.09 -1.09 -96.78 4.30 

-3.97 
100 -89.37 -93.20 0.11 -0.97 -92.45 3.83 

malonate 
111 -97.18 -101.77 0.02 -1.27 -100.52 4.59 

-2.84 
100 -94.34 -98.32 0.01 -1.20 -97.16 3.98 

succinate 
111 -96.64 -101.30 0.12 -1.30 -100.13 4.66 

-3.43 
100 -93.21 -98.42 0.14 -1.16 -97.43 5.21 

glutarate 
111 -95.34 -100.78 0.31 -2.56 -98.57 5.44 

-2.91 
100 -92.43 -97.89 0.30 -2.54 -95.72 5.46 

pimelate 
111 -93.60 -100.10 0.07 -2.26 -97.92 6.51 

-2.82 
100 -90.78 -99.19 0.08 -2.20 -97.07 8.41 

3 

citrate 
111 -134.51 -143.45 2.74 -2.08 -144.12 8.93 

-2.78 
100 -131.73 -139.62 1.42 -1.81 -139.25 7.89 

isocitrate 
111 -134.23 -140.98 4.01 -1.37 -143.64 6.75 

-1.53 
100 -132.70 -138.90 1.33 -1.07 -139.18 6.20 

trimesic 
111 -133.68 -141.73 1.04 -4.18 -138.77 8.05 

-5.67 
100 -128.01 -134.65 1.38 -4.10 -132.09 6.64 

 

Table 2.9. Binding energy components of ligands with +0.2 partial charge set. The unit of 

binding energy terms and entropy loss are kcal/mol. 

  



 81 

# of 

COO- 

group  

Ligand Facet ∆G ∆ETot ∆EBonded ∆EvdW ∆EElec -T∆S 
∆G111-

∆G100 

1 acetic 
111 -77.28 -78.12 -0.04 0.65 -78.73 0.84 

-2.56 
100 -74.72 -76.88 -0.05 0.64 -77.45 2.16 

2 

oxalate 
111 -141.38 -146.85 0.03 1.05 -148.25 5.47 

-6.50 
100 -134.88 -139.75 0.02 1.03 -141.03 4.87 

malonate 
111 -147.00 -152.79 -0.04 0.94 -153.75 5.78 

-3.80 
100 -143.20 -147.80 -0.08 0.95 -148.79 4.60 

succinate 
111 -146.83 -152.83 0.04 1.08 -153.98 6.00 

-4.76 
100 -142.07 -148.68 0.14 1.37 -150.24 6.60 

glutarate 
111 -145.36 -151.35 0.35 0.16 -151.89 5.99 

-4.55 
100 -140.81 -148.29 0.74 0.56 -149.60 7.47 

pimelate 
111 -142.86 -150.57 0.10 0.11 -150.78 7.71 

-4.27 
100 -138.59 -148.37 0.11 0.13 -148.62 9.78 

3 

citrate 
111 -208.22 -219.86 3.97 1.93 -225.76 11.64 

-5.51 
100 -202.71 -212.59 2.89 3.37 -218.87 9.89 

isocitrate 
111 -207.82 -217.42 5.45 1.93 -224.79 9.60 

-4.61 
100 -203.21 -211.18 3.37 3.92 -218.52 7.97 

trimesic 
111 -202.19 -212.45 2.62 -1.06 -214.42 10.25 

-8.12 
100 -194.07 -202.06 2.70 -1.64 -203.47 7.99 

 

Table 2.10. Binding energy components of ligands with +0.3 partial charge set. The unit 

of binding energy terms and entropy loss are kcal/mol. 
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# of 

COO- 

group  

Ligand Facet ∆G ∆ETot ∆EBonded ∆EvdW ∆EElec -T∆S 
∆G111-

∆G100 

1 acetic 
111 -102.96 -104.50 -0.20 1.93 -106.23 1.54 

-2.86 
100 -100.10 -102.77 -0.24 1.93 -104.45 2.66 

2 

oxalate 
111 -190.35 -196.68 -0.21 3.39 -200.41 6.32 

-8.78 
100 -181.58 -187.37 -0.28 3.15 -190.63 5.80 

malonate 
111 -198.37 -204.58 -0.34 3.39 -207.79 6.21 

-5.91 
100 -192.46 -197.90 -0.32 3.32 -201.16 5.44 

succinate 
111 -197.91 -205.03 -0.21 3.68 -208.57 7.12 

-5.40 
100 -192.51 -200.28 -0.03 4.15 -204.51 7.77 

glutarate 
111 -196.33 -203.36 0.03 2.83 -206.23 7.03 

-5.23 
100 -191.10 -199.78 0.37 3.24 -203.39 8.68 

pimelate 
111 -193.15 -201.68 -0.21 2.61 -204.08 8.53 

-4.18 
100 -188.98 -199.24 -0.22 2.64 -201.66 10.26 

3 

citrate 
111 -284.36 -296.93 3.53 5.83 -306.29 12.57 

-8.05 
100 -276.31 -287.55 2.80 7.77 -298.17 11.24 

isocitrate 
111 -283.95 -294.71 4.75 6.44 -305.90 10.76 

-6.72 
100 -277.23 -286.61 3.83 9.05 -299.56 9.38 

trimesic 
111 -273.10 -284.82 3.78 2.45 -291.77 11.73 

-11.07 
100 -262.03 -271.18 3.53 1.27 -276.59 9.15 

 

Table 2.11. Binding energy components of ligands with +0.4 partial charge set. The unit 

of binding energy terms and entropy loss are kcal/mol.  
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In +0.2 charge model, the relative binding affinities in di-carboxylate group holds the 

basic trend of that interpreted from the experimental yields except that malonate has a 

stronger binding affinity than succinate. This is similar to the result from +0.5 partial 

charge, but the difference of the values are smaller than the report +0.5 partial charge set. 

In addition, in the tri-carboxylate group, the binding affinities of citrate and isocitrate 

match the experimental yields, but trimesic acid is the singularity.  

Similar behaviors can be observed in the +0.3 and +0.4 partial charge model, but the 

difference in relative binding affinities in di-carboxylate group becomes larger and larger. 

Furthermore, the higher partial charge on silver atoms start to differentiate the trimesic 

acid from the other two ligand in tri-carboxylate group. 

This results from the ratio of contributions from the Columbic interactions and vdW 

interactions between the ligand and the surface. The Columbic attraction between silver 

surface and the ligand is mainly from the Columbic attraction between the oxygen atoms 

on the ligands and the silver atoms, while the vdW attraction is mainly from the 

interaction between carbon and hydrogen atoms on the ligands and the silver atoms. By 

comparing the +0.2, +0.3 and +0.4 charge, one can see that the columbic interaction 

becomes stronger and stronger. This higher positive partial charge makes oxygen-silver 

attraction more favorable, but in turn, makes the columbic repulsion between positively 

charged silver atoms and carbon, hydrogen atoms stronger. So higher positive charge will 

lead to the behavior of glutarate in Figure 2.5. In +0.2 charge model, the middle carbon in 

the chain stays on the surface, but in +0.3 and +0.4 charge models, it is push away from 



 84 

the surface, due to the stronger repulsion. This behavior weakens the vdW interaction 

from +0.2 to +0.4 partial charge. Also in the case of trimesic acid (Figure 2.6), the rigid 

molecule is unable to adjust itself to maximize the columbic attraction between oxygen 

and silver atoms and at the same time minimize the columbic repulsion between the silver 

atoms and the carbon or hydrogen. This is the intrinsic reason for trimesic acid to be a 

weak surfactant, and only with high positive charge model the behavior appears. Based 

on experimental data and existing studies, we selected +0.5 partial charge model for this 

study that yield both more accurate experimental trends and conformations.  

 

 

Figure 2.5. Binding pose of glutarate on silver plate in +0.2, +0.3 and +0.4 partial charge 

model. 

 

Figure 2.6. Binding pose of trimesic acid on silver plate in +0.2 partial charge model. 
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2.3.5 Design of Novel Surfactants 

From findings for the series of ligands, we designed two new molecules that may be 

potentially effective ligands for future application (see Figure 2.2 and Table 2.2). To 

begin, we used trimesic acid as a template for design because it has a ring in the center as 

a rigid core and the length and functional groups of the side-chains may be used to 

optimize binding affinity to the (111) facet. Our calculations showed that the central flat 

aromatic ring hampered a possible side-chain rearrangement to form a (111) facet–ligand 

complex with good geometric complementation. Therefore, we replaced the aromatic ring 

by a hexane ring and retained the same side-chains as our first designed ligand, 

cyclohexane-1,3,5-tri-carboxylate. The calculations then revealed that the lengths of the 

side-chains were too short for the three carboxylate ions to fill the hollow site between 

three Ag atoms. Therefore, we lengthened the side chain with one more carbon to build 

our second designed ligand, 2,2',2''-(cyclohexane-1,3,5-triyl)triacetate. According to the 

calculation result in Table 2.3, ligand 2 should be able to bind as well as citrate to the 

(111) facet. The non-bonded terms suggested that the electrostatic interaction for 

designed ligand 2 was less favorable than that for citrate. However, the bonded terms 

favor binding, because the higher flexibility of designed ligand 2 than citrate lowers the 

penalty caused by distorting the ligand while adjusting itself on the Ag nanoplate surface. 

In addition, high flexibility in the side-chains inevitably increased the entropic penalty of 

binding ligand 2 to the plate, and the entropy loss could not be maintained as small as that 

in trimesic acid. By comparing the designed ligand 2 and citrate, we conclude that it is 

difficult to design new ligand that may bind tighter than citrate for this specific system 
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because finding small molecules with both favorable energy and small entropic penalty 

upon binding is challenging. Designing large ligands may satisfy better geometry fitness; 

however, the entropic penalty would oppose binding. In contrast, a rigid molecule 

efficiently reduces entropic penalty, but the requirement of geometry complementary is 

not likely achieved. In summary, citrate may be the best tri-carboxylate ligand. 

2.4 Conclusions 

This study involved use of the M2 method to calculate the relative binding free energies 

of a series of ligands on a silver cluster. The calculations support the experimental trends 

of anisotropic growth of the Ag plates from the perspective of ligand-nanoplate 

interactions, and provide insights into the mechanisms of directional anisotropic growth 

and factors that govern ligand-nanoplate binding. In summary, a good ligand needs to 

have a strong binding affinity with the Ag cluster to protect the surface against growth 

and also show strong preference in binding to the (111) or (100) facet to allow the plate 

to grow in one direction. The ligands investigated in this study use electrostatic 

attractions to drive (111) facet–ligand binding and to distinguish the (111) and (100) 

facet. The ligands need to retain certain flexibility to rearrange themselves, especially the 

oxygen atoms of the carboxylate ions, to fit on the Ag surface. Therefore, achieving this 

requirement with very small or rigid molecules may be difficult. As well, flexible 

molecules that may cause a large configuration entropy loss in binding are not ideal. In 

addition, we attempted to design derivatives of trimesic acid as potential effective ligands 
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and predicted the relative binding affinities of the molecules. We discussed strategies for 

more accurate modeling in binding chemicals on the Ag plates.  
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Chapter 3 A Modeling Investigation on Inhibitor MitoBloCK-10 Binding in 

Wildtype and Mutants of Tim44  

3.1 Introduction 

Protein import is highly regulated by translocons on the outer and inner membranes of 

mitochondria 1. The Translocase of the Outer Membrane (TOM) is the major gateway for 

mitochondria protein import. The Translocase of the Inner Membrane (TIM23), which 

resides in the matrix, mediates the import of proteins which typically have an N-terminal 

targeting sequence 2. The two complex systems coordinate the assembly of the 

mitochondrion.  

Complete translocation of the protein across the inner membrane requires the membrane 

potential and the ATP-driven protein-associated motor (PAM) 3. The PAM is a dynamic 

and highly regulated protein complex that is composed of TIM44, mitochondrial hsp70, 

the nucleotide exchange factor mGrpE (Mge1) and J-proteins Pam16 and Pam18 4-8. 

Among them, TIM44 is upregulated in diabetes and can be used as drug target 9.  

Our collaborator conducted drug screening for TIM44 and identified a potential drug, 

MitoBloCK-10 (MB-10), and investigated a variety of biological activities of MB-10 by 

in vitro and mutation studies. MB-10 inhibited the import of substrates that use the 

TIM23 translocon but not those imported via other pathways. MB-10 targeted TIM44 and 

reduced the import of substrates that require the PAM complex. In mammalian cells, 
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MB-10 treatment supports an important role for TIM44 in the import of SOD2. Finally, 

TIM44 was required for heart development in zebrafish. 

A series of mutants of the wild type TIM44 was obtained in the mutation study. Among 

them, 3H1 (T290S), 4E5 (I297), 3B7 (F284L) and 3G5 (V298A) show resistance with 10 

μM treatment of MB-10 while the wildtype (WT) is completely inhibited. Mutants 3H1 

and 4E5 demostrated partial resistance upon 15 μM MB-10 treatment while the other two 

mutants were completely inhibited.  

Computational methods are widely used in the study of conformational search for ligand-

protein binding and binding affinity evaluation. Among them, docking is a fast and 

efficient method which systematically or stochastically searches for appropriate binding 

site in the protein and the low energy bound conformations 10, 11. It utilizes a scoring 

function 12 rather than advanced free energy calculation to rank the result conformations. 

To further evaluate the binding affinity for the conformations found through docking, it is 

common to perform molecular dynamics (MD) simulation and calculate the binding free 

energy via MMPB/SA 13 method. Mining Minima 2 (M2) 14, 15, which is based on normal 

mode, is another method that evaluates the binding affinity with high efficiency. It 

systematically searches for the global conformation minima and calculates the binding 

affinity based on harmonic approximation. Replica exchange molecular dynamics 16, 17 

introduces an alchemical parameter to accelerate the exploration of conformation space 

near the global minimum of bound state, thus yielding high accuracy of free energy 

evaluation.  
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In this study, we used docking and MD to investigate the selective binding of MB-10 to 

the wildtype TIM44 and its four mutants. Accelerated MD starting from the crystal 

structure was employed to generate the initial conformations for docking. Conventional 

MD simulation was performed followed by MMPB/SA calculation to evaluate the MB-

10 binding affinities in the wildtype proteins and its mutants. A shallow binding site and 

a deep binding sites were identified, and the deep binding site was confirmed as the MB-

10 binding site. The selective binding of MB-10 in the wildtype and resistance of the 

mutants were explained by the MD conformation analysis and MMPB/SA calculation 

results. 

3.2 Methods 

3.2.1 Overview 

To begin, molecular dynamics and docking simulations were performed from the crystal 

structure of yeast TIM44. In the first round of docking and MD conformation search, an 

accelerated MD simulation was performed to generate conformations for rigid protein 

docking. After the MB-10 was docked to the protein, the wildtype enzyme was 

artificially mutated to obtain the structures of its mutants, i.e. 3H1, 4E5, 3B7 and 3G5. 

With the docked wildtype and mutants structures, conventional MD simulations were 

performed on each of the structures followed by MMPB/SA calculations.  

In the second round of docking and MD conformation search, conformations from the 

wildtype conventional MD from the first round were selected for flexible sidechain 

docking. Similarly, the conformations of mutant complexes were created from the docked 
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wildtype conformation. From the results of the second round of docking, conventional 

MD simulations were performed, and the energy was calculated using MMPB/SA. A 

third round of flexible sidechain docking was conducted in the same approach continuing 

from the result of the second round.  

3.2.2 System Preparation 

 

Figure 3.1. Structure of MitoBloCK -10 (MB-10). 

The crystal structure of yeast TIM44 was obtained from the Protein Data Bank 18 (PDB 

ID: 2FXT), and parameterized with AMBER 99SB force field 19. The structure of MB-10 

(Figure 3.1) was manually created by using Vega ZZ 20 and parameterized with GAFF 

force field 21. The partial charge of the ligand was calculated by Vcharge 22. All 3D 

structures are generated with VMD 23. 

3.2.3 Molecular Dynamics 

In the initial accelerated MD simulation 24, the wildtype TIM44 crystal structure was 

solvated using a box of TIP3P water 25 of at least 12 Å around the protein. This was 

accomplished by the tleap module in AMBER12 19, creating a system of about 43400 

atoms. Next, the water molecules was equilibrated at 298K before the entire solvated 

system was equilibrated at 200K, 250K and 298K. The production runs were performed 

for 20 ns at 298K, and the temperature was maintained at 298K by Langevin dynamics 26, 
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27. The particle mesh Ewald (PME) 28 was used for the long-range electrostatic 

interactions, while the van der Waals interactions were cutoff using the Amber default 

setting of 8.0 Å. A time step of 2.0 fs was used and MD frames were save every 1 ps.  

For the two rounds of MD simulations, the protocol from accelerated MD was used 

except that conventional MD was performed. The low energy docking conformations 

from accelerated MD, Frame 82, 112, 136 and 138, were used in the first round of 

conventional MD and the production run was 20 ns. Similarly, the low energy docking 

conformation from Frame 3059 in the first round of conventional MD was used in the 

second round of conventional MD and the production run was 70 ns. The last 10 ns of the 

70 ns trajectories were used for MMPB/SA calculation. 

3.2.4 Docking 

In the first round, Frame 82, 86, 93, 104, 110, 112, 116, 125, 136, 138 and 194 were 

selected from the accelerated MD of wildtype TIM44 for rigid protein docking using 

Autodock 29. The Lamarckian genetic algorithm 30 was used to search for minimum 

energy ligand conformations and orientations. A total of 20 unique docking results were 

generated and analyzed. Those that had the lowest energy conformation which placed 

MB-10 in the binding site were used to create mutant structures. 

In the second round, a total of 17 conformations from the conventional MD of wildtype 

TIM44 in the first round were selected including Frame 3059, and same protocol as the 

first round docking was used except that residue 315, 316, 404, 415 and 417 were kept 
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flexible during docking. The selected low energy conformation from this round of 

docking was used to create the mutant structures. 

3.2.5 Mutations 

The mutant structures were created from the selected wildtype docking conformations 

from the two rounds of searching. The mutated residues atoms were removed and new 

heavy atoms were added manually in the pdb file to obtain the mutations of 3H1 (T290S), 

4E5 (I297), 3B7 (F284L) and 3G5 (V298A). The hydrogen atoms of the mutated residues 

were added by tleap during MD setting up. 

3.2.6 MMPB/SA 

The two round of conventional MD trajectories (wildtype and four mutants) were used in 

the energy calculation using the MMPB/SA module 13 of AMBER 12. The module 

produced three separate trajectories of a protein-ligand, a free protein and a free ligand, 

from each original trajectory with the explicit water molecules removed. Then the 

energies were calculated using an implicit Poisson Boltzmann solvent model 31. The 

energies of the trajectories were analyzed to evaluate the MB-10 binding to the wildtype 

TIM44 and the four mutants. 

3.3 Results and Discussion 

To determine where MB-10 bind to the C-terminus of TIM44, we took advantage of 

computational approaches using docking and molecular dynamics (MD) simulations. In 

the binding pose found in the first round conformation search, a shallow binding pose 
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was found on the surface of the space between α4 helix, α5 helix, and a loop that 

connects the β3 and β4 strands (Figure 3.2 and Figure 3.6). This binding site is discussed 

in Section 3.3.3.  

 

Figure 3.2. The MB-10 binding site in TIM44 wildtype structure, which is located 

differently from the PEG binding site. 

To further explore the buried space below the shallow binding site, the second round 

docking and MD conformation search was performed. One deep binding pose was 

discovered from the docking on Frame 3059 in the second round docking, while the other 

16 initial protein conformations result in the same shallow binding pose as the first round 
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of docking. The novel MB-10 binding site discovered by the docking and MD 

conformation search is shown in Figure 3.2.  

3.3.1 MB-10 Binding Site 

Based on the mutational analysis from experiments, the MD simulations revealed a cavity 

between α4 helix, α5 helix, the β strands and a loop that connects the β3 and β4 strands, 

where MB-10 can bind into the pocket (Figure 3.2). Notably, this is a novel binding site 

that is different from the large hydrophobic binding site for ligand pentaethylene glycol 

(PEG) on the opposite face of TIM44 (Figure 3.2), which has been suggested to interact 

with the membrane 32. During the course of MD simulations, the α-helices and β-strands 

were relatively rigid, compared with the loop structures, but the loops were flexible and 

the size of the MB-10 binding site fluctuated. Molecular docking illustrated that the 

thiophene ring could successfully fit into the binding cavity formed by I297, Y296 and 

H292 of the α4 helix and other residues in the loop (Figure 3.3). Binding of MB-10 may 

inhibit important interactions between TIM44 and Hsp70; thus resulting in inhibition of 

protein import. 
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Figure 3.3. The deep binding pose of MB-10 in the wildtype TIM44. The residues within 

9 Å of the ligand is rendered in orange. The ligands which blocks the binding site are 

shown with licorice representation. The ligand is shown in vdW representation.  

3.3.2 Wildtype vs Mutants 

 ∆G SD 𝐸𝑣𝐷𝑊 𝐸𝐶𝑜𝑢𝑙 𝐸𝑃𝐵 𝐸𝐶𝑎𝑣𝑖𝑡𝑦 𝐸𝐷𝑖𝑠𝑝 𝐸𝑇𝑜𝑡𝑎𝑙 

WT -14.89 2.89 -46.44 -2.01 14.92 -28.81 47.45 -14.89 

3H1 -9.66 2.94 -42.64 0.47 13.92 -25.24 43.82 -9.66 

4E5 -7.39 3.19 -41.84 -8.83 23.74 -26.74 46.28 -7.39 

3B7 -10.30 3.02 -43.78 -1.98 16.60 -27.80 46.66 -10.30 

3G5 -7.76 3.50 -39.83 -2.78 14.94 -25.72 45.63 -7.76 

Table 3.1. The binding energy decomposition from MMPB/SA of MB-10 to wildtype 

TIM44 and its four mutants. The units are in kcal/mol. 
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Figure 3.4. The convergence of MMPB/SA calculation. The average accumulative 

binding affinity over number of conformations was plotted against the number of 

conformations. 
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Figure 3.5. The binding pose of the wildtype of TIM44 and the mutants. For comparison, 

the wildtype is shown for each mutant. The mutation site residues are rendered in red, 

and other relevant residues are in gray. 



 111 

According to the mutation study, the wildtype has a stronger MB-10 binding affinity than 

its four mutants. The binding affinities to 3G5 and 3B7 were weaker compared to the 

wildtype but stronger than 3H1 and 4E5. The MMPB/SA binding energy decomposition 

of wildtype TIM44 and its four mutants are listed in Table 3.1 and the convergence of 

MMPB/SA calculation is shown in Figure 3.4. The MB-10 binding affinity to the 

wildtype is the strongest of the five listed. Overall, it is roughly 5 kcal/mol stronger than 

that to the second strongest mutant, 3B7. This agrees with the experimental observation 

in which only 10 μM of MB-10 completely inhibits the activity of the wildtype TIM44 

while the four mutants were partially resistant. However, the relative binding affinities to 

the four mutants reveal little from the experimental result, where 15 μM fully inhibits the 

3B7 and 3G5 but not 3H1 or 4E5. Nonetheless, considering that the affinities of the four 

mutants are within the range of 3 kcal/mol and the standard deviation of the affinities are 

roughly 3 kcal/mol, the mismatch between calculated values and the experimental 

observations may be partially attributed to the fluctuation in the calculation. Another 

reason may be due to the total lengths of the MD simulation (70 ns), which is not 

adequate for complete sampling of the correct binding pose.  

The structural differences explain the stronger binding affinity of the wildtype. 

Comparing 3H1 to the wildtype, the mutation site, from Thr290 to Ser, which is one less 

methyl group on the sidechain of the residue, results in the loss of the hydrophobic 

interaction between the aromatic ring on the ligand and the Ser290 (Figure 3.5). 

Therefore the α4 helix shifts upwards and the ligand moves towards unbinding, resulting 

in the roughly 5 kcal/mol binding affinity loss. This is also indicated by the 4 kcal/mol 
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vdW interaction loss in the 3H1 mutant (Table 3.1). Similar behavior was observed in the 

3B7 case (Figure 3.5). The mutation from Phe284 to Leu284 removes the π- π interaction 

between the two aromatic rings, leading the ligand to unbind. In the 3G5 case (Figure 

3.5), the mutation from Val298 to Ala, on the other hand, does not contribute to direct 

interaction loss. Instead, allosteric effect makes the ligand bind weaker. The Val298 has a 

bulkier hydrophobic sidechain which stabilizes the relative position of the α4 helix and 

holds the cavity open for the ligand. The mutation delocalizes the α4 helix and shrinks 

the binding pocket. For this reason, the ligand unbinds with greater amplitude in the 3G5 

mutation. In the 4E5 mutant (Figure 3.5), the mutation from Ile297 to Val 297 also 

reduces one methyl group from the sidechain. The loss of the methyl group weakens the 

direct interaction between the sidechain and the ligand. This results in a delocalization of 

the α4 helix making it shift towards the α5 helix, which closes up the binding pocket. In 

this way, the ligand is pushed outwards by the α4 helix forcing the ligand to unbind. 

Overall, the two major reasons for the weaker affinity in the mutants are loss of 

hydrophobic interaction and delocalization of the α4 helix. 

3.3.3 The Shallow Binding Site 

The ligand binds to the shallow binding site in the conformations found in the first round 

of docking (Figure 3.6). The ligand is in contact with H292, I297, F298, K315, W316, 

E415 and W417, but no significant hydrophobic interaction or hydrogen bond was 

observed. The ligand is unable to bind to the deep binding site because the deep binding 

pocket is closed in the apo-form, which is where the accelerated MD starts.  
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Figure 3.6. The shallow MB-10 binding site. It is on the surface of the deep MB-10 

binding. 
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0 ns to 20 ns F82 F112 F136 F138 

WT -6.68(3.75) -5.44(3.49) -0.78(3.72) -7.96(3.49) 

3H1 -3.92(4.11) -4.81(3.71) -2.24(3.88) -3.86(5.18) 

4E5 -7.95(3.53) -4.75(3.55) -0.22(4.40) -7.74(4.51) 

3B7 -6.15(3.69) -9.18(3.36) -8.23(4.59) -5.09(4.24) 

3G5 -4.48(3.39) -4.10(3.75) -7.05(4.98) -5.76(3.93) 

10 ns to 20 ns F82 F112 F136 F138 

WT -8.07(0.04) -5.49(3.24) -0.20(3.56) -9.05(3.01) 

3H1 -5.98(3.71) -4.04(3.72) -3.10(2.89) -6.97(4.58) 

4E5 -9.32(2.94) -4.90(3.39) -1.99(3.83) -9.22(3.79) 

3B7 -6.99(3.80) -9.58(3.18) -10.91(3.85) -5.32(3.27) 

3G5 -4.96(3.15) -2.95(3.63) -9.29(4.34) -7.72(3.07) 

Table 3.2. The MMPB/SA results of the simulations starting from the shallow binding 

site. Frame 82, 112, 136 and 138 in the accelerated MD were used in the first round 

docking, and the lowest energy conformations were used for conventional MD 

simulation. MMPB/SA calculations were done on the corresponding trajectories. The 

units are kcal/mol, and the standard deviations are indicated in the parenthesis. 

The MMPB/SA results from the first round of conventional MD simulation are listed in 

Table 3.2. In general, by looking at the total 20 ns and the last 10 ns of the MMPB/SA 

results, the ligand adjusts to a better binding pose and forms stronger interaction with the 

proteins in the last 10 ns simulation. However the relative binding affinities in the 

wildtype and four mutants remain the same in the first and last 10 ns. Looking at the 

relative binding affinities of the four initial conformations, no meaningful trend could be 

observed. 4E5 and 3B7 adopt a better binding pose and stronger affinities than the 

wildtype in most cases, while Frame 137 led to trivial binding of the ligand to the 

wildtype. These counter experimental results indicated that the shallow binding pose is 

not the final bound state of the MB-10.  
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Despite the failure in finding the correct bound state conformation, the first round 

docking and MD conformation search opens the way for the second round docking. In the 

wildtype conventional MD simulation, the ligand induces the opening of the deep binding 

pocket, which led to the discovery of the deep binding pose.  

However this does not imply that the shallow binding pose is the entrance to the deep 

binding site. First the ligand adopts a binding pose in which it is up-side-down oriented as 

in the deep binding pose. Second, entrance from the shallow binding site requires a 

significant conformational shift; the α4 helix must move away from α5 helix. Third, from 

the discussion about deep binding pose in the mutants, it is implied that the ligand 

unbinds from the open space between α4 helix, α3 helix and β1 strand. Therefore the 

ligand is likely to enter the binding pocket from the opposite direction rather than the 

shallow binding site. 

3.3.4 Investigation of Deeper Binding 

To eliminate the possibility of other binding pockets, Frame 3919 and 4639 were selected 

from the second round wildtype conventional MD simulation. The ligand in the 

simulation was removed and flexible sidechain re-docking of MB-10 was performed on 

these two conformations. No deeper binding pose was obtained in both initial 

conformations. This is because the internal space of the TIM44 between the four β-

strands, α4 helix and α5 helix is filled with the protein sidechains and it is impossible to 

open up that space without deforming the protein. For this reason, it is safe to conclude 

that near the deep binding site, no other possible deeper binding pocket exists.  
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3.4 Conclusions 

In this study, we used docking and MD simulation to find the binding site of MB-10 in 

the wildtype TIM44 and explained the selective resistance of the mutants. We concluded 

that the deep binding site is the correct MB-10 binding site because 1) the mutation study 

suggested that the MB-10 binding site is near the α4 helix, 2) the deep binding site is the 

deepest binding site that can be located near α4 helix, 3) the MMPB/SA results explain 

the experimental observed selectivity of MB-10 in the wildtype TIM44, and 4) the 

structural analysis based on MD simulations explains the resistances in the mutants.  
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Chapter 4 Accurate Solvent Entropy Estimation: Beyond the Implicit Solvent 

Model 

4.1 Introduction 

Evaluating free energy accurately is a critical component in fundamental studies and 

other applications. Studies such binding affinity, crystal morphology prediction and drug 

discovery relies on the theoretical guidance of the free energy. Enthalpy, which is an 

important contribution to free energy, can be evaluated through potential energy 

calculations. On the other hand, entropy has many intrinsic difficulties in its evaluation. It 

requires more thorough sampling and proper weighting of the states for population 

evaluation. Also, from a fundamental point of view, it is challenging to define the distinct 

states.  

Various methods 1-3 was developed to evaluate the entropy of solutes in an implicit 

solvent model. These implicit solvent models (Poisson Boltzmann 4 model and 

generalized Born 5 model) calculate the solvation energy which includes the solvent 

enthalpy change and solvent entropy change, with reasonable accuracy especially for 

small and neutral solutes. However this method is unable to separate the solvent entropy 

from enthalpy, capture the solvation shell properties and correctly describe the solvation 

of highly charged species. To overcome these shortcomings, other methods can be 

applied to simulations using an explicit solvent model. Free energy perturbation 6 and 

thermodynamic integration 7 can calculate the change in entropy. This requires finite 

movement of the system from one state to another and intensive sampling of the states 
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along the transition paths. Umbrella sampling 8, which is similar to the two 

aforementioned methods, enforces external restraints on the system along a certain 

transition pathway. It aggressively samples different states including rare populations, 

and reproduces an unbiased free energy profile after removing the restraints from the 

biased populations. These methods are computationally expensive and temporally 

inefficient. Therefore, efficient solvent entropy calculation method based on explicit 

water molecules is desirable. 

The pair correlation function (PCF) based method 9, developed by Martin Karplus and 

Themis Lazaridis is among the many methods developed in the past twenty years. The 

original method focuses on water molecules and decouples the six dimension PCF into 

low dimensional functions and thus calculates the entropy of the water. Its descendants, 

Inhomogeneous Fluid Solvation Theory (IFST) 10, 11 and Grid Inhomogeneous Solvation 

Theory (GIST) 12 extend its capacity to solutions with solutes and carefully treat the 

correlation between solutes and solvent molecules. These methods are coupled with 

WaterMap 13, 14 in later applications 15. The two phase theory (2PT) approaches the 

entropy of solvent in a different way, in which the velocity correlation function is used to 

calculate the density of states and the partition function of the solvent. Due to the 

generalizability to other solvents other than water and its computational efficiency, it has 

been widely applied in solvent entropy calculation in many fields. The cell method 16, 17, a 

harmonic approximation approach, treats water molecules as if they are confined by 

forces from its neighbors and vibrates in a local crystal cell. The advantages of this 
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method are that it can focus on individual water molecules and the implementation is 

straightforward.  

This chapter describes the PCF based methods (Section 4.2), the 2PT method (Section 

4.3), and a benchmark evaluation of 2PT method on bulk water (Section 4.4). Evaluations 

and practical comments are given on these theories. Due to the advantages of the cell 

method, it is utilized in later studies and will be discussed in Chapter 5. 

4.2 Entropy from Pair Correlation Function 

4.2.1 Entropy of Fluids 

This method was first discussed by Lazaridis et al 9 in 1996. It starts from a fundamental 

description of the structure of the fluids which makes use of the N-body correlation 

function 𝑔(𝑁) 18 given by, 

 𝑔(𝑁)(𝑟𝑁, 𝜔𝑁) eq.  4.1 

   

where the 𝑟 denotes the distance and 𝜔 denotes the orientation.  

Because this function is impossible to be evaluated completely due to its high dimension, 

its lower order representations, namely, 𝑔(2), 𝑔(3) or several higher order correlation 

functions, are used to describe the structure of the fluids. Among them, the 𝑔(2), which is 

the pair correlation function (PCF), is the most important one because it captures the 

majority of the information in the fluids. 

The entropy 𝑆 of a liquid can be expressed as integrals over the multiparticle correlation 

functions in the equation below, 
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𝑆

= 𝑆𝑖𝑑 −
1

2
𝑘

𝜌

Ω2
∫[𝑔(2)𝑙𝑛𝑔(2) − 𝑔(2) + 1]𝑑𝑟𝑑𝜔2

−
1

3!
𝑘

𝜌2

Ω3
∫[𝑔(3)𝑙𝑛𝑔(3) − 𝑔(3) + +3𝑔(2)𝑔(2) − 3𝑔(2)1]𝑑𝑟𝑑𝜔2 − ⋯ 

eq.  4.2 

  

where 𝑆𝑖𝑑 is the entropy of ideal gas, 𝑘 is the Boltzmann constant, 𝜌 is the number 

density and Ω is the integral over the Euler angles of one molecule. The difference 

between the ideal gas entropy and the fluid entropy is the excess entropy of the fluid. 

Due to efficiency and convergence, the excess entropy is only evaluated at the PCF level, 

which truncates the expression of entropy at the second term. By limiting the number of 

particles to two, the coordinates of the two particles can be simplified to the distance 

between these two particles. Because the radial distribution of a liquid is straightforward 

to evaluate, the PCF is separated into two contributions, 

 𝑔(2)(𝑟, 𝜔2) = 𝑔𝑟(𝑟)𝑔(𝜔2|𝑟) eq.  4.3 

   

where 𝑔𝑟(𝑟) is the radial distribution function and 𝑔(𝜔2|𝑟) is the orientational 

correlation function at each distance. 

With these concerns, the entropy of the liquid can be decomposed into two contributions: 

translation and orientation, 

 
𝑆𝑡𝑟𝑎𝑛𝑠 = −

1

2
𝑘𝜌 ∫[𝑔𝑟(𝑟)𝑙𝑛𝑔𝑟(𝑟) − 𝑔𝑟(𝑟) + 1]𝑑𝑟 eq.  4.4 

 

 
𝑆𝑜𝑟 = 𝜌 ∫ 𝑔𝑟(𝑟)𝑆𝑜𝑟(𝑟)𝑑𝑟 eq.  4.5 

   

where 



 126 

 
𝑆𝑜𝑟(𝑟) = −

1

2
𝑘

1

Ω2
∫ 𝑔(𝜔2|𝑟)𝑙𝑛𝑔(𝜔2|𝑟)𝑑𝜔2 eq.  4.6 

   

The theory of this method is straightforward but the practical application of this method 

experiences several obstacles. First, the 𝑔(𝜔2|𝑟), which is a fivefold function in the case 

of water PCF, is still too expensive in terms of memory and requires exponentially 

increasing number of sampling for convergence. To address this issue, one or two 

dimensional marginals of the 𝑔(𝜔2|𝑟) are calculated instead of the full fivefold function. 

Second, the calculation of the 𝑔(𝜔2|𝑟) requires the calculation of relative orientations of 

each pair of water molecules in the water box, and the construction of a corresponding 

histogram at each water-water distance. The expensive computational cost hinders the 

application of this method. 

4.2.2 Inhomogeneous Fluid Solvation Theory 

Inhomogeneous fluid solvation theory (IFST) 10, 11 was proposed two years later since the 

original work 9 by including the interaction between solvent and solutes. Similar to the 

original work, IFST treats the excess entropy of the solvent using correlation functions. 

The excess entropy of a solvent is given by, 

 𝑆𝑆
𝑒𝑥 = 𝑆𝑉𝐸 + 𝑆𝑠𝑤 + ∆𝑆𝑤𝑤

𝑐𝑜𝑟𝑟 + ∆𝑆𝑤𝑤
𝑙𝑖𝑏  eq.  4.7 

   

where the 𝑆𝑉𝐸 is the volume entropy originating from the volume excluded by the solute, 

𝑆𝑠𝑤 is the entropy from the correlation between solute and solvent, ∆𝑆𝑤𝑤
𝑐𝑜𝑟𝑟 is the entropy 

of the solvent reorganization from orientational correlations, and ∆𝑆𝑤𝑤
𝑙𝑖𝑏  is the solvent 

reorganization entropy from radial correlations. The four terms are given by, 
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𝑆𝑉𝐸 = −𝑘(1 − 𝜌𝑤
° 𝑣𝑠

∞) eq.  4.8 

 

𝑆𝑠𝑤 = −𝑘𝜌𝑤
° ∫[𝐺𝑠𝑤𝑙𝑛𝐺𝑠𝑤 − 𝐺𝑠𝑤 + 1] 𝑑𝑟 eq.  4.9 

 

∆𝑆𝑤𝑤
𝑐𝑜𝑟𝑟

= −
1

2
𝑘𝜌𝑤

° 2
∫ 𝐺𝑠𝑤(𝑟)[𝐺𝑠𝑤(𝑟′){𝑔𝑤𝑤

𝑖𝑛ℎ ln 𝑔𝑤𝑤
𝑖𝑛ℎ − 𝑔𝑤𝑤

𝑖𝑛ℎ + 1}

− {𝑔𝑤𝑤
° 𝑙𝑛𝑔𝑤𝑤

° − 𝑔𝑤𝑤
° + 1}]𝑑𝑟𝑑𝑟′ 

eq.  4.10 

 

∆𝑆𝑤𝑤
𝑙𝑖𝑏 = −𝜌𝑤

° 2
𝜅𝑘𝑇

𝜕

𝜕𝜌
[−

1

2
𝑘𝜌𝑤 ∫{𝑔𝑤𝑤

° 𝑙𝑛𝑔𝑤𝑤
° − 𝑔𝑤𝑤

° + 1}𝑑𝑟] eq.  4.11 

   

where 𝜌𝑤
°  is the density of pure solvent, 𝐺𝑠𝑤 is the solute-solvent PCF, 𝑔𝑤𝑤

°  is the pure 

solvent PCF, 𝑔𝑤𝑤
𝑖𝑛ℎ is the inhomogeneous solvent-solvent PCF, 𝜅 is the isothermal 

compressibility, 𝑣𝑠
∞ is the molar volume of the solute and k is the Boltzmann constant.  

The IFST theory was designed to capture the interaction between solvent and solute and 

the change in the solvent induced by the presence of the solute. Therefore it has been 

widely applied in the study of solvation 15, 19, binding site water molecules 13, 20, 21, 

hydrophobicity 22, 23, and water networks 24.  

Several drawbacks were witnessed from the various applications of the IFST method. 

The binding free energy of water calculated by IFST is not directly comparable to 

absolute binding free energy determined by other methods 25. The IFST does not take into 

consideration the relaxation of solute molecules after removal of a water molecule 26. 
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Lastly this theory relies on readily equilibrated MD simulation, which is not always 

guaranteed in practice 27. 

A Grid Inhomogeneous Solvation Theory (GIST) 12 was developed by replacing the 

integrals over the space in the IFST by discrete sums over the voxels in the three-

dimensional grid. 

4.3 Two-Phase Thermodynamics Model 

The two phase thermodynamic model was developed by Lin et al 28 in 2003, aiming at 

efficient solvent entropy calculation. This theory decomposes the liquid phase, which is 

abstruse to describe with pure diffusive model or harmonic approximation, into the solid 

phase and the gas phase. Since the solid phase is non-diffusive and has a zero density of 

state at zero frequency, a harmonic oscillator around the local lattice can describe the 

solid phase, which resembles the crystal structure of the liquid. On the other hand, the gas 

phase can be described by had sphere motion and it contribute to all zero frequency 

density of state. By combining the results from the two phases, the original liquid phase 

can be restored.  

The calculation starts from the determination of the velocity correlation function 𝐶(𝜏), 

 
𝐶(𝜏) = lim

𝑇→∞

1

2𝜏
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡

𝜏

−𝜏

 eq.  4.12 

   

where the 𝑥(𝑡) is the velocity of an atom at time 𝑡. 
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Then the velocity correlation is Fourier transformed to obtain the density of state, 𝑆(𝑣), 

based on the Wiener-Khintchine theorem 29, 

 
𝑆(𝑣) =

2

𝑘𝑇
lim
𝜏→∞

∫ 𝐶(𝑡)𝑒−𝑖2𝜋𝑣𝑡𝑑𝑡
𝜏

−𝜏

 eq.  4.13 

   

where 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 𝑣 is the frequency. Thus the 

total density of state, or 𝑆(𝑣), is obtained and the next step is to decompose it into the gas 

phase contribution 𝑆𝐺𝑎𝑠(𝑣) and the solid phase contribution 𝑆𝑆𝑜𝑙𝑖𝑑(𝑣). 

Because the solid phase makes no contribution to the zero frequency density of state 𝑆(0) 

which means the diffusion, the 𝑆(0) gives the bound condition for the 𝑆𝐺𝑎𝑠(𝑣) and 

𝑆𝐺𝑎𝑠(0) = 𝑆(𝑣). Considering the velocity correlation function of hard sphere gas decays 

exponentially 29, the gas phase density of state can be derived and given by, 

 
𝑆𝑔𝑎𝑠(𝑣) =

𝑆(0)

1 + [
𝜋𝑠0𝑣
6𝑓𝑁

]
2 

eq.  4.14 

   

where 𝑁 is the number of atoms, and 𝑓 is the fluidicity factor which can be resolved from 

the molecular dynamics simulation. From the 𝑆𝑔𝑎𝑠(𝑣), the 𝑆𝑠𝑜𝑙𝑖𝑑(𝑣) can also be solved. 

The weighting functions 28, 30 for the entropy from solid component is, 

 
𝑊𝑠𝑜𝑙𝑖𝑑

𝑆 (𝑣) =
𝛽ℎ𝑣

𝑒𝑥𝑝(𝛽ℎ𝑣) − 1
− 𝑙𝑛[1 − 𝑒𝑥𝑝(−𝛽ℎ𝑣)] eq.  4.15 

   

and the weighting functions for the entropy from gas component is, 
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𝑊𝑔𝑎𝑠

𝑆 (𝑣) =
1

3

𝑆𝑔𝑎𝑠(𝑣)

𝑘
 eq.  4.16 

   

Finally, the entropy is given by, 

 
𝑆 = 𝑘𝑙𝑛𝑄 + 𝛽−1 (

𝜕𝑙𝑛𝑄

𝜕𝑇
)

𝑁,𝑉
= 𝑘 ∫ 𝑑𝑣𝑆(𝑣)𝑊𝑆(𝑣)

∞

0

 eq.  4.17 

   

By summing up the entropies from the gas and solid contributions, the total solvent 

entropy can be obtained.  

The 2PT method requires only roughly 20 ps for converged entropy evaluation 28, 31, 

which is more efficient than other similar methods. Due to this reason, it has been widely 

applied in studies including solvent molar entropy 32, water molecules in nanotubes 33, 

solute solvation free energy 34, solubility 35, 36, solvation of DNA 37, sugar interaction with 

lipid 38, entropy of solvent mixture 39 and phase transition of alloys 40. 

However, there are several downsides to this method. The converged molar entropy result 

from 2PT method has a thermal fluctuation of roughly 0.2 kcal/mol. In a typical small 

molecule simulation with, for example, 500 water molecules, the entropy uncertainty in 

the entire water box is 100 kcal, which is 100 kcal/mol for one molar solute. In the 

presence of solute this uncertainty is overwhelming to the solvent entropy change. To 

successfully apply this method, the solute-solvent ratio needs to be high enough so that 

the solvent entropy change due to the presence of the solute is several folds higher than 

the thermal fluctuation. Another technical issue of this method is that it can only treat the 

entire water box as a whole part and is unable to calculate the water entropy at specific 

location, for example, at the binding site of a protein. This stems from the utilization of 
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the velocity correlation function, which makes it impossible to focus on a region instead 

of a diffusive water molecule. 

4.4 Application of 2PT to Bulk Water 

4.4.1 Method 

Eight cubic empty water boxes were built with tleap in AMBER 12 41, with roughly 1k, 

2k, 3k, 4k, 5k, 6k, 7k and 8k TIP3P 30 water molecules respectively. Each water box was 

equilibrated at 30K, 60K, 90K, 120K, 150K, 180K, 210K, 240K, 250K and then 298K 

for 50 ps at constant volume. Then each water box was equilibrated at 298K at constant 

pressure for 6 ns and 12 ns respectively in two sets of tests. In the production run, MD 

simulation was performed for each water box at 298K at constant volume for 20 ps with 

the coordinates and velocities saved every 1 fs. The temperature of the simulations was 

maintained by Langevin thermostat 42, 43. The rigid conformations of TIP3P molecules 

were retained by SHAKE algorithm 44. All MD simulations were performed with 

AMBER 12 package. The trajectories were analyzed by 2PT tool 31 to calculate the molar 

water entropy.  

4.4.2 Results and Discussion 

The molar water entropies calculated by 2PT method are shown in Figure 4.1 for the total 

16 trajectories (8 for 6 ns equilibrium and 8 for 12 ns equilibrium). Overall, the 

calculated molar water entropy increases with an increase in the number of water 

molecules. Also it can be either smaller or greater than the experimental value (69.95 

J/mol/K), depending on the number of water molecules in the water box. Two 
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observations can be made by comparing the results from 6 ns equilibrium and 12 ns 

equilibrium. First, the length of equilibrium results in the fluctuations in the calculated 

molar water entropy. Second, the increasing trend becomes less significant in the 12 ns 

equilibrium results. These observations may suggest that the dependence of the calculated 

molar entropy on the number of water molecules can be alleviated by performing the 

equilibrium for longer period.  
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Figure 4.1. The calculated molar water entropy from 2PT plotted against number of water 

molecules in the water box. The black rectangle indicates the results from 6 ns 

equilibration, and red dots for the 12 ns equilibration. The blue triangle marks the 

experimental molar water entropy (69.95 J/mol/K). The second order fit curve for the 

2PT results is only shown for the data from 6 ns equilibrium. 
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Figure 4.2. The molar water entropy (6 ns) from each trajectory plotted against the H-O-

H angle RMSD in each trajectory. Noticeably, the correlation between these two 

quantities is 0.9885. 

To further examine the origin of such behavior, the fluctuation in the H-O-H angles of the 

TIP3P water molecules was investigated and the results were plotted in Figure 4.2. In the 

12 ns equilibrium results, the H-O-H angle RMSD in each of the 8 trajectories correlates 

with the calculated molar water entropy in a linear fashion. This means the internal 

vibration of the water molecules contributes to the molar entropy increase. TIP3P is a 

rigid body water model, in which the H-O-H angle is supposed to be fixed in the MD 

simulation by the SHAKE algorithm. However the RMSD result of H-O-H angle change 

indicates that the internal vibration of the water molecules is greater with increased 

number of water molecules in the water box. Thus the SHAKE algorithm does not 

constrain the vibration of every single water molecule but restrains it overall. To 
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conclude, the extra internal vibration is captured by the velocity correlation function, and 

results in the increase of molar water entropy. 

Number of 

Water 

Calc. Molar 

Entropy (J/mol/K) 

Deviation from 

Expt. Value 

(J/mol/K) 

Deviation of 

1000 Water 

(kcal/mol) 

999 69.09 -0.86 -61.50 

1998 71.26 1.31 93.62 

3000 72.09 2.14 152.66 

4003 72.54 2.59 184.32 

5001 73.20 3.25 231.66 

6003 73.61 3.66 260.67 

7003 73.89 3.94 280.73 

7997 74.28 4.33 308.26 

Table 4.1. Calculated molar entropies from 12 ns equilibrium results. The deviation is 

from the experimental data (69.95 J/mol/K). The deviation of 1000 water is calculated by 

multiplying the previous column by 1000.  

In addition to the dependence of system size, the fluctuation in the calculation is 

overwhelming. The calculation is done on empty water boxes for benchmark. However 

typical calculations are done in a water box with solutes, where the entropy change of the 

entire water box is equivalent to the molar solvent entropy change of the solute molecule. 

This means the fluctuation of the change in solvent entropy is induced by the presence of 

the solute. Mathematically, this is equal to the fluctuation of the calculated molar entropy 

multiplied by the number of water molecules in that water box. With the 12 ns 

equilibrium results, the deviations of each trajectory from experimental molar entropy are 

multiplied by the number of molecules (1000 for fair comparison) (Table 4.1). From the 

calculation, it is clear that the deviation from experimental molar entropy is magnified by 

the number of water molecules and is greater than the amplitude of entropy change of 
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non-covalent binding. Suppose this method was applied to a water box with a small 

ligand, which only contributed a little portion to the entire system, the entropy change 

induced by the solute would be overwhelmed by the thermal fluctuation of the solvent 

and results in no meaningful calculated value. 

4.4.3 Summaries 

2PT method is capable of capturing the molar entropy of the bulk water. However the 

SHAKE algorithm implemented in AMBER does not constrain the internal fluctuation of 

the rigid TIP3P water molecule completely and this results in the system size dependence 

of the calculated molar entropy from 2PT method. Furthermore, 2PT method is more 

suitable for application in systems with high portion of water molecule that is affected by 

the solute rather than dilute systems. Therefore, this method is not further utilized in later 

applications.  

4.5 Conclusions 

The original PCF method only treats the bulk water but not solvent. Therefore it is not a 

suitable method for solvent entropy calculation. Its descendants, IFST and GIST, have 

several aforementioned drawbacks in Section 4.2, and due to the difficulty in 

implementation, they are not further utilized in other applications. The 2PT method gave 

unsatisfying results used together with the AMBER package (Section 4.4). Although a 

public version of the method is ready for use, it is not further applied in any studies due 

to its limitations.  
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Considering the feature of the cell method which can focus on individual water 

molecules, it allows for entropy calculation of water molecules of great importance. Since 

implementation is straightforward, this method is further studied and utilized in later 

works. This method is discussed in detail and applied to host-guest systems in Chapter 5. 
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Chapter 5 Calculation of Beta-Cyclodextrin and Guest Binding Enthalpy and 

Entropy: From Thermodynamics to Kinetics  

5.1 Introduction 

The study of thermodynamics and kinetics is important in fundamental sciences; 

thermodynamics focuses on enthalpy, entropy and free energy of a specific state or their 

changes between two states marking the ends of a process while the kinetics studies 

detailed transitions of a process. These properties are under the government of several 

factors, the hydrophobic and hydrophilic interactions, the internal flexibility changes, and 

the effect from the solvent molecules which is equally important as the previous two but 

less well understood. In the field of drug discovery, binding affinity has been the most 

pivotal and dominant guidance because the drug has to win the competition with the 

natural substrate for the occupancy of the target protein binding site. This was the case 

until the residence time 1, 2 was proposed in the last decade due to stronger correlation 

between dissociation rate and drug efficacy. A structure-kinetics study on CDK8 3 

revealed that some key interactions between the compounds and the protein binding 

pocket determines the binding affinity and also the residence time but stronger affinity 

does not necessarily leads to visible residence time. An investigation of hydrogen bond 

along the binding pathway of xk263 and ritonavir into HIVp showed how hydrogen 

bonding and desolvation process may effects the association rate 4. Such related studies 

asserted the importance of not only thermodynamics but also kinetics. 
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Enthalpy, which is one major contribution to free energy, is more straightforward to 

evaluate by potential energy calculation from an MD trajectory. On the other hand, 

accurate entropy evaluation remains as an open task. A variety of methods, namely 

perturbation theory 5, thermodynamic integration 6-9, umbrella sampling 10, and partition 

function from density of states 11, require intensive sampling and treat the free energy as 

an entity. Normal mode based configurational entropy calculation 12-14, successfully 

tackled the configurational entropy of the solute with less expensive computational cost 

compared to the methods mentioned above, but solvent entropy, in most cases, the 

entropy of water, is obscure to approach, due to the intrinsic diffusive property and 

intractable number of conformations of the solvent. Generalized Born (GB) model 15 and 

solution to Poisson Boltzmann equation 16-18 give implicit solvation level insights into the 

free energy of solvent, but they lack an anisotropic and local description of the solvation 

shell and combine the enthalpy and entropy into the free energy term.  

Because of the lack of fundamental understanding of the behavior of water molecule, 

many efforts have been devoted to this topic 19, 20. Hydrophobicity/hydrophilicity and 

dewetting process 21, 22 were used to explain the role of water molecules from an overall 

perspective of view while individual water molecules are sometime determinant in 

thermodynamics and kinetics. Solute interaction with the water molecules and correlation 

change between the water molecules directly determine the desolvation energy. It also 

influences the reaction rates by imposing a relaxation time of desolvation or explicit 

bridge water hydrogen bonding structures which slows down the chemical process. 

Theories have been proposed aiming at this topic. From distribution correlation function 
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method 23, to inhomogeneous solvation theory (IST), 24, 25, grid inhomogeneous solvation 

theory (GIST) 26, two-phase thermodynamics model (2PT) 27, 28, and cell theory 29, 30, 

many attempts have shaded lights on this issue. The original distribution correlation 

function method was not computationally efficient. The followers including IST and 

GIST required a frozen conformation of the solutes for entropy calculation purpose. The 

2PT method works with flexible solutes, but it treats the entropy of the entire water box 

and is unable to look at specific water molecules for local entropy changes. The cell 

theory, on the other hand, treats each water molecule individually so that it is possible to 

look at local water entropy with flexible solute conformations. 

The study of kinetics, however, is much behind thermodynamics. It is an intractable task 

to experimentally determine the pathway of a binding process with atomistic details so 

therefore computational approaches became crucial in revealing the binding pathways 

and providing the corresponding thermal profiles. Molecular dynamics (MD), which 

evolves the system with time under the government of Newton’s law, is a suitable 

method to investigate the binding events. Although the contemporary computational 

power is limited at millisecond level 31-34 and can rarely sample the full 

association/dissociation events, it still provides insights into the binding events 35-39. 

Regarding complex protein-ligand systems, Markov State model (MSM) 40 and transition 

path sampling 41 are methods which successfully unraveled important kinetic information 

from the massive conformational space.  
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β-Cyclodextrin, a 7-membered cyclic oligosaccharide compound, is a well-studied host 

molecule in the family of cyclodextrins. It has a hydrophilic outer surface due to the 

presents of hydroxyl groups while its inner surface is hydrophobic. This property grants 

many applications to β-Cyclodextrin and its derivatives in fields, such as drug delivery 42-

44, phase transfer catalyst 45-48, food industry 49-52 and recently biomimetic catalyst 53. In 

addition, the cavity enclosed by the glucopyranose units resembles the binding sites of 

proteins, which makes this small molecule a good model to study binding process of 

proteins. For those reasons, an immense reservoir of experimental thermodynamics and 

kinetics data is available for β-Cyclodextrin complexes 7, 54-68. The relatively small size, 

which consists of only 147 atoms, ensures the computational efficiency of investigation 

of the complexation of β-Cyclodextrin using molecular modeling. Due to this reason, 

many efforts have been spent on various aspects of this specific complex family, 

including dynamics 69-76, binding free energy 77-83 and accurate enthalpy evaluation 84. 

However these works focus on the structural-thermal relationships but not on kinetics. 

From the kinetics data it is obvious that for most small ligand-β-Cyclodextrin complexes 

the association (kon) and dissociation (koff) rates predict an average expected residence 

time on the scale of several hundred nano seconds, making it feasible to sample the full 

association and dissociation pathway using graphics processor unit (GPU) accelerated 

MD simulation. 

In this work, we present a study of seven choice β-Cyclodextrin complexes on the 

thermodynamics profiles, association/dissociation rates, and binding pathways. GPU 

based MD is employed to sample the behaviors of complex, free β-Cyclodextrin, free 
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ligand, and empty water box in microsecond-level simulations. Post analysis is conducted 

on the total binding enthalpy, solute entropy, solvent entropy, rate constants, binding 

pathways. Enthalpy-entropy compensation and thermal-kinetic relationship are discussed. 

5.2 Method 

5.2.1 System Selection and Parameterization 

In this work, the ligands for β-cyclodextrin complex were selected under these criteria, 1) 

availability of experimental data of binding affinity, binding enthalpy, binding entropy, 

association rate and dissociation rate constants, 2) average bound periods and unbound 

periods predicted from the association rate and dissociation rate constants are in 

reasonable time scale, 3) different order of the association rate and dissociation rate 

constants for kinetics comparison, 4) entropy driven and enthalpy driven binding 

thermodynamics. Based on these criteria, five ligands, namely 1-butanol, t-butanol, 1-

propanol, methyl butyrate, aspirin, 1-naphthylethanol and 2-naphthylethanol, were 

selected for MD simulations.  

The ligand structures were manually created with Vega ZZ 85. β-cyclodextrin structure 

was obtained from Cambridge Crystal Data Center (PDB ID: WEWTOJ). GAFF force 

field 86 was used to parameterize β-cyclodextrin and the ligands. The partial charge of β-

cyclodextrin was taken from the reference 77 and the partial charges of the ligands are 

modeled by 6-31+g(d,p)/B3LYP ChelpG calculation with Gaussian package 87 following 

an optimization with the same settings. Initial conformations of the complexes are 

obtained by manually locating the ligand in the center of the cavity of β-cyclodextrin. 
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A q4md-CD force field 88 was also used to parameterize β-cyclodextrin in a separate 

setting up. All corresponding calculations were performed in the same way as the set in 

GAFF. The corresponding results are shown in Section 5.3.3. 

5.2.2 Molecular Dynamics Simulation 

 

For each of the complex system four MD run series were performed, i.e. on the complex, 

the free β-cyclodextrin, the free ligand and an empty water box 89. For each run, the 

system was first solvated with exactly 1737 water molecules (roughly 12Å away from the 

solute) and then optimized to eliminate possible clashes. Afterwards the water molecules 

were equilibrated at 298 K in NPT (Isothermal-isobaric ensemble) for 1 ns. This step was 

followed by an equilibration of entire system from 200K to 298K in NPT for 150 ps. 

Then a production run was performed at 298K in NPT for at least 2.5 μs for complexes 

and 1.0 μs for runs of single solute. All MD simulations were performed using Amber 14 

GPU version 86, 90. The temperature was maintained by Langevin thermostat 91, 92. 

Trajectories were visualized by VMD 93. The corresponding bound state conformations in 

the trajectory of the complexes were collected for the thermodynamics calculation. 

5.2.3 Enthalpy Calculation 

 

 ∆H =< E >Complex+< E >Water−< E >β−cyclodextrin −< E >Ligand eq.  5.1 

   

The binding enthalpy was calculated by the formula above 89, where <E> is the average 

potential energy of all molecules in the corresponding trajectory. Here the enthalpy is 

replaced by average potential energy because the change in thermal energy, kinetic 
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energy and PV term are negligible in the above described conditions. The average 

potential energy calculation was done by considering the closet periodic image of 

possible atom pairs to capture the periodicity of the water box. For energetic 

decomposition, potential energy of the solutes, water, solute-solute interactions, solute-

water interactions were also calculated for the trajectories. The four trajectories of each 

complex were resaved every 10 ps for potential energy evaluation. The standard 

deviation of mean of the enthalpy was evaluated by using block analysis 94 with 2 ns in a 

block. 

5.2.4 Solute Entropy Calculation 

 

The solute entropy change was decomposed into conformational/vibrational and 

translational/rotational contributions. The conformational/vibrational term was calculated 

by using S = − ∫ P(𝐝)ln(P(𝐝)), where P(d) is the probability distribution of 

conformations defined by key dihedrals in the species. 14 dihedrals defined in Figure 5.1 

were selected for β-cyclodextrin while every dihedral except methyl rotations were 

selected for the ligands. The selected dihedrals were analyzed by fitting Gaussian curves 

to the corresponding population histogram from MD simulation samplings. The averages 

(μ) and the deviations (3σ) were used to define conformations of the corresponding 

dihedral. Different combinations of dihedral conformations were defined as distinct 

conformations of the species. The entropy change was then evaluated by using the 

equation below. 

 ∆SSolute = SComplex − Sβ−cyclodextrin − SLigand eq.  5.2 
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The translational/rotational entropy of the ligand relative to the host was calculated by 

aligning the trajectories of the complexes to β-cyclodextrin, and evaluating 

∫ sin (𝜃)𝑑𝑥𝑑𝑦𝑑𝑧𝑑∅𝑑𝜑𝑑𝜃 numerically from the MD trajectory. The bin size of the 

Cartesian position of the ligand was 2Å and the bin size of the rotational position of the 

ligand was 30°. 

 

Figure 5.1. The dihedral used to define the macrocyclic ring conformationa of β-

cyclodextrin (Blue). The β-cyclodextrin is a macrocyclic compound consisting of 7 

glucopyranose units. The glucopyranose unit is more rigid than the single bonds linking 

them so the 14 dihedral rotations were selected to characterize the macrocyclic ring 

conformation.  

5.2.5 Solvent entropy Calculation 

The solvent entropy was calculated based on the cell method 29, 30, 95. It treats the water 

molecules in the water box as if they are vibrating in a local cell and confined by the 

forces from surrounding water molecules and solutes. It calculates the vibrational entropy 

from such forces and torques on the three principal axes of the target water molecule. On 
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the other hand, it treats the conformational entropy of water based on the Pauling model 

of ice water 96. Here we proposed a modified version of the conformational entropy based 

on the previous work 30, 95. 

 

Figure 5.2. The definition of a loose hydrogen bond. It is based on normal hydrogen bond 

definition except that the complementary angle of X-H…Y is 80° and the distance 

between H and Y is 2.65Å. 

First a loose hydrogen bond was defined as shown in Figure 5.2, where the 

complementary angle of X-H-Y is less than 80˚ and the H-Y distance is less than 2.65 Å. 

The purpose of the loose definition is to capture the forming and breaking hydrogen 

bonds due to thermal fluctuation. Based on that, the conformational entropy was defined 

according to Figure 5.3. The water molecules around the target water molecule are 

classified into three groups, 1) acceptor waters (AW), which are the loose hydrogen bond 

acceptors from the target water, 2) donor waters (DW), which are the loose hydrogen 

bond donors to the target water, and 3) surrounding waters (SW), whose oxygen atoms 

are within 3.2 Å of the oxygen atom of the target water molecule. Every hydroxyl group 

on the solute was considered as a DW and every oxygen and nitrogen with no hydrogen 

on them was considered as an AW. The number of conformations of the target water is 
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calculated by Eq 5.3. In the first term, the 2 means the two AW sites, regardless of the 

existence of water molecules there. This term can be interpreted as choosing two sites of 

the water molecules around as the acceptor sties. The second term means in the rest of the 

water around to choose # of SW of waters as the SW. The appearance of the last term is 

to compensate the double counting of water molecules around, because, for example, the 

target water molecule is the SW when considering the current SW. For example, when 

there are exactly two AWs and two DWs, which reproduces the Pauling’ model, the 

number of conformation is C4
2 ∙ C2

0 ∙ (
1

2
)

2

= 6 ×
1

4
= 1.5, which is identical to the 

Pauling’s model. When there are two AWs, two DWs and one SW, the number of 

conformation is C5
2 ∙ C3

1 ∙ (
1

2
)

3

= 6 ×
1

4
= 3.75, which means an additional surrounding 

water molecule increases the number of conformations of the target water. Finally the 

conformational entropy of the water is calculated by SConf = RTln(Ω). 

# of conformation Ω =  C2+# of DW+# of SW
2 ∙ C# of DW+# of SW

# of SW ∙ (
1

2
)

# of DW+# of SW

 eq.  5.3 
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Figure 5.3. The conformational entropy definition of water. It is based on the Pauling’s 

model, where the donor waters (DW) and acceptor waters (AW) are defined with the 

loose hydrogen bond definition and any water molecule that is within 3.2 Å from the 

oxygen atom of the target water molecule but cannot form a loose hydrogen bond is 

considered as a surrounding water (SW). 

Technically, a cutoff 50.0 Å was used for force and torque calculation in the vibrational 

term, and periodically repeated atom images within this cutoff were considered. The 

complex and β-cyclodextrin trajectories were aligned against the crystal structure of free 

β-cyclodextrin, and a sub water box which is 20Å ×26Å ×26Å around β-cyclodextrin was 

used for entropy calculation. For ligands trajectories they were aligned against a free 

ligand conformation, and for empty water box case, a sub water box with size 22Å ×22Å 

×22Å was used. The above described entropy calculation was performed on every water 

molecules in the selected sub water box. 

5.2.6 Association (kon) and Dissociation (koff) Rate Calculation 

As mentioned above, the system underwent multiple association and dissociation events 

in the same complex trajectory, and for this reason the association and dissociation rates 
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were computed by the protocol described here. The system is defined as bound when the 

center of mass of the ligand is within 7.5 Å from the center of mass of β-cyclodextrin. 

The bound/unbound state were scanned through the trajectory with the complex, and any 

bound/unbound period that lasted longer than 1.0 ns were considered as an individual 

bound/unbound event. Followed by that, the average bound/unbound time length were 

calculated and plugged into the formula below to compute the kon and koff. The solute 

concentration was directly averaged from the MD trajectory. 

 
kon =

1

unbound time × [solute]
 eq.  5.4 

 
koff =

1

bound time 
 eq.  5.5 

   

5.3 Results and Discussion 

The thermodynamics results from MD simulation reproduce the experimental binding 

free energy (∆G) (Table 5.1) reasonably well except for 1-butanol and t-butanol. The 

error is mainly from the enthalpic term rather than the entropic term. The kinetic results 

from MD simulation generally agree with the experimental data (Table 5.2). The 

calculated association rate constants (kon) reproduce the experimental value, while the 

calculated dissociation rate constants (koff) are systematically greater than the 

experimental values, especially for the stronger binders whose koff are one order greater 

than the experimental value. Because of the koff, the equilibrium constants (K) are 

systematically smaller than the experimental value except 1-naphthylethanol. The results 

of enthalpy, entropy, the driven force in binding and water contributions are discussed in 

Section 5.3.1. The kinetics results are discussed in Section 5.3.2. 
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5.3.1 Thermodynamics 

In the first part of Table 5.3, the enthalpy changes of binding process are decomposed 

into the changes of solute-solute interaction, water-water interaction and solute-water 

interaction. It can be noticed that the stronger binders including aspirin, 1-

naphthylethanol and 2-naphthylethanol have more gains in solute-solute interaction 

energy. This term is further decomposed in later discussion. Besides the solute-solute 

interaction, the stronger binders also have a better water-water interaction gain. This is 

because the stronger binders generally have a larger volume, and in the binding process, 

more water molecules get freed from the capture of β-cyclodextrin and the ligand, and 

reform interaction with other water molecules. However, as a compensation, more solute-

water interaction disappears in the stronger binder cases. As an entity, the desolvation 

energy (solute-water interaction loss and water-water interaction gain) of the stronger 

binders compensates most part of the solute-solute interaction gain and results in a 

relatively weak total enthalpy gain in the binding process. This total enthalpy change 

terms are positive for the weak binders and negative for relatively stronger binders in 

general. This is mainly because for relatively stronger binders, the ligands have direct 

vdW contacts with the host by occupying the entire space in the cavity of β-cyclodextrin, 

while the weak binders are small in size so that they do not form stable vdW interactions 

with the host. Instead the weak ligands tumble with great freedom in the cavity of β-

cyclodextrin.  
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Regarding the solute-solute interaction, it is further decomposed into the changes of host 

enthalpy, guest enthalpy and host-guest interaction (Table 5.3). It is not surprising that 

the ligands have minor conformational changes and result in trivial enthalpy change 

because first the ligands in this study are either small or relatively rigid and second the 

binding cavity of β-cyclodextrin is big enough for the ligands to relax as if they are in 

free environment. On the other hand, the host, β-cyclodextrin, gains enthalpy in the 

conformational rearrangement. This can be explained by the relaxation of β-cyclodextrin 

in the binding process. The host is a flexible molecule and it undergoes certain self-

adjustment in fully solvated free states but this self-adjustment is not fully necessary due 

to the elimination of solvation water by the ligand in the bound state. The stronger 

binders are larger in size and remove more water molecules from the host in the binding 

process, and thus induce more enthalpy gain in the host. Similarly, the host-guest 

interaction gain can also be explained by more non-polar interaction formed by more 

intact surface area between the two molecules.  
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Figure 5.4. The convergence of the trajectories represented by average potential energy 

plotted against the number of frames. 
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Figure 5.5. The plot of average volume and average potential energy against number of 

frames in TIP3P solvent model. After convergence, which takes roughly 4000-5000 

frame, the average volume and average potential show same trend. Both of them 

converge at a higher value, and then drop to a lower value. 
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Figure 5.6. The two binding poses of β-cyclodextrin-1-butanol complex. In Pose 1, the 

ligand stays in the middle of the cavity of β-cyclodextrin and the space between the two 

molecules is too small for any water molecule to sneak into and thus becomes vacuum. 

On the other hand in Pose 2, the ligand sticks to the surface of the β-cyclodextrin and the 

cavity of β-cyclodextrin is closed up by glucopyranose unit flipping. 
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Figure 5.7. The plot of average volume and average potential energy against number of 

frames of β-cyclodextrin-1-butanol complex in TIP4P solvent model. 
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The convergence of the enthalpy calculations are examined by plotting the average 

potential energy against the number of frames (Figure 5.4). A closer look at the plot of β-

cyclodextrin-1-butanol complex trajectory (Figure 5.5) reveals some interesting facts 

regarding the conformations and energy of β-cyclodextrin complexes. The energy 

converges at a higher value, and then drops to a lower value. By examining the 

corresponding conformations, it is clear that the higher potential energy corresponds to an 

“inner bound pose” or Pose 1 of the complex and the lower potential energy corresponds 

to an “outer bound pose” or Pose 2 (Figure 5.6). Pose 1 has a positive binding enthalpy 

while Pose 2 has an almost zero binding enthalpy. To further identify the reason of the 

abnormal enthalpy behavior, the accumulative average volume of the corresponding 

conformations (Figure 5.5) were examined against the cumulative average potential. It is 

obvious that the higher potential energy correlates with the greater volume after 

convergence is reached. The volume change can be attributes to the thermal fluctuation 

and more importantly the excluded volume of the binding process. In Pose 1, where the 

ligand sits in the cavity of β-cyclodextrin comfortably, the space between the two 

molecules cannot be filled with water molecules, and thus more excluded volumes are 

created. On the other hand, in Pose 2, the space is more efficiently utilized by a denser 

placing of molecules. To eliminate the possible artifact arising from water model, a 

similar MD simulation was run with TIP4P water model, and similar behavior of 

excluded volume was observed (Figure 5.7). Similar excluded volume behaviors were 

also observed in other complexes (Table 5.4). The excluded volume changes are also 
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experimentally confirmed, but a tiny fluctuation in the volume change effects the totally 

enthalpy change significantly due to the fact that interaction energy of each water 

molecules is as strong as -9.6 kcal/mol and the volume of one water molecules is roughly 

30.3 A3. Therefore the calculated excluded volume change subtly changes the totally 

enthalpy change by 1-2 kcal/mol. A flexible water model or a more accurate force field of 

the solute may improve the discrepancy between calculated enthalpy and experimental 

data. 
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The free β-cyclodextrin undergoes glucopyranose unit flipping through out the trajectory. 

In the majority of the time, β-cyclodextrin adopts the conformations with flipping of two 

glucopyranose units (Figure 5.8). In relatively shorter periods it adopts conformations 

with flipping of one glucopyranose unit. Very seldom does β-cyclodextrin visit the 

crystal like conformations. Upon ligand binding, the dominant population is the crystal 

structure like conformations with short periods of glucopyranose unit flipping. This is 

because the cavity of β-cyclodextrin is occupied by the ligand and the ring flipping is 

hindered. The deviations of the RMSDs along the trajectories (Figure 5.8) were 

calculated for free β-cyclodextrin (0.268 Å), β-cyclodextrin-2-naphthyl ethanol (0.327 Å) 

and β-cyclodextrin-t-butanol (0.546 Å). This indicates that the population distribution in 

the free β-cyclodextrin is narrower than the bound state and the entropy of β-cyclodextrin 

increases upon ligand binding, and suggests an entropy gain of the host upon binding. 
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Figure 5.8. The RMSDs in reference with the crystal structure plotted against the frame 

number. The RMSD is in Å. The representative conformations are shown above the plots 

and circled on the plots. 
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The binding entropy decompositions are shown in Table 5.5. The solute entropy change 

can be decomposed into external entropy change (translational/rotational) and internal 

entropy change (conformational/vibrational). The external entropy change is captured in 

this work by numerical integration of the external degrees of freedom of the ligand inside 

the cavity of β-cyclodextrin under the assumption that the diffusion of β-cyclodextrin is 

not effected significantly by the presence of the ligand. Normally in host-guest 

calculations, the external entropy of the ligand is considered as completely lost due to the 

confinement from the host 13, 52, 97 and this leads to a rough 7 kcal/mol loss of external 

entropy. However from the numerical integration for β-cyclodextrin-complexes, the loss 

of external entropy of the ligand upon binding is only roughly 1-2 kcal/mol. This is 

because the weak interaction between the guest and host is not strong enough to full stop 

the ligand from tumbling and vibrating in the cavity of β-cyclodextrin. This is actually 

observed in the MD trajectory, that the ligands do not only stay in the center of the 

binding site but also tangentially stick to the entrance of binding site on the top or bottom 

of β-cyclodextrin for some short but observable period up to 100 ns with different poses 

(Figure 5.6).  

The solute entropy change also gives counter intuitive results. From previous work 70, 77 

β-cyclodextrin complexes lose entropy upon complexation because of the attraction 

between the two molecules. However from the conformation/vibrational entropy 

calculation of β-cyclodextrin, it is obvious that β-cyclodextrin actually gains entropy due 

to the presence of the ligands. The two major differences are first the presence of the 

explicit water molecules instead of a continuum of implicit water solvent model and 
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second the ligands in this work are smaller in size. As discussed above, the water 

molecules is unable to fit into the space between the guest and host, and the vacuum 

space allows addition relaxation of the host molecule. Thus, more conformations of β-

cyclodextrin can be observed in the bound state than its free state (Figure 5.8) and 

therefore the internal entropy of β-cyclodextrin increases rather than decreases. On the 

other hand, the ligands in this study are generally rigid, and they don’t undergo much 

entropy changes in the complexation process. In implicit water model calculations, the 

vacuum space is not captured due to a continuum description of the solvation and 

therefore the internal flexibility of β-cyclodextrin is not present due to the absence of 

hydrophobic environment. 

Because of the intrinsic diffusive property of water molecules, it is intractable and 

meaningless to calculate the average water entropy by focusing on one another water 

molecules in MD simulations. Therefore a grid cell method 30 approach was employed to 

partition the water entropy into small spaces near the solute region. The water entropy 

decompositions of pure water (the reference), free β-cyclodextrin, 1-butanol, and β-

cyclodextrin-1-butanol complex are shown in Figure 5.9. In general, the translation 

entropy decreases at the surface of the solute because the existence of the solute hinders 

the free diffusion of the water molecules. The rotational entropy either increases on 

hydrophobic surfaces or decreases near hydrophilic sites. The conformational entropy 

fluctuates with the density of water molecules. 



 174 

 

Figure 5.9. The water entropy decompositions near the region of β-cyclodextrin. From 

top to bottom are pure water, free β-cyclodextrin, free 1-butanol, and β-cyclodextrin-1-

butanol complex. From left to right are total entropy, vibrational entropy (translational + 

vibrational), translational entropy, rotational entropy and conformational entropy. 

Generally brighter means higher water entropy and vice versa. For each decomposed 

term the reference is the corresponding pure water entropy. The red areas are regions 

filled by no water molecules due to the presence of the solute molecules. 

For β-cyclodextrin, because the outer surface consists of flexible hydrophilic hydroxyl 

groups and hydrophobic non-polar carbon rings, it is unable to differentiate the rotational 

entropy increment or decrement originating from the hydrophilicity or hydrophobicity. 

However it is clear that the translational entropy decreases significantly due to the 

hindering of free water diffusion. In the region of the cavity of β-cyclodextrin, the 

translational water entropy also decreases but not as intuitively losing all translational 

entropy. This indicates that the water molecules tend to be slowed down instead of totally 

captured in the cavity. On the other hand the rotational entropy increases on the internal 

surface of the cavity rather than decrease. This apparently indicates that the internal 
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cavity of β-cyclodextrin is hydrophobic. Meanwhile in the center of the cavity the 

rotational water entropy does not show significant change because this area is 2 Å away 

from β-cyclodextrin. Overall only in the small area in the center 8 Å3 space the water 

entropy decreases for roughly 4 J/mol/K and the water entropy in the rest area of the 

cavity does not change significantly due to the compensation of the translational and 

rotational entropies. Combing with a slight conformational entropy decrement, the overall 

water entropy decreases with the presence of β-cyclodextrin. 

For 1-butanol, similar behavior of translational water entropy has been observed near the 

area of the solute. The rotational entropy increase for 2-4 J/mol/K near the carbon chains 

while it decreases for 3-7 J/mol/K near the hydroxyl group. This clearly corresponds to 

the facts that hydrophobic surface makes water tumble more and the directional hydrogen 

bond rigidify the rotation of the water molecules. Similar behavior is also observed in 2-

naphthylethanol case Figure 5.10. The naphthyl group is hydrophobic and the water 

rotational entropy increases for similar amount on its surface. This behavior results in a 

smaller overall entropy decrease in the case of 1-naphythylenthanol and 2-

naphthylethanol.  

In the complexes, the difference from the free β-cyclodextrin is mainly in the cavity. The 

water entropy actually increases due to a smaller but more hydrophobic space between 

the two molecules but because the number of water existing in the space becomes 

limited, the overall entropy near the region of the complex still decreases although it is 

not as much as the free β-cyclodextrin. 



 176 

 

Figure 5.10. The translational and rotational entropies near the region of free 2-

naphthylbutyrate. The solute is positioned as the formula below in the two entropy 

images. The red spots in the images correspond to the hydroxyl group in the molecule. 

Combining the effects from free β-cyclodextrin, free ligands, and the complexes, the 

water entropy changes are summarized in Table 5.1 and Table 5.5. Aspirin, 1-propanol 

and methyl butyrate have more water entropy gains than the rest ligands. This is because 

the free aspirin, 1-propanol and methyl butyrate ligands are more hydrophilic and thus 

they captures nearby water molecules more than the rest ligands. Therefore upon 

complexation, water molecules gains more entropy by getting released from the free 

ligands. By comparing 1-butanol and 1-propanol, the only difference comes from the 1 

carbon longer carbon chain. Similarly the two naphthylethanols, which also have one 

hydroxyl group but with a more bulky non-polar group, also have smaller water entropy 

gains. These all can be explained by the conclusion that the water molecules freed by 

hydrophilic ligands gain more entropy in the inclusion complexation process with β-

cyclodextrin.  
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To sum up, for the weak binders include 1-propanol, 1-butanol, 1-butanol and methyl-

butyrate, the desolvation energy dominates the enthalpy change, and therefore the 

attractions between them and β-cyclodextrin are not strong enough for them to form the 

complexes for long periods. The driving force of the complexation is actually the entropy 

change of β-cyclodextrin and the water molecules. β-cyclodextrin gains entropy due to 

less contact with solvation water and more freedom in internal conformational changes. 

Water molecules gain entropy due to less restraints from hydrophilic surface exposed to 

the water molecules. On the other hand for the relatively stronger binders including 

aspirin, 1-naphthylethanol and 2-napthylethanol, the enthalpic interactions are stronger 

than the weak binders, and contributes to the complexation to some degree but still not 

strong enough for the binding. β-cyclodextrin and water entropy gains also contribute to 

the complexations to some extent. This kind of behavior is fundamentally different from 

the rigorous strong binders which totally lose the external entropy and have strong 

attractions with the host. 

In the binding process, the water plays important roles. First it contributes to the repulsive 

desolvation energy by creating additional excluded volume in the complex. And the 

water entropy gain from less exposed hydrophilic surface is one of the driving force of 

the binding of these complexes. The water contribution to the subtle balance between 

enthalpic repulsion and the entropic attraction also affects the binding equilibrium.  
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5.3.2 Kinetics 

From Table 5.2, it is obvious that the kon generally matches with the experimental value 

better than koff. This can be explained by the force field. kon is determined by the period 

of free state, which is only governed by the free diffusion and orientation of the two 

molecules. However koff is determined by the period of the bound state, which is 

governed also by the interactions of the host, guest and the water near binding site. The 

more sophisticated situation in the bound state needs more accurate description from the 

force field. Therefore the relatively less accurately described bound state leads to worse 

evaluation of koff. The other reason is from a less complete sampling of the dissociation 

events. From the period length of bound and free state (Table 5.6), it is safe to assume 

that longer bound state can be sampled if the MD simulation is further extended. So to 

obtain a better resolution of the rate constants, longer simulation is necessary. 
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Table 5.6. The bound and free period lengths of the complexes. All values are in 

nanosecond. 
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1-Propanol 1-Butanol Methyl butyrate t-Butanol 

Bound Free Bound Free Bound Free Bound Free 

1 18.0 58.3 97.7 9.0 52.9 6.8 83.9 6.5 

2 1.7 15.2 64.6 90.2 8.5 25.2 1.1 173.9 

3 11.3 4.4 1.7 1233.2 29.5 17.2 4.2 848.2 

4 7.3 2.4 3.2 326.5 3.4 144.4 1.8 59.6 

5 1.5 846.1 1.3 10.5 3.2 139.2 1.8 706.7 

6 4.0 310.9 1.4 202.4 1.5 136.4 1.1 208.1 

7 2.7 234.9 2.0 423.2 1.1 893.8 3.7 276.3 

8 2.6 21.7 3.9 29.1 2.5 7.2 1.8 110.0 

9 1.8 179.2     15.9 1.3 192.5 36.6 

10 7.5 136.5     10.4 84.4 1.9 41.1 

11 1.3 426.8     12.4 14.1 187.1 180.5 

12 1.5 202.4     17.2 80.0 1.9 2.6 

13         5.2 221.4 4.8 229.3 

14         1.0 57.4 1.6 42.3 

15         26.6 38.0 22.3 103.6 

16         1.8 55.9 1.3 89.2 

17         3.0 14.8 2.2 123.6 

18         7.6 82.8 3.0 34.7 

19         4.5 189.0 4.3 213.2 

20         1.2 25.0 1.6 34.0 

21         1.6 54.4 2.7 124.4 

22         48.4 152.5 4.8 24.4 

23         4.1 23.5 37.3 39.8 

24         2.4 12.8 1.6 59.0 

25         1.8 3.8 1.4 140.5 

26         1.8 167.3 1.8 178.7 

27         6.0 576.1 1.2 80.0 

28             6.7 4.4 

29             3.6 173.5 

30             1.3 308.3 

31             1.2 8.8 

32             1.1 249.9 

33                 

34                 

35                 

36                 

37                 

Avg. 5.1 203.2 22.0 290.5 10.2 119.4 18.4 153.5 
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1-Naphthylethanol Aspirin 2-Naphthylethanol 

Bound Free Bound Free Bound Free 

1 600.1 25.1 143.1 13.8 794.3 11.6 

2 2.2 31.6 37.8 6.7 152.1 22.2 

3 65.2 38.3 294.0 35.9 46.4 76.8 

4 72.6 49.8 4.1 36.6 106.2 5.3 

5 7.2 161.8 21.9 56.4 6.6 6.7 

6 2932.5 92.3 102.0 35.7 17.9 13.1 

7 1.6 47.4 12.6 30.2 0.0 0.0 

8 5.1 84.5 12.3 11.0 2.0 12.4 

9 2.7 3.4 467.0 28.7 1.7 11.8 

10 5999.4 19.3 27.0 3.7 2.9 14.6 

11 6.5 23.5 53.5 44.3 50.0 102.0 

12 728.0   2.3 13.9 8.2 52.2 

13     149.2 8.7 2.1 15.0 

14     1.5 2.1 4.5 37.1 

15     8.8 6.3 7.7 88.1 

16     84.4 51.5 353.7 92.5 

17     1.7 5.0 4.1 17.5 

18     3.5 14.4 6.2 125.4 

19     10.9 22.9 2.0 50.9 

20     1.6 34.8 84.2 37.7 

21     3.0 10.5 29.7 341.0 

22     164.5 39.1 1.4 164.7 

23     3.1 57.3 203.7 12.1 

24     3.2 19.8 83.8 7.2 

25     8.2 24.7 52.0 5.4 

26     4.0 85.2 120.1 34.5 

27     4.3 39.1 1878.1 6.2 

28     1.2 14.2 2149.9 14.1 

29     3.9 119.8 13.5 13.2 

30     5.4 16.8 33.1 44.7 

31     3.7 7.7 2.1 25.5 

32     26.9 25.1 956.3 90.6 

33     1.5 7.0 94.1 131.7 

34     2.1 45.3 2046.1   

35     396.0 17.4     

36     15.7 5.4     

37     2417.4       

Avg. 868.6 52.5 121.7 27.7 274.0 51.0 
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The kon of all ligands in this study are on the order of 108 L/mol/s, which are just one 

order slower than the diffusion controlled binding. This can be supported by the fact that 

the binding site of β-cyclodextrin is widely exposed except for the blocking from the 

glucopyranose units on the macrocyclic ring. Two or three of the glucopyranose units on 

β-cyclodextrin may flip to occupy the cavity of β-cyclodextrin in the free state while in 

the bound state the rings flip back to the pose when they are perpendicular to the 

macrocyclic ring. This also indicates that along the binding reaction coordinate, the free 

energy barrier is not too high. Combining with the fact that there is no enthalpic barrier 

along the association/dissociation, it is reasonable to assume the energy barrier is some 

small entropic barrier. Such entropic barrier should consists of a contribution from β-

cyclodextrin entropy increment, a contribution from ligand entropic loss and another 

contribution from water molecules that is involved with β-cyclodextrin conformational 

changes. 

Comparing the weak binder and the relatively stronger binders, the binding paths show 

slight differences. For the weak binder case, the only possibility of binding pathway is the 

one in which the ligand randomly hits into the cavity of β-cyclodextrin and gets trapped 

by the entropic well. After some rearrangement of the conformations, the ligand slides 

into the cavity and opens up the glucopyranose units. For the stronger binders, there are 

more possibilities. First they can hit into the cavity and bind simply as the behavior as the 

weak binders. Second they can stick to the outer surface of β-cyclodextrin due to stronger 

enthalpic attractions and then slides on the surface of β-cyclodextrin until they find the 

cavity and opens up the glucopyranose units. Thirdly they can even hit into the cavity of 
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β-cyclodextrin when the glucopyranose unit flips upside down, and make that 

glucopyranose unit stuck in that inverted conformation. In the third case the binding 

event usually is shorter than binding with a regular conformation of β-cyclodextrin. 

5.3.3 Results from q4md-CD Force Field 

The thermodynamic results are summarized in Table 5.7, Table 5.8 and Table 5.9. The 

binding affinities of the complexes are systematically overestimated for 1-2 kcal/mol by 

the q4md-CD force field. From the results of 1-propanol and 1-butanol, the enthalpy 

terms are overestimated by roughly 1.5 kcal/mol. On the other hand, the q4md-CD force 

field underestimates the contribution from the entropy for the three ligands with 

experimental entropy data. This is related to the rigidity of β-cyclodextrin in the q4md-

CD force field.  

The kinetic results are shown in Table 5.10. The q4md-CD force field generally 

overestimates the kon of all complexes by one order. However the koff, which is 

governed by the interaction of host and guest and underestimated by the GAFF force 

field, matches with experimental values reasonably well. This is because the cavity of β-

cyclodextrin is more open in the more rigid description and allows faster entrance of the 

ligands, but the ligand can stay in the binding site stably due to the overestimated 

attractions. 
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The flexibility change of β-cyclodextrin in free state, complexes with 2-naphthylethanol 

and t-butanol are shown in Figure 5.11. Compared with the plot for GAFF force field, the 

free β-cyclodextrin is more rigid and prefers to stay in the crystal like structure rather 

than glucopyranose flipping conformations. Similar to GAFF, complexation makes the 

population of β-cyclodextrin shift to more crystal like structures. Unlike the GAFF, the 

standard deviations of the RMSD plot reveal that the flexibility of β-cyclodextrin 

decreases from free state (0.481 Å) to complex with 2-naphthylethanol (0.177 Å) and 

complex with t-butanol (0.178 Å). And this corresponds to thermodynamic results, in 

which the β-cyclodextrin loses entropy upon complexation with the ligands. 

In sum, the β-cyclodextrin in q4md-CD force field is more rigid and behaves more like 

the crystal structure than that in GAFF. The binding rate is overestimated due to the more 

open cavity and stronger attraction between the host and guest while the unbinding is 

comparable to experimental data. The binding enthalpy is overestimated but the binding 

entropy is underestimated due to the rigid description of the β-cyclodextrin. 
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Figure 5.11. The RMSDs in reference with the crystal structure plotted against the frame 

number in q4md-CD force field. The RMSD is in Å. The representative conformations are 

shown above the plots and circled on the plots.  
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5.4 Conclusion 

In this work a complete protocol for calculating the binding free energy by computing the 

solute and solvent enthalpy and entropy respectively is presented with β-cyclodextrin-

complexes as the studied system. The enthalpy changes of the solute and solvent were 

calculated from potential energy calculation. The entropy change of the solutes were 

evaluated by dihedral population analysis and integration of external entropy from the 

MD trajectory. The solvent entropy was obtained from the grid cell method calculation. 

The calculated kinetics and thermodynamics results match with the experimental values 

reasonably well. The weak ligands, 1-propanol, 1-butanol, t-butanol and methyl butyrate 

were entropically driven to bind with β-cyclodextrin while the stronger ligands, aspirin, 

1-naphthylethanol and 2-naphthylethanol were mixed entropy and enthalpy driven 

binding. The entropy driving forces of these ligands were from water entropy gain and β-

cyclodextrin entropy gain, while the desolvation energy was the major reason of the 

enthalpic repulsion. The desolvation energy was from the excluded volume on binding 

and the loss of solute-water interactions. Binding pathways of the two types of ligands 

were observed from the MD trajectories and the corresponding thermodynamic reason 

were discussed. This provides important clues for relieving the entropic penalty in strong 

binding drugs and also fundamental understanding of the role of waters in the 

thermodynamics and kinetics. 
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Chapter 6 PSIM: Pathway Search Guided by Internal Motions 

6.1 Introduction 

Thorough conformational sampling is one important objective of computational 

chemistry. It is a prerequisite step in a variety of fundamental scientific topics such as 

protein folding 1-6, protein kinetics 7-9, non-bonding interactions 10-12, and accurate free 

energy evaluation 13-15. Furthermore, it also has industrial or pharmaceutical applications 

like drug design 16-19, crystal structure prediction 20-23 and etc. Despite its key role, how to 

conduct conformational sampling efficiently remains as an open question because of the 

intrinsic difficulties lying in it. Usually undetermined but high energy barrier stops the 

sampling from hopping between minima in practical computational time scale. Even by 

focusing on a local region without considering the energy barrier, a thorough sampling 

requires intensive efforts because it means to capture solute rearrangement, solvent 

effects and molecular interactions. For large systems like a protein, there are enormous 

number of local degenerate or non-degenerate thermodynamic states, which also makes a 

thorough sampling intractable. To perform conformational sampling with limited 

computational power, compensation is often made by sacrificing the accuracy or 

resolution of the sampling and this results in loss of desirable details. 

So far three major categories of conformational sampling methods have been developed 

over the past few decades. The first class is based on molecular dynamics. The most 

straightforward and fundamental method among them is conventional molecular 

dynamics (MD) simulation. This method can generate physically meaningful trajectories 
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and reproduce unbiased energetic profiles, but its time scale, even with contemporary 

graphic processor units (GPU) accelerated techniques or specialized Anton machines 24, 

25, is still limited to millisecond or microsecond 25-28. This leads to the invention of many 

derivatives or specialized protocols of MD. The first branch of methods adds additional 

forces to guide the system to some target 29, 30, lowers the probability of redundant 

sampling of the conformational space 31-36, or exaggerates the concurrent motion of the 

system 37. The other group of MD based methods smooths out the details on the potential 

energy surface (PES) and thus enhance the sampling. The strategy leads to coarse grained 

description of systems 38, accelerated MD 39, GaMD 15, RaMD-db method 40, softcore 

force field description 41, and many similar methods. Milestoning 42, 43, which utilizes the 

idea of Markov chain model, enhances sampling and also allows direct calculation of 

kinetic properties. By considering the behavior of slow events, people realized that a 

major part of these long events actually consists of a dominant waiting time and relatively 

rapid sudden transition 44. This leads to the third group of MD variants, or more exactly, 

MD protocols, that focus on shortening the waiting time of the slow event by constant 

restarting the MD from carefully selected conformation on the sampled trajectories. This 

group includes, progress index based resampling 45, resampling from free energy basin 

edges 46, WExplore 47, and other resampling methods using various criteria 48-52. Another 

accelerating technique roots in increasing the temperature of the MD to boost the rate of 

high energy events. This results in the multi-ensemble methods, like parallel replica 

method (PRM) 53, replica exchange MD (REM) 54, 55, MuSTART MD method 56. It 
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combines with the idea 44 in previous group, and leads to transition path sampling 57, 58 

and transition interface sampling 59. 

The second category of sampling methods is based on Monte Carlo (MC) sampling 60, 61. 

A series of variants of original MC methods have been proposed since 1970s. The past 

four decades have witnessed force-biased MC 62, smart MC 63, hybrid MC (HMC) 64, J-

walking 65, Simulated tempering 66, 67, multiple-stage J-walking 68, parallel tempering69, 70, 

S-walking 71, flat energy with probability modifier 72, smart darting MC 73, C-walking 74 

and finite reservoir replica exchange method (FRREM) 75. 

The last category of sampling methods roots deeply in normal mode analysis, which 

requires no or little dynamics of the system but provides a tremendous reservoir of new 

conformations efficiently. These methods started from LMOD 76, in which a minimized 

conformation is distorted along the low normal modes and then minimized to obtain new 

conformations. A variants of it came as LLMOD 77, in which the hessian matrix 

calculation is avoided by only looking at the low modes implicitly. A Tork method 78 was 

developed and it builds the hessian matrix eigenvectors and distorts the minimized 

conformation in internal coordinates to avoid unphysical distortion in Cartesian space. 

Recently in Low Mode MD method (LMMD) 79, the mathematical distortion process of 

LMOD was replaced by a short distortion using low mode guided MD simulation. 

Minimized RMSD was used as a criterion to select new conformations by distortion 

along low normal modes 80. The normal mode analysis was also combined with elastic 

models and gave some useful coarse grained level methods 81, 82. 
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Principle component analysis (PCA), which is conceptually similar with normal mode 

analysis and quasi-harmonic approximation, also provides an orthogonal set of intrinsic 

motions borne in the dynamics of systems. This set of orthogonal motions is similar to 

normal modes in several ways. It is orthogonal and the amplitude of the motion is 

governed by the corresponding eigenvalue. It tells the intrinsic motions of the system 

from the most significant to the least significant sorted by the eigenvalues. On the other 

hand, it differs from normal modes in the sense that the motions are produced from a 

continuous region traveled by the trajectory instead of the rigorous mathematical motions 

at one single minimum. This advantage ensures that the motions from PCA can be used 

to describe further conformational changes of the system than the normal modes do. In 

the study of proteins, PCA is usually used to analyze the backbone motion by looking at 

the Cartesian coordinates of the α-carbon atoms in each residue. In this study, we refer to 

this as α-carbon PCA. 

Dihedral PCA, which is an internal coordinate version of conventional PCA, has been 

proved to produce more informative results than its original work 83-88. More importantly, 

not like α-carbon PCA, which is limited to α-carbon atoms when applied to protein 

systems, dihedral PCA does not have the limitation on backbone ψ, ϕ angles and can be 

naturally extended to side chain dihedrals so that the full atomic details can be retained in 

the dihedral PCA results. However, dihedral PCA has two shortcomings, 1) it is unable to 

reproduce Cartesian motions from the dihedral PCA modes, and 2) it doubles the number 

of modes than that of the original degrees of freedom. In Dihedral PCA, people have 

solved the issue arising from the periodicity of dihedral angles using trigonometric 
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function operations. For an Ndih dihedral angle system each degree of freedom from the 

dihedral angle is split into a sin and a cos term, so that the dimension of the covariance 

matrix becomes 2Ndih, and thus 2Ndih eigenvectors are yielded in the calculation. This 

2Ndih eigenvectors are orthogonal in the space of sin and cos but, on the other hand, the 

Ndih dihedral variance vectors reproduced by merging the sin and cos terms are no longer 

orthogonal to each other in the dihedral space. Therefore eigenvectors obtained by this 

sin and cos approach cannot be used as orthogonal directions for conformational search. 

This issue is solved by complex dihedral PCA 84, which uses complex representation in 

Euler’s formula to replace the one to two mapping in sin cos dihedral PCA. However the 

computation power consumed in the diagonalization of covariance matrix in this 

approach still doubles. 

Meanwhile, by considering the efficiency of existing normal mode based conformational 

search methods, the most time consuming part of these methods is the acceptance test. 

Typically a full minimization is performed and conformations within a certain energy 

threshold are accepted. This is rigorous and efficient for small molecules but for protein-

like large molecules, a full minimization is less efficient or sometimes even intractable. 

To avoid energy evaluation and energy minimization, a collision test like approach has 

been proposed 89. In this approach, no energy evaluation is necessary. Instead, only 

distance based collision test is conducted to simplify the interatomic potential to a steep 

wall type potential. In this way thousands of conformations can be accepted or rejected 

per second 90. Following that idea, methods have been proposed to use collision as the 

acceptance/rejection test in coarse grained elastic model 91. 
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Combining those thoughts, we propose a novel conformational search method in this 

work. A novel internal PCA is proposed that can reproduce full atomic motions 

comparable to classical α-carbon Cartesian PCA. It produces same number of modes as 

the degrees of freedom. A conformational search algorithm, referred to as PSIM, in 

which an initial conformation is continuously distorted along the internal PC motions, is 

developed. A collision based acceptance test is used to ensure physically meaning 

motions of the system with high efficiency. This method was tested in several real 

molecular systems. 

6.2 Method 

6.2.1 Method Overview 

 

Figure 6.1. The flowchart of internal Principal Component analysis (internal PCA). 
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Figure 6.2. A representative systematic search tree of 5 PC modes. Disabled PC modes 

are rendered in gray dashed lines, while all other PC modes in use are in black solid lines. 

Only representative sub branches are shown. The blue arrowed curves show a 

representative flow of the search on the tree diagram. 
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Figure 6.3. The flowchart of each search branch. 
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PSIM uses internal PCA modes computed from a MD trajectory to guide the searches. 

Figure 6.1 illustrates the steps which are similar to computing classical PCA in Cartesian 

coordinate except additional steps needed for use of internal coordinates, Conversion to 

Internal Coordinate and Building Dihedral Covariance Matrix. Because a biomolecules 

are significantly larger than chemical compounds, we developed multi-layer internal 

coordinates, as detailed in later sections. The overview of the algorithm used in PSIM is 

shown in Figure 6.2 and Figure 6.3. In this algorithm, the internal PC modes are sorted by 

the extend the ligand moves instead of eigenvalues. A minimized receptor-ligand 

complex is used as an initial structure to begin the search. The conformational search is 

then conducted in a systematic manner (Figure 6.2). First, the initial conformation is 

distorted stepwise along both positive and negative directions of each PC modes until 

acceptance test rejects the new conformation. Then, the conformational search continues 

systematically using the new conformations from two directions of each mode as the 

starting point, except that the PC modes are screened before used in the sub branches. In 

the course of conformational search, the modes used and the number of steps of distortion 

are tracked as the path of the trajectory. When the number of steps exceeds a predefined 

parameter, a motion test is performed to ensure the guest/ligand moves away from its 

original position and the host/protein maintains a reasonable conformation while being 

distorted. A failed motion test backs up the search along the recorded search path. If the 

motion test is passed a structure correction will be performed to reduce the artifacts 

induced by the distortion, and the search is then continued from the corrected 

conformation. The search algorithm dumps distortion path when the total step of 
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distortion exceeds a predefined path length. The algorithm is exited after the systematic 

search exhausts the search tree within the predefined path length.  

6.2.2 Computational Details 

6.2.2.1 Multi-Layer Internal Coordinate Definition 

 

Figure 6.4. Classic internal coordinate representation (Z-matrix) for a small molecule. 

Atom 1 is at the origin; atom 2 is defined by a bond length (b2) and placed on the z-axis; 

and atom 3 is defined by a bond length (b3), bond angle (a3) and placed on the x-z plane. 

Six external coordinates are eliminated, and a molecule of N atoms has 3N-6 internal 

coordinates.  Atoms 1-3 are termed root atoms for this molecule. For atoms i > 3 are 

defined by (bi, ai, ti), where t are torsion angles. For example, atom 4 is presented by (b4, 

a4, t4).  The dashed light gray shows the molecule after rotating the bond between Atom 2 

and 3 (t4) for 180 degrees. 

Because biomolecules are larger than small molecules, we developed a multi-layer 

definition of internal coordinates to avoid unrealistic motions produced by using classical 

internal bond-angle-torsion coordinates (Z-matrix). Classical definition uses a set of root 
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atoms to begin converting Cartesian coordinates to a Z-matrix, and the position of atom i 

depends on other atoms that are bonded in sequence (Figure 6.4) 92. This creates artifacts 

that small rotations of some torsion angles close to the root atoms may result unrealistic 

motions on one end of a molecule as shown in Figure 6.4.  

Therefore, we divide a molecule into N fragments, and use a multi-layer pattern to 

connect them. The fragments are chosen so that usually an α-helix or β-sheet is treated as 

one or two fragments and a loop is divided into fragments with 3-4 residues in each 

fragment. Each fragment is presented as a small molecule shown in Figure 6.4, with a 

designated root dihedral angle in the fragment. The portions of a protein which moves in 

concert is grouped and a root fragment is chosen among the fragments in that group. For 

example, in the case of a typical kinase, the C-lobe and N-lobe can be treated as two 

groups of fragments. Every fragment in the same group are connected to the root 

fragment through the six pseudo degrees of freedom shown in Figure 6.5. Then the 

groups, if more than one groups exist in a molecule, are connected by linking the root 

dihedrals in the same way. In systems with multiple molecules, the molecules are then 

connected in the same way. The BAT coordinate-fragment-group-molecule-system 

framework defines the multi-layer internal coordinate.  
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Figure 6.5. Two peptide chains divided into three fragments, in blue, green and yellow. 

The atoms, N, CA, C, N, in root dihedrals in the fragments are circled. Pseudo bonds 

connecting the fragments are rendered in purple. The peptide bond (C-N) connecting the 

blue and green fragments is rendered in red. In the internal coordinates, the peptide bond 

(in red) connecting blue and green fragments are removed. For this reason, artifacts may 

arise from the absence of the chemical bond between groups. Instead, the pseudo bonds are 

used to connect the fragments. For example, between blue and yellow fragments, the N-N 

(4-5) pseudo bond connects the two fragments, and along the pseudo bond, two pseudo 

angles, 3-4-5 and 4-5-6, and three pseudo dihedrals, 2-3-4-5, 3-4-5-6 and 4-5-6-7 are also 

included. These six pseudo degrees of freedom are used as the linker between fragments. 

 



 217 

 

Figure 6.6. An example of fragmentation of HIVp. each monomer was divided into 21 

fragments. The primary fragment, 1fragment, on monomer 1 is colored in blue and on 

monomer 2 is in red. The rest fragments on monomer 1 are in light and dark green and on 

monomer 2 are in light and dark magenta. The greenish fragments on monomer 1 are 

defined to the blue primary fragment, instead of mutualy connected. Similarly the 

magentaish fragments are defined to the red primary fragment. Finnaly, the blue fragment 

on monomer 1 is chosen as the starting point of the internal coordinate, and the red 

fragment on monomer 2 is defined to it. 
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Here we use HIV-1 protease (HIVp) as an example. HIVp is a homodimer; therefore, we 

treat the two monomers in exactly the same way. The entire monomer is treated as one 

group, and this group is divided into 21 fragments, with the root fragment located on the 

end of the peptide chain. As illustrated in Figure 6.6, three fragments are circled, and they 

are connected to the root fragment on the same monomer through 6 pseudo degrees of 

freedom (see details in Suppl Info). The atoms in each fragment are defined as a small 

molecule in the BAT coordinate. Then the root fragments of the two monomers are 

connected through the six pseudo degrees of freedom. 

Because a molecular system is divided into several fragments and each fragment is 

directly connected to the root fragment of its group by 6 pseudo degrees of freedom, 

atoms at the boundaries of two fragments in the same layer are not connected by physical 

bonds in our multi-layer internal coordinates (Figure 6.5). Therefore, it may produce 

unrealistic distortion in a principal component (PC) mode. One needs to assign fragments 

carefully and validate the PC motions beforehand, and we also include quick 

minimization in our algorithm to reduce the artifacts.  

6.2.2.2 Periodicity of Dihedral 

Dihedral rotation is periodic. When a dihedral moves from 179° to -179°, it literally 

moves 2°. However, the basic arithmetic operation used in computing a covariance 

matrix results in a large, 179°-(-179°) = 358°, rotation. Therefore, we use trigonometric 

functions in Eq. 6.1, 6.2 and 6.3 to operate average, addition and subtraction, 

respectively, when constructing the covariance matrix with internal coordinates. In this 
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way, one torsion angle is represented by exactly one element in the covariance matrix, in 

contrast to dihedral PCA 83-88.  

 Average: tan (
𝑎+𝑏

2
) =

sin(𝑎)+sin(𝑏)

cos(𝑎)+cos(𝑏)
 eq.  6.1 

   

 Addition: tan(𝑎 + 𝑏) =
sin(𝑎)cos(b)+sin(b)cos(a)

cos(𝑎) cos(𝑏)−sin(𝑎)sin (𝑏)
 eq.  6.2 

   

 Subtract: tan(𝑎 − 𝑏) =
sin(𝑎)cos(b)−sin(b)cos(a)

cos(𝑎) cos(𝑏)+sin(𝑎)sin (𝑏)
 eq.  6.3 

 

 

 

 

 

   

6.2.2.3 Internal Coordinate Element Selection 

As shown in Figures 6.4, multiple torsion angles such as t8 and t9 may be used to present 

a bond rotation. Some bond rotations, such as methyl rotation and rotating torsion angles 

in rigid rings, are not important conformation determinants. As a result, we only select 

torsion angles whose rotation is expected to be important in formational changes. Peptide 

bonds in protein backbone are not considered flexible, either. In the internal PCA 

algorithm, only degrees of freedom in the internal coordinates will be selected into the 

covariance matrix, i.e. even some of the backbone dihedrals will be ignored based on the 

definition of internal coordinates, for instance, in Figure 6.5, the dihedrals along the bond 

at the boundary of two internally connected fragments. Also, all sets of 6 pseudo degrees 

of freedom used to connect fragments are automatically included in the covariance 

matrix. Therefore, the covariance matrix does not only contain torsion angle elements but 

also bond and angle elements. 
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6.2.2.4 Calculation of Eigenvalues and Eigenvectors 

As the classical way of PCA, the selected elements from the internal coordinates are used 

to construct the covariance matrix. Then the covariance matrix is diagonalized. The 

resulting eigenvalues and eigenvectors are automatically ranked by the eigenvalues. 

These are the corresponding PCs of the molecular system. PC modes are normalized 

before used in the conformational search algorithm.  

6.2.2.5 Conformational Search Algorithm 

6.2.2.5.1 Internal PC Mode Re-Ranking 

PCs with greatest eigenvalues usually identify major motions of a molecule. However, 

for ligand-receptor motions, large relative motions of the two molecules may not appear 

in these PCs. To enhance the efficiency for ligand dissociation from the receptors, we re-

rank the PCs by a PC mode ranking module. Along the positive and negative directions 

of the PC modes, the initial conformation of the complex system is distorted for the same 

extend, and then the PC modes are ranked from greatest to smallest by the distance the 

ligand travels with the protein/receptor aligned. In this way, the PC modes that move the 

ligand more significantly have higher priority in the conformational search algorithm. 

6.2.2.5.2 Systematic Search  

PSIM starts the conformational search from the initial conformation. It first performs the 

conformational search according to the flowchart shown in Figure 6.3, and then continues 

the same procedures starting from the conformations yielded from distortions along each 
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internal PC mode. Until every branches of the systematic search reaches either path 

output or a dead end where no PC modes can be used, the algorithm ends.  

6.2.2.5.3 PC Mode Screening 

In the conformational search starting from the initial conformation, both positive and 

negative directions of all PC modes will be used in conformational distortion. However, 

it is unnecessary to loop over all PC modes in the searches on subsequent branches. A 

rule to screen the modes is implemented as schemed in Figure 6.2. First, the mode, which 

has been used in the parent branch, regardless of the positive or negative direction, is 

discarded in the distortion. Secondly, the negative (positive) direction of any mode is also 

discarded after been used for certain number of steps. Any direction of any mode 

otherwise is considered in the distortion. 

6.2.2.5.4 Conformational Distortion 

A stepsize is predefined to scale the eigenvectors as one step in the distortion. In each 

search branch, the algorithm distorts the current conformation (X) by converting it to 

internal coordinate (Q=f(X)) using the same multi-layer internal coordinate definition (f), 

and adding the in-using eigenvector (dQ) to the internal coordinate for a distorted internal 

coordinate (Q’=Q+dQ), and finally converting it back to Cartesian coordinate 

(X’=f −1(Q′)) using reported algorithm 93. The distortion undergoes the same direction of 

the in-using mode and an acceptance test is evaluated at each step, until the acceptance 

test rejects the distorted conformation. New conformations are proceeded to the following 

modules shown in Figure 6.3. 
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6.2.2.5.5 Acceptance Test 

The acceptance test consists of three parts, 1) collision test, 2) bond stretching test and 3) 

bond angle vibration test. The collision test is a test that checks the distance of 

automatically predefined sets of atom pairs against scaled value of the sum of their vdW 

radii provided in the force field 89. Any distorted distance lesser than the scaled 

(COLLISION_PAIR_SCALE) sum signals the rejection of the distorted conformation. 

This is a coarse approximation of the widely used LJ potential which governs the vdW 

interaction of atoms. The bond stretching and bond angle vibration are designed to ensure 

the behavior of those bonds and angles, which are not involved in the internal coordinate 

definition, are realistic to some extend. In the two tests, every bond and angle are 

calculated and compared to the equilibrium value, and a shrinking or extending greater 

than a fraction defined by COLLISION_BOND_RANGE or 

COLLISION_ANGLE_RANGE, the conformation is rejected. 

6.2.2.5.6 Output Trajectories 

When the distorted conformation passes the acceptance test, and the accumulated number 

of steps reaches a predefined output length, a trajectory from the initial conformation to 

the current distorted conformation along the search path will be outputted. 

6.2.2.5.7 Motion Test 

An RMSD based motion test is designed to ensure movement of ligand and reject 

denature of the protein. It is initiated when the accumulated number of steps reaches to a 

predefined value. In the motion test, three RMSD calculations are performed. First, the 
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initial and current protein (host) conformations are aligned, and then the RMSD of the 

two proteins (hosts) is compared against the corresponding RMSD cutoff 

(RMSD_NODE_PROTEIN_RESTRAIN). If the protein RMSD goes above the cutoff, 

which means the protein deforms too much, the conformation is rejected. Second, the 

conformations of protein at previous node and the current node are aligned, and then the 

RMSD of the two ligands is compared against the corresponding RMSD cutoff 

(RMSD_NODE_LIGAND_SHIFT). If the RMSD is smaller, in the ligand case, than the 

cutoff, which means the ligand does not move significantly in the current node, the 

conformation is rejected. The third test is designed so that a back and forth scenario of 

the ligand, which can be accepted in the second test, is ruled out. Again, the initial and 

current conformations of the protein (host) is aligned, and the RMSD of the ligands at the 

two conformations is compared against another node-linear-accumulative RMSD cutoff 

(RMSD_CUM_LIGAND_SHIFT × node number). If the RMSD is smaller than the 

current cutoff, which means the ligand does not move as expected, again, the 

conformation is rejected. 

6.2.2.5.8 Conformation Correction 

This module is design to reduce the artifacts induced by further distortion of the system. 

It is performed only after the motion test. An mild minimization is performed with only 

bond, angle, and improper terms for predefined number of steps, to eliminate the 

accumulated local artifacts from fragmentation of the molecule but still hold the overall 

structure of the current conformation. 
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6.2.3 Molecular Systems 

The subsection includes simulation configurations such as MD setup and parameters used 

in PSIM and umbrella sampling. All MD simulations were run with the Amber 14 

package 94 and a 2 fs time step. The SHAKE algorithm was used to constrain hydrogen 

atoms during the simulations. Unless otherwise stated, all systems were heated gradually 

and equilibrated before the production runs. Parameters used in the PSIM search are 

detailed in Table 6.1. 

System 
Alanine 

Dipeptide 

Cyclodextrin 

2-naphthyl 

ethanol 

Cryptophane 

Me4N
+ 

TRPS 

G3P 

Output Step Number 100 4000 3000 2000 

Motion Test Step Number 200 400 200 200 

Step Size 0.05 0.02 0.05 0.05 

Boost 1 1 20 2 

Acceptance 

Test 

Pair Distance 0.8 0.65 0.5 0.5 

Bond Stretch 0.2 0.2 0.3 0.4 

Angle Stretch 0.2 0.2 0.3 0.5 
 

Table 6.1. The details of parameters used in the PSIM search for all systems. 

6.2.3.1 Alanine Dipeptide 

The alanine dipeptide was parameterized with AMBER FF14SB force field 95. The 

molecule was heated from 200 K to 298 K and then followed by a 10 ns molecular 

dynamics simulation in implicit water by generalized Born (GB) model 96 saved at every 

1 ps with AMBER 14 package 94. We obtained the Internal PCA modes by selecting the ϕ 

and ψ angles in the molecule using all 10000 frames from MD. Because this molecule is 

small enough, the whole molecule was treated as one fragment. The conformational 
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search was started from minimum A (Figure 6.7) by minimizing a randomly picked MD 

conformation. The motion test was disabled so that the selection of a ligand is not 

necessary. The stepsize was set to 0.05. The atom pair distance cutoff was set to 0.8. The 

angle and bond stretch range was set to 0.2. Output trajectory length was set to 100 steps. 

Both PC modes were used in the conformational search. The trajectories thus obtained 

were post processed by BFGS minimization with GB for 50 steps. 

PES of alanine dipeptide in aqueous solution was obtained by rotating the ϕ and ψ angles 

stepwise (0.5°) and calculating the energy of resulting conformer with GB model 96. The 

original and minimized transition pathways obtained from PSIM were projected onto the 

PES (Figure 6.7). Corresponding conformational transitions were also illustrated. 
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Figure 6.7. The four transition path found by PSIM. The search started from Minimum A, 

and leaded the transitions to different minima starting from four directions including the 

positive and negative of PC mode 1 and 2. The left views of each path show the 

conformational change of the original path using PC mode 1 (Green) and 2 (Yellow). The 

middle views of each path are the original path (Black bordered dots) and the minimized 

path (White bordered dots) on PES of alanine dipeptide. The right views show the search 

path on PES with PC mode 1 in green and PC mode 2 in yellow. 
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6.2.3.2 HIV Protease 

A 250 ns MD simulation saved at every 100 ps of HIVp parameterized with Amber 

FF99SB force field was used in internal PCA calculation. Each of the two identical 

monomers was divided into exactly the same 21 fragments according to the secondary 

structures followed by and error and trial process and refinement (Figure 6.6). Only ϕ and 

ψ angles on the backbone were taken into consideration. First three low mode motions 

were produced. For comparison, a dihedral PCA based on classical internal coordinate 

definition and an α-carbon PCA were performed and the first three low mode motions 

were produced respectively. The RMSFs of internal PCA and classical dihedral PCA 

were calculated against α-carbon PCA. 

6.2.3.3 Beta-Cyclodextrin-2-Naphthyl Ethanol 

 

The structure of β-cyclodextrin was taken from Cambridge Crystallographic Data Centre 

(CCDC) (PDB ID: WEWTOJ) and the structure of 2-naphthylethanol was drawn 

manually with Vega ZZ 97. The ligand was docked into the binding site with Autodock 

4.2 98. The initial structure from docking was solvated with 1736 TIP3P 99 water 

molecules and then parameterized with GAFF force field 100. MD simulations were 

performed with AMBER 14 package 94. A water equilibrium was run at 298K in NPT 

ensemble for 1 ns. Then the system was heated up to 298K and a production run of total 3 

μs was run at 298K in NPT. 15 dissociation events were identified from the trajectory. A 

500 ns bound state sub trajectory at the initial stage of whole MD simulation was resaved 

for internal PCA calculation. In internal PCA, the β-cyclodextrin was treated as a whole 
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fragment. All 72 PC modes obtained from internal PCA were used in the conformational 

search. The stepsize used in this example is 0.02, different from all other examples. We 

collected 20 dissociation pathways from PSIM in 3.1 h.  

For the 15 dissociation events from MD simulation, we evaluated the host molecule 

conformation. We first smoothed the trajectories by averaging forward 100 and backward 

100 frames on the concurrent frame throughout the whole trajectory. Then along the 

smoothed trajectory, we calculated the average planes of each glucose by selecting the 

atom on the ring and the average plane of the entire host molecule by selecting all 147 

atoms. The average planes were computed with multiple regression theory. We calculated 

the normal vector of the planes, and computed the 7 angles between the 7 normal vectors 

of the glucose rings and the normal vector of the host molecule. These 7 angles were used 

as fingerprints of the β-cyclodextrin conformation. We analyzed the conformational 

changes of the host molecule by comparing the trajectories with the conformational 

fingerprints. For the 20 dissociation trajectories from PSIM, we calculated the same 

fingerprints without smoothing the trajectory. 

6.2.3.4 Cryptophane-Tetramethyl Ammonium  

The bound structure of cryptophane-Me4N+ complex was taken from other works 101, and 

then parameterized with CHARMM22 force field 102-104. MD simulation was performed 

in the similar procedure as alanine dipeptide, except that the dielectric constant in GB 96 

of the solvent was set to 8.42 corresponding to the value of tetrachloroethane, and the 

production run was 20 ns. In the MD run, no dissociation event happened. We performed 
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Internal PCA by dividing the cryptophane into six fragments and leaving the ligand as 

one. In the conformational search, the MAXSTEP was set to 3000. A STEPSIZE scaling 

factor was set to 0.05. vdW radii scaling factor was set to 0.5. All 63 modes were used for 

conformational search. Four pathways were found by the search in 8.3 h. The trajectories 

were then post-processed by BFGS minimizer for 100 steps to remove unphysical 

clashes, bond stretching and angle bending. The first trajectory was picked as example 

for illustration purpose. For comparison, one dissociation pathway was also created by 

pulling the ligand along one dissociation window for 200 steps. At each step, the ligand 

was pulled for 0.1 Å and the whole structure was minimized by fixing the distance 

between the centers of masses of the two molecules. 

Umbrella sampling of the search path was performed along the reaction coordinates 

represented by distance between two centers of mass. Because the trajectory from the 

search algorithm may be sparse for umbrella sampling, interpolation of five frames 

between any two existing frames was done by using the corresponding PCA mode in the 

search. From the interpolated trajectory, conformations that are closest to every 0.1 Å 

center of mass distance from 0 Å to 19.8 Å were picked from the dissociation region, as 

initial conformations for 0.5 ns MD runs with the center of mass distance fixed. Umbrella 

sampling was also performed on the dissociation pathway generated by pulling the 

ligand. In both cases, the distance was saved every 50 ps. The umbrella force constant 

was 100 kcal/mol/Å2. Umbrella sampling data was process by using WHAM 105. 
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6.2.3.5 Tryptophan Synthase 

We resaved the one α-subunit with G3P from a 10 ns bound state tryptophan synthase-

G3P complex MD trajectory parameterized with AMBER FF99SB force field with one 

copy of both α-subunit and β-subunit. Then we performed internal PCA on the G3P- 

tryptophan synthase α-subunit complex (Figure 6.8). The tryptophan was coincidentally 

divided into 42 fragments as the procedure described for HIVp. The dihedrals in residue 

174 to 193 210 to 217 56 to 67 232 to 242, including sidechain dihedrals were considered 

in the dihedral covariance matrix, while the rest part of the protein were kept fixed. All 

dihedrals in the ligand were included except those filtered out as described above. All 

resulting 254 PCA modes were used for conformational search from a randomly picked 

bound state from the MD. The MAXSTEP was set to 2000 step, with the STEPSIZE 

equaled to 0.05 and the vdW radius scaling factor COLLISION_PAIR_SCALE equaled 

to 0.5. Six consecutive search runs were performed until the ligand escaped from the 

binding site. From each run the resulting path trajectories were examined by the user to 

select the most plausible trajectory for continuing the next run. In this case the criteria 

included 1) not significantly deformed protein, 2) more open space for ligand to 

dissociate, or more specifically, more open Loop 6, 3) no tumbling motion of the ligand 

in the binding site at the initial stage and 4) ligand not going to the indole tunnel to the β-

subunit. 
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Figure 6.8. Structure of the α-subunit of tryptophan synthase. Loop 6 and Loop 2 are 

shown in orange and red. Bound state G3P is shown in green. 

6.3 Results and Discussion 

In the following section, we first illustrate the basic idea of the mechanism of the PSIM 

method with a typical toy model molecule, alanine dipeptide. Then the performance of 

multi-layer internal coordinate definition is evaluated by using HIVp as a model system 

in comparison with α-carbon PCA and classic internal coordinate definition. The capacity 

of identifying dissociation pathways is demonstrated with cryptophane-Me4N+ complex 

which has a slow dissociation kinetics. To show that the dissociation pathway from P is 

reasonable, the search trajectories are compared to MD conformations with β-

Cyclodextrin-2-naphthylethanol as the model system because this system has a fast 
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kinetics and MD is able to produce multiple dissociation trajectories for it. Finally this 

method is applied to tryptophan synthase-G3P system to show the full capacity of this 

method in large scale molecules. 

6.3.1 Performance of the Multi-Layer-Internal Coordinate Definition 

As discussed above, the classical internal coordinate definition leads to artifacts in the PC 

motion produced by ordinary vector calculation. The multi-layer internal coordinate 

definition, on the other hand, avoids the accumulated dependence of dihedral angles by 

breaking the dependence and reconnecting the further dihedrals to the near region to the 

primary root. In this ways, the artifact in the overall motion has been eliminated. A 

comparison of α-carbon PC motion and multi-layer internal definition based internal PC 

motion is shown in a) and b) Figure 6.9. By observing the corrected internal PC motions, 

it successfully reproduced the overall motion of the protein backbones, and moreover, it 

included the side chain details instead of only the backbone. Figure 6.10 shows the 

RMSF of the first internal PCA modes from multi-layer internal coordinate definition and 

standard internal coordinate definition in reference to the first mode of α-carbon PCA. 

This quantifies the performance of the multi-layer internal coordinate and the artifacts 

from classical internal coordinate. It can be noticed that even in the multi-layer definition, 

residue 47, 48 and 49 have significant deviation from the reference (In Figure 6.10). This 

is because the two monomers share the same multi-layer internal coordinate pattern while 

the motions in MD are not exactly symmetric. In the flap, both ends of the highly flexible 

loop are connected to the relatively rigid β-sheet, which makes the fragment motion 

dependence have duality in this region and results in the deviation. 
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Figure 6.9. A comparison between a) α-carbon PCA scaled by 2.67, b) dihedral PCA by 

using multi-level internal coordinate definition scaled by 1.0 and c) dihedral PCA by 

using standard linear type internal coordinate definition of HIVp scaled by 0.2. In a) and 

b) the motions of the HIVp have very high similarity, which the two monomers have 

scissoring motion with the two flaps opening and closing and the bottom part of the HIVp 

mostly is stationary. However, in c), the left monomer is stationary because the primary 

root of the internal coordinate is on the left monomer while the right monomer has 

overall translational and rotational motion because it is defined through the mobile loops 

of left monomer. The overall asymmetric behavior is the artifact from the accumulated 

dependence of dihedrals in the internal coordinate. 

 



 235 

 

Figure 6.10. The RMSF of first dihedral PCA mode from multi-level internal coordinate 

definition (black) and standard internal coordinate definition (gray) in reference to the 

first standard α-carbon PCA mode. Residues with RMSF greater than 0.5 Å are in blue, 

and that greater than 1.5 is in red, in the top structure and circled in the plot. 
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By limiting the view to each fragment, the motion is continuous and rigorous. Artifacts in 

the connection area (bond and angles) between groups can be observed when the motion 

is exaggerated. This is because there is no real bond or angles defined in the internal 

coordinates in such multi-layer definition. To minimize this artifact in the algorithm side, 

it performs minimization in every node test. In the user side, an error and trial approach is 

necessary in the fragmentation stage. Typically this is done by fragmenting the protein 

according to secondary structure, conducting internal PCA calculation, visualizing the 

motions of first few internal PCA modes with greatest eigenvalues and then modifying 

the root atoms and the fragmentation. The root atoms are recommended to be located on 

the α-carbon atoms to minimize the artifacts. One α-helix or β-sheet may be divided into 

multiple fragments depending on the length and flexibility and the loops are more often 

divided into more fragments with two to three residues in one fragment because the loops 

are more flexible.  

6.3.2 Pathway of Conformation Transitions for Alanine Dipeptide 

Here we first use a model system, alanine dipeptide, to illustrate how the PSIM method 

searches for new conformations and conformational transition pathways using internal 

PC modes obtained by MD simulations. We obtained four transition pathways from the 

PSIM method, starting along four directions, i.e. the positive and negative of the two PC 

modes. After post-process by mild minimization, more realistic transitions were obtained. 

The transition pathways and minimized pathways are shown in Figure6.7. The details of 

searching modes and number of steps are summarized in Table 6.2. 
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Table 6.2. The details of transition pathways. Searching directions are listed in order from 

top to bottom. Mode in use, its direction and number of steps are listed. 

For example in 1) in Figure 6.7, by distorting along Mode 1 positive direction for 18 

steps, the search hit into the green (15 kcal/mol) region. The acceptance test rejected 

further distortion. Therefore the search shifted to Mode 2 negative direction, because 

Mode 2 positive direction would also hit into the same energy barrier. After distorting for 

another 82 steps, the accumulative step number reached 100, which was predefined in the 

input file, and the search stopped near minimum C to output the transition path. The 

original pathway was straight on the PES because the search goes along exactly one PC 

mode at a time. It was able to cross the energy barrier in cyan (~7-8 kcal/mol) on its way 

to minimum C. After mild minimization, the pathway became more realistic; it starts 

from A, searching for a low energy route to regions near B, and then ends at C. Similarly, 

in 2), the search started from A along negative of Mode 1. It turns to negative of Mode 1 

when the search hits into the high energy barrier in red (40+ kcal/mol), and ends up in E.  

Path Mode Direction 
Number of 

Steps 

1 
1 + 18 

2 - 82 

2 
1 - 61 

2 - 39 

3 

2 + 23 

1 - 62 

2 + 15 

4 
2 - 56 

1 + 44 
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It is noticeable by comparing Pathway 1) and 2), that the acceptance does not rigorously 

correspond to an energy threshold. In 1), the searching mode shifts from Mode 1 to Mode 

2 before the search reaches the green region, while in 2), the searching mode shifts after it 

hits slightly into the red region. This is because the acceptance is more based on 

geometrical cutoff rather than energetic cutoff.  

6.3.3 Comparison with MD Conformations 

From the fingerprint angles, we classified the dissociation events into three groups, a) no 

glucose ring flipping, b) one glucose ring flipping and c) multiple glucose ring flipping. 

Representative dissociation trajectories from MD and PSIM and their plots of fingerprint 

angles are shown in Figure 6.11.  
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Figure 6.11. The comparison between MD dissociation events and dissociation events 

from PSIM. Trajectories are classified by number of glucose ring flipping in β-

cyclodextrin, where a) is no significant ring flipping, b) is one ring flipping and c) is 

multiple ring flipping. The bound and free conformations of β-cyclodextrin are shown on 

the left and in the middle of the figure. The plots of 7 β-cyclodextrin conformation 

fingerprint angles along trajectories are shown on the right. Corresponding glucose ring 

are labeled on the conformations using the same color as in the plots. The bound state 

conformation (rectangle), free state conformation (triangle) and moment of dissociation 

(hexagon) are indicated on the plots. 
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PSIM is able to find dissociation pathways with the glucose rings moving physically as 

MD does in all three groups, although PSIM is unable to recreate one exactly identical 

dissociation pathway as the MD simulation. The similarity between PSIM and MD 

trajectories is because that the motion of molecules in PSIM is under the government of 

internal principal motions from the MD simulations. In Group a), both MD and PSIM can 

find dissociation pathways in which the glucose rings do not flip significantly. In 

addition, in both trajectories, the fingerprint angles change slightly and the cavity of the 

host molecule shrinks as the ligand dissociates. In Group b), the MD and PSIM starts 

from exactly the same conformation, where one glucose ring is parallel to the regression 

plane of the entire molecule while other six are perpendicular to it. In both MD and 

PSIM, the same glucose ring (arrowed in gray) flips in the dissociation events. In Group 

c), both MD and PSIM find dissociation pathways, in which multiple glucose rings flip. 

More interestingly, in the PSIM trajectory, all glucose rings flip to the pose perpendicular 

to the regression plane of the entire molecule.  

The PSIM evolves the trajectories in different way from the MD. In PSIM, the 

conformations of molecules are moved stepwise, based on internal PC motions and the 

acceptance test, which is fundamentally different from MD in which the motions are 

guided by classical mechanics. Therefore, the fingerprint plots from PSIM and MD have 

distinct behaviors. In MD plots, the fingerprint angles still vibrate significantly even after 

the trajectories are smoothed. In PSIM, there are local vibrations but the fingerprint 

angles move generally towards one defined direction without many back and forth 

motions. However, the conformational transitions are still correlated with the dissociation 
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event of the ligand. Therefore, the dissociation trajectories from PSIM are useful 

guidance of the physically meaningful motions of the molecular systems. 

6.3.4 Tetramethyl Ammonium Unbinding from Cryptophane-E. Hist: Finding the 

Pathways and the Corresponding Free Energy Barriers 

The cryptophane-ME4N
+ complex has a slow dissociation rate constant (koff = 4.81 x 10-2 

1/s; residence time = 14 s) 106 which is impractical to use classical MD simulations to 

sample its dissociation pathways 25-28. Using 63 PC modes constructed from a 20 ns MD 

simulation for the bound complex, PSIM successfully found 4 dissociation pathways in 

8.3 h wall time. The trajectories are similar to each other because of the symmetry of the 

host molecule. One representative dissociation pathway is shown in Figure 6.12. The two 

methoxybenzyl groups serve as a gate for ligand binding/unbinding, and the gate is 

closed when the cryptophane host are in a free state and bound to a guest such as 

tetramethylammonium. Our search found that the methoxy groups need to rotate away to 

open the gate during ligand dissociation processes Figure 6.13. We also compare one 

pathway that PSIM found with one by the hopping minima method and one by simply 

pulling tetramethylammonium from the pocket (Figure 6.12). All three methods show the 

gate opening for the ligand to pass through the window. Different from the pulling test 

that tetramethylammonium is pulled directly toward the solvent, the pathways had 

tetramethylammonium that kept contacts with the surface of the host molecule. This is 

more reasonable than the pulling test because tetramethylammonium still gain 

intermolecular attractions before completely leaving cryptophane. Similar association 
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pathways can be found using the hopping minima method, which connects multiple local 

energy minima using normal modes to build the association pathways. 

 

Figure 6.12. The original dissociation pathways found by PSIM, Hopping Minima, and 

simply pulling the ligand from one direction. The dissociation path is shown in yellow. 

 

Figure 6.13. The post processed snapshots of crptophane-tetramethyl ammonium in the 

bound state (a) and the moment when the ligand cross the dissociation window (b). The 

ligand is shown in vdW representation. 

To reveal the free energy barrier for ligand unbinding, umbrella sampling, together with 

the weighted histogram analysis method (WHAM), were used to plot a potential of mean 
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force (PMF) profile (Figure 6.14). The initial conformations were chosen based on a 

dissocaition pathway found by PSIM, as detailed in Method. The energy barrier of 

dissociation ∆Gd,calc 
‡

 is 16.8 kcal/mol, and the association barrier ∆Ga,calc
‡

 is 9.1 kcal/mol. 

The binding affinity computed from this pathway yields -7.8 kcal/mol, which is in good 

agreement with experimental measurement ΔG°= -7.3 kcal/mol 106. For protein-ligand 

complex systems, significantly more dissociaion pathways are antificated to find. To 

thoroughly investigate the barriers which few conformations may be available for 

computing a free energy profile, methods other than umbrella sampling may need to be 

utilized. 

 

Figure 6.14. This is the free energy plot of the dissociation pathways constructed based 

on the trajectory from PSIM.  
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6.3.5 Application to Protein-Ligand System 

This example is to show the ability of PSIM algorithm to find the dissociation pathway in 

protein systems. G3P is the byproduct of the chemical reaction happening in the α-

subunit of tryptophan synthase which consists of 266 residues. After the chemical 

reaction, the major product indole undergoes the transportation through the α-β tunnel 

into the β-subunit while the G3P is no necessary for further reaction and released into the 

cell by the opening of Loop 6.  

 

Figure 6.15. Tryptophan α-subunit-G3P dissociation pathway found by the Internal PCA 

Search method. The protein is shown in gray with Loop 6 highlighted in orange. The 

ligand is shown in green. Important residues shown in Figure 6.8 are also shown in this 

figure. In the process of the dissociation path found by the search, the protein maintains 

its native conformation except that the Loop 6 moves away from the native state and 

opens the dissociation pathway for the G3P. The G3P escapes from the space originally 

hindered by Loop 6. 
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In the 10 ns MD simulation of tryptophan-synthase-G3P complex, no major 

conformational change of protein was observed and the ligand remains in the binding site 

stably without any observable rotation or translation. We applied the conformational 

search method on the α-subunit with G3P to illustrate its ability of finding the 

dissociation pathway. After six continuous runs by starting from selected conformation 

from the previous run, the G3P was freed from the binding site of α-subunit of tryptophan 

synthase. In the process, the protein maintained its native state because first non-relevant 

portion of the protein was kept fixed in the conformational search and second the RMSD 

cutoff of the protein disallowed any huge deformation.  

The dissociation pathway of G3P is shown in Figure 6.15. Loop 6 moves away from its 

native state towards the β-subunit, and opens up the dissociation pathway for the G3P 

with the co-operation of several other α-helices and loops near the binding site. A closer 

look reveals that first the T182, which serves as a wedge in the binding site, is taken out 

with Loop 6, and the movement of residue 180 to 187 on Loop 6 frees some space in the 

binding site, so that the hydrophobic interaction between the G3P and F211, hydrogen 

bonding between the G3P and S234 are lost. As the confinement in the binding site gets 

looser and looser, the G3P becomes more and more disordered with significant tumbling 

in the binding site. After the Loop 6 fully opens, the G3P stays in the binding site for a 

short period of time, because of the existence of hydrogen bonding between G3P and the 

backbone of F211. When the G3P explores the wide-open binding site and breaks the last 

hydrogen bond, it completely dissociates from the α-subunit.  
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This method generates the trajectories in which the ligand moves the most from the very 

beginning of the search and the relevance of the trajectories generated as time goes 

decreases generally. Because the possible combinations of the internal PCA modes are 

innumerous, it is unnecessary to explore all combinations of the modes. It requires the 

user to examine the resulting trajectories while the search is still ongoing, and shut it 

down when reasonable trajectories have been found. In this manner, the computational 

time for the six runs of tryptophan synthase is counted to be 17.05 h for the effective 

runs, and 146.4 h for all examined trajectories.   

6.4 General Comments 

This method is a PCA mode distortion based conformational search method and shares 

some similarity with the normal mode based methods 76-79. PSIM method uses an 

orthogonal set of searching directions which characters the intrinsic motions of the system 

although this set of directions is from PCA mode instead of normal mode. New 

conformations are also generated by distorting some given conformation assuming that the 

intrinsic motions lead the system to new physical portions of the conformational space. 

However there are also several noticeable differences that distinguishes PSIM from the 

other methods. First this method does not depend on full minimization and yields 

continuous non-minimized trajectories of paths. This gives it two advantages, i.e. it avoids 

the computationally expensive minimization routines and thus gains efficiency, and it 

readily gives the well-connected paths of the dissociation instead of discrete minima to be 

connected by methods like Markov State Model 107, 108 or Hopping minima 101. The second 
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difference is this method is designed for identification of possible dissociation pathways 

only, rather than a general purpose conformational search methods.  

6.5 Conclusions 

In this work, we presented an internal PCA with multiple-layer internal coordinate 

definition. Internal PC motions that are comparable to Cartesian PCA are reproduced by 

using this method. We also proposed a novel PSIM method based on distortion along 

internal PCA modes and illustrated its capacity of finding dissociation pathways that are 

physical meaningful with several examples. This method avoids frequent energy 

evaluation and energy minimization by using a collision test which can be viewed as a 

simplified potential, and thus gains efficiency in protein-sized complex systems. We 

discussed practical aspects of the PSIM methods by application to host-guest systems and 

protein-ligand system. 

 

  



 249 

6.6 References 

1. Balaraman, G. S., Park, I.-H., Jain, A., and Vaidehi, N. (2011) Folding of Small 

Proteins Using Constrained Molecular Dynamics. Journal of Physical Chemistry 

B 115, 7588-7596 

2. Lane, T. J., Shukla, D., Beauchamp, K. A., and Pande, V. S. (2013) To 

Milliseconds and Beyond: Challenges in the Simulation of Protein Folding. 

Current Opinion in Structural Biology 23, 58-65 

3. Best, R. B., Hummer, G., and Eaton, W. A. (2013) Native Contacts Determine 

Protein Folding Mechanisms in Atomistic Simulations. Proceedings of the 

National Academy of Sciences of the United States of America 110, 17874-17879 

4. Sulkowska, J. I., Noel, J. K., and Onuchic, J. N. (2013) Energy Landscape of 

Knotted Protein Folding. Biophysical Journal 104, 370A-370A 

5. Gelman, H., and Gruebele, M. (2014) Fast Protein Folding Kinetics. Quarterly 

Reviews of Biophysics 47, 95-142 

6. Gnanakaran, S., Nymeyer, H., Portman, J., Sanbonmatsu, K. Y., and Garcia, A. E. 

(2003) Peptide Folding Simulations. Current Opinion in Structural Biology 13, 

168-174 

7. Klenin, K., Strode, B., Wales, D. J., and Wenzel, W. (2011) Modelling Proteins: 

Conformational Sampling and Reconstruction of Folding Kinetics. Biochimica Et 

Biophysica Acta-Proteins and Proteomics 1814, 977-1000 

8. Wedberg, R., Abildskov, J., and Peters, G. H. (2012) Protein Dynamics in 

Organic Media at Varying Water Activity Studied by Molecular Dynamics 

Simulation. Journal of Physical Chemistry B 116, 2575-2585 



 250 

9. Frappier, V., and Najmanovich, R. J. (2014) A Coarse-Grained Elastic Network 

Atom Contact Model and Its Use in the Simulation of Protein Dynamics and the 

Prediction of the Effect of Mutations. Plos Computational Biology 10 

10. Ioannidis, D., Papadopoulos, G. E., Anastassopoulos, G., Kortsaris, A., and 

Anagnostopoulos, K. (2015) Structural Properties and Interaction Energies 

Affecting Drug Design. An Approach Combining Molecular Simulations, 

Statistics, Interaction Energies and Neural Networks. Computational Biology and 

Chemistry 56, 7-12 

11. Paschek, D., Golub, B., and Ludwig, R. (2015) Hydrogen Bonding in A Mixture 

of Protic Ionic Liquids: A Molecular Dynamics Simulation Study. Physical 

Chemistry Chemical Physics 17, 8431-8440 

12. Zeng, J.-P., Dai, Y., Shi, W.-Y., Shao, J.-L., and Sun, G.-X. (2015) Molecular 

Dynamics Simulation on the Interaction Between Polymer Inhibitors and 

Anhydrite Surface. Surface and Interface Analysis 47, 896-902 

13. Barducci, A., Bonomi, M., Prakash, M. K., and Parrinello, M. (2013) Free-Energy 

Landscape of Protein Oligomerization From Atomistic Simulations. Proceedings 

of the National Academy of Sciences of the United States of America 110, E4708-

E4713 

14. Pontiggia, F., Pachov, D. V., Clarkson, M. W., Villali, J., Hagan, M. F., Pande, V. 

S., and Kern, D. (2015) Free Energy Landscape of Activation in a Signalling 

Protein at Atomic Resolution. Nature Communications 6 

15. Miao, Y., Feher, V. A., and McCammon, J. A. (2015) Gaussian Accelerated 

Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy 

Calculation. Journal of Chemical Theory and Computation 11, 3584-3595 



 251 

16. Held, M., and Noe, F. (2012) Calculating Kinetics and Pathways of Protein-

Ligand Association. European Journal of Cell Biology 91, 357-364 

17. Tiwary, P., Limongelli, V., Salvalaglio, M., and Parrinello, M. (2015) Kinetics of 

Protein-Ligand Unbinding: Predicting Pathways, Rates, and Rate-Limiting Steps. 

Proceedings of the National Academy of Sciences of the United States of America 

112, E386-E391 

18. Cavalli, A., Spitaleri, A., Saladino, G., and Gervasio, F. L. (2015) Investigating 

Drug-Target Association and Dissociation Mechanisms Using Metadynamics-

Based Algorithms. Accounts of Chemical Research 48, 277-285 

19. Schmidtke, P., Javier Luque, F., Murray, J. B., and Barril, X. (2011) Shielded 

Hydrogen Bonds as Structural Determinants of Binding Kinetics: Application in 

Drug Design. Journal of the American Chemical Society 133, 18903-18910 

20. Wang, Y., Lv, J., Zhu, L., and Ma, Y. (2012) CALYPSO: A Method for Crystal 

Structure Prediction. Computer Physics Communications 183, 2063-2070 

21. Zhu, Q., Oganov, A. R., and Lyakhov, A. O. (2012) Evolutionary Metadynamics: 

A Novel Method to Predict Crystal Structures. Crystengcomm 14, 3596-3601 

22. Abrol, R., Bray, J. K., and Goddard, W. A., III. (2012) Bihelix: Towards de novo 

Structure Prediction of an Ensemble of G-Protein Coupled Receptor 

Conformations. Proteins-Structure Function and Bioinformatics 80, 505-518 

23. Lyakhov, A. O., Oganov, A. R., Stokes, H. T., and Zhu, Q. (2013) New 

Developments in Evolutionary Structure Prediction Algorithm USPEX. Computer 

Physics Communications 184, 1172-1182 

24. Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S., Larson, R. H., Salmon, 

J. K., Young, C., Batson, B., Bowers, K. J., Chao, J. C., Eastwood, M. P., 

Gagliardo, J., Grossman, J. P., Ho, C. R., Ierardi, D. J., Kolossvary, I., Klepeis, J. 



 252 

L., Layman, T., McLeavey, C., Moraes, M. A., Mueller, R., Priest, E. C., Shan, 

Y., Spengler, J., Theobald, M., Towles, B., and Wang, S. C. (2008) Anton, a 

Special-Purpose Machine for Molecular Dynamics Simulation. Communications 

of the Acm 51, 91-97 

25. Shaw, D. E., Grossman, J. P., Bank, J. A., Batson, B., Butts, J. A., Chao, J. C., 

Deneroff, M. M., Dror, R. O., Even, A., Fenton, C. H., Forte, A., Gagliardo, J., 

Gill, G., Greskamp, B., Ho, C. R., Ierardi, D. J., Iserovich, L., Kuskin, J. S., 

Larson, R. H., Layman, T., Li-Siang, L., Lerer, A. K., Li, C., Killebrew, D., 

Mackenzie, K. M., Mok, S. Y. H., Moraes, M. A., Mueller, R., Nociolo, L. J., 

Peticolas, J. L., Quan, T., Ramot, D., Salmon, J. K., Scarpazza, D. P., Schafer, U. 

B., Siddique, N., Snyder, C. W., Spengler, J., Tang, P. T. P., Theobald, M., Toma, 

H., Towles, B., Vitale, B., Wang, S. C., and Young, C. (2014) Anton 2: Raising 

the Bar for Performance and Programmability in a Special-Purpose Molecular 

Dynamics Supercomputer. SC14: International Conference for High Performance 

Computing, Networking, Storage and Analysis, 41-53 

26. Arkhipov, A., Shan, Y., Das, R., Endres, N. F., Eastwood, M. P., Wemmer, D. E., 

Kuriyan, J., and Shaw, D. E. (2013) Architecture and Membrane Interactions of 

the EGF Receptor. Cell 152, 557-569 

27. Decherchi, S., Berteotti, A., Bottegoni, G., Rocchia, W., and Cavalli, A. (2015) 

The Ligand Binding Mechanism to Purine Nucleoside Phosphorylase Elucidated 

via Molecular Dynamics and Machine Learning. Nature Communications 6 

28. Pierce, L. C. T., Salomon-Ferrer, R., de Oliveira, C. A. F., McCammon, J. A., and 

Walker, R. C. (2012) Routine Access to Millisecond Time Scale Events with 

Accelerated Molecular Dynamics. Journal of Chemical Theory and Computation 

8, 2997-3002 



 253 

29. Schlitter, J., Engels, M., and Kruger, P. (1994) Targeted Molecular-Dynamics - A 

New Approach for Searching Pathways of Conformational Transitions. Journal of 

Molecular Graphics 12, 84-89 

30. Leech, J., Prins, J. F., and Hermans, J. (1996) SMD: Visual Steering of Molecular 

Dynamics for Protein Design. Ieee Computational Science & Engineering 3, 38-

45 

31. Raiteri, P., Laio, A., Gervasio, F. L., Micheletti, C., and Parrinello, M. (2006) 

Efficient Reconstruction of Complex Free Energy Landscapes by Multiple 

Walkers Metadynamics. Journal of Physical Chemistry B 110, 3533-3539 

32. Laio, A., Rodriguez-Fortea, A., Gervasio, F. L., Ceccarelli, M., and Parrinello, M. 

(2005) Assessing the Accuracy of Metadynamics. Journal of Physical Chemistry 

B 109, 6714-6721 

33. Ensing, B., De Vivo, M., Liu, Z. W., Moore, P., and Klein, M. L. (2006) 

Metadynamics as a Tool for Exploring Free Energy Landscapes of Chemical 

Reactions. Accounts of Chemical Research 39, 73-81 

34. Bussi, G., Laio, A., and Parrinello, M. (2006) Equilibrium Free Energies From 

Nonequilibrium Metadynamics. Physical Review Letters 96, 4 

35. Barducci, A., Bonomi, M., and Parrinello, M. (2011) Metadynamics. Wiley 

Interdisciplinary Reviews-Computational Molecular Science 1, 826-843 

36. Marinelli, F., and Faraldo-Gomez, J. D. (2015) Ensemble-Biased Metadynamics: 

A Molecular Simulation Method to Sample Experimental Distributions. 

Biophysical Journal 108, 2779-2782 

37. Wu, X. W., and Brooks, B. R. (2003) Self-Guided Langevin Dynamics 

Simulation Method. Chemical Physics Letters 381, 512-518 



 254 

38. Rudd, R. E., and Broughton, J. Q. (1998) Coarse-Grained Molecular Dynamics 

and the Atomic Limit Of Finite Elements. Physical Review B 58, R5893-R5896 

39. Hamelberg, D., Mongan, J., and McCammon, J. A. (2004) Accelerated Molecular 

Dynamics: A Promising and Efficient Simulation Method for Biomolecules. 

Journal of Chemical Physics 120, 11919-11929 

40. Doshi, U., and Hamelberg, D. (2014) Achieving Rigorous Accelerated 

Conformational Sampling in Explicit Solvent. Journal of Physical Chemistry 

Letters 5, 1217-1224 

41. Hornak, V., and Simmerling, C. (2004) Development of Softcore Potential 

Functions for Overcoming Steric Barriers in Molecular Dynamics Simulations. 

Journal of Molecular Graphics & Modelling 22, 405-413 

42. Bello-Rivas, J. M., and Elber, R. (2015) Exact Milestoning. Journal of Chemical 

Physics 142 

43. Faradjian, A. K., and Elber, R. (2004) Computing Time Scales From Reaction 

Coordinates by Milestoning. Journal of Chemical Physics 120, 10880-10889 

44. Chung, H. S., Louis, J. M., and Eaton, W. A. (2009) Experimental Determination 

of Upper Bound for Transition Path Times in Protein Folding From Single-

Molecule Photon-By-Photon Trajectories. Proceedings of the National Academy 

of Sciences of the United States of America 106, 11837-11844 

45. Bacci, M., Vitalis, A., and Caflisch, A. (2015) A Molecular Simulation Protocol 

to Avoid Sampling Redundancy and Discover New States. Biochimica Et 

Biophysica Acta-General Subjects 1850, 889-902 

46. Zhou, T., and Caflisch, A. (2012) Free Energy Guided Sampling. Journal of 

Chemical Theory and Computation 8, 2134-2140 



 255 

47. Dickson, A., and Brooks, C. L., III. (2014) WExplore: Hierarchical Exploration of 

High-Dimensional Spaces Using the Weighted Ensemble Algorithm. Journal of 

Physical Chemistry B 118, 3532-3542 

48. Harada, R., and Kitao, A. (2013) Parallel Cascade Selection Molecular Dynamics 

(PaCS-MD) to Generate Conformational Transition Pathway. Journal of 

Chemical Physics 139, 10 

49. Harada, R., and Kitao, A. (2015) Nontargeted Parallel Cascade Selection 

Molecular Dynamics for Enhancing the Conformational Sampling of Proteins. 

Journal of Chemical Theory and Computation 11, 5493-5502 

50. Harada, R., Takano, Y., and Shigeta, Y. (2014) Fluctuation Flooding Method 

(FFM) for Accelerating Conformational Transitions of Proteins. Journal of 

Chemical Physics 140 

51. Harada, R., Takano, Y., and Shigeta, Y. (2015) Enhanced Conformational 

Sampling Method for Proteins Based on the TaBoo SeArch Algorithm: 

Application to the Folding of a Mini-Protein, Chignolin. Journal of 

Computational Chemistry 36, 763-772 

52. Harada, R., Nakamura, T., Takano, Y., and Shigeta, Y. (2015) Protein Folding 

Pathways Extracted by OFLOOD: Outlier FLOODing Method. Journal of 

Computational Chemistry 36, 97-102 

53. Voter, A. F. (1998) Parallel Replica Method for Dynamics of Infrequent Events. 

Physical Review B 57, 13985-13988 

54. Berg, B. A., and Neuhaus, T. (1991) Multicanonical Algorithms for 1st Order 

Phase-Transitions. Physics Letters B 267, 249-253 

55. Sugita, Y., and Okamoto, Y. (1999) Replica-Exchange Molecular Dynamics 

Method for Protein Folding. Chemical Physics Letters 314, 141-151 



 256 

56. Yamamori, Y., and Kitao, A. (2013) MuSTAR MD: Multi-Scale Sampling Using 

Temperature Accelerated and Replica Exchange Molecular Dynamics. Journal of 

Chemical Physics 139, 11 

57. Bolhuis, P. G., Chandler, D., Dellago, C., and Geissler, P. L. (2002) Transition 

Path Sampling: Throwing Ropes Over Rough Mountain Passes, in the Dark. 

Annual Review of Physical Chemistry 53, 291-318 

58. Dellago, C., Bolhuis, P. G., Csajka, F. S., and Chandler, D. (1998) Transition Path 

Sampling and the Calculation of Rate Constants. Journal of Chemical Physics 

108, 1964-1977 

59. Swenson, D. W. H., and Bolhuis, P. G. (2014) A Replica Exchange Transition 

Interface Sampling Method With Multiple Interface Sets for Investigating 

Networks of Rare Events. Journal of Chemical Physics 141 

60. Metropolis, N., and Ulam, S. (1949) The Monte Carlo Method. Journal of the 

American Statistical Association 44, 335-341 

61. Caflisch, R. E. (1998) Monte Carlo and Quasi-Monte Carlo Methods. Acta 

Numerica 7, 1-49 

62. Pangali, C., Rao, M., and Berne, B. J. (1978) Novel Monte-Carlo Scheme for 

Simulating Water and Aqueous-Solutions. Chemical Physics Letters 55, 413-417 

63. Rossky, P. J., Doll, J. D., and Friedman, H. L. (1978) Brownian Dynamics as 

Smart Monte-Carlo Simulation. Journal of Chemical Physics 69, 4628-4633 

64. Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987) Hybrid 

Monte-Carlo. Physics Letters B 195, 216-222 



 257 

65. Frantz, D. D., Freeman, D. L., and Doll, J. D. (1990) Reducing Quasi-Ergodic 

Behavior in Monte-Carlo Simulations by J-Walking - Applications to Atomic 

Clusters. Journal of Chemical Physics 93, 2769-2784 

66. Lyubartsev, A. P., Martsinovski, A. A., Shevkunov, S. V., and 

Vorontsovvelyaminov, P. N. (1992) New Approach to Monte-Carlo Calculation 

of the Free-Energy - Method of Expanded Ensembles. Journal of Chemical 

Physics 96, 1776-1783 

67. Marinari, E., and Parisi, G. (1992) Simulated Tempering - A New Monte-Carlo 

Scheme. Europhysics Letters 19, 451-458 

68. Matro, A., Freeman, D. L., and Topper, R. Q. (1996) Computational Study of the 

Structures and Thermodynamic Properties of Ammonium Chloride Clusters Using 

A Parallel Jump-Walking Approach. Journal of Chemical Physics 104, 8690-

8702 

69. Hukushima, K., and Nemoto, K. (1996) Exchange Monte Carlo Method and 

Application to Spin Glass Simulations. Journal of the Physical Society of Japan 

65, 1604-1608 

70. Geyer, C. J., and Thompson, E. A. (1995) Annealing Markov-Chain Monte-Carlo 

With Applications to Ancestral Inference. Journal of the American Statistical 

Association 90, 909-920 

71. Zhou, R. H., and Berne, B. J. (1997) Smart Walking: A New Method for 

Boltzmann Sampling of Protein Conformations. Journal of Chemical Physics 107, 

9185-9196 

72. Wang, F. G., and Landau, D. P. (2001) Efficient, Multiple-Range Random Walk 

Algorithm to Calculate the Density of States. Physical Review Letters 86, 2050-

2053 



 258 

73. Andricioaei, I., Straub, J. E., and Voter, A. F. (2001) Smart Darting Monte Carlo. 

Journal of Chemical Physics 114, 6994-7000 

74. Brown, S., and Head-Gordon, T. (2003) Cool Walking: A New Markov Chain 

Monte Carlo Sampling Method. Journal of Computational Chemistry 24, 68-76 

75. Li, H., Li, G., Berg, B. A., and Yang, W. (2006) Finite Reservoir Replica 

Exchange to Enhance Canonical Sampling in Rugged Energy Surfaces. Journal of 

Chemical Physics 125 

76. Kolossvary, I., and Guida, W. C. (1996) Low Mode Search. An Efficient, 

Automated Computational Method for Conformational Analysis: Application to 

Cyclic and Acyclic Alkanes and Cyclic Peptides. Journal of the American 

Chemical Society 118, 5011-5019 

77. Kolossvary, I., and Keseru, G. M. (2001) Hessian-Free Low-Mode 

Conformational Search for Large-Scale Protein Loop Optimization: Application 

to c-jun N-Terminal Kinase JNK3. Journal of Computational Chemistry 22, 21-30 

78. Chang, C. E., and Gilson, M. K. (2003) Tork: Conformational Analysis Method 

for Molecules and Complexes. Journal of Computational Chemistry 24, 1987-

1998 

79. Labute, P. (2010) LowModeMD-Implicit Low-Mode Velocity Filtering Applied 

to Conformational Search of Macrocycles and Protein Loops. Journal of 

Chemical Information and Modeling 50, 792-800 

80. Marechal, J.-D., and Perahia, D. (2008) Use of Normal Modes for Structural 

Modeling of Proteins: The Case Study of Rat Heme Oxygenase 1. European 

Biophysics Journal with Biophysics Letters 37, 1157-1165 



 259 

81. Kantarci-Carsibasi, N., Haliloglu, T., and Doruker, P. (2008) Conformational 

Transition Pathways Explored by Monte Carlo Simulation Integrated with 

Collective Modes. Biophysical Journal 95, 5862-5873 

82. Zheng, W. J., and Brooks, B. R. (2006) Modeling Protein Conformational 

Changes by Iterative Fitting of Distance Constraints Using Reoriented Normal 

Modes. Biophysical Journal 90, 4327-4336 

83. Mu, Y. G., Nguyen, P. H., and Stock, G. (2005) Energy Landscape of a Small 

Peptide Revealed by Dihedral Angle Principal Component Analysis. Proteins-

Structure Function and Bioinformatics 58, 45-52 

84. Altis, A., Nguyen, P. H., Hegger, R., and Stock, G. (2007) Dihedral Angle 

Principal Component Analysis of Molecular Dynamics Simulations. Journal of 

Chemical Physics 126 

85. Maisuradze, G. G., and Leitner, D. M. (2007) Free Energy Landscape of a 

Biomolecule in Dihedral Principal Component Space: Sampling Convergence and 

Correspondence Between Structures and Minima. Proteins-Structure Function 

and Bioinformatics 67, 569-578 

86. Altis, A., Otten, M., Nguyen, P. H., Hegger, R., and Stock, G. (2008) 

Construction of the Free Energy Landscape of Biomolecules via Dihedral Angle 

Principal Component Analysis. Journal of Chemical Physics 128 

87. Maisuradze, G. G., Liwo, A., and Scheraga, H. A. (2009) Principal Component 

Analysis for Protein Folding Dynamics. Journal of Molecular Biology 385, 312-

329 

88. Riccardi, L., Nguyen, P. H., and Stock, G. (2009) Free-Energy Landscape of 

RNA Hairpins Constructed via Dihedral Angle Principal Component Analysis. 

Journal of Physical Chemistry B 113, 16660-16668 



 260 

89. Cortes, J., Simeon, T., de Angulo, V. R., Guieysse, A. D., Remaud-Simeon, M., 

and Tran, V. (2005) A Path Planning Approach for Computing Large-Amplitude 

Motions of Flexible Molecules. Bioinformatics 21, I116-I125 

90. Ruiz de Angulo, V., Cortes, J., and Simeon, T. (2005) BioCD : An Efficient 

Algorithm for Self-Collision and Distance Computation Between Highly 

Articulated Molecular Models. MIT Press, Robotics: Science and Systems 

Conference 

91. Al-Bluwi, I., Vaisset, M., Simeon, T., and Cortes, J. (2013) Modeling Protein 

Conformational Transitions by a Combination of Coarse-Grained Normal Mode 

Analysis and Robotics-Inspired Methods. Bmc Structural Biology 13 

92. Miyazawa, T., and Pitzer, K. S. (1959) Internal Rotation and Infrared Spectra of 

Formic Acid Monomer and Normal Coordinate Treatment of Out-of-Plane 

Vibrations of Monomer, Dimer, And Polymer. Journal of Chemical Physics 30, 

1076-1086 

93. Parsons, J., Holmes, J. B., Rojas, J. M., Tsai, J., and Strauss, C. E. M. (2005) 

Practical Conversion From Torsion Space to Cartesian Space for in Silico Protein 

Synthesis. Journal of Computational Chemistry 26, 1063-1068 

94. Case, D. A., Berryman, J. T., Betz, R. M., Cerutti, D. S., Cheatham, T. E., 

Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., 

Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., 

Luchko, T., Luo, R., Madej, B., Merz, K. M., Monard, G., Needham, P., Nguyen, 

H., Nguyen, H. T., Omelyan, I., Onufriev, A., Roe, D. R., Roitberg, A., Salomon-

Ferrer, R., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., 

Wolf, R. M., Wu, X., York, D. M., and Kollman, P. A. (2015) Amber 2015. 

University of California, San Francisco 



 261 

95. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and 

Simmerling, C. (2015) ff14SB: Improving the Accuracy of Protein Side Chain 

and Backbone Parameters from ff99SB. Journal of Chemical Theory and 

Computation 11, 3696-3713 

96. Still, W. C., Tempczyk, A., Hawley, R. C., and Hendrickson, T. (1990) 

Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. 

Journal of the American Chemical Society 112, 6127-6129 

97. Pedretti, A., Villa, L., and Vistoli, G. (2004) VEGA - An Open Platform to 

Develop Chemo-Bio-Informatics Applications, Using Plug-in Architecture and 

Script Programming. Journal of Computer-Aided Molecular Design 18, 167-173 

98. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, 

D. S., and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: Automated 

Docking with Selective Receptor Flexibility. Journal of Computational Chemistry 

30, 2785-2791 

99. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. 

L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. 

Journal of Chemical Physics 79, 926-935 

100. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. 

(2004) Development and Testing of a General Amber Force Field. Journal of 

Computational Chemistry 25, 1157-1174 

101. Roberts, C. C., and Chang, C.-e. A. (2013) Ligand Binding Pathway Elucidation 

for Cryptophane Host-Guest Complexes. Journal of Chemical Theory and 

Computation 9, 2010-2019 

102. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., 

and Karplus, M. (1983) Charmm - A Program for Macromolecular Energy, 



 262 

Minimization, and Dynamics Calculations. Journal of Computational Chemistry 

4, 187-217 

103. Mackerell, A. D., Wiorkiewiczkuczera, J., and Karplus, M. (1995) An All-Atom 

Empirical Energy Function for the Simulation of Nucleic-Acids. Journal of the 

American Chemical Society 117, 11946-11975 

104. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., 

Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, 

L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., 

Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., 

Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. 

(1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics 

Studies of Proteins. Journal of Physical Chemistry B 102, 3586-3616 

105. Grossfield, A. WHAM: The Weighted Histogram Analysis Method. Version 2.0.9 

Ed. 

106. Garcia, C., Humiliere, D., Riva, N., Collet, A., and Dutasta, J. P. (2003) Kinetic 

and Thermodynamic Consequences of the Substitution of SMe for OMe 

Substituents of Cryptophane Hosts on the Binding of Neutral and Cationic Guests. 

Organic & Biomolecular Chemistry 1, 2207-2216 

107. Swope, W. C., Pitera, J. W., and Suits, F. (2004) Describing Protein Folding 

Kinetics by Molecular Dynamics Simulations. 1. Theory. Journal of Physical 

Chemistry B 108, 6571-6581 

108. Swope, W. C., Pitera, J. W., Suits, F., Pitman, M., Eleftheriou, M., Fitch, B. G., 

Germain, R. S., Rayshubski, A., Ward, T. J. C., Zhestkov, Y., and Zhou, R. 

(2004) Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 

2. Example Applications to Alanine Dipeptide and Beta-Hairpin Peptide. Journal 

of Physical Chemistry B 108, 6582-6594  



 263 

Chapter 7 Conclusion and Future Directions in Protein-Ligand Dissociation 

Research 

7.1 Conclusion 

Overall, small host-guest and protein-ligand complexes were used to study molecular 

recognition. Besides that, simulations obtained from these complexes were used to 

explore the roles of thermodynamics and kinetics. In addition, a novel computational tool 

was designed, which was inspired from the application and comprehension of existing 

methods. 

To start with, a method composed of an aggressive conformational search and a free 

energy calculation was used to study the binding affinity of a small bimolecular system, a 

series of ligand-nanoplate complexes. The secret behind the magic surfactant citrate was 

unraveled. The calculations support the experimental trends of anisotropic growth of the 

silver plates from the perspective of ligand-nanoplate interactions and provide insights 

into the mechanisms of the directional growth. The selectivity of surfactants on the two 

silver facts was attributed to the partial charge distribution, conformational fitness, 

surfactant flexibility, and entropic effects. Considering a good ligand should be flexible 

but not too flexible resulting in severe entropic penalty, two ligands were designed by 

mimicking the structure of trimesic acid. In this study the limitation of implicit solvent 

model is demonstrated again and raises the need for a better description of the 

thermodynamic properties using explicit solvent model. 
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Continuing the study of binding affinity and moving to the larger scale systems, the 

binding pose and binding affinity were studied with the TIM44-MitoBloCK-10 system. 

Due to a larger system size, the aggressive conformational search method used in the 

previous study is not efficient enough. Instead, a docking and MD approach was adopted 

and the binding pose was determined which explained the experimental mutation studies. 

This study demonstrates that the computational methods are able to provide atomistic and 

energetic insights to complement the experimental studies. 

An accurate evaluation of the binding enthalpy and entropy based in explicit solvent 

model was performed on the β-cyclodextrin complexes. Four trajectories for the complex, 

host, guest and pure water box were simulated using GPU accelerated MD. The enthalpy 

calculation was accomplished by potential energy calculation. The solute entropy change 

was evaluated based population analysis of the dihedral angle while the solvent entropy 

was calculated using the cell method. Other solvent entropy evaluation methods such as 

PCF method, IFST, GIST and 2PT were available to be used, but due to the advantages 

and ease of implementation, the cell method was chosen for this study. Beyond the 

domain of thermodynamics, the association/dissociation rates were directly extracted 

from the trajectories of β-cyclodextrin complexes and the kinetic-thermodynamic 

relationships were discussed. For such weak binding, the driving force is not necessarily 

the attraction between the host and guest but entropy played an important role. Due to the 

entropic driven binding process of the weak ligands, the association pathways also differ 

from the other ligands with strong attraction to the host. 
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Finally, to sample the dissociation process of protein-ligand systems, a novel 

conformational search algorithm was developed using a newly derived internal PCA 

method. The internal PCA method differs from the dihedral PCA through the way it 

constructs the internal coordinate. Also, it is able to reproduce atomistic motion of the 

system which resembles the α-carbon motions in the α-carbon PCA. Then the internal 

PCA search method utilizes the orthogonal set of internal PCA modes to search for the 

dissociation pathways. The efficiency of this method comes from the fact that it does not 

require full minimization or energy evaluation. Instead a collision test based acceptance 

test was introduced to ensure physical motions in the pathways. This method provides a 

new way to sampling the dissociation pathways.  

7.2 Future Works 

7.2.1 Cyclin-Dependent Kinase 8 (CDK8) Dissociation Pathway 

The cyclin-dependent kinase 8/cyclin C (CDK8/CycC) complex is one kinase system in 

the CDK family, and regarded as an attractive drug target. Similar to other kinases, this 

protein has an ATP binding site, which adopts the type I drugs that inhibit kinases non-

selectively, and an allosteric binding which allows selectivity due to structural differences 

among the kinases (Figure 7.1). CDK8 has a DMG motif which functions similarly as the 

DFG motif in other kinases. However, in a recent structure-kinetic relationship study 1, it 

was discovered that the flip of the DMG motif does not affect the residence time 2 of the 

inhibitors. This drove our interest to investigate the inhibitor dissociation pathway from 

CDK8. An MD study was performed to investigate the activation loop of CDK8 3. 

Considering the slow dissociation of the target inhibitor (residence time is 1626 min 1), 
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conventional MD is no longer capable of sampling the complete dissociation pathway. 

Therefore, the internal PCA search method can be used to generate an initial guess of the 

dissociation pathway, and conventional MD can be then used to refine the pathway. 

 

Figure 7.1. The structure of CDK8. The N-lobe is rendered in orange, the C-lobe is 

rendered in green, the activation loop is rendered in purple, and the DMG motif is 

rendered in blue. The ATP binding site and the allosteric binding site are on the left and 

right of the DMG motif respectively. 
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Figure 7.2. The dissociation pathway from internal PCA search. a) is the bound state, b) 

is the moment when the ligand cross the activation loop, and c) is the final state where the 

ligand stays in the allosteric binding site. The N-lobe is rendered in orange, the C-lobe is 

rendered in green, and the ligand is rendered in cyan. 
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Figure 7.3. The snapshots from MD resampled from the internal PCA search pathway. a) 

and b) are the intermediate state from two perspectives of view. c) and d) are the 

breathing conformation of the CDK8 found by conventional MD from two perspectives 

of view. a) and c) are aligned, and b) and d) are aligned. The color pattern is the same as 

in Figure 7.2. 

In the preliminary results, a dissociation pathway was found by the internal PCA search 

method (Figure 7.2). In this pathway, the ligand crossed the activation loop (Figure 7.2 

b), and sampled the allosteric binding site (Figure 7.2 c). The protein underwent 

breathing motion, in which the N-lobe moved away from the C-lobe. To refine the 

pathway, MD simulations were performed on a total of 62 frames. These frames were 

evenly distributed along the pathway from conformational search. From the simulations, 

one highly possible intermediate state was identified (Figure 7.3 a and b), in which the 
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ligand partially dissociates from the binding site and stays on the activation loop while 

the two lobes of the protein are closed. From the intermediate state, conventional MD 

was able to sample the breathing motion of the protein (Figure 7.3 c and d). 

In the future, further sampling will be continued from the conformation which led the 

protein to “breath”. In order to sample the complete unbinding event, the sampling will 

be continued towards bound state from the intermediate state. Another set of MD runs 

will be set up for the CDK8/CycC complex to investigate the effects from the partner 

protein. 

7.2.2 Improvement of Internal PCA Search Method 

 

Currently this method suffers from two major drawbacks; the acceptance test is efficient 

but at the same time lacks a description of attraction force between regions of the system; 

the algorithm uses a single thread minimizer, which slows down the overall efficiency of 

the method. These allows further improvement of the method. 

To address the first drawback, a multi-level model approach will be included in the 

algorithm. First, a coarse grained version 4 of the model will be constructed and 

corresponding PCA modes will be calculated. The coarse grained PCA modes will 

include the motions and amplitude of the motions, therefore these modes can be used to 

capture the attraction force between regions in the system. For example, regarding the 

breathing motion of CDK8 described in the previous section, in MD simulation, the hinge 

between the two lobes of CDK8 bends naturally to open up the binding sites, while in the 
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internal PCA search, the hinge is stretched exhibiting tension, even though the overall 

behavior is similar to that of MD (Figure 7.4). With the coarse grained PCA as an 

auxiliary acceptance test, such artifacts can be further eliminated.  

 

Figure 7.4. The comparison between MD (a) and internal PCA search (b) conformations. 

Both conformations are for the breathing motion of CDK8. The N-lobe of CDK8 is 

rendered in orange, and C-lobe in green. The hinge between the two lobes is more 

stretched in the internal PCA search result but more natural in the MD simulation. 

Regarding the second drawback about efficiency, a straightforward solution will be 

replacing the single thread minimizer to a multi-thread. Such minimizers exist in 

academically or commercially available packages including NAMD 5 and AMBER 6, and 

GPU acceleration of minimization 7 is also available. Therefore this issue is simply a 

matter of technical implementation.  
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