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A hardware system for real-time 
decoding of in vivo calcium imaging data
Zhe Chen1,2, Garrett J Blair2, Changliang Guo3,4, Jim Zhou1, 
Juan-Luis Romero-Sosa2, Alicia Izquierdo2,5, Peyman Golshani3,4,5, Jason Cong1, 
Daniel Aharoni3,4,5, Hugh T Blair2,5*

1Department of Electrical and Computer Engineering, University of California, 
Los Angeles, Los Angeles, United States; 2Department of Psychology, University 
of California, Los Angeles, Los Angeles, United States; 3David Geffen School 
of Medicine, University of California, Los Angeles, Los Angeles, United States; 
4Department of Neurology, David Geffen School of Medicine, University of California, 
Los Angeles, Los Angeles, United States; 5Integrative Center for Learning and 
Memory, University of California, Los Angeles, Los Angeles, United States

Abstract Epifluorescence miniature microscopes (‘miniscopes’) are widely used for in vivo 
calcium imaging of neural population activity. Imaging data are typically collected during a behav-
ioral task and stored for later offline analysis, but emerging techniques for online imaging can 
support novel closed-loop experiments in which neural population activity is decoded in real time to 
trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging 
systems must be optimally designed to maximize computational speed and efficiency while mini-
mizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-
time imaging and population decoding of in vivo calcium signals that is hardware compatible with all 
miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion 
stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per 
frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We 
show that DeCalciOn can accurately decode the position of rats (n = 12) running on a linear track 
from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors 
performed by rats (n = 2) during an instrumental task from calcium fluorescence in orbitofrontal 
cortex. DeCalciOn achieves high decoding accuracy at short latencies using innovations such as 
field-programmable gate array hardware for real-time image processing and contour-free methods 
to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable 
plug-and-play solution for real-time calcium imaging experiments in behaving animals.

Editor's evaluation
This article presents a novel realtime processing pipeline for miniscope imaging which enables accu-
rate decoding of behavioral variables and generation of feedback commands within less than 50ms. 
The efficiency of this important tool for experiments requiring close-loop interaction with brain 
activity is demonstrated based on compelling measurements in two experimental contexts. This 
pipeline will be useful for a wide range of questions in system neuroscience.

Introduction
Miniature epifluorescence microscopes (‘miniscopes’) can be worn on the head of an unrestrained 
animal to perform in vivo calcium imaging of neural population activity during free behavior (Ghosh 
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et al., 2011; Ziv et al., 2013; Cai et al., 2016; Aharoni et al., 2019; Hart et al., 2020). Imaging data 
are usually collected while subjects are engaged in a task and stored for later offline analysis. Popular 
offline analysis packages such as CaImAn (Giovannucci et al., 2019) and MIN1PIPE (Deng et al., 
2015) employ algorithms (Pnevmatikakis et al., 2016) for demixing crossover fluorescence between 
multiple sources to extract calcium traces from single neurons, but these algorithms cannot be imple-
mented in real time because they incur significant computing delays and rely on acausal computations. 
Emerging techniques for online trace extraction (Friedrich et al., 2017; Mitani and Komiyama, 2018; 
Chen et al., 2019; Chen et al., 2020; Chen et al., 2022a; Friedrich et al., 2021; Taniguchi et al., 
2021) offer potential for carrying out real-time imaging experiments in which closed-loop neurostim-
ulation or sensory feedback are triggered at short latencies in response to neural activity decoded 
from calcium fluorescence (Aharoni and Hoogland, 2019; Zhang et al., 2018; Liu et al., 2021). Such 
experiments could open new avenues for investigating the neural basis of behavior, developing brain–
machine interface devices, and preclinical testing of neurofeedback-based therapies for neurological 
disorders (Grosenick et al., 2015). To advance these novel lines of research, it is necessary to develop 
and disseminate accessible tools for online calcium imaging and neural population decoding.

Here we introduce DeCalciOn, a plug-and-play hardware device for Decoding Calcium Images 
Online that is compatible with existing miniscope devices which utilize the UCLA Miniscope DAQ 
interface board (Cai et al., 2016; Scott et al., 2018; de Groot et al., 2020; Blair et al., 2021). We 
show that this system can decode hippocampal CA1 calcium activity in unrestrained rats (n = 12) 
running on a linear track, and can also categorically classify behaviors performed by rats (n = 2) during 
an instrumental touchscreen task from orbitofrontal cortex (OFC) calcium activity. Performance tests 
show that the system can accurately decode up to 1024 calcium traces to trigger TTL outputs within 
<50 ms of fluorescence detection by the miniscope’s image sensor. To achieve these short real-time 
decoding latencies, DeCalciOn relies upon customized hardware for online image processing (Chen 
et al., 2019; Chen et al., 2022a) running in the fabric of a field-programmable gate array (FPGA); 
the system also utilizes efficient software for trace decoding (Chen et al., 2022b) that achieves micro-
second variability in decoding latencies by running on an ARM core under the FreeRTOS real-time 

Figure 1. Real-time imaging protocol and system hardware. (A) Sequence of steps for a real-time imaging and 
decoding session. (B) Miniscope connects to DAQ via coax cable, DAQ connects to Ultra96 via flywires, host PC 
connects to Ultra96 via Ethernet and to DAQ via USB 3.0; TTL pinouts from Ultra96 can drive closed-loop feedback 
stimulation from external devices.

https://doi.org/10.7554/eLife.78344
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operating system. We show that the time required for training the real-time decoder from example 
data (prior to the initiation of online imaging) can be minimized by employing contour-free methods 
for defining regions of interest (ROIs) from which calcium traces are extracted.

In summary, DeCalciOn provides the research community with a low-cost, open-source, easy-
to-use hardware platform for short latency real-time decoding of calcium trace population activity. All 
hardware, software, and firmware are openly available through miniscope.org.

Results
The DeCalciOn hardware system is implemented on an Avnet Ultra96 development board featuring 
a Xilinx Zynq Ultrascale + multiprocessor system-on-a-chip (MPSoC) with 2-GB DRAM (Figure 1A). A 
custom interface board mated to the Ultra96 receives real-time image data from a modified version of 
the UCLA Miniscope Data Acquisition (DAQ) interface, which has 14 flywires soldered to the printed 
circuit board (PCB) for transmitting deserialized video to the Ultra96 (pre-modified DAQ boards can 
be obtained through miniscope.org). Throughout online imaging sessions, the DeCalciOn system is 
controlled from a host PC running standard Miniscope DAQ software (to focus the lens and adjust the 
LED light source) alongside newly developed real-time interface (RTI) software which communicates 
with our custom ACTEV (Accelerator for Calcium Trace Extraction from Video) hardware accelerator, 
which runs in the fabric of the MPSoC’s FPGA. Raw video data (including real-time motion correc-
tion vectors) and calcium trace values are transmitted via Ethernet from the Ultra96 to a host PC for 
storage, so that additional analyses of calcium data can be performed offline. ACTEV accelerator for 
the two versions of the UCLA Miniscope used here (MiniLFOV and V4, both sampling at a frame rate of 
~20 Hz), as well as RTI software resources for the host PC, can be found at https://github.com/zhe-ch/​
ACTEV, (Chen, 2023 copy archived at swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82).

Steps of a real-time imaging session
DeCalcion is designed for conducting real-time calcium imaging experiments in freely behaving 
animals. Although the animal species, targeted brain regions, and behavioral tasks will necessarily 
differ depending on the goals of a given experiment, real-time imaging sessions conducted with 
DeCalciOn will generally be carried out by performing a sequence of five common steps (Figure 1B).

Step 1 is to mount the miniscope on the subject’s head and collect 1000 frames of data to derive 
a reference alignment image for online motion correction. It is preferable for the subject to be in a 
quiescent state during this initial data collection period, to minimize brain motion while the refer-
ence image data are being stored. Imaging and behavioral data are transmitted via Ethernet from 
the Ultra96 for storage on the host PC. After 1000 frames of data have been stored to the host PC 
(~50 s after the start of acquisition at the ~20 Hz frame rates used here), imaging acquisition auto-
matically pauses and the user is prompted to select a 128 × 128 pixel subregion of the image to use 
for motion correction. The host PC derives a reference image for motion correction by computing 
the mean image within the selected area over the 1000 frames of stored data. The reference image 
is then uploaded to the Ultra96 and data collection resumes with online motion correction enabled. 
Collecting the alignment data and uploading the reference frame takes ~3 min.

Step 2 is to collect an initial set of motion-corrected data for training the decoder. Online motion 
correction vectors are derived in real time for each frame and uploaded to the host PC for storage 
along with imaging and behavioral data. The time required to collect initial training data depends 
upon how much data is needed to train the decoder, which in turn depends upon the quality of calcium 
signals and what behaviors the decoder will be trained to predict. In performance tests presented 
here (see below), asymptotic accuracy for decoding a rat’s position on a linear track was achieved with 
as little as ~3 min of training data whereas asymptotic accuracy for classifying categorical behaviors 
during an instrumental task required 20–40 min of training data (~100 experimental trials). The size 
of the training dataset required for a given experiment can be determined in advance (prior to real-
time imaging sessions) by storing offline imaging data from the brain ROI while subjects are engaged 
in the experimental task, then carrying out offline simulations of real-time decoder performance with 
training sets of varying size to determine the minimum amount of training data needed for accurate 
decoding.

https://doi.org/10.7554/eLife.78344
http://miniscope.org/index.php/Main_Page
http://miniscope.org/index.php/Main_Page
https://github.com/zhe-ch/ACTEV
https://github.com/zhe-ch/ACTEV
https://archive.softwareheritage.org/swh:1:dir:52edbb3143496240abfe565f4e2262afcb445460;origin=https://github.com/zhe-ch/ACTEV;visit=swh:1:snp:ba0bd0b4439b682eb07220dc3c69e665abd285a5;anchor=swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Chen et al. eLife 2023;12:e78344. DOI: https://doi.org/10.7554/eLife.78344 � 4 of 28

Step 3 is to pause data acquisition so that the host PC can perform analyses to extract calcium 
traces from each frame of the initial training dataset. Calcium traces can be extracted by two methods: 
a contour-based method that requires 30–60 min of processing time on the host PC during Step 3 (for 
reasons explained below), or a contour-free method that requires no processing time during Step 3 
because this method allows calcium traces to be extracted online and stored to the host PC concur-
rently with collection of the initial training dataset, thereby obviating the need to devote additional 
time or effort to calcium trace extraction during Step 3. It is preferable for the miniscope to remain 
attached to the animal’s head throughout Step 3 (and Step 4), because removing and remounting 
the miniscope can introduce shifts in the focus or alignment of the brain image and thereby degrade 
the accuracy of subsequent real-time decoding. Since the contour-based method of calcium trace 
extraction consumes considerable processing time to perform offline identification of cell contours, 
it also incurs the inconvenience of monitoring the subject during this extended time period while the 
miniscope remains attached to the head.

Step 4 is to use extracted calcium traces for training a decoder to predict behavior from vectors 
of calcium trace values. The time required for this depends upon the complexity of the user-defined 
decoder that is being trained (the decoder is trained on the host PC and runs in real time on the 
Ultra96 ARM core; see ‘Stage 4: population decoding’). Thus, a multilayer deep network decoder 
would take longer to train than a single-layer linear classifier of the kind used here for performance 
testing. Training consumed <60 s for the linear classifiers used in performance tests presented below. 
Trained decoder weights (along with derived cell contour pixel masks if contour-based decoding was 
used) are uploaded from the host PC to the Ultra96 (a process which takes a maximum of 5 min to 
complete). Once the decoder weights have been uploaded, DeCalciOn is fully configured for real-
time decoding of calcium traces.

Step 5 is to resume the behavior experiment while DeCalciOn performs real-time imaging and 
decoding of calcium traces to generate feedback output at TTL pins.

Real-time image processing pipeline
Figure  2 shows a schematic diagram of DeCalciOn’s real-time image processing pipeline, which 
performs four sequential stages of image processing and calcium trace decoding: (1) online motion 
stabilization, (2) image enhancement via background removal, (3) calcium trace extraction, and (4) 
fluorescence vector decoding. As explained below, Stages 1–3 are performed by our custom ACTEV 
hardware accelerator (Chen et  al., 2019; Chen et  al., 2020; Chen et  al., 2022a) running in the 
programmable logic fabric of the FPGA, whereas Stage 4 is performed by a C++ program running 
under the FreeRTOS operating system on the MPSoC’s embedded ARM core.

Stage 1: motion stabilization
Incoming frames arriving to the Ultra96 from the Miniscope DAQ are cropped to a 512 × 512 subre-
gion, manually selected to contain the richest area of fluorescing neurons in each animal. Pixel data 
from the cropped subregion are stored to a BRAM buffer on the Ultra96 where it can be accessed 
by ACTEV accelerator running in the FPGA logic fabric. To correct for translational movement of 
brain tissue, a 128 × 128 pixel area with distinct anatomical features is manually selected during 
Stage 1 (Figure 1B) from within the 512 × 512 imaging subwindow to serve as a motion stabilization 
window. ACTEV’s image stabilization algorithm (Chen et al., 2019) rigidly corrects for translational 
movement of brain tissue by convolving the 128 × 128 stabilization window in each frame with a 17 
× 17 contrast filter kernel, and then applying a fast 2D FFT/IFFT-based algorithm to correlate the 
stabilization window contents with a stored reference template (derived by averaging 1000 contrast-
filtered frames from the beginning of each experimental session) to obtain a 2D motion displacement 
vector for the current frame. Video 1 demonstrates online performance of ACTEV’s real-time motion 
stabilization algorithm.

Stage 2: background removal
After motion stabilization, ACTEV removes background fluorescence from the 512 × 512 image by 
performing a sequence of three enhancement operations (Chen et al., 2020): smoothing via convolu-
tion with a 3 × 3 mean filtering kernel, estimating the frame background via erosion and dilation with 
a 19 × 19 structuring element (Lu et al., 2018), and subtracting the estimated background from the 

https://doi.org/10.7554/eLife.78344
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smoothed image. These operations produce an enhanced image in which fluorescing neurons stand 
out in contrast against the background (see Video 2; ‘Enhanced image’ in Figure 2). Calcium traces 
are then extracted (by methods described under ‘Stage 3’) from the motion-corrected (Stage 1) and 
background-removed (Stage 2) image.

Stage 3: trace extraction
To derive calcium trace values, the enhanced image is filtered through a library of up to 1024 binary 
pixel masks, each of which defines a unique ROI for extracting a calcium trace. Each mask is defined 
as a selected subset of pixels within a 25 × 25 square region that can be centered anywhere in the 
512 × 512 imaging subwindow (Figure 2, upper left). In performance test results presented below, 
decoding accuracy was compared for two different methods of selecting ROI pixels: contour-based 
versus contour-free. For contour-based ROI selection, the CaImAn (Giovannucci et al., 2019) algo-
rithm was used during the intermission period to identify contours of individual neurons in the training 

Figure 2. Online imaging and control pipelines. Serialized video data from the MiniLFOV are transmitted 
through a coaxial tether cable to the DAQ, where it is deserialized and transmitted via the flywire bus to ACTEV 
(Accelerator for Calcium Trace Extraction from Video) firmware programmed on the field-programmable gate array 
(FPGA) of the Ultra96. ACTEV crops the incoming image from its original size (1296 × 972 for the LFOV sensor 
shown here) down to a 512 × 512 subwindow (manually selected to contain the richest area of fluorescing neurons 
in each animal) before storing video frames to a BRAM buffer on the FPGA. Subsequent motion correction and 
calcium trace extraction steps are performed by the FPGA fabric as described in the main text. Extracted calcium 
traces are stored to DRAM from which they can be read as inputs to a decoder algorithm running on the Ultra96 
ARM core. Decoder output is fed to a logic mapper that can trigger TTL output signals from the Ultra96, which in 
turn can control external devices for generating closed-loop feedback.

https://doi.org/10.7554/eLife.78344
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dataset, and pixel mask ROIs were then aligned 
to the identified regions where neurons were 
located. For contour-free ROI selection, the 512 
× 512 imaging subwindow pixel was uniformly 
covered with a 32 × 32 array of square tiles, 
each measuring 16 × 16 pixels, which served as 
ROIs for calcium trace extraction. This contour-
free approach did not align ROIs with individual 
neurons, so each extracted calcium trace could 
detect fluorescence originating from more than 
one neuron. It is shown below that this method 
of contour-free ROI selection can improve the 
computational efficiency of online decoding 
at little or no cost to prediction accuracy. After 
ROIs had been defined by the contour-based or 
contour-free method, calcium traces were derived 
by summing pixel intensities within each ROI. 
Demixing was not performed during real-time 

calcium trace extraction; it is shown below that similar prediction accuracy can be achieved with offline 
(demixed) versus online (non-demixed) decoding using identical contour-based ROIs.

Stage 4: population vector decoding
The vector of calcium trace values extracted from each frame is stored to the Ultra96 DRAM, from 
which trace values are then read into the MPSoC’s ARM core. The ARM core executes user-defined 
decoding algorithms running as a C++ program under the FreeRTOS operating system (which affords 
highly consistent execution times and therefore minimizes frame-to-frame variability in decoding 
latency). In performance tests reported below, we used simple linear classifier algorithms to decode 
calcium population vector activity of neurons imaged in CA1 and OFC of freely behaving rats. However, 
the C++ programmable ARM core is capable of implementing a wide range of different decoder 

architectures, including deep convolutional neural 
networks and long short-term memory networks 
(Chen et al., 2022b).

Performance testing
Results presented below were obtained using 
two different versions of the UCLA Miniscope: 
CA1 position decoding tests were conducted 
using the Large Field-of-View (Blair et al., 2021) 
(MiniLFOV) version featuring 1296 × 972 pixel 
resolution sampled at 22.8 fps, whereas OFC 
instrumental behavior decoding tests were 
conducted using the V4 version featuring 600 
× 600 pixel resolution sampled at 19.8 fps. For 
performance tests, we used a virtual sensor (see 
Methods) that was capable of feeding stored 
image data to the ACTEV accelerator at exactly 
the same frame rate (19.8 fps for V4, 22.8 fps for 
MiniLFOV) as raw video data arriving in real time. 
This allowed different real-time image processing 
algorithm implementations (e.g., contour-based 
vs. contour-free decoding) to be compared and 
benchmarked on the same stored datasets. 
Calcium traces obtained with the virtual sensor 
were verified to be identical with those obtained 
during real-time imaging sessions. ACTEV 

Video 1. Real-time motion correction. The left and 
right windows show sensor video data before and after 
motion correction, respectively. The line graphs at 
bottom show x (yellow) and y (green) components of 
the image displacement between frames before (left) 
and after (right) motion correction.

https://elifesciences.org/articles/78344/figures#video1

Video 2. Real-time interface (RTI) view of contour-
based calcium trace extraction. The online image 
display (left window) shows the motion corrected 
and enhanced (i.e., background subtracted) sensor 
image data as it arrives in real time from the Ultra96 
board. The right window shows a scrolling display 
of 63 selected calcium traces from regions outlined 
by colored borders in the image display window. 
These traces are derived on the Ultra96 by summing 
fluorescence within their respective contour regions, 
and the resulting trace values are transmitted (along 
with sensor image data) via ethernet to the host PC for 
display in the RTI window. For demonstration purposes, 
traces shown in the window on the right are normalized 
within the ranges of their own individual minimum and 
maximum values.

https://elifesciences.org/articles/78344/figures#video2

https://doi.org/10.7554/eLife.78344
https://elifesciences.org/articles/78344/figures#video1
https://elifesciences.org/articles/78344/figures#video2
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accelerators for virtual sensor testing and for real-time (non-virtual) imaging with both versions of the 
UCLA Miniscope (MiniLFOV and V4) can be found at https://github.com/zhe-ch/ACTEV, (Chen, 2023 
copy archived at swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82).

Position decoding from CA1 cells
For the first set of performance tests, the MiniLFOV scope was used to image neurons in the hippo-
campal CA1 region while Long-Evans rats (n = 12) ran back and forth on a 250-cm linear track 
(Figure 3A). Each linear track session was ~7 min in duration, yielding 8K–9K frames of calcium trace 
data per rat. CA1 pyramidal neurons are known to behave as ‘place cells’ that fire selectively when an 
animal traverses specific locations in space (O’Keefe and Dostrovsky, 1971), so a rodent’s position 
can be reliably decoded from CA1 population activity (Ziv et al., 2013; Cai et al., 2016; Wilson and 
McNaughton, 1993; Kinsky et al., 2018; Center for Brains Minds Machines, 2017). As expected, 
many of the neurons we imaged in rat CA1 were spatially tuned on the linear track (see example 
tuning curves in Figure 3C, D; summary data in panels D, E of Supplement to Figure 3). For real-time 
decoding, we did not define a decision boundary for classifying CA1 traces as coming from ‘place’ 
versus ‘non-place’ cells; calcium traces were decoded from all ROIs regardless of their spatial tuning 
properties.

When hippocampal activity is analyzed or decoded offline (rather than online), it is common 
practice to perform speed filtering that omits time periods when the rat is sitting still. This is done 
because during stillness, the hippocampus enters a characteristic ‘sharp wave’ EEG state during which 
place cell activity is less reliably tuned for the animal’s current location (Buzsáki, 2015). Here, speed 
filtering was not implemented during online decoding of CA1 fluorescence because the linear classi-
fier received only real-time calcium trace data and not position tracking data that would be needed 
for speed filtering. As shown below, DeCalciOn achieved accurate decoding of the rat’s position from 
calcium traces without speed filtering.

ACTEV can utilize a real-time spike inference engine to convert each frame’s calcium trace value 
into an inferred spike count per frame. However, when decoding information from spike events 
(e.g., from single-unit recordings of neural population activity), it is standard practice to perform a 
temporal integration step by counting spikes in time bins of a specified width. In calcium imaging 
experiments, the GCamp molecule itself serves as a temporal integrator of spike activity. The 
GCamp7s indicator used in our CA1 imaging experiments has a decay constant of several hundred 
ms (Dana et al., 2019), which is similar to the width of time bins typically used for counting spikes 
when decoding a rat’s position from single-unit recordings of place cells (Ziv et al., 2013; Cai et al., 
2016; Wilson and McNaughton, 1993; Kinsky et al., 2018; Center for Brains Minds Machines, 
2017). In accordance with prior studies of position decoding from CA1 calcium fluorescence (Tu 
et  al., 2020), we found (see panel A of Supplement to Figure  3) that the linear classifier was 
more accurate at decoding the rat’s position from raw calcium trace amplitudes (which chemically 
time-integrated spikes on a time scale of the several hundred milliseconds, corresponding to the 
GCaMP7s decay rate) than from inferred spike counts (which computationally time-integrated spike 
counts on a much shorter time scale of ~50 ms, corresponding to the miniscope’s frame interval). 
Hence, we decoded the rat’s position from raw calcium traces rather than inferred spike counts in 
performance tests reported below.

The linear classifier was trained on calcium trace and position data from the first half of each 
session, then tested on data from the second half of the session. The classifier’s output vector 
consisted of 12 units that used a Gray coding scheme (Figure 3B) to represent 24 position bins 
(each ~20 cm wide) along a circularized representation of the track. After the linear classifier had 
been trained on data from the first portion of the session, learned weights were uploaded from 
the host PC to the Ultra96 and image data from the second half of the session (test data) was 
fed through the virtual sensor to mimic real-time decoding. To verify that decoders predicted 
position with far better than chance accuracy, error performance was compared for decoders 
trained on calcium traces that were aligned versus misaligned with position tracking data (panel 
C, Supplement to Figure 3). Position decoding performance was compared for different methods 
of extracting online fluorescence traces including contour-based (CB) versus contour-free (CF) 
methods as explained below.

https://doi.org/10.7554/eLife.78344
https://github.com/zhe-ch/ACTEV
https://archive.softwareheritage.org/swh:1:dir:52edbb3143496240abfe565f4e2262afcb445460;origin=https://github.com/zhe-ch/ACTEV;visit=swh:1:snp:ba0bd0b4439b682eb07220dc3c69e665abd285a5;anchor=swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82
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Figure 3. Position decoding from CA1 cells. (A) The CA1 layer of the hippocampus was imaged while rats ran laps 
on a 250-cm linear track; for position decoding, the rat’s path was circularized and subdivided into 24 position 
bins, each ~20 cm wide. (B) N linear classifer inputs (one per calcium trace) were mapped to 12 outputs using 
a Gray code representing the 24 track positions (open/filled circles show units with target outputs of −1/+1 at 
each position). (C) Regions of interest (ROIs) from which contour-based (CB, left), contour-free (CF, middle), and 
expanded contour-based (CB+) calcium traces were extracted in Rat #6; ROI shading intensity shows the similarity 
score, S, for traces extracted from the ROI. (D) Tuning curve heatmaps from training and testing epochs for CB 
(left), CF (middle), and CB+ traces extracted from Rat #6; rows are sorted by location of peak activity in the testing 
epoch. (E) Decoding performance did not differ for CB versus offline (Off) traces (left graphs), but was significantly 
better for sessions with larger numbers of calcium traces (right graphs). (F) Decoding performance averaged over 
track positions within each session (left graphs) and over sessions at each circularized track position (right graphs). 
(G) Decoding performance as a function of training set size; asterisks mark significant improvement with the 
addition of 500 more frames to the training set. For all panels: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.78344
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CB trace decoding
CB trace extraction derived calcium traces by summing fluorescence within pixel masks defining ROIs 
overlapping with identified neurons (Figure 3C; Video 2). Neurons were identified during the inter-
mission period by using the CaImAn pipeline (Giovannucci et al., 2019) to perform constrained non-
negative matrix factorization (CNMF) (Giovannucci et al., 2019; Pnevmatikakis et al., 2016) on the 
training dataset and extract ROIs for demixed calcium traces. Running CaImAn on 4K–5K frames of 
training data required 30–60 min of computing time on the host PC, making this the slowest step 
performed during the intermission period (see Figure 1B). After contour ROIs had been identified, 
an additional ~5 min of computing time was required to feed all of the training data frames through 
a simulator to reconstruct online calcium traces that would have been extracted in real time during 
the first half of the session using the extracted contour masks. The simulated online traces were then 
aligned frame-by-frame with position data and used to train a linear classifier for decoding the rat’s 
position on the linear track from calcium activity; training the decoder required a maximum ~60 s of 
computing time.

Accurate position decoding requires that calcium trace inputs to the decoder must retain stable 
spatial tuning across the training and testing epochs of the session. To verify that this was the case, 
spatial tuning curves were derived for CB calcium traces during the first (training) versus second 
(testing) half of each session (Figure 3D, left). Analyses of spatial selectivity and within-session spatial 
tuning stability (panels D, E in Supplement to Figure 3) indicated that large proportions of CB traces 
in CA1 exhibited stable spatial tuning between the training and testing epochs, as required for accu-
rate decoding. The real-time decoder was trained and tested on CB traces from all ROIs identified by 
CaImAn in each session; we did not restrict the decoder’s training set to a subset of traces that met a 
spatial selectivity criterion.

Two measures were used to quantify accuracy of position predictions decoded from calcium traces 
in each frame: Distance error ‍λ(t)‍ was the absolute distance (in cm) between the true versus decoded 
position in frame ‍t‍; the mean distance error over frames in the testing epoch shall be denoted ‍̄λ‍ . Hit 
rate ‍ρ‍ was the percentage of all frames in the test epoch for which the predicted position was within 
±30 cm of the true position. Figure 3E shows that when the decoder was trained and tested with 
DeCalciOn’s online (non-demixed) CB traces, there was no significant difference in mean decoding 

Figure 4. Improvement of place cell decoding by online motion correction. (A) Session-averaged performance 
of decoding from CB and CF traces is compared with (mc+) versus without (mc−) online motion correction; filled 
symbols ‘●’ and ‘▲’ mark data from example sessions shown in panel ‘C’. (B) Scatter plots compare motion artifact 
scores with (Wmc+) versus without (Wmc−) online motion correction (see main text for explanation of shaded 
regions); insets show that points lie significantly nearer to the vertical (DV) than horizontal (DH) midline indicating 
a significant benefit of online motion correction. (C) Displacement of sensor image against reference alignment 
plotted over all frames in the session (x-axis) for Rat #1 (‘●’) which accumulated a large (~10 pixels) shift alignment 
error over the session, and Rat #12 (‘▲’) which exhibited transient jitter error but did not accumulate a large shift 
error; bottom graphs show signed horizontal (Δx) and vertical (Δy) displacement from the reference alignment, 
middle graphs show distance (d) from reference alignment. And top graphs show absolute value of time derivative 
of distance (|Δd|) from the reference alignment. *p<.05; **p<.01.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Decoding position from calcium traces on the linear track.

Figure 3 continued

https://doi.org/10.7554/eLife.78344
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accuracy (‍̄λ‍ : t11 = −1.32, p = 0.21; ‍ρ‍: t11 = 1.32, 
p = 0.21) from when the same decoder was 
trained on demixed offline (‘Off’) traces extracted 
by CaImAn from the same set of ROIs. Hence, 
decoding from online (real-time) CB traces versus 
demixed offline traces yielded similarly accurate 
position predictions. Unsurprisingly, the accuracy 
of decoding position from calcium traces was 
proportional to the population size of detected 
neurons (‍̄λ‍ : R = −0.6, p = 0.0375; ‍ρ‍: R1 = 0.59, 
p = 0.0426; Figure 4E, right). Hence, the accu-
racy of position predictions improves with the 
number of calcium traces from which predictions 
are generated.

CF decoding
In contrast with CB extraction, CF extraction 
derived calcium traces by summing fluorescence 
within pixel masks that did not overlap with iden-
tified neurons. Instead, ROIs were obtained by 
partitioning the 512 × 512 image into a 32 × 32 
sheet of tiles, each tile measuring 16 × 16 pixels 
in area (Video 3); 124 tiles bordering the frame 
(shaded light blue in middle plot of Figure  3C) 
were excluded to eliminate edge contamination 
by motion artifacts. The CF extraction method 
always yielded a total of 900 calcium traces per 
rat (one for each square tile). By contrast, the CB 

method (see above) yielded a variable number of traces depending upon how many neuron ROIs were 
detected in the training dataset by CaImAn.

Unlike CB trace extraction, CF extraction does not require any computing time for contour iden-
tification or trace simulation during the intermission period, because the decoder is trained directly 
on 900 traces of CF data stored to memory during the training epoch; this training consumed <60 s 
of computing time on the host PC for 5K frames of training data. Hence, CF trace extraction required 
much less computing time during the intermission period than the CB trace extraction (which requires 
30–60 min of computing time during intermission to identify trace ROIs, as explained above). Since CF 
calcium traces were derived from square tiles that were not aligned with locations of individual neurons 
in the sensor image, each CF trace could be modulated by fluorescence from multiple neurons within 
the ROI of its assigned tile. CF traces are thus analogous to multiunit spike recordings in neurophysi-
ology that combine signals from multiple neurons. Similarly, CB traces can be regarded as analogous 
with single-unit recordings, since they are better at isolating signals from single neurons.

Like CB traces, CF traces in CA1 also exhibited stable spatially selective tuning (Figure 3D, middle). 
However, individual CF traces showed less within-session stability and fired over wider regions of the 
track (panels D, E in Supplement to Figure 3) than individual CB traces, as should be expected if CF 
traces contain signals from multiple place cells and CB traces isolate signals from individual place cells. 
But at the population level, decoding the rat’s position from CF traces was as or more accurate than 
decoding from CB traces. As in the case of CB traces, the real-time decoder was trained and tested on 
all CF traces (N = 900 per rat in the tile mosaic) regardless of their spatial selectivity. When the accu-
racy of CF versus CB decoding was compared by performing paired t-tests on the ‍̄λ‍ and ‍ρ‍ measures 
defined above (Figure 3F, left), CF decoding was more accurate than CB decoding (‍̄λ‍ : t11 = −3.43, p 
= 0.0056; ‍ρ‍: t11 = 4.6, p = 7.49e−4). Analogous results have been reported in electrophysiology, where 
it has been found that decoding from multiunit spike trains can be more accurate than decoding from 
sorted spikes sourced to single units (Deng et al., 2015).

Since decoding accuracy for CB traces was proportional to population size (Figure 3E, right), 
it is possible that the reason CF traces provided better decoding accuracy was because they were 

Video 3. Real-time decoding of contour-free calcium 
traces. The online image display (left window) shows 
the motion corrected and enhanced mosaic of contour-
free pixel mask tiles. The right window shows a scrolling 
heatmap display of 103 (out of the total 900) calcium 
traces with the highest tuning curve similarity scores, S 
(see main text). The calcium trace rows in the heatmap 
are sorted by the peak activity location of each trace, so 
that calcium activity can be seen to propagate through 
the population as the rat runs laps on the linear track. 
The line graph at the top shows the rat’s true position 
(blue line) together with its predicted position (orange 
line) decoded in real time by the linear classifier. For 
demonstration purposes, trace intensities shown in the 
scrolling heatmap are normalized within the ranges of 
their own individual minimum and maximum values.

https://elifesciences.org/articles/78344/figures#video3

https://doi.org/10.7554/eLife.78344
https://elifesciences.org/articles/78344/figures#video3
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greater in number (in all rats, there were more CF than CB traces). To test this, CaImAn’s sensitivity 
parameters were adjusted to detect more CB traces in each rat, yielding an expanded population 
(CB+) of CB traces that was larger than the original population of CB traces in each rat (Figure 3C, 
right). Figure 4E shows that CB+ decoding was more accurate than CB decoding (‍̄λ‍ : t11 = −3.09, p = 
0.0013; ‍ρ‍: t11 = 3.7, p = 0.0035), but did not differ significantly in accuracy from CF decoding (‍̄λ‍ : t11 = 
−1.08, p = 0.3; ‍ρ‍: t11 = 0.83, p = 0.42). Hence, CF and CB+ traces yielded similar decoding accuracy, 
suggesting that the number of calcium trace predictors was a strong determinant of decoding accu-
racy. Deriving CB+ traces required about the same amount of computing time (30–60 min) during 
the intermission period as CB traces to identify contours and simulate online traces (see Figure 1B). 
Therefore, despite the similar accuracy of CF and CB+ traces, it was much more efficient to use 
CF traces since they did not require extra computing time to identify ROIs during the intermission 
period.

Duration of the training epoch
An initial dataset must be collected at the beginning of each session to train the decoder before real-
time imaging begins. The training epoch should be long enough to obtain sufficient data for training 
an accurate decoder, but short enough to leave sufficient remaining time in the session for real-time 
imaging. To analyze how position decoding accuracy on the linear track depended upon the duration 
of the training epoch, we varied the length of the training epoch in increments of 500 frames (see 

Methods). As expected, position decoding accuracy (quantified by ‍
−
λ‍ and ‍ρ‍) improved with the dura-

tion of the training epoch (Figure 3G). On average, asymptotic accuracy occurred when the training 
epoch reached ~3000 frames, beyond which increasing the duration of the training epoch yielded 
diminishing benefits for decoding accuracy.

Online motion correction
Online motion stabilization (Stage 1) is the most computationally expensive stage in the real-time 
image processing pipeline, consuming more MPSoC hardware resources than any other stage (Chen 
et al., 2022a). To quantify the benefits of these high resource costs, we compared decoder perfor-
mance with (mc+) and without (mc−) motion correction using CB or CF methods for CA1 calcium trace 
extraction (Figure 4). For these analyses, the decoder was trained on mc+ or mc− traces from the 
first 3000 frames in each session, and then tested on the corresponding mc+ or mc− traces from the 
remainder of the session.

Effects of motion correction upon session-averaged distance error and hit rate were computed 
using the formulas Δ ‍̄λ‍ = ‍̄λ‍mc−mc+ and ‍∆ρ‍ = ‍ρ‍mc+‍−ρ‍mc−, respectively (note that both formulas yield a 
positive result for cases where motion correction improves accuracy, and a negative result for cases 
where motion correction degrades accuracy). Paired t-tests found no difference between mc+ versus 
mc− conditions for Δ ‍̄λ‍ or ‍∆ρ‍ (Figure 4A), but session-averaged decoding accuracy may not be the 
most appropriate measure for motion correction’s benefits because image stabilization is only bene-
ficial when the image is translationally displaced from its reference alignment with the sensor, and 
this only occurs during a subset of frames within a session. To further assess the benefits of online 
motion correction, we analyzed how image stabilization reduced two distinct types of alignment 
error that can arise from translational displacement of the image on the sensor: shift error and jitter 
error.

Shift error
Shift error occurs when the image permanently changes its steady-state alignment with the miniscope 
sensor (either suddenly or gradually) during the course of a session. For example, this can occur if 
the miniscope shifts its seating in the baseplate during a session. Significant shift error occurred in 
only 1 of the 12 linear track sessions analyzed for our performance tests (Rat #1 in Figure 4C); this 
session is marked by filled circles in panels of Figure 4. For this one session (but no others), benefits 
of motion correction were apparent even in the session-averaged data (Figure 4A). Hence, online 
motion stabilization was effective at correcting shift errors in the one session where they occurred; 
but given that shift errors occurred so rarely, it might be argued that correcting these errors does not 
adequately justify resource costs of online motion stabilization, especially if shift errors can be effec-
tively prevented by other means such as rigidly attaching the miniscope to the baseplate.

https://doi.org/10.7554/eLife.78344
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Jitter error
Jitter error occurs when the animal’s inertial head acceleration causes transient motion of the brain 
inside the skull cavity, resulting in phasic translation of the brain image across the sensor. By defini-
tion, jitter error is temporary and lasts only until the brain image returns to its original alignment with 
the sensor after inertial motion stops. Jitter error can occur when the animal jerks or angles its head 
in such a way that the brain moves within the skull. Motion of the brain inside the skull is a natural 
phenomenon during free behavior, and for this reason, jitter error cannot easily be prevented by 
means other than online motion stabilization. To analyze whether online stabilization was effective at 
correcting for jitter error, we used the distance formula to compute displacement of each frame’s non-

motion-corrected image against the reference alignment: ‍dt =
√

∆x2
t + ∆y2

t ‍ . Two Pearson correlation 
coefficients (Rmc+ and Rmc−) were derived for each session by correlating the distance error vectors (‍λ‍mc+ 
and ‍λ‍mc−) with the displacement vector d over all frames in the testing epoch for the session. Positive 
R values indicated that distance error was larger during frames that were misaligned on the sensor, 
as would be expected if decoding accuracy were impaired when jitter artifact corrupted the values of 
calcium traces. Conversely, negative R values indicated that decoding error was smaller during frames 
that were misaligned on the sensor, which might occur if jitter error was correlated with the rat’s 
position on the track in such a way that the decoder artifactually learned to predict the rat’s location 
from image displacement rather than from neural calcium activity. R values from each session were 
converted into motion artifact error scores using the formula Ω = −log10 (P) × sign(R), where R is the 
correlation between distance error and image displacement and P is the significance level for R; the p 
< 0.01 significance level for the similarity score is S > 2, since log10(0.01) = 2.

Figure 4B shows scatterplots of Ωmc+ versus Ωmc− derived from CB (top) or CF (bottom) traces for 
all 12 linear track sessions in the performance testing analysis. Sessions falling within the central gray 
square region (3/12 for CB traces, 6/12 for CF traces) had non-significant motion artifact error scores 
before as well as after online motion correction, indicating that for these sessions, there was little 
benefit from online motion stabilization. Sessions falling within the upper yellow region (6/12 for CB 
traces, 2/12 for CF traces) had significant positive motion artifact error scores in the mc− condition 
that resolved in the mc+ condition, indicating that in these sessions, online motion correction success-
fully prevented degradation of decoding accuracy by motion artifact. Sessions falling within the lower 
blue region (1/12 for CB traces, 0/12 for CF traces) had significant ‘negative’ motion artifact error 
scores in the mc− but not mc+ condition, suggesting that without motion stabilization, the decoder 
artifactually learned to predict position from location-dependent motion artifacts rather than from 
neural calcium activity; this ersatz decoding was reduced by online motion correction. Further exam-
ples of decoders learning to predict behavior from image motion are shown below (see ‘Decoding 
instrumental behavior from OFC neurons’).

In Figure 4B and a small number of plotted points fell outside any of the shaded regions indi-
cating that significant motion artifact scores occurred in both the mc− and mc+ conditions. However, 
the mean distance of points from the vertical midline (DV) was significantly smaller than their mean 
distance (DH) from the horizontal midline in scatterplots of both CB (t11 = 2.63, p = 0.0232) and CF (t11 
= 2.92, p = 0.0139) traces. This indicates that correlations (positive and negative) between distance 
error and motion artifact were significantly reduced by online motion correction of both CB and CF 
traces. Hence, online motion stabilization benefitted decoding accuracy by improving the accuracy of 
online predictions for frames with motion artifact.

Decoding instrumental behavior from OFC neurons
Another set of performance tests was carried out using the V4 UCLA Miniscope to image neurons in 
OFC while Long-Evans rats (n = 2) performed a 2-choice instrumental touchscreen task (Figure 5A). 
Each trial of the task began with the appearance of a central fixation stimulus (circle) on the screen, 
which the rat was required to touch. After touching the center stimulus, two visually distinct choice 
stimuli (A and B) appeared on the left and right sides of the screen. Assignment of stimuli A/B to the 
left/right side of the screen was randomized on each trial, but the correct response was always to touch 
the stimulus on one side (left for JL66, right for JL63) regardless of its identity. A correct response 
immediately triggered audible release of a food pellet into a magazine located behind the rat; an 
incorrect response triggered a 5-s timeout period. After each rewarded or non-rewarded outcome, 
a 10-s intertrial interval was enforced before initiating the next trial. Figure  5B (top) summarizes 

https://doi.org/10.7554/eLife.78344
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behavioral performance during 45-m imaging sessions (one for each rat) conducted after training on 
the discrimination task. In both sessions, rats performed >150 trials with >95% correct choices.

Predicting behavior from calcium traces
Calcium traces were extracted from image data using each of the three methods described above: 
online contour-based (CB), online contour-free (CF), or offline contour-based (Off) extraction. 
Figure 5B (bottom left) shows that the number of orbitofrontal neurons (and thus the number of CB/
Off traces) identified by CaImAn was much higher in one rat (JL66, N = 138 cells) than the other (JL63, 
N = 17 cells), whereas the number of CF traces was N = 900 in both rats (for reasons explained above).

To decode behavior from calcium traces, image frames were classified into five mutually exclu-
sive categories: (1) pre-trial frames occurring within a 1-s window prior to each touch of the central 
fixation stimulus, (2) correct choice and (3) incorrect choice frames occurring between touches of 
the central fixation stimulus and touches of the correct or incorrect choice stimulus, respectively, (4) 
reward retrieval frames occurring within a 2-s window after reward magazine entry, and (5) intertrial 
frames not belonging to any of the previous four categories. A binary tree classifier was trained to 
predict behavior category labels from calcium trace vectors extracted using the CB, CF, or Off methods 
described above. As a control, the classifier was also trained to predict the behavior category from 
image motion displacement (Mot) rather than calcium traces (see Methods). For each session, the 
classifier was trained on data from the first 100 trials and then tested on the subsequent 50 trials. 
During testing, the predicted behavior label for each frame was taken to be the label that had been 
selected by the decoder most frequently within a five-frame window that included the current and 
previous four frames. Performance was assessed using two measures: sensitivity, the percentage of 
behavior events during the test epoch that were correctly predicted, and F-score, a standard measure 

Figure 5. Decoding instrumental behavior from orbitofrontal cortex (OFC) calcium activity. (A) OFC neurons were imaged while rats performed a 
2-choice touchscreen task (see main text). (B) Number of trials (top) and number of neurons identified by constrained non-negative matrix factorization 
(CNMF) (bottom) during the two analyzed sessions (JL66 and JL63). (C) Jitter error |Δd| (gray traces, top) and real-time predictions of behavior labels 
(reward retrieval, correct choice, trial initiation) are shown for 90-s periods from the testing epoch of each rat (JL66 and JL63) after the binary tree 
decoder had been trained on 100 trials of offline (Off), contour-based (CB), or contour-free (CF) calcium traces; black traces show ground truth (GT) 
behavior labels, blue traces show predictions derived from motion vectors only (Mot). Sensitivity (shaded bars) and F-scores (horizontal lines) are shown 
for binary classification of reward retrieval (D), correct choice (E), and trial initiation (F) events using decoders trained on Off, CB, CF, or Mot predictors; 
for online CB and CF predictors, classifer performance is plotted separately for traces derived with versus without motion correction (mc+ vs. mc−), 
respectively. Violin plot inside each bar shows distribution of F-scores obtained from 1000 shuffles of event labels; asterisks over actual F-scores indicate 
significant difference from the shuffle distribution (***p < 0.001, **p < 0.01, *p < 0.05).

https://doi.org/10.7554/eLife.78344
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of binary classification accuracy that weighs sensitivity against precision of the classifier (see Methods). 
Figure 5C shows 90 s of example data from the testing epoch of each session (J66 and J63). In the 
figure, traces of ground truth behavior categories are aligned to real-time output from decoders 
trained on one of the four predictors (Off, CB, CF, and Mot).

Performance of the real-time decoder was assessed for predicting three of the five behavior cate-
gories: reward retrieval, correct choice, and trial initiation. Decoding performance was not analyzed 
for the ‘incorrect choice’ behavior category because very few incorrect choice trials occurred during 
the analyzed sessions, nor was it analyzed for the ‘intertrial’ category because rats exhibited variable 
behavior during intertrial intervals, reducing predictive validity.

Reward retrieval
Figure 5D shows performance for real-time decoding of reward retrieval events from each of the four 
predictors (Off, CB, CF, and Mot). Sensitivity for detecting reward retrieval was higher for Rat JL66 
than JL63, which is not surprising since predictions were derived from a larger number of detected 
neurons in Rat JL66. In both rats, sensitivity was similar when the decoder was trained on Off, CB, or 
CF traces. The F-score was higher for CF than Off or CB traces in Rat JL63 but not JL66, suggesting 
that in cases where a small number of neurons are detected (as in Rat JL63), decoder precision can 
be improved by using CF rather than CB traces. As discussed above for CA1 decoding, this benefit 
is likely to accrue from the larger number of CF than CB traces in cases where the detected neuron 
count is low.

Correct choice
Figure 5E shows performance for real-time decoding of correct choice events from each of the four 
predictors (Off, CB, CF, and Mot). Sensitivity was higher for Rat JL66 than JL63, which again is not 
surprising since predictions were derived from a larger number of neurons in Rat JL66. In rat JL66, 
sensitivity for detecting reward retrieval was similar regardless of whether the decoder was trained 
on Off, CB, or CF traces. However, in Rat JL63, sensitivity was higher for CF traces, again suggesting 
that in cases where a small number of neurons are detected (as in Rat JL63), decoder performance is 
better for CF than CB traces.

Trial initiation
Figure 5F shows that real-time decoding of trial initiation events was much less accurate than for 
reward retrieval (Figure 5D) or correct choice (Figure 5E) events, even in Rat JL66 where there were 
a large number of detected OFC neurons. This result suggests that trial initiation events were not 
robustly encoded by OFC neurons; hence, decoding of trial initiation was not considered further.

Online motion correction
In both rats, real-time decoding of reward retrieval and correct choice events was similarly accurate 
(from both CB and CF traces) regardless of whether online motion correction was used (mc+ vs. 
mc−; Figure 5D–F). This suggests that online motion correction did not benefit decoding accuracy. 
However, in both rats, jitter error (quantified by ‍|d|‍) was significantly greater during reward retrieval 
than during other behaviors (Figure 6A), indicating that retrieval of food from the magazine hopper 
caused the brain to move inside the skull. In rat JL63 (but not JL66), ‍|d|‍ was also greater during 
correct choice events than during other behaviors (Figure 6B), indicating that pressing the touch-
screen may also have sometimes caused the brain to move inside the skull. Given that brain motion 
was significantly correlated with some behaviors, it is important to consider the possibility that in 
the absence of motion correction, the decoder may have learned to predict behavior from motion 
artifacts rather than from calcium activity. If so, then even though prediction accuracy remains high 
without motion correction, it would still be necessary to perform motion correction to assure that the 
real-time decoder derives its predictions from calcium activity rather than motion artifacts.

To investigate this, we isolated all frames that occurred during a given type of behavior event 
(reward retrieval or correct choice), and then performed rank sum tests to compare the median value 
of ‍|d|‍ from frames in which the behavior event was correctly classified (‘predicted’) versus frames in 
which it was not (‘unpredicted’). Without motion correction, the median jitter error ‍|d|‍ in both rats was 
significantly higher for frames in which CB traces correctly predicted reward retrieval (Figure 6C, top 
graphs) or correct choice (Figure 6D, top graphs); this effect was abolished after motion correction 
(Figure 6C, D; bottom graphs). Similarly, without motion correction the median ‍|d|‍ in both rats was 

https://doi.org/10.7554/eLife.78344
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significantly higher for frames in which CF traces correctly predicted reward retrieval (Figure 6E, top 
graphs) or correct choice (Figure 6F, top graphs); this effect was also abolished after motion correc-
tion (Figure 6E, F; bottom graphs) in all but one case (reward retrieval predictions in JL63).

Real-time decoding latency
DeCalciOn’s real-time feedback latency, ‍τF‍ , is equal to the time that elapses between photons hitting 
the miniscope’s image sensor and the rising edge of the TTL output signal that is triggered when the 
decoder detects a target pattern of neural activity. The total feedback latency is the sum of three 
delays that accrue sequentially: ‍τF‍ = ‍τL‍ + ‍τT ‍ + ‍τI ‍ , where ‍τL‍ is the light-gathering delay, ‍τT ‍ is the frame 
transmission delay, and ‍τI ‍ is the image processing delay.

Light-gathering delay (‍τL‍)
The first delay in the real-time decoding sequence arises from the time it takes for the sensor to gather 
light. Each image frame is formed on the sensor by summing light from photons that arrive during an 
exposure time window that is ~1 ms shorter than the frame interval, I. For example, at a frame rate 
of F ≈ 20 Hz (as in experiments presented here) the frame interval is I ≈ 50 ms, so the exposure time 
would be (50-1) ≈ 49 ms, which is slightly shorter than I because the sensor’s circuits require ~1 ms 

Figure 6. Correlation between motion artifact and decoding accuracy. (A) Jitter error |Δd| is significantly greater 
during reward retrieval events than other behaviors in both rats. (B) |Δd| is significantly greater during correct 
choice events than other behaviors in rat J63 but not JL66. (C) When CB traces are extracted without online motion 
correction (mc−; top), |Δd| is significantly greater during accurately classified (’predicted’) reward retrieval event 
frames than inaccurately rejected (’unpredicted’) reward event frames; this difference is abolished when online 
motion correction is applied before trace extraction (mc+; bottom). (D) Same as ‘C’ but for predictions of correct 
choice events. (E) Same as ‘C’ but forCF rather than CB traces; note that for rat JL63 online motion correction 
does not abolish the correlation between decoding accuracy and motion artifact. (F) Same as ‘D’ but for CF traces 
extracted without (top) versus with (bottom) online motion correction.

https://doi.org/10.7554/eLife.78344
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to perform analog-to-digital (A/D) conversion of pixel values at the end of each exposure. Hence, at 
each end-of-frame, the captured image integrates the intensity of light that has hit the sensor during 
the preceding frame interval. This binned averaging of light intensity is tantamount to convolving the 
‘true’ brain fluorescence signal with a boxcar kernel of width I, effectively shifting the sampled fluo-
rescence signal rightward in time from the true fluorescence signal by a delay of  ‍τL‍ = I/2 (Figure 7A). 
Thus, at the frame rate of 20 Hz used here, ‍τL‍ ≈ 50/2 = 25 ms.

Frame transmission delay (‍τT ‍)
The second delay in the real-time decoding sequence arises from the time required to transmit frame 
data from the miniscope sensor to the DAQ, and then from the DAQ to the Ultra96 frame buffer. The 
miniscope sensor does not begin transmitting pixel data for a given frame until after A/D conversion 
is completed for all pixels in that frame, so there is no temporal overlap between ‍τL‍ and ‍τT ‍ . Each 
data pixel is serially transmitted from the sensor to the DAQ via the coax cable, and then immediately 
(with a delay of only one pixel clock cycle) deserialized and retransmitted over the flywire bus from 
the DAQ to the Ultra96 (see Figure 1A). Hence, the time required for a frame of data to travel from 
sensor to DAQ and then from DAQ to Ultra96 can be measured as a single transmission delay, ‍τT ‍ . 
The transmission time for an image frame can be computed as  ‍τT ‍ = P × C, where C is the pixel clock 
period (60.24 ns for the V4 Miniscope, 16.6 ns for the LFOV Miniscope) and P is the number of pixels 
per frame. Only pixels within the 512 × 512 imaging subwindow are used for real-time decoding, the 
effective number of pixels per frame is P = W(B − 1) + R, where B and R are the bottom-most pixel 
row and right-most pixel column of the selected 512 × 512 imaging subwindow, and W is the width 
(in pixels) of the sensor image (red shaded region in Figure 7B). The size of the V4 UCLA Miniscope 
sensor is 608 × 608 pixels, so if the 512 × 512 subwindow is positioned in the center of the V4 sensor, 
the effective number of pixels per frame is p = 608 (608/2 + 512/2 – 1) + 608/2 + 512/2 = 340,432 

Figure 7. Real-time decoding latency. (A) Left graph illustrates how the light-gathering delay (τL) is incurred as the sensor time integrates the true 
fluorescence signal (black line) by summing light gathered during each frame exposure, yielding a time series of binned fluorescence values (red dots) 
that are delayed from the original fluorescence signal by 1/2 the frame interval (50-ms frame interval was used for this example); right graph shows 
temporal cross correlogram between the source versus binned fluorescence signals, peaking at 1/2 the frame interval (τL = 25 ms). (B) Transmission delay 
(τT) is proportional to the number of pixels, P, in the shaded red rectangular area between the upper left corner of the sensor image and the lower right 
corner of the 512 × 512 imaging subwindow. (C) Image processing delay (τI) for 1204 calcium traces (maximum supported) is proportional to the number 
of units in the linear classifier’s output layer; empirical distributions of τI are shown for linear classifiers with a single output unit (here τI is approximated 
as the minimum latency for a 5-node binary tree decoder), 12 output units, and 23 output units. (D) Linear fit to mean τI (y-axis) as function of the number 
of linear classifiers (x-axis); the y-intercept corresponds to the mean field-programmable gate array (FPGA) processing delay. (E) Blue line shows mean 
distance error (y-axis) for maximum likelihood decoding of a rat’s position on a linear track from spike counts of 53 place cells (recorded by Hector 
Penagos in Matt Wilson’s lab at MIT30) using time bins of differing size (x-axis) for spike counts; circles plot distance error for real-time decoding of CB 
and CF calcium traces from 3 rats in our dataset for which the number of CB traces was very close to 50 (thus matching the number of place cells in the 
single-unit vs. calcium trace decoding data). It can be seen that decoding from single-unit spikes was slightly more accurate than decoding from CB 
calcium traces and slightly less accurate than decoding from CF calcium traces in these three rats.
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and the transmission delay is  ‍τT ‍ = 340,432 × 60.24 = 20.5 ms. The size of the LFOV sensor is 1296 
× 972 pixels, so if the 512 × 512 subwindow is positioned in the center of the LFOV sensor, then the 
effective number of pixels per frame is p = 1296 (1296/2 + 512/2 − 1) + 972/2 + 512/2 = 1,171,030 
and the transmission delay is  ‍τT ‍ = 1,171,030 × 60.24 = 19.5 ms. Thus, with a frame rate of 20 Hz and 
an imaging subwindow located near the center of the sensor, the V4 and LFOV Miniscopes both incur 
transmission delays of ~20 ms.

Image processing delay (‍τI‍)
The final delay in the real-time decoding sequence arises from the time it takes to execute the real-time 
image processing pipeline on the Ultra96 (see Figure 2). As explained above, Stages 1–3 of image 
processing (online motion correction, background subtraction, and trace extraction) are performed 
in the fabric of the FPGA; after all three of these stages are completed, Stage 4 (linear classifier 
decoding) is performed by the MPSoC’s ARM core. Hence, the image processing delay can be decom-
posed into two sequential and non-overlapping latencies, ‍τI ‍ = ‍τFPGA‍ + ‍τARM‍, where ‍τFPGA‍ is the FPGA 
latency incurred during Steps 1–3 and ‍τARM‍ is the ARM core latency incurred during Stage 4. Here, we 
estimated these latencies empirically by measuring the time elapsed between arrival of the last pixel 
of a frame in the Ultra96 image buffer (start of the ‍τFPGA‍ interval) and the rising edge of the TTL pulse 
triggered by ARM core decoder output (end of the ‍τARM‍ interval). It should be noted that the FPGA 
begins performing Step 1 of image processing (online motion correction) immediately after the lower 
right pixel of the 128 × 128 image processing subwindow (see yellow box in Figure 2) is received in 
the buffer, which is prior to arrival of the last pixel of the 512 × 512 subwindow. Consequently, Stage 
1 is often finished by the time the last pixel of the 512 × 512 subwindow arrives (it may finish slightly 
later if the 128 × 128 window is located near the lower right corner of the 512 × 512 window). For this 
reason, our empirical estimate of ‍τFPGA‍ primarily measures the time required for the FPGA to perform 
Stages 2 and 3 after Stage 1 has been completed. Figure 7C plots empirically measured distributions 
of ‍τI ‍ using 1204 calcium traces (the maximum number of predictors supported by DeCalciOn). The 
TTL latency for a linear classifier with a single output unit is approximated as the minimum observed 
latency for a 5-node binary tree decoder (corresponding to the case where the shallowest tree node 
produces a positive output); distributions are also shown for classifiers with 12 and 23 output units. We 
computed a linear fit to the empirical function  ‍τI ‍ = f(M), where M is the number of output units. The 
y-intercept of this function provides an estimate for the FPGA processing delay of ‍τFPGA‍ ≈ 0.888 ms; 
the ARM core processing delay then adds an additional ~47.3 μs per output unit to the FPGA delay.

Summarizing, DeCalcIOn’s real-time feedback latency is ‍τF‍ < ‍τL + τT + max
(
τI
)
‍. For the UCLA Mini-

scope sampling at a frame rate of 20 Hz, this equates to ‍τF‍ < 25 ms + 20 ms + 2.5 ms = 47.5 ms. 
Since the frame interval is 50 ms at the 20 Hz frame rate, the TTL output signal generated for each 
frame will occur at least 2.5 ms before the last pixel of the subsequent frame arrives in the Ultra96 
frame buffer. To put this feedback latency into the context of the rat’s behavior, a freely behaving rat 
can travel ~7.5 cm in 47.5 ms if it is running at the maximum observed speed on the linear track of 
~150 cm/s (see panel A in Supplement to Figure 3). Hence, if we write ‍x

(
t
)
‍ to denote the position a 

rat occupies at the moment when a calcium trace vector arrives at the sensor, and ‍x
(
t + τF

)
‍ to denote 

the position the rat later occupies at the moment when TTL feedback is generated from the decoded 
calcium trace vector, the maximum distance error that can accrue between detection and decoding of 
the trace vector is  ‍∆x =

��x (t
)
− x

(
t + τF

)��
‍ = 7.5 cm.

Figure 7E shows that when a maximum likelihood decoder is used to predict a rat’s position on a 
linear track from single-unit spike trains of 53 place cells (Center for Brains Minds Machines, 2017) at 
a 47.5-ms latency from the rat’s true position, the distance error asymptotes at a minimum of ~20 cm 
for spike count time windows longer than ~0.5  s. It is difficult to directly equate the exponential 
decay time of a genetically encoded calcium indicator with the width of a square time window used 
for counting single-unit spikes, but if we assume that the GCaMP7s indicator used here integrates 
spikes with a time constant that is comparable to counting spikes in 1-s time window, then the accu-
racy of real-time position decoding from calcium traces appears to be slightly worse than decoding 
from single-unit spikes when CB traces are used, and slightly better than decoding from single-unit 
spikes when CF traces are used (dots in Figure 7E). This comparison was made for a subset of calcium 
imaging rats (n = 3) in which the number of detected CB traces was very similar to the number of place 
cells (n = 53) in the single-unit dataset (Center for Brains Minds Machines, 2017). Hence, real-time 
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decoding of calcium traces with DeCalciOn achieves distance errors that are within a similar range as 
those seen in offline analysis of place cell spike trains.

Discussion
Here, we have demonstrated the DeCalciOn system’s capabilities for online image processing, calcium 
trace extraction and decoding, and short latency triggering of TTL output pulses for closed-loop feed-
back experiments.

Source identification
Most in vivo calcium imaging experiments utilize offline algorithms to analyze calcium trace data that 
has previously been collected and stored during a behavioral task. Popular offline analysis packages 
such as CaImAn (Giovannucci et al., 2019) and MIN1PIPE (Deng et al., 2015) employ sophisticated 
algorithms like CNMF (Pnevmatikakis et  al., 2016) to demix crossover fluorescence and source 
calcium traces to single neurons. Accurate source identification is important for studies where inves-
tigating the tuning properties of individual neurons is a major aim of data analysis, but DeCalciOn is 
designed for real-time imaging experiments in which fast and accurate decoding of behavior from 
neural population activity takes precedence over characterizing single-neuron firing properties. For 
real-time decoding, the high computational costs of source identification may not yield proportional 
benefits to decoding accuracy. Supporting this, we found that linear classifiers trained on calcium 
traces extracted online (without demixing) predicted behavior just as accurately as those trained on 
traces extracted offline (with demixing) using the same set of ROIs (Figure 3E; Figure 5D–F). We also 
found that decoders trained on traces extracted from contour-free ROIs (which do not overlap with 
individual neurons) predicted behavior as or more accurately than traces extracted from contour-based 
ROIs that overlapped with identified neurons in the image frame (Figure 3F and G; Figure 4A and 
B; Figure 5D–F). Analogous results have been reported in electrophysiology, where ‘spike sorting’ 
algorithms for sourcing action potentials to single neurons incur high computational overhead costs 
that are comparable to the costs of sourcing calcium traces to single neurons with CNMF; decoding 
behavior from electrophysiological recordings of multiunit (unsorted) spikes is more computationally 
efficient than decoding from sorted spikes and often incurs no cost (or even a benefit) to decoding 
accuracy (Deng et al., 2015). Results presented here indicate that as in electrophysiology studies, the 
high computing cost of source identification in calcium imaging studies must be weighed against the 
benefits. For real-time imaging studies, contour-free decoding approaches can offer a strategy for 
optimizing computing efficiency without compromising decoding accuracy.

Online motion correction
After source identification, the most computationally expensive stage in the image processing pipe-
line is motion stabilization. DeCalciOn reduces motion stabilization costs by using a motion correc-
tion subwindow (128 × 128 pixels, see Figure 2) that is considerably smaller than the 512 × 512 
pixel imaging window (yet still large enough to achieve reliable motion correction). Even so, deriving 
each frame’s motion displacement vector at millisecond latencies consumes more MPSoC hardware 
resources than any other stage within the image processing pipeline (Chen et al., 2022a). To quan-
tify the benefits of these high resource costs, we compared decoder performance with and without 
motion correction. We found that online motion stabilization was effective at preventing two problems 
that can arise from instability of the brain image on the sensor. First, when decoding a rat’s position 
on the linear track, online motion correction prevented decoding accuracy from becoming degraded 
during frames in which brain motion shifted the sensor image, as evidenced by the fact the positive 
correlations between decoding error and image displacement were reduced by online motion correc-
tion (Figure 4). Second, in the instrumental touch screen task where brain motion was significantly 
correlated with specific behaviors, the decoder learned to predict behavior from image motion (rather 
than calcium fluorescence) in the absence of motion correction; the decoder was prevented from 
learning these ersatz predictions when the online motion correction algorithm was applied to the 
decoder’s training and testing datasets (Figure 5D–F; Figure 6).

Motion correction is a transient phenomenon and is therefore not needed during every image 
frame. Illustrating this, session-averaged accuracy for decoding position on the linear track was 
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not significantly improved by online motion correction (Figure  4A). However, for real-time feed-
back experiments, the session-averaged prediction accuracy is not the most important measure of 
decoder performance. What matters most is the accuracy of decoding during specific frames when it 
is important for feedback stimulation to be delivered or withheld. If such frames happen to overlap 
with motion artifact that interferes with decoding accuracy, then failure to perform motion correction 
can have disastrous consequences for feedback experiments, regardless of whether or not motion 
correction improves the ‘average’ decoding accuracy. Based on these considerations and the results 
of our performance tests, we conclude that the high resource costs of online motion correction are 
well worth the benefits they accrue by increasing the reliability of online decoding of neural popula-
tion activity.

Comparison with other real-time imaging platforms
Several previous online calcium fluorescence trace extraction algorithms have been proposed; some 
have been validated only by offline experiments showing that they can generate online traces that 
rival the quality of offline traces, and have not yet been performance tested on hardware platforms to 
assess their performance at real-time imaging or decoding of calcium traces (Friedrich et al., 2017; 
Friedrich et al., 2021; Taniguchi et al., 2021). Other systems have been performance tested in real 
time, as we have done here for DeCalciOn. For example, Liu et al., 2021 introduced a system for 
real-time decoding with the UCLA miniscope that, unlike DeCalciOn, requires no additional hardware 
components because it is implemented entirely by software running on the miniscope’s host PC. 
The system does not perform online motion stabilization, which is a significant drawback for reasons 
discussed above (see ‘Online motion correction’). Liu et al., 2021 showed that their system can imple-
ment a single binary classifier to decode calcium traces from 10 ROIs in mouse cortex at latencies <3 
ms; this latency measurement appears to only include the decoder’s execution time for generating 
predictions from calcium vectors (equivalent to Step 4 of our image processing pipeline) but not the 
light-gathering delay time (Figure 7A) or data buffering time. Liu et al., 2021 did not report how 
their system’s latency scales with the number of classifiers or the size/number of calcium ROIs, but 
under the assumption that serial processing time on the host PC scales linearly with these variables, 
decoding latencies of several seconds or more would be incurred for the decoding stage alone if 
12–24 classifiers were used to predict behavior from 1204 calcium traces, which is much longer then 
the millisecond latencies achieved by DeCalciOn in performance tests presented here (see Figure 7C, 
D).

Zhang et al., 2018 performed 2-photon calcium imaging experiments that incorporated real-time 
image processing on a GPU to detect neural activity and trigger closed-loop optical feedback stimula-
tion in mouse cortex. The time required for calcium trace extraction increased linearly with a slope of 
~0.05 ms per ROI (from a y-intercept of 0.5 ms; see panel C of Supplementary Fig. 6 in Zhang et al., 
2018,), implying a total trace extraction time of ~52 ms for 1204 ROIs. Summing this latency with the 
light-gathering delay (~15 ms at the system’s default 30-Hz frame rate), data buffering delay (reported 
to be ~2.5 ms), online motion correction delay (reported to be ~3.5 ms), and decoder execution time 
(~2 ms), it can be estimated that when decoding 1024 traces, Zhang et al., 2018 system would incur 
a delay of ~75 ms between light arriving at the sensor and triggering of closed-loop feedback. This 
latency is only 25 ms (~50%) longer than DeCalciOn’s 47.5-ms decoding latency under similar condi-
tions (Figure 7), and could possibly be improved using parallelization or other efficiency strategies. 
Although latency performance is similar for DeCalciOn’s FPGA-based pipeline and Zhang et al., 2018 
GPU-based pipeline, the two systems have different hardware compatibilities: DeCalciOn is designed 
for compatibility with head-free miniscopes that use the UCLA DAQ interface, whereas Zhang et al., 
2018 system is designed for compatibility with hardware and software interface standards used in 
benchtop multiphoton imaging systems.

Summary and conclusions
DeCalciOn’s low-cost, ease of use, and latency performance compare favorably against other real-
time imaging systems proposed in the literature. We hope that by making DeCalciOn widely available 
to the research community, we can provide a platform for real-time decoding of neural population 
activity that will facilitate novel closed-loop experiments and accelerate discovery in neuroscience and 
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neuroengineering. All of DeCalciOn’s hardware, software, and firmware are openly available through ​
miniscope.org.

Materials and methods
Subjects
A total of 14 Long-Evans rats (6F, 6M for CA1 experiments, 2M for OFC experiments) were acquired 
from Charles River at 3 months of age. Subjects were singly housed within a temperature and humidity 
controlled vivarium on a 12-hr reverse light cycle. Surgical procedures began after a 1-week acclima-
tion period in the vivarium, and recordings and behavioral experiments began around 5 months of 
age. All experimental protocols were approved by the Chancellor’s Animal Research Committee of 
the University of California, Los Angeles, in accordance with the US National Institutes of Health (NIH) 
guidelines.

Surgical procedures
Hippocampal surgeries
Subjects were given two survival surgeries prior to behavior training in order to record fluorescent 
calcium activity from hippocampal CA1 cells. During the first surgery, rats were anesthetized with 5% 
isoflurane at 2.5 l/min of oxygen, then maintained at 2–2.5% isoflurane while a craniotomy was made 
above the dorsal hippocampus. Next, 1.2 μl of AAV9-Syn-GCamp7s (Addgene) was injected at 0.12 
μl/min just below the dorsal CA1 pyramidal layer (−3.6 AP, 2.5 ML, 2.6 DV) via a 10-μl Nanofil syringe 
(World Precision Instruments) mounted in a Quintessential Stereotaxic Injector (Stoelting) controlled 
by a Motorized Lab Standard Stereotax (Harvard Apparatus). Left or right hemisphere was balanced 
across all animals. One week later, the rat was again induced under anesthesia and four skull screws 
were implanted to provide stable hold for the subsequent implant. The viral craniotomy was reopened 
to a diameter of 1.8 mm, and cortical tissue and corpus callosal fibers above the hippocampus were 
aspirated away using a 27- and 30-gauge blunt needle. Following this aspiration, and assuring no 
bleeding persisted in the craniotomy, a stack of two 1.8-mm diameter Gradient Refractive INdex 
(GRIN) lenses (Edmund Optics) was implanted over the hippocampus and cemented in place with 
methacrylate bone cement (Simplex-P, Stryker Orthopaedics). The dorsal surface of the skull and 
bone screws were cemented with the GRIN lens to ensure stability of the implant, while the dorsal 
surface of the implanted lens was left exposed. Two to three weeks later, rats were again placed under 
anesthesia in order to cement a 3D printed baseplate above the lens. First a second GRIN lens was 
optically glued (Norland Optical Adhesive 68, Edmund Optics) to the surface of the implanted lens 
and cured with UV light. The pitch of each GRIN lens was ≲0.25, so implanting two stacked lenses 
yielded a total pitch of ≲0.5. This half pitch provides translation of the image at the bottom surface 
of the lenses to the top while maintaining the focal point below the lens. This relay implant enables 
access to tissue deep below the skull surface. The miniscope was placed securely in the baseplate and 
then mounted to the stereotax to visualize the calcium fluorescence and tissue. The baseplate was 
then cemented in place above the relay lenses at the proper focal plane and allowed to cure.

OFC surgeries
Infusion of AAV9-CaMKIIα-GCaMP6f (Addgene, #100834-AAV9) in OFC was performed using aseptic 
stereotaxic techniques under isoflurane gas (1–5% in O2) anesthesia prior to any behavioral testing. 
Before surgery animals were administered 5 mg/kg s.c. carprofen (NADA #141-199, Pfizer, Inc, Drug 
Labeler Code: 000069) and 1 cc saline. After being placed in the stereotaxic apparatus (David Kopf; 
model 306041), the scalp was removed. The skull was leveled +2 and −2 mm A-P and M-L to ensure 
that bregma and lambda were in the same horizontal plane. Small burr holes were drilled in the skull 
above the target. Rats were infused with GCaMP6f virus in OFC (AP = +3.7; ML = ±2.5; DV = −4.6) 
and afterwards, implanted with a GRIN lens and affixed with a custom 3D printed lens cover during 
the same surgery. A total of 0.05 μl of GCaMP6f virus was infused at a rate of 0.01 μl per minute in the 
target region. After each infusion, 5 min elapsed before exiting the brain. Two to three weeks after 
virus infusion and lens implantation, rats were again placed under anesthesia to remove the lens cover 
and check for signal. After confirming signal, a miniscope baseplate was affixed with dental cement 
which enabled quick placement and removal of the miniscope in a freely moving rat.
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Linear track task
After rats had been baseplated, they were placed on food restriction to reach a goal weight of 
85% ad lib weight and then began behavioral training. Time between the beginning of the surgical 
procedures and the start of behavior training was typically 6–8 weeks. Rats earned 20 mg chocolate 
pellets by alternating between two rewarded ends of a linear track (250 cm) during 15-min recordings 
beginning 5 days after baseplating. After receiving a reward at one end, the next reward had to be 
earned at the other end by crossing the center of the track. A webcam mounted in the behavior room 
tracked a red LED located on the top of the Miniscope and this video was saved alongside the calcium 
imaging via the Miniscope DAQ software with synchronized frame timestamps. These behavior video 
files were initially processed by custom python code, where all the session videos were concatenated 
together into one tiff stack, downsampled to the video imaging frame rate, the median of the stack 
was subtracted from each image, and finally they were all rescaled to the original 8-bit range to yield 
the same maximum and minimum values before subtraction. Background subtracted behavior videos 
were then processed in MATLAB. The rat’s position in each frame was determined using the location 
of the red LED on the camera. Extracted positions were then rescaled to remove the camera distortion 
and convert the pixel position to centimeters according to the maze size. Positional information was 
then interpolated to the timestamps of the calcium imaging video using a custom MATLAB script.

Instrumental touchscreen task
Before pretraining, rats were acclimated to a gentle hold on the lap of the experimenter sitting adja-
cent to the test chamber. This acclimation took place over at least 1 week prior to an imaging session 
wherein the rat was acclimated to unscrewing the cover of the baseplate on the rat’s head, then 
placing the miniscope on the baseplate while on and imaging. After checking placement, the mini-
scope was screwed onto the baseplate. The rat was then placed in the operant chamber and the 
miniscope was plugged into the commutator. Pretraining schedules were then initiated that culmi-
nated in independent nosepokes to the touchscreen (Harris et al., 2021). Following criterion of 60 
committed trials or more during a 45-min session, rats were advanced to the main instrumental task 
(Figure 5A). Rats were required to initiate a trial by touching the white graphic stimulus in the center 
screen (displayed for 40 s), and after initiation rats would be presented with two identical stimuli (i.e., 
fan or marble) on the left and right side of the screen (displayed for 60 s), that they were required to 
nosepoke as either the correct spatial side (pR(B) = 1; rewarded with one sucrose pellet) or incorrect 
spatial side (pR(W) = 0). Thus, rats were required to ignore the properties of the stimuli and determine 
the better-rewarded side.

Histology
At the end of the experiment, rats were anesthetized with isoflurane, intraperitoneally injected with 
1 ml of pentobarbital, then transcardially perfused with 100 ml of 0.01 M phosphate-buffered saline 
(PBS) followed by 200 ml of 4% paraformaldehyde in 0.01 M PBS to fix the brain tissue. Brains were 
sectioned at 40-µm thickness on a cryostat (Leica), mounted on gelatin prepared slides, then imaged 
on a confocal microscope (Zeiss) to confirm GFP expression and GRIN lens placement.

Hardware
The DeCalciOn system is designed for use with UCLA Miniscope devices (Cai et al., 2016) and other 
miniscopes (Scott et al., 2018; de Groot et al., 2020; Blair et al., 2021) that use the UCLA DAQ 
interface. The DAQ hardware requires modification by soldering flywires to the PCB (see Figure 1); 
instructions for doing this are available at https://github.com/zhe-ch/ACTEV (Chen, 2023 copy 
archived at swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82) and pre-modified DAQ 
boards are available at miniscope.org. DeCalciOn is implemented on an Avnet Ultra96 develop-
ment board (available from the manufacturer at Avnet.com), which must be mated to our custom 
interface board available at miniscope.org (the interface can also be ordered from a PCB manufac-
turer with design files available at https://github.com/zhe-ch/ACTEV) (Chen, 2023 copy archived at 
swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82). ACTEV compiled hardware (for online 
image stabilization, image enhancement, calcium trace extraction) and embedded software (for real-
time decoding and ethernet communication, which runs under the FreeRTOS operating system) can 
be programmed onto the Ultra96 board by copying a bootable bitstream file to a MicroSD card and 
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then powering up the board with the card inserted. The V4 and MiniLFOV versions of the bitstream 
used for experiments reported here are available at https://github.com/zhe-ch/ACTEV., (Chen, 2023 
copy archived at swh:1:rev:aa6393d3bd2dd490aa5369e1f2677e85e8a64a82) Bitstream files for other 
miniscope models and Vivado HLS C source code for generating new custom bitstream files are avail-
able on request.

Software
Real-time imaging and decoding are controlled by custom RTI software (available at https://​
github.com/zhe-ch/ACTEV) (Chen, 2023 copy archived at swh:1:rev:aa6393d3bd2dd490aa5369e-
1f2677e85e8a64a82) which runs on the host PC alongside standard DAQ software (available at mini-
scope.org) for adjusting the gain and focus of the Miniscope device. The DAQ software’s default 
operation mode is to receive and display raw Miniscope video data from the DAQ via a USB 3.0 port 
(and store these data if the storage option has been selected), and also to receive and display raw 
behavior tracking video from a webcam through a separate USB port. At the start of a real experi-
mental session, data acquisition by both programs (DAQ and RTI software) is initiated simultaneously 
with a single button click in the RTI user interface, so that Miniscope video storage by the RTI software 
and behavior video storage by the Miniscope DAQ software are synchronized to begin at exactly the 
same time. This allows behavioral data stored by the DAQ software to be aligned with Miniscope 
video and calcium trace data stored by the RTI software. During the intermission period between 
initial data acquisition and real-time inference, data stored by DAQ and RTI software are used to train 
the linear classifier on the host PC. Trained classifier weights are then uploaded to the Ultra96 for 
real-time decoding.

Contour-based pixel masks
Pixel masks for contour-based trace extraction were derived using the CaImAn (Giovannucci et al., 
2019) pipeline (implemented in python) to analyze motion-corrected sensor images from the training 
dataset (as noted in the main text, this took 30–60 min of computing time on the host PC). CaImAn is 
an offline algorithm that uses CNMF to isolate single neurons by demixing their calcium traces. The 
CNMF method is acausal so it cannot be used to extract traces in real time. But during offline trace 
extraction, CaImAn generates a set of spatial contours identifying pixel regions from which each 
demixed trace was derived, which ACTEV then uses as pixel masks for online extraction of contour-
based traces. Once pixel masks were identified from the training data, motion-correct miniscope 
video from the training period was passed through an offline simulator that used ACTEV’s causal 
algorithm for extracting calcium traces from contour pixel masks. This yielded a set of calcium traces 
identical to those that would have been extracted from the training data in real time by ACTEV. These 
simulated traces were then used as input vectors to train the linear classifier. Since the online traces 
are not generated by CNMF (and are thus not demixed from one another), they are susceptible to 
contamination from fluorescence originating outside of contour boundaries. However, this crosstalk 
fluorescence did not impair decoding since similar accuracy results were obtained by training the 
linear classifier on online or offline contour-based traces (Figure 4F, G).

Contour-free pixel masks
To implement contour-free trace extraction, we simply partitioned the 512 × 512 image frame into a 
32 × 32 sheet of tiles, each measuring a square of 16 × 16 pixels (Figure 4B). No traces were extracted 
from 124 tiles bordering the edge of the frame, to avoid noise artifacts that might arise from edge 
effects in the motion stabilization algorithm. Hence, a total of 1024–124 = 900 pixel mask tiles were 
used for contour-free calcium trace extraction. These traces were derived in real time and stored to the 
host PC throughout the initial data acquisition period, so they were immediately available for training 
the linear classifier at the start of the intermission. Consequently, an advantage of contour-free trace 
extraction is that the intermission period between training and testing is shortened to just a few 
minutes, because the lengthy process of contour identification is no longer required. A disadvantage 
of contour-free trace extraction is that contour tiles do not align with individual neurons in the sensor 
image. As reported in the main text, this lack of alignment between neurons and pixel masks did not 
impair (and often enhanced) position decoding; however, contour-free decoding does place limits 
upon what can be inferred about how single neurons represent information in imaged brain regions.
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Fluorescence summation
After pixel masks were created using one of the two methods (contour-based or contour-free) and 
uploaded to the FPGA, calculations for extracting calcium traces from the masks were the same. Each 
mask specified a set of pixels over which grayscale intensities were summed to obtain the fluores-
cence value of a single calcium trace:

	﻿‍ T
(
f
)

=
∑P

i=1 pi
(
f
)
‍�

where T(f) is the summed trace intensity for frame f, and pi(f) is the intensity of the ith pixel in the 
mask for frame f, and P is the number of pixels in the mask. Each contour-free mask was a square tile 
containing 16 × 16 = 256 pixels (Figure 4B), whereas the size of each contour-based mask depended 
upon where CaImAn identified neurons in the image (Figure 4A).

Drop filtering
The mean size of contour-based masks was 20–100 pixels (depending on the rat), which was an 
order of magnitude smaller than contour-free tiles. In a few rats, a small amount of jitter sometimes 
penetrated the online motion correction filter, causing the stabilized sensor image to slip by 1–2 
pixels against stationary contour masks during 1–2 frames (see Video S1, line graph at lower right). 
This slippage misaligned pixels at the edges of each contour mask, producing intermittent noise in 
the calcium trace that was proportional to the fraction of misaligned pixels in the contour, which in 
turn was inversely proportional to the size of the contour, so that motion jitter caused more noise in 
traces derived from small contour masks than large contour masks. To filter out this occasional motion 
jitter noise from calcium traces, a drop filter was applied to traces derived from contour masks that 
contained fewer than 50 pixels. The drop filter exploited the fact that genetic calcium indicators 
have slow decay times, and therefore, sudden drops in trace fluorescence can be reliably attributed 
to jitter noise. For example, the GCamp7s indicator used here has a half decay time O’Keefe and 
Dostrovsky, 1971 of about 0.7 s, so at a frame rate of ~20 Hz, a fluorescence reduction of more than 
5% between frames can only arise from jitter artifact. The drop filter defines a maximum permissible 
reduction in fluorescence between successive frames as follows:

	﻿‍ δ = GCq‍�

where G is the maximum possible fluorescence intensity for any single pixel (255 for 8-bit grayscale 
depth), C is the number of pixels in the contour mask for the trace, and q is a user-specified sensitivity 
threshold, which was set to 0.9 for all results presented here. The drop-filtered calcium trace value for 
frame f was given by:

	﻿‍ F
(
f
)

= max
[
T
(
f
)

, F
(
f − 1

)
− δ

]
‍�

It should be noted that while drop filtering protects against artifactual decreases in trace values, 
it offers no protection against artifactual increases that might masquerade as neural activity events. 
However, motion jitter almost never produced artifactual increases in fluorescence for the small 
contours to which drop filtering was applied, because small contours were ‘difficult targets’ for patches 
of stray fluorescence to wander into during jitter events that rarely exceeded 1–2 pixels of slippage. 
Larger contours were slightly more likely to experience artifactual fluorescence increases during jitter 
events, but in such cases, the artifact was diluted down to an inconsequential size because it only 
affected a tiny fraction of the large contour’s pixels. In summary, jitter artifact was highly asymmetric, 
producing artifactual decreases but not increases for small contours, and producing negligible artifact 
of any kind for large contours.

Spike inference
Once trace values have been extracted (and drop filtered if necessary), ACTEV can apply a real-
time spike inference engine to convert raw calcium trace values into inferred spike counts for each 
frame. Briefly, the spike inference engine measures how much the trace value in the current frame has 
changed from the prior frame, T(f) − T(f − 1), and compares this against a threshold value, Φ, which 
is equal to 2.5 times the standard deviation of difference values between successive frames of the 
same trace in the training dataset. For the CA1 data reported here, we found that the linear classifier 

https://doi.org/10.7554/eLife.78344
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was more accurate at decoding raw (unconverted) calcium traces than inferred spike counts (panel A 
of Supplementary to Figure 3). Decoding from raw calcium traces is not only more accurate but also 
more computationally efficient; therefore, the main text reports results obtained by decoding raw 
calcium trace values.

Training classifiers
To train the linear classifier, data stored during the initial acquisition period by the DAQ and RTI soft-
ware were analyzed during the intermission period by custom MATLAB scripts, available at https://​
github.com/zhe-ch/ACTEV, (Chen, 2023 copy archived at swh:1:rev:aa6393d3bd2dd490aa5369e-
1f2677e85e8a64a82). Different linear classifier architectures were used for position versus behavioral 
decoding, as explained below. Training vectors and target outputs were passed to MATLAB’s fitceoc 
function (from the machine learning toolbox) to compute the trained linear classifier weights, which 
were then uploaded from the host PC to the Ultra96 via ethernet, so that the real-time classifier 
running under FreeRTOS in the ARM core could decode calcium traces in real time.

Linear classifier for position decoding
The linear classifier had N inputs and M outputs, where N is the number of calcium traces. In perfor-
mance tests reported here, the output layer utilized a Gray coding scheme to represent each of the 
24 binned track locations (Figure 3B). Under this representation scheme, the total number of output 
units is equal to M = K/2, where K is the number of categories (position bins) to be encoded. Since 
the linear track was subdivided into K = 24 spatial bins, there were M = 24/2 = 12 binary classifier 
units in the decoder’s output layer. Training data consisted of calcium trace input vectors (derived by 
either contour-based or contour-free methods described above) and target position output vectors 
(encoding the rat’s true position) for each Miniscope frame. As a control condition, calcium traces and 
tracking data were circularly shifted against one another by 500, 1000, 1500, 2000, or 2500 frames 
before training, and the trained classifier was then tested on correctly aligned trace inputs and target 
position outputs. Accuracy results from all five shift values were averaged together to obtain the ‘shift’ 
decoding accuracies plotted in panel C of the Supplement to Figure 3.

Binary tree classifier for behavior decoding
The binary tree classifier had N inputs and M outputs, where M is the number of behavior categories 
to be decoded. In performance tests reported here, there were M = 5 behavior categories (pre-trial, 
correct choice, incorrect choice, reward retrieval, and intertrial) as defined in the main text. Calcium 
traces were extracted from each image frame using the CB, CF, or Off methods described above. As 
a control measure, the classifier was also trained to predict the behavior category from image motion 
displacement (Mot) rather than calcium traces; the Mot predictor was a vector comprised from five 
elements per frame: Δx, Δy, d, Δd, and |Δd| (see main text for definitions of symbols). For each session, 
the classifier was trained on data from the first 100 trials (40,998 frames for rat JL66, 44,877 frames 
for rat JL63) and then tested on the subsequent 50 trials (25,798 frames for rat JL66, 24,974 frames 
for rat JL63).

Decoding calcium traces
Once classifier weights had been uploaded to the Ultra96 from the host PC, it was then possible 
for the embedded ARM core in the Ultra96 MPSoC to read in calcium trace values from the DRAM 
in real time as each frame of data arrived from the Miniscope, and present these values as inputs 
to the linear classifier. The ARM core was programmed in C++ to perform calculations equivalent 
to MATLAB’s predict function (from the machine learning toolbox) and thereby generate the linear 
classifier output vector. For predicting the rat’s position on the track from CA1 activity, the decoded 
position bin was taken to be that represented by the Gray code vector that most closely matched the 
classifier output vector. For categorizing the rat’s behavior from OFC activity, the predicted behavior 
label was taken to be the label that had been most often selected by the decoder during a five-frame 
window that included the current and previous four frames. OFC decoding performance was assessed 
by computing sensitivity (the overall percentage of behavior events during the test epoch that were 
correctly predicted) and F-score (a standard measure of binary classification accuracy computed as 
2PS/(P + S), where S is the sensitivity and P is the precision defined as the number of correct positive 
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results divided by the number of all positive results). Decoder predictions were sent back to the host 
PC via ethernet for storage, and were also sent to a programmable logic mapper running on the ARM 
core, which converted the linear classifer’s output vector into a pattern of square pulses generated at 
on of 8 TTL pinouts from the Ultra96, capable of driving closed-loop neural or sensory feedback via 
external devices such as lasers, electrical stimulators, or audiovisual display equipment.

Spatial tuning curves
To generate spatial tuning curves for fluorescence traces, each trace was first referenced to zero by 
subtracting its minimum observed fluorescence value (over all frames) from the value in every frame: 

‍Z
(
f
)

= T
(
f
)
− min

(
T
)
‍, where Z(f) is the zero-referenced trace value for frame f. The 250-cm linear track 

was subdivided into 24 evenly spaced spatial bins (12 each in the left-to-right and right-to-left direc-
tions; see Figure 2A). Fluorescence activity, A, in each bin b was averaged by

	﻿‍ A
(
b
)

=
∑B

i=1 Z
(
fi
)

/B‍�

where B is the number of visits to bin b and fi is the ith frame during which the rat was visiting bin 
b. The tuning curve vector [A1, A2, …, A24] was then normalized by dividing each of its elements by 
the value of the maximum element. Normalized tuning curve vectors were plotted as heatmaps in 
Figure 2C, D. Spatial similarity scores (S) were computed as described in the main text; S distributions 
for each rat are shown in Extended Data Figure 3.

Correlation between decoding error and image displacement
Two Pearson correlation coefficients (Rmc+ and Rmc−) were derived for each session by correlating the 
distance error vectors (‍λ‍mc+ and ‍λ‍mc−) in each frame with the displacement vector d = {d1, d2, ..., dF}, 
where F is the total number of frames in the session. A necessary condition for computing reliable R 
values was that ‍λ‍ and ‍d‍ had to be sufficiently dispersed along their respective axes to detect a signif-
icant linear relationship between the variables. However, within any given session, there were often 
some position bins in which motion artifact either never occurred or was so small in magnitude that it 
was impossible to assess the impact of motion artifact upon decoding accuracy at that position. For 
this reason, the motion-accuracy correlation analysis was performed only on frames from selected 
position bins in which the maximum value of ‍d‍ exceeded a threshold of 4 pixels, which was a large 
enough displacement to alter the values of CB trace values extracted from images without motion 
correction. All frames from position bins meeting this criterion (and no frames from position bins that 
did not) were included in the correlation analysis. Hence, analysis was restricted to those locations 
on the track where trace values (and thus distance error of decoded positions) could potentially be 
affected by motion artifact and excluded locations where no influence was possible because of a lack 
of motion artifact.
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