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Regulation of Thalamic and Cortical Network Synchrony by 
Scn8a

Christopher D. Makinson1, Brian S. Tanaka2, Jordan M. Sorokin1, Jennifer C. Wong3, 
Catherine A. Christian1,4, Alan L. Goldin2, Andrew Escayg3,*, and John R. Huguenard1,5,*

1Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, 
USA

2Departments of Microbiology and Molecular Genetics and Anatomy and Neurobiology, University 
of California, Irvine, CA 92697, USA

3Department of Human Genetics, Emory University, Atlanta, GA 30322, USA

SUMMARY

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, 

pathological hypersynchronous brain states. Here we present two mechanisms that help to explain 

how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) 

hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation 

of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of 

Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic 

inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony 

and generate pathological oscillations. To our knowledge, this finding is the first clear 

demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that 

loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave 

discharges is striking and represents an example of absence epilepsy of thalamic origin.

INTRODUCTION

Voltage-gated sodium channels (VGSCs) are critical mediators of neuronal excitability in all 

regions of the brain. They are primarily responsible for the initiation and propagation of 

action potentials but also shape neuronal activity via depolarizing subthreshold sodium 

currents (Bean, 2007; Raman and Bean, 1997; Raman et al., 1997; Taddese and Bean, 2002). 
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As a result, mutations in VGSCs can have dramatic effects on neural circuit function. For 

example, mutations in all of the major CNS VGSC genes have been identified in patients 

with epilepsy (Claes et al., 2001; Escayg et al., 2000; Holland et al., 2008; Sugawara et al., 

2001; Veeramah et al., 2012), a disorder of the CNS characterized by neuronal 

hyperexcitability and episodes of hypersynchrony. Recently, distinct seizure types, including 

generalized convulsive seizures and non-convulsive absence seizures, have been attributed to 

mutations in the VGSC gene SCN8A (Berghuis et al., 2015; Veeramah et al., 2012; Wagnon 

and Meisler, 2015). Alleles that reduce the activity of Scn8a are known to increase resistance 

to acute seizures, while also reducing seizure severity and improving survival of Scn1a 
epileptic mutant mice (Hawkins et al., 2011; Makinson et al., 2014; Martin et al., 2007). 

However, reduced Scn8a activity also leads to non-convulsive absence epilepsy in mice 

(Papale et al., 2009) and humans (Berghuis et al., 2015). Similarly, common antiepileptic 

drugs (AEDs) that act on VGSCs are known to effectively control generalized convulsive 

and partial epilepsies; however, they are often ineffective against absence seizures and may 

even increase the risk of absence epilepsy (Manning et al., 2003; Osorio et al., 2000; Posner, 

2006).

Efforts to understand the relationship between SCN8A activity and seizure resistance have 

mainly focused on the role of this channel in the hippocampus, where increased expression 

is correlated with greater susceptibility to induced convulsive seizures (Blumenfeld et al., 

2009) and reduced expression is associated with seizure resistance (Makinson et al., 2014). 

The relative contribution of different neuronal cell types to SCN8A-mediated seizure 

resistance is unknown and the etiology of SCN8A-absence epilepsy remains unexplored.

RESULTS

Distinct Excitatory and Inhibitory Cell Types Mediate Scn8a Seizure Protection and 
Absence Epilepsy

To identify the different neuronal populations that underlie Scn8a-associated seizure 

phenotypes, we first generated mouse lines in which Scn8a was deleted from select cell 

types and assessed seizure susceptibility and spontaneous electrographic activity. Mouse 

lines that express Cre recombinase in excitatory, inhibitory, or both neuronal cell types were 

crossed to animals carrying a floxed Scn8a allele (Scn8afl/+) to produce offspring with 

selective heterozygous deletion of Scn8a (Scn8afl/+Cre) and control animals lacking the Cre 
transgene (Scn8afl/+no-Cre). Homozygous floxed Scn8a mice without Cre (Scn8afl/fl no-

Cre) were verified to have normal levels of Scn8a expression and normal susceptibility to 

flurothyl-induced seizures (Figure S1). Five Cre lines with different expression patterns were 

chosen to achieve inactivation of Scn8a: (1) broadly in the cerebral cortex (FoxG1) (Hebért 

and McConnell, 2000), (2) in glutamatergic excitatory neurons (Camk2a, Emx1) (Dragatsis 

and Zeitlin, 2000; Gorski et al., 2002), (3) preferentially in inhibitory cells of the cortex, 

hippocampus, and striatum but not of the thalamic reticular nucleus (Ppp1r2) (Belforte et al., 

2010), and (4) broadly in inhibitory cells throughout the brain (Dlx5/6) (Monory et al., 

2006).

The susceptibility of mice with cell-type-specific deletion of Scn8a to chemically induced 

seizures was assessed by exposure to flurothyl (Makinson et al., 2016; Martin et al., 2007; 

Makinson et al. Page 2

Neuron. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Papale et al., 2009). Scn8afl/+FoxG1 animals (purple box) exhibited increased latencies to 

the generalized tonic clonic seizure (GTCS) but not to the initial myoclonic jerk (MJ), 

whereas Scn8afl/+ mice expressing either of the excitatory cell-specific Cre transgenes, 

Emx1 or Camk2a Cre (blue box), exhibited increased latencies to both seizure behaviors 

(Figure 1; see Table S1 for statistics). By contrast, Scn8a deletion from inhibitory cells (red 

box) did not increase seizure latencies (Figure 1A; see Table S1 for statistics).

Homozygous floxed Emx1 Cre animals were also generated so that seizure latencies 

following complete deletion of Scn8a from excitatory cells could be assessed. Homozygous 

floxed Emx1 Cre (Scn8afl/fl Emx1) animals did not display obvious behavioral abnormalities 

or reduced lifespan; however, these animals did exhibit increased seizure latencies over 

heterozygous deletions (Figure S3, MJ, Scn8afl/fl Emx1 360 ± 26 s, Scn8afl/+ Emx1 309 

± 11 s Scn8afl/fl no-Cre 275 ± 26 s; GTCS, Scn8afl/fl Emx1 818 ± 14s, Scn8afl/+ Emx1 681 

±54s Scn8afl/fl no-Cre 491 ±35s).

Previously, we showed that globally reducing Scn8a activity reduced hippocampal 

hyperexcitability and seizure phenotypes associated with Scn1a epilepsy mutations 

(Hawkins et al., 2011; Makinson et al., 2014; Martin et al., 2007, 2010). To evaluate whether 

the deletion of Scn8a from excitatory neurons is sufficient to produce these effects, we 

evaluated hippocampal excitability in mice in which Scn8a was deleted from excitatory 

neurons. In hippocampal slices, the latency to high potassium-induced epileptiform bursts 

was elevated, while inter-burst frequency was reduced (Figures S4A and S4B, Latency, 

Scn8afl/+Emx1, 7.4 ± 0.6 s versus Scn8afl/+no-Cre, 4.6 ± 0.5 s; Frequency, Scn8afl/+Emx1, 

0.50 ± 0.04 Hz versus Scn8afl/+no-Cre, 0.70 ± 0.04 Hz, Mann Whitney U test), while 

deletion in inhibitory cells had no effect (Figure S4B, Latency, Scn8afl/+Dlx5/6, 4.3 ± 0.3 s 

versus Scn8afl/+no-Cre, 4.4 ± 0.2 s; Frequency, Scn8afl/+Dlx5/6, 0.78 ± 0.06 Hz versus 

Scn8afl/+no-Cre, 0.72 ± 0.05 Hz, Mann Whitney U test, p > 0.05). Hippocampal CA3 

pyramidal cells from mice with excitatory-specific deletion (Scn8afl/+Emx1) were less 

excitable, consistent with previous results with global Scn8a deletion (Royeck et al., 2008) 

(Figure S4D, number of action potentials [APs] in response to 150 pA current injection, 

Scn8afl/+Emx1, 19.3 ± 0.5 versus Scn8afl/+no-Cre, 27.7 ± 1.2, two-way ANOVA, p < 0.05).

To evaluate Scn8a-associated seizure protection directly in a model of epilepsy, we 

generated mice carrying the Scn1a-R1648H genetic epilepsy with febrile seizures plus 

(GEFS+) mutation (Makinson et al., 2016; Martin et al., 2010) and excitatory cell-specific 

deletion of Scn8a as outlined in Figure S4E. Deletion was found both to increase seizure 

latencies and to normalize survival (Figure S4F; Seizure latencies, GTCS, Scn8afl/+no-Cre, 

443 ± 29 s, Scn8afl/+no-Cre Scn1aRH/+, 332 ± 15 s, Scn8afl/+Emx1, 714 ± 50 s, 

Scn1aRH/+Scn8afl/+Emx1, 612 ± 43 s, One-way ANOVA, Dunnett’s post hoc; Survival, 

Scn8afl/+no-Cre, 9/9, 100%, Scn8afl/+Emx1, 7/7, 100%, Scn8afl/+no-Cre Scn1aRH/+, 8/12, 

66.7%, Scn1aRH/+Scn8afl/+ Emx1, 8/8, 100%, Mantel-Cox test).

Global Scn8a loss leads to spontaneous absence seizures in mice (Papale et al., 2009). In 

order to determine whether selective loss of Scn8a from defined cell types is sufficient to 

generate absence seizures, mice from each of the five Cre crosses were instrumented for 

electrocorticogram (ECoG) recordings and 3 days of continuous records were analyzed 
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(Figure 1B). Spontaneous absence seizures were only observed in mice in which Scn8a was 

deleted broadly in inhibitory cells (Scn8afl/+Dlx5/6, absence seizures per day, 111 ± 23). 

Notably, restricting Scn8a deletion to select interneurons outside of the thalamus by the 

Ppp1r2 transgene did not produce absence seizures (Figure 1B), and no other seizure types 

were observed in any of the other animals.

In order to make direct comparisons of chemi-convulsant sensitivity and absence seizure 

frequency between different cell-type-specific deletions on the same genetic background, 

mice expressing both the excitatory-specific Emx1 Cre and the inhibitory-specific Dlx5/6 
Cre transgenes were generated and then crossed to Scn8afl/fl mice as outlined in Figure 1C. 

This cross yielded offspring in which Scn8a was deleted in either excitatory 

(Scn8afl/+Emx1), inhibitory (Scn8afl/+Dlx5/6), or both (Scn8afl/+Emx1 Dlx5/6) cell types, 

and control littermates that did not carry a Cre transgene (Scn8afl/+no-Cre). Latencies to 

flurothyl-induced GTCS were found to be significantly increased in mice in which Scn8a 
was deleted in excitatory cells (Scn8afl/+Emx1, GTCS, 639.8 ± 37.4 s) and in mice in which 

Scn8a was deleted in both excitatory and inhibitory cells (Scn8afl/+Emx1 Dlx5/6, GTCS, 

582.7 ± 36.5 s) when compared to control mice (Scn8afl/+no-Cre, GTCS, 429.7 ± 30.4 s). In 

contrast, the average latency to the GTCS was not significantly altered in animals in which 

Scn8a was deleted from inhibitory cells (Scn8afl/+Dlx5/6, GTCS, 359.0 ± 32.9 s) when 

compared to control mice (one-way ANOVA, Tukey post hoc, n = 7–9 per genotype, Figure 

1D). No absence seizures were detected during ECoG recordings in mice in which Scn8a 
was deleted from excitatory cells (Scn8afl/+Emx1) or Cre-negative control (Scn8afl/+no-Cre) 

animals (Figures 1E and 1F). However, frequent absence seizures were detected in mice in 

which Scn8a was deleted in inhibitory cells throughout the brain (Figures 1E–1F, 

Scn8afl/+Dlx5/6, 79 ± 10 seizures per day). Interestingly, the frequency of absence seizures 

was significantly reduced in mice in which Scn8a was deleted in both excitatory and 

inhibitory cells (Figures 1E–1F, Scn8afl/+Emx1 Dlx5/6, 20 ± 5 seizures per day) when 

compared to animals that only carried the inhibitory cell-specific Dlx5/6 Cre transgene (79 

± 10 seizures per day), indicating that reducing cortical excitability opposes absence seizure 

generation driven by loss of Scn8a from inhibitory cells (one-way ANOVA, Tukey post hoc, 

n = 7–9 per genotype).

Scn8a Deficiency Leads to Thalamocortical Network Hypersynchrony In Vivo

Absence seizures are a manifestation of hypersynchronous oscillations between cortical and 

thalamic structures. Thus, we evaluated spontaneous electrographic activity in the 

thalamocortical system of freely moving heterozygous null Scn8a-med mice (Scn8a+/−) 

(Kohrman et al., 1996). Recording electrodes were implanted at the surface of the cortex and 

tungsten wires were placed in somatosensory thalamus. All electrode positions were verified 

by histology after recordings. High-amplitude spike-wave discharges (SWDs) were recorded 

from cortical and thalamic electrodes of all Scn8a+/− animals (Figure 2A) and detected using 

custom software (see STAR Methods). Seizures occurred at a frequency of 0.88 ± 0.16 

seizures per min and had an average duration of 5.24 ± 0.29 s (Figure S5, n = 9 animals). 

Peak spectral power of Scn8a+/− SWD events occurred at 7 Hz (Figure 2A, inset). 

Normalized power across five frequency bands showed a progressive reduction in spike-
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wave (Øsw, 7–10 Hz) and increase in low-frequency (δ, 2–4 Hz; δ, 4–7 Hz) band power 

from the beginning to the end of the seizures (Figure 2B).

SWDs were first detected at postnatal day 17 and reached adult levels by the second 

postnatal month in Scn8a+/− animals (Figure 2C). This increase in the frequency of SWDs 

during postnatal development coincides with previously described developmental increases 

in Nav1.6 levels (protein product of Scn8a) (Makinson et al., 2014).

Multiunit activity collected from the somatosensory thalamus revealed a robust and 

prolonged (~1 s) decrease in firing rate that preceded the onset of SWDs (Figures 2D and 

2E). This pre-seizure reduction of thalamic multiunit activity was consistently observed 

between seizures in the same animal (Figure 2D) and between different animals (Figure 2E).

Isolated Thalamic Circuits of Scn8a-Deficient Animals Display Increased Spontaneous and 
Evoked Oscillatory Activity

Our observation that deletion of Scn8a broadly in interneurons but not by a Cre line that 

targets inhibitory cells outside of the thalamus is sufficient to cause absence seizures (Figure 

1) and the observation that Scn8a absence seizures involve strong thalamic activity and 

changes in thalamic pre-seizure state (Figure 2), motivated an evaluation of Scn8a channel 

expression in inhibitory cells of the thalamus. Scn8a expression was previously identified in 

some subpopulations of cortical interneurons (Lorincz and Nusser, 2008); however, 

expression in thalamic inhibitory cells was unknown. We therefore performed 

immunohistochemistry for Scn8a and the inhibitory marker GAD65/67 in mouse brain slices 

and counted the percentage of double-labeled Scn8a processes. Consistent with previous 

findings, we found evidence for the expression of Scn8a in axons in cortical inhibitory cells 

(5.6% of Scn8a segments colocalized with GAD65/67, n = 3 animals, Figures 3A and 3B) 

(Lorincz and Nusser, 2008; Makinson et al., 2016). GAD65/67-negative Scn8a processes 

that predominate in the cortex likely represent axon initial segments (AISs) of excitatory 

projection neurons as previously described (Lorincz and Nusser, 2008). By contrast, a high 

percentage of Scn8a processes in the thalamic reticular nucleus (RT) were found to be 

positive for GAD65/67 (71.7% GAD65/67-and Scn8a-positive processes, n = 3 WT 

animals), while few Scn8a-positive RT processes were GAD65/67-negative (28.3% 

GAD65/67-negative Scn8a processes, n = 3, Figures 3A and 3B).

In order to evaluate the functional consequence of loss of Scn8a on thalamic 

synchronization, we made thalamic slice preparations as previously described (Huntsman et 

al., 1999) and measured spontaneous and evoked oscillatory activity. This slice preparation 

maintains an isolated thalamic circuit that contains reciprocally connected RT and TC cells 

(Figure 3C). This nested thalamic oscillator has been shown to be centrally involved in the 

generation and maintenance of absence seizures (Huntsman et al., 1999; Kleiman-Weiner et 

al., 2009; Paz et al., 2011; Steriade et al., 1993). We found that 56% of thalamic slices from 

Scn8a+/− animals display spontaneous oscillatory activity, while spontaneous oscillations 

were not observed in WT slices (Figure 3E). Compared to WT slices, evoked oscillations in 

Scn8a+/− slices were longer in duration and involved a greater number of bursts (Duration, 

WT, 1.8 ± 0.7 s, Scn8a+/−, 6.9 ± 1.5 s; Burst number, WT, 12.1 ± 4.5, Scn8a+/−, 50.9 ± 13.0, 

n = 8–9 slices/group; Figures 3F–3J). Though bursts were fewer in number in WT animals, 
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the oscillation burst frequency was not different between WT and Scn8a+/− slices (WT, 7.4 

± 0.7 Hz, Scn8a+/−, 8.2 ± 0.6 Hz, Figure 3K).

Scn8a-Dependent Deficits in RT Spike Firing Preferentially Affect Tonic Firing Modes

Having observed increased thalamic network synchrony in vivo and in vitro, we next 

evaluated the intrinsic properties of thalamic neurons of Scn8a+/− animals and animals in 

which Scn8a was deleted from inhibitory cells (Scn8afl/+Dlx5/6). Depolarizing current steps 

were used to evoke sustained trains of action potentials (Tonic) while rebound bursts (Reb. 

Burst) were evoked by steps of hyperpolarizing current in RT (Figure 4A) and 

thalamocortical (TC) (Figure 4B) cells. We found that RT cells of Scn8a+/− mice produced 

fewer APs in both tonic and burst firing modes (Figure 4C1). In contrast, the number of 

tonic and burst APs was not altered in TC cells (Figure 4D1). Instantaneous firing frequency 

was reduced in tonic but not burst firing modes of RT cells (Figure 4C2), while 

instantaneous firing frequency of TC cells was not affected (Figure 4D2). In order to directly 

compare the relative consequences of reduced Scn8a expression on burst versus tonic firing 

modes, we performed burst index (BI) calculations as detailed in the STAR Methods section. 

Briefly, BI is a composite measure reflecting the currents required to generate tonic versus 

rebound APs and the frequency of generated APs in each case. Increased BI values indicate 

increased burst versus tonic firing, while decreased BI values indicate increased tonic versus 

burst firing. RT cells of Scn8a+/− slices were found to exhibit increased BI compared to WT 

while TC cells were not affected (BI, RT, WT, 0.45 ± 0.03, versus Scn8a+/−, 0.59 ± 0.03; 

TC, WT, 0.81 ± 0.04, versus Scn8a+/−, 0.83 ± 0.03; Figure 4E).

In order to evaluate the firing properties of RT cells in mice in which Scn8a was deleted in 

inhibitory cells by the Dlx5/6-Cre transgene, we performed current-clamp recordings and 

analyzed responses to depolarizing and hyperpolarizing current steps (Figure 4G). tdTomato 

reporter expression was used to aid the identification of Cre-positive RT cells (Figure 4F). 

Reduced tonic and burst APs were observed in Scn8a-deleted RT cells compared to Cre-

negative control mice (Figure 4H). We then performed BI calculations using these voltage 

recordings and, similar to our findings in Scn8a+/− animals, we found that the RT cells of 

mice in which Scn8a was deleted in interneurons exhibit increased BI compared to Cre-

negative controls (BI, RT, Control, 0.33 ± 0.03, versus Deleted, 0.45 ± 0.04; Figure 4I).

Loss of Scn8a Impairs Intra-RT Inhibition but Not RT →TC Inhibition

Deficits in RT cell excitability and AP generation in Scn8a+/− animals are predicted to affect 

synaptic outputs of RT cells. To make comparisons of RT synaptic responses at RT and TC 

cells in WT and Scn8a+/− animals, we developed a cell-type-specific assay of RT synaptic 

output that employs ultrafast channelrhodopsin (ChETA) (Gunaydin et al., 2010) activation 

of RT cells and/or their axons (Figures S6B and S6C) with concurrent intracellular 

measurement of evoked inhibitory postsynaptic currents (eIPSCs) in TC or RT cells (Figures 

S6D and S6E). Adeno-associated virus containing a Cre-dependent ChETA-YFP construct 

was injected into the RT of WT and Scn8a+/− animals carrying a parvalbumin-Cre transgene. 

This technique achieved highly specific RT ChETA expression (Figure S6A). Viral targeting 

of ChETA-YFP was evaluated immediately following brain slicing and slices were fixed 

after recordings for immunostaining and imaging (Figure S6A). Using this assay, we found 
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that RT→TC synaptic inhibition is robust across a range of stimulation frequencies and 

unaltered by partial loss of Scn8a (Figures 5D and 5F, two-way ANOVA, p > 0.05, n = 5–9 

per genotype; Figures S6F and S6G). In contrast, Scn8a+/− RT→ RT eIPSCs exhibited 

increased activity-dependent failure when compared to WT RT→RT eIPSCs (Figures 5D 

and 5E, two-way ANOVA, Tukey post hoc, *p < 0.05, **p < 0.01, n = 5–11 per genotype; 

Figures S6F and S6G).

Selective RNAi Knockdown of Scn8a in RT Is Sufficient to Generate Absence Seizures

Our findings implicate RT neurons in the pathophysiology of Scn8a+/− absence epilepsy. 

Therefore, to determine whether loss of Scn8a from RT cells is sufficient to generate 

absence seizures in WT animals, we constructed short hairpin RNA (shRNA) constructs 

representing sequences directed against Scn8a or a scrambled control (AAV-shRNA-Scn8a-

GFP or AAV-shRNA-Scram-GFP, respectively). We first validated the efficiency of Scn8a 
knockdown and specificity of knockdown for Scn8a versus the other VGSC alpha subunits 

that are highly expressed in the adult brain via western blot analysis (Figure S7). AAV-

shRNA-Scn8a-GFP (shRNA-Scn8a) reduced Scn8a expression in the targeted region by 

approximately 65% compared to AAV-shRNA-Scram-GFP (shRNA-Scram), while no 

significant change in expression levels of Nav1.1 (Scn1a) or Nav1.2 (Scn2a) were observed 

(Figure S7). AAV constructs encoding either shRNA-Scn8a or shRNA-Scram were injected 

into the RT and TC regions of the thalamus (Figure 6A) and the animals were instrumented 

for cortical ECoG recordings. Three weeks after injection, 24 hr of continuous ECoG 

recordings were analyzed for the presence of seizure activity. No significant differences in 

seizure frequency were observed between light and dark periods. Frequent absence seizures 

were observed in animals following RT targeting with shRNA-Scn8a compared to either TC 

targeting with shRNA-Scn8a or RT targeting with shRNA-Scram (Figures 6B and 6C; 

Seizures per hour; one-way ANOVA, Tukey post hoc test, *p < 0.05, RT-targeted shRNA-

Scram, 0.8 ± 0.5, TC-targeted shRNA-Scn8a, 1.5 ± 0.3, RT targeted shRNA-Scn8a, 14.5 

± 1.3).

DISCUSSION

Using cell-type-and region-specific genetic manipulations of Scn8a and electrophysiology, 

we show that the seizure-protective and ictogenic consequences of reduced Scn8a activity 

can be decoupled and respectively attributed to distinct alterations in cortical and thalamic 

networks. Specifically, we found that loss of Scn8a from cortical excitatory neurons 

increases seizure resistance and the lifespan of epileptic animals. In contrast, loss of Scn8a 
from inhibitory neurons of the thalamic reticular nucleus (RT) is sufficient to cause 

hypersynchrony of the thalamocortical system and spontaneous absence seizures. This 

hypersynchrony is explained by specific intrinsic and synaptic deficits that we observed in 

RT neurons. First, loss of Scn8a was found to preferentially affect asynchronous tonic firing 

of RT cells. Second, loss of Scn8a led to activity-dependent reductions in desynchronizing 

recurrent RT inhibition. Together, these results highlight a previously unrecognized 

importance of Scn8a in regulating thalamocortical network states, define a novel mechanism 

of absence seizure generation, and reveal a path for targeting Scn8a to achieve seizure 

control without risking the development of absence epilepsy.

Makinson et al. Page 7

Neuron. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scn8a Channels Regulate Cortical Excitation and Convulsive Seizure Susceptibility

We previously reported that mutations that reduce the expression or activity of Scn8a 
increase seizure resistance and ameliorate seizure phenotypes in Scn1a epilepsy models 

(Hawkins et al., 2011; Makinson et al., 2014, 2016; Martin et al., 2007). Here we show that 

selective deletion of Scn8a in excitatory, but not inhibitory, neurons is sufficient to protect 

against induced seizures and hippocampal epileptiform bursts, reduce cortical pyramidal cell 

excitability, and increase seizure resistance in an Scn1a epileptic mutant (Figures 1, S3, and 

S4). Based on our findings, we propose that Scn8a is a potent regulator of neocortical and 

hippocampal glutamatergic excitation and thus could potentially be targeted to achieve 

seizure control.

The cortical hypoexcitability model of Scn8a-mediated seizure resistance is consistent with 

the findings described here, with previous reports associating reduced Scn8a activity with 

seizure protection (Hawkins et al., 2011; Makinson et al., 2014; Martin et al., 2010), and 

with the observation that certain anticonvulsant drugs reduce VGSC activity and cortical cell 

AP generation. Scn8a seizure protection however is seemingly at odds with reports linking 

Scn8a mutations to epileptic encephalopathy (EE) (Larsen et al., 2015; Veeramah et al., 

2012). As such, we propose that Scn8a is a bidirectional regulator of cortical excitation, 

which can be tuned up or down to increase or decrease seizure susceptibility. In support of 

this view, many human EE patients carry point mutations in SCN8A that are either known or 

suspected to be gain of function (GOF) (Meisler et al., 2016; Veeramah et al., 2012), and 

pathologies that are associated with increased Scn8a channel expression are also associated 

with increased seizure risk (Blumenfeld et al., 2009; Hargus et al., 2011; Wagnon et al., 

2012). The Scn8a manipulations reported here are designed to reduce channel expression 

(Figure S1). Consistent with this general principle, a mutation in Scn8a with both GOF and 

loss-of-function (LOF) properties exhibits a complex seizure phenotype displaying both pro-

and anticonvulsant phenotypes (Makinson et al., 2016).

While Scn1a and Scn8a are both expressed in cortical inhibitory neurons (Dutton et al., 

2013; Lorincz and Nusser, 2008; Ogiwara et al., 2007; Papale et al., 2013; Yu et al., 2006), 

in sharp contrast to the severe epilepsy that occurs following deletion of Scn1a in 

interneurons (Cheah et al., 2012; Dutton et al., 2013), Scn8a deletion in inhibitory neurons 

(via Ppp1r2 or Dlx5/6) produced neither convulsive seizures nor increased susceptibility to 

fluorothyl-induced generalized tonic-clonic seizures (Figure 1A). It follows that co-

segregation of Scn1a and Scn8a mutant alleles can exert opposing influences on excitatory 

and inhibitory components of the cortical network to approximate normal levels of 

excitability.

Thalamic Hypersynchrony by Loss of Scn8a

Absence epilepsy is characterized by the occurrence of spontaneous cortical spike-and-wave 

discharges (SWDs) accompanied by loss of consciousness (Kostopoulos, 2001). These 

seizures are pathological episodes of hypersynchronous activity within the thalamocortical 

system, which normally functions to mediate thalamic processes (Beenhakker and 

Huguenard, 2009; Jones, 2009; Pinault, 2004; Steriade et al., 1993).
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Mutations in Scn8a are associated with absence epilepsy in mice and humans (Berghuis et 

al., 2015; Papale et al., 2009). In order to identify the cell types and brain regions that 

mediate Scn8a-absence epilepsy, we generated mice with restricted deletion of Scn8a and 

analyzed ECoG activity for evidence of absence seizures. Neither genetic deletion of the 

Scn8a gene in excitatory neurons using Emx1 or Camk2a Cre transgenic lines, nor deletion 

of Scn8a from select inhibitory cells outside of the thalamus using the Ppp1r2 Cre line, 

produced absence seizures (Figure 1). However, broad deletion of Scn8a from inhibitory 

cells using the Dlx5/6 Cre line was necessary to induce absence epilepsy (Figure 1). These 

observations implicate RT, a subcortical structure that is entirely composed of inhibitory 

neurons and is robustly targeted by the Dlx5/6 Cre line (Figure S2; Table S2), in Scn8a-

absence seizure generation; however, this approach did not exclude the possibility that 

Scn8a-absence seizures might also result from modulation of the thalamocortical system by 

other inhibitory inputs.

In order to evaluate the possibility that Scn8a-absence seizures originate from deficits in 

thalamic circuitry, we recorded multiunit activity in horizontal slices that preserve the RT-

TC-RT loop, while inputs from the functionally connected cortex are severed (Huntsman et 

al., 1999; Kleiman-Weiner et al., 2009; Paz et al., 2011). Thus, electrical stimulation 

delivered to these severed cortical axons can contribute to the initiation of evoked activity 

within the RT-TC-RT loop but not to the maintenance of the ongoing oscillation. We found 

that isolated thalamic slices from Scn8a-deficient animals were capable of generating 

spontaneous hypersynchronous oscillations and prolonged evoked oscillations. We 

furthermore found that Scn8a-absence seizures involve strong thalamic activation in vivo by 

recording LFP and multiunit activity in the cortex and thalamus of awake, behaving, 

animals. Interestingly, reduced multiunit activity was observed in the thalamus for 

approximately 1 s preceding each seizure. Also, seizure clustering was apparent (Figure S5). 

Together, these findings indicate that certain thalamic network states are more favorable for 

Scn8a-absence seizure generation and that seizure onset may be predicted by identifying 

signatures of thalamic network activity.

To directly test whether the thalamus is sufficient to generate absence seizures, we 

selectively reduced Scn8a expression in RT using an RNAi approach. Knockdown of Scn8a 
expression in RT cells substantially increased absence seizure generation. These results are 

consistent with our measurement of isolated thalamic network activity in vitro and together 

indicate that impairment of RT cells by loss of Scn8a is sufficient to drive hypersynchrony in 

the thalamocortical system. Of note, we reduced Scn8a expression in wild-type adult mice (2 

month old), which developed with normal Scn8a function and expression prior to 

knockdown of Scn8a. This suggests that the mechanisms underlying absence seizure genesis 

can readily occur within the thalamic circuitry and are not developmentally regulated.

Previously, studies in isolated cortex and focal pharmacologic manipulations have shown 

that spike-wave events do not necessarily depend on thalamic input (Marcus and Watson, 

1966; Steriade and Contreras, 1998), while lesioning of the thalamus (Avanzini et al., 1993) 

and alteration of the pattern of thalamic activity using optogenetics (Sorokin et al., 2017) 

have shown that the thalamus can be targeted to reduce seizures. Our observation that a 

genetic manipulation of a single gene in one thalamic cell type in adult wild-type mice is 
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sufficient to cause spike-wave discharges demonstrates that thalamic alterations, in addition 

to cortex (Marcus and Watson, 1966; Steriade and Contreras, 1998), can lead to absence 

seizure generation.

Interestingly, fewer absence seizures were observed in animals with both excitatory and 

inhibitory cell deletion of Scn8a compared to animals with inhibitory cell deletion alone. 

This result demonstrates that loss of Scn8a from cortical excitatory neurons reduces 

susceptibility to absence seizures. Scn8a is known to be abundantly expressed in cortical 

projection neurons (Lorincz and Nusser, 2008), where it is important for supporting intrinsic 

and network excitability (Makinson et al., 2016; Makinson et al., 2014; Royeck et al., 2008). 

Within the thalamocortical system, CT cells project to both RT and TC cells, and CT input 

has been shown to be important for driving thalamic excitation and rhythmogenesis (Paz et 

al., 2011). As a result, reduced cortical Scn8a expression and therefore CT excitation would 

be expected to reduce thalamic excitation. Similarly, conditional deletion of the calcium 

channel Cacna1a in cortical projection neurons and in interneurons resulted in a less severe 

seizure phenotype than that produced by only inactivating the channel in interneurons 

(Rossignol et al., 2013). In either case, loss of Scn8a or Cacna1a channel expression in 

cortical projection cells reduces thalamocortical network synchronization and absence 

seizures. Thus, in mice that have a global reduction of Scn8a activity, competing pro-and 

anti-oscillatory influences overall favor hypersynchrony and the generation of absence 

seizures.

Contribution of VGSCs to RT AP Firing Modes

During absence seizures, RT neurons produce bursts of activity that strongly inhibit TC 

neurons. This phasic inhibitory input from RT onto TC supports thalamocortical oscillations 

as strong hyperpolarization drivesT-type Ca2+channel-mediated post-inhibitory rebound 

bursts of TC cells (Beenhakker and Huguenard, 2009; Huguenard, 1996; von Krosigk et al., 

1993; von Krosigk et al., 1999; Warren et al., 1994). In contrast, tonic RT outputs are 

thought to be desynchronizing, by interrupting periods of co-ordinated TC output (Sorokin 

et al., 2017). We and others have shown that mutations in Scn8a reduce spike firing in 

cortical excitatory and inhibitory neurons (Makinson et al., 2016; Royeck et al., 2008), 

whereas in the thalamus, the related VGSC gene Scn1a has been shown to reduce burst and 

tonic firing of RT cells (Kalume et al., 2015). In contrast, loss of Scn8a in RT had less effect 

on bursting compared to tonic firing modes, with the latter more severely affected (Figure 4). 

Interestingly, in many Scn8a+/− RT cells, tonic mode firing was significantly reduced such 

that an initial burst of APs evoked by a strong depolarization that would normally be 

sufficient to drive sustained spiking instead produced an initial burst of APs followed by 

quiescence (Figure 4). We propose that by shifting the balance of RT cell output from tonic 

toward bursts burst following loss of Scn8a would strengthen thalamic oscillations leading to 

absence seizures.

Intra-RT Inhibition and Disruption by Scn8a

Rhythmic oscillations in the thalamus, like those we observed following loss of Scn8a, are 

inextricably tied to cycles of synaptic excitation and inhibition. The RT projects powerful 

synaptic inhibition onto most of the thalamus, and the RT→TC pathway is well studied and 
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strongly implicated in thalamic rhythmogenesis (Cox et al., 1997; Huguenard and Prince, 

1994; Steriade and Deschenes, 1984; von Krosigk et al., 1993). RT cells are also suspected 

to form recurrent inhibitory synapses with one another (RT→RT) and these have a 

desynchronizing influence on network activity by providing inhibition that is out of phase 

with the larger network oscillation (Bal et al., 1995; Deschênes et al., 1985; Huntsman et al., 

1999; Lam et al., 2006; Sanchez-Vives and McCormick, 1997; Sohal and Huguenard, 2003; 

Sohal et al., 2006). These synapses are predicted to connect spatially distinct local 

subnetworks within the RT and may be important for sensory selection, attention, and cross-

modal sensory integration (Ahrens et al., 2015; Makinson and Huguenard, 2015). However, 

direct evidence for this pathway has been elusive (Cruikshank et al., 2010; Hou et al., 2016; 

Parker et al., 2009). In order to develop a complete picture of synaptic excitation and 

inhibition in the TC↔RT loop, including RT inhibition, we developed a nuclei-specific 

assay of RT synaptic output by activating ultrafast channelrhodopsin (ChETA) specifically 

delivered to presynaptic RT cells while recording IPSCs in post-synaptic TC and RT cells. 

Using this approach, we characterized isolated RT →TC and RT → RT synapses, and we 

compared the relative strength of these synaptic components in Scn8a+/− animals with 

absence epilepsy. We found that RT→TC synaptic inhibition is robust and unaltered by loss 

of Scn8a (Figures 5D–5F), while Scn8a+/− RT→RT IPSCs are relatively small in amplitude 

and exhibit activity-dependent failure from 5 to 20 Hz (Figures 5D and 5E). Previous 

histological investigations of RT axons and synapses have shown that intra-RT fibers are 

relatively sparse and small diameter relative to the main axon trunk that extends to TC cells 

(Mulle et al., 1986; Sanchez-Vives et al., 1997). We therefore speculate that RT projecting 

axons and synapses are susceptible to presynaptic failure under certain pathological 

conditions including sodium channel dysfunction and high-frequency activation due to 

differences in their abundance and morphology. We propose that under conditions of high-

frequency RT output, desynchronizing RT→RT synaptic inhibition breaks down, while 

synchronizing RT→TC synaptic inhibition is maintained (Figure 7B). Preferential loss of 

this desynchronizing component of the network allows strong rhythmic thalamic oscillations 

to persist, which then leads to the generation of absence seizures (Figure 7). To our 

knowledge, these recordings are the first demonstration of a specific disruption in the intra-

RT synapse that is associated with pathology.

Overall Conclusions

We have identified distinct roles for Scn8a in hypoexcitation of cortical and hyperexcitation 

of thalamic circuits, which respectively underlie the seizure-protective and ictogenic 

properties associated with reduced Scn8a function. We document a novel mechanism of 

absence seizure generation in which selective loss of Scn8a from RT: (1) shifts the balance 

of tonic and burst output modes of RT cells and (2) impairs desynchronizing RT-RT synaptic 

inhibition (Figure 7). Our findings demonstrate for the first time that ion channel loss in RT 

is sufficient to generate absence seizures in wild-type animals. These findings not only 

implicate Scn8a in pathological network states such as absence seizures, they also motivate 

future studies toward discerning the precise role of SCN8A in fundamental thalamic 

processes including sleep, sensation, attention, perception, and consciousness.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Scn8a Millipore Cat# AB5580; RRID: AB_2314858

Rabbit anti-Nav1.6 (Scn8a) Alomone Cat# ASC-009; RRID: AB_2040202

Rabbit anti-Nav1.1 Millipore Cat# AB5204; RRID: AB_91751

Mouse anti-Nav1.2 Neuromab Cat# 75-024; RRID: AB_2184030

HRP-conjugated goat anti-rabbit GE Healthcare Cat# RPN4301

HRP-conjugated goat anti-mouse Jackson Immuno Research Code: 115-035-068; RRID: AB_2338505

HRP-conjugated goat anti-mouse ThermoFisher Cat# 31430; RRID: AB_228307

Monoclonal mouse anti-GAD67 Millipore Cat# MAB5406; RRID: AB_2278725

Monoclonal mouse anti-GAD65/67 Santa Cruz Biotechnology Cat# sc-365180; RRID: AB_10710523

Rabbit anti-GluR2 Millipore Cat# AB1768-I; RRID: AB_2313802

Monoclonal mouse anti-GluR2 Neuromab Cat# 75-002; RRID: AB_2232661

Biotinylated anti-rabbit IgG Vector Laboratories Cat# BA-1000; RRID: AB_2313606

Alexa Fluor 488 goat anti-mouse Invitrogen Cat# A-11001; RRID: AB_2534069

Alexa Fluor 594 goat anti-mouse Invitrogen Cat# A-11005; RRID: AB_2534073

Alexa Fluor 488 goat anti-rabbit Invitrogen Cat# A-11008; RRID: AB_143165

Alexa Fluor 594 goat anti-rabbit Invitrogen Cat# A-11037; RRID: AB_2534095

Monoclonal mouse anti-parvalbumin Swant Cat# PV235; RRID: AB_10000343

Bacterial and Virus Strains

AAV-EF1a-DIO-ChETA-EYFP University of North 
Carolina Vector Core

N/A

AAV-EF1a-DIO-EYFP University of North 
Carolina Vector Core

N/A

AAV-shRNA-Scn8a-GFP University of Pennsylvania 
Viral Vector Core

N/A

AAV-shRNA-Scram-GFP University of Pennsylvania 
Viral Vector Core

N/A

Chemicals, Peptides, and Recombinant Proteins

Fluorescein Avidin D Vector Laboratories Cat# A-2001; RRID: AB_2336455

Streptavidin-conjugated Alexa Fluor 555 Thermo Fisher Cat# S21381; RRID: AB_2307336

SuperSignal West Pico Chemiluminescent 
Substrate

Thermo Fisher Cat# 34080

Biocytin Sigma-Aldrich Cat# B4261

Gabazine Abcam Cat# SR95531

Experimental Models: Organisms/Strains

C3Fe.Cg-Scn8amed/J The Jackson Laboratory Stock No: 003798; RRID: IMSR_JAX:003798

B6;129-Gt(ROSA)26Sortm1Joe/J The Jackson Laboratory Stock No: 008516; RRID: IMSR_JAX:008516

B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J The Jackson Laboratory Stock No: 007909; RRID: IMSR_JAX:007909

Scn8afloxed Levin and Meisler, 2004 N/A

Makinson et al. Page 12

Neuron. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REAGENT or RESOURCE SOURCE IDENTIFIER

C57BL/6J The Jackson Laboratory Stock No: 000664; RRID: IMSR_JAX:000664

129(Cg)-Foxg1tm1(cre)Skm/J The Jackson Laboratory Stock No: 004337; RRID: IMSR_JAX:004337

B6.129S2-Emx1tm1(cre)Krj/J The Jackson Laboratory Stock No: 005628; RRID: IMSR_JAX:005628

Tg(dlx6a-cre)1Mekk/J The Jackson Laboratory Stock No: 008199; RRID: IMSR_JAX:008199

CamKIIa-Cre Dragatsis and Zeitlin, 2000 N/A

Ppp1r2-Cre Belforte et al., 2010 N/A

B6;129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory Stock No: 008069; RRID: IMSR_JAX:008069

Oligonucleotides

Flox F (5′-GTG TGT GAT TCT CAA CAG TGG 
GTT-3′); Flox R (5′-GTC TGT AAG AAG GCC 
TGA AAG TGA-3′)

Levin and Meisler, 2004 N/A

Cre F (5′-TGA CCC GGC AAA ACA GGT AGT 
TA-3′); Cre R (5′-TTC-CCG-CAG-AAC-CTG-
AAG-ATG-TT-3′)

This Paper N/A

DlxCre F (5′-
AAATTGCCGAGGAGAGTGAA-3′); DlxCre R 
(5′-TCTGCAGTTCGAGTTGTTGG-3′)

This Paper N/A

Wild type F (5′-TCA GGA GCA AGG TTC TAG 
GC-3′), Common R (5′-AGG AGT GGC GCT 
AAA TCT GA-3′), and Med F (5′-TAC CAA 
AAG TCC CCA TAC CC-3′)

The Jackson Laboratory Jax Primer Numbers, 19574, 19575, 19576

Software and Algorithms

ImageJ Rasband, W.S., ImageJ, U. 
S. National Institutes of 
Health, Bethesda, 
Maryland

http://imagej.nih.gov/ij/

Metamorph Imaging Software Molecular Devices https://www.moleculardevices.com/systems/metamorph-research-imaging/metamorph-microscopy-automation-and-image-analysis-software

Imaris Bitplane Scientific http://www.bitplane.com/imaris/imaris

MBF Stereo Investigator MBF Bioscience http://www.mbfbioscience.com/stereo-investigator

Prism Graphpad Software Inc https://www.graphpad.com/scientific-software/prism/

MATLAB MathWorks https://www.mathworks.com/

Wdetecta Custom Software, John R. 
Huguenard https://huguenard-lab.stanford.edu/wdetecta.php

pClamp Molecular Devices https://www.moleculardevices.com/systems/conventional-patch-clamp/pclamp-10-software

SigmaPlot Systat Software Inc http://www.sigmaplot.co.uk/products/sigmaplot/sigmaplot-details.php

GenEx 5 Multi D http://genex.gene-quantification.info/

GPower Heinrich Heine Univeritat 
Düsseldorf

http://www.gpower.hhu.de/

Other

Stellate Harmonie Routine EEG System Natus Neurology http://natus.com/documents/Stellate_Natus_HarmonieRoutineEEG_Final.pdf

32 channel, low noise recording system Tucker-Davis Technologies http://www.tdt.com/neurophysiology.html

CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed and will be 

fulfilled by the Lead Contact, John R. Huguenard (huguenar@stanford.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were performed in accordance with the guidelines of the 

Institutional Animal Care and Use Committees of Emory University, the University of 

California, Irvine, and Stanford University.

Mouse Strains—Mice carrying each Cre transgene were crossed to the ROSA reporter 

line B6;129-Gt(ROSA)26Sortm1Joe/J or B6.Cg-Gt(ROSA)23ortm9(CAG-tdTomato,Hze/J. Cre 
expression induces deletion of an upstream floxed stop sequence leading to induction of 

fluorescent reporter expression in cells that express Cre recombinase. Scn8a-floxed mice 

were a kind gift from Dr. Miriam Meisler at the University of Michigan, Ann Arbor (Levin 

and Meisler, 2004). Homozygous female Scn8a-floxed mice (Scn8afl/fl), maintained on the 

C57BL/6J background, were crossed to five different Cre transgenic lines: FoxG1, 129(Cg)-
Foxg1tm1(cre)skm/J (Hebert and McConnell, 2000), Emx1, B6.129-Emx1tm1(cre)Krj/J (Gorski et 

al., 2002), Dlx5/6 (Monory et al., 2006), CamKIIa (Dragatsis and Zeitlin, 2000), and Ppp1r2 
(Belforte et al., 2010). The Ppp1r2 and the CamKIIa lines were kind gifts from Dr. Kazu 

Nakazawa at the National Institutes of Health and Dr. loannis Dragatsis at the University of 

Tennessee, respectively. Cre-dependant optogenetic viral constructs were injected into 

parvalbumin Cre transgenic animals B6;129P2-Pvalbtm1(cre)Arbr/J (Hippenmeyer et al., 

2005). Each Cre transgenic line was maintained on the C57BL/6J background. Mice 

carrying the Scn8a loss of function mutation med (Kohrman et al., 1996) (C3HeB/FeJ-

Scn8amed/J), referred to in this manuscript as Scn8a+/−, were purchased from the Jackson 

laboratory. All comparisons were made using male and female mice generated by the same 

cross. Mice use for experiments were 2–4 months of age unless otherwise specified. The 

mice were maintained on a 12 hr light/dark cycle. Food and water were available ad libitum.

METHOD DETAILS

Genotyping of transgenic animals—PCR identification of the Scn8a floxed allele was 

performed as previously described (Levin and Meisler, 2004) using the primer pair FloxF 

(5′-GTG TGT GAT TCT CAA CAG TGG GTT-3′); FloxR (5′-GTC TGT AAG AAG GCC 

TGA AAG TGA-3′). The Cre transgene was identified using a primer pair located within 

the Cre transgene: CreF (5′-TGA CCC GGC AAA ACA GGT AGT TA-3′); CreR (5′-TTC-

CCG-CAG-AAC-CTG-AAG-ATG-TT-3′). The following primers were used to specifically 

identify the Dlx5/6 Cre transgene: DlxCreF (5′-AAATTGCCGAGGAGAGTGAA-3′); 

DlxCreR (5′-TCTGCAGTTCGAGTTGTTGG-3′). The following primers were used to 

identify the Scn8a+/− allele Wild-type F (5′-TCA GGA GCA AGG TTC TAG GC-3′), 

Common R (5′-AGG AGT GGC GCT AAA TCT GA-3′), and Med F (5′-TAC CAA AAG 

TCC CCA TAC CC-3′).

Flurothyl seizure induction—Seizure induction was performed as previously described 

(Makinson et al., 2016; Martin et al., 2007). Briefly, mice were placed in a clear chamber. 

Flurothyl (2,2,2-trifluroethyl ether, Sigma-Aldrich) was introduced at a rate of 20 μl/min. 

The latencies to the first myoclonic jerk (MJ) and generalized tonic-clonic seizure (GTCS) 

were recorded. The MJ is defined as a jerking movement of the neck and shoulders 

sometimes associated with tail clonus. The GTCS is defined as complete loss of postural 

control associated with forelimb and hindlimb tonic-clonic movement.
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In vivo ECoG and multiunit recordings—Continuous real-time video and ECoG 

recordings and seizure detection were performed at P14 in a cohort of animals to track the 

development of absence seizures. Bilateral cortical screw electrodes were implanted into the 

skull above the somatosensory cortex. ECoG recordings of mice less than 21 days of age 

were performed for 2 hr per day so that pups could remain with the dam between recording 

periods. Pup ECog recordings were collected and analyzed using the Stellate Harmonie 

Routine EEG system (Natus Neurology). All other ECoG and multi-unit (MU) implants 

were performed on mice greater than 2 months of age. For ECoG/MU recordings, mice were 

connected to our acquisition software via a custom headpiece that reduces movement 

artifacts and provides local signal amplification. ECoG and local field potential (LFP) 

signals were acquired and digitized using the PZ5 digitizer and RZ5 acquisition system 

(Tucker-Davis Technologies, FL) and sampled at 2441 Hz, while thalamic extracellular MU 

signals were simultaneously sampled at 24414 kHz. ECoG was obtained by bilaterally 

screwing small self-tapping screws into the skull over the somatosensory cortex. MU/LFP in 

each animal were acquired using a hand-built optrode containing four linearly arranged 

tungsten electrodes separated by ~250 μm attached to a 200 μm core optical fiber. We 

referenced and grounded all recorded channels to an ECoG electrode placed over the 

cerebellum. Recordings were performed from roughly 11:00AM –2:00PM in a quiet room to 

minimize circadian and effects.

Following acquisition, ECoG/LFP data were first bandpass filtered between 1 and 100 Hz 

using a 6th-order butterworth filter and then z-normalized by their standard deviations, while 

thalamic MU signals were bandpass filtered between 300 and 6000 Hz. To quantify changed 

in the power distribution during seizures, we applied the continuous wavelet transform 

(CWT) to the ECoG/LFP signals with a Morlet mother wavelet, 10 octaves, and 7 

suboctaves, which produced a detailed time-frequency decomposition of the original signals 

(Torrence, 1998). Seizures were detected by thresholding the full power spectrogram; events 

that lasted less than 2 s, greater than 30 s, or had maximum power outside of typical absence 

seizure spectrums were rejected. For each seizure, mean power from different frequency 

bands (delta: 1–4, theta: 4–6, theta_swd: 7–10, beta: 10–20, and broadband: 1–20) was 

extracted, averaged in time across 6 time points for the duration of the seizure, and 

normalized to the total power in across these bands. Because the CWT over-represents low-

frequencies due to the redundant overlapping convolutions at large wavelet scales, we 

normalized the wavelet coefficients prior to extracting power (Torrence, 1998).

Adeno-associated viral constructs—Adeno-associated viral (AAV) constructs 

containing the ultrafast optogenetic control vector CHETA (AAV-EF1a-DIO-ChETA-EYFP) 

as well as yellow fluorescent protein (YFP) control virus (AAV-EF1a-DIO-EYFP) were 

purchased from the University of North Carolina Vector Core. Concentrated viral 

suspensions ranged from 1 × 109 to 1 × 1012 infectious particles per milliliter. AAV 

constructs containing shRNA constructs were produced by the University of Pennsylvania 

Vector Core. A short hairpin construct designed to target Scn8a was placed downstream of 

the U6 promoter along with a GFP sequence (shRNA-Scn8a). Control virus was produced 

that contained scrambled sequence placed downstream of the U6 promoter in addition to 
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GFP (shRNA-Scram). Viral titer of the shRNA-Scram and shRNA-Scn8a suspensions 

ranged from 1 × 108 to 1 × 109 infectious particles per milliliter.

Viral injection Procedures—For optogenetic RT activation experiments, 2 month old 

PV-Cre mice were injected with either optogenetic AAV-EF1a-DIO-ChETA-EYFP or 

control AAV-EF1a-DIO-EYFP viruses under isoflurane anesthesia. Stereotaxic injections 

were performed using a 10 μl microsyringe and 30 gauge beveled needle (WPI). Coordinates 

were chosen that are medial to RT in order to minimize the possibility of infecting PV-Cre 
positive cells that are outside of the thalamus. Injection coordinates were as follows, relative 

to bregma: anterior posterior (AP) −0.95 mm, medialateral (ML) ±1.5 mm, dorsal ventral 

(DV) −2.8 and −3.4 mm. 300 μl of concentrated virus suspension were injected at each site 

at a rate of 0.12 μl/min. After each injection, the syringe was left in place for 2 min to 

prevent backflow. Incisions were closed with tissue adhesive (Vetbond, 3M; St. Paul, NM), 

and the animal was allowed to recover under a heat lamp. Animals were sacrificed for patch-

clamp recordings 2–3 months after injections.

For validation of shRNA and control viruses, mice were anesthetized by isoflurane 

inhalation, and then fixed in a stereotaxic apparatus (Kopf, Tujunga, CA). Four holes were 

drilled in the skull above each injection site. Injections were performed using a Hamilton 0.5 

μL microsyringe (model #75) and 30-gauge needle. Validation of shRNA-Scn8a knockdown 

was performed in the hippocampus because this region is a discrete brain region that is 

easily targeted by stereotaxic injection and is known to express high levels of Scn8a and the 

other major CNS VGSCs (Blumenfeld et al., 2009; Liao et al., 2010; Lorincz and Nusser, 

2008; Makinson et al., 2014). Four injection sites were chosen to target the hippocampus at 

the following coordinates, from bregma: anteroposterior (AP), −1.9 mm; mediolateral (ML), 

±1.1 mm, ± 2.1 mm; dorsoventral (DV), −1.9 mm. The syringe was lowered to −2.0 mm, 

and then retracted to −1.9 mm and left in place for 4 min. Virus solution (1.0 μl) was 

injected into each site at a rate of 0.12 μl/min. After each injection, the syringe was left in 

place for 4 min before being retracted. Incisions were closed with tissue adhesive (Vetbond, 

3M; St. Paul, NM), and the animal was allowed to recover on a heating pad. Postoperative 

analgesic (ibuprofen, 0.1 mg/kg) was provided for 3 days in the drinking water. Two weeks 

after injection, animals were sacrificed. Whole hippocami were removed and flash-frozen 

for immunoblotting.

For Scn8a shRNA knockdown experiments, male 2-month old C3H/FeJ mice were injected 

with shRNA-Scn8a or shRNA-Scram constructs and implanted for ECoG recordings as 

described above. The analgesia meloxicam (2 mg/kg) was administered (s.c.) at the 

beginning of each surgery. Six holes were drilled in the skull, 4 for ECoG electrode 

implantation, and 2 for AAV injections. Injections were performed using a Hamilton 0.5-μl 

microsyringe and 30-gauge needle. RT was targeted using the following coordinates relative 

to bregma: anterior posterior (AP) −0.95 mm, medialateral (ML) ±1.9 mm, dorsal ventral 

(DV) −3.0 and −3.5 mm. 300 μl of concentrated virus suspension were injected at each site. 

TC was targeted using the following coordinates, relative to bregma: AP −1.25 mm, ML 

± 0.9 mm, DV −3.0 mm. 600 μl of virus was injected per site. AAV constructs were injected 

at a rate of 0.12μl/min. After each injection, the syringe was left in place for 2 min to prevent 

backflow. Incisions were closed with tissue adhesive (Vetbond, 3M; St. Paul, NM), and the 
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animal was allowed to recover on a heating pad. ECoG recordings were collected three 

weeks following AAV injections.

Western blot analysis—Membrane-enriched whole-brain or hippocampal tissue 

homogenates (15–30 ug) were subjected to SDS-PAGE electrophoresis as previously 

described (Makinson et al., 2014). After blocking in 5% milk, blots were incubated 

overnight at 4°C in either polyclonal rabbit anti-Nav1.6 primary antibody (1:200, Millipore, 

Billerica, MA), polyclonal rabbit anti-Nav1.6 (1:225, Alomone, Israel), polyclonal rabbit 

anti-Nav1.1 (1:200, Millipore), or monoclonal mouse anti-Nav1.2 (1:1000, Neuromab, 

Davis, CA). Blots were then incubated in either HRP-conjugated goat anti-rabbit secondary 

(1:10,000, GE Healthcare, United Kingdom), HRP-conjugated goat anti-mouse secondary 

(1:10,000, Jackson ImmunoResearch, West Grove, PA), or HRP-conjugated goat anti-rabbit 

secondary (Sigma, St. Louis, MO, 1:16,000) for 1 hr followed by washing in SuperSignal 

West Pico Chemiluminescent substrate (Thermo Fisher) and imaging. Blots were also 

probed using a monoclonal mouse anti-α-tubulin (1:10,000, Millipore) or monoclonal 

mouse anti-pan-cadherin (1:100,000, Sigma) antibody followed by HRP-conjugated goat 

anti-mouse secondary (1:10,000, Jackson ImmunoResearch) or HRP-conjugated goat anti-

mouse secondary (Pierce, 1:26,000) for normalization of sample loading. Image 

quantification was performed using ImageJ software (NIH).

Immunohistochemistry—Immunohistochemistry was performed in order to determine 

the cell type-specificity of the Emx1 and Dlx5/6 Cre lines (Figure S2 and Table S2) and to 

measure Nav1.6 expression in cortical and thalamic interneuronal populations (Figures 3A 

and 3B). Animals were transcardially perfused with ice-cold 1% paraformaldehyde (PFA) 

and then brains were removed and post fixed in 1% PFA for 2 hr at 4°C. Brains were then 

transferred to 30% sucrose solution in phosphate buffered saline (PBS) for four days before 

cryosectioning 45μm thick sections. Free-floating sections were incubated with polyclonal 

rabbit anti-GAD67 (1:200, Millipore), polyclonal rabbit anti-GluR2 (1:200, Millipore), 

monoclonal mouse anti-GAD65/67 (1:250, Santa Cruz Biotechnology), mouse anti-GluR2 

(1:5000, Neuromab), or mouse anti-GAD67 (1:2000, Millipore) in conjunction with 

polyclonal rabbit anti-Scn8a (1:200, Millipore). Sections were incubated in secondary 

antibodies: biotinylated anti-rabbit IgG (1:300, Vector Laboratories) and fluorescein avidin 

D (1:300, Vector Laboratories), or Alexa Fluor 555 anti-mouse IgG (1:1000, Thermo Fisher) 

or AlexaFluor 488 goat anti-mouse (1:1000, Thermo Fisher). Negative controls included 

sections that were not incubated with primary antibody, sections from adult Scn8a−/− mice, 

and sections from P2-3 neonatal mouse pups that do not express detectable levels of Nav1.6. 

Cells were counted using Imaris (Bitplane Scientific solutions) or MBF bioscience 

stereology software. At minimum three different animals were included in each analysis.

Following slice physiology procedures performed on animals injected with optogenetic 

constructs, slices were post-fixed in 4% PFA for 24 hr at 4°C and then transferred to 30% 

sucrose in PBS for four days. Sections were then resectioned to 45μm. Free-floating sections 

were incubated overnight at 4°C in streptavidin-conjugated Alexa Fluor 555 (Thermo Fisher 

Scientific) at 1:500 dilution to label cells that were filled with biocytin (Sigma-Aldrich) 

during patch clamp recordings and anti-parvalbumin (Swant) 1:1000 dilution to identify RT 
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neurons. Slices were then mounted and imaged with a spinning diskconfocal microscope 

(Zeiss motorized Axiovert 200M) and Metamorph imaging software.

In vitro slice electrophysiology—Mice were anesthetized with pentobarbital sodium 

(i.p., 55 mg/kg) or halothane and brains were removed and placed in cold (~4°C) 

oxygenated (95% O2/5% CO2) sucrose slicing solution containing (in mM): 234 sucrose, 11 

glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4,10 MgSO4, and 0.5 CaCl2 (310 mOsm). For 

patch clamp physiology on Scn8a+/− and control littermates, three to four month old male 

mice were used. Horizontal thalamic slices containing RT and TC were prepared as 

previously described (Huguenard and Prince, 1994). Slices were incubated and continuously 

oxygenated in warm (~32°C) artificial cerebrospinal fluid (ACSF) containing (in mM): 10 

glucose, 26 NaHCO3, 2.5 KCl, 1.25 NaHPO4, 1 MgSO4, 2 CaCl2, and 126 NaCl (298 

mOsm) for 1 hr and then transferred to room temperature (~21–23°C) for at least 15 min 

prior to recording. Pipette solutions contained (in mM): 120 K-gluconate, 11 KCl, 1 MgCl2, 

1 CaCl2, 10 HEPES, 1 EGTA, and pH was adjusted to 7.4 with KOH (290 mOsm). For 

current-clamp recordings of CA1 pyramidal neurons, 2-month old animals were used. 

Pipette solutions contained (in mM): 126 K-gluconate, 4 KCl, 10 HEPES, 2 Mg-ATP, 0.3 

GTP-Tris, 10 phosphocreatine; pH was adjusted to 7.2 with KOH (290 mOsm). I-V plots 

were constructed from a series of current steps in 10 pA increments from 20 to 150 pA. 

Recordings were corrected for an estimated −15 mV liquid junction potential. I-V plots were 

constructed from a series of current steps in 20 pA increments from −140 to 140 pA from a 

holding potential of −75 mV. No difference in resting membrane voltage, membrane 

capacitance, or series resistance was observed between control and experimental groups. For 

voltage-clamp recordings of inhibitory synaptic events including ChETA-evoked IPSCs, the 

pipette solution contained (in mM): 135 CsCl, 10 HEPES, 10 EGTA, 2 MgCl, 5 QX-314, 

and pH adjusted to 7.4 with CsOH (290 mOsm). Cells were held at −75 mV throughout the 

recording unless otherwise specified. Extracellular hippocampal recordings were performed 

as previously described (Makinson et al., 2014). ChETA-evoked IPSCs were detected using 

custom software (Wdetecta, JRH). During voltage clamp recordings of RT cells in brains 

that were infected with ChETA, IPSCs could be distinguished reliably from direct ChETA 

currents by either of two methods. First, ChETA responses always reached their peak 

amplitude in RT cells within 5 ms after the initiation of the light pulse while evoked IPSCs 

reached peak amplitudes after 8 ms from the initiation of the light pulse. By only detecting 

responses with peak times occurring after 8 ms of each pulse but before the initiation of the 

next pulse in the train, ChETA currents were excluded from the analysis but not the evoked 

IPSCs (Figure S6E). Second, in some cells after recording evoked IPSCs, light pulses were 

applied while blocking GABAA receptors with 10 μM gabazine (Abcam). These sweeps 

were then used to subtract ChETA currents from the previous recordings.

Thalamic oscillations were recorded using P23-30 animals. 400 μm thick horizontal slices 

containing RT and somatosensory (TC) thalamus were prepared as previously described 

(Huguenard and Prince, 1994). Recordings were performed in a humidified oxygenated 

interface chamber at 34°C and superfused at a rate of 3 mL min−1 with oxygenated ACSF 

(indicated above), supplemented with 0.3 mM glutamine (Bryant et al., 2009). Thalamic 

oscillations were evoked by applying square current pulses (250 μA, 50 μs duration) to the 
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internal capsule (i.c.) once every 30 s via a bipolar tungsten microelectrode (50–100 kΩ, 

FHC). Extracellular potentials were recorded using a monopolar tungsten microelectrode 

(50–100 kΩ, FHC) positioned in the dorsal thalamus. Signals were amplified 10,000 times 

and band-pass filtered between 10 Hz and 3 kHz. Before applying electrical stimulation, a 

minimum of 5 min of recording was collected to assay spontaneous activity.

In vitro slice electrophysiology data acquisition and analysis—Patch clamp 

recordings were collected with a Multiclamp 700A or 700B (Molecular Devices) amplifier 

and Digidata 1320 or 1550A digitizer and pClamp10.6 (Molecular devices). Recordings 

were sampled and filtered at 10 kHz. Analysis of action potentials and synaptic activity was 

performed using custom MATLAB (MathWorks) software. Burst index (BI) values were 

calculated using the following formula:

In vitro thalamic oscillation data processing and analysis was performed using custom 

MATLAB functions. First raw traces were differentiated and smoothed, baseline RMS 

values were calculated and used to detect spikes via threshold crossing. Only spikes that 

exceeded 3× baseline RMS were included. In vitro bursts were defined as events containing 

at least four spikes within 10 ms, oscillations were defined as periods containing at least two 

bursts within 600 ms. Peri-stimulus time histograms (PSTHs) included spikes from each 

sweep using a bin width of 10 ms.

Optogenetic stimulation—One month following AAV-EF1a-DIO-ChETA-EYFP or 

control AAV-EF1a-DIO-EYFP injection into RT, mice were euthanized and fresh brain 

slices were prepared for patch clamp physiology as described above. RT neurons expressing 

ChETA were activated with 475 nm light using a 200 μm diameter optical fiber (Thorlabs). 

We applied 2 ms pulses of light (power at fiber was 20 mW) at 2, 5, 10, 20, 30, and 50 Hz 

for 5 s to stimulate synaptic release. Under the same stimulation conditions, light-evoked 

synaptic responses were not observed in the AAV-EF1a-DIO-EYFP control slices.

QUANTIFICATION AND STATISTICAL ANALYSIS

All bar graphs indicate the mean and all error bars represent ± standard error of the mean 

(SEM). Statistical analyses were performed using SigmaPlot 11.0 software (Systat Software, 

Chicago, IL), Prism 6 (GraphPad Software, La Jolla, CA), Custom MATLAB programs 

(MathWorks, Natick, MA), and SigmaPlot (Systat Software, San Jose, CA). Intergroup 

variance was assessed by the Levene’s test, and normality of continuous datasets was 

determined using the Shapiro-Wilk test. One-way analysis of variance (ANOVA) was used 

to compare groups of three or more while the Mann-Whitney U test was used to compare 

between two groups. Post hoc comparisons were performed using either the Dunnett’s or 

Bonferroni test. Power analysis were performed to estimate group sizes using G-Power 

software (Heinrich Heine Univerität Düsseldorf). Experimenters were blind to experimental 

groups during data collection and analysis. Animals from the same cross were used in all 
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experiments to minimize possible variability of genetic background and environment. 

Whole-cell recordings were performed on animals of each group on alternating days. 

Extracellular slice recordings were performed on littermate pairs that were sliced at the same 

time. Recordings were alternated between each group throughout the day.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Decreased Scn8a expression in cortical excitatory neurons reduces seizures

• Decreased Scn8a in the thalamic reticular nucleus (RT) leads to absence 

seizures

• Loss of Scn8a from RT cells preferentially impairs tonic firing mode behavior

• Loss of Scn8a impairs desynchronizing recurrent RT-RT synaptic inhibition
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Figure 1. Distinct Excitatory and Inhibitory Cell Types Mediate Scn8a Seizure Protection and 
Absence Epilepsy
(A) Scn8a deletion in excitatory (blue box), but not inhibitory (red box), neurons increased 

convulsive seizure latency. Cell-type-and region-specific deletion of Scn8a was achieved by 

crossing Cre transgenic mouse lines to mice carrying a floxed Scn8a conditional allele. 

Susceptibility to flurothyl-induced seizures was determined by comparing the latency to two 

seizure behaviors; the myoclonic jerk (MJ) and generalized tonic-clonic seizure (GTCS). 

Littermate controls were used for all comparisons. n = 7–16 animals/genotype. See Table S1 

for statistics.

(B) Spontaneous absence seizures were measured by continuous 24 hr video/ECoG 

recordings. Broad inhibitory cell deletion by Dlx5/6 Cre was sufficient to generate 

spontaneous absence seizures. Seizures were not observed in mice with deletion of Scn8a in 

the forebrain (FoxGI), excitatory cells (Emx1 and Camk2a), or in inhibitory cells of the 

cortex, hippocampus, and striatum (Ppp1r2). One-way ANOVA, n = 4–5 animals/genotype.

(C) Schematic of breeding strategy to express both the excitatory and inhibitory cell-specific 

Cre transgenes within the same cross.
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(D) Increased latencies to flurothyl-induced GTCS were observed in mice in which Scn8a 
was deleted from excitatory cells (Emx1) compared to Cre-negative littermate controls (no-

Cre). One-way ANOVA, n = 7–9 animals/genotype.

(E) Spontaneous absence seizures were observed in animals with broad inhibitory cell 

deletion (red). Absence seizure generation was reduced following the additional deletion of 

Scn8a in cortical excitatory cells (purple). One-way ANOVA, n = 7–9 animals/genotype.

(F) Examples of ECoG recordings from each genotype. (A–F) n.s. p > 0.05, *p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001.

See Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Scn8a Deficiency Leads to Thalamocortical Network Hypersynchrony In Vivo
(A) Representative electrographic recordings of an absence seizure in the cortex and 

thalamus of an Scn8a+/− mouse. Peak spectral power of SWD events was measured at 7 Hz 

fundamental (Fund.) frequency in both the thalamus and cortex (inset).

(B) Each seizure (szr) was binned into six equally spaced segments and mean power was 

calculated for five frequency bands within each bin: δ (2–4 Hz), Ø (4–7 Hz), Øsw(7–1OHz), 

βp (10–20 Hz), and broadband (BB, 2–20 Hz). Bands were normalized to their max values 

to capture the dynamics of each band over the duration of the seizure. n = 3 animals.

(C) The developmental progression of seizure occurrence in Scn8a+/− mice was captured by 

video/ECoG monitoring spanning postnatal days 15 to 85. Seizures were first observed at 

day 17 and reached adult levels by the second postnatal month. n = 4 animals.

(D and E) Spike rasters (D, bottom) and peri-stimulus time histograms (PSTHs) of multiunit 

(MU) activity surrounding ten seizures of one animal (D, top), and average PSTHs across 

animals (E, top). Linear regressions were fitted to the mean PSTHs over 500 ms intervals to 

obtain the average firing rate change throughout the duration of the seizure (E, bottom). 

Arrows indicate reduced thalamic firing preceding the onset of seizures (D and E).

See also Figure S5.
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Figure 3. Isolated Thalamic Circuits of Scn8a-Deficient Animals Display Increased Spontaneous 
and Evoked Oscillatory Activity
(A) Scn8a and GAD65/67 immunoreactivity in the cortex and RT. Dashed box indicate 

regions of colocalization expanded below. Bottom: lack of Scn8a immunoreactivity in 

Scn8a−/− negative control tissue. Arrows indicate Scn8a-positive processes that are negative 

for cell-type marker. Open arrowheads indicate GAD65/67-positive cell bodies. Closed 

arrowheads indicate colocalization. Scale bars, 10 μm. n = 3 animals.

(B) Percentage of Scn8a-positive processes in RT and cortex that are GAD65/67 positive 

(yellow) and negative (green).

(C) Diagram of the rhythmogenic thalamocortical circuitry isolated by the slice preparation 

(shaded).

(D) Image of the thalamic interface slice preparation. Electrical stimulation is applied to the 

internal capsule (i.c.) while recording extracellular multiunit activity in TC nuclei.
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(E) Spontaneous oscillations were observed in thalamic slices of Scn8a+/− mice, with each 

oscillation composed of periodic bursts of spikes. No spontaneous oscillations were 

observed in WT littermates.

(F) Representative examples of evoked multiunit responses of Scn8a+/− and WT mice. Black 

circle indicates the stimulation artifact.

(G) Peristimulus time histograms (PSTHs) for spikes in WT and Scn8a+/− slices for 15 

sequential evoked responses show increased duration of phasic spiking activity in Scn8a+/− 

mice compared to WT controls. Color intensity codes number of spikes in each time bin, 

showing repeated cycles of oscillations lasting for ~3 s in Scn8a+/− versus < 1 s in WT.

(H) Autocorrelocrams derived from PSTHs of representative Scn8a+/− and WT evoked 

oscillations.

(I) Number of bursts per oscillation are increased in Scn8a+/− slices.

(J) Duration of oscillations is increased in Scn8a+/− slices.

(K) No significant differences in inter-burst oscillation frequency was observed between WT 

and Scn8a+/− slices.

(I–K) n.s. p > 0.05, **p < 0.01, Mann Whitney U test, n = 8–9 slices/group; 5 animals/

group.
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Figure 4. Scn8a-Dependent Deficits in RT Spike Firing Preferentially Affect Tonic versus Burst 
Firing Modes
(A and B) Intracellular voltage recordings from WT and Scn8a+/− RT (A) and TC (B) 

neurons.

(C1) Impaired tonic and rebound burst (Reb. Burst) AP generation was observed in Scn8a+/− 

compared to WT RT cells. Two-way ANOVA, n = 9 cells per group, 6 animals/group, 1–2 

slices/animal.

(C2) Reduced instantaneous frequency was observed in tonic but not rebound burst modes of 

AP firing in Scn8a+/− compared to WT RT cells. n = 9 cells/group, 6 animals/group, 1–2 

slices/animal.

(D1 and D2) No change in tonic or rebound burst AP number or instantaneous frequency 

was observed in Scn8a+/− versus WT TC cells. Two-way ANOVA, n = 5–6 cells/group, 4–5 

animals/group, 1–2 slices/animal.
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(E) Rebound burst versus tonic AP generation was compared using burst index. Scn8a+/− 

RT, but not TC, cells exhibited increased burst index values compared to WT cells. Mann 

Whitney U test, n = 5–9 cells/genotype, 4–6 animals/group, 1–2 slices/animal.

(F) Identification of Dlx5/6-Cre-positive RT cells for patch-clamp physiology was aided by 

the presence of Cre-dependent tdTomato fluorescent reporter expression (red), Mann-

Whitney U test, n = 5–7 cells/genotype.

(G) Representative images of voltage responses to depolarizing and hyperpolarizing current 

injection, Scn8afl/+no-Cre control (black), and Scn8afl/+Dlx5/6-deleted (red) animals.

(H) Scn8afl/+Dlx5/6 cells exhibited reduced rebound burst and tonic AP generation.

(I) Scn8afl/+Dlx5/6 RT cells exhibited increased burst index values compared to no-Cre 

controls. Mann Whitney U test, n = 5–7 cells/genotype.

(C–I) Littermate controls were used for all comparisons. n.s. p > 0.05, *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001, error bars represent ± SEM.
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Figure 5. Loss of Scn8a Impairs Intra-RT but Not RT→TC Inhibition
(A) Schematic of the isolated RT synaptic targets in the dorsal thalamus and experimental 

manipulation of RT activity. Activation of RT cells was achieved by injection of a viral 

construct containing the Cre-dependent ultrafast channelrhodopsin variant ChETA into the 

dorsal thalamus of Scn8a+/− and WT animals that carried a parvalbumin-(PV) specific Cre 
transgene (Scn8a+/−PV-Cre and Scn8a+/+PV-Cre). Blue light (2 ms, 20 mW power, 475 nM) 

pulses were applied under conditions of glutamate blockade (kynurinic acid, 1 mM) to 

eliminate contamination of elPSCs by recurrent feedback from intrathalamic excitatory 

synaptic activity. ChETA-evoked IPSCs in RT (red ovals) and TC (black circle) cells were 

measured by whole-cell voltage-clamp recordings.

(B) Examples of 20 Hz ChETA stimulations in a Scn8a+/− RT cell. Isolated sweep (bottom, 

dark blue) shows stimuli within train that either evoked a synaptic response (blue boxes) or 

failed to do so (blue box with red border). Overall, responses were quite variable, with many 

failures on each trial.
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(C) Examples of Scn8a+/− TC cell responses to ChETA activation of RT cells. TC cells 

reliably displayed elPSCs at 20 Hz, with limited short-term depression that was very 

consistent between trials.

(D) Scn8a+/− RT synapses displayed enhanced frequency-dependent IPSC failures (above 2 

Hz) compared to control littermates. No significant differences in RT/TC IPSC failures were 

observed. n.s. p > 0.05, *p < 0.05, **p < 0.01, two-way ANOVA, Tukey post hoc, n = 8–11 

cells/group, 6–8 animals/group, 1 cell/slice.

(E) Percent failure of RT→RT synaptic inhibition with increasing stimulation frequencies in 

WT and Scn8a+/− slices.

(F) Percent failure of RT→TC synaptic inhibition with increasing stimulation frequencies in 

WT and Scn8a+/− slices.

(E and F) Percent failure at each stimulation over 5 s is displayed for each stimulus 

frequency (2, 5, 10, 20, 30, and 50 Hz). n = 8–11 cells/group. 6–8animals/group, 1 cell/slice.

See also Figure S6.
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Figure 6. Selective RNAi Knockdown of Scn8a in RT Is Sufficient to Generate Absence Seizures
(A) Images of selective targeting of AAVs in RT and TC regions of the thalamus. To 

delineate the boundaries of RT(dashed lines), parvalbumin was immunolabeled (red), while 

the area in which virus is expressed is marked by GFP (green). The dashed box in the 

leftmost panel shows the inset region that is magnified in the remaining panels. Arrowheads 

indicate selected double-labeled cell bodies in RT. Note that while specific TC targeting was 

possible, RT targeting also included some TC cells.

(B) Example ECoG traces (left and right hemispheres) of an absence seizure from a WT 

mouse targeted with the shRNA-Scn8a. Red box indicates the absence seizure.

(C) Quantification of detected absence seizures following injection of either shRNA-Scram 

in RT, shRNA-Scn8a in TC, or shRNA-Scn8a in RT (one-way ANOVA, Tukey post hoc, n.s. 

p > 0.05, ****p < 0.0001, n = 4–5 animals/group).

See also Figure S7.
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Figure 7. Conceptual Model of Scn8a-Absence Seizure Generation
(A) Illustrated are diagrams of normal and Scn8a-deficient thalamocortical circuits. The 

thalamocortical loop consists of reciprocally connected glutamatergic corticothalamic (CT, 

Blue) and thalamocortical (TC, black) neurons. The thalamic reticular nucleus (RT, red) 

forms inhibitory synapses with TC neurons (RT→TC) and also with RT neurons (RT→RT). 

Scn8a deficiency causes a breakdown in intra-RT inhibition (B) and a shift in the balance of 

tonic versus burst outputs of RT cells (C), which together cooperate to strengthen 

synchronous activity (A, yellow cycle).

(B) RT→RT synaptic activity (red inhibitory connections) typically function to sparsify RT 

cell bursting (asterisk) and weaken synchronous RT output. The latter is an important driver 

of postinhibitory rebound bursting activity in TC cells (blue traces). TC cell bursting returns 

excitation to RT cells (blue excitatory connections), which drives another iteration of 
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synchronous network activity (yellow background). Scn8a-deficient thalamic networks 

exhibit loss of RT→RT synaptic inhibition, particularly under conditions of high activity. 

Thus, rhythmic outputs are reinforced by loss of desynchronizing RT→RT inhibition.

(C) Loss of Scn8a preferentially reduces asynchronous tonic firing (thin red connections) of 

RT cells, while synchronizing phasic burst firing (thick red connections) is maintained, 

shifting the balance of tonic versus burst firing to favor phasic outputs. Tonic RT inhibition 

partially occurs out of phase with ongoing rhythmic activity (yellow background) and 

thereby would act to reduce network oscillations.

(A–C) We propose that these deficits coconspire to generate hypersynchrony in the 

thalamocortical system leading to absence seizures (1) by impairing the desynchronizing 

RT→ RT synapse and (2) by shifting the balance of pro-and anti-oscillatory RT output 

modes toward the oscillatory state.
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