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Association of Intrinsic Brain Architecture With Changes
in Attentional and Mood Symptoms During Development
Susan Whitfield-Gabrieli, PhD; Carter Wendelken, PhD; Alfonso Nieto-Castañón, PhD; Stephen Kent Bailey, PhD;
Sheeba Arnold Anteraper, PhD; Yoon Ji Lee, BA; Xiao-qian Chai, PhD; Dina R. Hirshfeld-Becker, PhD;
Joseph Biederman, MD; Laurie E. Cutting, PhD; Silvia A. Bunge, PhD

IMPORTANCE Understanding the neurodevelopmental trajectory of psychiatric symptoms
is important for improving early identification, intervention, and prevention of mental
disorders.

OBJECTIVE To test whether the strength of the coupling of activation between specific brain
regions, as measured by resting-state functional magnetic resonance imaging (fMRI),
predicted individual children’s developmental trajectories in terms of attentional problems
characteristic of attention-deficit/hyperactivity disorder and internalizing problems
characteristics of major depressive disorder (MDD).

DESIGN, SETTING, AND PARTICIPANTS A community cohort of 94 children was recruited from
Vanderbilt University between 2010 and 2013. They were followed up longitudinally for
4 years and the data were analyzed from 2016 to 2019. Based on preregistered hypotheses
and an analytic plan, we examined whether specific brain connectivity patterns would be
associated with longitudinal changes in scores on the Child Behavior Checklist (CBCL),
a parental-report assessment used to screen for emotional, behavioral, and social problems
and to predict psychiatric illnesses.1,2

MAIN OUTCOMES AND MEASURES We used the strength of resting-state fMRI connectivity
at age 7 years to predict subsequent changes in CBCL measures 4 years later and
investigated the mechanisms of change by associating brain connectivity changes with
changes in the CBCL.

RESULTS We analyzed data from a longitudinal brain development study involving children
assessed at age 7 years (n = 94; 41 girls [43.6%]) and 11 years (n = 54; 32 girls [59.3%]). As
predicted, less positive coupling at age 7 years between the medial prefrontal cortex and
dorsolateral prefrontal cortex (DLPFC) was associated with a decrease in attentional
symptoms by age 11 years (t49 = 2.38; P = .01; β = 0.32). By contrast, a less positive coupling
between a region implicated in mood, the subgenual anterior cingulate cortex (sgACC), and
DLPFC at age 7 years was associated with an increase in internalizing (eg, anxiety/depression)
behaviors by age 11 years (t49 = −2.4; P = .01; β = −0.30). Logistic regression analyses
revealed that sgACC-DLPFC connectivity was a more accurate predictor than baseline CBCL
measures for progression to a subclinical score on internalization (t50 = −2.61; P = .01;
β = −0.29). We then replicated and extended the sgACC-DLPFC result in an independent
sample of children with (n = 25) or without (n = 18) familial risk for MDD.

CONCLUSIONS AND RELEVANCE These resting-state fMRI metrics are promising biomarkers
for the early identification of children at risk of developing MDD or attention-deficit/
hyperactivity disorder.
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T he regulation of cognition and emotion is thought to de-
pend on the top-down modulation of multiple neural
circuits by the prefrontal cortex and, in particular, the dor-

solateral prefrontal cortex (DLPFC).3-7 Prefrontal-dependent
cognitive control mechanisms that regulate attention and mood
likely play a key role in mental health.7,8 There is ample evi-
dence of attenuation or failure of top-down control mecha-
nisms in adults with depression,9-11 anxiety,12 and attention-
deficit/hyperactivity disorder (ADHD).13 Given that these
prevalent mental health problems often emerge during child-
hood and adolescence,14-16 it is important to know whether
dysregulated top-down control can be detected even before
behavioral symptoms are evident.

The strength of coupling between regions involved in top-
down control and their targets can be measured with resting-
state functional magnetic resonance imaging (rs-fMRI). Brain
regions that are highly temporally correlated during rest-
form resting-state networks (RSNs), which are intrinsic, spon-
taneous, low-frequency fluctuations in the fMRI blood oxy-
gen level–dependent signal that define specific networks of
the brain in the absence of any task.17 They reveal great hetero-
geneity in the functional organization of the brain. In fact,
they may be considered “fingerprints” of the human brain, as
they can accurately identify an individual from a large group
(N = 126).18 Furthermore, RSN profiles are known to be ro-
bust and reliable.18-24

Resting-state networks are particularly relevant for study-
ing psychiatric and pediatric populations because they are
(1) task-independent, so individual differences in task perfor-
mance cannot explain differences observed in the blood
oxygen level–dependent data, (2) easy and fast to acquire,
which make them accessible to many people, including young
children and various clinical populations, and (3) and plastic,
been shown to change during typical development,25 and
can be modulated by behavioral26,27 or pharmacological
interventions.28,29

An RSN that is particularly relevant for mental health is the
Central Executive Network (CEN), of which the DLPFC is a key
node. The CEN has been associated with externally focused
attention30 and goal-directed behavior.31-33 In neurotypical
adults, the CEN is negatively correlated (ie, anticorrelated) with
the default mode network (DMN), an RSN associated with in-
ternal mentation and self-referential processing, whose key
nodes include the medial prefrontal cortex (MPFC).34-38

The decoupling of these RSNs has been found to be adap-
tive: stronger MPFC-DLPFC anticorrelations are associated with
superior cognitive control and cognitive performance in adults,
such as greater working memory capacity.39-42 In addition,
there is an increase with age in the magnitude of anticorrela-
tions between the MPFC and DLPFC in typically developing
children,25 which is consistent with the findings that top-
down control mechanisms improve markedly over childhood
and adolescence.43 Resting-state fMRI studies have also shown
an association between diminished MPFC-DLPFC anticorre-
lations and cognitive impairment in ADHD.44

The CEN also plays a role in regulating mood through its
interactions with the subgenual anterior cingulate cortex
(sgACC). The sgACC is part of the affective network, which is

involved in emotion processing45-52 and has anatomical con-
nections to the hypothalamus, amygdala, entorhinal cortex,
nucleus accumbens, and other limbic structures.49 There are
several lines of evidence showing that top-down modulation
of the sgACC is dysregulated in adults with major depressive
disorder (MDD). Neuroimaging studies have reported de-
creased metabolisms and decreased gray matter volumes53 and
a decreased number of glia in sgACC54 in patients with MDD.
Furthermore, deep brain stimulation of the sgACC results in
an attenuation of hyperactivation in sgACC and increased ac-
tivation in previously underactive DLPFC in adults with MDD.55

In addition, the left DLPFC region that shows maximal anti-
correlation with the sgACC in rs-fMRI has been identified as
an optimal target for transcranial magnetic stimulation (TMS)
of MDD.56 The sgACC has also been shown to exhibit de-
creased connectivity with cognitive control regions in chil-
dren with a history of preschool depression.57 Finally, left
DLPFC and sgACC exhibit anticorrelation in children at famil-
ial risk for MDD.58

In sum, prior research on patient and familial high-risk
populations reveals that atypically strong functional connec-
tivity between DLPFC and MPFC is characteristic of ADHD,
whereas atypically weak connectivity between DLPFC and the
sgACC is a characteristic of MDD. Here, we build on this prior
work by asking whether the strength of the connectivity be-
tween these regions can predict a progression toward atten-
tional or mood disorders in a longitudinal study of a commu-
nity pediatric sample not selected for risk of ADHD or MDD.

Specifically, we tested whether DLPFC-MPFC and DLPFC-
sgACC connectivity at age 7 years predict scores at age 11 years
on a questionnaire used to screen children for behavioral prob-
lems, the Child Behavior Checklist (CBCL). The goals of this
research were 2-fold: first, to better understand how changes
in brain connectivity over childhood are associated with cog-
nitive and affective development, and second, to evaluate the
predictive validity of DLPFC-MPFC and DLPFC-sgACC con-
nectivity for future mental health problems in children who
have not been identified previously as being at elevated risk
for developing a psychiatric disorder.

Numerous studies have demonstrated high reliability be-
tween the CBCL scales and actual psychiatric diagnosis.59,60

Key Points
Question Can brain imaging predict future psychiatric symptoms
in children?

Findings In this 4-year longitudinal cohort study, distinct patterns
of resting-state functional connectivity in healthy children predicted
changes in psychiatric symptoms. Weaker positive dorsolateral
prefrontal connectivity with medial prefrontal cortex predicted a
better developmental trajectory for attentional symptoms, whereas
weaker positive dorsolateral prefrontal connectivity with subgenual
anterior cingulate cortex predicted a worse trajectory for
internalizing symptoms (eg, anxiety/depression).

Meaning Brain imaging measures can contribute to early
identification of children at risk for common psychiatric disorders
and thus identify children in need of preventive treatments.
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For example, CBCL attention problem scores are used for the
screening and prediction of ADHD.61,62 A subthreshold eleva-
tion on the anxiety/depression subscale of the CBCL in pre-
adolescence predicts future development of MDD.63 How-
ever, in conjunction with behavioral measures, neuroimaging
measures may identify children at the greatest risk for devel-
oping psychiatric disorders with greater confidence and at an
earlier age.

Therefore, in this study, we investigated whether rs-fMRI
data could predict future CBCL scores in a community sample
of 54 children. Specifically, we tested whether the individual
differences in MPFC-DLPFC connectivity at age 7 years pre-
dict subsequent changes in attention 4 years later, as mea-
sured by the CBCL attentional problems measure at age 11 years.
Additionally, we performed an exploratory analysis to inves-
tigate whether individual differences in sgACC-DLPFC
connectivity at age 7 years predict subsequent changes in anxi-
ety/depression 4 years later, as measured by the CBCL “inter-
nalization” and anxiety/depressed subscale at age 11 years. We
preregistered our hypotheses through the Open Science Frame-
work (OSF; https://osf.io/6cgbs/). Because of space limita-
tions, we report only major results here; the Supplement re-
ports additional findings, as well as a null result based on the
preregistered hypotheses.

Methods
Participants
Ninety-four participants were included who were enrolled in a
developmental longitudinal study, “Predicting Late-Emerging
Reading Disability” (Vanderbilt University; principal investiga-
tor, L.C.). In this sample, 77 children (82%) met behavioral cri-
teria for typical development; 17 children (18%) were identi-
fied as being at risk for a late-emerging reading disability. Time
1 (or baseline) data were collected from participants at age 7 years
(n = 94; 41 girls [43.6]) and subsequently at 1-year intervals for
4 years. Data at time 4 were available for 54 of the original par-
ticipants (57.4%) (see eMethods in the Supplement for exclu-
sion criteria). The CBCL subscale scores at baseline did not dif-
fer significantly between those who did and did not complete
the study (attentional problems, t91 = 1.0; P = .33; internaliza-

tion, t91 = 0.51; P = .61; anxiety/depression, t91 = 0.41; P = .68;
Table). The study was approved by the institutional review board
at Vanderbilt University and written informed consent was
received from all participants.

CBCL Scoring and Data Acquisition
The CBCL assesses behavioral problems and competencies of
children ages 6 to 18 years based on parental reports (eMethods
in the Supplement). Data were acquired at Vanderbilt Univer-
sity Institute of Imaging Science on a 3-T Philips Achieva mag-
netic resonance spectroscopy scanner with a 32-channel head
coil. One 5.9-minute resting-state echoplanar imaging scan was
collected with the following parameters: TR = 2200 millisec-
onds, TE = 30 milliseconds, 35 slices, 3-mm isotropic voxels.

rs-fMRI Analyses
The rs-fMRI data were analyzed in CONN (NeuroImaging
Tools & Resources Collaboratory),64 which incorporates
methods to minimize the association of head motion arti-
facts and allow for valid identification of correlated and anti-
correlated networks22 (see eMethods in the Supplement for a
complete description of image preprocessing/denoising, seed
selection, bivariate correlation, and independent component
analysis).

Longitudinal Analyses
Fisher-transformed r-maps from the MPFC seed were submit-
ted to a second-level analysis of covariance regressing the
changes in the CBCL measures (time 4–time 1) onto brain re-
sponses, controlling for the effect of initial severity (baseline
CBCL). To create a robust prediction model that could be gen-
eralized to new cases, we performed leave-1-out cross-
validation, which minimizes potential biases due to voxel se-
lection in our predictive models (eMethods in the Supplement).

We previously found that the magnitude of MPFC-
DLPFC anticorrelations grow during typical development,25

as does executive function, so we first implemented a
whole-brain MPFC seed-based approach to determine
whether MPFC-DLPFC correlations at time 1 were associated
with future change in CBCL attentional symptoms after con-
trolling for the baseline attentional score. Second, we imple-
mented a more targeted approach by testing whether the

Table. Child Behavior Checklist Measures for Time 1 at Age 7 Years and Time 4 at Age 11 Yearsa

Time Attention Internalization Anxiety/Depression Withdrawn Somatic

Time 1

Mean (SD) 56.29 (8.13) 160.02 (13.02) 53.27 (5.3) 53.59 (5.48) 53.37 (5.48)

Subclinical (>60),
No. (%)

24 (25) 10 (11) 13 (14) 14 (15) 9 (10)

Time 4

Mean (SD) 54 (7.46) 160.13 (14.02) 53.11 (5.54) 53.15 (6.32) 53.87 (4.86)

Subclinical (>60),
No. (%)

10 (20) 6 (11) 9 (17) 8 (15) 9 (17)

P (time 1/time 4) 0.09 0.9 0.87 0.88 0.89

Mean Change −1.4 1.27 0.5 −0.17 1.17

Range Change [−16 to
12] = 28

[−41 to
32] = 73

[−17 to
12] = 29

[−12 to
15] = 27

[−17 to
12] = 29

a Higher scores indicate worse
problems. A Child Behavior
Checklist score of 60 to 70 (>1 SD,
<2 SD) is generally considered to
represent a medium level of
symptoms (subclinical or
subthreshold).
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baseline connectivity between the MPFC and the DLPFC
mask derived from the previous study25 predicts future
attentional symptoms. Finally, we ran an exploratory analy-
sis using an independent component analysis–defined
DLPFC-sgACC component to test whether the connectivity
of this component predicted change of internalization symp-
toms and subsequently examined the internalization sub-
scales separately: (1) anxiety/depression, (2) withdrawn
behavior, and (3) somatic complaints.

Logistic Regression for CBCL Internalization (and Anxiety/
Depression Subscale)
As per CBCL diagnostic category definitions, we subdivided
participants into a “subclinical” category for individuals
with a CBCL internalization (and anxiety/depression) score
of 55 or greater and a “typical” category for those whose
scores on this subscale fell below this cutoff based on the
literature.63 We used a logistic regression of initial severity
(baseline CBCL scores) and baseline resting-state measures

combined with leave-1-out cross-validation. We did not have
enough participants with subclinical scores for the CBCL
attentional problems at time 4 to perform this logistic regres-
sion for that CBCL scale. Finally, we correlated the changes
in connectivity with changes in CBCL measures over 4 years
(from age 7 years to age 11 years).

Conceptual Replication/Clinical Extension
We tested the prediction model on an independent sample of
25 youths between ages 8 to 14 years identified as being at fa-
milial risk for MDD as well as 18 age-matched children with-
out familial risk for MDD. We used baseline sgACC-DLPFC
connectivity to predict the progression of CBCL anxiety/
depression 3 years later (eTable in the Supplement).

Results
Behavioral Results and Head Motion
Between ages 7 and 11 years, 14 children (26%) had signifi-
cant changes in internalizing scores (9 [17%] showing more
internalizing problems at age 11 years and 5 [9%] showing
fewer) and 8 children (15%) had significant changes in atten-
tional problem scores (1 [2%] showing more attentional
problems at age 11 years and 17 [3%] showing fewer). The
mean (SD) number of outliers across all points was 17 of
160 (21) points. Excluding these points preserved enough
data to achieve a stable estimate of RSNs65 (eMethods in the
Supplement).

Neuroimaging Results
Cross-sectional analyses at time 1 (N = 94) revealed that, on av-
erage, children age 7 years did not exhibit the significant nega-
tive MPFC-DLPFC correlations that are evident in adults but
rather exhibited positive MPFC-DLPFC correlations on the
whole, consistent with prior findings from children ages 8 to
12-years25 (eFigure 1 in the Supplement). We had predicted in
our preregistration that there would be insufficient variance
in the CBCL attentional scores to establish a significant brain-
CBCL association in this sample. Indeed, we did not observe
any significant correlations between the MPFC-DLPFC con-
nectivity and CBCL attentional scores at a height threshold of
P < .001 (t92 > 3.40) uncorrected (or even at a liberal thresh-
old of P < . 01 uncorrected).

Although there was minimal average change in CBCL
scores, there was considerable interparticipant variability in
the change of CBCL scores across 4 years. Here, we used base-
line neuroimaging data at age 7 years to predict CBCL change
over 4 years. Less positive MPFC-DLFPC correlations at time
1 were associated with improvement of attentional problems
4 years later (t49 = 2.38, P = .01, controlling for medication;
t49 = 1.02, P = .03, controlling for those children who re-
ceived a diagnosis of ADHD; t50 = 2.36, P = .01 without
controlling for participants with ADHD participants; re-
ported P values are 1-sided because of our a priori and prereg-
istered hypotheses) (eFigure 2 in the Supplement). Because
we implemented this analysis using leave-1-out cross-
validation, this is a prediction as opposed to a simple correla-

Figure 1. Longitudinal Prediction of Change in Attentional Problems
From Ages 7 to 11 Years
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tion, a distinction that is frequently lost in the neuroimaging
literature.66 Furthermore, we found that less positive MPFC-
DLPFC (a priori mask25) correlations at time 1 were associated
with an improvement of attentional problems 4 years later
(r = 0.3; P = .04; Figure 125).

Weaker left DLPFC-sgACC connectivity at baseline pre-
dicted a greater worsening of internalization CBCL scores by
time 4 (t49 = −2.4; P = .01; controlling for medication; Figure 2)
and (t49 = −2.15; P = .02, controlling for ADHD) and (t50 = −2.61;
P = .01, not controlling for ADHD or medication). Specifi-
cally, weaker left DLPFC-sgACC connectivity (or stronger an-
ticorrelations) predicted greater worsening on the internaliza-
tion subscales of anxiety/depression (t49 = −2.64; P = .005,
controlling for medication) and withdrawn (t49 = −2.38; P = .01,
controlling for medication). By contrast, left DLPFC-sgACC
connectivity was not associated with changes in somatic
complaints (t49 = −0.88; P = .19, controlling for medication).
Based on our previous work,58 we had hypothesized that the
sgACC-DMN connectivity would predict a worsening of inter-
nalization in our preregistration; however, this analysis did not
reach current statistical threshold standards (eMethods in
the Supplement).

Logistic Regression
Logistic regression analyses revealed that sgACC-DLPFC con-
nectivity was a more accurate predictor than baseline CBCL
measures for progression to a subclinical score on internaliza-
tion (t50 = −2.61; P = .01; Figure 2). This analysis yielded 77%
accuracy, 87% sensitivity, and 74% specificity.

Association of Brain Connectivity Changes With Changes
in the CBCL and Conceptual Replication/Clinical Extension
An increase in MPFC-DLPFC anticorrelations correlated with
an improvement of CBCL attentional scores. and an increase
in sgACC-DLPFC anticorrelations correlated with a worsen-
ing of CBCL anxiety/depression scores over 4 years (eFigures
3 and 4 in the Supplement). Weaker DLPFC-sgACC connectiv-
ity (or stronger anticorrelations) at baseline predicted wors-
ening on the internalization subscale of anxiety/depression
3 years later for children at familial risk for MDD as well as a
new sample of typically developing children (at-risk: r = −0.75;
P < .001; controls: r = −0.81; P = .01; Figure 3 and eFigure 3 in
the Supplement).

Discussion

The RSNs at age 7 years in a community sample of children pre-
dicted the developmental trajectory of symptoms associated
with ADHD and MDD at age 11 years. The variations in func-
tional connectivity occurred in neural systems that are known
to be salient for attention or mood. Weaker positive MPFC-
DLPFC correlations at age 7 years predicted improved atten-
tion scores at age 11 years, whereas weaker positive sgACC-
left DLPFC correlations at age 7 years predicted a worsening
of MDD symptoms (internalization) at age 11 years. It is note-
worthy that most children with attentional problems at age 7
years exhibited reduced symptoms at age 11 years, whereas
most children with internalizing symptoms at age 7 years ex-

Figure 2. Longitudinal Prediction of Change in Internalization Problems From Ages 7 to 11 Years
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hibited more symptoms at age 11 years. Thus, our functional
connectivity measures appear to be sensitive to resilience and
vulnerability.

The associations between specific neural networks and
specific longitudinal declines are consistent with prior find-
ings. That a stronger positive MPFC-DLPFC coupling was as-
sociated with a worse developmental trajectory for attention
is consistent with the hypothesis that anticorrelated MPFC-
DLPFC activation is associated with the ability to selectively
focus attention on internal thoughts vs external stimuli.67

Weaker anticorrelations between MPFC and DLPFC, which are
core nodes of DMN and CEN, respectively, may reflect an at-
tenuation of top-down control mechanisms and an inability
to allocate resources away from internal thoughts and feel-
ings and toward external stimuli to adaptively perform diffi-
cult tasks.67-69 Thus, children age 7 years who exhibit MPFC-
DLPFC anticorrelations may have the capacity to toggle
between internal and external foci of attention more readily
than those who do not. The failure to decouple these net-
works may be an early indicator of attentional problems or may
preclude the development of age-appropriate attentional skills.

That stronger sgACC-left DLPFC anticorrelations pre-
dicted a future worsening of internalization, characteristic of

MDD, is consistent with the MDD and at-risk literature.70 One
study found a reduction of left DLPFC-sgACC rs-fMRI connec-
tivity in children at familial risk for MDD, for which the at-risk
group had significant anticorrelations while the not-at-risk
group had positive correlations.58 Furthermore, left DLPFC-
sgACC anticorrelations have been used to identify individu-
ally specific targets for TMS in patients with MDD.56 Stronger
sgACC-left DLPFC anticorrelations at this young age may al-
ready reflect an attenuation or failure of top-down control
mechanisms that are evident in adult MDD. Thus, the func-
tional connectivity of specific neural systems in middle child-
hood forecasts individuals’ vulnerability or resilience in cog-
nition and emotion over the ensuing 4 years of development.

These findings extend the use of neuroimaging to identify
childhood neuromarkers of risk for psychopathology from highly
selected children, such as those with identified familial risk, to
a sample of children more representative of the population as
a whole. Although children with parents who have had depres-
sion are at an elevated risk for developing depression, most chil-
dren who develop depression do not come from families with
an identified history of depression.63 Further, the longitudinal
nature of this study supports the validity of using RSNs to pre-
dict the worsening of psychiatric symptoms in childhood.

Although variation in RSNs forecasts the developmental
trajectory of attentional and emotional symptoms, there is
strong evidence that such networks are plastic, and thus may
be altered by supportive interventions. Resting-state func-
tional connectivity is thought to reflect habitual network ac-
tivations that can be remodeled by various long-term71 and
even brief behavioral interventions26,27,72,73 and pharmaco-
logical interventions.29

Limitations
First, although some children developed subclinical scores on
CBCL measures by age 11 years, we do not know which chil-
dren have subsequently converted to psychiatric diagnoses.
However, elevated scores on the CBCL measures, such as in-
ternalization (including anxiety/depression), are highly pre-
dictive of near-term conversion to psychiatric diagnoses.63 Sec-
ond, the current sample size was too small to make any
meaningful interpretations for the subset of participants who
moved between clinical categories over time. Third, our tar-
geted, hypothesized-driven approach could be viewed by some
readers as a limitation of the study.

Conclusions
These findings not only further our understanding of the
neurobiological vulnerabilities that foster the deterioration of
mental health, but also could inform early identification and
preventative treatment. Identification of risk at the level of
individual children may be strengthened by large multilevel
data sets that integrate multimodal neuroimaging, genetics,
and social factors with new statistical tools.74 These findings
illustrate the idea that the neurobiological seeds of future
psychopathology are becoming visible and measurable in
children.

Figure 3. Conceptual Replication/Clinical Extension
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