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Abstract	
  13 
 14 

Aquatic habitat assessment and river restoration design require geospatially explicit maps of 15 
hydraulic conditions. Diverse mechanistic ecohydraulic models compute spatially explicit depth 16 
and velocity results to evaluate habitat suitability spatially as a function of these abiotic 17 
conditions. This study compared depth and velocity results from two-dimensional (2D) and one-18 
dimensional (1D) hydraulic models with algorithms that laterally discretize 1D velocity and 19 
interpolate depth and velocity spatially based on the Laplacian heat mapping approach.  These 20 
‘conveyance distributed’ methods constitute ‘best 1D modeling practice’, and were compared to 21 
2D results for the first time. The 1D and 2D models were applied to three morphologically 22 
distinct reaches (leveed, meandering, and anastomosing) for three flows (base, bankfull, and 23 
flood flows) of the partially regulated, gravel/cobble lower Yuba River in north-central California.  24 
The test metrics were the coefficient of determination (R2) and the median absolute residual 25 
( � ).  These metrics quantified the incremental uncertainty 1D approximation incurs, results 26 
which make explicit cost-benefit processes of model selection possible.  Finally, velocity 27 
residual maps were analyzed to identify regions and processes where residuals were high, 28 
indicating divergence from the 1D assumptions. Paired data (1D-2D) fell between 0.94 ≥R2≥1.00 29 
(R2

mean=0.98 and R2
median=0.99) for depth and median absolute residuals were all 3.8≤ � ≤7.2% 30 

(i.e. 50% of residuals are approximately within ±1.7 to 3.6%).  Higher flows and lower gradient 31 
reaches had lower residuals and higher R2.  Velocity diverged more, particularly for base flow in 32 
anastomosing reaches (0.42<R2<0.58).  One-dimensional, conveyance distributed, assumptions 33 
performed better for other channel types, where 0.69 < R2 < 0.81 (R2

mean=0.75 and 34 
R2

median=0.77), with median absolute residuals between 9.6%> �   >22.4% (i.e. ~±4.6 to 35 
±11.2%), where � mean =14.2% and � median =13% (~±7.1 and 6.5%).  The conveyance 36 
distributed 1D velocity model performed best where the orthogonal flow assumptions obtained 37 
and where side channels did not transition from backwater to conveying area between flows. 38 

 39 

Keywords: hydraulic modeling, river modeling, ecohydraulics, ecohydraulic modeling, gravel-40 
bed rivers 41 
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1 Introduction 43 
 44 

Many riverine habitat studies and projects require ecohydraulic modeling (Mouton et al., 2007; 45 
Wu and Mao, 2007; Hauer et al., 2011; Maddock et al., 2013).  Prescribed flows and restoration 46 
designs are often based on and evaluated with these models (Elkins et al., 2007; Papanicolaou 47 
et al., 2011).  Models can yield detailed spatial patterns at “near-census” resolution of ~ 1 m 48 
over tens of km of river corridor length, which can provide advantages over purely empirical 49 
assessments (Pasternack, 2011).  Detailed modeling enables sophisticated spatial analyses, 50 
which reveals biotic patterns and ecological functions that are space-dependent (Crowder and 51 
Diplas, 2000; Grantham, 2013; Pasternack et al., 2014), including emerging individual based 52 
bioenergetic modeling (Weber et al., 2006; Railsback et al., 2012; Hafs et al., 2014). Models can 53 
also analyze the ecohydraulics of potential river restoration designs, which data and empirical 54 
analyses cannot, since designed hydraulic conditions cannot be measured prior to construction 55 
(Bockelmann et al., 2004; Pasternack et al., 2004; Jacobson and Galat, 2006; Pasternack and 56 
Brown, 2013).  River scientists, engineers, and restoration practitioners must understand the 57 
opportunities and limitations of different ecohydraulic modeling approaches (Brown and 58 
Pasternack, 2009; Pasternack and Senter, 2011; Jowett and Duncan, 2012). 59 

 60 

Ecohydraulic models are often applied to decrease operational uncertainty in river assessment 61 
study or restoration design evaluation (Snowling and Kramer, 2001).  Therefore, model 62 
selection negotiates technical, practical, and social tradeoffs to determine appropriate simulation 63 
complexity, optimizing the uncertainty reduction price point according to a cost-benefit analysis, 64 
either explicitly or unconsciously.  Assessing benefits include estimating incremental uncertainty 65 
reductions offered by each modeling approach to select the approach commensurate with 66 
project’s risks and resources (Gibson, 2013). 67 

 68 

Spatially distributed depth and velocity maps are the most common hydraulic modeling product 69 
used as input for microhabitat modeling (Pasternack, 2011).  Four approaches are available to 70 
develop these products: (i) 1D statistical modeling using transects, (ii) 1D hydraulic modeling, 71 
(iii) 2D hydraulic modeling, and (iv) 3D hydraulic modeling.  However, the ecohydraulic literature 72 
mostly frames model selection as a choice between 1D statistical models and 2D numerical 73 
models (e.g., Sawyer et al., 2010), because most practitioners employ traditional transect data 74 
collection with statistical extrapolation (Payne and Bremm, 2003; Payne et al., 2004) whereas 75 
mechanistic ecohydraulic modelers have largely skipped over 1D hydraulic modeling to resolve 76 
spatial dependencies (Leclerc et al., 1995; Elkins et al., 2007).  This work tests the hypothesis 77 
that 1D numerical models with lateral discretization algorithms represent a viable intermediate 78 
level of complexity for ecohydraulic analysis. 79 

 80 



 

 

At least 18 comparisons of the results of 1D and 2D numerical models have been published in 81 
recent years to evaluate opportunities and limitations in environmental science and 82 
management applications (Ahmad and Simonovic, 1999; Waddle et al., 2000; Horitt and Bates, 83 
2002; Werner, 2004; MacWilliams et al., 2006; Lee, 2006; Tayefi et al., 2007; Cook, 2008; 84 
Bohorquez and Darby, 2008; Alho and Aaltonen, 2008; Chatterjee et al., 2008; Brown and 85 
Pasternack, 2009; Clifford et al., 2010; Pasternack and Senter, 2011; Prestininzi et al., 2011; 86 
Leandro et al., 2011; Bladé et al, 2012; Jowett and Duncan, 2012).  Though insightful, results 87 
were mixed (Gibson, 2013).  In several studies, particularly large flood models with naturally 88 
orthogonal channel features at flood scales, 1D models performed well (Ahmad et al, 1999; 89 
Horitt and Bates, 2002; Gibson, 2005; Lee, 2006; Tayefi et al, 2007; Alho and Aaltonen, 2008; 90 
Jowett and Duncan, 2012). However, in highly complex non-orthogonal morphologies 1D results 91 
diverged from the 2D or 3D models (Waddle et al. 2000; MacWilliams et al. 2006; Lee, 2006; 92 
Brown and Pasternack, 2009).  1D models also under-performed in reaches with difficult-to-93 
identify, non-orthogonal hydraulic controls that transects modeled poorly or missed all together 94 
(Pasternack and Senter, 2011). Thus, a key factor in selecting model dimensionality appears to 95 
be in the orthogonality and complexity of landforms present at scales and investigation needs to 96 
address. 97 

 98 

Even with this extensive literature, two substantial data gaps complicate incremental uncertainty 99 
reduction comparisons between numerical 1D and 2D approaches: 100 

1. Evaluating Laterally Discrete 1D Velocity Algorithms:  Only five studies compared 1D 101 
and 2D velocities.  Four compared 2D results with cross section averaged 1D model 102 
velocities (MacWilliams et al, 2006; Brown and Pasternack, 2009; Pasternack and 103 
Senter, 2011; Jowett and Duncan, 2012) and one study compared 2D results to lateral 104 
velocity data collected at a few locations, interpolated in one dimension (Waddle et al., 105 
2000).   None of the studies compared 2D models to “conveyance distributed 1D” 106 
velocity results, where cross section average velocities from 1D models are post 107 
processed to compute laterally explicit velocities, which represent ‘best practice’ for 1D 108 
velocity modeling. 109 
 110 

2. Spatially Explicit Comparison of Depth and Velocity: Ecohydraulic applications require 111 
spatially distributed hydraulic depth and velocity results.  To evaluate a 1D model for 112 
ecohydraulic analysis, 1D results must be translated into 2D depth and velocity grids and 113 
compared in this spatial framework.  No spatially explicit comparisons of depth or 114 
velocity grids generated from 1D and 2D hydraulic model results were found.  115 
Additionally, most of the studies focused on comparing models for flood flows rather than 116 
for in-channel flows critical to ecohydraulic analysis. Revealing how spatial patterns 117 
change systematically as a function of discharge is important, because nonuniform 118 
channels exhibit flow-dependence of geomorphic processes (MacWilliams et al., 2006; 119 
Brown and Pasternack, 2014), habitat quality and abundance (Leclerc et al., 1995; 120 
Bovee et al., 1998), and interactions between the two (Pasternack et al., 2008; Hauer et 121 
al., 2011) 122 



 

 

 123 

This study addressed these two data gaps, comparing spatially explicit, conveyance distributed 124 
1D hydraulic model results against comparable 2D output.  Depth and velocity maps were 125 
computed for three morphologically distinct reaches on the Yuba River, at three ecologically 126 
important flows with a 2D model and a conveyance distributed 1D.  The model comparison 127 
addressed three specific research questions, each with hypotheses and test metrics (Table 128 
1)Error! Reference source not found.. 129 

2 Study Area 130 
 131 

The Yuba River is a tributary of the Feather River, the north-eastern tributary of the Sacramento 132 
River, in northern California (Fig. 1).  The river is topographically diverse and highly disturbed.  133 
The Yuba river watershed is 3,480 km2 and includes contributing area from 10 m elevation 134 
valley floodplains to 2,774 m Sierra Peaks (Moir and Pasternack, 2008).  This geographic 135 
diversity creates a down gradient morphological succession that was useful for this study.  The 136 
river transitions from a steeper bedrock canyon (Pasternack et al., 2010) to valley-confined with 137 
braiding at wide sections (White et al., 2010), to anastomosing (where flood flows spread into 138 
multiple, relatively persistent channels), to meandering with moderate gradient, and, finally, to a 139 
confined, low gradient, leveed channel just upstream of its confluence with the Feather River in 140 
Marysville, CA. 141 

 142 

The river also has a long history of disturbance including an early era (1850-1940) of placer, 143 
hydraulic and dredger gold mining, which left the system with a unique and recognizable aerial 144 
view and a complex story of sediment load and non-stationarity, followed by a later overlapping 145 
era (1910-present) of valley confinement by training berms, debris dams, and eventual, 146 
construction of the Englebright dam and consequent flow regulation.  However, despite a 147 
complex history of landform and flow modifications, frequent overbank flooding and easily 148 
mobile alluvium have enabled the lower Yuba River to rapidly adjusted its flow-form dynamics to 149 
yield diverse landforms at morphological unit to segment scales (Carley et al., 2012; Wyrick and 150 
Pasternack, 2012, 2014). The river supports a diverse fish community (Kozlowski, 2004) and is 151 
widely viewed as a lynchpin to maintaining and restoring the salmonid meta-populations in the 152 
northern Central Valley region (YARMT, 2013). 153 

3 Methods 154 
 155 

Three geomorphologically distinct reaches (channelized, meandering, and anastomosing) of the 156 
lower Yuba River were modeled at three flows (20% of bankfull discharge, bankfull, and four 157 
times bankfull) with the one-dimensional hydraulic model HEC-RAS (USACE, 2010) and the 158 
two-dimensional hydraulic model SRH-2D (Lai, 2008; Pasternack, 2011).  Modeling specialists 159 



 

 

applied each model to assure ‘skill control’ and remove asymmetrical modeler ability as a 160 
confounding variable.  Both modeling efforts began with the same raw bathymetry data and 161 
specified flows, applying best modeling practice for 1D and 2D approaches without reference to 162 
the approach or results of the other.  HEC-RAS and the GIS post-processor HEC-GeoRAS 163 
(USACE, 2009) generated two dimensional depth and velocity grids for each of the nine 164 
conditions (three reaches at three flows) from the 1D results.  These grids were then compared 165 
to the results of an existing, validated two-dimensional SRH-2D model of the lower Yuba River 166 
(Barker, 2011; Abu-Aly et al., 2013; Pasternack et al., 2014) to quantify the error introduced by 167 
the 1D assumptions. Errors were reported in a flow-reach morphology matrix.  Although the 2D 168 
model was heavily tested for uncertainty using traditional and novel validation tests, validation 169 
data were not collected with the intention of calibrating and validating a 1D model 170 
independently; this study is an opportunistic scientific exploration involving model comparison to 171 
better understand modeling practices and trade-offs. 172 

	
  173 

3.1 Reach Selection 174 
 175 

Reaches were selected from a detailed river corridor digital elevation model (DEM) of the lower 176 
Yuba, constructed using a combination of ground-based, boat-based, and remote sensing 177 
methods (Carley et al., 2012; Pasternack et al., 2014). For the lowermost 28.3 km of the river 178 
from which the three study reaches herein were selected, the overall mean subaqueous grid 179 
point spacing within the 24.9 m3/s wetted area was one point every 1.3 m. (59.8 pts/100 m2)- 180 
though with patches having larger gaps where data collection was hazardous or otherwise 181 
difficult- while for the subaerial river terrain at that flow the overall mean grid point spacing was 182 
one point every 0.43 m. (554 pts/100 m2). This point density was sufficient to capture the roles 183 
of sub-width topographic nonuniformity on hydraulic modeling. 184 

Based	
  on	
  the	
  multi-­‐scalar	
  landform	
  assessment	
  study	
  of	
  Wyrick	
  and	
  Pasternack	
  (2012),	
  three	
  morphologically	
  distinct	
  185 
reaches	
  were	
  selected	
  (	
  186 

Table 2).  Reach 1 is a low gradient, confined, urban, leveed channel.  Upstream about 4 km, 187 
Reach 2 is a moderate gradient meandering section with alternate point bars.  Reach 3 is an 188 
anastomosing reach with multiple parallel channels and additional side channels at higher flows.  189 
Upstream reaches included more backwater zones, floodplain connectivity, flow splits, hydraulic 190 
roughness, hydraulic separation zones, steeper slopes, and morphological diversity.  While no 191 
single metric explains the morphological gradient in a simple monotonic trend, the progression 192 
of the combined metrics along Reach 1àReach 2àReach 3 fits a gestalt impression of 193 
increasing “complexity.”  However, because of the unhelpful connotations and semantic range 194 
of the term complexity, trends will be described in reference to ‘gradient’ (where Reach 1 is 195 
down gradient and Reach 3 up gradient), with basic downstream (Reach 1) to upstream (Reach 196 
3) terminology or single thread (Reach 1 and 2) versus multi-thread (Reach 3) when 197 
appropriate. 198 

3.2 The 2D Model 199 
 200 



 

 

This study utilized output from an existing 2D model of the Yuba River developed by co-author 201 
Pasternack in collaboration with the Yuba Accord River Management team.  Barker (2011) and 202 
Pasternack et al. (2014) described the full details of model development and testing.  The 2D 203 
model was heavily scrutinized through by scientists, and managers, and is now used for diverse 204 
applications in both arenas. SRH-2D (Lai, 2008) was used to model ~35 km of the lower Yuba 205 
River, from the Englebright Dam to the confluence with the Feather River, except for a ~ 2-km 206 
section with unmapped rapids in The Narrows bedrock canyon.  The mixed structured-207 
unstructured computational mesh had a typical intermodal spacing of 0.91 to 1.5 m for base and 208 
bank full flow and a near uniform 3 m mesh for flood flows.  209 

 210 

The 2D model was validated (Barker, 2011) using independent datasets for water surface 211 
elevations, depths, and velocity magnitude and direction collected over a range of discharges 212 
(~14 to 170 m3/s).  A few performance metrics are provided herein with the full analysis 213 
available in Barker (2011).  Model mass conservation was within 1%.  Mean, signed, water 214 
surface elevation residual was −1.8 mm for 197 observations at 24.92 m3/s. For unsigned 215 
residuals, 27% were within 3.1 cm, 49% were within 7.62 cm, 70% within 15.25 cm, and 94% 216 
within 30.5 cm. Depth observations from cross section surveys yielded a good coefficient of 217 
determination (R2) of 0.66 (n=199).  Barker (2011) measured velocity magnitude using two 218 
different ways to make a robust validation analysis - one with a traditional cross-section 219 
approach suitable for a small number of observations with high accuracy and one using a new 220 
approach involving Lagrangian particle tracking. For the former approach, 40-s average velocity 221 
magnitude was measured at the standard 0.6·depth vertical position for the same 199 points 222 
where depth was observed along traditional cross-sections with either a Marsh-McBirney® Flo-223 
Mate electromagnetic current meter sampling at 30 Hz or a Price AA mechanical impellor 224 
current meter.  However, for assessing 2D model performance for 33-km of channel over an 225 
order of magnitude of flows, the traditional method should be balanced by a rapid observation 226 
strategy that provides far more data. Therefore, the Lagrangian surface velocity vector tracing 227 
method of Stockdale et al., (2007) was improved upon by switching from differential GPS to 228 
real-time kinematic GPS and from unattended floats to a manned kayak wherein one may 229 
carefully insure that the kayak adheres to the direction and magnitude of velocity.  As the kayak 230 
moves with the flow, positions are measured with ~ 0.02-0.05 m accuracy every 5 s and then 231 
these positions are differenced over that time interval to yield surface velocity magnitude, which 232 
is assigned to the midpoint between each adjacent pair of position observations. Surface 233 
velocities are next converted to depth-averaged values using the proper regression equation for 234 
the two established for the river.  Although this adds some uncertainty for each point, one can 235 
measure thousands to tens of thousands of velocities per day covering many kilometers of 236 
channel, so the statistical robustness of the predicted versus observed regression relation is far 237 
greater compared to that when only a few hundred points are used, yielding an overall superior 238 
validation assessment. Methodological details are explained in the ecohydraulics textbook by 239 
Pasternack (2011). Using this method, the 2D model yielded an R2 of 0.79 between predicted 240 
and observed. Median unsigned velocity magnitude error was 16%, significantly smaller than 241 
commonly reported (Wyrick and Pasternack, 2014; Brown and Pasternack, 2014). 242 



 

 

 243 

The SRH-2D model was used to analyze three ecologically interesting flows in this study: base 244 
(28 m3/s), bankfull, (142 m3/s), and floodplain filling (597 m3/s) flows – events with >99, 83, and 245 
40% annual exceedance probabilities, respectively.  Even though Abu-Aly et al. (2013) 246 
developed and published on a meter-scale spatially distributed Manning’s n scheme using 247 
relative surface roughness (i.e., ratio of vegetation canopy height to water depth) obtained from 248 
LiDAR data, for this study model runs that exclusively had a universal Manning’s n-value (0.04) 249 
were used to remove spatial roughness distribution as a confounding variable from the 250 
comparison instead of the more complex vegetated models used for the final Yuba analysis.  In 251 
cases where complex vegetation patterns are present and important to the ecohydraulic 252 
problems in question, this could be a deciding factor to use a 2D model and the scheme of Abu-253 
Aly et al. (2013). 254 

 255 

3.3 The 1D Model 256 
 257 

HEC-RAS models were developed for the three selected reaches.  A thalweg shape file, 258 
computed during the 2D modeling, became the stream center line and HEC-GeoRAS was used 259 
to cut cross sections from the TIN used for the 2D model every one-to-two channel widths.  260 
Each reach was initially modeled with a single computational reach in the 1D model (i.e. no flow 261 
splits).  The base n-value (0.04) from the 2D model was applied to the channel and over banks 262 
in the 1D model.  However, it is common practice (Brickler et al., 2014) to calibrate 1D n-values 263 
to multiple flows, specifying flow dependent adjustments to the roughness parameters.  264 
Therefore, water surface elevations were extracted from the 2D simulations at the intersection 265 
of every other cross section and the stream center line.  The “flow roughness factors” in HEC-266 
RAS were adjusted to calibrate the 1D water surface elevations to the 2D water surface 267 
elevations.  Factors used and the resulting residuals are included in Error! Reference source 268 
not found. and  269 

Table 4. 270 

An experienced 1D modeler might identify Reach 3 as a good candidate for a ‘split flow’ 1D 271 
modeling approach.  Split flow modeling is actually an intermediate level of complexity between 272 
1D and 2D modeling with intermediate costs and parameterization demands.  Although a full 273 
presentation is beyond the scope of this article, Reach 3 was also modeled with a split flow 1D 274 
approach (Fig.3). Split flow results were compared to the single reach results (Gibson, 2013). 275 

3.4 Computing Spatially Explicit Velocity Maps From 1D Results 276 
 277 

Traditionally ecohydraulics involved sampling-based statistical analysis of hydraulic conditions 278 
to quantify the statistical relationships between discharge and weighted usable area (Payne et 279 
al., 2004). However, ecohydraulics has shifted toward a spatially explicit characterization of 280 
habitat in the last decade, with meter-scale prediction of both presence and absence of biotic 281 



 

 

habitat utilization (e.g., Elkins et al., 2007).  As a result, ecohydraulic literature addressing 282 
scientific exploration of spatial physical-biotic linkages and meter-scale habitat predictions often 283 
dismiss 1D models, because cross section averaged velocities cannot achieve these outcomes.  284 
However, HEC-RAS includes analytical methods that compute lateral velocity distributions from 285 
cross section averaged results and translates these into velocity maps, which are rarely 286 
discussed in ecohydraulic literature and have never been evaluated relative to the results of 2D 287 
or 3D models.  These methods are widely available in public domain software and include, (i) 288 
post processing 1D cross section averaged velocities analytically to compute lateral velocity 289 
distributions at each cross section and (ii) spatial interpolation of these laterally discrete 290 
velocities based on the Laplace equation to compute a smooth 2D velocity map that follows 291 
logical flow paths.   292 

3.4.1 Analytical Lateral Velocity Distributions 293 
 294 

After computing cross section averaged velocities to determine water surface elevations, HEC-295 
RAS uses conveyance principles to compute a lateral velocity distribution at each cross section 296 
(Fig. 3).  The algorithm uses Manning’s equation to partition the 1D cross-section velocity into 297 
up to 45 laterally discrete ‘flow prisms’ across the cross section.  The non-linearity of Manning’s 298 
equation generates non-additive conveyance weighted velocities, so the algorithm initially 299 
computes a weighted sum of the prism velocities that does not match the 1D cross section 300 
velocity.  Therefore, after the distributed velocities are computed, they are scaled to ensure the 301 
weighted average velocity is the same as the overall velocity computed by the 1D analysis, 302 
conserving cross section conveyance (USACE, 2010). 303 

3.4.2 Interpolating and Mapping Velocity 304 
 305 

Once lateral velocity distributions are computed at each cross section, a second algorithm 306 
translates those results into a 2D velocity grid that can be compared to 2D model results.  307 
Interpolating a simple TIN from a velocity point shape file produces noisy velocity maps with 308 
spurious results, particularly in meandering channels.  Therefore, HEC-GeoRAS includes 309 
algorithms that guide inter-cross section velocity interpolation. 310 

HEC-RAS computes the centroid of each flow prism and assigns coordinates to the prism 311 
velocity, generating an x, y, velocity geodatabase.  Then HEC-GeoRAS uses the Laplace 312 
equation to develop smooth, curvilinear, transitional streamlines between the stream centerline, 313 
the river banks, and the flood boundary (excluding any ineffective flow areas) to guide velocity 314 
interpolation between cross sections according to physically reasonable flow paths.  The 315 
laterally explicit, analytical velocity distribution and the Laplacian interpolation produce a 2D 316 
velocity grid from the 1D velocities that can be compared to 2D results. 317 

These methods for converting 1D results into a 2D velocity grid are approximate, ad hoc, and 318 
empirical.  But they represent 1D velocity mapping ‘best practices’ and there is no detailed 319 
published attempt to rigorously evaluate their performance.  Evaluating their performance on 320 
ecohydraulic scales is the primary objective of this work.  The combined effects of the 321 



 

 

conveyance weighted subdivision of the 1D-cross section averaged velocity and the Laplacian 322 
mapping approach with be referred to as “conveyance distributed 1D” velocity results, for 323 
simplicity.  324 

3.5 Evaluation Metrics 325 
 326 

For each reach and flow, the 1D depth and velocity grids were superimposed on the 2D grids.  327 
One-dimensional results at each cell were plotted against 2D result and the coefficient of 328 
determination (R2) was computed for each scenario.  Additionally, residuals (ε) were computed 329 
for each cell, where: 330 

 � = !!!"#$%&!!!!"#$%&
!!!"#$%&

 (1) 331 

(Clifford et al., 2005) and the “median absolute residual” ( � ) was computed to summarize the 332 
residuals of each scenario into a single parameter.  Velocity residuals were also mapped for 333 
each reach and flow to provide context for the summary statistics and generate spatial intuition.  334 
Both metrics were used to evaluate results in order to escape analysis artifacts that emerge 335 
from the limitations of either statistic, and support conclusions independent of the individual 336 
liabilities of each metric. 337 

4 Results 338 

4.1 How well does a 1D model replicate 2D depth results? 339 
 340 

The 1D model predicted depths well by both test metrics.  The 1D depth predictions were more 341 
reliable downstream and at higher flows (Table 5; Fig. 4). All reaches and flows returned 342 
R2≥0.94 (R2

mean=0.98 and R2
median=0.99) and median absolute residuals were all �   ≤7.2% (i.e. 343 

50% of residuals are approximately within ±3.6% for the worst case).  Additionally the flood 344 
flows returned R2≥0.99 and median absolute residuals �  ≤4.0% (i.e. 50% of residuals are 345 
approximately within ±2.0%) for all reaches. 346 

4.2 How well does a conveyance distributed 1D model replicate 2D velocity results? 347 
 348 

Velocity residuals were larger and R2 smaller than depth results ( 349 

Table 6; Fig.5). Coefficients of determination for velocity results fell  between 0.42 ≤ R2 ≤ 0.81, 350 
(R2

mean=0.70 and R2
median=0.73). Median absolute velocity residuals ( � ) were substantially 351 

larger and less sensitive to flow and reach type than depth results, including the range 9.6% ≤ 352 
�    ≤ 22.4% (approximately ±4.6 to 11.2%) with means and medians of � maan =14.2% and 353 
� median =13%. 354 



 

 

Velocity residual trends were not as easily interpreted as those for depth.  R2 increased 355 
monotonically with depth for the meandering and anastomosing reaches (Reaches 2 and 3) but 356 
decreased with flow for the channelized reach (Reach 1).  Alternately, the bankfull flow returned 357 
the minimum median absolute residual for each reach, while the maximum residual was 358 
associated with the base flow for Reaches 1 and 3 and flood flow for Reach 2.  Additionally, 359 
Reach 2 had the highest median absolute residual (for flood flow) and the lowest R2 (for base 360 
flow), both precluding monotonic trends by gradient.  Flood flow residuals make more sense in 361 
their spatial context, discussed below, but the unusually low R2 associated with the Reach 2 362 
base flow helps categorize these results in the absence of generalized trends. 363 

Two of the nine scenarios had R2 substantially lower than the others: base flow for the 364 
meandering and anastomosing reaches (Reaches 2 and 3).  Upon closer inspection, these 365 
conditions represent similar processes and can be grouped.  The “meandering reach” does, in 366 
fact, meander for high flows.  However, Reach 2 at base flow, the condition with the lowest R2, 367 
includes three substantial flow splits affecting 30% of total reach length (versus 48% of the 368 
ansatomosing reach at base flow), making Reach 2 an anastomosing reach at base flow.  369 
Therefore the data can be stratified by this condition.  The model performed poorly for 370 
anastomosing base flows (0.42<R2<0.58) but performed better and more consistently, (0.69 < 371 
R2 < 0.81, R2

mean=0.75 and R2
median=0.77) for all other conditions. 372 

4.3 What Hydraulic processes generate large velocity residuals? 373 
 374 

Velocity residuals were larger and more spatially interesting than depth results.  Therefore, the 375 
residual maps for each flow in Reach 1, Reach 2, and Reach 3 are included in Figures 6, 7, and 376 
8 respectively.  The convention of Blue for negative (2D>1D) and red for positive (1D>2D) 377 
residuals is used throughout.  The largest velocity residuals were associated with backwater 378 
zones (2D>1D) and in the separation zones downstream of outcrops, islands and bouleers 379 
(1D>2D).  The analysis also returned substantial residuals in side channels and flow separation 380 
zones. The multi-channel complex in the downstream section of Reach 3, which transitions 381 
between backwater at low flows to active flood conveyance at flood flows was also a region of 382 
particularly high residuals. Finally, where the models predicted overbank flooding, the 1D model 383 
consistently over-predicted velocity in the channel and under predicted velocity in the floodplain 384 
in all three reaches. 385 

4.4 Split Flow Results 386 
 387 

Split flow modeling results were mixed.  The summary statistics (R2 and � ) are reported in 388 
Table 7.  The split flow model improved depth R2 and residuals for all flows.  R2 improvements 389 
were substantial for base flow (0.89 to 0.96) but �  improvements were much more modest 390 
(0.2-1.1%).  Stratifying residuals spatially revealed a more complex story.   391 

In the classic, persistent split flow region of Reach 3 (the “Long Bar” in Fig.3), the split flow 392 
model dropped residuals substantially, approximately halving �   for each flow.  However, in the 393 
multi-reach complex at the downstream end of the model Fig.3), where channels transitioned 394 



 

 

from dry, to backwater zones, to conveying reaches in different models, split flow modeling did 395 
not substantially improve depth results and, in some cases increased residuals. 396 

The split flow model also increased velocity R2 for all flows, sometimes substantially, particularly 397 
for the problematic base flow anastomosing conditions (Reaches 2 and 3 at the lowest flow), 398 
raising R2 above the 0.7 threshold for all reaches.  However, split flow effects on velocity 399 
residuals were more modest and not universal.  Split flow improved 1D residuals a little (2.1 to 400 
2.2%) for the base flow bank full condition, but not for flood flow (where  �  decreased by 401 
1.1%).  These trends also obtained for the long bar region, where velocity residuals dropped 402 
substantially for bank full flow, but modestly for base flow and increased for flood flow.   403 

5 Discussion 404 
 405 

5.1 Process Discussion 406 
 407 

The highest depth residuals occurred in zones where the 1D assumptions broke down (Fig.9), 408 
like side channels, backwaters, separation zones, and around islands.  The 1D model requires a 409 
single water surface elevation across the channel, while side channels and backwaters can 410 
maintain distinct water surface elevations, generating 1D depth residuals.  The 1D model also 411 
overpredicted depth downstream and underpredicted depth upstream of obstructions like 412 
islands, where localized momentum effects cause stage depression and super elevation 413 
respectively, which the 1D model does not simulate. 414 

Some of these depth divergence features translated directly into velocity divergence.  415 
Overpredicting flow in side channels led and under predicting flow in backwaters generating 416 
velocity residuals that were larger than the corresponding depth residuals, consistent with 417 
Pasternack et al.’s (2006) finding that errors amplify as they propagate through depth, velocity, 418 
and shear computations respectively. 419 

Velocity residuals upstream of islands diverged from depth residuals.  Super elevation upstream 420 
of islands did not translate into appreciable velocity residuals above background.  However, 421 
velocity residuals downstream of islands were much larger than depth residuals.  Velocity 422 
residuals around an island in Reach 2 were rescaled in Fig.10 to illustrate the region of 423 
maximum divergence (>100%).  However, the most egregious residuals mapped within the 2:1 424 
expansion zone, which represents the ‘rule of thumb’ criteria for designating an ‘ineffective flow 425 
area’ to model a non-conveying zone downstream of an obstacle in a 1D model (HEC, 1995; 426 
USACE, 2010). 427 

Finally, the 1D model tended to overpredict channel velocity and under predict floodplain 428 
velocity, implying that the conveyance assumption used in lateral velocity distribution is not 429 
complete, and includes simplifications that introduce bias.  These trends obtain in the flood flow 430 
results of each reach and are responsible for the particularly high residuals for the flood flow of 431 
Reach 2, the condition with the most flood plain area. However, they are best illustrated in the 432 



 

 

relatively simple single bar in from Reach 1 (Fig.11), where there are fewer confounding 433 
influences.  While the 1D model discretizes flow laterally, based on conveyance, it does not 434 
account for viscous losses or momentum transfer between these lateral flow prisms.  Therefore, 435 
the conveyance distributed, 1D approach tends to overpredict velocities for the deepest prisms 436 
with the most inter-prism surface area for lateral momentum exchange.  When individual prism 437 
velocities are normalized to make the flow average velocity match the 1D cross section velocity, 438 
overbank velocities are reduced to compensate for over predicted velocities in the channel, 439 
making them under predict.  This result is anecdotal and cannot necessarily be generalized.  440 
But it highlights an artifact of the analytical lateral velocity distribution that will cause 1D results 441 
to diverge from 2D velocities. This would have serious implications if this lateral distribution 442 
scheme were used for ecohydraulic analysis of flood refugia, avulsion or toe scour.  Even when 443 
1D models like HEC-RAS compute edge effects like toe scour, they post process 1D shears 444 
with ad hoc radial shear partitions, to compute a vertical shear distribution similar to the lateral 445 
‘conveyance distributed’ velocity partition (Gibson et al. 2015).   446 

The complex relationship of velocity residuals highlights an advantage of 2D models in multi-447 
channel analysis: ‘generality.’   A 1D split flow model must be designed for a particular flow, in 448 
this case, the bank full flow, which is why the split flow improvements were greatest for bank full 449 
flow, for both model as a whole and the long bar in particular.  The 1D flow split is determined a 450 
priori for a particular flow, which introduces error in higher and lower flows (Fig.12).  This cross 451 
section lay out separates conveyance at river stations that are connected at higher flows and 452 
artificially connects channels that are separated at lower flows, while a 2D modeling domain has 453 
the property of generality, customizing the flow split around the island for each discharge.  A 1D 454 
model can mitigate these effects with a lateral structure to model flow exchange over the bar, 455 
but adding a lateral structure adds complexity to the 1D model and did not appreciably improve 456 
the basic velocity residual trend in this case. 457 

5.2 Interpretive Implications of Uncertainty in 2D results 458 
 459 

The above analysis treats the 2D model results as ground truth and evaluates the 1D model 460 
based on its ability to reproduce them.  However, model evaluation theory often recognizes the 461 
implications of ground truth data uncertainty in the process of model evaluation. 2D models of 462 
gravel/cobble bed rivers have assumptions and limitations as well.  Both roughness 463 
parameterization and turbulence closure are well known problems afflicting the type of model 464 
used herein.  Similarly, 2D model assumptions break down in meanders and steep rapids, both 465 
of which occur in the modeled reaches, though the resulting loss in accuracy with decreasing 466 
suitability of the assumptions is not well illustrated in the literature. Further, the 2D model 467 
assumes a no slip boundary along the bed, but because the bed is highly porous this is not true.  468 
In terms of limitations, airborne LiDAR mapping of subaerial terrain and single-beam 469 
echosounder mapping of subaqueous terrain have high uncertainty relative to the precision of 470 
model predictions and thus accurate topography remains the key limitation as well understood 471 
from past studies (Anderson and Bates, 1994; Marks and Bates, 2000; Pasternack et al., 2006). 472 



 

 

Both the number of velocity validation observations and the goodness of fit in the 2d LYR model 473 
were among the highest ever reported for a 2D velocity calibration (Wyrick and Pasternack, 474 
2014), plus this study was among the rare few that actually evaluated velocity direction. For the 475 
base flow anastomosing reaches (Reaches 2 and 3 for the lowest flow) the performance of the 476 
1D model, as indicated by the velocity R2, was underwhelming (0.42<R2<0.58), substantially 477 
less than the implicit uncertainty of the 2D model.  However, the 2D model’s uncertainty 478 
(R2=0.784) is comparable to that observed between 1D and 2D results in the other seven reach-479 
flow pairs (R2

mean=0.75 and R2
median=0.77). 480 

Several classical model evaluation metrics reduce the residual by the uncertainty of the 481 
observed data, including Relative Mean Absolute Error (RMAE) such that: 482 

 𝑅𝑀𝐴𝐸!"#$! =
!!!!! !∆!!

!!
   and   𝑅𝑀𝐴𝐸!"# =
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!!

 (2) 483 

where Hc is computed depth, Hm is measured depth, Vc is computed velocity, Vm is measured 484 
velocity and DHm and DVm are the error in the measured depth and velocity respectively.  In this 485 
case, where the 1D is the computed and 2D is ‘measured’ the analogy would be: 486 

 𝑅𝑀𝐴𝐸!"#$! =
!!!!!!! !∆!!!

!!!
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 (3) 487 

RMAE assumes that the residuals between the 1D and 2D model and the 2D model and the 488 
velocity observations are uncorrelated, and, therefore, on average, counteracting.  In this case, 489 
considering the uncertainty in the 2D could improve the relative results of the 1D model in 490 
comparison.  However, if these residuals (1D vs 2D and 2D vs measured) are correlated, then 491 
they will be additive, decreasing the value of the 1D results.  Because physical observations 492 
spanned the entire lower Yuba, there were not enough in the considered reaches to incorporate 493 
2D residuals explicitly in 1D-2D comparison.  However, it is worth noting that outside of base 494 
flow for anastomosing reaches, the 1D to 2D comparisons generated R2s on the order of the 2D 495 
to measurement comparisons. Overall, more systematic studies that evaluate the performance 496 
of 1D and 2D models with incrementally greater degrees of violation of assumptions would 497 
benefit the understanding and application of hydraulic models. 498 

 499 

5.3 Non-Statistical Implications for Model Selection 500 
 501 

The discussion above provides data on the ‘benefit’ side of a cost-benefit approach to model 502 
selection.  It presumes that moving from a 1D to a 2D model represents a substantial and easily 503 
quantifiable cost increase (usually in the form of bids or scope of work proposals), that can now 504 
be compared to the benefit of incremental uncertainty reduction for a matrix of morphologies 505 
and flows documented in Fig.Figure 4, Table 5, Fig.5, and  506 

Table 6 507 



 

 

However, there are at least two, non-statistical considerations that should frame these results 508 
and their application to a cost-benefit approach to model selection: 509 

1. The 1D model used tight cross section spacings in this study, on the order of 1 to 2 510 
channel widths. These are not unusual if a complete digital elevation model, including 511 
both channel and overbank bathymetry, exists (Kootenai Tribe, 2014; Shelley and 512 
Gibson, 2015; USACE, 2009; Bales et al., 2007).  The cost of cutting new cross sections 513 
on a digital landscape is minor, though because automated methods are still not 514 
recommended, it does increase effort.  However, acquiring a detailed, “near-census” 515 
(i.e., meter-scale) bathymetry is often the primary cost of 2D modeling.  Near-census 516 
bathymetry can be used for many purposes beyond just the 2D model study, so more 517 
river managers are collecting it. On the other hand, in the absence of near-census 518 
bathymetry, 1D models can have problems if important hydraulic controls in the river are 519 
not known a priori or are known but are not assigned cross-sections. This can happen if 520 
the controls are underwater and difficult to see, especially for long reaches with poor 521 
accessibility.  The incremental cost of moving from a 1D to a 2D model can be small 522 
compared to the cost of acquiring detailed bathymetry.  This 1D-2D comparison 523 
presumes that detailed bathymetry already exists and does not inform a common 524 
decision between modeling the system with a 1D model based on existing, surveyed, 525 
widely spaced cross sections and investing in the bathymetry to make a 2D model 526 
possible.  As the incremental cost of moving from a 1D to a 2D model decreases, a 527 
thinner uncertainty reduction (benefit) justifies moving to the 2D model. 528 
 529 

2. This study controlled for modeler skill by entrusting the 1D and 2D modeling to 530 
specialists.  However, 2D models handle more of the physics explicitly and, therefore, 531 
require fewer modeling ‘tricks’ and subjective modeling decisions (e.g. bank stations, 532 
flow split locations, and ineffective flow areas in a multi-reach complex).  1D modeling is 533 
more sensitive to modeler decisions, making the simpler model, counter intuitively, more 534 
sensitive to modeler skill.  Therefore, 1D model results are more variable than 2D 535 
results.  Vulnerability to user variability (Dawdy and Vanoni, 1986) adds to 1D 536 
uncertainty in ways this study did not capture. 537 

6 Conclusions 538 
 539 

This study compared results from conveyance distributed 1D depth and velocity modeling, 540 
including analytical lateral velocity computations and Leplacian mapping algorithms for inter-541 
cross section mapping, to 2D results for three flows in three morphologically distinct reaches. 542 

The 1D goodness of fit was between 0.94 ≥R2≥1.00 (R2
mean=0.98 and R2

median=0.99) for depth 543 
and median absolute residuals were all 3.8≤ � ≤7.2% (i.e. 50% of residuals are approximately 544 
within ±1.7 to ±3.6%).  Higher flows and lower gradient reaches with fewer side channels and 545 
backwaters had lower depth residuals. 546 



 

 

The velocity goodness of fit fell between 0.42<R2<0.81, but the anastomosing base flows were 547 
much worse (0.42<R2<0.58) than the other seven conditions (0.69 < R2 < 0.81, R2

mean=0.75 and 548 
R2

median=0.77).  Velocity residuals were substantially higher than depth residuals, spanning 549 
9.6%> �   >22.4% (e.g. 50% of the residuals fell approximately between ±4.6% for the best 1D 550 
model and ±11.2% for the worst) with means and medians of � maan =14.2% and � median =13% 551 
(50% of residuals falling within approximately ±7.1 and ±6.5% respectively). The highest 552 
residuals were concentrated in backwaters, flow separation zones, island velocity shadows, side 553 
channels, complex, and multi-reach reaches, particularly where some reaches transition 554 
between backwater to conveyance as flow increases.  Additionally, the 1D analytical lateral 555 
velocities algorithm consistently over predicted velocity in the channel and under predicted 556 
velocity in the flood plain.  While split flow improved depth results substantially (~50%) in a 557 
classic bifurcation situation, it was less effective in a multi-channel complex and did not improve 558 
velocity results substantially or universally.  Opportunities for additional research include 559 
evaluating the sensitivity of conveyance weighted modeling results to the number of prisms 560 
(initial investigation suggest rapid diminishing returns for more than three to five prisms) and 561 
translating the error incurred by selecting a simplified model into some measure of project risk. 562 

Many comparisons of 1D and 2D models return conclusions that the latter are better than the 563 
former (Bohorquez and Darby, 2008; Tayefi et al., 2007; Brown and Pasternack, 2009; 564 
Prestininzi et al., 2011), that model results are comparable (Alho and Aaltonen, 2008; Horitt and 565 
Bates, 2002) or, sometimes, that a particular 1D model outperformed a particular (usually 566 
gridded) 2D model for a particular situation (Jowlett and Duncan, 2012; Gibson, 2005).  But this 567 
is not the most useful model selection question.  The pertinent management question is not, “is 568 
a 2D model better than 1D model?”  A well constructed, high resolution, multi-dimensional 569 
model with comparable features (e.g. algorithms to simulate hydraulic structures) should 570 
outperform a 1D model constructed at a comparable scale with comparable expertise. 571 

Instead, the pertinent questions are “how much better is the 2D answer than the 1D answer?” 572 
and “does the risk reduction achieved by selecting 2D justify upgrading from the 1D option?”  A 573 
cost benefit analysis between levels of modeling complexity requires quantifying benefits to 574 
compare to the costs.   This work helped quantify those benefits, the incremental uncertainty 575 
reductions of moving from a 1D to 2D modeling framework, to allow explicit cost-benefit 576 
approaches to model selection. 577 

 578 
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Table	
  1:	
  Research	
  questions,	
  hypotheses	
  and	
  test	
  metrics.	
  775 

Question Hypothesis Metric and Test Applied to Evaluate  

Question 1: How well 
does a 1D model 
replicate 2D depth 
results? 

1D depth residuals will be 
relatively small but will 
increase upstream (e.g. 
channelize residuals < 
meandering residuals < 
anastomosing residuals).  

1. Computed depth residuals 
between each cell of the 1D and 
2D depth grids and the evaluate 
residual distributions, 
summarizing them with a 
‘median absolute residual depth’ 
statistic. 

2. Plot 1D depths against 2D 
depths (scatter plot)  and 
evaluate the performance of the 
1D model based on the R2 of the 
relationship.    

Question 2:  How well 
does a conveyance 
distributed 1D model 
replicate 2D velocity 
results? 

1D velocity residuals will 
be much larger than the 
depth residuals and will 
also increase upstream. 

Compare 1D and 2D velocity results 
with the same metrics and analyses as 
the depth residuals (from Question 1): 

1. Median absolute velocity 
residual. 

2. Scatter plot, slope, R2. 

Question 3: What 
Hydraulic processes 
generate large 1D 
residuals? 

1D results will diverge 
from the 2D results in 
regions where lateral 
velocities are significant 
(e.g. flow separation, flow 
shadows, backwaters). 

Map residuals to identify regions of high 
residual, and associate the hydraulic 
process connected to these regions. 

	
  776 

Table	
  2:	
  Morphological	
  metrics	
  and	
  classifications	
  of	
  the	
  three	
  reaches.	
  777 

 Reach 1 Reach 2 Reach 3 
Entrenchment Ratio 
(2XQmax)* 

2.2 1.7 0.8 

Entrenchment Ratio 
(2XDmax)* 

4.6 1.7 1.0 

Width/Depth Ratio 23 73 41 
Sinuosity 1.18 1.07 1.19 
Slope 0.00058 0.0017 0.0022 
Gradation (dmean) 9-107 mm 47-116 mm 61-179 mm 
Rosgen Classification C3c C3/4 D3 
*computed for a water surface profile twice the max flow 778 
**computed for a water surface profile twice the max depth 779 



 

 

 780 
Table	
  3:	
  Flow-­‐roughness	
  factors	
  used	
  to	
  calibrate	
  1D	
  Reaches.	
  781 

Flow Reach 1 Reach 2 Reach 3 

Base Flow (28 cms) 1.1 1 1.2 

Bank Full (142 cms) 0.99 0.95 1.1 

Flood Flow (497 cms) 1.03 1 1.06 

	
  782 

	
  783 

Table	
  4:	
  Average	
  calibration	
  residuals	
  and	
  standard	
  deviation	
  of	
  residuals	
  (cm)	
  after	
  application	
  of	
  flow	
  roughness	
  factors.	
  784 

Flow Reach 1 

Average/SD  

Reach 2 

Average/SD 

Reach 3 

Average/SD 

Base Flow (28 cms) -0.2/6.0 -2.7/8.1 -0.7/10.8 

Bank Full (142 cms) -0.5/4.4 -0.3/4.0 -1.5/7.8 

Flood Flow (497 cms) -1.0/3.6 -1.3/5.2 -1.5/8.4 

 785 

 786 

 787 

Table	
  5:	
  Median	
  relative	
  depth	
  residuals	
  for	
  the	
  three	
  reaches	
  and	
  three	
  flows	
  modeled.	
  788 

 Reach 1 Reach 2 Reach 3 

 Confined Meander Anastomosing 

Base Flow 3.9% 6.4% 7.2% 

Bank Full 2.0% 3.6% 5.4% 

Flood Flow 0.5% 2.6% 4.0% 

 789 

 790 

  791 



 

 

	
  792 

	
  793 

	
  794 

. 795 

	
  796 

Table	
  6:	
  Median	
  relative	
  velocity	
  residuals	
  for	
  the	
  three	
  reaches	
  and	
  three	
  flows	
  modeled. 797 

 Reach 1 Reach 2 Reach 3 

 Confined Meander Anastomosing 

Base Flow 12.9% 13.0% 18.1% 

Bank Full 9.6% 12.7% 14.6% 

Flood Flow 10.2% 22.4% 16.2% 

 798 

 799 

Table	
  7:	
  Coefficient	
  of	
  Determination	
  and	
  Median	
  Absolute	
  Residuals	
  for	
  Reach	
  3,	
  for	
  all	
  three	
  flows,	
  with	
  the	
  single	
  reach	
  800 
and	
  split	
  flow	
  modeling	
  approaches. 801 

 Depth  Velocity 

 Reach 3 

Single 
Reach 

Reach 3  

Split Flow 

 Reach 3 

Single 
Reach 

Reach 3  

Split Flow 

 R2 / �  R2 / �   R2 / �  R2 / �  

Base Flow 0.89/7.2% 0.96/6.9%  0.52/18.1% 0.70/16.6% 

Bank Full 0.96/5.4% 0.97/4.3%  0.69/14.6% 0.77/12.5% 

Flood Flow 0.98/4.0% 0.98 /3.8%  0.81/16.2% 0.84/17.3% 

	
  802 

 	
  803 



 

 

Figure	
  1:	
  Map	
  of	
  the	
  lower	
  Yuba	
  River	
  with	
  the	
  three	
  modeling	
  reaches.	
  804 

Figure	
  2:	
  HEC-­‐RAS	
  geometries	
  for	
  split	
  flow	
  and	
  single	
  reach	
  models	
  for	
  Reach	
  3.	
  805 

Figure	
  3:	
  Cross	
  section	
  velocity	
  plot	
  from	
  HEC-­‐RAS,	
  where	
  laterally	
  distributed	
  velocities	
  are	
  computed	
  from	
  the	
  section	
  806 
average	
  velocity	
  with	
  conveyance	
  principles.	
  	
  HEC-­‐RAS	
  computed	
  a	
  composite	
  cross	
  section	
  weighted	
  velocity	
  of	
  2.0	
  m/s	
  for	
  807 
this	
  cross	
  section	
  and	
  a	
  composite	
  channel	
  velocity	
  of	
  2.4	
  m/s. 808 

Figure	
  4:	
  Scatter	
  plot	
  depth	
  results	
  and	
  coefficient	
  of	
  determination	
  for	
  paired	
  1D	
  and	
  2D	
  depth	
  results	
  from	
  each	
  grid	
  cell. 809 

Figure	
  5:	
  Scatter	
  plot	
  velocity	
  results	
  and	
  coefficient	
  of	
  determination	
  for	
  paired	
  1D	
  and	
  2D	
  velocity	
  results	
  from	
  each	
  grid	
  810 
cellFigure	
  6:	
  Velocity	
  residuals	
  for	
  the	
  three	
  flows	
  in	
  Reach	
  1. 811 

Figure	
  7:	
  Velocity	
  residuals	
  for	
  the	
  three	
  flows	
  in	
  Reach	
  2.	
  812 

Figure	
  8:	
  Velocity	
  residuals	
  for	
  the	
  three	
  flows	
  in	
  Reach	
  3. 813 

Figure	
  9:	
  Depth	
  and	
  velocity	
  residuals	
  for	
  the	
  flood	
  flow	
  in	
  Reach	
  2	
  with	
  high	
  residual	
  zones	
  annotated.	
  814 

Figure	
  10:	
  Zone	
  of	
  maximum	
  velocity	
  residual	
  with	
  2:1	
  expansion	
  rule	
  of	
  thumb	
  for	
  ineffective	
  flow	
  areas.	
  815 

Figure	
  11:	
  1D	
  velocity	
  map,	
  2D	
  velocity	
  map	
  and	
  velocity	
  residual	
  map	
  of	
  the	
  classical	
  bar	
  geometry	
  in	
  Reach	
  1.	
  816 

Figure	
  12:	
  Schematic	
  of	
  errors	
  introduced	
  at	
  flows	
  higher	
  and	
  lower	
  than	
  the	
  design	
  flow	
  for	
  1D,	
  split	
  flow,	
  modeling.	
  817 
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