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How I wish, how I wish you were here
We’re just two lost souls swimming in a fishbowl year after year

Running over the same old ground, what have we found?
The same old fears, wish you were here

Roger Waters

In my defence what is there to say
We destroy the love — it’s our way
We never listen enough never face the truth
Then like a passing song
Love is here and then it’s gone

Freddie Mercury

And I can tell you why people go insane
I can show you how you could do the same

Chris Cornell

Oh, I got a message for you
Up and away, it’s what I got to do
Forgive what you have
For what you might lose

Axl Rose
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Recent advances in long-read sequencing technologies allowed generation of the first complete

assembly of a human genome. They revealed previously inaccessible sequences of human centromeres

and allowed analysis of their structure and evolution. We introduce centroFlye — the first algorithm for

automated assembly of centromeres from error-prone long reads. We then describe TandemTools and

VerityMap algorithms for quality assessment of the newly assembled regions. Afterwards, we present

HORmon algorithm for structural and evolutionary analysis of human centromeres. We introduce LJA —

the first de Bruijn-based genome assembler for accurate long reads. Finally, we describe TandemAligner

—– the first parameter-free sequence alignment algorithm that introduces a sequence-dependent scoring

that automatically changes for any pair of compared sequences.
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Chapter 1

Automated assembly of centromeres from
ultra-long error-prone reads

1.1 Abstract

Centromeric variation has been linked to cancer and infertility, but centromere sequences

contain multiple tandem repeats and can only be assembled manually from long error-prone reads.

Here we describe the centroFlye algorithm for centromere assembly using long error-prone reads,

and apply it to assemble human centromeres on chromosomes 6 and X. Our analyses reveal

putative breakpoints in the manual reconstruction of the human X centromere, demonstrate that

human X chromosome is partitioned into repeat subfamilies and provide initial insights into

centromere evolution. We anticipate that centroFlye could be applied to automatically close

remaining multimegabase gaps in the reference human genome.

1.2 Introduction

Long-read technologies (such as Pacific Biosciences and Oxford Nanopore) have greatly

increased the contiguity of genome assemblies as compared to short-read technologies. However,

the existing long-read assemblers, such as Falcon [1], Miniasm [2], Flye [3], HINGE [4], Canu

[5], Marvel [6] and wtdbg2 [7] typically fail to resolve long segmental duplications [8] and long

tandem repeats [3]. This paper focuses on the latter challenge of assembling long tandem repeats,
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and specifically on centromere assembly, a problem that was viewed as intractable until recently.

As shown in [3], the existing long-read assemblers are inaccurate, even in the case of relatively

short bridged tandem repeats that are spanned by long reads. Although Flye improved on other

tools in assembling such repeats [3], assembly of unbridged tandem repeats remains an open

problem.

Centromeric satellite repeats are among the longest tandem repeats in the human genome

and the biggest gaps in the reference human genome assembly (for brevity, we refer to such

regions simply as centromeres). As a result, studies of associations between sequence variations

and genetic diseases currently ignore roughly 3% of the human genome. This is unfortunate since

centromeres play crucial roles in chromosome segregation and a large component of genetic

disease result from aneuploidies arising during meiosis [9]. In addition, variations in centromeres

are linked to cancer and infertility [10], [11], [12], [13], [14], [15], [16], [17], [18]. Centromere

sequencing is also important for addressing open problems about centromere evolution [19],

[20], [21], [22], [23]. These studies revealed fast evolution of centromeres; indeed, complex

higher-order chromosome-specific centromeric repeats are unique to the hominid lineage and are

not chromosome-specific even in closely related species such as gibbons [24]. Recent discovery

of large archaic blocks of Neanderthal DNA spanning human centromeres reveals the potential

of centromeres for studies of human population history [25].

Human centromeres comprise long tandem repeats (also known as satellite DNA) that

are often repeated thousands of times with extensive variations in copy numbers in the human

population. Although long-read technologies facilitated analysis of centromere on Y chromosome

[26], there is no software tool for centromere reconstruction and it remains unclear how accurate

semimanual centromere reconstructions are.

We report the centroFlye algorithm for centromere assembly and apply our algorithm

to enable automatic reconstruction of the centromeres on chromosomes 6 and X (referred to as

cen6 and cenX).
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1.3 Results

1.3.1 Centromere structure

The alpha satellite repeat family forms roughly 3% of the human genome [27]. Each

alpha satellite (monomer) is around 171 nucleotides in length. Blocks of multiple consecutive

monomers form higher-order repeat (HOR) units that can be repeated thousands of times.

Individual monomers within a HOR show low (50–90%) sequence identity to each other while

HORs within a single centromere show high (95–100%) sequence identity. Organization and

nucleotide sequence of HORs is specific for a particular chromosome. HORs typically occupy

multimegabase-sized segments that may include rearrangements and transposon insertions [28].

Since centromere assembly of a diploid genome is particularly challenging, studies of the

centromeres on X and Y chromosomes in the male genome represent a simpler (albeit still very

complex) problem [19], [29], [30], [31].

Human centromeres differ widely with respect to their architecture. For example, the

centromere on chromosome X (cenX) is built from a single 12-monomer HOR with very few

abnormal HORs. In contrast, the centromere on chromosome 6 (cen6) has a highly irregular

architecture formed by three HORs (consisting of 15, 16 and 18 monomers) and many abnormal

HORs. These two examples (highly regular and highly irregular centromere architectures)

exemplify two extremes and result in two different algorithmic challenges. centroFlye thus has

two modes: the HOR mode (designed for centromeres with a single HOR such as cenX) and the

monomer mode (designed for centromeres with multiple HORs and irregular architecture such

as cen6).

1.3.2 CentroFlye pipeline

centroFlye in the HOR mode (centroFlyeHOR ) takes a read set from the entire genome

and a consensus HOR (characterizing a specific centromere) as an input. centroFlyeHOR modifies

the approach to resolving unbridged repeats used in the Flye assembler [3] for the case of tandem
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repeats. Flye finds divergent positions within an unbridged repeat (positions where repeat copies

differ from each other) and uses them as stepping stones for resolving these repeats. However,

since mapping of reads within cenX is unknown, it is unclear how to infer the divergent positions

between various copies of a HOR. centroFlyeHOR instead defines a set of rare k-mers (k-mers

that appear in a single or a few copies of a HOR) and uses them for reconstructing centromeres.

Fig. 1.7 reveals frequencies of rare k-mers in the assembly.

The centroFlye pipeline in the HOR mode consists of the following steps (Fig. 1.1):

(1) recruiting centromeric reads, (2) partitioning centromeric reads into units, where each unit

represents a HOR copy, (3) classifying centromeric reads into prefix reads (that start before

the centromere and ‘enter’ it), internal reads (located entirely within the centromere) and suffix

reads (that start in the centromere and ‘leave’ it), (4) identifying rare centromeric k-mers, (5)

constructing the distance graph to filter out false positives among rare centromeric k-mers, (6)

reconstructing the centromere, and (7) polishing the reconstructed centromere sequence. The

Methods section describes each of these steps and illustrates them using the cenX assembly.

In difference from centroFlye in the HOR mode (that under-uses abnormal units in

assembly), centroFlye in the monomer mode (referred to as centroFlyemono ) uses abnormal

units as markers for assembly. centroFlyemono takes a read-set from the entire genome and the

set of monomers for a specific chromosome as an input (Fig. 1.2). It includes the following

steps (Fig. 1.2): (1) recruiting centromeric reads, (2) transforming reads into monoreads; that

is, translating each read from the nucleotide alphabet into the monomer alphabet, (3) error

correction of monoreads, (4) constructing the iterative de Bruijn graph [32], [33] of monoreads,

(5) assembling monocentromere by scaffolding in the iterative de Bruijn graph and (6) translating

monocentromere back from the monomer to the nucleotide alphabet. The Methods section

describes each of these steps and illustrates them using the cen6 assembly. Next we focus on the

cenX assembly.
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Figure 1.1. (1) Recruitment of centromeric reads from the entire read-set. (2) Partitioning
each read into units, where each unit represents a HOR copy. (3) Classifying centromeric reads
into prefix, internal and suffix reads. (4) The frequency histogram of all k-mers in centromeric
reads reveals rare k-mers. Each colored vertical bar represents a rare k-mer. k-mers with lower
frequencies than rare k-mers likely represent sequencing errors. (5) Construction of the distance
graph. Rare k-mers represent vertices and each edge connects a pair of rare k-mers occurring
in the same read. Edge labels represent distances (in units) between rare k-mers in a read. An
edge is red if there are conflicting parallel edges connecting corresponding vertices, and black
otherwise. (Left) The distance graph constructed on all rare k-mers. (Middle) The distance
graph with conflicting parallel edges and isolated vertices removed. (Right) The final distance
graph with collapsed multiedges. (6) Reconstruction of a centromere. Each unit in each read is
represented as a bin (see Methods) with colored bars representing unique k-mers. After all prefix
reads are added to a bin-contig, the best alignment (shift) of each read against the bin-contig
is selected and the read with the highest-scoring alignment is added to the growing bin-contig.
This procedure is repeated until the suffix reads are added to the bin-contig. (7) Polishing the
reconstructed centromere sequence.
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Figure 1.2. For the sake of illustration, we assume only five monomers forming a HOR ABCDE.
(1) Transforming centromeric reads into monoreads. (2) Error correction of monoreads. (3)
The de Bruijn graph DB4(Monoreads) (with k = 3) is shown just to illustrate the limitations of
standard de Bruijn graph for centromere assembly and to motivate our use of the iterative de
Bruijn graphs instead. The graph DB4(Monoreads) is constructed on frequent mono-4-mers
(minMultiplicity, 2). Red dotted edges DEDD and DDAB are not present in this disconnected
graph since they represent infrequent mono-4-mers. Long (MinLength, k+2) and unique edges
are shown in blue. (4) Construction of the iterative de Bruijn graph IDB4(Monoreads) starts
from constructing the standard de Bruijn graph DB3(Monoreads). Although DB3(Monoreads)
is connected, it does not enable unique centromere assembly since there are no scaffolding
reads that span two long and unique edges. However, both mono-4-mers DEDD and DDAB
(that are missing in DB4(Monoreads)) represent edges in DB3(Monoreads) that are inherited
by IDB4(Monoreads). As a result, unlike DB4(Monoreads), IDB4(Monoreads) is connected.
It contains three long and unique edges. (5) Assembling monocentromere by scaffolding in
IDB4(Monoreads). A mismatch in a monoread is highlighted with a red border. (6) Translating
monocentromere back from the monomer to the nucleotide alphabet. Only monoreads that have
unambiguous mapping to the monocentromere are used for polishing.
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1.4 cenX assembly

We analyzed the dataset of Oxford Nanopore Technologies (ONT) reads generated by

the Telomere-to-Telomere consortium [34] and released on 2 March 2019. The dataset contains

11,069,717 reads (155 gigabases (Gb) total length, 50× coverage, N50 = 70 kilobases (kb))

generated from the CHM13hTERT female haploid cell line. 999,562 ultra-long reads (longer

than 50 kb) have the biggest impact on the centromere assembly and result in around 32×

coverage.

In addition to the centroFlye assembly, we analyzed the telomere-to-telomere consortium

assemblies v.0.4 (referred to as the T2T4 assembly) and v.0.6 (referred to as the T2T6 assembly).

Figure 1.3 presents information about cenX assemblies. Since ONT assemblies often have

inflated lengths of homonucleotide runs, we compressed each homonucleotide run into a single

nucleotide (in the read-set and assemblies) and recomputed the number of unique 19-mers.

Figure 1.3 shows the distribution of frequencies of unique 19-mers in the compressed assemblies

and illustrates that centroFlye and T2T6 assemblies have similar distributions of frequencies,

while the T2T4 assembly has many low-frequency unique 19-mers that are likely erroneous.

Given a centromere assembly, one can map each centromeric read to this assembly

using its unique k-mers. Next we describe how to use this mapping for comparison of various

assemblies. To illustrate the effect of an indel on various quality metrics we constructed an

artificial centroFlyedel assembly by introducing a deletion of length 50 kb (25 units) in the

centroFlye assembly at position 600 kb (300 units).

For each pair of assemblies, we used their shared unique 19-mers to align centromeric

reads to them. Figure 1.4 compares positions of read alignments to each pair of assemblies

and reveals structural discrepancies between them. Comparison of centroFlye and centroFlyedel

assemblies reveals an expected discrepancy around unit 300. Both T2T4 and T2T6 assemblies

differ from the centroFlye assembly around units 150–180 in the centroFlye assembly although

the centroFlye and T2T6 are more complaint in this area. The size of deletion in T2T4 is
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Figure 1.3. a, Frequency histogram of 19-mers in the centromeric reads. Each bar represents the
number of 19-mers in units of centromeric reads with a given frequency (log-scale). The bars
corresponding to the rare 19-mers are shown in blue. Only 19-mers with frequencies that do not
exceed 100 are shown. The 19-mers with lower frequencies than rare 19-mers likely represent
sequencing errors. b, Distribution of unique 19-mers along the compressed cenX sequence. Each
bar represents the number of unique 19-mers in a segment of length 20 kb (out of 26,724 unique
19-mers in the compressed cenX sequence). A large peak at positions 1,955,990–1,960,812
corresponds to a 4,822 nucleotide long (compressed) LINE insertion in cenX. c, Comparison
of centroFlye, T2T4 and T2T6 assemblies. The column ‘No. of unique 19-mers’ shows the
number of unique 19-mers before/after compression of homonucleotide runs. The column
‘No. (percentage) of unique and rare 19-mers’ refers to the number (percentage) of unique
19-mers in an assembly that are rare in reads. The T2T4 centromere has 57,811,689–60,534,892
coordinates and the T2T6 centromere has 57,827,622–60,665,308 coordinates on chromosome
X. d, Distribution of frequencies (in logarithmic scale) of unique 19-mers in the compressed
centroFlye, T2T4 and T2T6 cenX assemblies. e, Number of recruited reads, discordant reads
and the discordance score for all pairs of assemblies.
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around 32 units (around unit 135), and in T2T6—only 5 units (around unit 175). Four other

discrepancies are shared between both versions of T2T and the centroFlye assembly (Fig. 1.4).

Next, we argue that T2T assemblies have putative misassembles in the surrounding areas.

1.4.1 Quality assessment of the centromere assemblies

Although Supplementary Note 1 in [35] demonstrates that centroFlye accurately recon-

structs simulated centromeres using reads simulated by the NanoSim simulator [36], it is unclear

how to evaluate assemblies of real centromeres. Benchmarking of various genome assemblers

would not be possible without the quality assessment tools such as QUAST [37]. However, since

QUAST is not applicable for analyzing centromere assemblies, we developed some metrics for

the reference-free quality assessment of centromere assemblies.

Errors in an assembly affect the coverage near the assembly breakpoints. Thus, in the

case of a uniform coverage, regions with abnormal coverage may point to assembly errors. For

example, a deletion inflates the coverage near the deletion breakpoint (doubles the coverage

in the case of a long deletion) and an insertion reduces the coverage in the inserted segment.

Figure 1.5 shows the coverage plots for all assemblies and reveals that a deletion in centroFlyedel

assembly inflates the coverage by roughly 60% at the deletion breakpoint (from ˜50× to ˜80×).

It turned out that the analyzed ONT dataset is characterized by a nonuniform read

distribution, making it difficult to infer assembly errors from irregularities in the read coverage

(Fig. 1.8). Even though T2T assemblies of cenX demonstrate higher coverage variations than the

centroFlye assembly, these variations do not necessarily point to assembly errors, necessitating a

need to introduce additional metrics for centromere assemblies. The T2T6 assembly coverage is

more similar to the centroFlye assembly coverage (as compared to T2T4 assembly), but has a

large spike at the end of the array, which is coordinated with a discrepancy in Fig. 1.4.

A k-mer is shared between an assembly and a read aligned to this assembly if it occurs in

both the assembly and the read at the same position in their alignment. Given a set of k-mers

Anchors, we define sharedAnchors(Read,Assembly) as the number of k-mers from Anchors that are
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Figure 1.4. Each dot corresponds to a centromeric read. The x and y coordinates repre-
sent the starting unit position in the corresponding assemblies. a, Comparison of centroFlye
and centroFlyedel assemblies reveals a discrepancy around unit 300—25 units deletion in the
centroFlyedel assembly. b, Comparison of centroFlye and T2T4 assemblies reveals discrepancies
around the following units in centroFlye (T2T4) assemblies: 150 (135)—32 units deletion
in T2T4, 450 (410)—2 units deletion in T2T4, 750 (700)—56 units deletion in T2T4, 1,050
(950)—47 units deletion in T2T4 and 1,400 (1,250)—36 units deletion in the T2T4 in the
centroFlye (T2T4) assembly. c, Comparison of centroFlye and T2T6 assemblies reveals discrep-
ancies around the following units in centroFlye (T2T assemblies): 180 (175)—5 units deletion
in T2T6, 450 (445)—1 unit deletion in T2T6, 750 (720)—56 units deletion in T2T6, 1,050
(975)—47 units deletion in T2T6, 1,400 (1,300)—24 units deletion in T2T6. d, Comparison of
T2T4 and T2T6 assemblies reveals discrepancies around units 150 and 1,240 in both assemblies.
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Figure 1.5. centroFlyedel refers to the centroFlye assembly of cenX with an artificially introduced
50 kb (25 units) deletion at position 600 kb (unit 300). The peak around unit 1,300 in T2T6 gives
coverage of almost 1,000 and was cut. The reduction in the number of mappable reads caused by
the deletion in centroFlyedel assembly affects the coverage near the deletion in this assembly:
1,696 and 1,676 reads were mapped to centroFlye and centroFlyedel assemblies, respectively.
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shared between Read and Assembly. The larger is sharedAnchors(Read,Assembly), the better the

assembly ‘explains’ the read. Given a read-set Reads, we define sharedAnchors(Reads,Assembly)

as the sum of sharedAnchors(Read,Assembly) over all reads in Reads.

To compare the assemblies Assembly and Assembly’, we define Anchors as the set

of shared unique k-mers between them (default k = 19) and compute the discordance be-

tween these assemblies as discordance(Assembly,Assembly’) = sharedAnchors(Reads,Assembly) -

sharedAnchors(Reads, Assembly’). For centroFlye and T2T6 assemblies, discordance(centroFlye,

T2T6) = 5,609, suggesting that the centroFlye assembly is a better fit for the read set than the

T2T6 assembly (Fig. 1.3).

We classify a read Read as discordant with respect to assemblies Assembly and Assembly’

and a k-mer-set Anchors if there is a large difference (by at least k) between sharedAnchors(Read,

Assembly) and sharedAnchors(Read, Assembly’), thus showing preference for one of the assem-

blies. A discordant read votes for Assembly (Assembly’) if this difference is positive (negative).

There are 54 (3) discordant reads voting for centroFlye (T2T6) assemblies. Figure 1.3 illustrates

that the centroFlye assembly improves on other assemblies with respect to the discordance score.

A concentration of discordant reads at a certain region voting for Assembly over Assem-

bly’ suggests that Assembly’ has a multi-unit deletion in this region. Figure 1.6 reveals three

clusters of discordant reads voting for centroFlye over T2T6 assembly at the regions of around

200, 400–600 and 1,400 units in the centroFlye assembly (only two discordant reads vote for the

T2T6 over the centroFlye assembly). These regions are coordinated with discrepancies shown in

Fig. 1.4 and likely point to large deletions in the T2T6 assembly. Similar comparison between

centroFlye and T2T4 assemblies reveals putative misassembles in T2T4 roughly at units 200,

400, 800, 1,150 and 1,400 in the centroFlye assembly. As expected, comparison of centroFlye

and centroFlyedel detects a single deletion at unit 300.

Supplementary Note 2 in [35] describes the hanging index test and the breakpoint test

that provide additional support for the centroFlye assembly.
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Figure 1.6. Three (five) clusters of discordant reads vote for the centroFlye assembly over the
T2T6 (T2T4) assembly suggesting multi-indel deletions in the T2T assemblies. A single cluster
of discordant reads votes for the centroFlye assembly over the centroFlyedel assembly and detects
the existing deletion at unit 300 in the centroFlyedel assembly.
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1.4.2 Variations in HORs provide insights into centromere evolution

Various copies of a repeat are usually partitioned into subfamilies that reflect evolutionary

history of this repeat. For example, Alu repeats in the human genome are split into over 200

subfamilies that provide insights into evolutionary history of Alu repeats [38]. Some ‘active’ Alu

copies continue to produce variation by ‘jumping’ to new genomic locations, thus posing the

mutagenic threat to the human genome [39].

To reveal subfamilies of the cenX HOR, we align each canonical HOR in the homonu-

cleotide compressed centroFlye cenX assembly (1,471 out of 1,510 units) to the compressed

DXZ1* and use the resulting multiple alignment to construct the profile logo for every position of

DXZ1*. Although most positions in units are highly conserved, some positions reveal substantial

variations (Fig. 1.9). We select divergent positions such that the ratio of the secondary vote to

the majority vote is greater than minRatio (default value minRatio = 0.3) and the secondary vote

is not a deletion. This procedure reveals seven divergent positions. Each divergent position is

characterized by its majority vote frequency and secondary vote frequency.

We consider pairs of divergent positions that are at least minDistance (default value

minDistance = 100) positions apart and select the ‘most correlated’ pairs using the biprofile

approach [40]. Afterward, we apply the χ2 test of independence and select the pair of divergent

positions with the smallest p-value. The divergent positions 580 and 695 with majority votes

71 and 72% (for nucleotides ‘AA’) and secondary votes 30 and 28% (for nucleotides ‘GG’)

were selected. For these positions, the biprofile frequency for ‘AA’ and ‘GG’ is 69 and 27%,

respectively, resulting in p < 10–10. We split the set of all units into two clusters with respect to

nucleotides at the selected pair of positions, resulting in a split of all canonical HOR into two

clusters with 1,010 and 38 units, respectively. We repeat this process iteratively for each of the

new clusters until no more clusters of size greater than minSize (default value minSize, 100)

are generated. This process stops after two iterations and results in four subfamilies of cenX

HOR. Fig. 1.10 reveals that units in different subfamilies are alternating along cenX, providing
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an initial insight into how subfamilies ‘colonize’ cenX during its evolution.

Since we derived HOR subfamilies without using positions of the units, clustering of each

subfamily into close positions along cenX suggests that the algorithm originally described for

identifying Alu subfamilies [7] also works for HOR subfamilies. However, our results also reveal

a new phenomenon of HOR recombination and suggest that analysis of centromere evolution

may be more complex that analysis of Alu evolution.

1.5 Discussion

Although the role of centromeres (chromosome segregation) is conserved throughout

evolution, centromere sequences vary among species. For example, the X chromosome is highly

conserved across all mammals, but the mammalian X centromeres vary across mammalian

species. Here we enable detailed study of centromeres by devising and validating centroFyle, an

automatic tool for centromere assembly.

We compared centroFlye assembly with the semimanual T2T assemblies and identified

several misassembled parts in the T2T assembly. Figure 1.4 reveals five large discrepancies

(deletions) between centroFlye and T2T6 assemblies, Fig. 1.5 shows highly inflated coverage

around unit 1,300 in T2T6 assembly, Fig. 1.6 describes discordant reads that reveal three

problems in T2T6 assembly, Supplementary Note 2 in [35] describes high hanging index in five

regions in T2T6 assembly and five potential breakpoints in the T2T6 assembly. The TandemTools

software for analyzing centromere assemblies [41] confirmed our conclusions and demonstrated

that the problems we detected in the T2T assemblies are not specific to the mapping method. The

latest version of the T2T cenX assembly published on 24 October 2019 (T2T v.0.7) incorporates

some elements of centroFlye assembly, for example, corrects the duplication errors in the

previous assembly, and was further polished using a new marker-assisted read mapping strategy

using both nanopore and PacBio CLR reads.

Although centroFlye could be used to fill the largest remaining gaps in the human genome
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and study centromere evolution, further algorithmic developments are needed to assemble all

human centromeres. For example, although centroFlye revealed 37 abnormal HORs in cenX

assembly (Supplementary Note 3 in [35]), these HORs were not used to guide the centroFlyeHOR

assembly. We thus extended the functionality of the centroFlye algorithm by developing the

centroFlyemono mode for analyzing centromeres with highly irregular HORs such as cen6.

Although this approach successfully assembled cen6 it remains unclear how to recruit reads

to centromeres with shared monomers. For example, some chromosomes share the same

monomers or HORs with other chromosomes; for example, human chromosomes 1, 5 and 19

share the same HOR D1Z7/D5Z2/D19Z3 [42]. We hope to extend centroFlye to address the read

recruitment challenge as well as the challenges of reconstructing centromeres in diploid genomes

and identifying functional centromere sequences by coanalyzing centromere assemblies and

chromatin immunoprecipitation-sequencing data [43].

1.6 Methods

1.6.1 Recruiting centromeric reads

centroFlyemono recruits centromeric reads for a specific chromosome by identifying all

reads that align to HORs from this chromosome (see Fig. 1.1 step (1)). It uses the fitting

alignment of HORs to all reads and recruits reads with sequence identity exceeding a threshold.

centroFlyemono uses a sequence identity threshold (the default value is 83% because most human

HORs differ from the HOR consensus by less than 5% and the error rate in reads is 1̃2%). In the

case of cenX, centroFlyemono recruits 2,680 centromeric reads (total length 1̃33 Mb) that align to

DXZ1 or its reverse complement.

In the following, we assume that all centromeric reads have DXZ1 in the forward

orientation and complement a read if it is not the case (Supplementary Note 4 in [35]). Of the

centromeric reads, 150 have lengths varying from 2 to 5 kb, 1,382 reads are longer than 30 kb

and 897 of them are ultra-long. The longest centromeric read is 527 kb.
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1.6.2 Partitioning centromeric reads into units

DXZ1 was derived at the dawn of the sequencing era based on limited sequencing data

[44] (see Fig. 1.1 step (2)). Supplementary Note 5 in [35] describes how to infer a more accurate

consensus HOR DXZ1* for cenX.

We use the noise-cancelling repeat finder (NCRF) [45] to partition each centromeric

read into units. Given a read and a consensus HOR, NCRF partitions a read into units, each

unit representing a single copy of a HOR. Although NCRF was not designed to characterize

the possible gaps between units (for example, transposon insertions or small rearrangements),

this limitation of NCRF does not considerably affect the centroFlye results. If NCRF reports

several alignments for a given read, the longest one is kept. Incomplete units appearing at prefix

or suffix of a read are discarded.

centroFlye discards all centromeric reads with (the longest) alignment shorter than three

units. So, 295 centromeric reads (including 42 ultra-long reads) of total length 7 Mb were

discarded. NCRF identified 56,138 units in the remaining 2,385 centromeric reads, including

39,363 units in the remaining 855 ultra-long reads.

1.6.3 Classifying centromeric reads

A centromeric read is classified as a prefix (suffix) read if it has a prefix (suffix) of

length at least prefixThreshold that does not match the HOR consensus (default threshold

prefixThreshold = 50 kb) (Fig. 1.1 step (3)). Otherwise, a read is classified as internal. NCRF

revealed 15 prefix, 2,357 internal and 13 suffix reads. This classification is important for ‘moving

inside the centromere’ using an approach similar to the approach for reconstructing unbridged

repeats in Flye [3].

1.6.4 Identifying rare centromeric k-mers

We define the frequency of a k-mer as the number of occurrences of this k-mer in units

of reads from a centromeric read-set. centroFlye identifies rare centromeric k-mers by analyzing
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k-mers with frequencies that fall into a predefined interval (centroFlye uses the default value k =

19) (Fig. 1.1 step (4)). Since a HOR may be repeated in a centromere thousands of times (with

small variations), we expect most k-mer from a HOR to have high frequencies. Our goal is to

identify rare k-mers that appear just once (unique k-mers) or a few times in a centromere and use

them for centromere assembly. Note that a k-mer from a genome ‘survives’ without errors in a

read with the survival rate that can be approximated as survivalRate(k) = (1− p)k, where p is the

probability of an error at a given position of a read. A more accurate estimate from the real data

suggests that the survival rate of 19-mers in the ONT reads is 0.34. Thus, since the recruited set

of ultra-long cenX reads has roughly 32× coverage, we expect that a unique k-mer from a given

position in the genome survives in around 11 ultra-long centromeric reads.

We define the interval (bottom, top) and classify a k-mer as rare if its frequency is larger

than bottom*survivalRate*coverage and smaller than top*survivalRate*coverage (the default

values were bottom, 1 and top, 3). Although 391,361 k-mers from centromeric reads were

classified as rare (Fig. 1.3, a), many of them represent erroneous versions of k-mers from a HOR

copy rather than truly rare k-mers in cenX. Indeed, the number of reads containing a given k-mer

b is affected by the number of genomic positions with k-mers similar to b since error-prone

reads covering these similar k-mers may contain b. Since many HOR copies may contain k-mers

similar to a unique k-mer, this observation explains the complications in inferring the set of

unique/rare k-mers. For example, a single nucleotide insertion in a k-mer from a genome occurs

in an ONT read with probability of 0.03 [46]. Thus, each such insertion in a k-mer from DXZ1*

has a high chance of being classified as a rare k-mer. Next, we describe how to filter out such

spurious rare k-mers using the distance graph.

1.6.5 Constructing the distance graph

The key observation to separate false positives from unique k-mers is that the distances

between unique k-mers in reads are likely to be conserved but distances between false positive

k-mers are not necessarily conserved (Fig. 1.1 step (5)). The distance graph reveals pairs of
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unique k-mers that are separated by roughly the same distance in multiple reads.

Given a set of rare centromeric k-mers V , we define the weighted directed distance

graph with the vertex-set V and the edge set defined as follows. Two vertices v and w are

connected by a directed edge of length ` > 0 if there is a centromeric read where w follows v

at the distance ` units. If there are t different edges between v and w of the same length `, we

combine them into a single multiedge (v,w, `) of multiplicity t. We further remove all multiedges

with multiplicities below minCoverage = C*survivalRate*coverage (the default value C = 0.4

and, thus, minCoverage of four for our set of rare centromeric reads). Finally, we remove all

conflicting parallel multiedges from the graph (multiedges connecting the same vertices but

having different lengths) and all isolated vertices. The remaining vertices form a set of only

28,703 k-mers out of 391,361 initially constructed rare centromeric k-mers (next, we refer to the

remaining k-mers as ‘unique’). Even though some of the remaining k-mers turned out to be rare

rather than unique (Fig. 1.7), they still appear to be valuable for assembly efforts.

1.6.6 Reconstructing the centromere

centroFlyeHOR reconstructs the centromere sequence using an approach similar to the

approach for resolving unbridged repeats in Flye [3] (Fig. 1.1 step (6)). Instead of using the

divergent positions (as in Flye), it uses the unique centromeric k-mers to iteratively reconstruct

the centromere.

Given a unit in a read, a bin of this unit is defined as the set of unique k-mers occurring in

this unit. centroFlye represents each read as a sequence of bins (bin-sequence) that we refer to as

readBin. Given two bins c and c′, we define shared(c,c′) as the number of shared unique k-mers

in these bins. Given two bin-sequences of the same length x = x1, . . . ,xn and y = y1, . . . ,yn, their

score is computed as ∑
n
i=1 shared(xi,yi). Given bin-sequences x of length n and y of length

m, their i-score (1 ≤ i ≤ n) is defined as the score between xi, . . . ,xmin(i+m,n) and the prefix

y1, . . . ,ymin(m,n−i+1) of y. The maxScore between x and y is defined as the maximum of i-scores

over all possible values of i and an alignment of x and y that achieves the maxScore value is
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referred to as an optimal alignment.

An alignment of multiple reads (a contig) defines an alignment of their bin-sequences—a

bin-sequence that we refer to as a bin-contig (for multiple aligned units in this alignment, their

combined bin is defined as the union of all individual bins). centroFlyeHOR supports an operation

of optimally aligning a new read against a bin-contig and updating the bin-contig to include a

newly added read.

Figure 1.1 step (6) illustrates the centroFlyeHOR repeat resolution algorithm. First, all

prefix reads are aligned based on their prefixes, represented as bin-sequences and combined into

an initial bin-contig that starts at the unit position 0. Afterward, centroFlyeHOR selects a still

unaligned read with a highest-scoring optimal alignment against the bin-contig (in case of ties,

the read with the rightmost starting position of the optimal alignment is selected). If the score

of this alignment exceeds stopThreshold, it adds this read to the growing bin-contig, otherwise

it stops the contig extension (the default value of stopThreshold is 10). In case centroFlyeHOR

incorporates nearly all reads in the growing contig-sequence (including suffix reads), we classify

the centromere construction as successful and proceed to the polishing step (see Supplementary

Note 4 in [35]). Otherwise, we apply the same centromere construction procedure but this time

starting from suffix rather than prefix reads. It may happen that the prefix-based centromere

construction stops before completing the centromere but the suffix-based construction generates

the entire centromere. If both prefix-based and suffix-based centromere reconstructions stop, we

generate the suffix and prefix contig-sequences that do not span the entire centromere.

Note that at this step we do not obtain the cenX sequence, but rather the bin-sequence of

the centromere and the starting unit positions inside the cenX for all aligned centromere reads.

We can compare centroFlye assembly to other assemblies by mapping read bin-sequences to

bin-sequences for these assemblies (see Results).
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1.6.7 Polishing the reconstructed centromere sequence

Using reported starting unit positions for all centromeric reads, centroFlyeHOR separately

polishes each HOR unit of the (yet unknown) centromere separately (Fig. 1.1 step (7)). In

the case of cenX, it selects unit of the median length from corresponding reads, uses it as a

template and applies four rounds of the polishing algorithm in Flye [46] (v.2.5). Polishing

strategy implemented in TandemTools [41] can be used to further improve assembly quality.

Polishing results in a sequence of length 3,103,541 that includes 1,510 units and a single

insertion of a LINE repeat. It contains 39,530 unique 19-mers; that is, 19-mers that appear only

once in the assembly. Since ONT assemblies have high rates of homonucleotide indels, we

further compressed all homonucleotide runs in the polished centromere, resulting in a compressed

centromere that has only 26,333 unique 19-mers (Fig. 1.3, b).

1.6.8 Assembly of cen6

For cen6 assembly we used the Oxford Nanopore reads dataset generated by the T2T

consortium (release 3) with 28,449,385 reads (367 Gb, 118× coverage) and N50 read length

equal to 53 kb. This read-set includes 1,999,007 ultra-long reads (longer than 50 kb) that result

in ˜62× coverage of the human genome. Next we describe various steps of centroFlyemono (Fig.

1.2).

1.6.9 Recruitment of centromeric reads from cen6

Using 18 cen6-specific monomers, we recruited 6,558 centromeric reads from cen6 (total

length ˜268 Mb). Here 1,621 out of these 6,558 reads represent ultra-long reads that are most

useful for centromere assembly (the longest read has a length of 530 kb).

1.6.10 Transforming reads into monoreads

NCRF [45] performs well in the case when most of a centromere is formed by canonical

HORs (Fig. 1.2 step (1)). However, it generates a suboptimal decomposition into units when
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a read contains abnormal HOR units. StringDecomposer [47] addresses this limitation of

NCRF by partitioning reads into monomers rather than HORs and generating monoreads in the

monomer alphabet. centroFlyemono uses StringDecomposer to transfrom the read-set Reads into

a monoread-set Monoreads.

StringDecomposer fails to unambiguously translate some regions in a read into monomers

due to locally high error rate in a read, a retrotransposon insertion or a still unknown monomer

for a given chromosome. It represents each such region as a run of gap-symbols ‘?’ repeated

GapMultiplicity times, where GapMultiplicity is defined as the length of this region divided by

the mean nucleotide length of the input monomers.

For cen6, the average (maximum) monoread length is 238 (3,195). The total length of

all cen6 monoreads is 1,562,933. The total number of gap-symbols across all reads is 34,303

(2.2%) and the total number of gap-runs (contiguous sequences of gaps) is 7,375. This is a high

error rate that makes the construction of the de Bruijn graph on mono-k-mers problematic (at

least, for a large k) and necessitates the error correction step.

1.6.11 Error correction of monoreads

Supplementary Note 6 in [35] describes how centroFlyemono filters out poor-quality reads,

trims the low quality ends of monoreads and splits monoreads that have a large fraction of

gap-symbols (Fig. 1.2 step (2)). This step reduces the total number of gap-symbols across all

monoreads to 5,989 (0.4%) and the total number of gap-runs to 3,193.

Supplementary Note 6 in [35] describes how centroFlyemono extracts HOR sequences

from the remaining monoreads by constructing the de Bruijn graph on short and abundant

mono-k-mers. On cen6 we extract two standard HORs: a mono-18-mer identical to D6Z1

(represented as ABCDEFGHIJKLMNOPQR in the monomer alphabet) and a mono-15-mer

ABFGHIJKLMNOPQR that differs from D6Z1 by the deletion of a mono-3-mer CDE (Supple-

mentary Note 6 in [35]). We say that a mono-t-mer fixes a run of t gap-symbols in a monoread

if substituting this run with the mono-t-mer increases the number of standard HORs in the
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monoread. For each run of t gap-symbols in a monoread, centroFlyemono attempts to find a

mono-t-mer that fixes it and error corrects the monoread by substituting the gap-run with the

found mono-t-mer. Such HOR-based error correction reduces the total number of gap-symbols

across all monoreads to 2,505 (0.2%) and number of gap runs to 948.

1.6.12 Constructing iterative de Bruijn graph of monoreads

The choice of the k-mer size affects the construction of the de Bruijn graph (Fig. 1.2

step (4)). Smaller values of k collapse more repeats, making the graph more tangled. Larger

values of k fail to detect overlaps between reads, making the graph more fragmented. Also, since

monoreads have gaps, increasing k becomes problematic when one constructs the de Bruijn

graph on mono-k-mers (Fig. 1.2 step (3)). 222,639 out of 249,119 (˜89%) mono-400-mers in

reads are gap free after error correction.

The iterative de Bruijn graph [32], [33] incorporates information about mono-k-mers for

multiple values of k into a single graph to reduce fragmentation in low-coverage regions and

reduce repeat collapsing in high-coverage regions. While the de Bruijn graph DBk(Reads) is

constructed based on all k-mers in the read-set Reads, the iterative de Bruijn graph IDBk(Reads)

is recursively constructed based on a larger set of k-mers that extends all k-mers in Reads by

adding all k-mers that are spelled by valid paths in the graph IDBk–1(Reads). Next we define the

concept of a valid path.

A vertex in a path is called an internal vertex if it is neither the initial nor the terminal

vertex of this path. A vertex is called a 1-out (1-in) vertex if it has outdegree 1 (indegree 1). A

path in a directed graph is called a 1-out (1-in) path if all its internal vertices are 1-out (1-in)

vertices. For each edge e, there is a single longest 1-in path ending in e (referred to as (einit , . . . ,e))

and a single longest 1-out path starting at e (referred to as (e, . . . ,eterm)). We refer to the path

(einit , . . . ,e, . . . ,eterm) as the valid path for the edge e to reflect that each traversal visiting all

edges of the graph contains each valid path as a subpath. We further refer to a string spelled by

a valid path as a pseudoread and consider the set of all pseudoreads (one for each edge of the
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graph). Even though there may be no reads containing a given pseudoread, one can safely add

all pseudoreads to the set of real reads since each such pseudoread represents a substring of the

genome [33].

Given a parameter k, the graph IDBk(Monoreads) on mono-k-mers is recursively defined

based on the graph IDBk–1(Monoreads). A mono-k-mer is called frequent if it appears at least

minMultiplicity times in Monoreads. We define minMultiplicity as Coverage * MonoKmerSur-

vivalRate * C with default C = 0.2. Specifically, we consider the set of all frequent mono-k-mers

in Monoreads combining with all mono-k-mers in all pseudoreads and define IDBk(Monoreads)

as the de Bruijn graph constructed on these mono-k-mers. Each nonbranching path is compressed

into a single edge. The length of this edge is defined as the length of the path and its coverage

is defined as the median multiplicity of mono-k-mers (edges) in the path. To initialize the

construction of the iterative de Bruijn graph, we define IDBk(Monoreads) as the de Bruijn graph

on all frequent mono-k-mers in Monoreads for a small value of k (the default k = 100) and iterate

until a large value of k is denoted as K (the default K = 400). Supplementary Note 6 in [35]

presents the graph IDB400(Monoreads) for cen6.

1.6.13 Assembling monocentromere by scaffolding

An edge in the graph IDBk(Monoreads) is called long if it spells a string of length at least

MinLength (default value MinLength = 1,000) (Fig. 1.2 (5)). An edge is called unique if its

coverage does not exceed the average coverage of the genome (Supplementary Note 7 in [35]).

centroFlyemono attempts to scaffold long unique edges that are likely traversed just once by the

genome.

centroFlyemono maintains an alignment of each centromeric read to the graph IDBK(Mo-

noreads) during its construction. A monoread connects a long unique edge e with a long unique

edge e′ if it starts in e and ends in e′. Each such monoread R represents a concatenate of prefixe(R)

(the prefix of R mapping to e), middlee,e′(R) (an internal segment of R that does maps neither to

e nor to e’) and suffixe′(R) (the prefix of R mapping to e′). We define offsete,e′(R) as the length
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of middlee,e′(R). We say that a long unique edge e precedes a long unique edge e′ if there are

at least MinConnection reads connecting e with e′ and offsets of these reads are the same. We

construct the scaffolding graph ScaffoldK(Monoreads) by maintaining all long unique edges in

IDBK(Monoreads), removing all other edges and adding scaffolding edges that connect long

unique edges e and e′ if e precedes e′. Each scaffolding edge is labeled by the consensus of

strings middlee,e′(R) taken over all monoreads R that connect e and e′. Paths in the scaffolding

graph are referred to as scaffolds. centroFlyemono further extends each scaffold from both sides

by two reads that map to the prefix and suffix of each scaffold and extend this prefix and suffix

as far as possible.

centroFlyemono generated two scaffolds of length 11,156 and 5,582 monomers. There are

no centromeric reads that connect long and unique edges of these scaffolds. The region of cen6

in-between consists of a long recent segmental duplication that results in a complex traversal

of IDB400(Monoreads). However, the extensions of these long edges with reads (entering the

duplication from both sides) are overlapping in a single vertex. We thus concluded that these two

scaffolds are joined via this vertex, resulting in a single path that is traversed by cen6 (further

validation is required to rule out a possibility that this vertex is not duplicated in this path).

1.6.14 Translating monocentromere to the nucleotide alphabet

centroFlyemono greedily partitions monocentromere into longest substrings such that no

monomer is repeated more than once in each of substrings (we refer to these substrings as pseudo-

units) (Fig. 1.2 step (6)). Alignments of each centromeric read to the graph IDBK(Monoreads)

indicate alignments of these reads to the monocentromere. centroFlyemono uses these alignments

to separately polish each of 962 identified pseudo-units on cen6 separately. The assembly can be

further polished using TandemMapper from the TandemTools package [41].
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1.7 Supplementary Figures

Figure 1.7. centroFlye cenX assembly contains 39,827 unique 19-mers. centroFlye recruited
28,703 of putative unique 19-mers from ONT reads. 16,488 (57.4%) of these 19-mers are also
unique in the polished assembly. 9,267 (32.3%) are absent from the assembly and only 2,948
(10.3%) are repetitive in the assembly.
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Figure 1.8. Range of coverage is [0, 50]. Moving average with window 10,000 in the region
28 - 33 Mb (Left) and the region 70 = 75 Mb (Right). Median coverage of the entire chrX in
HG38 with ultra-long reads (longer than 50 kb) is 30x, 5-percentile is 19x and 95-percentile is
43x. The median length of regions with coverage higher than 43x or lower than 19x is 23,893
(mean is 10,237).

Figure 1.9. When considering deletions as mutations: mean percent identity = 98.8%, median =
99.8%. When ignoring deletions: mean percent identity = 99.5%, median = 100%.
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Figure 1.10. Red, green, orange, and blue subfamilies have 389, 429, 140, and 132 units. Red
and green subfamilies are located in the middle and the second half of the assembly (units 500-
1450), orange subfamily is concentrated in the beginning (units 1-300), and the blue subfamily is
located between green and orange subfamilies (units 300-550).
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Figure 1.11. With exception of only eight units, each of seven divergent positions has only two
nucleotides in each of the canonical HOR: T or C (position 167), A or C (position 437), G or A
(position 580), T or G (position 584), A or C (position 673), G or A (position 695), and G or
T (position 1332). We exclude these eight units from consideration and classify the remaining
units into 27= 64 clusters depending on the string that they spell out in seven divergent positions.
Two of these strings (the “red” string TAGTAGG and the “blue” string CCAGCAT) differ at
each position. Ten largest clusters (shown above along with the number of units in each cluster)
correspond to strings that represent recombination events between the red and the blue strings
(string 3-7) or between the red string and a recombinant of red and blue strings (strings 8-10).
The ancestral human cenX HOR is likely located within positions 500-1200 occupied by clusters
1, 4 and 6 with HORs that are most similar to the gorilla cenX HOR [48].

1.8 Data availability

centroFlye centromere 6 and X assemblies and all supporting data is available at Zen-

odo: https://doi.org/10.5281/zenodo.3897531. The ONT reads that were generated by the T2T

consortium are deposited under accession number PRJNA559484.

1.9 Code availability

The codebase of the algorithm is available at https://github.com/seryrzu/centroFlye. The

version of centroFlye that generates the assemblies described in the paper is in the branch:

cF NatBiotech paper Xv0.8.3-6v0.1.3. Jupyter notebooks for reproducing all figures in this

study are provided in the Github repository https://github.com/seryrzu/centroFlye paper scripts.
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Chapter 2

TandemTools: mapping long reads and
assessing/improving assembly quality in
extra-long tandem repeats

2.1 Abstract

2.1.1 Motivation

Extra-long tandem repeats (ETRs) are widespread in eukaryotic genomes and play an

important role in fundamental cellular processes, such as chromosome segregation. Although

emerging long-read technologies have enabled ETR assemblies, the accuracy of such assemblies

is difficult to evaluate since there are no tools for their quality assessment. Moreover, since the

mapping of error-prone reads to ETRs remains an open problem, it is not clear how to polish

draft ETR assemblies.

2.1.2 Results

To address these problems, we developed the TandemTools software that includes the

TandemMapper tool for mapping reads to ETRs and the TandemQUAST tool for polishing

ETR assemblies and their quality assessment. We demonstrate that TandemTools not only

reveals errors in ETR assemblies but also improves the recently generated assemblies of human

centromeres.
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The codebase of TandemTools is available at https://github.com/ablab/TandemTools.

2.2 Introduction

Tandem repeats are formed by multiple consecutive nearly identical sequences that are

often generated by unequal crossover [49]. The early DNA sequencing projects revealed that

tandem repeats are abundant in eukaryotic genomes [50], [51]. Recent studies of tandem repeats

revealed their role in various cellular processes and demonstrated that mutations in tandem

repeats may lead to genetic disorders [14], [13], [52], [53].

We distinguish between extensively studied short tandem repeats [54], [55], [56] and

extra-long tandem repeats (ETRs) that range in length from tens of thousands to millions of

nucleotides. Centromeric and pericentromeric regions contain some of the longest ETRs that

account for ˜3% of the human genome and span megabase-long regions [18]. Centromeres and

pericentromeres represent the ‘dark matter’ of the human genome that evaded all attempts to

sequence until recently and are the largest gaps in the reference human genome [27], [18]. The

goal of the telomere-to-telomere (T2T) consortium is to generate a complete assembly of the

human genome, including all centromeres and pericentromeres [18]. This effort recently resulted

in assemblies of chromosomes X and Y [26], [34] but centromeres in other chromosomes are

waiting to be assembled.

Human and primate centromeres are comprised of retrotransposon repeats and alpha-

satellites, a DNA repeat based on a 171 bp monomer [57]. In humans and many primates,

consecutive monomers are arranged tandemly into higher-order repeat (HOR) units [58]. The

number of monomers and their order in a HOR are chromosome-specific. For example, the

chromosome X HOR, referred to as DXZ1, consists of 12 monomers [59]. The monomer

sequences are divided into five distinct monomer subtypes, denoted as A, B, C, D and E, where

monomers from the same subtype are more closely related to each other than to monomers

of other subtypes [59]. According to this classification, DXZ1 can be represented as C1D1E1
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A1B1C2D2E2A2B2C3D3. For consistency with [35], we took the liberty to refer to the chromo-

some X HOR as ABCDEFGHIKL.

Emergence of long-read technologies, such as Pacific Biosciences (PacBio) and Oxford

Nanopore Technologies (ONT), have greatly altered the landscape of whole-genome sequencing.

The development of long-read assemblers [1], [3], [5], [2], [46], [7] and hybrid assemblers that

combine long and short reads [60], [61], [62] significantly increased the contiguity of assembled

genomes compared to short-read assemblies. In addition, long reads contributed to successful

semi-manual approaches for reconstructing human centromeres [26], [34]. The Flye assembler

successfully resolves bridged tandem repeats that are spanned by long reads and even some

unbridged tandem repeats that are not spanned by long reads [3]. The centroFlye assembler [35]

was designed to automatically assemble unbridged ETRs, such as centromeres.

Various alternative strategies for ETR assembly and absence of the ground truth for

benchmarking these assemblies raise the problem of their quality evaluation. Similar problems

have been addressed by the short-read quality assessment tools for genome assemblies, such as

GAGE [63] and QUAST [37], [64] as well as specialized quality assessment tools metaQUAST

[65] and rnaQUAST [66]. However, these tools are based on known references and thus are not

applicable to analyzing ETRs since their analysis requires reference-free approaches to evaluating

assembly quality. At the same time, existing reference-free tools are based on analyzing gene

content or mapping reads to the assembled sequences [67], [68], [69], [70] and are not applicable

to ETRs either.

Existing reference-free assembly quality assessment approaches rely on sequence align-

ment tools [25], [71], [2], [72], [73] to accurately map reads to assemblies. However, our

benchmarking revealed that these tools often fail in ETRs. The BWA-MEM tool [71], primarily

designed for short-read mapping, incorrectly maps many long reads to ETRs. Minimap2 [72]

incorrectly maps some long reads to ETRs (especially in regions with assembly errors) and thus

is not well suited for ETR assembly quality evaluation. The recently developed Winnowmap

tool [74] was specifically designed for mapping reads to repetitive genomic regions. However,
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our benchmarking demonstrated that Winnowmap is limited with respect to detecting assembly

errors: while it works well in the case of error-free assemblies, its accuracy deteriorates in the

case of assembly errors (Table 2.1). We thus developed the TandemMapper tool that efficiently

maps long error-prone reads to ETRs. TandemMapper not only enabled TandemQUAST devel-

opment but also led to an improvement in ETR assemblies due to more accurate read mapping

and subsequent polishing.

The initial attempt to evaluate the quality of ETR assemblies was centromere-specific

[35] and has not resulted in a general quality assessment tool for ETR assemblies. Species-

and chromosome-specific nature of centromeres prevents applications of the same approach to

other ETRs. However, the common principles of centromere organization can be utilized for

developing a universal assembly evaluation tool for ETRs.

Here, we present the TandemTools package that includes the TandemMapper tool for

mapping reads to ETRs, and the TandemQUAST tool for evaluating and improving ETR as-

semblies. We used TandemTools and subsequent polishing to improve assemblies of the human

centromere X (cenX) generated by both centroFlye [35] and the curated semi-manual approach

[34]. These improvements suggest that TandemTools will become a useful tool for evaluating

the quality and polishing of many assemblies since nearly all genomes have ETRs. We also

applied TandemTools to the GAGE gene cluster at the human chromosome X [34] and to the

assembly of the human centromere 8 generated by the recently developed HiCanu assembler

[75] and demonstrated that it reveals assembly errors in these ETRs. The results are presented in

Supplementary Appendices ‘Analyzing ETRs in the GAGE locus at the human X chromosome’

and ‘TandemTools results on cen8 assembly’ in [41].

TandemTools is open-source software that is freely available as a command-line utility

on GitHub at https://github.com/ablab/TandemTools.
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Table 2.1. Note: Minimap2 and Winnowmap were run using recommended parameters for
mapping ONT reads (-cx map-ont). The best value for each column is indicated in bold. A read
is considered correctly mapped if its starting position is within 100 bp from the read simulated
position calculated for the longest read alignment (an alignment is elongated to both ends of a
read). Only reads longer than 5 kb with alignments longer than 3 kb were considered. The total
number of such reads in this read-set is 1180. Although minimap2 mapped 4 more reads than
TandemMapper (1165 versus 1161), 3 out of these 4 reads came from the region of the deletion
and 1 read was mapped incorrectly. The benchmarking was done on a server with Intel Xeon
X7560 2.27 GHz CPUs using 16 threads.

Correctly
mapped
reads

Incorrectly
mapped
reads

# alignments extended
through the deletion
breakpoint

Running
time (s)

Memory
footprint
(GB)

TandemMapper
(unique k-mers) 97.9% (1155) 0.01% (1) 0 511 5.2

TandemMapper
(solid k-mers) 98.3% (1160) 0.01% (1) 0 590 5.6

minimap2 96.0% (1133) 2.7% (32) 58 357 5.8
Winnowmap 95.8% (1130) 2.8% (33) 58 84 1.2

2.3 Materials and methods

2.3.1 TandemTools input

As an input, TandemTools requires one or several ETR assemblies and the set of long

reads (PacBio continuous long reads or ONT) that contributed to these assemblies. Additionally,

error-prone long reads can be complemented by accurate long reads, such as PacBio high-

fidelity (HiFi) reads. We do not consider short Illumina reads since it is nearly impossible to

unambiguously map them to ETRs.

2.3.2 TandemTools modules

TandemTools consists of the read-mapping module that aligns reads to the assembly

(TandemMapper), the polishing module for improving the assembly quality based on the identi-

fied read alignments and the quality assessment module (TandemQUAST). TandemQUAST uses

general metrics for evaluating ETRs of any kind and centromeric metrics designed specially to

account for the HOR structure of centromeric ETR.
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2.3.3 Selection of k-mers

Selecting solid k-mers in ETRs

Most long-read mapping algorithms are based on minimizers [26], [2], [72], k-mers that

are chosen as the anchors for the read mapping. However, mapping a long read to an ETR is

a non-trivial problem since minimizers are expected to be reduced in numbers and irregularly

arranged due to local expansions of identical tandem repeats. [35] used unique k-mers (that

appear just once in the assembly) to improve read mapping to ETRs.

The density of unique k-mers may significantly vary along an assembly (Fig. 2.1),

leading to drops in coverage or incorrect mappings in some regions. To address this problem,

TandemMapper uses rare k-mers that appear less than MaxOccurrences times in the assembly.

To obtain uniform k-mer density, we compute MaxOccurrences as the assembly length divided

by 100 kb. Figure 2.1 illustrates that the density of rare k-mers is significantly larger than the

density of unique k-mers, thus providing more ‘signposts’ for read mapping.

Since ETR assemblies can be error-prone, some rare k-mers may represent assembly

errors rather than low-frequency k-mers in the genome. To filter out such rare k-mers, we analyze

their frequencies in the read-set. We assume that a k-mer from an assembly was erroneously

classified as rare if it has an unusually low frequency (lower than MinFrequency) or an unusually

high frequency (higher than MaxFrequency) in reads. The MinFrequency (MaxFrequency)

threshold is defined as a fifth (95th) quantile of k-mer frequencies in the read-set. We, thus

classify a rare k-mer as solid if it occurs in reads at least MinFrequency and at most MaxFrequency

times.

The k-mer selection procedure can be affected by the fact that ETRs may harbor various

transposable elements (TEs), such as LINE repeats, Alu repeats, etc. Even a single copy of a

TE within an ETR is likely to contain many solid k-mers that may affect the mapping accuracy

and complicate further analysis. To minimize the influence of TEs on the choice of solid k-mers,

we set the MaxKmers limit on the maximum number of solid k-mers that can be selected in
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Figure 2.1. Distribution of unique and solid 19-mers along the cenX assembly of the CHM13
cell line constructed by centroFlye. Each bar shows the number of unique (solid) 19-mers in a
bin of length 20 kb. The total number of unique (solid) 19-mers is 39 530 (57 318). The peak at
˜2750 kb corresponds to a LINE element and contains 6128 unique 19-mers and only 1499 solid
19-mers after filtration.
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each window of a fixed length L (default value L = 1000 bp). Given an array KmerDensity of

the number of k-mers in each window of length L in the assembly, MaxKmers is calculated as

median(KmerDensity) + 2σ (KmerDensity), where σ is the SD within KmerDensity. Thus, if the

number of solid k-mers in a window exceeds the threshold, we randomly select MaxKmers of

them.

Compatible k-mers

The TandemMapper algorithm is inspired by the minimap2 [72] and Flye mappers [3],

[46]. As solid k-mers are not necessarily unique in the assembly, we consider each occurrence of

each solid k-mer separately.

Let aR and bR (aA and bA) be occurrences of solid k-mers a and b in the read R (assembly

A). To make aR and bR uniquely defined for each read, we limit attention to solid k-mers that

appear exactly once in this read. Note that, while aR and bR are uniquely defined, there may be

multiple choices for aA and bA. We define d(aR,bR) and d(aA,bA) as distances between a and b

in R and A, respectively.

We refer to the pair of aA and aR (bA and bR) as a match aM (bM) and define:

distance(aM,bM) = min{d(aR,bR),d(aA,bA)},

di f f (aM,bM) = |d(aR,bR)−d(aA,bA)|,

penalty(aM,bM) = di f f (aM,bM)/distance(aM,bM).

To assess the distribution of differences between distances in reads and the assembly,

we collect all penalties taken over all consecutive non-overlapping unique k-mers a and b in

all reads where these k-mers appear once into the Penalties array. We define distortion C as

median(Penalties) + IQR(Penalties), where IQR stands for the interquartile range.

In addition, we define MissedKmers(aM,bM) as the number of solid k-mers in assembly

38



A between aA and bA. We call aM and bM compatible if distance(aM,bM) < maxDistance

(maxDistance is defined as the largest distance between two consecutive unique k-mers in

the assembly), MissedKmers(aM,bM)< maxMissed (the default value maxMissed = 500) and

di f f (aM,bM)<C ·distance(aM,bM), where C is the distortion.

2.3.4 Tandemmapper module

Given a read, we define a directed weighted compatibility graph with a vertex-set equal

to the set of all matches of solid k-mers between R and A. We connect vertices aM and bM by an

edge if (i) a precedes b in R and (ii) aM and bM are compatible. We further define the weight

of this edge as premium|penalty(aM,bM), where premium is a constant selected to optimize the

number of correctly mapped reads (default value premium = 0.1). A chain between a read R

and an assembly A is defined as the longest path in the compatibility graph. Note, that since all

considered solid k-mers appear just once in R, no solid k-mer can be present in the chain more

than once.

A chain for a given read can be used to map this read to the assembly. TandemMapper

finds a chain for each read using dynamic programing, filters out short chains (shorter than 3 kb in

length or containing less than 20 solid k-mers) and constructs the corresponding nucleotide-level

alignments within the derived chain boundaries for each remaining chain. Table 2.1 illustrates

that TandemMapper improves on other long-read mapping tools in ETRs.

2.3.5 Polishing module

Due to the high error rate in reads, most long-read assemblers have a polishing step to

improve base-calling accuracy of the assembly [76], [46], [77], [78]. However, [34] demonstrated

that standard polishing tools may even decrease the assembly quality in ETRs due to incorrect

and ambiguous read alignments against the assembly. On the other hand, [34] demonstrated that

the marker-assisted read mapping (based on unique k-mers) significantly improves accuracy of

ETR assemblies. TandemQUAST uses read alignments generated by TandemMapper as an input
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for a modified Flye polishing module [3], [46]. We demonstrate that this polishing procedure

fixes erroneous deletions and base-calling errors.

2.3.6 Quality assessment module (TandemQUAST)

To evaluate the assembly quality and reveal possible errors, we developed two general

metrics (indel-based and k-mer-based) and a centromeric metric (monomer-based) that we

describe below. Former metrics are applicable to any ETRs and the latter metric is applicable to

centromeric ETRs only.

Indel-based metrics.

ETR assemblies are prone to large-scale deletions and duplications that lead to mis-

assembly breakpoints. QUAST [37] defines a misassembly breakpoint based on differences

between an assembly and a reference genome. In contrast, since the reference is not avail-

able, TandemQUAST detects breakpoints based on abnormalities in the read coverage. Below

we describe the coverage metric and the breakpoint metric and use them to reveal putative

breakpoints.

Coverage metric. Assembly errors may affect the coverage near the assembly breakpoints.

TandemQUAST uses the read alignments (truncated with respect to their longest chains) to

construct the coverage plot and reveal regions with abnormal coverage that may point to assembly

errors (Fig. 2.3).

Breakpoint metric. Since long-read assemblers often fail to distinguish various repeat

copies and erroneously collapse repetitive regions, indels represent the most frequent assembly

errors in ETRs. The breakpoint metric was designed specifically to detect indels based on

the analysis of mapped reads. In case, an assembly contains a breakpoint caused by a long

indel, longest chains for the majority of reads spanning this indel breakpoint cannot be extended

through this indel due to a substantial discrepancy in distances between solid k-mers in reads

spanning this breakpoint and the assembly. Thus, if longest chains for many reads start or end in
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a certain region, this region may contain an assembly breakpoint. However, stochastic differences

in coverage and various biases may also result in drops or peaks in read coverage. Our goal is to

distinguish these cases and reveal assembly breakpoints.

A chain for a read R defines its partitioning into pre f ix(R), middle(R) and su f f ix(R),

where middle(R) is the mapped part of a read that starts (ends) at the first (last) k-mer in the

chain. The region in the assembly corresponding to middle(R) is referred to as a chain-segment.

We also define an elongated chain-segment as a chain-segment extended by |pre f ix(R)| and

|su f f ix(R)| nucleotides in the beginning and the end, respectively.

Given a solid k-mer Kmer, we define breaks(Kmer) [breaks+(Kmer)] as the number

of chain-segments (elongated chain-segments) starting or ending in this k-mer (over all reads).

We also define number(Kmer) [number+(Kmer)] as the number of chain-segments (elongated

chain-segments) containing this k-mer. Finally, we define

breakpointRatio(Kmer) = breaks(Kmer)/number(Kmer),

breakpointRatio+(Kmer) = breaks+(Kmer)/number+(Kmer).

While drops in values of breakpointRatio usually correspond to poorly covered re-

gions, peaks in values may reveal breakpoints in the assembly. We expect that regions, where

breakpointRatio(Kmer) has significantly higher values than breakpointRatio+(Kmer), contain

assembly breakpoints because the longest chains for many reads were not extended through this

region (Fig. 2.3).

K-mer-based metrics

In contrast to the TandemMapper tool (that considers k-mers that appear more than once

in the assembly), the k-mer-based metrics need a reliable set of k-mers that appear just once in

the assembly. We, thus filter out solid k-mers that occur more than once in the assembly or more

than once in a single read and refer to the rest as unique solid k-mers.
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Figure 2.2. Coordinates of unique solid k-mers in the assembly and reads. Purple and red dots
represent k-mer position in reads (shown as blue lines) and in the assembly (shown as a gray
line), respectively. Clumps are flanked by vertical lines. (left) k-mers forming a single clump,
(middle) k-mers forming multiple clumps in different parts of the assembly and (right) k-mers
that do not form clumps (spurious k-mers).

Table 2.2. Distribution of different types of unique solid k-mers in the T2T4, T2T4polish , T2T7,
centroFlye and centroFlyepolish assemblies. Note: Assemblies do not utilize information derived
from accurate PacBio HiFi reads.

T2T4 T2T4polish T2T7 centroFlye centroFlyepolish
Single clump 13 130 (75%) 15 158 (96%) 16 114 (97%) 16 550 (96%) 15 858 (97%)
Multiple clumps 1058 (6%) 524 (3%) 294 (2%) 422 (2%) 396 (2%)
No clumps 3217 (17%) 197 (1%) 237 (1%) 302 (2%) 180 (1%)

After constructing read alignments, TandemQUAST finds where a unique solid k-mer in

a read maps to the assembly and calculates coordinates of all found alignments across all reads

containing this k-mer. Afterward, it clusters these coordinates (for a given unique solid k-mer) if

they are located within MaxClumpDistance from each other (default value MaxClumpDistance

= 1 kb). After single linkage clustering, we define a cluster as a clump if it contains more than

MinClumpSize elements (default value MinClumpSize = 2). Ideally, all occurrences of a unique

solid k-mer should form a single clump. We divide all k-mers having at least MinClumpSize

occurrences in reads into three groups: a single clump, multiple clumps and spurious k-mers that

do not form clumps (Fig. 2.2).

TandemQUAST reports absolute and relative abundance of such k-mers and generates a

plot showing their distribution (Table 2.2 and 2.4). Multiple clumps or spurious k-mers appearing

along the entire assembly may point to poor base-calling quality of this assembly. Multiple

clumps or spurious k-mers appearing in a certain region of an assembly reflect either a poor base-

calling quality in these regions or collapsed duplications with subsequent ‘consensus’ polishing

with reads from both copies.
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In the case when a complementary set of accurate PacBio HiFi reads is available,

TandemQUAST compares k-mer frequencies in the assembly and the HiFi reads. If the as-

sembly contains k-mers that do not occur in HiFi reads or frequent k-mers from reads have a low

frequency or are even absent in the assembly, it is likely that the assembly requires additional

polishing (Supplementary Fig. S8 in [41]).

Centromeric metrics.

The additional set of metrics takes into account the centromere organization into mono-

mers and HOR units. When a set of specific monomer sequences is known, TandemQUAST

can analyze the assembly using the monomer-based metric described below and the unit-based

statistic described in Supplementary Appendix ‘Unit-based statistic’ in [41].

Centromere assemblies may include difficult-to-detect indels of multiple monomers. In

case monomer sequences are known, TandemQUAST attempts to detect discrepancies between

reads and the assembly at the monomer level. The assembled centromere and all reads are

aligned to the provided monomer sequences and are subsequently translated into the monomer

alphabet using the StringDecomposer tool [47], resulting in a monocentromere and monoreads.

For each monomer ReadMonomer in each monoread, TandemQUAST uses nucleotide-

based read alignments to identify the starting nucleotide position of ReadMonomer in the

monocentromere [referred to as Start(ReadMonomer)]. In case, ReadMonomer is aligned

against a deletion in the monocentromere, Start(ReadMonomer) is recursively defined as

Start(NextReadMonomer), where NextReadMonomer is the next monomer in the monoread.

For each monomer CenMonomer in the monocentromere, we define Start(CenMonomer) as

the starting position of this monomer in the centromere. We say that a monomer in a read

(ReadMonomer) and a monomer in a centromere (CenMonomer) are co-located if

|Start(ReadMonomer)−Start(CenMonomer)|< MaxStartDistance

(the default value MaxStartDistance = 50 bp).
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For each monomer CenMonomer in the monocentromere, TandemQUAST constructs

the set ReadMonomers(CenMonomer) of all monomers in reads that are co-located with this

monomer. For an error-free assembly, we expect that the vast majority of monomers in

ReadMonomers(CenMonomer) coincide with CenMonomer, i.e. the ratio of CenMonomer

in ReadMonomers(CenMonomer) is high. If this ratio [denoted as Ratio(CenMonomer)] is

below a threshold MinRatio (the default value MinRatio = 0.8), the assembly is likely to have

an error (Supplementary Fig. S1 in [41]). However, in the case of heterozygous monomers, this

ratio is close to 0.5 as roughly half of the reads support (do not support) the monomer.

Although individual monomers may significantly vary in sequence, their length is fairly

conserved within species that have alpha-satellites [79], [80]. Thus, variations in monomer

length across the centromere in such species may point to flaws in the assembly. Using StringDe-

composer output, TandemQUAST generates an interactive HTML-page that provides a general

monomer-level overview of the assembly and demonstrates the distribution of monomer lengths

(Fig. 2.5).

Comparison of various ETR assemblies

TandemQUAST performs pairwise comparison for each pair of analyzed assemblies

using the bi-mapping plot and the discordance test.

A bi-mapping plot (Supplementary Fig. S2 in [41]) provides an overview of read align-

ments from the perspective of both assemblies. Each read aligned to both assemblies represents a

dot with its starting mapping positions in two assemblies as the x- and y-coordinates. Positions of

read alignments for two assemblies can be compared to reveal structural discrepancies between

them.

The discordance test was introduced in [35] for comparing two assemblies. Supplemen-

tary Appendix ‘Discordance test’ in [41] describes its implementation in TandemQUAST.
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2.4 Results

2.4.1 Simulated assembly

To benchmark TandemTools, we simulated an ETR of length ˜1.03 Mbp, which is a

concatenation of 500 randomly mutated copies of the consensus HOR sequence on chromosome

X (DXZ1) that diverge from the consensus sequence by 1% (substitutions only). Afterward,

we simulated 1200 reads from this ETR using NanoSim [36] trained on the real ONT dataset

enriched for ultra-long reads (longer than 50 kb) generated by the T2T consortium [34]. We refer

to the centroFlye assembly of these reads as simulated. We further introduced various artificial

errors (described below) into the simulated assembly and ran TandemTools. An additional

example of TandemTools performance on a centromere with more complex structure is presented

in Supplementary Appendix ‘TandemTools results on the simulated datasets (D6Z1)’ in [41].

Benchmarking TandemMapper, minimap2 and Winnowmap

We compared TandemMapper with minimap2, the widely used long-read mapper that

achieves excellent results outside repeated regions, and Winnowmap [74] that is designed

specifically for mapping reads to repetitive genomic regions. To analyze how these tools handle

assembly errors, we generated simulateddel assembly by introducing an artificial deletion of

length 10 kb in the simulated assembly at position 400 kb.

We benchmarked mapping tools by aligning simulated reads to the simulateddel assem-

bly and comparing their known exact positions in the assembly to the inferred positions 2.1.

TandemMapper correctly stopped all read alignments at the breakpoint of this deletion, while

minimap2 and Winnowmap erroneously extended alignments through this breakpoint due to

the highly repetitive sequence of the ETR. Using solid k-mers instead of unique k-mers slightly

increased the number of correctly mapped reads even in an easy case of the simulated assembly

with the uniform density of unique k-mers.
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Figure 2.3. Coverage (top) and breakpoint (bottom) metrics for simulated (left) and simulateddel
(right) assemblies. The coverage plot does not show a significant drop at the point of the deletion
but the breakpoint plot reveals peak at the position of the deletion (400 kb). The red plot is based
on the breakpointRatio(Kmer) values, the gray plot is based on the breakpointRatio+(Kmer)
values.

Indel-based metrics

To analyze how these metrics capture breakpoints, we used the simulateddel assembly

(Fig. 2.3). Although the coverage plot does not show a significant drop at the point of the

deletion, the breakpoint plot reveals a peak at the position of the deletion (400 kb).

k-mer-based metrics

To benchmark metrics evaluating the base-calling accuracy of an assembly, we introduced

10 000 (˜1% of the sequence length) random single-nucleotide substitutions in the simulated

assembly (we refer to this assembly as simulatedmut ). TandemQUAST reports the number of

each group of unique solid k-mers and their distribution in the assembly (Fig. 2.4). The percent

of unique solid k-mers forming a single clump decreased from 91% in the simulated assembly to

74% in the simulatedmut assembly, mostly due to the increased number of spurious k-mers.
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Figure 2.4. Distribution of different types of unique solid k-mers in the simulated (left) and
simulatedmut (right) assemblies. Each bar shows the number of different types of k-mers in a bin
of length 5 kb.

Centromeric metrics

In order to illustrate the monomer-based metric and the unit-based statistic, we generated

the simulateddel monomer assembly by introducing a deletion of three consecutive monomers in the

simulated assembly at position 226 kb. The results are presented in Supplementary Appendices

‘TandemTools results on the simulated datasets (DXZ1)’ and ‘Unit-based statistic’ in [41].

In addition, we demonstrated how these metrics might be affected by the assembly quality.

Figure 2.5 shows that most monomers have conserved length across the assembly. However, the

first monomer A and the last monomer L show surprising variability in length, suggesting that

the accuracy of the simulated assembly deteriorates at the ends of HOR units due to imperfect

polishing. This imperfect polishing is caused by limitations of the existing read-mapping tools

in ETRs, forcing centroFlye to perform separate polishing for each HOR. Since the polishing

procedure [46] is known to have limitations in the very beginning/end of each segment subjected

to polishing, the beginning of the first (A) and the end of the last (L) monomers in each HOR can

be cut off in a polished assembly. Just a single round of polishing with TandemQUAST resulted

in the simulatedpolish assembly with an increased assembly length (by ˜4 kb) and corrected

sequences of the first and the last monomers along the entire assembly (Fig. 5).
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Figure 2.5. Monomer length distribution for the simulated (a) and simulatedpolish (b) assemblies.
Monomer sequences forming a consensus DXZ1* sequence, derived in [35], were used for
analysis. In the simulated assembly, the length of the A-monomers varies from 131 to 203 bp
(mean 165 bp) and the length of the L-monomers varies from 137 to 187 bp (mean 171 bp).
In the simulatedpolish assembly, the length of all A-monomers (L-monomers) is equal to 171
(173) bp. Since all monomers, except for L, have lengths 171 bp after polishing, they all are
represented by the color corresponding to the K-monomer.
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2.5 Analysis of cenX assemblies

We analyzed the following cenX assemblies: the T2T consortium assembly v0.4 (T2T4),

v0.7 (T2T7) [34] and centroFlye v0.8.3 assembly (centroFlye) [35]. Note that, the T2T4 assembly

is an interim version that was not polished with the marker-assisted methods described in [34].

We added it to the comparison to show how TandemQUAST analyzes unpolished assemblies.

The T2T7 version was first semi-manually assembled and further improved based on centroFlye

assembly as described in [34]The T2T7 and centroFlye assemblies were additionally polished

using ONT reads.

We also applied our polishing method to the T2T4 and centroFlye assemblies (resulting

in T2T4polish and centroFlyepolish assemblies) to demonstrate how TandemQUAST improves

assemblies.

Selecting solid k-mers in ETRs

The centroFlye assembly of the cenX has 39 530 unique 19-mers distributed across the

3.1 Mbp of the cenX length, with the largest distance between consecutive unique 19-mers =30

kb [35]. The number of rare 19-mers using MaxOccurrences = 30 is 66 785 (Fig. 2.1).

Applying the filtration of k-mers by MinFrequency and MaxFrequency removes 5801

out of 66 785 rare k-mers, leaving 60 984 solid 19-mers. Comparison with PacBio HiFi reads

generated from the same cell line [8] revealed that 4844 of 5801 filtered out 19-mers are absent

in the HiFi read-set or, on the contrary, have a very high frequency (higher than a frequency of

95% of 19-mers in the read-set). Applying the additional filtration by MaxKmers further reduces

the number of solid 19-mers in the assembly from 60,984 to 55,173.

Indel-based metrics

Figure 2.6 illustrates that all assemblies have slightly lower read coverage at the center of

the centromere at ˜1300–1600 kb that has a low concentration of unique k-mers (Supplementary

Fig. S6 in [41]).
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Figure 2.6. The breakpoint metric for the T2T4, T2T4polish , T2T7, centroFlye and
centroFlyepolish assemblies. The red and the gray plot are based on the breakpointRatio(Kmer)
and breakpointRatio+(Kmer) values, respectively. The vertical light gray bands represent re-
gions with low coverage (< 10×). Discrepancies in these regions do not necessarily reflect flaws
in an assembly.
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Low base-calling accuracy of an assembly can prevent chain extension in TandemMapper.

As a result, the longest chains for many reads may end in a poorly polished region, causing an

increase in breakpointRatio values. Thus, to verify breakpoints found in the T2T4 assembly, we

compared them to the T2T4polish assembly. Both assemblies have peaks in breakpointRatio values

at 270, 800, 1500, 2000 and 2500 kb that correlate with the bi-mapping plot (Supplementary Fig.

S7 in [64]). The breakpoint metric for centroFlye and T2T7 assemblies are generally consistent

between breakpointRatio(Kmer) and breakpointRatio+(Kmer) values, suggesting that these

assemblies do not have large indels and rearrangements.

k-mer-based metrics

Supplementary Figure S6 in [64] and Table 2.2 show the distribution of different types

of unique solid k-mers across the assemblies. The T2T4 assembly has a high number of spuri-

ous k-mers as expected for an unpolished assembly, while T2T4polish demonstrates significant

improvement in base-calling accuracy across the assembly. The high percentage (92–96%) of

k-mers forming a single clump in the T2T7 and centroFlye assemblies suggest a high base-level

quality in these assemblies.

In addition, we compared k-mer frequencies in assemblies and in accurate PacBio HiFi

reads generated from the same cell line CHM13 [8]. The number of k-mers that do not occur

in the HiFi read-set was the highest in the unpolished T2T4 assembly (223,579) and the lowest

(842) in the T2T7 assembly (Supplementary Fig. S4 in [35]).

Monomer metrics

Figure 2.7 presents the monomer length distribution across various assemblies. The T2T7

and centroFlye assemblies have a few unusually short (145–146 bp) A-monomers at ˜1 Mbp. We

checked these monomers further and confirmed that they are supported by reads. Besides that,

the T2T7 assembly has very conserved monomer lengths except for a few monomers at ˜2.15

Mbp.

In the centroFlye assembly, L-monomers significantly vary in length as in the simulated
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Figure 2.7. Monomer length distribution along the assembly in the T2T7 (a), centroFlye (b) and
centroFlyepolish (c) assemblies.
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assembly (Fig. 2.5), suggesting that centroFlye assembly requires additional polishing of HOR

unit ends. The centroFlyepolish assembly has significantly more uniform monomer lengths as

compared to the centroFlye assembly.

Pairwise comparison of assemblies

Supplementary Figure S7 in [41] shows bi-mapping plots for each pair of assemblies.

As expected from the analysis of the breakpoint metric (Fig. 2.6), the centroFlye and T2T7

assemblies are nearly identical. The T2T4polish assembly differs from the T2T7 assembly around

˜350, 1600, 2100 and 2800 kb (coordinates are given for the T2T7 assembly).

2.6 Discussion

We presented the TandemMapper and TandemQUAST tools and applied them to various

cenX assemblies. Although these tools detect flaws in ETR assemblies and provide a possibility

to assess their quality, they have certain limitations discussed below.

2.6.1 False assembly errors

TandemQUAST is based on mapping reads to the assembly and subsequent analysis.

Such an approach implies that inherent errors or systematic biases in the sequencing platforms

may affect evaluation of the assembly and bring in some discrepancies that could be considered

as false assembly errors. To reduce this effect, TandemQUAST has an option of using accurate

PacBio HiFi reads.

2.6.2 Analysis of arbitrary ETRs in human and other genomes

Sequence and structural organization of ETRs, and particularly centromeres, varies

widely across species. Since assembly of arbitrary ETRs remains an open problem, there is

currently only one tool (centroFlye) for an automatic assembly of some ETRs and few examples

of ETR assemblies. We thus limited the scope of our study to the recently completed assemblies

of the human centromeres and the GAGE locus (Supplementary Appendix ‘Analyzing ETRs
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in the GAGE locus at the human X chromosome’ in [35]). Since the T2T consortium aims

to generate a gap-free assembly of the entire human genome [34], we anticipate that more

high-quality ETR assemblies will soon be generated. These new assemblies will help us to

improve the TandemMapper and TandemQUAST tools.

2.6.3 Analysis of diploid assemblies

Since centroFlye is now limited to haploid assemblies, the current version of Tandem-

QUAST also focuses on haploid assemblies. Extending TandemQUAST functionality to diploid

assemblies presents a complex algorithmic challenge. However, even effectively haploid cell

lines may contain somatic heterogeneity due to clonal genomic instability in the cell culture. In

this case, TandemQUAST can report heterozygous sites based on the discrepancies in mapped

reads.

2.6.4 Using additional data types for assessing quality of ETR assemblies

We used accurate HiFi PacBio reads to analyze various centromere assemblies but not

bacterial artificial chromosomes (BACs) and other alternative technologies that represent valuable

resources for analyzing tandem repeats (see Supplementary Appendix ‘Alternative technologies

for ETR assembly quality assessment’ in [41]).

For example, a BAC from an ETR is often easier to assemble than an entire long ETR,

such as a centromere. For example, centromere Y was recently sequenced using ONT reads to

generate assemblies of BACs spanning this centromere [26]. However, certain limitations of

the BAC technology make BACs a non-ideal option for ETRs sequence classification [34]. In

particular, BACs (i) do not represent a high-throughput approach and thus limit the scope of

studies, (ii) have severe differences in coverage that complicate the analysis, (iii) require partial

restriction digests that introduce biases in cloning, (iv) may have secondary structures making

them incompatible with a bacterial host and (v) since existing short-read assemblers are unable

to assemble highly repetitive centromeric BAC from short reads (or even Sanger reads), it is not
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clear how to reproduce the semi-manual assemblies of such BACs (some of them assembled

two decades ago) with current state-of-the-art assemblers like SPAdes [33]. It is also difficult

to accurately assemble BACs from centromeres using long error-prone reads, e.g. recent large

BAC sequencing effort has not resulted in assembling such BACs [81]. Thus, if a BAC sequence

and a centromere assembly disagree, it is not clear whether this disagreement is caused by an

error in the BAC assembly or an error in the centromere assembly. A possible way to address

this challenge is a hybrid BAC assembly that combines short and long reads like in [26].
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Chapter 3

Fast and accurate mapping of long reads
to complete genome assemblies with Veri-
tyMap

3.1 Abstract

Recent advancements in long-read sequencing have enabled the telomere-to-telomere

(complete) assembly of a human genome and are now contributing to the haplotype-resolved

complete assemblies of multiple human genomes. Since the accuracy of read mapping tools

deteriorates in highly-repetitive regions, there is a need to develop accurate, error-exposing

(detecting potential assembly errors), and diploid-aware (distinguishing different haplotypes)

tools for read mapping in complete assemblies. We describe the first accurate, error-exposing,

and partially diploid-aware VerityMap tool for long-read mapping to complete assemblies.

3.2 Introduction

3.2.1 Emergence of “complete genomics”

The initial draft sequence of the human genome contained thousands of gaps and scaffolds

[82], [83]. Even nowadays, the up-to-date human reference genome (GRCh38.p13) still contains

349 gaps and 472 scaffolds [31]. These gaps contain regions that include large and biomedi-

cally important multi-megabase arrays of tandem satellite repeats that orchestrate chromosome

56



segregation during cell division [18], [34]. For two decades, centromeric and pericentromeric

satellite arrays evaded all assembly efforts resulting in a limited understanding of their sequence

organization. Recently, the Telomere-to-Telomere (T2T) Consortium generated the first nearly

complete assembly of an effectively haploid human cell line CHM13 that, in particular, includes

assemblies of all satellite repeats [26], [34], [84], [85].

Long-read technologies, such as the ones developed by Pacific Biosciences (PacBio)

and Oxford Nanopore Technologies (ONT), have changed the landscape of computational

methods for genome assembly and opened a possibility to generate haplotype-resolved complete

assemblies [1], [46], [5], [61], [3], [7], [75], [86], [87]. Some of these assemblers utilize ultra-

long error-prone reads in order to assemble the most repetitive genomic regions, such as satellite

arrays [35], [34], [88]. The emergence of long high-fidelity (HiFi) PacBio reads has, once

again, revolutionized the field of genome assembly [89], [84] and resulted in some of the most

contiguous assemblies to-date [75], [87], [85].

3.2.2 Shifting focus: from detecting mutations to reference-free assembly
evaluations.

The emergence of “complete genomics” [75], [87], [85] and “complete metagenomics”

[90] is shifting the focus of read mapping from detecting mutations to detecting errors in the newly

generated assemblies (see Supplementary Note “Similarities and differences between detecting

mutations and detecting misassemblies” in [91]). Although most previous read mapping efforts

were aimed at detecting mutations by aligning reads against the reference genome instead of

assembling them (since genome assemblers typically fail to assemble highly-repetitive regions),

HiFi assemblers accurately assemble even the most complex genomic regions, and while a

limited number of misassemblies persist, these assemblies provide a path to potentially eliminate

the need for mapping reads against a reference. They also result in extremely low rates of single-

nucleotide errors in non-repetitive regions [75], [87], [85], largely eliminating the need for the

follow-up read mapping to these regions: instead of mapping reads using external tools, existing
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HiFi assemblers automatically provide highly accurate alignments of reads to the assemblies

they generate. However, HiFi assemblers still make assembly errors in highly-repetitive regions

and thus necessitate development of new mapping tools for detecting these errors by identifying

discordant reads.

The need for evaluation of the complete genome assemblies and the absence of ground

truth datasets has resulted in the development of specialized pipelines for assembly validation [92].

Even though the QUAST tools represent the state-of-the-art framework for quality assessment

of genome assemblies [37], [65], [64], these tools mostly rely on the availability of a reference

genome and are thus inapplicable for evaluating complete assemblies that include megabases

of novel sequence. In particular, QUAST uses BUSCO [70] to evaluate the gene content of

assemblies and assess completeness of an assembly without a reference genome. However,

BUSCO only analyzes conserved single-copy genes and is inapplicable for gene-poor regions

such as centromeres. Moreover, QUAST identifies assembly errors only in comparison with

a reference genome. Alternative reference-free methods can be divided into alignment-free

methods that compare k-mer spectra between reads and an assembly [93], [94] and alignment-

based methods that use the read mapping tools [73], [95], [96], [2], [72], [74] to generate read

alignments, use them for assessing the quality of an assembly, and correct the assembly based on

the identified discordant reads. However, although alignment-free methods can estimate assembly

quality and completeness, they do not output information about the positions of assembly errors.

3.2.3 Error-exposing and diploid-aware read mapping.

Mikheenko et al. [41] demonstrated that performance of existing read-mapping tools

deteriorates in complex regions, especially in the presence of assembly errors, and developed

the TandemMapper tool for mapping long reads to extra-long tandem repeat (ETRs) in the

constructed assemblies. Even though TandemMapper accurately maps reads to centromeric

regions and enables evaluations of their assemblies [35], [34], [84], it falls short of mapping

reads in even more challenging megabase-long genomic regions like HSAT2,3. Moreover,
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TandemMapper, designed specifically for ETRs, becomes prohibitively slow for evaluating

complete genome assemblies.

Generating a complete assembly for a single haploid human genome represents a land-

mark achievement [85]. However, since a single genome does not represent the genomic diversity

of the human population, the Human Pangenome Reference (HPR) Consortium is now generating

high-quality diploid assemblies for hundreds of humans. This ambitious goal raises the bar

for scalable diploid-aware quality assessment tools that can evaluate entire diploid assemblies

rather than certain selected (albeit complex) loci and identify errors in these assemblies. To

the best of our knowledge, no error-exposing tool for reference-free benchmarking of complete

haplotype-resolved assemblies or even individual loci is currently available. Although Win-

nowmap2 [74], [97] maps reads to complex repetitive regions of the error-free assemblies, it

is neither error-exposing nor diploid-aware since its performance deteriorates in the case of

error-prone assemblies and heterozygous sites (Table 3.2) [41].

3.2.4 Toward fast, accurate, error-exposing, and diploid-aware read
mapping algorithm

We present VerityMap, a fast, accurate, and error-exposing aligner for mapping long

reads to the complete assemblies (see Table 3.1 for an informal comparison of various long-

read aligners). VerityMap also represents the first step towards diploid-aware alignment by

mapping reads to haplotype-resolved assemblies of individual loci (see Supplementary Note

“The challenge of diploid-aware read mapping” in [91]). It was used for detecting and correcting

misassemblies in the intermediate assemblies of the first complete human genome assembled

by the T2T Consortium [92], [85], [34]. Section “Alpha-satellite and human satellite 1,2,3

validation” in [85] illustrates how VerityMap contributed to verifying the complete human

genome assembly generated by the T2T Consortium.

All state-of-the-art long-read aligners are based on finding some shared k-mers between

a read and an assembly followed by sparse dynamic programming in a graph where each vertex
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represents a pair of the starting positions of a shared k-mer. Ideally, the parameter k (k-mer size)

should be selected to be as large as possible (e.g., slightly below the read length) for accurate map-

ping of error-free reads. In practice, it is selected to be rather small to ensure that an error-prone

read has some shared k-mer with an assembly. This condition dictates selecting a rather small k

in the case of long error-prone reads (minimap2 v2.24 uses default k = 15 for mapping ONT

reads, and k = 19 for mapping PacBio CLR reads https://lh3.github.io/minimap2/minimap2.html)

and makes it difficult to map reads in highly-repetitive regions. Accurate HiFi reads allow one to

increase k by an order of magnitude thus facilitating read mapping in complex regions.

Although an increased k-mer size looks like a rather minor parameter change in read

mapping tools, it actually represents a new challenge. We show that developing a fast, accurate,

error-exposing, and diploid-aware long-read mapping tool requires new algorithmic ideas, not

unlike constructing the de Bruijn graph of large genomes for large k-mer sizes [33]. To achieve

this goal, VerityMap first identifies all rare k-mers in the assembly, carefully selects a small

subset of rare k-mers (solid k-mers), finds locations of solid k-mers in each read, constructs a

compatibility graph with the vertex-set formed by all matches between the selected solid k-mers

shared by a read and the assembly, finds an optimal path in this graph using sparse dynamic

programming, and uses this path for read mapping. Since HiFi reads are accurate, VerityMap

utilizes large k-mer sizes (e.g., k = 300) for constructing the compatibility graph to achieve

accurate read mapping. It thus faces the algorithmic challenge of identifying rare k-mers in a

large genome for a large k.

Although efficient indexing (finding locations) of all k-mers in the genome (and thus

identifying rare k-mers) represents a backbone of many bioinformatics algorithms [98], it remains

an open problem in the case of large genomes and large k-mer sizes. Indeed, a naive indexing

algorithm with running time O(|Genome| ∗ k) becomes prohibitively slow in the case of accurate

HiFi reads since mapping these reads is based on large k-mer sizes (e.g., k = 300). Jellyfish [98],

KMC3 [99], and more scalable GPU–based k-mer counting approaches [100] generate a database

of counts that allows a constant-time count query for any k-mer. However, even though one can
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rapidly generate a counting database, existing implementations for indexing all rare k-mers still

require O(|Genome| ∗ k) time. On the other hand, the Meryl k-mer counting algorithm [94] only

works with k ≤ 64, which is substantially lower than what is needed for accurate mapping of

HiFi reads (e.g., k = 300). Inspired by Jellyfish, VerityMap overcomes limitations of existing

approaches for rapid indexing of rare k-mers in the case of large genomes and large k-mer sizes

by using multiple Bloom filters [101] and the count-min sketches [102].

VerityMap also addresses the challenge of identifying errors in genome assemblies in

a reference-free mode. Even though the CHM13 cell line is effectively haploid, it features

genomic instabilities between two haplotypes typically represented by insertions in one of the

homologous chromosomes that are referred to as Het sites [85]. Interestingly, the ratio of two

haplotypes in a Het site is not necessarily 1:1 suggesting that one of the haplotypes might be

more prevalent. Automatic detection of Het sites in a haploid assembly and distinguishing

them from misassemblies is an important prerequisite for validating diploid assemblies. In

addition to its read-mapping module, VerityMap includes a misassembly detection module for

identifying misassemblies, Het sites, collapsed haplotypes, and haplotype-switch errors. The

T2T Consortium applied this module to verify and correct intermediate assemblies of the CHM13

cell line [85].

3.3 Results

3.3.1 Limitations of existing read-mapping approaches.

Since all existing assemblers generate some misassembled contigs, accurate mapping of

reads that span the misassembly breakpoints is a critically important assembly validation step.

Although minimap2 [72], [103] and Winnowmap2 [74], [97] accurately map reads to an error-

free assembly (even in repetitive regions), their accuracy deteriorates in the case of error-prone

assemblies or haplotype-resolved assemblies (since reads from highly similar regions often map

to incorrect instances of these regions, albeit with several mismatches). Moreover, the dynamic
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programming algorithm for sequence alignment (with standard scoring) often fails to correctly

align reads in highly-repetitive regions, motivating the need for a new scoring (Supplementary

Note “Frequency-aware sequence alignment scoring” in [91]).

Currently, TandemMapper is the only error-exposing aligner that accurately maps long

reads to ETR assemblies that potentially contain misassemblies [41]. However, even though

TandemMapper was used to validate the first centromere assemblies [35], [34], [84], it has

limitations that prevent its applications to more complex regions of the genome, e.g., it is

designed for analyzing various higher-order repeats (HORs) such as human centromeres and is

not applicable to repeats without HORs or for analyzing non-repetitive parts of the genome.

3.3.2 Rare and solid k-mers

To speed-up the standard (time-consuming) dynamic programming algorithm for aligning

long reads, many mappers [72], [74], [41], as well as fast algorithms for detecting overlapping

reads in genome assemblers [1], [2], [46], [5], [61], [3], [7], [75], [86], [87] construct a compat-

ibility graph on a carefully selected small subset of k-mers in each read. The key differences

between these tools are reflected in algorithms for selecting these k-mers and weighting the

edges of the compatibility graph (rather than constructing the compatibility graph). VerityMap

uses a new approach for selecting k-mers and weighting edges in the compatibility graph that

addresses limitations of the previously developed long-read mappers and enables error-exposing

and partially diploid-aware read mapping. VerityMap further finds a longest path in this graph

using sparse dynamic programming, and uses this path for read mapping.

A k-mer from an assembly is rare if it appears at most MaxRareOccurrences times in

this assembly (otherwise a k-mer is called frequent). A rare k-mer is solid if it appears in a

single contig, and its reverse-complementary k-mer does not appear in any contig. Note that

this definition of a solid k-mer differs from the one used by TandemMapper [41]. Although

the highly-repetitive regions in the newly assembled complete genome constitute the biggest

challenge for read mapping, they form less than 8% of the human genome [85]. Since nearly all
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k-mers in other regions are solid, VerityMap downsamples them to reduce the running time and

memory footprint (Supplementary Note “Downsampling solid k-mers in non-repetitive regions”,

[91]).

3.3.3 VerityMap pipeline

Figure 3.1 illustrates the VerityMap pipeline. First, VerityMap stores all k-mers from

the assembly in two Bloom filters [101] and count–min sketch (CMS) data structures [102] for

estimating the count of each k-mer in the assembly and generating the set of solid k-mers that

are later used for read mapping.

For each read, VerityMap finds all solid k-mers in this read and builds a compatibility

graph with the vertex-set formed by pairs of all solid k-mers shared between a read and the

assembly. Since the downsampled set of solid k-mers is small, the compatibility graph is typically

small; the longest path in this graph can be rapidly found using sparse dynamic programming.

The careful definition of edge-weights in the compatibility graph helps to select the correct

path (that represents the primary read alignment) even in the presence of assembly errors.

Moreover, since the graph stores information about discrepancies in distances between solid

k-mers occurring in a read and solid k-mers occurring in the assembly, it can be used to detect

approximate locations of misassembly breakpoints without a base-level alignment that might

be quite unreliable in highly-repetitive regions. VerityMap first attempts to align the read to the

forward strand, and then — to the reverse strand. Defaults for all parameters of VerityMap were

selected based on performance analysis (Supplementary Note “VerityMap parameters”, [91]).

The output of VerityMap is in the standard SAM format.

3.3.4 Datasets

Recently, the T2T Consortium generated the first complete assembly of a human genome

represented by the CHM13 cell line (referred to as CHM13 assembly; [85], ChrY in this assembly

is from a male sample HG002). In addition to analyzing the entire assembly using VerityMap, we

63



Figure 3.1. VerityMap pipeline. (Left) The input of VerityMap is an assembly (a set of contigs)
and a set of reads that contributed to this assembly. VerityMap iterates through each contig twice
in order to identify solid k-mers. At the first iteration, VerityMap stores k-mers that appear in
multiple contigs and all reverse-complementary k-mers within the BanBloomFilter. For each
contig, VerityMap constructs a CMS that counts occurrences of k-mers within this contig. Finally,
VerityMap uses OnceBloomFilter (and BanBloomFilter) to distinguish between rare k-mers that
appear within a single and multiple contigs. Both Bloom filters and the CMS corresponding
to the current contig are being modified simultaneously during the first iteration through the
assembly. At the second iteration, VerityMap queries the constructed data structures to identify
the set of solid k-mers. (Right) Aligning a read GTTAGATAGATGGATT against a misassembled
contig GTTGGATTGATAGATAGATG with an 8-nucleotide long deletion TAGATAGA (solid
k-mers are shown in blue). The solid k-mer GT (TG) precedes (follows) the deletion breakpoint.
The nucleotide-based fitting alignment fails to identify this deletion due to limitations of the
standard scoring approaches in highly-repetitive regions. In contrast, VerityMap identifies this
deletion using the k-mer-based sparse fitting alignment and a new scoring approach. To achieve
this goal, it constructs a compatibility graph on all pairs of solid k-mers shared between a
read and the assembly and finds a longest path in this graph. The new scoring reflects the
discrepancies in distances between solid k-mers in the assembly (distance 2 between GT and
TG in the assembly) and solid k-mers in the read (distance 10 between GT and TG in the read),
resulting in diff(GT,TG)=8. VerityMap incorporates these discrepancies into the edge-weights of
the compatibility graph and outputs a longest path in this graph as the primary read alignment.
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focused on a particularly complex centromeric satellite region in chromosome 9. Supplementary

Note “Extended benchmarking of long-read mapping tools” in [91] describes benchmarking

results on a multitude of even more challenging datasets. Below we focus on one of these datasets

that was generated by extracting the centromeric region from chromosome 9 of the CHM13

assembly (referred to as Cen9). This region contains a human satellite 3 (HSat3) array that

represented some of the most difficult challenges for the assembly effort of the T2T Consortium

(Supplementary Note “Resolution of Chr6 and Chr9” in [85]). To analyze how VerityMap

handles assembly errors we introduced an artificial deletion of length 10 kbp into the Cen9 region

at position 20 Mbp (referred to as Cen9del10). We further introduce a series of assemblies with

various artificial misassemblies including a deletion, insertions, duplications, and a relocation

in the Cen9 region: Cen9del5, Cen9ins5, Cen9ins10, Cen9tandem, Cen9dup, Cen9reloc (detailed

description of all datasets is presented in Supplementary Note “Extended benchmarking of

long-read mapping tools” in [35]).

It remains unclear how to benchmark VerityMap on haplotype-resolved diploid assem-

blies since the HPR Consortium is still validating these assemblies. We thus used the assembled

centromere of chromosome X (CenX) from the HG002 HiFi read-set (from a male) generated by

the HPR Consortium and the assembled CenX from the haploid CHM13 HiFi read-set generated

by the T2T Consortium to mimic a diploid assembly of CenX. To analyze how VerityMap handles

diploid assemblies we took alpha-satellite regions from chromosome X of CHM13 and HG002

assemblies (combined, we refer to these chromosomes as ChrXDiploid — a synthetic diploid

chromosome) and merged them into one file (referred to as CenX-Diploid). Then we cut each

assembly at one of the canonical HOR units and concatenated them to mimic a haplotype-switch

error (referred to as CenX-Diploid-Switch). Afterward, we simulated reads from both HG002

and CHM13 assemblies of ChrX to check whether VerityMap can detect the haplotype-switch

error. We refer to alpha satellite arrays in chromosome X in CHM13 (HG002) genome as ASat-X

(ASat-X-HG002).

To illustrate that VerityMap identifies errors in real assemblies, we consider Cen10 in the
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interim version of CHM13 that predates the earliest publicly released version v0.9 (referred to as

CHM13-Cen10-interim). CHM13-Cen10-interim contains a structural error that was detected

by VerityMap and was later corrected by the T2T Consortium (Cen10 in current CHM13

assembly does not contain this error).

Below we list some benchmarking datasets (see Supplementary Note “Extended bench-

marking of long-read mapping tools” for the list of all benchmarking datasets in [91]). All

simulated datasets are generated with pbsim2 [104].

• CHM13-SimHiFi dataset contains HiFi reads simulated from the CHM13 assembly.

• Cen9Sim dataset contains HiFi reads simulated from Cen9, while Cen9Sim-Het dataset

contains HiFi reads simulated from both Cen9 and Cen9del10 (1:1 ratio).

• CenXDiploid-Sim dataset contains HiFi reads simulated from ASat-X and ASat-X-

HG002.

• CHM13-RealHiFi dataset contains real HiFi reads for the CHM13 sample generated by

the T2T Consortium (20 kbp library; accession numbers: SRX7897685-8). This dataset is

extended by reads originating from the ChrY of HG002 sample.

• ChrXDiploid-RealHiFi dataset contains HiFi reads from CHM13-RealHiFi recruited to

ChrXDiploid using Winnowmap2.

3.3.5 VerityMap maps nearly all reads with an extremely low number of
incorrectly mapped reads.

Analysis of the CHM13-SimHiFi dataset (Supplementary Table 2 in [91]) illustrates

that VerityMap mapped more than 97% of reads in all chromosomes (except for chr21 where it

mapped 94.25% of reads) with an low number of incorrectly mapped reads (76 out of 1.7M reads

for the entire genome). Mapped reads cover 99.5% of the entire genome (only 14M uncovered

bases).
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3.3.6 VerityMap identifies assembly errors and heterozygous sites even
in highly-repetitive genomic regions

Table 3.1 illustrates that VerityMap, Winnowmap2, and minimap2 accurately map long

and accurate reads to error-free assemblies. However, assembly errors and Het variants often

trigger incorrect alignments, especially in highly-repetitive regions. To benchmark the ability

to map reads in a vicinity of the misassembly breakpoint, we aligned reads from Cen9Sim

dataset to Cen9del10 assembly containing an artificial deletion of length 10 kbp (Table 3.2,

top left). Although minimap2 and Winnomap2 map more reads than VerityMap, they have a

high rate of incorrectly mapped reads while VerityMap yields few incorrectly mapped reads.

Since incorrect read alignments may prevent the detection of errors and heterozygous sites

in downstream analysis, it is preferable to classify some reads as “unalignable” instead of

generating erroneous alignments. Both minimap2 and Winnowmap2 failed to detect this deletion:

minimap2 did not report any primary alignment in a 1 kb region before the breakpoint (all reads

were incorrectly mapped somewhere else) while Winnowmap2 incorrectly extended alignments

through the deletion breakpoint in the Cen9del10 region (Figure 3.2). In addition, to reproduce a

scenario of a heterozygous deletion (Table 3.2, top right), we aligned reads from the Cen9Sim-

Het dataset containing HiFi reads simulated from both Cen9 and Cen9del10 to the Cen9del10

assembly. Table 3.2 (top right) illustrates that both minimap2 and Winnowmap2 incorrectly

mapped reads simulated from Cen9 near the deletion breakpoint. VerityMap either reports reads

that are correctly spanning the deletion breakpoint or clips read alignments from Cen9Sim

dataset at the breakpoint and thus indicates a putative heterozygous deletion. Table 3.2, bottom

provides further benchmark of VerityMap, Winnowmap2, and minimap2 of aligning simulated

reads from the Cen9Sim read-set to the Cen9del5, Cen9ins5, Cen9ins10, Cen9tandem, Cen9dup,

Cen9reloc assemblies (detailed description of these datasets, and benchmarking on more datasets

is presented in Supplementary Note “Extended benchmarking of long-read mapping tools”). In

all cases, VerityMap has the minimal number of incorrectly mapped reads and either reports
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Table 3.1. Aligning 137,507 simulated reads to chromosome 1 (248 Mb length) and 40,272
simulated reads to the centromere of chromosome 9 (42 Mb length) of the CHM13 assembly.
Simulated reads are generated as described in Supplementary Note “Extended benchmarking of
long-read mapping tools” in [91]. VerityMap, Winnowmap2, and minimap2 incorrectly mapped
only 7, 20, and 22 reads to chromosome 1, respectively. Since TandemMapper was designed for
accurate read mapping to HOR arrays (rather than large regions without an HOR-like structure),
it incorrectly mapped many reads in other regions, so we rate it “+/-” in terms of accuracy for
error-free assemblies. VerityMap allows accurate mapping to haplotype-resolved assemblies of
individual loci (Figure 3.3) and thus provides the initial step towards diploid-aware mappers for
complete haplotype-resolved assemblies (we rate it “+/-”). The best value for each column is
indicated in bold. Precise definitions of terms “accurate”, “error-exposing”, and “diploid-aware”
are given in Supplementary Note “Summary of benchmarking results” in [91].

read mapping tool accurate
in error-free
assemblies

error-exposing
(accurate in

error-prone assemblies)

diploid-aware
CPU time
(minutes)

memory
footprint (GB)

chr1 cen9 chr1 cen9

VerityMap + + +/- 275 500 6 4

TandemMapper +/- +/- – 7012 — 212 —

Winnowmap2 + – – 257 1720 8 32

minimap2 + – – 28 33 7 8.5

reads that are correctly spanning the breakpoint or clips read alignments at the breakpoint.

3.3.7 VerityMap correctly distinguishes haplotypes in diploid samples
and identifies haplotype-switch errors

We aligned reads from the CenXDiploid-Sim dataset to CenXDiploid-Switch assembly

containing a haplotype-switch error. We launched VerityMap in the special DiploidVerityMap

mode that utilizes a more permissive strategy for selecting solid k-mers. Figure 3.3 illustrates

that VerityMap does not incorrectly extend alignments of any reads through the haplotype-switch

breakpoint (and thus detects this haplotype-switch error), while Winnowmap2 and minimap2

extend them through it.

We also aligned reads from the ChrX-RealHiFi dataset (total number of reads 621,522)

to ChrXDiploid assembly. VerityMap (Winnowmap2, minimap2) mapped 4474 (10,190, 10,255)

reads to the incorrect haplotype and 493,012 (553,953, 552,051) — to the correct haplotype.

Here, we filtered all secondary alignments, as well as all alignments with mapping quality 0.
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Table 3.2. The concept of a correctly/incorrectly mapped read is defined in Supplementary Note
“Measuring performance of mapping software” in [91]. Only primary alignments were taken
into account. The majority of reads incorrectly mapped by minimap2 and Winnomap2 have
secondary alignments to the correct positions: in cases of nearly perfect duplications, minimap2
and Winnomap2 might incorrectly choose primary alignments, while VerityMap classifies a read
as “unalignable”. Aligning simulated reads (top left) from the Cen9Sim read-set to the Cen9del10
region with an artificial deletion, (top right) from the Cen9Sim-Het dataset to the Cen9del10
sequence. VerityMap reports 2741 (5692) “unalignable” reads in Cen9Sim (Cen9Sim-Het)
dataset. (Top left) The total number of reads spanning the deletion breakpoint is 9. VerityMap
correctly identifies 6 reads that span the breakpoint and reports 17 read alignments that are
clipped at the breakpoint site (note that some of these reads did not span the breakpoint during
simulation). (Top right) The deletion breakpoint in this assembly is spanned by 24 simulated
reads (15 reads simulated from a haplotype with deletion and 9 reads from a haplotype without
deletion). Even though all mappers correctly map all 15 reads from the haplotype with the
deletion, only VerityMap correctly identifies two reads from a haplotype without the deletion
spanning the breakpoint. Additionally, it reports 14 alignments for reads from haplotype without
the deletion clipped at the breakpoint site. The best value for each column is indicated in bold.
(Bottom) Benchmarking VerityMap, Winnowmap2, and minimap2 when aligning simulated
reads from the Cen9Sim read-set to the Cen9del5, Cen9ins5, Cen9ins10, Cen9tandem, Cen9dup,
Cen9reloc assemblies. The number of correctly (incorrectly) mapped reads ranges from 37467
to 37477 (31 to 47) for VerityMap, 39167 to 39218 (1047 to 1096) for Winnowmap2, 39139 to
39191 (1072 to 1124) for minimap2. The best value for each column group is indicated in bold.

Cen9Sim. Total reads: 40263 Cen9Sim-Het. Total reads: 80559

#correctly /
incorrectly

mapped reads

#correctly / incorrectly
extended through

misassembly breakpoint

# alignments from
haplotype w/o deletion
clipped at breakpoint

#correctly/
incorrectly

mapped reads

#correctly / incorrectly
extended through

misassembly breakpoint

# alignments from
haplotype w/o deletion
clipped at breakpoint

VerityMap 37498/33 6/0 17 747945/73 2/0 14

Winnowmap2 39180/1083 0/9 0 78368/2176 0/9 0

minimap2 39140/1123 0/0 0 78286/2230 0/0 0

Dataset
Total reads: 40263

# alignments correctly / incorrectly extended through breakpoint # alignments clipped at breakpoint

VerityMap Winnowmap2 minimap2 VerityMap Winnowmap2 minimap2

Cen9del5 8 / 0 0 / 0 0 / 0 6 9 6

Cen9tandem 6 / 0 0 / 9 0 / 0 5 0 0

Cen9dup 19 / 0 4 / 11 15 / 4 2 0 0

Cen9ins5 14 / 0 9 / 0 14 / 0 1 1 1

Cen9ins10 12 / 0 0 / 0 2 / 0 7 0 0

Cen9reloc 5+0 / 0+0 0+0 / 8+0 0+0 / 0+0 10+8 0+2 0+0
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Figure 3.2. Alignments of reads from Cen9Sim dataset to Cen9del10 generated by minimap2,
Winnowmap2, and VerityMap shown using IGV browser [105]. Minimap2 does not report
any primary alignments (shown in gray) spanning the deletion breakpoint and all secondary
alignments (shown in white) indicate systematic mismatches indicating mapping to an incorrect
copy of the repeat. Winnowmap2 reports mappings that are incorrectly spanning the breakpoint.
VerityMap either reports an alignment correctly spanning the deletion breakpoint (indicates a
10kb deletion), or clips read alignment at the breakpoint.
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Figure 3.3. Visualization of VerityMap, Winnowmap2, and minimap2 alignments of simulated
reads from the CenX-Diploid dataset to the CenX-Diploid-Switch sequence using the IGV
browser [105]. VerityMap, in difference from Winnowmap2 and minimap2, reveals the haplotype-
switch breakpoint.

VerityMap uses a more conservative strategy for mapping reads to the diploid reference to achieve

higher accuracy (that is critically important for detecting misassemblies) at the cost of mapping

fewer reads. Even though VerityMap presents an advancement in accurate mapping of reads to

diploid assemblies, this problem remains a difficult challenge.

3.3.8 VerityMap identifies assembly errors and Het sites using HiFi
datasets.

The CHM13-Cen10-interim dataset contains an interim version of Cen10 in CHM13 that

predates the earliest publicly released CHM13 assembly by the T2T Consortium. VerityMap

was used to detect a deletion of length ˜2.4 kbp in this version, an error that was later corrected

by the T2T Consortium and is fixed in the current version of Cen10 in the CHM13 assembly

(Figure 3.4). We also aligned the CHM13-RealHiFi dataset to CHM13 assembly to reveal

possible assembly errors and Het sites (Supplementary Table 4 in [91]). Overall, we found 86
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Figure 3.4. The top panel shows the Distance Concordance test applied to CHM13-Cen10-
interim (left) and Cen10 in CHM13 assembly (right). The bottom panel shows read alignments
around 6 Mbp in two versions of the assembly. (Bottom left) VerityMap reveals a deletion of
length ˜2.4 kbp in CHM13-Cen10-interim. The remaining peaks correspond to the Het sites with
various multiplicities in the assembly. In particular, one heterozygous deletion of ˜1.7 kbp that is
supported by ˜60% of reads is only 20 kbp upstream to the misassembly site. (Bottom right) The
misassembly is corrected in the current version of Cen10 assembly, while the putative Het sites
remain.

heterozygous sites with Concordance = 0.2-0.8, and one site with Concordance = 1. The manual

validation of this site confirmed a likely 2.4 kbp insertion in the chr19 (Figure 3.5, right; [85]).

Importantly, this site was not detected by the state-of-the-art methods for detecting structural

variations [92].

3.4 Discussion

We presented the VerityMap tool — the first accurate, error-exposing and partially

diploid-aware tool for long-read mapping to complete assemblies. We utilized it to validate

and improve the recently published complete human assembly during several rounds of its

evaluations [85], [92]. Even though [92] used VerityMap for validating this assembly, they refer

to TandemMapper since VerityMap was still in development and did not even have a name at the
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time when this paper was submitted. Below we discuss some limitations of VerityMap that we

plan to address. All state-of-the-art read-mappers use multiple (often poorly justified) parameters

for selecting a small set of k-mers in each read, weighting edges in the compatibility graph, etc.

For example, minimap2, the workhorse of long-read mapping, has many parameters (including

some hidden parameters) and it remains unclear how they were optimized (no description in [72]).

Even though we used the default parameters for Winnowmap2 and minimap2, we do not rule

out that other parameter values could improve the performance of these tools. VerityMap also

suffers from the “curse of multi-parameters”: even though we carefully selected its parameters

using alignments of reads to the human genome, a systematic approach using diverse organisms

for learning these parameters is needed. In particular, scoring of the edges in the compatibility

graph might suffer overfit to the human genome k-mer distribution.

The output of VerityMap is in standard SAM/BAM format and is, in principle, compatible

with downstream variant calling tools for detection of Het variants or misassembles. However,

VerityMap detects approximate locations of a structural event rather than its exact coordinates

which may present a challenge for variant calling tools especially in highly-repetitive regions

such as centromeres.

The definition of a solid k-mer requires that it appears in a single contig of the assembly.

Even though solid k-mers are not uniformly distributed over the human genome, our bench-

marking revealed that VerityMap detected many true positive and never reported false positive

misassemblies. However, this definition might be too restrictive for a highly inbred organism with

long stretches of homologous chromosomes sharing the same sequence. A highly-fragmented

assembly presents a similar challenge since rare k-mers within a single chromosome might be

shared between several contigs rendering them non-solid. As a result, little to no solid k-mers

will be selected in such regions of the genome leading to gaps in read coverage. Allowing a

solid k-mer to be shared by multiple contigs, albeit potentially more error-prone, might mitigate

this issue. Similarly, the requirement that the reverse-complement of a solid k-mer does not

appear in any contig, needs to be relaxed. We selected a conservative strategy for the initial
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VerityMap development since our primary goal was to evaluate the complete haploid complete

assembly. Our next goal is to overcome these limitations and apply VerityMap for validating

haplotype-resolved assemblies generated by the HPR Consortium. The described benchmarking

suggests that VerityMap has a potential for effective evaluation of complete haplotype-resolved

assemblies. Supplementary Note “Validation of fragmented haploid and diploid assemblies” [91]

introduces a more general k-mer indexing scheme as well as modifications to the compatibility-

graph that allow validation of more general fragmented haploid or diploid assemblies (rather than

limited to only complete haploid assemblies). Supplementary Note “Extended benchmarking of

long-read mapping tools” [91] presents an example of application of VerityMap to a fragmented

assembly. Accurate estimation of VerityMap’s statistical power for detecting misasemblies in

fragmented assemblies remains an open problem.

Even though HiFi reads allow validation of the most regions of the CHM13 assembly,

ONT reads provide important complementary quality assessment [85], [35]. Even though this

paper focuses on HiFi reads, VerityMap has an ONT mode for ONT reads. We have chosen to

focus on HiFi reads since ONT reads currently represent a moving target: over the last year, the

error-profile of ONT reads has been rapidly improving with the latest chemistry approaching

error-rate as low as 1% [106]. While HiFi reads are more accurate (hence they allow selection

of longer solid k-mers), they are shorter than ONT reads. As a result, the length of the longest

paths in the compatibility graph for ONT reads can exceed those lengths for HiFi reads and

thus connect solid k-mers surrounding “solid k-mer deserts” — long stretches of DNA without

any solid k-mers. Together with rapidly improving chemistry, ONT reads might become a

self-sufficient alternative for quality assessment of genome assembly.

VerityMap has been designed primarily to detect errors in the assemblies rather than

identify structural variations (SVs) in genomes. Even though, many misassemblies and SVs

can be represented as indels, the distribution of misassemblies and SVs over the universe of

all possible indels are substantially different. First, a prominent source of genomic diversity is

presented by short SVs and copy number variants (CNVs) in short tandem repeats (STRs). Such
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differences can hardly ever be observed as misassemblies since they do not present challenge for

long-read assemblers. Previous studies demonstrated that HiFi assemblers are very accurate with

respect to single-nucleotide substitutions and short indels [85], [87], [107] and these inaccuracies

in assemblies typically present polishing artifacts rather than imperfections of an assembly

algorithm itself. Second, misassemblies typically involve large (multi-kbp) long indels (or

inversions) that correspond to the incorrect traversal of the assembly graph (or, worse, its faulty

topology). While it is possible that an alternative (and incorrect) traversal of the graph might

result in a haplotype that is present in the population (the authors are aware of a single case

that involves a large 600 kbp inversion on ChrY recently assembled by the T2T Consortium), it

remains unclear whether this is a widespread phenomenon. Finally, some of the variations in the

genome (for example, in human centromeres) are much more complex than simple CNVs of the

tandem repeat units and it seems infeasible that an assembly algorithm might produce such a

complicated misassembly as a result of an incorrect graph traversal.

When developing VerityMap, we have concentrated on simulated examples that resemble

misassemblies that we have observed in practice of developing assembly algorithms. Specifically,

(1) the indels that were introduced in the early versions of centromere assemblies [34] that were

subsequently detected by an early version of TandemMapper [41] and were later corrected in

[35], (2) misassemblies that were present in interim versions of CHM13 assemblies generated

by the T2T Consortium, (3) misassemblies generated by LJA assembler [107]. Supplementary

Note “Similarities and differences between detecting mutations and detecting misassemblies” in

[91] demonstrates that VerityMap can be used as an input to various SV detection tools and that

VerityMap’s own DistanceDiscordant test can complement these tools.
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3.5 Methods

3.5.1 Selecting solid k-mers

Similar to TandemMapper [65], VerityMap uses rare k-mers as anchors for the read

mapping. Selection of the k-mer size is dictated by the error rate in long reads. Since long

error-prone reads have a high error rate, long genomic k-mers rarely “survive” without errors

in such reads. For example, the probability that a 19-mer “survives” in an error-prone ONT

read (generated with basecaller Guppy flip-flop 2.3.1) is only 0.34 [35]. However, since long

and accurate reads have much smaller error rates (0.7% for ONT reads generated with flow cell

R10.4 https://nanoporetech.com/accuracy and 0.2% for HiFi reads [85]), one can set the large

default k-mer size to accurately map such reads even in highly-repetitive regions such as Cen9

(see Supplementary Note “The choice of k-mer size and the shortest unique substrings” in [91]).

VerityMap sets the default value k = 301 and MaxRareOccurrences = 10 (see Supplementary

Note “VerityMap parameters” in [91]).

HSAT2,3 array in the Cen9 region is an ETR containing long inverted repeats. Im-

portantly, for 6,344 out of ≈ 22 million rare k-mers (k = 301) in this region, their reverse-

complementary k-mer is frequent in the genome. Since the strandedness information is not

available, using such k-mers for read mapping might reduce the mapping accuracy. Similarly,

utilizing a rare k-mer that is shared between two contigs (for example, two homologous or

non-homologous chromosomes) might also lead to incorrect read mapping. Since VerityMap

aims primarily to reduce the number of incorrect alignments, it implements a rather conservative

strategy and uses solid rather than rare k-mers for read mapping to complete assemblies.

3.5.2 Sparse dynamic programming for read mapping

A standard dynamic programming approach for computing the fitting alignment of a

query onto a target finds a longest path in the grid-like directed acyclic graph (DAG) where

vertices correspond to all pairs of positions (one in the target and one in the query). Analysis of
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the CHM13 assembly by the T2T Consortium revealed that, although the fitting alignment of a

read usually finds its correct position in the assembly, it may misplace the reads that originated

from highly-repetitive regions (e.g., centromeres and other ETRs), particularly in regions with

assembly errors (see Supplementary Note “Frequency-aware sequence alignment scoring”).

Thus, mapping reads to ETRs requires a new algorithm and a new scoring approach.

Sparse dynamic programming [108] is a common way to speed-up sequence alignment

by selecting a small subset of points in a grid that are likely traversed by an optimal path,

constructing an edge-weighted DAG on these points (rather than on all points in the entire

grid), and finding a longest path in the resulting smaller graph. We note that although sparse

dynamic programming approximates rather than reconstructs the optimal sequence alignment,

this approximation is usually sufficient for read mapping. However, to achieve an accurate

approximation, one has to (i) carefully select a vertex-set of the DAG, and (ii) carefully define

the edge-weights in the sparse DAG to address the ETR mapping challenge. E.g., a k-mer-based

sparse fitting alignment amounts to finding a longest path in the DAG where vertices correspond

to all pairs of k-mer-matching positions from the target and the query (positions are k-mer-

matching if k-mers starting at these positions are identical) and directed edges connects all pairs

of vertices (i, j) and (i′, j′) with i < i′ and j < j′. However, the standard scoring approach for

the sparse fitting alignment, that scores all edges with unit weights, fails to address the ETR

mapping challenge since it does not account for greatly varying frequencies of k-mers in some

targets.

Although the sparse fitting alignment is faster than the standard fitting alignment, it still

may be computationally infeasible in long highly-repetitive regions due to a quadratic running

time in the number of matching positions. Below we describe how VerityMap addresses the

mapping challenge by considering matches of (undersampled) solid k-mers rather than all k-mers.
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3.5.3 Compatible k-mers

As solid k-mers are not necessarily unique in the assembly, we consider each occurrence

of each solid k-mer separately. Let aR and bR (aA and bA) be occurrences of solid k-mers a

and b in the read R (contig A) such as aR precedes bR (aA precedes bA). To make aR and bR

uniquely defined for each read, we limit attention to solid k-mers that appear exactly once in

this read. We define d(aR,bR) (d(aA,bA)) as the distance between aR and bR in R (aA and bA

in A). We refer to the pair of aA and aR (bA and bR) as a match aM (bM) and write aM < bM

if aA precedes bA and aR precedes bR. We define distance(aM,bM) = mind(aR,bR),d(aA,bA),

di f f (aM,bM) = |d(aR,bR)−d(aA,bA)|, and bias(aM,bM) = ln(di f f (aM,bM)) (Supplementary

Note “Frequency-aware sequence alignment scoring” in [91]).

We call matches aM and bM close if distance(aM,bM) < MaxJump (the default value

MaxJump = 100,000) to exclude k-mers locating far apart from each other but preserve consec-

utive rare k-mers even if they are separated by a long stretch of frequent k-mers. Matches aM

and bM are overlapping if distance(aM,bM)< k. Close matches aM and bM are synced if either

(i) aM and bM are overlapping with di f f (aM,bM) = 0, or (ii) they are not overlapping. Finally,

we call aM and bM compatible if (i) aM < bM and (ii) aM and bM are synced (see Supplementary

Note “Frequency-aware sequence alignment scoring” in [91]). Note that VerityMap modifies the

notion of compatible k-mers introduced in [41] to detect assembly errors that evade detection by

TandemMapper.

3.5.4 Compatibility graph

Given a read R, an assembly A, and a set S of solid k-mers, VerityMap constructs a

weighted compatibility graph G(R,A,S) on the vertex-set of all pairs of identical solid k-mers

from R and A. Vertices aM = (aA,aR) and bM = (bA,bR) are connected by an edge if aM and

bM are compatible. Edge-weights in this graph should be carefully chosen since a match of

a unique solid k-mer is more valuable than a match of a non-unique solid k-mer and since
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non-overlapping matches are more valuable than overlapping matches. VerityMap thus defines

weight(aM,bM) = premium(aM,bM)− penalty(aM,bM) in such a way that (i) premium(aM,bM)

is larger in the case when bM represents a unique k-mer as compared to the case when it represents

a non-unique k-mer, (ii) premium(aM,bM) is larger for non-overlapping matches aM and bM as

compared to overlapping matches, and (iii) if aM and bM represent a pair of k-mers that flank

misassembly breakpoints, penalty(aM,bM) should not be too large, thus allowing VerityMap to

detect a misassembly.

To address the goal (i), VerityMap assigns the score UniqueScore to all unique k-mers

and the smaller score RareScore to all non-unique solid k-mers in the assembly (default values

UniqueScore = 3 and RareScore = 0.1). The score Score(bM) of a match bM is defined as

the score of the k-mer it represents. To address the goal (ii), VerityMap defines the score

EdgeScore(aM,bM) of the edge (aM,bM) in the compatibility graph as 1 for non-overlapping

matches and as a smaller distance(aM,bM)/k for overlapping matches. Finally, it defines

premium(aM,bM) = Score(bM) ∗EdgeScore(aM,bM). To ensure that the longest path in the

compatibility graph correctly aligns a read against the assembly, it is important to penalize

edges with large bias, e.g., to define penalty(aM,bM) = bias(aM,bM). However, to address

the goal (iii) and to design an error-exposing read-mapper, it is important that the penalties of

edges connecting k-mers that represent misassembly breakpoints are not excessive, even in the

case when these edges have a large bias. VerityMap thus limits the maximum possible penalty

using the MisassemblyPenalty threshold (default value is 5) and defines penalty(aM,bM) =

min(MisassemblyPenalty,bias(aM,bM)). Supplementary Note “Finding a longest path in the

compatibility graph” in [91] describes how VerityMap finds a longest path in the compatibility

graph.
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3.5.5 The challenge of finding positions of all solid k-mers in a large
genome

TandemMapper uses a naive strategy of indexing solid k-mers in a genome Genome

(finding a list of positions for each solid k-mer) by traversing Genome twice. During the first

traversal, it counts all k-mers by storing them in a hash-table. During the second traversal, it

checks if a k-mer is solid using the constructed hash-table and records positions of all solid

k-mers (total time and memory is O(|Genome| ∗ k)). This strategy becomes prohibitively time-

consuming unless mapping reads against relatively short regions (e.g., several Mbp) using short

k-mers (e.g., with k < 30). VerityMap uses a different strategy that enables mapping reads against

the entire human genome using long k-mers (e.g., with k > 300).

The complexity of pattern matching can be reduced by indexing rolling hashes of k-mers

rather than the k-mers themselves [109]. Given a rolling hash function and a hash value for a k-

mer ai . . .ai+k−1 in a genome . . .ai . . .ai+k−1ai+k . . ., one can compute the hash value of the next

k-mer ai+1 . . .ai+k in O(1) time, thus, improving the run-time complexity from O(|Genome| ∗k))

to O(|Genome|). Note, that a hash collision will lead to an overestimated frequency for k-mers

with collided hashes. This might lead to misclassification of some solid k-mers as non-solid, but

never leads to recruiting non-solid k-mers. Unfortunately, the existing k-mer counting tools do

not allow querying a count of a rolling hash instead of a k-mer, and thus do not immediately

lead to a fast indexing algorithm with O(|Genome|) running time. Moreover, since most of the

k-mers in the non-repetitive parts of the genome are solid, we aim to select only their small

subset for constructing the (small) compatibility graph (see subsection “Filtering solid k-mers

in non-repetitive regions”). Unfortunately, the existing k-mer counting tools do not produce a

downsampled database of k-mer counts, which leads to an unnecessary computational burden.

To overcome the limitations of existing approaches, VerityMap uses a probabilistic procedure

for indexing solid k-mers inspired by the Jellyfish algorithm [98]. Below we briefly describe

the Bloom filter and the count-min sketch data structures that VerityMap uses for indexing solid
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k-mers.

3.5.6 Bloom filter and count-min sketch

The Bloom filter [101] is a space-efficient probabilistic data structure that is used to

test whether an element is a member of a set and that may report false positives (with a small

false positive probability) but never false negatives. Given a genome Genome (or its assem-

bly), its Bloom filter is formed by BloomNumber independent hash functions, each mapping

a k-mer from Genome into a bit array of size BloomSize. Storing all k-mers in a Bloom fil-

ter allows one to quickly query whether an arbitrary k-mer occurs in the genome. Given

hash functions h1,h2, . . . ,hBloomNumber and a k-mer a, one can quickly check whether all bits

h1(a),h2(a), . . . ,hBloomNumber(a) of the Bloom filter are equal to 1, an indication that the k-mer

a may occur in the genome. Thus, a Bloom filter allows one to efficiently query whether an

arbitrary k-mer occurs in the genome (with a small false positive probability).

Bloom filter allows one to check whether an element belongs to a multiset but does not

evaluate how frequent it is in this multiset. The count–min sketch (CMS) is a space-efficient

probabilistic data structure that provides an upper bound on the count of an element in a multiset

[102]. CMS is a modification of a single-bit Bloom filter array that uses a counter array of size

CMSNumber * CMSSize with cells containing several bits. This property allows it to count

repeatedly inserted elements: when an element is inserted, the values of all CMSNumber hash

functions are computed and the corresponding cells in the counter arrays are incremented by 1

(in case an increment leads to an overflow, the corresponding cell gets frozen). To provide an

upper bound for the count of a given element, CMS computes the values of all CMSNumber hash

functions and reports the minimum of the corresponding cells in the counter arrays (a frozen cell

votes for the infinity count). Thus, CMS sometimes overestimates the count of an element but

never underestimates it. VerityMap uses CMS to distinguish unique, rare, and frequent k-mers

and with a controlled probability misclassifies a rare (unique) k-mer as frequent (rare).
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3.5.7 Identification of rare k-mers using CMS

For each Contig in genome Genome, VerityMap counts all k-mers in this contig by

storing them in the count-min-sketch CMS(Contig) = CMS(Contig, k, Bits, CMSNumber, CMS-

Size) formed by CMSNumber hash functions, each mapping a k-mer into a counter array of

size CMSSize where each counter takes Bits bits. The memory footprint of CMS is CMSNum-

ber*Bits*CMSSize bits. The total run-time for inserting all k-mers from Contig into this CMS is

O(|Contig|∗CMSNumber∗Bits∗k). Storing rolling hashes instead of k-mers further reduces the

complexity to O(|Genome| ∗CMSNumber ∗Bits). Supplementary Note “VerityMap parameters”

in [91] describes how VerityMap sets the parameters of the CMS and the Bloom filters.

3.5.8 Identification of solid k-mers using the Bloom filter

To verify whether a rare k-mer is solid, VerityMap checks that (i) its reverse-complement

does not appear in the genome and (ii) it appears only in a single contig. Storing all k-mers

from the genome Genome in a Bloom filter allows VerityMap to efficiently query whether an

arbitrary k-mer is present in Genome. In order to check conditions (i) and (ii) for identifying

solid k-mers, VerityMap constructs two Bloom filters — BanBloomFilter(Genome) and Once-

BloomFilter(Genome) of an optimal size [101] for the expected number of k-mers (|Genome| is

an upper bound) and for the target false positive probability BloomFPP (default value BloomFPP

= 0.00001).

For every rare k-mer a, we ensure that its reverse complement a∗ does not appear in the

Genome by inserting a∗ in the BanBloomFilter and, in the end, checking that a is not present in

BanBloomFilter. To check if a k-mer a appears in a single contig, VerityMap scans all contigs

and synchronously inserts a k-mer a from a contig Contig in both OnceBloomFilter(Genome)

and CMS(Contig). This synchronous construction of both OnceBloomFilter(Genome) and

CMS(Contig) allows one to check whether the k-mer a occurs in a single contig, albeit with

a small probability of error. Indeed, if it is already present in OnceBloomFilter(Genome)
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but missing in CMS(Contig), it likely appeared in a previously scanned contig. In this case,

VerityMap filters out the k-mer a by inserting it into BanBloomFilter(Genome). However, if it is

present in both OnceBloomFilter(Genome) and CMS(Contig), the k-mer a is retained since it

may occur in a single contig.

To reduce the complexity, instead of inserting k-mers in the Bloom filter, we store their

rolling hashes. The total running time of finding all solid k-mers and determining their genomic

positions is O(|Genome| ∗ (BloomHashNumber+CMSNumber)). The total memory footprint

is O(|Genome|+(CMSNumber ∗CMSSize∗Bits+BloomHashNumber ∗BloomSize)).

Since the Bloom filter is a probabilistic data structure, some solid k-mers might be falsely

removed as breaking either condition (i) or (ii). In practice, very few solid k-mers are filtered

out (as controlled by the parameter BloomFPP) and that does not lead to deterioration of read

mapping. Importantly, no true non-solid k-mer might be misclassified as solid. For example,

a naive implementation of an “exact” strategy (that uses deterministic albeit more memory

consuming data structures) extracts 149,548,373 solid k-mers from ChrX in CHM13 assembly,

while the “approximate” strategy described above (based on Bloom filters and CMSs) extracts

147,105,002 solid k-mers from the same dataset (more than 98% of truly solid k-mers). For the

sake of easy comparison, we did not downsample solid k-mers in this example as described in

Supplementary Note “Downsampling solid k-mers in non-repetitive regions” [91].

3.5.9 Distance Concordance test

VerityMap detects approximate locations of misassembly breakpoints without requiring a

time-consuming nucleotide-level alignment. Indeed, if a read R spans a misassembly breakpoint,

a longest path in the compatibility graph G(R,A,S) often provides a hint for finding this break-

point. For example, a deletion of length L in an assembly typically triggers an edge (aM,bM)

with a surprisingly large difference di f f (aM,bM)≈ L, where aM and bM represent solid k-mers

flanking the deletion breakpoint in such a way that aM (bM) precedes (follows) the deletion

breakpoint as illustrated in Figure 3.1.

83



However, a single read may have non-zero values of di f f (aM,bM) even in the case

of error-free assembly, especially when d(aR,bR) is high. However, this difference is usually

low for accurate HiFi reads and error-free assemblies, suggesting that large differences can

be used for detecting misassemblies. To demonstrate that it is indeed the case, we considered

18 millions of unique k-mers (k = 301) in Cen9 and selected 100,000 pairs of unique k-mers

such that k-mers in each pair are 10,000 bp apart in the assembly. The mean distance between

the same pairs of k-mers in reads was 10,002± 3.4 bp. Thus, di f f (aM,bM) usually does

not exceed 3*3.4=10.2 bp if d(aA,bA) = 10,000 bp. Given our upper limit for a distance

between two consecutive k-mers equal to 100,000 bp, we set a lower threshold for an indel size

MinIndelSize to 100 bp. Thus, if nearly all longest paths containing k-mers a and b show a

systematic bias in values of di f f (aM,bM) and di f f (aM,bM)> MinIndelSize, then an indel of

approximate size di f f (aM,b−M) is likely contained between aA and bA. We classify each read

that shows systematic bias in values of di f f (aM,bM) as a discordant read and report the fraction

of discordant reads connecting each pair of solid k-mers in the assembly.

Formally, for each read R and for each pair aM and bM of consecutive matches in a longest

path in compatibility graph we add the number di f f (aM,bM) to a set Di f f s(aA,bA). We test

the hypothesis that the mean of Di f f s(aA,bA) is 0 and refer to the pair aA and bA as significant

if this hypothesis is rejected (two-sided one-sample t-test). We use Bonferroni family-wise

error rate correction and set up significance level αDC (the default value αDC = 0.05). For

each significant pair aA and bA of consecutive k-mers in a contig A, we compute the proportion

Concordance(aA,bA) of the most frequent difference TopDi f f (aA,bA) in Di f f s(aA,bA). Figure

3.5 (left and middle) shows the Concordance(aA,bA) across the Cen9del10 region when aligning

simulated reads from the dataset Cen9Sim (Cen9Sim-Het) and reveals the artificial deletion (Het

site) of length 10 kbp at position 20 Mbp. Figure 3.5 (right) shows the Concordance(aA,bA)

across cen19 when aligning real HiFi reads and reveals the likely assembly error and several Het

sites (see Results).
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Figure 3.5. Distance concordance test applied to simulated and real read-sets. (Left)
Mapping reads from the dataset Cen9Sim reveals an artificial deletion at location 20 Mbp.
Concordance(aA,bA) = 1 and TopDi f f (aA,bA) = 10,003 for solid k-mer aA at position
19,999,691 and bA at position 20,000,001 revealing the approximate location of the deletion of
size 10 kbp. (Middle) Mapping reads from the dataset Cen9Sim-Het reveals an artificial Het
site at position 20 Mbp with Concordance(aA,bA) = 0.33 for the same solid k-mers aA and bA
and TopDi f f (aA,bA) = 10,005 pointing at insertion in Cen9del10 of size 10 kbp existing in
one of the artificial haplotypes. (Right) Mapping HiFi reads reveals several Het variants and a
likely assembly error (with Concordance = 1 at 28.5 Mbp) in the centromere of chromosome
19 (see Supplementary Note “Extended benchmarking of long-read mapping tools” in [91] for
description of all datasets).
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Chapter 4

Automated annotation of human cen-
tromeres with HORmon

4.1 Abstract

Recent advances in long-read sequencing opened a possibility to address the long-

standing questions about the architecture and evolution of human centromeres. They also

emphasized the need for centromere annotation (partitioning human centromeres into monomers

and higher-order repeats [HORs]). Although there was a half-century-long series of semi-manual

studies of centromere architecture, a rigorous centromere annotation algorithm is still lacking.

Moreover, an automated centromere annotation is a prerequisite for studies of genetic diseases

associated with centromeres and evolutionary studies of centromeres across multiple species.

Although the monomer decomposition (transforming a centromere into a monocentromere

written in the monomer alphabet) and the HOR decomposition (representing a monocentromere

in the alphabet of HORs) are currently viewed as two separate problems, we show that they

should be integrated into a single framework in such a way that HOR (monomer) inference

affects monomer (HOR) inference. We thus developed the HORmon algorithm that integrates

the monomer/HOR inference and automatically generates the human monomers/HORs that are

largely consistent with the previous semi-manual inference.
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4.2 Introduction

Recent advances in long-read sequencing technologies led to rapid progress in centromere

assembly in the past year [35], [34], [75], [85], [84], [110] and, for the first time, opened a

possibility to address the long-standing questions about the architecture and evolution of human

centromeres [111], [112]. “Alpha satellite arrays” of live human centromeres that organize the

kinetochore (which we refer to simply as “centromeres”) are tandem DNA repeats that are formed

by units repeating thousands of times with limited nucleotide-level variations but extensive

variations in copy numbers in the human population [14]. We refer to “live” centromeres as those

that host the kinetochore as revealed by CENPA=CENH3 binding (“live” corresponds to “active”

in [110]. Each such unit represents a tandem repeat formed by smaller repetitive building blocks

(referred to as “monomer blocks”), thus forming a “stacked tandem repeat” (4.1. Partitioning

all monomer blocks into clusters of similar monomer blocks defines “monomers,” where each

monomer represents the consensus of all monomer blocks in a given cluster. The emergence

of centromere-specific stacked tandem repeats is a fascinating and still poorly understood

evolutionary puzzle [49], [113], [111], [42].

Each human monomer is of length ˜171 bp, and each higher-order unit is formed by

multiple monomers that differ from each other. A monomer is “frequent” if the number of

monomer blocks in its cluster exceeds a frequency threshold, and “infrequent,” otherwise.

Recently, [42], [35], [47], [114] revealed still underexplored “hybrid” monomers (each hybrid

monomer is a concatenate of two or even more frequent monomers) and hypothesized that they

may drive the “birth” of new frequent monomers. Different human centromeres typically have

different monomers and units, and the number of the frequent monomers in a unit varies from

two for Chromosome 19 to 19 for Chromosome 4.

A “canonical (cyclic) order of monomers” (referred to as a “higher-order repeat” [HOR])

is specific to each centromere and is defined evolutionarily as the ancestral and chromosome-

specific order of frequent nonhybrid monomers that has evolved into the complex organization
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Stacked tandem repeat

Centromere X (cenX)

Figure 4.1. The architecture of centromere on Chromosome X. The centromere of Chromosome
X (cenX) consists of ˜18,100 monomers of length ˜171 bp each based on the cenX assembly
in [35]; the T2T assembly [85] represents a minor change to this assembly. These monomers
are organized into ˜1500 units. Five units are colored by five shades of green illustrating unit
variations. Each unit is a stacked tandem repeat formed by various monomers. The vast majority
of units in cenX correspond to the canonical HOR, which is formed by 12 monomers (shown by
12 different colors). The figure on top represents the dot plot of the nucleotide sequence of the
canonical HOR that reveals 12 monomers. Although the canonical units are 95%–100% similar,
monomers are only 65%–88% similar. In addition to the canonical 12-monomer units, cenX has
a small number of partial and auxiliary HORs with varying numbers of monomers.
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of extant centromeres. This definition, however, is computationally nonconstructive because

the ancestral order is unknown and no algorithm for its inference has yet been described. The

current view of centromere evolution can be summarized by the following framework that we

refer to as the “Centromere Evolution (CE) Postulate”:

• Each extant human centromere has evolved from a “single” ancestral HOR formed by “k

different” monomers. Hence, each monomer occurs in a HOR only once. The parameter k

(number of monomers in a HOR) varies between various centromeres.

• Each frequent nonhybrid monomer in a centromere has evolved from a single ancestral

monomer. The number of ancestral monomers equals the number of frequent nonhybrid

monomers in the extant centromere.

• Each hybrid monomer has evolved from a concatenate of two (or even more) ancestral

monomers and does not participate in the ancestral HOR.

• In addition to units formed by canonical HORs, there exist units formed by “partial HORs”

(substrings of canonical HORs). All other units consist of a single hybrid monomer and

are referred to as “auxiliary HORs.” Although the canonical HOR corresponds to the most

frequent unit for most human centromeres, it is not always the case.

Although the CE postulate is widely accepted [115], [116], [117], [110], we are not

aware of a rigorous proof of this postulate or an algorithm that, given an extant centromere,

derives its canonical HOR (Supplemental Note 1 in [118]). Moreover, because the concept of

a HOR is parameter-dependent, the CE postulate may hold for some parameters and fail for

others. However, it is not clear how to select various parameters such as the frequency threshold

parameter (for defining the concept of a frequent monomer), the percent identity parameter

(for deciding which monomer blocks correspond to the same monomer), and parameters for

classifying a monomer as a hybrid [114].
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Moreover, the CE postulate implicitly assigns the inferred HOR to a particular (and

unspecified) moment in the past. For example, although the HOR for centromere X (referred to

as cenX) consists of 12 monomers, this 12-monomer HOR evolved from an even more ancient

5-monomer ancestral HOR [115], [116]. It is thus not clear how an algorithm for HOR inference

should choose between a 12-monomer HOR and a 5-monomer HOR for cenX. Further, even if

the CE postulate holds, it may be impossible to infer canonical HORs if nearly all information

about the ancestral HOR was erased by millions of years of evolution; for example, it is unclear

how to derive HORs in mouse centromeres [112].

Recent evolutionary studies of centromeres [42], [35], [119] revealed the importance of

partitioning them into monomers, the problem that was addressed by the StringDecomposer

algorithm [47]. Given a nucleotide string Centromere and a monomer set Monomers, StringDe-

composer decomposes Centromere into monomer blocks (each block is similar to one of the

monomers) and transforms it into a “monocentromere” string Centromere* over the alphabet of

monomers. For each monomer M, it generates the set of “M blocks” in the centromere that are

more similar to M than to other monomers (ties broken arbitrarily).

StringDecomposer opened a possibility to automatically generate all HORs and annotate

human centromeres (i.e., partition them into canonical, partial, and auxiliary HORs), the problem

that remains unsolved despite multiple studies in the last four decades [44], [116], [120], [20],

[121], [28], [117], [42]. However, the challenge of properly defining the set of all human

monomers remained outside the scope of the StringDecomposer tool. Although [28] presented

a large set of human monomers, it is unclear if this set is compatible with the CE postulate.

As a result, it remains unclear how to computationally define the complete set of monomers (a

prerequisite for launching StringDecomposer) and HORs in human centromeres.

Previous semi-manual studies inferred many HORs and greatly contributed to our under-

standing of the architecture of human centromeres [116], [117]. However, they did not specify an

“algorithmically constructive definition” of a HOR. Instead, an order of monomers in a consensus

HOR was implicitly defined as the “ancestral order” without specifying how to derive this order
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Table 4.1. Comparison of methods for monomer/HOR inference and annotation

Method Objective for
HOR inference

Compliant with
CE Postulate Automated

HORdetect [20] - ? +
ColorHOR [120] - ? +
Alpha-CENTAURI [28] - ? +
GlobalRepeatMap [123] - ? +
CentromereArchitect [47] + - +
T2T [110] - + -
HORmon (this study) + + +

and how to prove that it is correct and unique. Although [120], [20], [28] described various

HOR inference heuristics (ColorHOR, HORdetect, and Alpha-CENTAURI, respectively), these

studies have not specified the exact objective function for HOR inference (Table 4.1). As such,

the concept of a HOR is highly dependent on the parameters used for generating the monomer

set. Moreover, the nucleotide sequences for human HORs of live human centromeres have been

manually extracted at the dawn of the sequencing era and used reads (often sampled from a

single clone from a specific centromere) rather than completely assembled centromeres, raising

questions about their accuracy [35], [122]. For example, HOR DXZ1 (S3CXH1L) on cenX, the

first inferred human HOR, was derived based on limited sequencing data from a single clone

[115]. The sequence of this HOR differs from the HOR extracted from the complete cenX

assembly, suggesting that either (1) reads used for deriving DXZ1 were limited to a small region

of cenX that does not adequately represent the entire centromere, or (2) HORs extracted from

different individuals may be different.

These limitations prevent future evolutionary studies of centromeres across multiple

species. Addressing them is important because long and accurate Pacific Biosciences (PacBio)

HiFi reads have already been used for centromere assembly in fish [124] and because various

HiFi assembly projects are currently underway, opening a possibility to assemble vertebrate

centromeres in the near future. On the other hand, the Telomere-to-Telomere (T2T) Consortium

and the Human Pangenome Reference Consortium (HPRC) are now assembling centromeres from
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multiple humans. Because their manual annotation (including monomer and HOR inference) is

prohibitively time-consuming, automated annotation is a prerequisite for any centromere analysis

in the future.

[114] developed the CentromereArchitect tool that addressed the monomer and HOR

inference as two separate problems. In particular, the HOR inference was addressed as a

data compression problem rather than an evolutionary problem that takes into account the CE

postulate. Thus, although CentromereArchitect enabled an automated inference of monomers, it

remains unclear whether its HORs inference adequately reflects the centromere evolution. Our

analysis revealed that to generate a biologically adequate centromere annotation, the monomer

and HOR inference should be viewed as two interconnected problems in such a way that HOR

(monomer) generation affects monomer (HOR) generation.

In the past, the monomer generation problem was addressed as clustering of monomer

blocks without considering the follow-up inference of HORs derived from the resulting monomers

[114]. Because this is a complex clustering problem, any clustering algorithm may merge some

biologically distinct monomer blocks into a single cluster and split a single cluster into multiple

ones. Another complication is the inference of hybrid monomers that by definition do not

participate in canonical HORs.

Below, we describe the HORmon algorithm that addresses these complications by incor-

porating the monomer and HOR generation into a single pipeline (Fig. 4.2). HORmon generated

the first automated centromere annotation that is largely consistent with the CE postulate and

previous manual centromere annotations. Recognizing that HORs represent an important evo-

lutionary concept, we show how HORmon can be used to automatically derive the currently

known HORs.
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Figure 4.2. HORmon pipeline. Given the nucleotide sequence Centromere and a consensus
alpha satellite sequence Monomer, HORmon iteratively launches StringDecomposer [47] to
partition Centromere into monomer blocks. After each launch of StringDecomposer, HORmon
launches CentromereArchitect [114] to cluster similar monomer blocks into monomers, identify
hybrid monomers (represented by a single hybrid D/E of monomers D and E), and transform
Centromere into the monocentromere Centromere*. Afterward, HORmon uses the generated
monocentromere to construct a monomer graph (red edges connect the hybrid monomer D/E with
the rest of the monomer graph). To comply with the centromere evolution postulate, HORmon
performs split/merge transformations and dehybridizations on the initial monomer set. The
orange dotted undirected edge connects similar monomers A and B to indicate that they represent
candidates for merging. The breakable monomer D is shown as a dotted vertex to indicate that
it is a candidate for splitting into monomers D’ and D”. The dehybridization substitutes the
hybrid vertex D’/E by a single red edge that connects the prefix of D’ with the suffix of E. Split,
merge, and dehybridization operations result in a new monomer set and transform Centromere
into the monocentromere Centromere**. The black cycle in the monomer graph of Centromere*

represents the HOR; the purple edge connecting monomers G and C is a low-frequency chord in
this cycle. HORmon uses this HOR to generate the HOR decomposition of Centromere* into the
canonical (cF, cC), partial (p(A+B)C, pFG, pCE), and auxiliary (the single block D’/E) HORs. cF
and cC refer to traversing the (canonical) HOR starting from monomers F and C, respectively.
p(A+B)C, pFG, and pCE refer to partial traversals of the HOR from monomer A + B to C, from F
to G, and from C to E, respectively.
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4.3 Results

4.3.1 A brief description of the HORmon algorithm

Figure 4.2 illustrates the various steps of the HORmon algorithm for monomer and HOR

inference. Supplemental Note 2 in [118] summarizes the notation that we use throughout the

paper.

4.3.2 Data sets

We extracted the alpha satellite arrays from the assembly (public release v1.0) of the

effectively haploid CHM13 human cell line constructed by the T2T Consortium [34], [84],

[110], [85]. We also extracted the alpha satellite array of the newly assembled centromeres of

Chromosome X and Chromosome Y from the HG002 cell line sequenced by the HPRC. For

simplicity, we refer to these two genomes as the CHM13 and HG002 genomes. Supplemental

Note 3 in [118] provides information about the extracted regions for all live human centromere

arrays.

4.3.3 Monomer inference

HORmon launches CentromereArchitect [47] to generate the initial monomer set and

further modifies it by using the monomer-HOR feedback loop described in Methods (Fig. 4.2).

Because all chromosomes considered in this study except Chromosome Y originated from the

CHM13 cell line, we launch HORmon three times: on centromeres that originated from the

CHM13 cell lines, on Chromosome X from the HG002 cell line, and on Chromosome Y from

the HG002 cell line. Supplemental Note 4 in [118] describes how HORmon assigns names

to monomers and provides correspondence between these names and the traditional names

described in [42].

Because CentromereArchitect identifies many infrequent monomers, comparing its

monomer set with the previously identified monomer sets, for example, the monomer set
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MonomersT2T [110] used by the T2T Consortium (based on the monomer set derived in

[121], [42], is not straightforward. HORmon thus filters the monomer set generated by Cen-

tromereArchitect as described below.

We refer to the set of frequent monomers obtained from CentromereArchitect as Mono-

mersNew. Supplemental Note 5 in [118] describes the procedure for construction of Mono-

mersNew and shows that it provides a minor improvement over the (manually constructed)

MonomersT2T monomer set with respect to standard clustering metrics. However, as with any

clustering approach, the parameter-dependent CentromereArchitect may both split and aggregate

monomers as compared to the biologically adequate clustering. Moreover, the monomer set

MonomersT2T does not attempt to solve the monomer inference problem that CentromereArchi-

tect addresses [114]. Instead, it generates clustering that is consistent with CE postulate, which

can be suboptimal with respect to standard clustering metrics that do not take into account any

evolutionary assumptions.

4.3.4 The challenge of monomer generation

Although it is unclear what is a biologically adequate clustering of monomer blocks,

positional information about these blocks (i.e., pairs, triples, etc., of consecutive monomers in the

monocentromere) often reveals monomers that were erroneously split/aggregated. This positional

information helps one to generate a more adequate monomer set with respect to the CE postulate,

not unlike the positional information about orthologs in comparative genomics studies [125].

Two monomers are called “similar” if the percent identity between them exceeds a threshold

minPI (default value 94%). In the subsection “Positionally similar monomers” (Fig. 4.2), we

define the concept of positional similarity and classify two similar monomers as “positionally

similar” if their positional similarity exceeds a threshold minPosSim (default value 0.4).

To illustrate the challenge of generating a biologically adequate clustering, we consider

similar frequent monomers M′ and M′′ from the monomer set Monomers that would be merged

into a single monomer if the clustering parameters were slightly relaxed. Because it is unclear
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how to select clustering parameters, it is also unclear whether such merging would represent

a biologically adequate clustering as opposed to the clustering that separates these monomers.

However, one may argue that if M′ and M′′ are always flanked by the same frequent monomers

X and Y in a monocentromere (resulting in triples XM′Y and XM′′Y ), these two monomers

are likely erroneously split and should be merged into a single monomer M, defined as the

consensus of all M′ blocks and M′′ blocks. Such merging is justified from the perspective of

the CE postulate because each nonhybrid monomer occurs exactly once in a HOR. Specifically,

unless monomers M′ and M′′ are merged, the HOR cannot traverse monomers X and Y exactly

once as required by the CE postulate.

On the other hand, a frequent monomer M that is flanked either by frequent monomers

X ′ and Y ′ (resulting in a triple X ′MY ′) or by different frequent monomers X ′′ and Y ′′ (resulting

in a triple X ′′MY ′′) conflicts with the CE postulate. Because this monomer is likely erroneously

aggregated from two different monomers, it can be split into monomers M′ and M′′, resulting

in triples X ′M′Y ′ and X ′′M′′Y ′′, respectively. The monomers M′ (M′′) can be defined as the

consensus of all M′ blocks (M′′ blocks) in triples X ′M′Y ′ (X ′′M′′Y ′′).

Although such transformations are not necessarily justified with respect to optimizing

the standard clustering metrics, Supplemental Note 5 in [118] illustrates that the monomer set

transformed by merging/splitting operations in HORmon is largely comparable to the monomer

set generated by CentromereArchitect with respect to various clustering metrics.

In addition to generating the monomer set, CentromereArchitect includes a HOR infer-

ence algorithm based on iteratively defining the units as the “heaviest” substrings of a monocen-

tromere [114]. Although this definition is adequate from the perspective of data compression, it

does not necessarily reflect the evolutionary history of a centromere (although many resulting

units correspond to canonical, partial, and auxiliary HORs). Moreover, [114] derived monomers

independently from HORs without accounting for hybrid monomers, positional information,

and the CE postulate. Below, we show that positional information, as well as information about

hybrid monomers, is important for both monomer and HOR inference. The Methods section
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describes how to identify erroneously aggregated/split monomers and split/merge them.

We further introduce the concept of a “breakable” monomer, that is, a monomer that

is amenable to splitting into two or more monomers in such a way that the enlarged monomer

set still adequately represents the centromere architecture. In contrast, splitting an unbreakable

monomer results in an inadequate representation of the centromere architecture. We show that a

series of split and merge operations results in unbreakable monomers for cen1, cen13, and cen18

that prevent HORmon from reporting HORs in these centromeres. We further describe a special

procedure for splitting unbreakable monomers in these problematic centromeres (subsection

“Splitting unbreakable monomers reveals HORs in cen1, cen13, and cen18”).

Split and merge operations on the monomer set MonomersNew result in a monomer set

MonomersNew+, whereas further hybridization of hybrid monomers (Fig. 4.2) and splitting of

unbreakable monomers result in the monomer set MonomersFinal described in Supplemental

Table S1 in [118].

4.3.5 Monomer graph

Given a monocentromere, its directed “monomer graph” is constructed on the vertex

set of all its monomers and the edge set formed by all pairs of its consecutive monomers. The

“multiplicity” of an edge (M,M′) in the monomer graph is defined as the number of times the

monomer M′ follows the monomer M in the monocentromere (Fig. 4.2). We note that the

monomer graph of a monocentromere Centromere∗ is the “de Bruijn graph” DB(Centromere∗,

2) [126]. Figure 4.3 presents the monomer graph for cenX in the CHM13 genome (top) and the

HG002 genome (bottom) built using the monomer set extracted by CentromereArchitect from

CHM13 genome [114]. Both graphs reveal the cycle formed by 12 high-multiplicity edges that

form the canonical 12-monomer HOR in cenX. In addition, the monomer graph for CHM13

reveals two infrequent hybrid monomers and 10 low-multiplicity edges. In contrast, the monomer

graph for HG002 reveals only one infrequent hybrid monomer and only five low-multiplicity

edges. These differences suggest that hybrid monomers represent a rather recent evolutionary

97



Figure 4.3. The monomer graph of cenX in the CHM13 (top) and HG002 (bottom) genomes.
The monomer graphs of cenX were constructed on the monocentromere that was generated
from the monomer sets consisting of two infrequent hybrid monomers (labeled as MX and
NX) and 12 frequent canonical monomers (labeled as AX, BX, CX, . . . , KX, and LX) that
contribute to the canonical DXZ1 HOR in cenX [114]. Small font corresponds to the naming
conventions introduced in [121]. The hybrid monomers M and N are inferred in [47]. A hybrid
monomer formed by frequent monomers X and Y is represented as a bicolored vertex (two colors
correspond to the colors of X and Y) and is denoted as (X/Y). Only edges of the monomer graph
with multiplicity exceeding 1 are shown (edges with multiplicity exceeding 100 are shown in
bold). The cycle formed by bold edges (with multiplicities above 1500) traverses the 12 most
frequent monomers that form the canonical cenX HOR.

innovation and illustrate large variations in centromeres across the human population.

Figure 4.3 creates a false impression that simply ignoring the low-multiplicity edges

and hybrid monomers in the monomer graph of a centromere would result in a graph with a

single cycle that forms a HOR. Although this is indeed true for centromeres 3, 11, 14, 16, 17, 19,

20, 21, 22, X, and Y (after performing a series of split/merge transformations on the monomer

set generated by CentromereArchitect) [114], the remaining human centromeres have a more

complex evolutionary history, resulting in complex architectures that we analyze below.
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4.3.6 Monomer graphs of human centromeres

Given a monomer set Monomers and a monocentromere Centromere∗, we define min-

Count(Monomers) minM∈Monomers count(M,Centromere∗). HORmon uses the set Monomers-

New+ to generate the monocentromere Centromere∗∗ (split and merge operations on the monomer

set MonomersNew result in the monomer set MonomersNew+), generates the monomer graph

as the de Bruijn graph DB(Centromere**, 2), and removes edges that have multiplicity below

min(MinEdgeMultiplicity,minCountFraction×minCount(MonomersNew+)) with the default

values MinEdgeMultiplicity = 100, minCountFraction = 0.9 (Fig. 4.2). Supplemental Figure

S1 in [118] provides information about the generated monomer graphs for all human centromeres.

The monomer graphs of 10 centromeres (3, 11, 14, 16, 17, 19, 20, 21, 22, X, and Y)

are formed by cycles that immediately reveal HORs. The monomer graph for cen17 contains

two cycles: the higher-multiplicity cycle corresponds to the D17Z1 HOR, whereas the lower-

multiplicity cycle corresponds to its sister HOR D17Z1-B (for discussion of sister HORs, see

[122]). The remaining monomer graphs contain (albeit implicitly) information about HORs but

represent a more detailed view of the evolutionary history of centromeres. To reveal HORs in

these monomer graphs, HORmon constructs simplified monomer graphs described in Methods.

Figure 4.4 shows that the simplified monomer graphs represent cycles (corresponding to

HORs) for all centromeres but centromeres on Chromosomes 1, 5, 8, 9, 13, and 18 that do not

have Hamiltonian cycles and represent special cases that we consider below.

4.3.7 Splitting unbreakable monomers reveals HORs in cen1, cen13 and
cen18

A monomer is breakable if it is amenable to splitting into two or more monomers in

such a way that the enlarged monomer set still adequately represents the centromere architecture

(Methods). In contrast, splitting an unbreakable monomer leads to conflicts and results in an in-

adequate representation of the centromere architecture. Even if a monomer is breakable, splitting

it into two very similar monomers (e.g., monomers M′ and M′′ that differ in a single position)
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Figure 4.4. The simplified monomer graphs of human centromeres. The first 23 subfigures
contain simplified monomer graphs for all live human centromeres in the CHM13 cell line
(centromere ID shown in the subcaption). The 24th subfigure corresponds to the centromere
on Chromosome Y in the HG002 genome. In each graph, vertices represent the monomer set
Monomers of the corresponding Centromere. The label of each vertex represents the monomer
ID and its count in the monocentromere Centromere∗ (in parentheses). The ID of the monomers
follow the naming convention introduced in [121]. Two monomers are connected by an edge
if they are consecutive in monocentromere Centromere∗. The weight of an edge connecting
monomers M and M′ is defined as the number of times M is followed by M′ in Centromere∗.
The width of an edge (color of a vertex) reflects its multiplicity (count of a monomer). In each
graph, HORmon detects heavy nonoverlapping cycles and paths and removes chords in such
cycles (for details, see Methods). The isolated cycles in 18 centromeres (2, 3, 4, 6, 7, 10, 11, 12,
14, 15, 16, 17, 19, 20, 21, 22, X, and Y) represent HORs in these centromeres. (Figure continues
on following pages.)
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Figure 4.4. The simplified monomer graphs of human centromeres. (Figure continues on
following pages.)
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Figure 4.4. The simplified monomer graphs of human centromeres. (Figure continues on
following pages.)
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Figure 4.4. The simplified monomer graphs of human centromeres.

103



may lead to a misclassification of monomer blocks because all centromere decomposition tools,

including StringDecomposer, often misclassify an M’ block as a very similar M′′ block and vice

versa. Such misclassified monomer blocks may lead to downstream challenges in analyzing

centromere architecture and evolution.

Although the simplified monomer graphs of cen1, cen13, and cen18 are formed by

two cycles that share a junction vertex (that deviate from the definition of a HOR as a single

cycle), these two cycles can be transformed into a single cycle by splitting the junction vertices

(Fig. 4.5). However, because these junction vertices correspond to unbreakable monomers,

splitting them raises concerns. Indeed, it either conflicts with some frequent traversals through

the junction vertex or results in a pair of highly similar monomers that would be merged into a

single monomer even under extremely stringent values of HORmon parameters.

Splitting a junction monomer in cen1 results in two monomers that differ in 11 nt. This

transformation results in a simplified monomer graph that contains a cycle that corresponds to a

HOR and a dimer formed by two high-multiplicity anti-parallel edges (Fig. 4.5). In fact, this

dimer was originally reported as a HOR in cen1 [127], [116], [117].

Splitting a junction monomer in cen13 (cen18) results in two monomers that differ in only

3 (1) nt. The split of the unbreakable vertex G into vertices G.0 and G.1 results in two traversals

F-G.0-H and J-G.1-A (Fig. 4.5). Further launch of StringDecomposer (using monomers G.0 and

G.1 instead of G) confirms that there are no traversals F-G.0-A and J-G.1-H.

Splitting a junction monomer in cen18 results in two nearly identical monomers that

differ in a single nucleotide and raises a concern about the applicability of the CE postulate to

cen18. Splitting the unbreakable monomer G in cen18 should result in two traversals B-G.0-J

and F-G.1-H. However, the further launch of StringDecomposer shows 547 B-G.1-J traversals

and 10 F-G.0-H traversals. Importantly, in all B-G.1-J (F-G.0-H) traversals, the monomer block

G.1(G.0) is more similar (or even identical) to the monomer G.1(G.0). Although this raises a

concern about the validity of splitting the unbreakable monomer G in cen18, we proceed with

the split to be consistent with the CE postulate.
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Figure 4.5. Inferring HORs for cen1, cen9, cen13, and cen18. (First row) Splitting an unbreak-
able junction monomer in cen1 results in two monomers with an 11-nt difference and transforms
the monomer graph of cen1 into a cycle with a single chord. (Second row) The manually inferred
HOR of cen9 [117], shown as the blue cycle, is in conflict with the CE postulate because the
frequently traversed yellow cycle contains a monomer that does not belong to the blue cycle.
(Third row) Splitting an unbreakable junction monomer in cen13 results in two similar monomers
with an only 3-nt difference and transforms the monomer graph of cen13 (Fig. 4.4) into a cycle
with a single chord shown on the left. The resulting simplified monomer graph (shown on the
right) reveals the canonical 11-monomer HOR in cen13. (Fourth row) Splitting an unbreakable
junction monomer in cen18 results in two monomers with only a single-nucleotide difference
and transforms the simplified monomer graph of cen18 (Fig. 4.4) into a cycle with three chords
(shown on the left). The resulting simplified monomer graph (shown on the right) reveals the
canonical 12-monomer HOR in cen18. (Figure continues on the following page.)
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Figure 4.5. Inferring HORs for cen1, cen9, cen13, and cen18.
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4.3.8 Dehybridization reveals HORs in cen5 and cen8

We identified all hybrid monomers (among monomers in MonomersNew+ across all

centromeres) using the approach described in Methods (“Inference of hybrid monomers”). This

analysis revealed only three frequent hybrid monomers: P5, R1/5/19, and L8. Below, we describe

the “dehybridization” operation on monomer graphs that reveals HORs in cen5 and cen8.

Dehybridization in cen5

P5 is a hybrid monomer of S5 and D5 that differs from S5(50)/D5(120) in 5 nt, whereas

R1/5/19 is a hybrid monomer of B5 and D5 that differs from B5(92)/D5(78) in 6 nt. Figure

4.6 (top) illustrates that dehybridization of P5 and R1/5/19 results in a graph with a single

Hamiltonian cycle that is classified as a HOR.

Dehybridization in cen8

L8 is a hybrid monomer of D8 and G8 which differs from the consensus D8(60)/G8(111)

by only 2 nt (Supplemental Note 4 in [118]). Figure 4.6 (bottom) illustrates the dehybridization

of L8 that models it as a hybrid edge of the monomer graph, resulting in a graph with a single

Hamiltonian cycle (and two chords) that is classified as a HOR.

4.3.9 What is a HOR in cen9?

Splitting unbreakable junction vertices (cen1, cen13, and cen18) and dehybridization

(cen5 and cen8) reveal HORs for all centromeres except for cen9. This centromere represents

a difficult case from the perspective of the CE postulate because it is unclear how to infer a

HOR from the monomer graph of this centromere. The blue traversal of this graph (Fig. 4.5)

corresponds to the currently known (manually inferred) HOR. The monomer F9 (that does not

belong to the HOR in cen9) cannot be represented as a hybrid monomer and is quite different

from its most similar monomer in cen9 (it differs from Z4/9 by 12 nt). Thus, it is not clear how

to automatically derive a HOR for cen9.

One can argue that merging monomers F9 and Z4/9 would reveal a Hamiltonian cycle
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cen5

cen8

Figure 4.6. Dehybridization substitutes hybrid vertices (monomers) by hybrid edges in the
monomer graph. (Top) Dehybridization of P5 and R1/5/19 in cen5. (Bottom) Dehybridization of
L8 in cen8.
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(HOR) in the resulting monomer graph, thus extending the CE postulate to cen9. This argument

reflects the difficulty of developing an automated approach to centromere annotation and defining

parameters of these approaches that work across all centromeres. Indeed, the CE postulate is

highly dependent on parameters; for example, relaxing the parameter for monomer merging

will affect the monomer graphs for all centromeres and may “break” the CE postulate for

some of them. Although by manually fitting parameters for each centromere, one can make it

look consistent with the CE postulate, such an approach does not represent solid supporting

evidence for this postulate. As described in Supplemental Note 6 in [118], because of the limited

data (only a single human genome has been completely assembled so far), it is challenging to

avoid overfitting even for the default parameters of HORmon, let alone for a more complex

procedure. Our approach represents the first automated analysis (with the same parameters for all

centromeres) demonstrating that the CE postulate holds for nearly all centromeres. Subsection

“Limitations of the CE postulate” (Methods) highlights further limitations of the CE postulate.

4.3.10 Generating the centromere decomposition into HORs

HORmon decomposes each monocentromere into canonical, partial, and auxiliary HORs

as described in subsection “Decomposing a centromere into HORs” in Methods (Fig. ??).

Given a canonical HOR H = M1, . . . ,Mn, each canonical HOR Mi, . . . ,Mn,Mn+1, . . . ,Mi−1, in

the decomposition is labeled as ci. We use the notation cm
i to denote m consecutive occurrences

of a canonical HOR and refer to each such element in the HOR decomposition as a “HOR run.”

According to the CE postulate, hybrid and infrequent monomers do not belong to the HOR.

Supplemental Note 7 in [118] discusses the advantages of the HORmon approach over more

traditional methods.

The “length” of the HOR decomposition is defined as the total number of elements in

this decomposition (each entry xy is counted as a single element). Figure 7 in [118] shows

the HOR decompositions of cenX under the assumption that the monomer set includes 12

monomers AB. . . KL forming the HOR on cenX, as well as hybrid monomers M and N identified
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in [47]. Supplemental Table S2 and Supplemental File 1 in [118] provide information about

the HOR decompositions for all human centromeres. Supplemental Note 8 in [118] describes

how these HOR decompositions are used to generate the nucleotide consensus of each HOR.

Supplemental Note 4 in [118] summarizes information about these consensuses for live human

centromeres. Because these consensus sequences are computed for the first time using a complete

human genome assembly, they characterize the CHM13 cell line more accurately than previously

inferred sequences. The question of whether they are representative for other individuals remains

open.

Pairs of centromeres (13, 21) and (14, 22), as well as triple of centromeres (1, 5, 19),

have been reported to share the same HOR [117]. Contrary to previous studies, we conclude

that HORs in these centromeres are rather different, at least in the CHM13 cell line. The edit

distance between the consensus of HORs in cen13 and cen21 is rather high (20 differences,

1% divergence), whereas the edit distance between the consensus of HORs in cen14 and cen22

is much lower (three differences, 0.2% divergence). Previous studies reported two frequent

nonhybrid monomers for centromeres 1, 5, and 19 [117]. We report six frequent nonhybrid

monomers for cen1 and cen5, and two for cen19. We hypothesize that these differences are a

result of the absence of a complete genome assembly in prior studies. Sequence comparison

shows that the edit distance between the consensus of HOR in cen1 and cen5 is large (34

differences, 3.3% divergence).

4.4 Discussion

Recent advances in long-read sequencing technologies and genome assembly algorithms

opened new horizons for centromere genomics. For the first time, studies of human alpha satellite

arrays can be based on a complete centromere assembly rather than individual reads or “satellite

reference models” [31]. The development of an automated centromere annotation tool is a

prerequisite for future centromere research that quickly moves to the stage when the complete
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Figure 4.7. Decomposition of cenX into HORs. The 12-monomer HOR for cenX is represented
as M1. . . M12 = AB. . . KL. The monomer set includes these 12 frequent monomers as well as
hybrid monomers M (a hybrid of monomers J and H) and N (a hybrid of monomers K and J)
identified in [47]. Each occurrence of this HOR that starts from the monomer Mi is labeled as ci
(shown in red). Each occurrence of a partial HOR that includes monomers from i to j is labeled
as pi, j. We use the notation cm (pm) to denote m consecutive occurrences of a canonical (partial)
HOR. The most frequent partial monomers p3−7, p7−3, and p5−2 in cenX are colored in blue,
green, and brown, respectively. The HOR decomposition of cenX has a length 72 and includes
1486 complete HORs that form 34 HOR runs. Only 257 of 18,089 (1.4%) monomer blocks in
cenX are not covered by complete HORs. The “LINE” entry shows the position of the LINE
element. To ensure that all monomers are shown in the forward strand, we decompose the reverse
complement of cenX and take reverse-complements of all monomers in cenX (Supplemental
Note 4 in [118]).

genomes of hundreds of individuals will be assembled. These studies include population-wide

analysis of human monomers and HORs, evolutionary studies of centromeres across primates and

other species, and biomedical studies of diversity of human centromeres and their associations

with genetic diseases.

We developed HORmon, the first annotation tool for live alpha satellite arrays that con-

siders monomer and HOR inference as two interconnected problems and automatically generates

the monomer and HOR set that mirror the four decades of centromere research. HORmon not

only provides the first automatic procedure for extracting monomers and HORs in live alpha

satellite arrays but also establishes their nucleotide consensus sequences. This is important

because the currently used nucleotide sequences for many of these monomers and HORs have

been extracted more than two decades ago [116] in the absence of centromere assemblies. In

centromeres 1, 2, 5, and 15, HORmon reported a different number of monomers than [117]. We

hypothesize that these differences result from the absence of a complete genome assembly in
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prior studies. Contrary to previous studies, we found that HORs in pairs of centromeres (13, 21)

and (14, 22) are rather different (“Generating the centromere decomposition into HORs”). We

note that because human centromeres are very divergent between individuals, it remains unclear

how well the inferred nucleotide consensus of HORs in the CHM13 cell line represents other

individuals.

HORmon uses a heuristic approach for monomer and HOR inference rather than popular

clustering algorithms (such as k-means or hierarchical clustering) because the monomer inference

problem differs from the classical clustering problem. For example, the set of data points

(monomer blocks) is not explicitly given but is implicitly encoded in the centromere and depends

on the selection of centers (monomers). Although the choice of the consensus alpha satellite

results in the initial set of monomer blocks, each selection of a monomer set affects this initial

set and results in a slightly different clustering problem. Moreover, it is not clear how to select

the biologically adequate function to measure the distances between data points and centers.

For example, the sequence divergence function that HORmon uses is clearly limited (it does

not take into account the positional information), necessitating the merging/splitting modules

in HORmon. It is also unclear how to incorporate hybrid monomers in the framework of the

classical clustering problems. To address all these complications, we have designed the HORmon

heuristic instead of using the standard clustering approaches. Supplemental Note 9 in [118]

presents information about time and memory footprint of HORmon.

HORmon introduced a procedure for decomposing a centromere into HORs and generated

the UCSC Genome Browser tracks representing this decomposition for the CHM13 genome.

Although the recently assembled CHM13 genome does not include Chromosome Y, we project

that HORmon will be able to generate monomers and HORs for cenY once its complete assembly

becomes available. [42] classified a HOR as “homogeneous (divergent)” if its copies have an

average divergence less than 5% (greater than 10%). In addition to live centromeres that we

analyzed in this paper, human chromosomes have nearly 60 pseudocentromeric and divergent

HOR arrays. Our next goal is to use HORmon for generating monomers and HORs for these
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HOR arrays that are still only manually annotated (inferred) in the T2T assembly.

Although HORmon relies on the CE postulate to rationalize the series of splits, merges,

and dehybridizations, computational validation of this postulate remains outside the scope of this

paper (Supplemental Note 1 in [118]). Indeed, rigorous statistical analysis of the CE postulate

(together with formulating and analyzing alternative evolutionary hypotheses) is currently lacking.

Because the CE postulate was formed implicitly at the dawn of the sequencing era, we do not

rule out a possibility that it might be revised once the statistical significance of HOR extraction

for all centromeres is rigorously assessed. In fact, development of HORmon already revealed

difficulties of extending CE postulate to cen9 (subsection “What is a HOR in cen9?”) and cen18

(subsection “Splitting unbreakable monomers reveals HORs in cen1, cen13, and cen18”).

Because only a single human genome remains completely assembled, the selection of

HORmon parameters was based on this genome only and thus may suffer from overfitting.

Supplemental Note 6 in [118] provides intuition and justification for parameter selection. More-

over, without a rigorous statistical assessment of the CE postulate versus alternative models of

centromere evolution [128], [129], [111], it is unclear how to verify that the HORs extracted by

HORmon represent the most likely solution of the HOR inference problem. To complicate the

issue even further, the existing nucleotide sequences of canonical HORs have been extracted

decades ago, limiting the available “ground truth” to benchmark HORmon against. We anticipate

that the HORmon pipeline will become an important stepping stone for the development of a

fully automatic tool for the extraction of HORs and centromere annotation across the human

population once more complete assemblies become available. In fact, [110] already show that

extracting monomers and HORs and centromere annotation assists with analysis of CENPA

ChIP-seq enrichment and DNA methylation in satellite arrays.

Because the rapidly evolving centromeres are very diverse across the human population

[31], [130], we anticipate that the concepts of the monomer graph will assist in comparing

centromeres across multiple individuals. Supplemental Notes 10 and 11 in [118] show early

application of HORmon to centromeres beyond the human genome. Although HORmon proved
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to be useful for analyzing live centromeres, automatic procedures for annotating other alpha

satellite domains (both HOR and monomeric) are currently not established. We project that

HORmon will work just as well on all homogeneous HORs (not only the live ones). Other HOR

arrays however are known to be more divergent than the live arrays, and monomeric arrays are

yet more divergent, so it is currently unclear how to universally select HORmon parameters to

annotate all alpha satellite arrays in the human genome.

4.5 Methods

4.5.1 Positionally similar monomers

Given a monomer M in a monomer set Monomers for a given monocentromere, we

identify all triples of consecutive blocks XMY that appear in this monocentromere, and con-

struct the |Monomers| ∗ |Monomers| matrix TriplesM, where TriplesM(X ,Y ) is the count of

the number of triples XMY in the monocentromere. We further construct a normalized matrix

NormalizedTriplesM(X ,Y ) by multiplying TriplesM(X ,Y ) by a constant so that the squared

sum of all its entries is equal to one.

Given two equally sized n×m matrices A and B, we define their similarity as the dot-

product of the n×m-dimensional vectors representing these matrices:

sim(A,B) = ∑
i, j

A(i, j)×B(i, j).

Given two monomers M and M′, we define their positional similarity PosSim(M,M′) as

sim(NormalizedTriplesM,NormalizedTriplesM′).

Two monomers are called “similar” if the percent identity between them exceeds a

threshold minPI (default value 94%). Two similar monomers are called “positionally similar” if

their positional similarity exceeds a threshold minPosSim (default value 0.4).
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4.5.2 Merging positionally similar monomers

Because two different positionally similar monomers point to a potentially erroneous

splitting of a single monomer, HORmon checks if there are positionally similar monomer pairs

in the monomer set Monomers. If such monomer pairs exist, it iteratively identifies a pair of the

most positionally similar monomers (similar monomers with the highest positional similarity

of all similar monomers), merges them into a new monomer, recomputes the consensus of the

new monomer, launches StringDecomposer on the new (smaller) monomer set, and iterates until

there are no positionally similar monomers left. Similarly to constructing the triple matrices for

all triples XMY of a monomer M, HORmon constructs similar matrices for all triples XY M and

MXY and merges monomers based on these two matrices in the same way it merges monomers

for all triples XMY .

4.5.3 Splitting aggregated monomers

To decide whether to split a monomer M, HORmon analyzes all frequent triples XMY

in a monocentromere. Given a monomer M, we refer to the largest element in the matrix

NormalizedTriplesM(X ,Y ) as the “M champion.” We classify elements (X ,Y ) and (X ′,Y ′) in

the matrix NormalizedTriplesM(X ,Y ) as “M comparable” if

NormalizedTriplesM(X ′,Y ′)/NormalizedTriplesM(X ,Y )

exceeds a “splitting threshold” splitValue (default value 1/8). HORmon uses the single linkage

clustering to iteratively identify all monomer pairs (X ,Y ) that are M comparable with the M

champion and refer to them as “M-candidate pairs.”

Monomer pairs (X ,Y ) and (X ′,Y ′) are called “independent” if all four monomers X ,Y,X ′,

and Y ′ are different. A monomer M that has M-candidate-pairs is called breakable if all M-

candidate pairs are (pairwise) independent, and “unbreakable,” otherwise. Given a break-

able monomer M, HORmon considers all M-candidate pairs (X1,Y1), . . . ,(Xt ,Yt) and splits
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the monomer M into t monomers M1, . . . ,Mt by separately deriving the monomers Mi as the

consensus of all M blocks that arise from triples XiMYi in the monocentromere for 1≤ i≤ t.

Supplemental Note 12 in [118] describes the pseudocode of the SplitAndMerge module

that HORmon uses for modifying the initial monomer set.

4.5.4 Simplified monomer graphs

Given a monomer graph, HORmon constructs the “complete bipartite graph”where each

part represents all vertices (monomers) of the monomer graph. A monomer M′ in the “upper”

part is connected with a monomer M′′ in the “bottom” part by an edge of the weight equal to

the multiplicity of the edge (M′,M′′) in the monomer graph. Afterward, HORmon solves the

“assignment problem“ to find the “maximum weight bipartite matching“ in the bipartite graph

[131]. Edges of this bipartite matching, which also represent edges of the monomer graph, form

a set of nonoverlapping cycles and paths in the monomer graph. An edge of a monomer graph

is classified as “removable” if it forms a chord in one of these cycles/paths (a chord of a path

is defined as an edge connecting two internal vertices of this path). Removal of all removable

edges from the monomer graph results in the “simplified monomer graph.”

4.5.5 Inference of hybrid monomers

HORmon’s algorithm for inferring hybrid monomers differs from the approach in

[114]. For monomers A,B, and C, we define HybridDivergenceA(B,C) as the divergence

between A and a concatenate of a prefix of B and a suffix of C that is most similar to A.

A monomer A from a monomer set Monomers is a “hybrid candidate” of monomers B and

C if HybridDivergenceA(B,C) is below the maxResolvedDivergence threshold and Hybrid-

DivergenceA(B,C) does not exceed divergence between A and any another monomer from Mono-

mers. HORmon first generates a set HybridCandidates by iterating over concatenates of all

possible prefixes and suffixes for every pair of distinct monomers B and C. Afterward, if there

is a single pair of monomers B and C that give rise to a hybrid candidate A, we classify A as a
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hybrid of B and C. If several pairs of such monomers exist, we select a pair of monomers B and

C that are not hybrid candidates themselves, form a concatenate with the minimal divergence

from the monomer A, and classify A as a hybrid of B and C.

4.5.6 Decomposing a centromere into HORs

We defined the monomer graph as the de Bruijn graph with low-multiplicity vertices

and edges removed. We now consider the complete de Bruijn graph DB(Centromere∗,2) and

classify an edge in this graph as a “HOR edge” if it connects two consecutive monomers in a

HOR, and a “non-HOR edge,” otherwise. A monocentromere defines a traversal of edges in the

de Bruijn graph (that contains both HOR edges and non-HOR edges) and each non-HOR edge in

this traversal corresponds to two consecutive monomers in the monocentromere that we refer to

as “breakpoint.” We break the monocentromere at all breakpoints defined by non-HOR edges,

resulting in multiple short substrings. These substrings, that define the HOR decomposition of a

centromere, represent one of the following scenarios:

• a canonical HOR or multiple consequently traversed canonical HORs that may be followed

by a partial HOR;

• partial HOR that includes monomers from i to j denoted pi, j. Because a HOR is a

cycle, i might exceed j, for example, p4,2 corresponds to the partial 4-monomer HOR

M4,M5,M1,M2 for a 5-monomer HOR M1,M2,M3,M4,M5; and

• auxiliary HOR represented by a hybrid or an infrequent monomer (denoted by the identifier

of this monomer).

4.5.7 Limitations of the CE postulate

Figure 4.8 shows a toy example of two “monocentromeres” that result in identical

monomer graphs (formed by cycles AB and BC connected via the junction vertex B) yet

represent very different evolutionary scenarios. Although one can come up with a plausible
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Figure 4.8. Two different “monocentromeres” BABABABABABCBCBCBCBCB and
BABCBABCBABCBABCBABCB have the identical monomer graphs.

“evolutionary” scenario for these centromeres, it is not clear how to find out their HORs that

would be compliant with the CE postulate. The first monocentromere can be described as two

cycles (one formed by vertices A and B and another formed by vertices C and B), whereas

the second one can be described by a single cycle (formed by vertices A, B, C, and B) in the

monomer graph.

The concept of a HOR does not allow one to adequately describe the differences between

the monocentromeres shown in Figure 4.8 because it requires that each monomer participates in

a HOR once, necessitating the sequence ABC (that does not adequately reflect the centromere

architecture) as the only possible HOR candidate. Although this example might be considered

artificial, any algorithm for centromere annotation should adequately handle such cases, even if

they rarely appear in the human centromeres. As we show below, cen13 and cen18 represent an

evolutionary scenario that is similar to the toy centromere described in Figure 4.8.

The previous approaches to centromere annotation were based on the CE postulate and

described centromeres in terms of complete and partial HORs. Given toy monocentromeres

ABCABCABCABCABABABAB and ABCABABCABABCABABCAB, they described these
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very different architectures in the same way: as the complete HOR ABC and the partial HOR

AB, each repeating five times. Because this representation does not distinguish these two very

different centromere architectures, there is a need for a more general representation of the

centromere architecture that will adequately reflect all complete and partial HORs.

4.6 Data access

The codebase of HORmon is available as Supplemental Code to [118] and at GitHub

(https://github.com/ablab/HORmon/tree/HORmon). Monomer and HOR decompositions of

alpha satellite arrays in the CHM13 cell line are available as Supplemental Material to [118] and

at Figshare (https://figshare.com/articles/dataset/HORmon/16755097/2). Jupyter notebook that

reproduces figures in this paper is available at GitHub

(https://github.com/TanyaDvorkina/hormon paper/blob/dev/HORmon paper.ipynb).
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Chapter 5

Multiplex de Bruijn graphs enable genome
assembly from long, high-fidelity reads

5.1 Abstract

Although most existing genome assemblers are based on de Bruijn graphs, the con-

struction of these graphs for large genomes and large k-mer sizes has remained elusive. This

algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity

(HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere as-

sembly of the human genome. To enable automated assemblies of long, HiFi reads, we present

the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs

and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude,

constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a

multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our

algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous

assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome

that completely assembled six chromosomes.
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5.2 Introduction

The emergence of long and accurate reads opened a possibility to generate the first

complete (telomere-to-telomere) assembly of a human genome and to get a glimpse into biomed-

ically important genomic regions that evaded all previous attempts to sequence them [85]. The

Telomere-to-Telomere (T2T) and Human Pangenome Reference projects are now using long and

accurate reads for population-scale assembly of multiple human genomes and for diagnosing

rare diseases that remained below the radar of short-read technologies [132].

These breakthroughs in genome sequencing were mainly achieved using HiFi reads[89].

However, assembly of HiFi reads is far from being straightforward: the complete assembly of

a human genome was generated using a semi-manual effort of a large consortium rather than

by an automated approach [85]. Because such time-consuming efforts are neither sustainable

nor scalable in the era of population-scale sequencing, there is a need for an accurate (nearly

error-free) tool for complete genome assembly.

We argue that this challenge requires an algorithm for constructing large de Bruijn graphs

[126] — that is, de Bruijn graphs for large genomes and large k-mer sizes exceeding 1,000

nucleotides. Indeed, similarly to assembling short and accurate reads, the de Bruijn graph

approach has the potential to improve assemblies of any type of accurate reads. However,

although it represents the algorithmic engine of nearly all short-read assemblers [33], [133], the

problem of constructing large de Bruijn graphs remains open, and the existing HiFi assemblers

HiCanu [75] and hifiasm [87] are based on the alternative string graph approach [134].

Because HiFi reads are even more accurate than Illumina reads, the de Bruijn graph

approach is expected to work well for their assembly. Application of this approach to long HiFi

reads requires either constructing the de Bruijn graph with a large k-mer size or, alternatively,

using the de Bruijn graph with a small k-mer-size for follow-up repeat resolution by threading

long reads through this graph. However, it remains unclear how to address three open algorithmic

problems in assembling HiFi reads: (1) constructing large de Bruijn graphs, (2) error-correcting
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HiFi reads so that they become nearly error-free and thus amenable to applying the de Bruijn

graph approach and (3) using the entire read-length for resolving repeats that are longer than the

k-mer size.

The existing genome assemblers are not designed for constructing large de Bruijn graphs

because their time/memory requirements become prohibitive when the k-mer size becomes

large—for example, simply storing all 5,001-mers of the human genome requires ˜4 TB. For

example, the SPAdes assembler [33] faces time/memory bottlenecks assembling mammalian

genomes with the k-mer size exceeding 500. To reduce the memory, some assembly algorithms

avoid explicitly storing all k-mers by constructing a perfect hash map5 or the Burrows–Wheeler

transform of all reads [135]. However, even with these improvements, the runtime (proportional

to the k-mer size) remains large (Supplementary Note 1 in [107]).

The repeat graph approach [136] and the sparse de Bruijn graph approach [137] construct

coarse versions of the de Bruijn graph with smaller time/memory requirements. Recently, [86]

modified the Flye assembler for constructing the repeat graph of HiFi reads, and [138] showed

how to assemble HiFi reads into a sparse de Bruijn graph. However, these graphs represent

coarse versions of the de Bruijn graph, thus limiting their capabilities in assembling the highly

repetitive regions such as centromeres (Supplementary Note 2 in [107]).

Here we introduce LJA, which includes three modules addressing all three challenges

in assembling HiFi reads: jumboDBG (constructing large de Bruijn graphs), mowerDBG

(error-correcting reads) and multiplexDBG (using the entire read-length for resolving repeats).

jumboDBG combines four algorithmic ideas: the Bloom filter [101], the rolling hash [109], the

sparse de Bruijn graph [137] and the disjointig generation [3]. Although each of these ideas was

used in previous bioinformatics studies, jumboDBG is the first approach that combines them.

LJA launches jumboDBG to construct the de Bruijn graph, launches mowerDBG that uses this

graph to correct nearly all errors in reads, launches jumboDBG again to generate a much simpler

graph of the error-corrected reads and launches multiplexDBG to transform it into the multiplex

de Bruijn graph with varying k-mer sizes to take advantage of the entire read-lengths. LJA also
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includes the LJApolish module that expands the collapsed homopolymer runs in the resulting

assembly.

Although we benchmarked LJA, hifiasm and HiCanu on various genomes, evaluating

the quality of the resulting assemblies is challenging because neither the complete reference

for these genomes nor an automated pipeline for a reference-grade assembly validation are

available yet [92]. We thus focused on benchmarking these assemblers using the HiFi read-set

(referred to as the T2T dataset) from a haploid human CHM13 cell line assembled by the T2T

consortium [85]. This painstakingly validated assembly represents the only accurate telomere-

to-telomere sequence of a large genome available today. LJA generated the most contiguous

assembly of this dataset (including complete assemblies of six human chromosomes without any

misassemblies and only ten misassemblies for the entire human genome), reducing the number

of assembly errors five-fold as compared to hifiasm and HiCanu. The accuracy of genome

assemblers becomes critical in the era of population-wide complete genome sequencing because

semi-manual validation of complete genome assemblies18 is prohibitively time-consuming.

5.3 Results

5.3.1 Key algorithmic concepts used in the LJA pipeline

The goal of genome assembly is to reconstruct a genome from its error-prone frag-

ments (reads). Given a string-set Reads and an integer k, the (uncompressed) de Bruijn graph

UDB(Reads,k) is a directed graph where each vertex is a k-mer from Reads, and each (k + 1)-mer

a1a2 . . .akak+1 in reads corresponds to an edge connecting vertices a1a2 . . .ak and a2 . . .akak+1.

The uncompressed de Bruijn graph of a genome UDB(Genome,k) is defined by considering

each chromosome in Genome as a single ‘read’. We refer to an error-free read-set Reads that

contains all (k + 1)-mers from a string-set Genome as a k-complete read-set and note that

UDB(Genome,k)=UDB(Reads,k) for a k-complete read-set.

A vertex with the indegree N and the outdegree M is referred to as an N-in-M-out vertex.
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A vertex is non-branching if it is a one-in-one-out vertex and a junction otherwise. We refer

to the set of all junctions (k-mers) in the graph UDB(Reads,k) as Junctions(Reads,k). A path

between junctions is non-branching if all its intermediate vertices are non-branching. A set of

k-mers from Reads forms a junction-superset if it contains all junctions in UDB(Reads,k).

The compressed de Bruijn graph DB(Reads,k) is a memory-efficient version of the

uncompressed graph UDB(Reads,k) where each non-branching path is compressed into an

appropriately labeled single edge (see Supplementary Notes 2 and 3 in [107] for the precise

definition and the summary of terms used in this paper). Because LJA uses compressed de Bruijn

graphs, we refer to them simply as the ‘de Bruijn graphs’ or DB-graphs. The coverage of an

edge in UDB(Reads,k) is number of times the label of this edge occurs in Reads. The coverage

of an edge in DB(Reads,k) is the average coverage of all edges in the non-branching path that

was compressed into this edge.

The challenge of constructing a large de Bruijn graph

Because the compressed DB-graph DB(Genome,k) does not require storing all k-mers,

the total length of all its edge-labels is up to k times smaller than the total length of all edge-

labels in UDB(Genome,k). The traditional assembly approach constructs UDB(Reads,k) first and

transforms it into DB(Reads,k). Because this approach is impractical for large genomes and large

k-mer sizes, jumboDBG constructs DB(Reads,k) without constructing UDB(Reads,k).

Even though DB(Reads,k) is more memory-efficient than UDB(Reads,k), its direct con-

struction also requires prohibitively large time/memory. jumboDBG thus assembles reads

into disjointigs, sequences that are spelled by arbitrary walks through the (unknown) graph

DB(Reads,k). Even in the case of error-free reads, a disjointig might represent a misassem-

bled concatenate of segments from various regions of the genome rather than its contiguous

substring [3]. Although switching from reads to misassembled disjointigs might appear reck-

less, it is an important step because a carefully chosen disjointig-set Disjointigs has a much

smaller total disjointig-length than the total read-length while resulting in the same DB-graph
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DB(Disjointigs,k) as DB(Reads,k).

Even though constructing DB(Disjointigs,k) is an easier task than constructing DB(Reads,

k), it still faces the time/memory bottleneck. jumboDBG addresses it by using the Bloom filter,

a compact data structure for storing sets. It stores all (k + 1)-mers from disjointigs in a Bloom

filter formed by multiple independent hash functions, each mapping a (k + 1)-mer into a bit

array. The Bloom filter reports a true positive for all (k + 1)-mers occurring in disjointigs but

might also report a false positive for some (k + 1)-mers that do not occur in disjointigs (with a

small controlled probability). However, it never ‘forgets’ any inserted (k + 1)-mer and thus never

reports a false negative.

5.3.2 Outline of the LJA pipeline

Below we outline all steps of the LJA pipeline using the T2T dataset of HiFi reads that

was semi-manually assembled by the T2T consortium into a sequence T2TGenome by integrating

information generated by multiple sequencing technologies (CHM13 reference genome version

1.1). All datasets analyzed in this paper are described in Supplementary Note 4 [107].

Figure 5.1 illustrates the work of the jumboDBG module (steps 1–7 of the LJA pipeline).

Figure 5.2 illustrates the entire LJA pipeline.

Step 0: Transforming all reads into homopolymer-collapsed reads

Because errors in the length of homopolymer runs represent the dominant source of errors

in HiFi reads, LJA collapses each homopolymer run X...X in each read into a single nucleotide

X, resulting in a homopolymer-collapsed (HPC) read. The entire LJA pipeline works with HPC

reads, except for the last LJApolish module that expands each collapsed nucleotide X in the HPC

assembly into a run X...X in such a way that its run-length coincides with the correct run-length

in nearly all cases (the error rate in the run-lengths is below 0.00001). On average, uncollapsed

reads in the T2T dataset have ˜2,000 errors per megabase of the total read-length. Transforming

them into HPC reads reduces the error rate to ˜620 errors per megabase in the HPC genome
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Figure 5.1. JumboDBG pipeline. (1) Generating the anchor-set Anchors = GA,AC,TC,TA,GT
by finding all minimizers in Reads. For simplicity, the figure does not reflect that jumboDBG
classifies all k-prefixes and k-suffixes of reads as minimizers. (2) Constructing a compact sparse
de Bruijn graph SDB(Reads,Anchors). (3) Constructing a compact disjointig-set Disjointigs
as edge-labels in SDB(Reads,Anchors). (4) Generating the Bloom filter for all (k + 1)-mers in
disjointigs. Each arrow directed from a (k + 1)-mer to the Bloom filter illustrates its evaluation
by one of the hash functions. (5) Using the Bloom filter to construct the junction-superset
Junctions+ and (5A) find positions of k-mers from Junctions+ in disjointigs (5B). For simplicity,
although the Bloom filter might generate some false-positive junctions (for example, TC), we
only show the correct junctions in 5A. (6) Breaking disjointigs into splits. (7) Constructing the
compressed de Bruijn graph DB(Disjointigs,k)=DB(Reads,k).
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Figure 5.2. LJA pipeline. jumboDBG first constructs the de Bruijn graph DB(Reads,k) with a
small k-mer size. mowerDBG uses this graph to correct errors in reads, resulting in an error-
corrected read-set Reads’. Afterwards, jumboDBG constructs the de Bruijn graph DB(Reads’,K)
on the error-corrected read-set with a large K-mer size. mowerDBG uses this graph to correct even
more errors in reads, resulting in an error-corrected read-set Reads∗. Because error correction
in mowerDBG simultaneously modifies the graph DB(Reads’,K) into the graph DB(Reads*,K),
there is no need to launch jumboDBG again for constructing DB(Reads*,K). multiplexDBG
complements the error-corrected read-set Reads* by virtual reads and transforms DB(Reads*,K)
into the multiplex de Bruijn graph MDB(Reads*,K). LJApolish uses the set of original reads
Reads to expand HPC contigs formed by non-branching paths in this graph.

(when comparing HPC reads to the HPC reference genome) and makes 38% of all HPC reads

error-free.

Step 1: Generating the anchor-set by finding all minimizers in the HPC read-set Reads

Given a hash function defined on k-mers, a minimizer of a word is defined as a k-mer with

a minimal hash in this word. A minimizer-set of a string is defined as the set of all minimizers

over all its substrings of length width [139]. We modify the original concept of a minimizer

of a linear string by adding its prefix and suffix k-mers to the set of its minimizers. A sensible

choice of the parameter width (and a hash function) ensures that each read is densely covered by

minimizers and that overlapping reads share minimizers, facilitating the assembly. jumboDBG

generates the set of all minimizers in reads that we refer to as the anchor-set Anchors.

Step 2: Constructing a compact sparse de Bruijn graph.

Because the direct construction of DB(Reads,k) faces the time/memory bottleneck, jum-

boDBG first assembles reads into disjointigs. Although the Flye assembler [3] constructs

disjointigs by searching for overlapping reads, it is unclear how to extend this construction to

highly repetitive regions (for example, centromeres) that Flye does not adequately reconstruct.
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Instead, jumboDBG constructs a sparse de Bruijn graph and generates disjointigs in this graph

that are also disjointigs in the much larger (but unknown) de Bruijn graph.

Given a set of k-mers Anchors from a string-set Reads, we consider each pair a and a′ of

consecutive anchors in each read and generate a substring of the read (called a split) that starts

at the first nucleotide of a and ends at the last nucleotide of a′. The resulting set of splits (after

collapsing identical splits into a single one) is denoted Splits(Reads,Anchors). The sparse de

Bruijn graph SDB(Reads,Anchors) is defined as a graph with the vertex-set Anchors and the

edge-set Splits(Genome, Anchors). Each string in Splits(Genome,Anchors) represents the label

of an edge connecting its k-prefix and k-suffix in SDB(Reads,Anchors).

A sparse de Bruijn graph SDB(Reads,Anchors) is compact if all its vertices (anchors)

represent junctions in the graph DB(Reads,k). jumboDBG transforms the initially constructed

graph SDB(Reads,Anchors) into a compact sparse de Bruijn graph SDB(Reads,Anchors*) to

facilitate the construction of a compact disjointing-set (see below).

Step 3: Constructing a compact disjointig-set.

A disjointig-set is complete if its disjointigs contains all (k + 1)-mers from Reads. A

disjointig in the sparse de Bruijn graph SDB(Reads,Anchors) is compact if its k-suffix and k-prefix

are both junctions in DB(Reads,k). A complete disjointig-set is compact if each disjointig in this

set is compact. Because the set of all (k + 1)-mers in a complete disjointig-set coincides with

the set of all (k + 1)-mers in reads, DB(Reads,k)=DB(Disjointigs,k) for a complete disjointig-

set. Thus, the problem of constructing the compressed de Bruijn graph from reads is reduced

to constructing the compressed de Bruijn graph of a complete disjointig-set. However, not

every complete disjointig-set enables efficient construction of this graph. Below we show

that a compact disjointig-set enables efficient construction of DB(Disjointigs,k). jumboDBG

constructs a compact disjointig-set as the set of edge-labels in the compact sparse de Bruijn

graph SDB(Reads,Anchors*).
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Step 4: Generating the Bloom filter of all (k + 1)-mers in disjointigs

Even though we have reduced constructing the DB-graph DB(Reads,k) to constructing

DB(Disjointigs,k), even this simpler problem faces the time/memory bottleneck. To address it,

jumboDBG constructs the Bloom filter [140], [141] for storing all (k + 1)-mers in disjointigs and

uses the rolling hash to query them in O(1) instead of O(k) time.

Step 5: Using the Bloom filter to construct the junction-superset

The Bloom filter enables rapid construction of small junction-superset Junctions+ even

though the DB-graph of disjointigs has not been constructed yet. To achieve this goal, jumboDBG

uses the Bloom filter to compute the upper bound on the indegree and outdegree of each vertex

(k-mer) in the unknown DB-graph of disjointigs by checking which of its 4 + 4 = 8 forward and

backward extensions by a single nucleotide represent (k + 1)-mers present in the Bloom filter. A

k-mer is called a joint if the upper bounds on either its indegree or outdegree exceed 1. Because

each junction is a joint, the set of all joints forms a junction-superset.

Step 6: Using the junction-superset to break disjointigs into splits

jumboDBG also uses the Bloom filter to rapidly identify the positions of all k-mers from

Junctions+ in disjointigs and to break disjointigs into splits afterward.

Step 7: Using splits to construct DB(Disjointigs,k)=DB(Reads,k)

An edge-subpartition of an edge (v,w), in a graph ‘substitutes’ it with two edges

by ‘adding’ a vertex u in the ‘middle’ of this edge. A subpartition of a graph is defined

as a result of a series of edge-subpartitions. As described in the Methods, the string-set

Splits(Disjointigs,Junctions+) represents edge-labels of a subpartition of the graph DB(Dis-

jointigs,k). jumboDBG compresses all one-in-one-out vertices in this graph to generate DB(Dis-

jointigs,k) = DB(Reads,k).
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Step 8: Correcting errors in reads with mowerDBG

Supplementary Note 5 in [33] illustrates that jumboDBG generates highly contiguous

assemblies of a k-complete read-set sampled from T2TGenome for large values of k—for example,

k = 5,001. However, assembling real reads is challenging because the DB-graph DB(T2T,k) of the

T2T read-set is much more complex than the DB-graph DB(T2TGenome,k). mowerDBG uses the

DB-graph DB(Reads,k) to correct errors in the read-set Reads. LJA performs two rounds of error

correction and launches mowerDBG twice, with a small k-mer size in the first round, resulting in

an error-corrected read-set Reads’, and a large K-mer size in the second round, resulting in a

nearly error-free read-set Reads* (default values k = 501 and K = 5,001).

jumboDBG constructs the graph DB(T2T,k) with 33,230,906 edges in only 2.7 h using

54 Gb of memory. However, over 99% of edges in this graph are triggered by errors in reads:

if reads in the T2T dataset were error-free, jumboDBG would construct the DB-graph of the

error-free read-set T2TErrorFree with only 214,517 edges in 0.6 h using 33 Gb of memory.

mowerDBG corrects most errors in reads, resulting in a much smaller DB-graph DB(T2T’,k) with

297,176 edges on the error-corrected read-set T2T’. jumboDBG further constructs the DB-graph

DB(T2T’,K) using a larger K-mer size with 79,908 edges. Afterwards, mowerDBG performs the

second round of error-correction in this graph, resulting in a nearly error-free read-set Reads* and

a DB-graph DB(T2T*,K) with only 6,516 edges that approximates the graph DB(T2TErrorFree,K)

with 4,956 edges. We note that, because the read-set T2TErrorFree was constructed based on the

reference T2TGenome, which excluded the heterozygous regions present in the CHM13 cell line

[85], DB(T2T*,K) might have some heterozygous edges missing in DB(T2TErrorFree,K).

Step 9: Transforming the DB-graph DB(Reads∗,K) into the multiplex de Bruijn graph
(Fig. 5.4)

The choice of the k-mer size greatly affects the complexity of the DB-graph: gradually

increasing k leads to a less tangled but more fragmented DB-graph. This tradeoff affects the

contiguity of assembly, particularly in the case when the k-mers coverage by reads is non-uniform,

let alone when the read-set misses some genomic k-mers. Ideally, we would like to vary the
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Figure 5.3. Chromosome-by chromosome LGA95 (left) and completeness (center) metrics as
well as centromere-by-centromere LGA95 metric (right) for LJA (blue), hifiasm (green) and
HiCanu (red) assemblies of the T2T read-set. LGA95 for each chromosome (centromere) is
defined as the minimum number of aligned blocks needed to cover 95% of its length (aligned
blocks are obtained by breaking contigs at misassembly breakpoints). LJA 100%-assembled
six chromosomes and resulted in a better assembly (for example, assembly with lower LGA95)
than hifiasm and HiCanu for most chromosomes. Although hifiasm resulted in lower LGA95
than LJA on chromosomes 2 (4 versus 5), 11 (2 versus 3), 16 (3 versus 5), 21 (7 versus 13)
and 22 (4 versus 5), it made ten misassemblies in these five chromosomes compared to only
one misassembly made by LJA. For example, for chromosome 21 with the biggest gap in the
LGA95 values between hifiasm and LJA (7 versus 13), LJA resulted in a higher completeness
(82%) than hifiasm (75%). As another example, LJA resulted in a much larger LGA95 = 22 on
centromere 16 than hifiasm (6) and HiCanu (3) but made no errors (both hifiasm and HiCanu
had three misassemblies). LGA95 values for centromeres 13, 15 and 21 (for all assemblers) are
undefined because QUAST-LG reports multiple gaps in these centromeres. Long and highly
repetitive rDDNA arrays are the only regions in the human genome that were not assembled by
the T2T consortium. These regions are represented as simulated rDDNA models rather than
correct rDDNA sequences in T2TGenome. Because centromeres 13, 15 and 21 include rDDNA
models, QUAST-LG reports multiple gaps in their coverage by contigs that sum up to more than
5% of the lengths of these centromeres.

k-mer size, reducing it in low-coverage regions (to avoid fragmentation) and increasing it in

high-coverage regions (to improve repeat resolution). The iterative de Bruijn graph approach

[33], [32] is a step toward addressing this goal by incorporating information about the de Bruijn

graphs for a range of k-mer sizes k1 < k2 < .. . < kt into the de Bruijn graph. However, this

approach still constructs a graph with a fixed kt-mer size.

multiplexDBG transforms the DB-graph DB(Reads*,K) into the multiplex de Bruijn

graph MDB(Reads*,K) with vertices labeled by strings of length varying from K to K+, where

K+ is larger than K (default value K+ = 40,001). It transforms DB(T2T*,5001) with 6,516 edges
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Figure 5.4. Constructing a multiplex de Bruijn graph. a, Iterative construction of the compressed
de Bruijn graph. Transformation of DB(Reads,2) into DB(Reads,3) for the read-set Reads =
AACCGG,TTCCGG. The first read defines a transition between edges (AA,CC) and (CC,GG),
whereas the second read defines a transition between edges (TT,CC) and (CC,GG). The resulting
transition-set defines a transition-graph that coincides with DB(Reads,3). The read-paths that
define the transition-set are depicted as red curves traversing DB(Reads,2). multiplexDBG
‘tears apart’ edges of the DB(Reads,2) and increases the k-mer length within the vertices of the
resulting isolated edges. Afterwards, it introduces new red edges that correspond to connections
induced by transitions, resulting in a path-graph. Compressing non-branching paths in the
path-graph (ignoring the edge colors) results in DB(Reads,3). Because vertex ‘CC’ is simple,
graphs DB(Reads,2) and DB(Reads,3) have the same topology. The shown transformation
merely substitutes the k-mer label of this vertex by the (k + 1)-mer label(w)*symbolk+1(out). It
preserves the label of the outgoing edge from this vertex and adds a single symbol to the labels
of incoming edges into this vertex. b, Transforming a complex vertex. The read-sets Reads1 =
AAGGAG,TTGGCT (above) and Reads2 = AAGGAG, TTGGCT, AAGGCT (below) result
in the same graphs DB(Reads1,2) and DB(Reads2,2) but different graphs DB(Reads1,3) and
DB(Reads2,3). Because vertex GG in the graph DB(Reads1,2)=DB(Reads2,2) is complex, the
topology of the graphs DB(Reads1,3) and DB(Reads2,3) depends on the read-set. DB(Reads1,3)
consists of two connected components (top), whereas DB(Reads2,3) is a single-component graph
because it has an extra edge (labeled AGGC) introduced by the additional read AAGGCT.
c, Limitation of the de Bruijn graph approach to genome assembly. Reckless resolution of
unpaired complex vertices might disconnect the genome traversal. For a read-set Reads =
AAGGAG, AAGGCT, TTGG, because the read-path of TTGG ends inside the complex vertex
GG, the vertex TGG (with red outline) represents a dead-end. d, Multiplex de Bruijn graph
transformation. The multiplex de Bruijn graph for the same read-set avoids reckless resolution
of complex vertices by freezing unpaired complex vertices.
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into MDB(T2T*,5001) with only 1,432 edges and generates HPC contigs. Note that labels of

some vertices of this graph are longer than all reads in the T2T dataset because multiplexDBG

adds virtual reads to the read-set (Supplementary Note 6 in [107]).

Step 10: Expanding HPC contigs

LJApolish expands HPC contigs (edge-labels in the multiplex de Bruijn graph) and results

in an accurate final assembly with only ˜15 single-base errors per million nucleotides.

5.3.3 Evaluating genome assemblies

Given a string s in a string-set S, we define L+(s) as the total length of all strings in S

with length at least |s|. The N50 metric for a contig-set S is defined as the length of the longest

contig s in S with L+(s) ≤ 0.5 · |S|. See [64] on similar NG50, NGA50, NGA75 or LGA95

metrics.

We used the standard benchmarking metrics [64] as well as the additional completeness

metric aimed at high-quality assemblies. We denote the length of a string s as |s| and the

total length of all strings in a string-set S as |S|. A contig is correctly assembled if it has

no misassemblies. Completeness of a chromosome assembly is defined as the length of the

longest correctly assembled contig from this chromosome divided by the chromosome length (in

percentages). A chromosome is N%-assembled if its completeness is at least N%.

5.3.4 Benchmarking LJA on the T2T read-set

We benchmarked assemblies of the T2T read-set dataset against T2TGenome — the only

complete and carefully validated large genome reference available today[92]. Table 5.1 illustrates

that LJA produced the most contiguous assembly (NG50 = 97 Mb) with six 100%-assembled

and nine 95%-assembled chromosomes (compared to NG50 = 90 Mb and one 95%-assembled

chromosome for hifiasm). We classify a contig with length larger than or equal to NG50 (NG75)

as NG50-long (NG75-long) contig. It turned out that 1 (4) out of all 12 NG50-long contigs

assembled by LJA (hifiasm) are misassembled, resulting in a reduced NGA50 = 81 Mb for
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hifiasm. LJA (hifiasm) misassembled 1 out of its 24 (9 out of its 23) NG75-long contigs. Figure

5.3 demonstrates that LJA substantially improves on both hifiasm and HiCanu with respect to

chromosome-by-chromosome and centromere-by-centromere assemblies.

LJA substantially reduced the number of misassemblies (10) as compared to hifiasm (58)

and HiCanu (47). Although LJA produced more contigs than hifiasm (665 versus 448), this

increased number does not indicate an inferior assembly but, rather, reflects the fact that LJA

assembled an extra 13 Mb of the genome as compared to hifiasm (99.7% versus 99.3% genome

fraction). In fact, hifiasm produced more contigs longer than 50 Kb than LJA (250 versus 194).

LJA and hifiasm made an order of magnitude fewer mismatches and indels than HiCanu.

Analysis of these errors should take into account that an assembler covering a larger fraction

of a genome might have additional errors in highly repetitive regions that are not covered by

other assemblers. Although LJA made slightly more errors than hifiasm (34,293 versus 33,732),

it made a smaller number of errors in regions assembled by both LJA and hifiasm (2,330 LJA

errors were made in highly repetitive regions that were not assembled by hifiasm).

Table 5.1 also benchmarks the ‘ideal’ assembler on a k-complete read-set that outputs

contigs as the edge-labels of DB(T2TGenome,20,000). It turned out that LJA assembly is similar

in quality to the theoretically optimal assembly of error-free reads of length 20,000.

Supplementary Note 5 in [107] provides information about benchmarking individual LJA

modules and illustrates that the runtime/memory of jumboDBG is largely defined by the size of

the constructed DB-graph rather than the k-mer size.

5.3.5 Assembling a diploid human genome

Genome assemblers often collapse two heterozygous alleles (typically represented as

bulges in the DB-graph) into a single copy to increase the contiguity of the consensus assembly,

a mosaic of segments from maternal and paternal chromosomes. Diploid assemblers try to

prevent such collapsing by (1) constructing a phased assembly graph that accurately represents

the heterozygous alleles and (2) using the entire read-lengths and complementary technologies to
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Table 5.1. The assemblies were generated with hifiasm version 0.15.5-r352 and HiCanu version
version 2.3 and benchmarked using QUAST-LG version 5.0.2 with T2TGenome as the reference.
Because authors of the QUAST-LG[64] recommend using HPC contigs for identifying misas-
semblies (Supplementary Note 5 in [107]), misassemblies were identified by a separate run of
QUAST-LG with HPC contigs against the HPC reference. Analysis of misassemblies reported
by QUAST-LG in the 30 longest contigs (for each assembly tool) using the Icarus tool [142]
confirmed that they all represent structural errors (a large insertion, deletion or relocation) rather
than alignment artifacts. LJA 100%-assembled chromosomes 3, 5, 7, 10, 12 and 20; HiCanu
100%-assembled chromosome 20; and hifiasm 100%-assembled chromosome 5. Because all
assemblies might have small variations at the chromosome ends, 99.9%-assembled chromo-
somes are counted as 100%-assembled chromosomes. ‘Ideal’ refers to the theoretically optimal
assembly of a k-complete read-set obtained by generating contigs as edge-labels of the graph
DB(T2TGenome,20,000). NGA50 and NGA75 metrics are reported based on contigs broken at
positions defined by misassemblies in HPC contigs. Note that, even though very few HPC reads
in the T2T dataset are longer than 20,000 bp, the LJA assembly of this read-set might improve
on the ideal assembly DB(T2TGenome,20,000) because it uses information about coverage for
loop resolution (Supplementary Note 8 in [107]). The reference length is 3,054,832,041. The
number of LJA contigs (665) is smaller than the number of edges in the constructed multiplex de
Bruijn graph (1,432) because removing overlaps between contigs in the final LJA output results
in many short contigs (LJA removes contigs that become shorter than 5 kb).

IdealAssembler(20,000) LJA hifiasm hiCanu
total length (Mbp) 3,055 3,050 3,043 3,331
#contigs / #contigs longer than 50 kb 401/401 665/194 448/250 1,447/427
#misassemblies* 0 10 58 47
#local misassemblies* 0 46 54 120
#100%-assembled / #95%-assembled chromosomes 5/5 6/9 1/1 1/2
#100%-assembled / #95%-assembled centromeres 5/5 9/9 3/3 2/2
genome fraction (%) 100 99.74 99.28 99.60
duplication ratio 1 1.001 1.003 1.094
# mismatches / #indels per 1 Mbp 0/0 6.9/7.8 7.7/5.7 23.3/94.9
longest alignment (Mbp) 160.6 201.1 181.6 142.3
total aligned length (Mbp) 3055 3047 3038 3327
NG50 (Mbp) 93.6 96.7 90.2 69.7
NGA50 (Mbp) 93.6 96.7 75.1 69.7
NGA75 (Mbp) 59.2 44.0 36.4 30.5
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increase the contiguity of paternal/maternal contigs in the phased assembly graph and generate

a haplotype-resolved assembly [87], [143]. Constructing an accurate and contiguous phased

assembly graph is a critical step in both consensus and diploid assembly and the focus of the

current efforts of the T2T project as it scales up from a single haploid to multiple diploid

genomes. Indeed, a fragmented phased graph makes it difficult to generate consensus and

haplotype-resolved assemblies, not to mention that errors in the graph likely trigger errors in

these assemblies.

LJA generates a phased DB-graph of a diploid genome that represents an excellent starting

point for generating these assemblies. We analyzed the phased LJA and hifiasm assemblies using

the HG002 read-set from a diploid human genome. LJA generated an assembly with N50 =

383 kb and total length 5.8 Gb, whereas hifiasm generated an assembly with N50 = 310 kb and

total length 6.7 Gb (before heterozygosity collapsing) that is ˜2.2 times larger than the human

genome length. Although LJA generated a more contiguous phased assembly than hifiasm, it is

unclear how to evaluate the accuracy of these assemblies in the absence of a validated complete

reference genome for each haplome.

Although the LJA graph of the diploid read-set is much larger than the graph of the

haploid T2T read-set (42,298 versus 1,440 edges), it has a rather simple ‘bulged’ structure,

making it well-suited for the follow-up consensus and haplotype-resolution steps. Each bulge

represents differing segments of paternal/maternal alleles (average length ˜150 kb) alternating

with identical segments of paternal/maternal alleles (average length ˜30 kb).

5.3.6 Assembling mouse, maize and fruit fly genomes

We benchmarked LJA, hifiasm and HiCanu on the MOUSE, MAIZE and FLY HiFi read-

sets from the inbred mouse, maize and fly species. It is unclear how to compare the reference

genomes with HiFi assemblies for these datasets because the quality of these assemblies might

exceed the quality of the references. For example, although Table 5.2 illustrates that LJA and

hifiasm improved on HiCanu with respect to NG50 metric, this metric does not account for
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Table 5.2. Benchmarking LJA, hifiasm and HiCanu on MOUSE, MAIZE and FLY read-sets.
Mouse, maize and fruit fly samples represent the C57BL/6J strain of Mus musculus[144], the
B73 strain of Zea mays [144] and Drosophila ananassae [145], respectively. We used estimates
of the lengths of the mouse, maize and fly genomes (2.7 Gb, 2.3 Gb and 0.22 Gb, respectively)
for NG50 calculation. All assemblers were run with default parameters recommended for diploid
genome assembly.

Assembler MOUSE MAIZE FLY

#contigs total length
(Gb)

NG50
(Mb) #contigs total length

(Gb)
NG50
(Mb) #contigs total length

(Gb)
NG50
(Mb)

LJA 1,282 2.71 24 1,310 2.15 26 313 0.22 9.5
hifiasm 658 2.61 21 1,136 2.18 35 933 0.24 10.0
HiCanu 3,334 2.67 15 1,992 2.17 23 6,439 0.32 9.2

errors in assemblies and references. For example, hifiasm assembled the MAIZE dataset with

the highest NG50 but made more misassemblies (6,081 versus 5,594 for LJA), resulting in a

rather low NGA50 (1.4 Mb for both hifiasm and LJA). The large number of misassemblies for all

inbred datasets suggests that many of them might be triggered by errors in the reference genome

or differences between maternal/paternal alleles (even after inbreeding). Supplementary Note 7

in [107] illustrates that existing HiFi assemblers generate rather different results, implying that

some of them make many assembly errors. In the absence of an automated validation pipeline, it

remains unclear how to detect these errors in the era of complete genome sequencing.

5.4 Discussion

The development of assembly algorithms started from applications of the overlap/string

graph approach. Even though this approach becomes slow and error-prone with respect to

detecting overlaps in the highly repetitive regions, the alternative DB-graph approach [146],

[147] was often viewed as a theoretical concept rather than a practical method.

Even after it turned into the most popular method for short-read assembly, the develop-

ment of algorithms for assembling long error-prone reads again started from the overlap/string

graph approach [76], [1], [148] because the DB-graph approach was viewed as inapplicable to

error-prone reads [149]. Indeed, because long k-mers from the genome typically do not even

occur in error-prone reads, it seemed unlikely that the DB-graph approach might assemble such
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reads. However, the development of Flye[3] and wtdbg2 [7] demonstrated, once again, that

the DB-graph-based long-read assemblers result in accurate and order(s) of magnitude faster

algorithms than the overlap/string graph approach.

Because the DB-graph approach was initially designed for assembling accurate reads,

it would seem natural to use it for assembling long and accurate reads. However, the history

repeated itself and the first HiFi assemblers again relied on the overlap/string graph approach

[75], [87]. We described an alternative approach for assembling HiFi reads, illustrating that

the ‘contest’ between the overlap/string graph and the de Bruijn graph approach continues.

Benchmarking on the T2T dataset demonstrated that LJA improves on the state-of-the-art HiFi

assemblers with respect to both contiguity and accuracy. Although it is unclear how to conduct

benchmarking without validated complete reference genomes, LJA results on the HG002 dataset

illustrate that it generates highly contiguous phased assemblies. Although this paper focuses on

phased assemblies, it has immediate implications for the downstream applications because phased

assemblies represent a stepping stone for both consensus and haplotype-resolved assemblies. For

example, bulge-collapsing and tip removal in the phased LJA assembly of the HG002 read-set

results in a contiguous consensus assembly with N50 = 54 Mb. We are now developing the

diploidLJA tool for haplotype-resolved assembly and the nanoLJA tool for combining HiFi and

Oxford Nanopore reads to improve the contiguity of assemblies.

5.5 Methods

This section is organized as follows. Before constructing the compressed de Bruijn graph

DB(Reads,k), we describe a simpler yet still open problem of constructing the compressed de

Bruijn graph DB(Genome,k) of a large circular string Genome for a large k-mer size. This

problem [141] serves as a stepping stone for constructing a much larger graph DB(Reads,k).

After describing the algorithm for solving this problem, we describe complications that arise in

the case of constructing the compressed de Bruijn graph from a genome with linear chromosomes.
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Afterwards, we describe how to modify the algorithm for constructing DB(Genome,k) into the

algorithm for constructing DB(Reads,k). Because this transformation faces the time/memory

bottleneck, we describe how jumboDBG first assembles reads into disjointigs. Afterwards, we

describe steps 8 (error-correcting reads), 9 (constructing multiplex de Bruijn graph) and 10

(expanding HPC assembly) of the LJA pipeline. Supplementary Note 9 in [107] describes LJA

parameters.

Because the algorithm for constructing the de Bruijn graph of a circular genome does not

require construction of disjointigs (step 3), we number its steps 4–7 as 4G–7G to be consistent

with the previously described steps of jumboDB:

• Step 4G: Generating the Bloom filter for all (k + 1)-mers in Genome;

• Step 5G: Using the Bloom filter to construct a junction-superset Junctions+ of Genome;

• Step 6G: Using the set Junctions+ to break Genome into splits;

• Step 7G: Using splits to construct DB(Genome,k).

5.5.1 Sparse de Bruijn graphs

Given a set of k-mers Anchors from a string-set Genome, the sparse de Bruijn graph

SDB(Genome,Anchors) is a graph with the vertex-set Anchors and the edge-set Splits(Genome,

Anchors) (each split in Splits(Genome,Anchors) represents a label of an edge connecting its

k-prefix with its k-suffix). Two vertices in this graph might be connected by multiple edges

with different labels corresponding to different splits with the same k-prefixes and k-suffixes. A

straightforward algorithm for constructing SDB(Genome,Anchors) takes O(|Genome| · |Anchors| ·

k) time.

A string-set Genome corresponds to a path-set that traverses each edge in the de Bruijn

DB(Genome,k) at least once and spells Genome. We refer to this path-set as the genome traversal.

When the set of anchors is equal to the set of junctions Junctions = Junctions(Genome,k),

each vertex of DB(Genome,k) is an anchor, and each edge corresponds to two consecutive
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anchors in the genome traversal. Therefore, the sparse de Bruijn graph SDB(Genome,Junctions)

coincides with DB(Genome,k). Moreover, if Junctions+ is a superset of all junctions, that

contains all junctions as well as some false junctions (that is, non-branching k-mers from

Genome), SDB(Genome,Junctions+) is a subpartition of DB(Genome,k).

If the junction-set Junctions = Junctions(Genome,k) was known, construction of DB(Ge-

nome, k) would be a simple task because it coincides with SDB(Genome,Junctions). Moreover,

even if the junction-set is unknown but a junction-superset Junctions+ (with a small number

of false junctions) is known, one can construct DB(Genome,k) by constructing SDB(Genome,

Junctions+) and compressing all its non-branching paths.

Step 4G: Generating the Bloom filter for all (k + 1)-mers in Genome

In the case of assembling reads, jumboDBG stores all (k + 1)-mers from disjointigs in a

Bloom filter Bloom(Disjointigs,k,BloomNumber,BloomSize) formed by BloomNumber different

independent hash functions, each mapping a (k + 1)-mer into a bit array of size BloomSize. In

the case of a circular genome, it constructs the Bloom filter in the same way by assuming that

this genome forms a single disjointig. Storing all (k + 1)-mers in a Bloom filter allows one to

quickly query whether an arbitrary (k + 1)-mer occurs in disjointigs and thus speed up the de

Bruijn graph construction[140]. Given hash functions h1,h2, . . . ,hBloomNumber and a k-mer a, one

can quickly check whether all bits h1(a),h2(a), . . . ,hBloomNumber(a) of the Bloom filter are equal

to 1, an indication that the k-mer a might have been stored in the Bloom filter. Supplementary

Note 9 in [107] describes how jumboDBG sets the parameters of the Bloom filter.

Step 5G: Using the Bloom filter to construct the junction-superset Junctions+ of Genome

To generate a junction-superset Junctions+ with a small number of false junctions,

jumboDBG uses the Bloom filter to compute the upper bound on the indegree and outdegree of

each vertex in UDB(Genome,k) as described in the Results.

A vertex in a graph is complex if both its indegree and outdegree exceed 1 and simple

otherwise. A junction is a dead-end if it has no incoming or no outgoing edges and a crossroad
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otherwise. In the case of a genome with linear chromosomes, the Bloom filter might overestimate

the indegree and/or outdegree of some dead-end junctions—for example, to misclassify a zero-in-

one-out junction as a simple vertex. However, all crossroad junctions will be correctly identified,

thus generating a junction-superset (in the case of a circular genome that does not have dead-

end junctions), constructing a subpartition of DB(Genome,k) and further transforming it into

DB(Genome,k).

Steps 6G and 7G: Using the set Junctions+ to break Genome into splits and using splits to
construct DB(Genome,k)

To construct SDB(Genome,Junctions+), one can generate a Bloom filter for computing a

junction-superset Junctions+ and check which k-mers from Genome coincides with a k-mer from

Junctions+. Both these tasks require computing hashes of each k-mer, a procedure that usually

takes O(k) time and becomes slow when k is large. For example, constructing a hashmap of

Junctions+ results in a prohibitively slow algorithm for constructing SDB(Genome,Junctions+)

with O(|Genome| · k) runtime.

To compute the hash function in O(1) rather than O(k) time, jumboDBG uses a 128-

bit polynomial rolling hash of k-mers from the genome to rapidly check whether two k-mers

(one from Genome and one from Junctions+) are equal and to reduce the time to construct

the compressed de Bruijn graph to O(|Genome|). Similarly, to speed up the construction of

Junctions+, instead of storing k-mers, jumboDBG stores their rolling hashes in the Bloom filter,

thus reducing the runtime from O(|Genome| · k) to O(|Genome|). Therefore, it constructs the

compressed de Bruijn graph of a circular genome in O(|Genome|) time that does not depend on

the k-mer size.

5.5.2 Constructing the compressed de Bruijn graph from reads

The described algorithm for constructing the de Bruijn graph of a circular genome can

be applied to any string-set Genome, resulting in a graph that we refer to as DB*(Genome,k).

However, although DB*(Genome,k)=DB(Genome,k) for a genome formed by circular chromo-
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somes, it is not the case for a genome with linear chromosomes (or a genome represented by a

k-complete error-free read-set).

We say that a string-set Genome bridges an edge of the compressed de Bruijn graph

DB(Genome,k) if the label of this edge represents a substring of Genome. A genome is

called bridging (with respect to a given k-mer size) if it bridges all edges of DB(Genome,k)

and non-bridging otherwise. For example, a genome formed by ‘chromosomes’ Genome =

{ATGC,GCACC} is non-bridging because DB(Genome,2) consists of a single edge with label

ATGCACC that does not represent a substring of Genome.

Although DB*(Genome,k)=DB(Genome,k) in the case of a bridging genome, DB*(Ge-

nome, k) does not necessarily coincide with DB(Genome,k) for a non-bridging genome—for ex-

ample, a genome with linear chromosomes that does not bridge all edges of DB(Genome,k). How-

ever, after extending the junction-superset by k-prefixes and k-suffixes of all linear chromosomes,

the same algorithm will construct the graph that represents a subpartition of DB(Genome,k).

Although this subpartition can be further transformed into DB(Genome,k) by compressing all

non-branching paths, the resulting algorithm becomes slow when the number of linear chro-

mosomes is large, resulting in a prohibitively large junction-superset. This increase becomes

problematic when one constructs the compressed de Bruijn graph DB(Reads,k) because each read

represents a linear ‘mini-chromosome’. Even more problematic is the accompanying increase in

the number of calls to the hash functions that scales proportionally to the coverage of the genome

by reads. An additional difficulty is that, in the absence of the genome, it is unclear how to select

the appropriate size of the Bloom filter that keeps the false-positive rate low: selecting it to be

proportional to the total read-length (as described in Supplementary Note 9 in [107]) results in

the prohibitively large memory. Even if the genome size is known, it is unclear how to select

BloomSize because the number of different k-mers in reads affects the false-positive rate.

jumboDBG addresses these problems by assembling reads into compact disjointigs that

form a bridging genome for the graph DB(Reads,k) and constructing the compressed de Bruijn

graph DB(Disjointigs,k)=DB(Reads,k) from the resulting disjointig-set Disjointigs instead of the
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read-set Reads. LJA sets the parameter BloomSize to be proportional to the total disjointig-length

(that is typically an order of magnitude smaller than the total read-length), thus greatly reducing

the memory footprint.

Step 3: Constructing a compact disjointig-set from a read-set

We defined the concepts of complete and compact disjointig-sets in the Results. Similarly

to a disjointig of a read-set, a disjointig of a genome is defined as a string spelled by an arbitrary

path in DB(Genome,k). If a disjointig-set Disjointigs is complete, then DB(Genome, k) = DB(Dis-

jointigs, k). However, the graph DB*(Disjointigs,k) constructed by jumboDBG might differ

from DB(Genome,k) because it does not include edges of DB(Genome,k) that are not bridged

by Disjointigs. However, if a disjointig-set Disjointigs is compact, it forms a bridging genome,

implying that DB*(Disjointigs,k)=DB(Genome,k).

jumboDBG constructs a compact disjointig-set as a set of edge-labels in the compact

sparse de Bruijn graph SDB(Reads,Anchors*). Traditionally, the anchor-set Anchors for con-

structing SDB(Reads,Anchors) is constructed as a set of all minimizers across all reads. How-

ever, if the k-prefix and/or the k-suffix of a read are not anchors, they might be missing in

SDB(Reads,Anchors) because only segments between anchors are added to this graph. As

described in the Results, jumboDBG modifies the concept of a minimizer of a linear string

by adding its k-prefix and k-suffix to the set of its minimizers, resulting in the set Anchors =

Anchors(Reads,width,k). jumboDBG constructs the sparse de Bruijn graph SDB(Reads,Anchors),

transforms it into a compact sparse de Bruijn graph SDB(Reads,Anchors*) as described in Sup-

plementary Note 10 in [107] and generates a compact disjointig-set as labels of all non-branching

paths in this graph.

Step 8. Correcting errors in reads and constructing the graph DB(Reads*,K) on the
error-corrected read-set Reads* using a larger K-mer size.

Because an error in a single position of a read triggers an error in each k-mer covering

this position, and because a typical HiFi read has one error per 500 nucleotides on average, the
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fraction of correct k-mers (among all k-mers in reads) becomes rather low when k exceeds 500,

resulting in a complex de Bruijn graph of reads that does not adequately represent the genome.

Ideally, we would like to construct the de Bruijn graph using as large a k as possible—for

example, k = 15,000, slightly below the typical read-length in the T2T dataset. However, this

approach results in a highly fragmented de Bruijn graph because reads in this dataset do not

span a large fraction of genomic 15,000-mers. Although reducing k to, say, 5,000 addresses this

complication (nearly all genomic 5,000-mers are spanned by reads), most 5,000-mers in reads

are erroneous, preventing their assembly.

LJA attempts to minimize the effect of (1) errors in reads and (2) incomplete coverage of

genomic k-mers by constructing and error-correcting the de Bruijn graphs with a small k-mer

size and a large K-mer size with default values k = 501 and K = 5,001. As described in the

Results, this two-round error-correction results in a nearly error-free read-set Reads* (Fig. 5.2).

mowerDBG uses the de Bruijn graph of HPC reads for detecting errors in these reads.

Because ˜69% of 501-mers in HPC reads are correct, the correct 501-mers have high coverage,

in contrast to low-coverage erroneous 501-mers that form bulges and tips (with the exception of

k-mers that contain some tandem dinucleotide repeats discussed in Supplementary Note 11 in

[107]). Afterwards, mowerDBG uses the path-rerouting and bulge-collapsing error-correction

approaches to simultaneously correct reads and the graph.

Even though the previous paragraph might create an impression that errors in HiFi reads

can be corrected by simply applying error-correcting approaches developed for short reads (for

example, from SPAdes assembler), correction of HiFi reads faces unique challenges that we

outline below. First, our goal is to correct reads (rather than to correct the de Bruijn graph as

in SPAdes) because we need to rescue correct k-mers for the second round of error correction

with a large K-mer size. Second, we need to perform nearly perfect error correction even in

highly repetitive regions (for example, centromeres) that short-read assemblers do not even try to

assemble. Third, in difference from short-read assembly, the target k-mer size (501) is a small

fraction of a typical read-length (15,000). As a result, analyzing a bulge in a highly repetitive
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region requires not only analysis of the graph structure (like in SPAdes) but also analysis of all

read-paths traversing this bulge.

To address these complications, mowerDBG complements path-rerouting and bulge-

collapsing by additional steps referred to as correcting dimers and correcting pseudo-correct

reads. Supplementary Note 11 in [107] describes the mowerDBG algorithm.

Step 9: Transforming the de Bruijn graph into the multiplex de Bruijn graph

Below we describe a graph transformation algorithm for transforming the graph DB(

Reads, k) into DB(Reads,k+) for k+ > k by iteratively increasing the k-mer size by 1 at each

iteration. Although launching jumboDBG to construct DB(Reads,k), followed by these transfor-

mations, takes more time than simply launching jumboDBG to construct DB(Reads,k+), we use

it as a stepping stone toward the multiplex de Bruijn graph construction.

Below we consider graphs, where each edge is labeled by a string and each vertex w

is assigned an integer vertexSize(w)≥ k. We limit attention to graphs where suffixes of length

vertexSize(w) for all incoming edges into w coincide with prefixes of length vertexSize(w) for

all outgoing edges from w. We refer to the string of length vertexSize(w) that represents these

prefixes/suffixes as the label of the vertex w. We consider graphs with specified edge-labels

(vertex-labels can be inferred from these edge-labels) and assume that different vertices have

different vertex-labels. We will start by analyzing graphs with the same vertex size for all vertices

and will later transition to the multiplex de Bruijn graphs that have vertices of varying sizes.

Transition-graph

Let Transitions be an arbitrary set of pairs of consecutive edges (v,w) and (w,u) in an

edge-labeled graph G. We define the transition-graph G(Transitions) as follows. Every edge

e in G corresponds to two vertices estart and eend in G(Transitions) that are connected by a

blue edge that inherits the label of the edge e in G (Fig. 5.4, a). We set vertexSize(estart) =

vertexSize(eend) = k+1 (vertex-labels are uniquely defined by the (k + 1)-suffixes/prefixes of

the incoming/outgoing edges in each vertex). If an edge e in G is labeled by a (k + 1)-mer,
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the corresponding blue edge in G(Transitions) is collapsed into a single vertex estart = eend . In

addition to blue edges, each pair of edges in = (v,w) and out = (w,u) in Transitions adds a red

transition edge between inend and outstart to the transition graph. The label of this edge is defined

as a (k+2)-mer formed by the concatenate symbol-(k+1)(in)· label(w) · symbol(k+1)(out), where

symboli(e) stands for the i-th symbol of label(e), and symbol-i(e) stands for the i-th symbol from

the end of label(e).

Path-graph

We say that a path traverses a vertex w in a graph if it both enters and exits this vertex.

Given a path-set Paths in a graph, we denote the set of all paths containing an edge (v,w)

as Paths(v,w) and the set of all paths traversing a vertex w as Paths(w). We define the set

Transitions(Paths) as the set of all pairs of consecutive edges in all paths from Paths. A path-

graph G(Paths) of a path-set Paths is defined as the transition-graph G(Transitions(Paths)).

Let Paths be the set of all read-paths in the compressed de Bruijn graph G = DB(Reads,k).

A straightforward approach to constructing the graph G(Paths), which recomputes labels from

scratch at each iteration, nearly doubles the path lengths at each iteration and thus faces the

time/memory bottleneck. multiplexDBG avoids this time/memory bottleneck by modifying

rather than recomputing the edge labels from scratch, as described in Supplementary Note 13 in

[107].

Multiplex de Bruijn graph transformation

Given a path-set Paths in a graph G, we call edges (v,w) and (w,u) in G paired if the

transition-set Transitions(Paths) contain this pair of edges. A vertex w in G is paired if each

edge incident to w is paired with at least one other edge incident to w and unpaired otherwise.

The important property of DB(Genome,k) is that there exists a genome traversal of

this graph. Given a genome traversal of the graph DB(Reads,k), we want to preserve it in

DB(Reads,k + 1) after the graph transformation. However, it is not necessarily the case because

the transformation of DB(Reads,k) into DB(Reads,k + 1) might create dead-ends (each unpaired
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vertex in DB(Reads,k) results in a dead-end in DB(Reads,k + 1)), thus ‘losing’ the genome

traversal that existed in DB(Reads,k) (Fig. 5.4, c). Below we describe a single iteration of the

algorithm for transforming DB(Reads,k) into the multiplex de Bruijn graph MDB(Reads,k) that

avoids creating dead-ends whenever possible by introducing vertices of sizes (k+ 1) in this

graph.

multiplexDBG transforms each paired vertex of DB(Reads,k) using the graph transfor-

mation algorithm and ‘freezes’ each unpaired vertex by preserving its k-mer label and the local

topology. It also freezes some vertices adjacent to the already frozen vertices even if these

vertices are simple. Specifically, if a frozen vertex u is connected with a non-frozen vertex v

by an edge of length VertexSize(v) + 1, multiplexDBG freezes v (Fig. 5.4, d). The motivation

for freezing v is that, if we did not freeze it, we would need to remove the edge connecting

u and v in MDB(Reads,k), disrupting the topology of the graph. multiplexDBG continues the

graph transformations for all paired vertices (while freezing unpaired vertices) with gradually

increasing k-mer sizes from k to K+, resulting in the multiplex de Bruijn graph MDB(Reads,k)

with k-mer varying in sizes from k to K+. Supplementary Note 14 in [107] illustrates that

multiplex transformations might be overly optimistic (by transforming vertices that should have

been frozen) and overly pessimistic (by freezing vertices that should have been transformed).

Step 10: Expanding HPC contigs

Although LJA enables an accurate LJA assembly of HPC reads into HPC contigs (edge-

labels in the multiplex de Bruijn graph), these contigs have to be expanded (de-collapsed) using

information about homopolymer runs in the original reads. Supplementary Note 15 in [107]

describes how LJApolish expands HPC contigs.

5.6 Data availability

All described datasets are publicly available through the corresponding repositories.

All HiFi data were obtained from the National Center for Biotechnology Information Se-
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quence Read Archive (SRA). The SRA access codes for all datasets are specified in Sup-

plementary Note 2 ‘Information about datasets’ in [107]. All assemblies generated by LJA

are available at https://zenodo.org/record/5552696#.YV3MkVNBxH4. The CHM13 reference

(version 0.9) generated by the T2T consortium (referred to as T2TGenome) can be found at

https://s3.amazonaws.com/nanopore-human-wgs/chm13/assemblies/chm13.draft v0.9.fasta.gz.

5.7 Code availability

The LJA code uses the open-source libraries spoa (version 4.0.5) and ksw2 (version

4e0a1cc) and is available at https://github.com/AntonBankevich/LJA. All software tools used

in the analysis and their versions and parameters are specified in the text of the paper and in

Supplementary Note 9 ‘LJA parameters’ in [107].
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Chapter 6

TandemAligner: a new parameter-free
framework for fast sequence alignment

6.1 Abstract

The recent advances in “complete genomics” revealed the previously inaccessible ge-

nomic regions (such as centromeres) and enabled analysis of their associations with diseases.

However, analysis of variations in centromeres, immunoglobulin loci, and other extra-long

tandem repeats (ETRs) faces an algorithmic bottleneck since there are currently no tools for

accurate sequence comparison of ETRs. Counterintuitively, the classical alignment approaches,

such as the Smith-Waterman algorithm, that work well for most sequences, fail to construct

biologically adequate alignments of ETRs. This limitation was overlooked in previous studies

since the ETR sequences across multiple genomes only became available in the last year. We

present TandemAligner — the first parameter-free sequence alignment algorithm that introduces

a sequence-dependent alignment scoring that automatically changes for any pair of compared se-

quences. We apply TandemAligner to various human centromeres and primate immunoglobulin

loci, arrive at the first accurate estimate of the mutation rates in human centromeres, and quantify

the extremely high rate of large insertions/duplications in centromeres. This extremely high rate

(that the standard alignment algorithms fail to uncover) suggests that centromeres represent the

most rapidly evolving regions of the human genome with respect to their structural organization.
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6.2 Introduction

The Telomere-to-Telomere Consortium (T2T) recently assembled the first complete

sequence of a human genome [85] and the efforts are currently underway to generate hundreds

of complete haplotype-resolved human genomes [150], [151]. This progress opens a possibility

to address the long-standing questions about the variation and structure of many biomedically

important and complex regions of the genome such as segmental duplications [152], and long

tandem repeats [153]. Since tandem repeats rapidly accumulate changes in the copy numbers,

they greatly differ across the human population and their expansion is known to be the causal

factor of various diseases [154], [155]. For example, alpha satellite arrays that host centromeres

are formed by extra-long tandem repeats (ETRs) representing some of the most rapidly evolving

regions of the human genome [114], [110], [118]. Comparison of ETRs across the human

population is a prerequisite for understanding their evolution and association with cancer and

infertility [19], [20], [10], [21], [11], [9], [22], [13], [15], [18], [122], [110]. However, alignment

of ETRs across various human genomes remains an open algorithmic challenge. As a result, since

constructing the pancentromere represents a bottleneck for the ongoing effort to generate the

human pangenome graph, centromeres and other ETRs have been excluded from the pangenome

graph recently constructed by the Human Pangenome Reference (HPR) consortium [151].

Comparing the immunoglobulin loci across vertebrate species represents yet another bottleneck

since the standard alignment approach fails to adequately align these biomedically important

ETRs [156].

A common approach to variant calling is based on aligning reads that originated from

the query genome against the target sequence [124] to genotype single nucleotide variants [157]

and short tandem repeats [158], [155], [159]. Emergence of long-read sequencing technologies

enabled further genotyping of structural variants that are located outside ETRs [160] but geno-

typing ETRs remains an unsolved problem even with long-reads [151]. Thus, de novo genome

assembly using long reads is currently the only approach that generates accurate ETR sequences
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[35], [75], [87], [107], [138].

Emergence of “complete genomics” [85] and “complete metagenomics” [90] is shifting

the focus of read mapping from variant calling to validation of newly generated assemblies [41].

Given assembled ETRs, the difficult problem of finding variations in ETRs by read mapping

is substituted by a seemingly simpler problem of aligning ETRs using the standard sequence

comparison dynamic approaches such as the Smith-Waterman algorithm [161]. However, we

show that it is an inadequate computational model for analyzing ETRs since the highest-scoring

pairwise alignment fails to reveal the evolutionary events that made two ETRs different (for any

choice of scoring parameters). The HPR Consortium recently arrived at a similar conclusion

and stated that “more work is needed to determine how best to align and represent these large

repeat arrays within pangenomes, particularly as T2T assembly becomes commonplace. . . new

methods may need to be developed to fully understand and characterize this component of the

human pangenome.” [151].

We describe the TandemAligner algorithm that addresses the ETR comparison problem.

A substring of a string S is classified as rare if its count in S does not exceed a small threshold,

and frequent, otherwise. ETRs are rich with frequent substrings, e.g., most 20-mers in the human

centromere X occur over a thousand times in this centromere [34], [85], [110]. Thus, deciding

whether a match between two occurrences of a frequent substring in two ETRs is challenging as

the total number of such matches is often measured in millions.

The standard alignment algorithms apply the same scoring parameters (match/mis-

match/indel penalty, affine gap penalties, etc.) to all pairs of sequences. Although they construct

a biologically adequate alignment for most sequences (wrt their evolution), below we show that

some sequences (e.g., ETRs) are less amenable to this approach for any choice of alignment

parameters. The inherent limitation of the standard alignment approach is that less significant

matches of frequent k-mers (that may have millions of matches between two ETRs) have the

same contribution to the score as the more significant matches of rare k-mers (that may have a

single match between two ETRs). This limitation was overlooked in the previous studies since
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the ETR sequences across multiple genomes only became available in the last year.

TandemAligner introduces a novel parameter-free and sequence-dependent alignment

scoring that automatically changes for any pair of compared sequences and that does not rely

on the multiple scoring parameters used in the standard alignment. The sequence-dependent

alignment prioritizes matches of rare substrings since they are more likely to be relevant to the

evolutionary relationship between two sequences. Analysis of the constructed rare-alignments

reveals new biological phenomena such as the extremely high rate of large insertion/deletion

in centromeres. Since the T2T Consortium did not have bioinformatics tools for deriving

the detailed history of indels in centromeres, its analysis of the first two assembled human

centromeres resulted in a conclusion that they are highly concordant apart from the three regions

with recent large indels (Figure 5D in [110]). We show that these centromeres differ from each

other by over 300 large deletions and duplications of length at least 2 kb, including six extra-long

indels varying in length from 23 to 76 kb. This extremely high rate of large duplications and

deletions (that the standard alignment algorithms fail to uncover) suggests that centromeres

represent the most rapidly evolving regions of the human genome with respect to their structural

organization.

Analysis of rare-alignments also leads to the first accurate estimate of the single-

nucleotide mutation rates in human centromeres. Previous studies came to the conclusion

that the rate of single-nucleotide mutations is greatly elevated in centromeres [162], [163]. How-

ever, in the absence of bioinformatics tools for accurate ETR alignments, it is nearly impossible to

identify orthologous repeat copies, a prerequisite for estimating single-nucleotide mutation rates.

Rare-alignments revealed that, contrary to existing assumption, the rate of single-nucleotide

mutations (and small indels) in centromeres does not exceed the average mutation rate of the

human genome.

We demonstrate that TandemAligner not just improves on the standard alignment ap-

proach with respect to comparing ETRs (human centromeres and primate immunoglobulin loci)

— instead it often generates completely different alignments. Although TandemAligner was
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developed for comparing highly-repetitive sequences, we show that it results in fast and accurate

comparison of any sequences with percent identity exceeding 70% and even slightly outperforms

the standard alignment approach (with respect to accuracy) in the case of highly similar sequences

with percent identity exceeding 90%. We further discuss theoretical properties of the alignment

problem and suggest that the scoring scheme should be selected with respect to the underlying

evolutionary model that is presumed to have produced the aligned sequences. Although the

standard scoring scheme for sequence alignment often performs well in practice, it makes some

implicit assumptions that do not hold for ETRs. While the new rare-alignment scheme is not

necessarily induced by any natural evolutionary model, rare-alignments of centromeres and

immunoglobulin loci appear to be closer to the “real alignment” than the traditional alignments.

6.3 Results

6.3.1 Outline of the TandemAligner algorithm

The codebase of TandemAligner is available at https://github.com/seryrzu/tandem aligner.

Figure 6.1 illustrates some (but not all) steps of TandemAligner.

A substring of a string S is called unique if it appears exactly once in S. TandemAligner

uses the Longest Common Prefix array [164] to find the shortest unique substring starting at

each position in the string S. A shortest unique substring P of a string S is called an anchor if all

proper substrings of P are non-unique in S. Given strings S and T , TandemAligner efficiently

computes the set of all anchors shared by S and T (this set is usually small) and uses sparse

dynamic programming to rapidly construct an optimal path through these anchors in the standard

grid-like sequence alignment graph. It further analyzes the resulting alignment-path Alignment

formed by diagonal edges representing anchors and horizontal/vertical indel edges. We refer to

a segment of Alignment consisting of a deletion-run immediately followed by an insertion-run

(or vice versa) as an indel-pair. Each indel-pair corresponds to a pair of substrings s and t in S

and T , respectively. TandemAligner recursively constructs an alignment of strings s and t, and
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substitutes the indel-pair in Alignment by the resulting (small) alignment-path (this recursive

step is not illustrated in Figure Algorithm). The process terminates when there are either no

indel-pairs left or the set of anchors constructed on substrings corresponding to each remaining

indel-pair is empty.

Sequence architecture of human centromeres. Alpha satellite repeats are the building

blocks of centromeric repeats and form roughly 3% of the human genome [110]. Consecutive

alpha satellite repeats are arranged into higher-order repeat (HOR) units that are repeated

hundreds or thousands of times in each centromere. Individual alpha satellites within a higher-

order unit show low (50–90%) sequence identity to each other while HORs within a single

centromere show high (95–100%) sequence identity (Figure 6.2). Organization and nucleotide

sequence of HORs is specific for a particular chromosome.

6.3.2 Datasets

We extracted the assembled satellite centromere on chromosome X (cenX) from the

public release v2.0 by the Telomere-to-Telomere (T2T) consortium of the complete assembly

for the effectively haploid CHM13 cell line (GCA 009914755.4), [34], [84], [85]. Specifically,

we use the following coordinates: chrX:57,817,899-60,927,196. We also extracted cenX from

the recently assembled HG002 human sample (CP086568.2, coordinates: chrX:57,860,000-

61,000,000). We refer to these two centromeres as cenX1 and cenX2. cenX1 of total length

3,109,297 bp is formed by 1533 HORs and cenX2 of total length 3,140,000 bp is formed by 1539

HORs.

Similar lengths of cenX1 and cenX2 may create a wrong impression that the lengths of

centromeres is conserved across the human population. It is known that each human centromere

widely varies in length across different human genomes [110] and it is just a coincidence that the

first two assembled human centromeres have similar lengths.

We also extracted the region of the heavy immunoglobulin locus of the human genome

(referred to as IGHDH; NC 000014.9:105,865,737-105,964,717) and orangutan genome (referred
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Figure 6.1. TandemAligner pipeline. Aligning ETRs S=CCCAACCAACAAACCC and
T =CCCAACAAACCAACCC using TandemAligner. These four-unit ETRs evolved from a five-
unit ancestral ETR CCCAACAAACCAACAAACCC by deletion of its second unit in S and its
fourth unit in T . The standard alignment generates high-scoring but incorrect alignment between
S and T . TandemAligner constructs the suffix array and the Longest Common Prefix (LCP)
array of the concatenate S$T # (with delimiters “$” and “#”) and uses these arrays to rapidly
identify shortest unique substrings and anchors shared by S and T . Afterward, it constructs a
(sparse) anchor graph and finds an optimal alignment-path in this graph using sparse dynamic
programming. Finally, it recursively applies the same procedure to all substrings of S and T
that form a pair of consecutive insertion-deletion or deletion-insertion edges in the constructed
alignment-path (this step is not shown).
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Stacked tandem repeat

Centromere X (cenX)

Figure 6.2. The architecture of centromere on Chromosome X. The centromere of human
chromosome X (cenX) consists of ˜18100 monomers of length ˜171 bp each based on the cenX
assembly in [35](the T2T assembly [85] represents a minor change to this assembly). These
monomers are organized into ˜1500 units. Five units in the Figure are colored by five shades
of green illustrating unit variations. Each unit is a stacked tandem repeat formed by various
monomers. The vast majority of units in cenX correspond to the canonical HOR which is formed
by twelve monomers (shown by twelve different colors). The figure on top represents the dot
plot of the nucleotide sequence of the canonical HOR that reveals twelve monomers. While the
canonical units are 95–100% similar, monomers in cenX are only 65–88% similar. In addition
to the canonical 12-monomer units, cenX has a small number of partial HORs with varying
numbers of monomers.
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to as IGHDO; NC 036917.1:87,805,787-87,899,312) that contains D genes in the IGHD loci.

6.3.3 The key limitation of the standard sequence alignment

The orange path in Figure 6.3, left, shows the highest-scoring alignment path between

centromeres cenX1 and cenX2 constructed by the standard dynamic programming algorithm

for sequence comparison. This alignment suggests that these two centromeres are very similar

with 98% percent identity (28,421 bp are insertions or deletions, 37,975 bp are mismatches, and

3,057,465 bp are matches). However, since centromeres widely vary in length across the human

population [110], this is likely a wrong conclusion that is affected by selecting two centromeres

that coincidentally happened to be similar in length.

Below we demonstrate that the orange alignment path in Figure 6.3, left, does not reveal

the true sequence of events on the evolutionary path between these centromeres. The blue

path in Figure 6.3, left shows the rare-alignment path between cenX1 and cenX2 constructed by

TandemAlignment. This path illustrates a very different and complex evolutionary scenario with

only 1,954,622 matched positions and 2,335,879 insertions and deletions — surprisingly, the

orange and blue paths in Figure 6.3, left, do not coincide at any of their matching positions!

To illustrate limitations of the standard alignment using a simpler example, we generated

the HOR decomposition of cenX1 [118] and extracted ten HOR-blocks at coordinates cenX1

:1,222,223-1,242,795 resulting in a sequence of length 20,572 bp referred to as a Template. We

remove the third (eighth) HOR block at coordinates Template:4,112-6,172 (14,405-16,461), and

refer to the resulting sequence as Template-3 (Template-8). The evolutionary correct alignment of

Template-3 against Template-8 should align HORs 1, 2, 4, 5, 6, 7, 9, and 10, delete HOR 3, and

insert HOR 8.

Since sequences Template-3 and Template-8 are very similar (edit distance is 53 with

only six gap-symbols) (Figure 6.3, right), the standard alignment fails to reveal the eight related

HORs that they share, illustrating that it does not adequately represent the correct evolutionary

scenario of ETRs. Below we propose an alternative approach that leads to the correct alignment
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Figure 6.3. The highest-scoring alignment path between centromeres cenX1 and cenX2 (left)
and strings Template-3 and Template-8 (right) constructed by the standard alignment algorithm
(orange path) and by TandemAligner (blue path). The blue path is not seen at positions where
it coincides with the orange path. The standard alignment was constructed using the edlib tool
[165] with parameters match score 0, mismatch score -1, indel score -1 (changing parameters
does not significantly change the alignment). The alignment of Template-3 and Template-8 is
represented by the CIGAR string 4112M 1D 2354M 3I 2M 1I 7933M 1I 4111M. Other state-of-
the-art sequence comparison tools result in similar alignments.

of Template-3 and Template-8. To motivate the TandemAligner algorithm, we first describe a

simple parameter-dependent TandemAlignerk algorithm that uses rare k-mers for a fixed k-mer

size. TandemAligner is a parameter-free algorithm that improves on TandemAlignerk by using

rare k-mers of varying sizes and removing all parameters.

6.3.4 Sequence-dependent alignment scoring based on rare k-mers

A k-mer in a string S is called rare in S if its count in S does not exceed a threshold

MaxCount. A k-mer occurring in strings S and T is called rare in S and T if it is rare in both S

and T . Other k-mers occuring in either S or T are referred to as frequent. Below we describe

a simple alignment algorithm (referred to as TandemAlignerk) based on sequence-dependent

scoring that uses rare k-mers.

Given an alphabet A, we denote the alphabet of all k-mers from A as Ak. Given a string

S in the alphabet A, we denote the sequence of its |S|− k+ 1 k-mers (written in the alphabet
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Ak) as Sk. For example, for S = ACGT , S2 = AC,CG,GT . TandemAlignerk transforms strings

S and T into strings Sk and T k and removes all frequent k-mers from these strings, resulting in

strings Sk∗ and T k∗ that consist of rare k-mers in S and T . Afterward, it constructs a longest

common subsequence (LCS) between Sk∗ and T k∗. Equivalently, TandemAlignerk finds an

optimal alignment between Sk and T k using the mismatch penalty equal to infinity and the indel

penalty equal to zero. The premium for a match is k-mer-dependent and is defined as 1 (0) if the

k-mer is rare (frequent) in S and T .

TandemAlignerk constructs a k-mer-level alignment. Section “From a k-mer-level align-

ment to a nucleotide-level alignment” in Methods describes how to transform it into a regular

nucleotide-level alignment.

6.3.5 Dot plots based on rare k-mers

The standard dot plots [166] have limited utility in ETRs since they are dominated by

frequent k-mers that do not reveal the evolutionary relevant similarities between ETRs. Below

we modify the concept of a dot plot to make it better suited for visualizing similarities between

ETRs.

Given a pair of sequences S and T and a string-set X , a DotPlot(S,T ;X) is defined as a

scatter plot such that each occurrence of every string P in X with starting coordinate i ( j) in S (T )

corresponds to a line connecting two points with coordinates (i, j) and (i+ |P|, j+ |P|). In the

case when the string-set X consists of all rare k-mers in S and T for a threshold MaxCount, we

refer to the set DotPlot(S,T ;X) as DotPlotk,MaxCount(S,T ). This definition of a dot plot differs

from the standard definition as DotPlotk,MaxCount(S,T ) only depicts rare k-mers shared by S and

T , and reverse-complementary k-mers are treated as different k-mers.

Figure 6.4 present DotPlotk,MaxCount(Template-3, Template-8) for various values of pa-

rameters and illustrates that TandemAlignerk reveal the correct evolutionary scenario between

Template-3 and Template-8 (except for the case k = 10 and MaxCount= 10that we will address

later). Figure 6.5 DotPlotsCenXk shows dotplots DotPlotk,MaxCount(cenX1 , cenX2 ) and
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the corresponding alignments constructed by TandemAlignerk (for various values of k and

MaxCount) that reveal a complex evolutionary history of centromere X.

6.3.6 Limitations of scoring based on rare k-mers of fixed size

Even though TandemAlignerk is a fast sequence comparison algorithm, it is unclear how

to select a parameter k. On one hand, reducing its value ensures that one detects all shorter rare

matches that cannot be extended either downstream or upstream. On the other hand, increasing

the value of k provides reassurance that the detected matches reflect the evolutionary relationship

between sequences rather than a random coincident match. Simultaneously, a rare match that is

longer than k might not contain any rare k-mers as its substrings and thus will not be detected.

Even though, for example in Figure 6.4, such a dilemma is not a critical concern (except for

the case k = 10 and MaxCount = 10), it remains unclear if an optimal choice for parameter k

exists for real ETRs. Moreover, various regions of ETRs likely have varying optimal values of

parameters k.

The last example in Figure 6.4 (k = 10 and MaxCount = 10) motivates development of

an alignment approach that does not rely on specific parameters k and MaxCount. TandemA-

ligner improves on TandemAlignerk and reconstructs the correct evolutionary scenario between

Template-3, and Template-8 by using an alternative parameter-free scoring approach.

6.3.7 Shortest rare substrings

A substring P of a string S is called n-rare if countP(S) = n and unique if countP(S) = 1

(countP(S) refers to the number of occurrences of a substring P in a string S). For each n such that

1≤ n≤MaxCount, we consider the shortest n-rare substring starting at position i and denote its

length as rarei(S,n). In the case when there is no n-rare substring starting at position i, we assign

rarei(S,n) = ∞ (there exists a 1-rare substring starting at each position since we add a unique

“$” symbol to mark the end of a string). Figure 6.6 illustrates that rarei(cenX1,1) varies widely

across the centromere. Positions located within recent duplications in cenX typically result in
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Figure 6.4. The red path corresponds to the optimal alignment constructed by TandemAlignerk.
In three cases, rare-alignment identifies the correct evolutionary scenario and reveals two indels
that correspond to the third (eighth) HOR of Template-8 (Template-3) that is missing in Template-3
(Template-8). The rare-alignment with parameters k = 10 and MaxCount = 10 does not reveal
the correct evolutionary scenario.
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Figure 6.5. DotPlotk,MaxCount(cenX1, cenX2) for various values of parameters k and MaxCount.
The red path corresponds to the optimal alignment constructed by TandemAlignerk.
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Figure 6.6. The array rarei(cenX1,1). Although the mean value of rarei(cenX1,1) is only 1,736,
rarei(cenX1,1) exceeds 10,000 for 94,976 positions in cenX1.

high values of rarei(cenX1,1). Section “Algorithm for computing shortest rare substrings” in

Methods describes an algorithm for computing rarei(S,n) for all 1≤ i≤ |S| given a parameter n

in O(|S|) time.

6.3.8 Anchors

An n-rare substring P of S is called an n-anchor if no (proper) substring of P is an n-rare

substring of S. Given a threshold n and array rarei(S,n) for all i, we can compute the set of the

starting/ending positions Anchorn(S) of all n-anchors in O(|S|) time. Since the complexity of

constructing the array rarei(S,n) is linear, the resulting complexity of finding the set Anchorn(S)

in a string S is also linear. Since the set of n-anchors is typically much smaller than the set of

n-rare substring (e.g., cenX1 and cenX2 share only 9,708 1-anchors), TandemAligner uses an
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Figure 6.7. The superposition of n-rare dot plots DotPlotn(cenX1) (left) and DotPlotn(cenX2)
(right) for n = 2,3,4,5. Each of four dotplots is shown using an individual color.

anchor-based scoring.

Given a string S, we use the shorthand DotPlotn(S) for DotPlot(S, S, Anchorsn(S)). Figure

6.7 combines the dot plots DotPlotn(cenXi) for n = 2,3,4,5 and reveals the complex (and cryptic)

evolutionary history of insertions/deletions in cenX1 and cenX2. Note that DotPlotn(cenX1) and

DotPlotn(cenX1) share many anchors (reflecting duplications that happened before they diverged)

but also a significant number of different anchors that reflect recent duplications in each of these

centromeres.

Since two dot plots in Figure 6.7 look similar (with clearly visible rectangles that have

high density of points), one may arrive to a conclusion that cenX1 and cenX2 have nearly identical

architectures. Since the T2T Consortium did not have tools for deriving the detailed history of

indels in centromere evolution it came to this conclusion by analyzing dot plots generated by the

StainedGlass tool [152]. Specifically, it concluded that cenX1 and cenX2 are highly concordant

apart from the three regions with recent insertions and deletions (Figure 5D in [110]). Below we

show that cenX1 and cenX2 differ from each other by over 300 large duplications and deletions

of entire HORs (canonical HOR unit in centromere X has length 2057 bp). Moreover, six of

them exceed 20 kb in length and include 11, 12, 20, 22, 25, and even 37 HOR units.
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Figure 6.8. The anchor-based alignment of cenX1 and cenX2 and DotPlot(cenX1 ,cenX2
,Anchorsn,m(cenX1 ,cenX2 )) for (n,m) = (1,1),(1,2),(2,1),(2,2). (Left) Anchor-based dot
plot and alignment of the entire centromeres. (Right) Zoomed subrectangle shows the anchor-
based dot plot of substrings of cenX1 and cenX2 of length approximately 220 kb and reveals that
many lines in this dot plot aggregate into lines j = i+ t|HOR|.

Given strings S and T , an (n,m)-anchor is an n-anchor in S and an m-anchor in T .

We define Anchorsn,m(S,T) as the set of all (n,m)-anchors in strings S and T . Finding the set

Anchorsn,m(S,T) for two strings S and T is analogous to finding the set of anchors for a single

string and can be done in O(|S|+ |T |) time. Figure 6.8, left, combines DotPlot(cenX1 , cenX2 ,

Anchorsn,m(cenX1 , cenX2 )) for four different values of n and m.

6.3.9 Anchor-based alignment graph

TandemAligner modifies the standard alignment graph (see section “Standard alignment

graph” in Methods) by removing/adding some edges and modifying the scoring approach. First,

it removes all diagonal edges from the graph and assigns weight 0 to the remaining edges.

Given a (positive) integer parameter MaxCount, we consider AllAnchors = AllAnchors(S, T,

MaxCount) — the set of all occurrences of (n,m)-anchors in S and T for 1≤ n,m≤MaxCount.

For an (n,m)-anchor P, such that P = S[i : i+ |P|] = T [ j : j+ |P|], we add an edge connecting

vertices (i, j) and (i+ |P|, j + |P|) and assign it the weight equal to |P|/(n ·m). We denote

K = ∑P∈AllAnchors countP(S) · countP(T ) — the number of diagonal edges in this graph.
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The standard dynamic programming algorithm finds the heaviest path in this graph in

O(|S| · |T |) time. However, since all vertical and horizontal edges have weight 0, one can find this

path in O(K2) time by conducting the sparse dynamic programming computation only for the

starting/ending vertex of each diagonal edge [167]. Although TandemAligner uses this simple

approach, more advanced algorithms solve this problem in O(K logK) time, resulting in further

speed-up [168]. In the case of centromere comparison, K is usually small, e.g., for rare-alignment

of cenX1 against cenX2 with MaxCount = 1, K = 9708. The next subsection explains why such

a low value of K is sufficient for constructing accurate alignments.

Since the set AllAnchors can be computed in O(MaxCount2 ∗ (|S|+ |T |)) time, the result-

ing running time of the anchor-based alignment algorithm with a single parameter MaxCount is

O(MaxCount2 ∗ (|S|+ |T |)+K2). Figure 6.8, left, shows an anchor-based alignment of cenX1

and cenX2 .

6.3.10 Recursive anchor-based rare-alignment

The only trade-off of the anchor-based alignment is the choice of parameter MaxCount.

On one hand, a lower value of the parameter MaxCount leads to more sparse alignment with

fewer matched bases. On another hand, higher values of the parameter MaxCount increase the

number of (n,m)-anchors and introduce a computational burden since the number of diagonal

edges in the anchor-based alignment graph increases.

We call a sequence of consecutive matches (insertions, deletions) in a rare-alignment as

a match-run (insertion-run, deletion-run). For example, the anchor-based alignment of cenX1

against cenX2 with MaxCount = 1(5), has 1,447,947 (1,790,434) matched bases forming 865

(1223) match-runs, 1,692,054 (1,349,567) insertions forming 811 (1141) insertion-runs, and

1,661,351 (1,318,864) deletions forming 808 (1137) deletion-runs. The number of shared

matching positions between these two alignments is 1,399,978.

To address the trade-off between small and large values of parameter MaxCount, Tande-

mAligner constructs a parameter-free rare-alignment by introducing a recursive strategy described
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Figure 6.9. Anchor-based alignment path before applying the recursive procedure (blue) and
rare-alignment after applying the recursive procedure (orange). The anchor-based alignment is
constructed with parameter MaxCount = 1. Although the changes appear to be small for a naked
eye, the recursive procedure results in many changes that are difficult to see due to the small
scale of the Figure.

in Methods. The rare-alignment of cenX1 against cenX2 has 1,983,431 (2744) matched bases

(match-runs), 1,156,570 (2479) insertion bases (insertion-runs), and 1,125,867 (2467) deletion

bases (deletion-runs). This rare-alignment accounts for 535,484 increase in the number of

matched bases compared to the non-recursive anchor-based alignment (Figure 6.9).

The constructed recursive rare-alignment does not include any mismatches since it

represents a single-nucleotide mismatch as a single-nucleotide insertion (deletion) edge followed

by a single-nucleotide deletion (insertion) edge. Section “Refining rare-alignments” in Methods

describes how TandemAligner transforms some of such pairs of indel edges into mismatches.

Below we analyze the rare-alignment of human centromeres and immunoglobulin loci.

Further benchmarking is provided in Supplementary Notes “Benchmarking standard alignments
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and rare-alignments on simulated centromeres”, “Benchmarking standard alignments and rare-

alignments on non-repetitive strings” in [169].

6.3.11 TandemAligner reveals the very high rate of large deletions and
duplications in centromeres

Figure 6.9, left shows the distribution of lengths of insertion-runs and deletion-runs in the

rare-alignment of cenX1 and cenX2 . Notably the prominent peaks in this distribution correspond

to the length of a single canonical HOR in cenX (2057 bp) or to the lengths of multiple canonical

HOR. The fact that TandemAligner automatically derived the HOR length in cenX without any

prior knowledge adds confidence that it adequately represents evolution of centromeres.

For an indel IND, we compute multiplicity(IND) as the closest integer to |IND|/|HOR|,

where |IND| is the length of the indel and |HOR| is the length of the canonical HOR (2057

bp for centromere X). We further define o f f set(IND) = |IND| −multiplicity(IND) · |HOR|

and classify an indel IND as a HOR-indel if o f f set(IND)/|HOR| does not exceed a threshold

(the default value 0.05). The rare-alignment of cenX1 and cenX2 includes 175 (59, 28, 63)

HOR-indels of multiplicity 1 (2, 3, more than 3) suggesting that HOR-indels formed by a single

HOR dominate centromere evolution with 54% (18%, 9%, 19%) HOR-indels of multiplicity

1 (2, 3, more than 3). It will be interesting to see whether these numbers are stable for other

centromeres across the human population when their sequences become available. Figure 6.9,

right shows distribution of HOR-indels in the rare-alignment of cenX1 and cenX2 and reveals their

high density over the entire length of the centromere. This rare-alignment includes 164 HOR-

insertions and 161 HOR-deletions of total multiplicity 845 (total multiplicity of HOR-insertions

and HOR-deletions is 457 and 388, respectively). The high total multiplicity of HOR-deletions

in cenX1 implies that only approximately (1533-457)/1533% = 70% of HORs in cenX1 form

orthologs with HORs in cenX2 and thus limits the region for estimating the mutation rate to these

HORs.

With about twenty thousands structural variations (SVs) per a single human genome,
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[151] the rate of SVs in the human genome is estimated as roughly one SV per 150 kb on average.

With 325 HOR-indels identified by TandemAligner, the rate of SVs in human centromeres may

be as large as one SV per 10 kb, an order of magnitude increase. We note that [151] classified an

indel as an SV if its length exceeds 50 bp while we consider large indels (with lengths exceeding

2 kb) that form less than 10% of indels identified in [151]. Thus, the rate of large SVs in human

centromeres exceeds the rate of large SV in the rest of the human genome by two orders of

magnitude. Interestingly, while the “live” centromeres have an extremely high indel rate, the

adjacent monomeric “dead” layers formed by blocks of monomeric alpha-satellites flanking the

centromeres [110] have very few indels (see Supplementary Note “Extending rare-alignments

into monomeric ‘dead’ layers” in [169]).

6.3.12 TandemAligner reveals the low rate of single-nucleotide substitu-
tions and small indels in centromeres

Although estimating the rate of single-nucleotide substitutions (and small indels) is

a straightforward task for most genomic regions, it should be done with caution in ETRs.

Constructing an accurate alignment of ETR (and limiting attention to regions of this alignment

that do not include large indels) is a prerequisite for an accurate estimate of the single-nucleotide

mutation rates in ETRs.

For example, the mutation rate between sequences Template-3 and Template-8 is zero

since each of them was generated from the same sequence Template by a large deletion. However,

the standard alignment (orange path in Figure 6.3, right) suggests that these sequences have 53

mutations, resulting in an inflated estimate of the mutation rate (53/18,500=0.0029) that exceeds

the average mutation rate in the human genome. Similarly, the standard alignment of cenX1

against cenX2 (orange path in Figure 6.3, left) suggests that these sequences have an extremely

high mutation rate (nearly 1% for single-nucleotide substitutions and over 1.2% for short indels)

that exceeds the average mutation rate in the human genome by an order of magnitude. However,

such high mutation rates (consistent with previous papers aimed at analyzing mutation rates in
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centromeres [162], [163] are merely artifacts of the incorrect alignments.

Moreover, even with a correct alignment, estimation of the mutation rates should be

done with caution after limiting attention to the regions that do not include large indels. For

example, after removing regions corresponding to two large indels in the rare-alignment between

Template-3 and Template-8 (blue path in Figure 6.3, right), we are left with identical regions that

result in the correct 0% estimate of the mutation rate between Template-3 and Template-8.

We call an indel short if its length does not exceed a threshold ShortIndel, and long,

otherwise (default value ShortIndel = 5). The rare-alignment of cenX1 and cenX2 contains 268

short indels (of total length 473) and 520 long indels (of total length 2,277,742). Removing

all long indels from the alignment-path of cenX1 and cenX2 breaks it into a set of shorter

paths (with total length L− =1,986,015) that contains M = 2107 mismatches and 268 short

indels of total length I = 473. We use this path-set to estimate the rate of mismatches and

(short) indels as M/L− ≈ 1/1000 bp and I/L− ≈ 2/10,000, respectively. Thus, analysis of

rare-alignments suggests that previous studies may have come to the incorrect conclusion that

the rate of single-nucleotide mutations is greatly elevated in centromeres [162], [163].

[84] recently came to a conclusion that the single-nucleotide mutation rate is elevated in

centromeres by analyzing cen8 (centromere on chromosome 8) in human and primate genomes.

In the absence of accurate algorithms for aligning HOR arrays, they arrived at this conclusion by

analyzing easier-to-align blocks of monomeric alpha-satellites flanking cen8. Supplementary

Note “Extending rare-alignments into monomeric ‘dead’ layers” describes a similar analysis

using blocks of monomeric alpha-satellites flanking cenX (that we refer to as paracenX) but

arrives to a conclusion that the single-nucleotide mutation rate is low not only in HOR arrays

but also in paracenX. Since the HPR Consortium is now completing assembly and validation of

the first compete diploid-resolved human genome (HG002), it will soon be possible to check

whether centromeres in human autosomes have vastly different mutation rates as compared to

centromeres in sex chromosomes.
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Figure 6.10. The histogram of lengths of insertion-runs and deletion-runs in the rare-alignment
of cenX1 and cenX2 (left) and distribution of HOR-indels in this alignment along the entire length
of cenX1 (right). The peaks in the histogram correspond to either short (< 100 bp) runs or to
likely insertions / deletions of a single or multiple canonical HOR units of cenX. The length
of the canonical HOR in cenX is 2057 bp [34], while the peaks in the histogram correspond to
2057 bp (a single HOR unit), 4114 bp (two HOR units), 6171 bp (three HOR units), 8225 bp
(approximately 4 HOR units), etc. The width of each bar is 500bp. Even though the histogram’s
x-axis is cut at 20 kb, there are long indels of lengths 22,628 bp (11 HOR units), 24,676 bp (12
HOR units), 41,133 bp (20 HOR units), 45,225 (22 HOR units), 51,393 bp (25 HOR units), and
76,098 bp (37 HOR units). (Right) Each color corresponds to an indel of a particular length, e.g.,
blue (orange, green) color corresponds to HOR-indel of multiplicity 1 (2, 3), etc.
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6.3.13 TandemAligner reveals orthologous D genes in primate im-
munoglobulin loci

Comparative analysis of the immunoglobulin genes across multiple species is a prerequi-

site for evolutionary studies of the adaptive immune system. Below we focus on D genes in the

immunoglobulin IGHD locus that play a key role in diversifying antibody repertoires and that

are notoriously difficult to compare between species and predict in newly sequenced genomes

[156]. Moreover, since D genes are located within ETRs, identifying pairs of orthologous D

genes even between close species (such as primates) is challenging.

This difficulty is further compounded by the fact that assembly of the highly-repetitive

immunoglobulin loci has been challenging [170], [171]. However, even though there were very

few genomes available for comparative immunogenomics studies until recently, the situation

has changed with the advent of contiguous long-read assemblies generated by the Vertebrate

Genomes Project (VGP) [172]. Nevertheless, the existing methods for finding orthologous genes

[173] are not well-suited for D genes since these methods are based on similarity search that

often fails to detect similarities between highly diverged and short D genes (most are shorter

than 50 bp) located within ETRs. As a result, the IGHD loci in hundreds vertebrate genomes

recently assembled by the VGP consortium remain unannotated [156].

The IGHD locus in mammalian genomes includes a long tandem repeat [174]. For

example, the human IGHDH locus contains a tandem repeat formed by four ˜10 kb long units

while the orangutan IGHDO locus contains a tandem repeat formed by five ˜10 kb long units.

Finding orthologs between these units (and thus analyzing evolution of D genes) is challenging.

The evolutionary correct alignment of IGHDH and IGHDO loci should match the first

i units, followed by a unit-insertion in the orangutan genome (a unit deletion in the human

genome), followed by matches of the remaining 4-i units (i is unknown). In difference from

edlib, TandemAligner reveals the additional unit of the tandem repeat in the IGHDO locus and

suggests that this additional unit emerged in the end of this locus (i = 4) in the common ancestor
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Figure 6.11. The rare-alignment (black) and standard alignment (red) of IGHDH and IGHDO
loci and DotPlot(IGHDH, IGHDO, Anchorsn,m(IGHDH, IGHDO)) for (n,m) = (1,1), (1,2), (2,1),
(2,2), (2, 3), (3, 2), (3, 3).

of humans and orangutans, thus establishing orthology between human and orangutan D genes

(Figure 6.11).

6.3.14 Running time of TandemAligner

It takes TandemAligner 25 seconds to compute a rare-alignment and generate the CIGAR-

string for cenX1 and cenX2 . For comparison, it takes a state-of-the-art fast alignment algorithm

edlib [165] 58 seconds on the same machine. Both tools use a single CPU thread.
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6.4 Methods

6.4.1 From a k-mer-level alignment to a nucleotide-level alignment

A k-mer-level alignment between strings Sk and T k induces a regular nucleotide-level

alignment. Each rare k-mer in the alignment of strings Sk and T k induces k matches (i, j),

(i+ 1, j+ 1), . . . ,(i+ k− 1, j+ k− 1) between individual positions in strings S and T . Since

matches of overlapping k-mers may induce multiple matches of a single position in the string S

(T ), we need to remove some of the induced matches to ensure that a single position in one string

is matched to a single position in another string. We say that an induced match (i, j) precedes

induced matches (i, j+ δ ) and (i+ δ , j) if δ > 0 and iteratively remove all matches that are

preceded by other matches. The remaining matches (along with resulting unmatched symbols

that form indels) form a nucleotide-level alignment between strings S and T .

6.4.2 Algorithm for computing shortest rare substrings

Below we describe an algorithm for computing the array rarei(S,n) for all 1≤ i≤ |S|

given a parameter n in O(|S|) time.

Let S(i) be the suffix corresponding to the i-th element of the suffix array of the string

S [164]. We define LCP(k, l) as the Longest Common Prefix of S(k) and S(l). TandemAligner

first computes the standard Longest Common Prefix (LCP) array LCP(i−1, i) for consecutive

elements i− 1 and i in the suffix array and uses it to construct the array LCP(k,k+ n− 1). It

computes each element of this array in O(1) time by iterating through the standard LCP array

and using a deque with a minimum over the standard LCP array.

A segment [k, l] is called n-rare if LCP(k, l) is larger than both LCP(k− 1, l) and

LCP(k, l + 1) and l− k + 1 = n. Given an index i, we find the n-rare segment [k,k + n− 1]

containing S(i). Finally, we set rarei(S,n) = 1+max(LCP(k−1, l),LCP(k, l +1)). If no such

rare segment exists, suffix S(i) itself is frequent. In this case, we set rarei(S,n) =∞. Since we can

compute rarei(S,n) for all i during a single iteration through the LCP(k,k+n−1) array (and the
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elements of this array can be efficiently computed from the standard LCP array), the complexity

of calculating rarei(S,n) for all i is O(|S|). Since the LCP array can be constructed from the

suffix array in O(|S|) time [175], the complexity of building rarei(S,n) for a string S is O(|S|).

In practice, we use a fast suffix array construction algorithm with complexity O(|S| log |S|) [176],

[177] rather than O(|S|) which is sufficient for practical purposes [178], [179], [180].

6.4.3 Standard alignment graph

The standard weighted directed acyclic graph that is used for the alignment of strings S

and T presents a grid with |S|+1 rows and |T |+1 columns. For 1 ≤ i ≤ |S| and 1 ≤ j ≤ |T |,

the vertex with coordinate (i, j) is connected via a vertical, diagonal, and a horizontal edge to

vertices (i+ 1, j),(i+ 1, j+ 1),(i, j+ 1), respectively. Vertex (|S|+ 1, j) in the last “row” of

the grid is connected to the vertex (|S|+ 1, j + 1) via a horizontal edge for 1 ≤ j ≤ |T |, and

vertex (i, |T |+1) in the last “column” of the grid is connected to (i+1, |T |+1) via a vertical

edge for 1≤ i≤ |S|. The diagonal edge connecting vertices (i, j) and (i+1, j+1) corresponds

to a match of characters S[i] and T [ j] in case they are equal or to a mismatch, otherwise. The

vertical edge connecting vertices (i, j) and (i+1, j) corresponds to an insertion of character S[i]

between T [ j] and T [ j+1]. Horizontal edge connecting vertices (i, j) and (i, j+1) corresponds

to a deletion of the character T [ j] between S[i] and S[i+1]. The simplest scoring strategy in the

standard alignment approach assigns the match (mismatch) weight to all diagonal edges that

define matches (mismatches), and indel weight to all vertical and horizontal edges.

6.4.4 Recursive algorithm for constructing rare-alignment

Given strings S and T , TandemAligner constructs the anchor-based alignment Alignment

using the set Anchors(S, T, 1) or, if this set is empty, for the minimal value of Count with

non-empty set Anchors(S, T, Count). We refer to a segment of Alignment consisting of a deletion-

run immediately followed by an insertion-run (or vice versa) as an indel-pair. Each indel-pair

corresponds to a pair of substrings s and t in S and T , respectively. TandemAligner recursively
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constructs an alignment on strings s and t, and substitutes the indel-pair in Alignment by the

resulting (small) alignment-path. The process terminates when there are either no indel-pairs

left or the set of anchors constructed on substrings corresponding to each remaining indel-pair

is empty for any choice of Count. In practice, we limit the value of Count by a large constant

MaxCount (default value = 50) since matches of substrings of higher counts are likely to be

spurious. However, this parameter is simply a practical heuristic that is not necessary for the

theoretical description of the algorithm.

6.4.5 Refining rare-alignments

The recursive rare-alignment does not include any mismatches since it represents a

single-nucleotide mismatch as an insertion (deletion) edge followed by a deletion (insertion)

edge. Given a rare-alignment Alignment, TandemAligner searches for square indel-pairs that

contain an equal number of insertions and deletions and represent likely runs of mismatches.

For a given square indel-pair, we refer to this number as the length of this block. Recursive

anchor-based rare-alignment of cenX1 and cenX2 contains 2051 (24, 4) square indel-pairs of

length 1 (2, 3). For each square indel-pair in Alignment, TandemAligner substitutes it by a

diagonal series of matches/mismatches in Alignment. Such a procedure applied to the recursive

anchor-based rare-alignment of cenX1 and cenX2 introduces only 4 additional matches. The

number of insertions (insertion-runs) reduced by 2111 (2079) to 1,154,459 (400). The number

of deletions (deletion-runs) reduced to 1,123,756 (388). The number of introduced mismatches

(mismatch-runs) is 2107 (2083).

6.5 Discussion

The ongoing effort to construct the human pangenome promises to change the way we

analyze genomic variations and infer their associations with diseases. The construction of the

pangenome graph is based on generating alignments between complete human genomes that are

now being assembled by the HPR Consortium [150]. Although these alignments have already
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been constructed for the vast majority of regions of the human genome, [151] it turned out that

the standard alignment approach fails to adequately align the most repetitive (and biomedically

important) regions such as centromeres. The emerging consensus is that aligning such regions

requires a new framework for sequence comparison rather than simply tweaking parameters of

the standard alignment approach. As stated in [151]: “Our near-term goal is ... to refine the

pangenome alignment methods (so that telomere-to-telomere alignment is possible capturing

more complex regions of the genome).”

We described a new parameter-free framework for sequence comparison that reveals the

evolutionary history of highly-repetitive regions such as centromeres and immunoglobulin loci.

Admittedly, since only two human centromeres have been assembled, carefully validated, and

publicly released so far, our benchmarking remains limited to these centromeres and various

simulated examples. However, even this limited benchmarking shed light on the evolution of

human centromeres (and the extremely high rate of duplications/deletions of single/multiple

HORs) that the standard alignment approach failed to uncover.

Although TandemAligner is already fast, we plan to further speed it up using the fast

sparse dynamic programming algorithm by [168]. Although the rare-alignment framework

represents the first step toward aligning centromeres and other ETRs, many questions about

human ETRs remain unanswered. For example, TandemAligner reveals extremely high-rate

of large insertion-runs in human centromeres but does not answer the question which region

of the ancestral centromeres contributed to each of these insertion-runs. Zooming on Figure

6.8, right, reveals that many lines in this dot-plot aggregate into lines j = i+ t|HOR| that are

parallel to the main diagonal (|HOR| refers to the length of HOR in cenX and t is an integer).

Since such aggregates are often triggered by HOR-insertions, their analysis should provide the

initial clues for the common patterns of duplications in centromeres. Our next goal is to integrate

analysis of duplications in the TandemAligner framework. Another bottleneck in applications of

rare-alignments is that, in contrast to the analysis of statistical significance of standard alignments

[181], [182], it remains unclear how to estimate the statistical significance of rare-alignments (see
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Supplementary Notes “Summary of differences between standard alignment and rare-alignment”,

“Evolution and alignment from probabilistic perspective” in [169]).

6.6 Data availability

Alignment of cenX1 and cenX2 generated by TandemAligner is located at Zenodo:

https://zenodo.org/record/7058133.
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