
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
BenchHub: store database benchmark result in database

Permalink
https://escholarship.org/uc/item/1t8436b6

Author
Guo, Pinglei

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t8436b6
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

BENCHHUB: STORE DATABASE BENCHMARK RESULT IN DATABASE

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Pinglei Guo

June 2018

The Thesis of Pinglei Guo
is approved:

Professor Peter Alvaro, Chair

Professor Carlos Maltzahn

Professor Ethan L. Miller

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Pinglei Guo

2018

Table of Contents

List of Figures vi

List of Tables vii

Abstract viii

Acknowledgments ix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Workload is just part of a benchmark 2
1.1.2 Storing benchmark result in databases is better than plain text 3

1.2 Contributions and Outlines . 4

2 Job specification 5
2.1 Challenges . 5

2.1.1 Distributed execution . 5
2.1.2 Dependencies in distributed system 6
2.1.3 Readiness of a long running process 7

2.2 Elements . 7
2.2.1 Node assignment . 8
2.2.2 Pipeline . 8
2.2.3 Stage . 8
2.2.4 Task . 9

2.3 Example . 10
2.4 Requirements for infrastructure . 10

2.4.1 Real distributed environment . 10
2.4.2 Scheduler without bin packing . 12
2.4.3 Node agent . 12

2.5 Related work . 13
2.5.1 Popper . 13
2.5.2 Workflow Language . 13

iii

3 Infrastructure 15
3.1 Overview . 15
3.2 Central . 17

3.2.1 Node management . 17
3.2.2 Scheduler . 17
3.2.3 Planner . 18
3.2.4 Provisioner . 18
3.2.5 Executor . 19

3.3 Agent . 20
3.3.1 Runner . 20
3.3.2 Monitor . 21
3.3.3 Distributor . 21

3.4 Storage . 21
3.4.1 Meta . 22
3.4.2 Benchmark result . 22
3.4.3 Time Series . 22

3.5 Implementation . 23
3.6 Limitation . 24
3.7 Related work and Discussion . 25

3.7.1 Automated database benchmark . 25
3.7.2 Load testing . 26
3.7.3 Continuous integration . 26
3.7.4 Jepsen . 27

3.8 Conclusion . 27

4 Integration 28
4.1 Workloads . 28

4.1.1 Oltpbench: Relational database . 28
4.1.2 Xephon-B: Time series database . 30

4.2 Databases . 32
4.2.1 Single node database . 32
4.2.2 Distributed database . 32

5 Application 36
5.1 Track performance change of a database . 36
5.2 Compare performance of different databases 38
5.3 Store latency result in time series database . 40
5.4 Use server metrics for trouble shooting . 40

6 Future work 43
6.1 Infrastructure . 43
6.2 BenchBoard: a client for BenchHub . 43
6.3 Use machine learning for auto tunning . 44

iv

7 Conclusion 45

A Benchmark hardware 46

Bibliography 47

v

List of Figures

2.1 BenchHub - Ping Pong job spec . 11

3.1 BenchHub - Public Service . 16
3.2 BenchHub: UI for node management . 24

4.1 Xephon-B config example . 33
4.2 Database: single node MySQL . 34
4.3 Database: Three nodes Cassandra Cluster . 35

5.1 Oltpbench: Throughput of MySQL in different version 37
5.2 Oltpbench: Throughput of PostgreSQL in different version 37
5.3 Xephon-B: Throughput of InfluxDB in different version 38
5.4 Xephon-B: Compare throughput of Graphite, KairosDB, InfluxDB 39
5.5 Xephon-B: Compare throughput of Akumuli, Graphite, KairosDB 40
5.6 BenchHub: Write latency (ns) stored in time series database during benchmark 41
5.7 BenchHub: Real-time CPU usage during benchmark InfluxDB 42
5.8 BenchHub: Real-time memory and network usage during benchmark InfluxDB 42

vi

List of Tables

4.1 Oltpbench: Result schema in BenchHub . 30
4.2 Xephon-B: Result schema in BenchHub . 31

vii

Abstract

BenchHub: Store database benchmark result in database

by

Pinglei Guo

Benchmark is an essential part of evaluating database performance. However, the

procedure of setting up the environment and collecting result is time-consuming and not well

defined. The uncertainty in benchmark procedure leads to low reproducibility. Furthermore,

many benchmark results are highly compressed and only published in unstructured formats like

document and graph. Without a structural format and the context of a benchmark, comparing

benchmark results across sources is time-consuming and often biased.

In this thesis, BenchHub is presented to remedy those problems. It defines a job spec-

ification that covers the life cycle of running database benchmark in a distributed environment.

A reference implementation of infrastructure is provided and will be hosted as a public service.

Using this service, database developers can focus on analyzing benchmark result instead of get-

ting them. BenchHub stores metrics like latency in time series databases and puts aggregated

results along with benchmark context in relational databases. Users can query results directly

using SQL and compare results across sources without extra preprocessing.

BenchHub integrates time series workloads like Xephon-B and standard database

workloads like TPC-C. Comparisons between open source databases are made to demonstrate

its usability. BenchHub is open sourced under MIT license and hosted on GitHub.

viii

https://github.com/benchhub

Acknowledgments

BenchHub is a combination of projects during my graduate study at UCSC. I worked with

Zheyuan Chen on Xephon-B in CMPS232, Chujiao Hou helped me with Reika in CMPS203.

My friends in UCSC helped me a lot in both coursework and daily life. I never missed home-

work until Ethan Vadai graduated before I do. Haiyu always comes to rescue when my laptop

can’t boot. Feimo and Yiming have been teleporting me across road 17 during the hardest time

in my thesis.

Thanks to my family for supporting my graduate study and encouraging me to switch

to a major I like. I was always making wrong decision on important things like choosing major

in undergraduate study, but they never forced me to choose the way they thought is right.

The idea of the thesis and my interest in programming are mainly from my under-

graduate study at Shanghai Jiao Tong University. Folks in Dongyue Web Studio allowed me to

join regardless of my major and poor performance in interview. Without their guidance, I might

still be writing AutoIt scripts and HTML with table layout. The experience in Prof. Cao’s lab

gave me the concept of time series database, which was the seed of my entire thesis.

I appreciate suggestions I got from my committee, especially Prof. Alvaro. The out-

line of BenchHub was formed in his distributed system class (CMPS232) as future work of the

course project. He encouraged me to continue the work, and this thesis is the implementation.

ix

https://github.com/dyweb

Chapter 1

Introduction

Benchmark is vital for evaluating and comparing the performance of databases. How-

ever, many benchmark frameworks only provide the workload, and extra effort is needed to

create the environment and keep track of results. The absence of environment provisioning

automation makes running benchmark time consuming and hard to reproduce. This chapter

gives a summary of existing database benchmarks and how we address their problems when

designing BenchHub.

1.1 Motivation

There are two motivations for creating BenchHub. First, database benchmark is hard

to run, and it is even harder for distributed databases. Second, benchmark results in existing

publications cannot be used directly, they are unstructured and include little context for validat-

ing and reproducing.

1

1.1.1 Workload is just part of a benchmark

Historically, the primary difficulty of database benchmark was workload, the context

of running workload got much less attention. A considerable effort was made on standardiz-

ing synthetic workload to reflect real-world application and not bias towards specific database

vendors. TPC (Transaction Processing Performance Council) [13] was created in 1990 to stop

database vendors from publishing unverified results as advertisements. YCSB [22] came out in

2010 to reflect the emerging use of distributed databases with non-relational model. However,

those database benchmark workload standards only cover the workload itself (i.e., value distri-

bution). There is no standard for how to set up databases and configure the operating system.

The lack of constraint on benchmark context not only causes much extra work to users but also

leads to some highly biased result.

To address the issue of running and reproducing distributed database benchmark, re-

search efforts like YCSB++ [41], Oltpbench [24], TSDBBench [19] are made. However, as

their names suggest, they are targeting a specific type of workload (NoSQL/RDBMS/TSDB)

and can’t be used for other types of databases. Furthermore, they prefer using ssh instead of

node agent for simplicity and requires human interaction in different runs. This trait limits the

extensibility and scalability of their system. Thus I did not build BenchHub on top of them.

To constrain the context of benchmark and make it reproducible, BenchHub defines a

specification that covers the life cycle of a database benchmark and provides an infrastructure

to run the spec. The spec contains selecting hardware, software installation, how to run the

workload and collect results. It also defines an explicit syntax for declaring dependencies in

2

a distributed environment. Users only need the job spec if they want to validate or reproduce

others’ benchmark result.

1.1.2 Storing benchmark result in databases is better than plain text

The second problem of database benchmark is that the results are loosely compressed

and presented in an unstructured format like document, graphs. This is caused by length re-

quirement of publications. To address this issue, CERN started Zenodo [21] to share complete

research data but there is no restriction on the format, users need to download huge files even if

they want to query a small subset, extra documentation is needed for preprocessing downloaded

data.

Unlike Zenodo, BenchHub chooses to store benchmark result in database with a

schema. The schema is enforced by BenchHub when reporting result, users do not need to

explicitly describe the format in the documentation. Databases have much higher compression

ratio compared to plain text files and general compression like zip. Based on the characteristic

of data and query patterns, time series data like query latency is stored in Time series database

(TSDB) [28] for higher compression ratio; aggregated results are stored in relational database.

A drawback of storing results in databases is that the schema has to be defined in

advance, which limits the number of workloads BenchHub supports. This tradeoff is reasonable

because the number of standard database workloads is limited. Furthermore, BenchHub is an

open source project hosted on GitHub; additional benchmark can be added by the community.

Currently it supports three workloads, RDBMS (Oltpbench [24]), NoSQL (YCSB [22]) and

TSDB (Xephon-B [30]).

3

1.2 Contributions and Outlines

There are three contributions. First, a job specification to describe database bench-

mark in a distributed environment. Second, a service to run benchmark based on spec and store

results in databases. Third, integration with popular workloads for different types of databases.

The remainder of the thesis is organized as follows: Chapter 2 introduces BenchHub’s

job specification. Chapter 3 describes how we build the infrastructure to run the spec. Chapter

4 shows how to integrate BenchHub with standard database benchmark workloads. Chapter

5 demonstrates using BenchHub to compare the performance of various databases. Chapter 6

describes future work and Chapter 7 concludes the thesis.

4

Chapter 2

Job specification

Job specification defined by BenchHub covers the complete process of running database

benchmark in a distributed environment. The spec is human-readable and used as instructions

for running a benchmark on compatible infrastructure. In this chapter, we describe the spec and

requirements on infrastructure. In next chapter, we will introduce the reference infrastructure

implementation.

2.1 Challenges

2.1.1 Distributed execution

Continuous integration (CI) services like Jenkins [7] and Travis [14] use a single

YAML file as job spec for running tests. However, they run on a single machine, and there is

no way to explicitly specify distributed execution in their spec, users often write shell scripts

to start container or virtual machine in the background to simulate a distributed environment

5

on a single node. This works for unit and e2e tests, but it is too inaccurate for benchmarking

database. To avoid simulation, provision tools like Ansible [34] are used to ssh into machines

during CI jobs to create and run benchmark in distributed environment. Those ad-hoc methods

often introduce hard-coded configuration and require knowledge of specific provision tool to

understand a benchmark, making the benchmark hard to reproduce.

BenchHub’s solution is the node aware job specification, each stage in the job spec

explicitly specifies nodes the tasks will run on. The spec is declarative, it does not have instruc-

tions for creating virtual/physical machine instances, this work is delegated to the underlying

infrastructure. Another problem arises when the benchmark becomes distributed. If a job has

multiple stages on different nodes, how to guarantee the dependencies between stages are met

(i.e., databases should start before workload generators start loading data).

2.1.2 Dependencies in distributed system

There are many schedulers for running job in a distributed environment, i.e., Mesos

[33], Kubernetes [20]. However, in their job spec, there is no explicit syntax for declaring de-

pendency i.e., Service B get started if and only if service A is ready. This is also a problem even

in local environment like docker-compose [36] when multiple services are used. Community

members have created solutions like k8s-AppController [8] to solve dependencies between ser-

vices in Kubernetes. Each service defines a depend_on field and the controller resolves it to a

directed acyclic graph (DAG) before delegates it to the underlying executor.

BenchHub does not build the DAG using depend_on semantics, it asks users to con-

struct the DAG explicitly in job spec using pipelines. Using pipeline instead of depend_on

6

reduces the burden of implementation and user mistakes like cycle dependencies. It also allows

users to know the exact order of execution before submitting the job. Otherwise, they have to

wait for the resolver to compute a generated DAG. Stages in a single pipeline are independent

and execute in parallel, stages in next pipelines have to wait for the completion of all nodes

involved in the current pipeline before it can start. For instance, if a workload generator B re-

lies on database A, the stage for starting database A is put into the first pipeline, and workload

generator is put into the second pipeline.

2.1.3 Readiness of a long running process

Another benchmark specific problem is making sure long running process like database

server is ready. In routine tests, most processes are short running and exit code is enough to

determine success or failure. However, when starting a database server, its parent (node agent,

docker daemon) cannot tell if the child is running or still bootstrapping. Docker-compose solves

it in local environment using scripts like wait-for-it, which blocks until database port is ready 1.

BenchHub enforces the readiness checks in spec by requiring all the task to specify if

it is a long-running process. If it is a long-running process, then it must specify tasks to check

its readiness. A long-running process is marked as complete when its readiness check is passed.

2.2 Elements

BenchHub’s job specification contains four elements: node, pipeline, stage and task.

• node: select nodes and assign properties that are only visible to current job.
1https://docs.docker.com/compose/startup-order/

7

https://docs.docker.com/compose/startup-order/

• pipelines: specify dependencies between stages and tasks

• stage: the basic unit for running multiple tasks on selected nodes

• task: the smallest unit of execution, a shell command or a container

2.2.1 Node assignment

In node section, users specify requirements like role, resources for nodes. Matched

nodes are given names and labels, those aliases are only visible inside the job, users can refer

to selected nodes in stage and task configuration using these aliases. There is only one node

section in one job spec, it is used by the scheduler.

2.2.2 Pipeline

Pipeline exists in both stage and task, it is mandatory for stages but optional for tasks.

Implicitly pipeline is generated for tasks in the order they are declared in the spec. Users should

group stages that can be run in parallel (i.e., downloading binary) into one pipeline, and order

pipelines based on dependencies (i.e., start database before run workload generator). There is

one pipeline section for stages in one job spec, and one pipeline section for tasks in each stage.

2.2.3 Stage

Stage is the basic unit for running database and workload on multiple nodes, It con-

tains two parts, node selectors and task groups.

8

2.2.3.1 Node selector

Node selector syntax is the same as node assignment, properties assigned in node

assignment section can be used in node selector directly. The relationship between multiple

selectors is OR, i.e., [{name: db1}, {role: database}] will select all the nodes that have

database role or a name of db1.

2.2.3.2 Task group

Task group defines all the tasks that will be run on one node at one stage. Once all

the tasks in task group are marked as complete, the stage on this node is marked as complete.

A long-running process is marked as complete if the readiness check pass, it is an error if the

process exits, even with 0 exit code.

All the selected nodes in one stage run same tasks. To proceed to next stage or finish

the job, acknowledgments from all selected nodes in current stage is required, this is inspired

by 2PC [27].

A stage must specify if it has long-running processes, although it is trivial to induct

from task group, this extra verbosity is added to force users to be aware of long-running back-

ground processes.

2.2.4 Task

Task is the smallest execution unit, i.e., a shell command for workload generator,

a docker container for database. It is recommended to use container for most tasks because

resource constraint can be added while raw fork/exec gives the task same privilege as its parent

9

(the node agent). Long-running tasks require nested tasks to check readiness.

2.3 Example

A simple example is shown in Fig 2.1, it starts a sever in one node and pings the

server in another node. First, two nodes are selected, server node and client node are given

the name srv and cli. Then the first pipeline executes two stages download_server and

download_client in parallel. After that, stage start_server is executed to start HTTP server

on port 8080, the stage is marked as complete after ready task passed, which checks HTTP

endpoint on server machine. Finally, client on another machine pings the server, server address

is specified as template string in config. Config is rendered using current state of the job, server

node is referred using its name srv.

2.4 Requirements for infrastructure

Based on job spec of BenchHub and characteristic of database benchmark, there are

three requirements for infrastructure: a distributed environment, a scheduler that focuses on

reducing resource race, and a node agent to run processes and collect metrics.

2.4.1 Real distributed environment

The spec allows user to run multiple workload generators on a cluster of databases. To

get accurate result from benchmark, the test environment must be a real distributed environment.

It cannot be simulated, even using a single powerful physical machine to spawn several virtual

10

Figure 2.1: BenchHub - Ping Pong job spec

11

machines [19] is still not ideal.

With the increasing popularity of public cloud service providers and decreasing price

for on-demand resources, using a production-grade cluster of nodes is doable, especially for

short running jobs like benchmarks. The infrastructure should be able to run on public cloud

without special requirements on underlying hardware.

2.4.2 Scheduler without bin packing

A scheduler is needed because node assignment is not likely always a 1:1 mapping

between resource at hand and job to be run. Many schedulers like Kubernetes [20] use bin

packing, which put CPU intensive and IO intensive tasks on the same node to increase resource

usage. However, this is not the case for database benchmarks. Both database and workload

generators are resource-consuming, putting them on the same physical node (VM) causes too

much noise and makes the result inaccurate. The goal of the scheduler used for benchmark

should put reducing resource contention over increasing result utilization.

2.4.3 Node agent

Although it is possible to run a distributed benchmark using only ssh from a central

machine without installing agents. It is not the right way to run BenchHub’s spec. The spec

allows executing tasks in parallel thus real-time feedback is needed, When using ssh, even with

DevOps tools like Ansible [34], many ad-hoc scripts are needed to control node behavior and

external service is needed for coordination. However, node agent can do it easily because it is

deployed on the node and provides REST API or RPC calls for communication. Furthermore,

12

node agent can collect server metrics, which is an essential but often ignored part of benchmark

results.

2.5 Related work

BenchHub’s job spec is not the first one to describe complex execution in a distributed

environment, similar specification already exists and is not limited to computer science. How-

ever, extra work is needed to fit them to database benchmark. Thus I created a more restricted

spec to make implementation easier.

2.5.1 Popper

Popper [38] is created in UCSC to make system evaluation reproducible and provide

a convention for use DevOps best practice for system researchers and the broader scientific

community (bio, physics, HPC). It also provides a specification for performance evaluation.

Compared to Popper, BenchHub’s spec is limited to database benchmark instead of general

systems, and it has more requirements on infrastructure. However, those limitations also al-

low implementation of BenchHub’s infrastructure easier thanks to reduced features and tight

coupling between components.

2.5.2 Workflow Language

Scientific communities have developed several workflow languages [17] [26] to make

their research reproducible. However, a lot of components are designed for domain-specific

problems, and database research is not covered. Also, the infrastructure and programming

13

models used by the scientific community are very different from internet companies. Scientific

community uses HPC and MPI, which provide enormous resource and simple programming

model. Internet companies use commodity hardware and scale horizontally. BenchHub mainly

targets use cases of internet companies.

14

Chapter 3

Infrastructure

BenchHub defines a job spec for running database benchmark in a distributed envi-

ronment. In this chapter, we present the reference infrastructure implementation. It is designed

to be a multi-tenant system and can be deployed as public service. It contains a central node

for scheduling and coordination and multiple worker nodes to spawn process and collect server

metrics during the benchmark. Time series database is used to store dense metrics and aggre-

gated results are put into relational databases.

3.1 Overview

BenchHub is designed to be a public service; users submit job using command line

tools or Web UI. Based on the requirements in job spec, the scheduler selects idle nodes and

starts running the job, nodes running database can no longer run other jobs, nodes running work

loader generator may run multiple jobs. Database and workload generator will not be scheduled

to same node. For single-tenant use, nodes are provisioned externally by the user. For public

15

Figure 3.1: BenchHub - Public Service

service (Fig 3.1), BenchHub handles provisioning on public cloud service providers like AWS.

With proper scheduling, a shared public service can reduce the overall cost by packing short

running benchmarks into single paying period (i.e., 1 hour) and pick the cheapest provider.

The infrastructure of BenchHub has four components.

• Central, master node handling API request and scheduling.

• Agent, installed on worker nodes, runs tasks and collects metrics.

• Meta store, keeps cluster state, job specification and aggregated state in RDBMS.

• Time series store, stores metrics from both server and client during benchmark

The system is designed top down based on the requirements in job specification. Thus

it is not intended to be used as or compared to general-purpose schedulers like Mesos [33].

16

3.2 Central

Central node is the control plane for managing node and scheduling job, it also pro-

vides API for command line tools and Web UI.

3.2.1 Node management

When an agent is started, it first registers itself to central and provides its node info

including capacity, cloud provider (AWS, GCP, Packet). Central stores the node’s info and gives

it to the scheduler.

After register, agent would send heartbeat with its updated status (capacity, running

jobs) at a fixed interval to central. If the central node has not received a heartbeat from node

agent for a long time, it assumes the worker node is down and aborts all jobs running on that

node.

3.2.2 Scheduler

Scheduler assigns nodes based on spec. After the nodes are assigned, control is given

to job framework. Job framework runs the benchmark and returns the nodes to node scheduler

after benchmark is finished. We are planning to support multiple framework in a two-level

fashion like Mesos [33], but since there is only one framework, current implementation squashes

the logic of node scheduler into job framework.

Node assignment is based on the three criteria defined in the nodeAssignment section

of job spec: role, state and selector

17

• Role, nodes set their preferred role when start based on configuration during provision.

Spec specifies the role the node would become if it is assigned. If there is an exact match,

the node got higher ranking for this spec, loader node would never be scheduled to run

database unless user starts two agents on the same machine with different config.

• State, nodes update their state when they are running jobs, only node in idle state can

become a database node in the current job regardless of its role.

• Selector, nodes can have labels when they register themselves to central (i.e., storage=ssd)

to specify capacity constraints beyond common properties like the number of CPU cores.

Selector is also used later when scheduling job stages.

3.2.3 Planner

Planner generates execution plan based on node assignment and job spec. It is mainly

used to help users understand the behavior of the system without actually executing it. It is

inspired by Hashicoprp’s Terraform[31], which we used to provision machines on different

cloud service providers.

3.2.4 Provisioner

Provisioner uses IaaS API to scale up the cluster, it is designed for the public services,

and is coupled with scheduler because short running benchmarks can be put into a single charge

slot. Shrinking the cluster and finding the cheapest provider are also desired features.

Currently, we use Terraform [31] to spin up nodes because the scheduler is not multi

18

tenant. Vagrant is used for local development and testing because it runs on Windows with Vir-

tualBox. However, Terraform is intended to be used as a command line tool instead of a library,

its internal libraries do not guarantee compatibility. Future implementation of provisioner may

use cloud service providers’ SDK directly instead of using Terraform.

3.2.5 Executor

Executor uses the stage section in job config, it dispatches job to agents, and moves

to next stage when the previous stage is finished. It requires successful execution of all selected

nodes in one stage to mark this stage as finished. However, a finished stage does not mean all

the tasks at that stage have stopped. Long-running tasks does not stop when its stage is marked

as complete, they are mainly used for running databases in the background.

By having multiple stages, we solved the dependencies problem explicitly. It is a port

of what people used for local environment in docker-compose [36], where one container must

be ready before another container starts. Docker can start the process but can’t tell if the process

stalls or is already accepting connections, it requires scripts like wait-for-it to check ports.

We followed the code in dockerize1 and wrote a Go version of it, the binary is installed on all

nodes.

However, using wait-for-it locally is not enough for a distributed environment, all

loader nodes should be able to reach the database before benchmark starts. In BenchHub, it is

recommended to have an extra stage to ensure loaders can reach the database. It is similar to

2 PC [27], where acknowledgment from all replicas are needed before moving forward. Users

1https://github.com/jwilder/dockerize

19

https://github.com/jwilder/dockerize

have to specify this stage explicitly, BenchHub does not insert it implicitly because it makes the

spec harder to understand.

3.3 Agent

Agents are deployed on worker nodes, they are responsible for running processes and

collecting server metrics. We plan to use them for distributing dataset and do map-reduce like

computing in the future to increase resource utilization.

3.3.1 Runner

Runner runs commands based on the task section in job spec. Task also has pipelines

like stages to run independent tasks in parallel. Runner supports three drivers: shell, exec and

docker.

• Shell: command is passed to sh -c so variables in parameters will be expanded by shell,

i.e., echo $USER would output username.

• Exec: command is run using fork and exec, parameters are passed as it is, i.e., echo $USER

would output $USER.

• Docker: run a container or pull an image. Native docker-compose is not supported but

can be simulated using multiple tasks.

20

3.3.2 Monitor

Monitor is implemented as a component in node agent and collects metrics during

benchmark. Host metrics like CPU, Mem, Disk, Network usage are collected through /proc

filesystem, container metrics are collected using docker API. Application specific metrics are

collected using plugins.

Metrics collected during benchmark are tagged so they can be filtered out when look-

ing at specific job or stage. We give the same data source multiple sets of tags (same machine,

different jobs; same job, different stages etc.). This duplication is needed because major TSDBs

do not allow the client to specify a unique id for series and tag it in multiple ways.

3.3.3 Distributor

Running and monitoring processes are not the only jobs for node agents, they can be

used to distribute content in P2P. Dataset can be shared using torrent to save the bandwidth of

central download server. Docker images can be distributed in P2P as well. Although docker’s

default registry is a single central server, companies like Alibaba has already implemented P2P

image distribution in their Pounch engine[16] using Dragonfly[15] and is already deployed in

production environment.

3.4 Storage

There are three storage components in BenchHub, meta store, benchmark result and

time series.

21

3.4.1 Meta

Meta store keeps a global view of the cluster including node states, jobs status etc..

Current implementation uses central node’s memory as a key-value storage and serializes ob-

jects using protobuf. Meta store has an interface, API server accesses meta store using the

interface, and other components use API server. Thus switching to a more reliable meta store is

transparent to other components.

3.4.2 Benchmark result

It is hard to have a general schema for benchmark result, current approach is creating

a different schema for each benchmark frameworks. There aren’t many benchmark frameworks,

those supported by BenchHub are even fewer, so this approach does not have scale problem for

now. Comparing across benchmark frameworks is not supported until we figure out a common

subset of benchmark results.

3.4.3 Time Series

In YCSB [22] wiki it mentioned while a histogram of latencies is often useful, some-

times a timeseries is more useful The main drawback of how current benchmark tools output

time series is they still write to text file or terminal in semi-structural format. Plain text result

requires extra steps for visualizing and analyzing. Put time series data into time series database

solved this, most of them come with visualization dashboard and query language. Also using a

time series database significant reduce the space for storage, reducing the cost of maintaining

BenchHub as a public service.

22

However, it is still hard to use TSDB for analyzing result directly beyond visualiza-

tion. Most TSDBs query language is limited to select and aggregation, not to mention machine

learning related functions. InfluxDB is working on Apache Arrow format[18] support in Go 2,

which would allow working with python libraries directly without writing service to convert be-

tween different formats and ”share” memory directly. It is possible to use Spark on time series

databases directly in the future.

3.5 Implementation

BenchHub is written in Go [4]. The main reason for using Go is its balance between

development speed and performance.

Current implementation of BenchHub (excluding UI and tests) is around 4000 lines

of Go code. Communication between node uses GRPC, protobuf is also used for serialization

meta data. For performance reason we use gogoprotobuf instead of official protobuf implemen-

tation. For communication with browser, HTTP JSON API is provided, it is not a 1:1 mapping

with GRPC, only endpoints for visualization are provided. The Web UI is implemented using

Angular and ant-design. UI pages dump JSON (Fig 3.2) instead of showing graphs and tables.

For running database, the recommended way is using Docker, this reduces the depen-

dencies on worker node’s linux distribution (windows is not supported). Volume and network

need to be set properly to have reasonable result. BenchHub task runner is using official docker

client API, most common parameters are supported. Docker daemon needs to be installed on

the node before register unless node agent is running as root.

2https://github.com/influxdata/arrow

23

https://github.com/influxdata/arrow

Figure 3.2: BenchHub: UI for node management

For data store, we use PostgreSQL and KairosDB [32] for relational data and time se-

ries data. Our time series database Xephon-K [29] is unstable, so we did not use it. Timescaledb

was considered because it is a plugin for Postgres but it requires creating schema in advance.

The metrics collected from server and clients varies based on workload and database, so we

abandoned Timescaledb after a trial run. Because we use libtsdb-go [9] for writing to KairosDB,

switching to a different time series database only requires configuration change on supported

backends.

3.6 Limitation

The current implementation is not ready for public service, resilience and security are

two major issues. The central node is a single point of failure, if it fails in the middle of a job,

the behavior of worker nodes are undefined. In the future consensus services like Zookeeper

[35], etcd [23] can be used to store the cluster state. We skipped them to speed up early stage

24

development, switching to those services only requires change in the API server and meta store.

Node agents are allowed to run arbitrary shell commands. If BenchHub is provided

to the public, this is very dangerous, restriction like cgroup should be enabled by default. Also,

users are allowed to run SQL query directly on results stored in relational databases, a transla-

tion layer (or proxy) is needed to allow only a subset of SQL on limited tables.

3.7 Related work and Discussion

BenchHub’s infrastructure is greatly inspired by DevOps toolchains, continuous in-

tegration (Jenkins [7], Travis CI [14]), container orchestration (Kubernetes [20]), system mon-

itoring (InfluxDB [6]). However our implementation is not a simple combination of popular

solutions, core components like scheduler, node agents are written from scratch.

The main reason is for reinventing the wheel is we need fine-grained control so Bench-

Hub can be extended to support fault injection. Most node agents are written to protect things

instead of breaks things, latter is required in chaos engineering. Although chaos engineering is

gaining popularity, it does not have first-class support in major platforms like Mesos, Kuber-

netes. By writing our own node agents, it is much easier to create chaos like partition nodes

from network, use up all the inodes to test the resilience of the system.

3.7.1 Automated database benchmark

BenchHub is not the first one advocating fully automated database benchmarks. Many

researchers have already taken this approach, but due to lack of maintenance, they are barely

25

usable now. YCSB++ [41] came out in 2011 to deploy and run YCSB in a distributed envi-

ronment, but its pull request is still there after seven years. TSDBBench [19] uses Vagrant and

python, it is actively maintained but requires extra work when using public cloud providers.

OLTPBench [24] is maintained by CMU-DB group, but the distributed execution part is not

usable last time we checked.

3.7.2 Load testing

Other than database benchmarks, there are many automated tools for general purpose

load testing on web applications. Locust [10] contains a master slave setup for distributed load

testing, it also allows configuring workload using python directly, but there is no way to specify

the dependency in a distributed environment. Commercial tools like Soasta [12] and Flood.io

[3] are powerful with colorful UI, however they are proprietary software and can’t be extended.

Mzbench [11] allocates nodes from EC2 directly, but it is for single user.

3.7.3 Continuous integration

CI tools like Travis [14] are typically used for testing correctness (unit test, e2e).

Thus performance is not a major concern. For better resource usage, they run many jobs run

on a single machine, lightweight isolation technology like Docker allows them to run even

more jobs concurrently. However, this does not work for database benchmark, even workload

generator could take a significant amount of resource. In the worst case a database may run

alongside other databases. The parallelism in traditional CI services creates big noise when we

could avoid it by limiting parallelism.

26

3.7.4 Jepsen

Although Jepsen [39] is used for correctness validation instead of performance evalu-

ation, its framework is quite general, it automates database setup and runs databases under high

load. A major difference of Jepsen is it injects faults and has expectations of what correct result

should be. Jepsen contains control node and db nodes, A Jepsen test runs as a Clojure program

on a control node. That program uses SSH to log into a bunch of db nodes, where it sets up the

distributed system. Although this means fault injection can be done without agents on node, we

want to collect database server machine metrics, so agent is still required for BenchHub.

3.8 Conclusion

We implemented a system for running database benchmarks and store results in databases

based on BenchHub’s spec. In next chapter, we show how to integrate this infrastructure with

database workloads.

27

Chapter 4

Integration

BenchHub can be used for both developing databases and comparing databases per-

formances. Popular workloads are integrated into BenchHub and can be used out of the box.

This chapter describes required changes for both workloads and databases.

4.1 Workloads

Most workloads require a few changes to run on BenchHub because no human inter-

action is allowed during benchmark. For benchmark that writes results to plain text, a parser is

needed to convert and write the data into database.

4.1.1 Oltpbench: Relational database

Oltpbench[24] is designed for transactional processing systems, mainly relational

databases. It contains 15 workloads, TPC-C is well tested on BenchHub, other workloads may

not work.

28

4.1.1.1 Change to workload

Integrating Oltpbench with BenchHub requires following changes:

• a catalog for supported databases

• utility for creating database

• parse text result and write to database

First, a catalog is needed because management interface is not consistent across

RDBMS (i.e., CREATE TABLE IF NOT EXISTS will fail on PostgreSQL). We use a python

script to read from the catalog and generate commands based on the current database, users

do not need to care about the differences between databases.

Although Oltpbench can create tables, it can’t create databases. There were people

complaining on GitHub for database not found errors. The python script for reading catalog is

also capable of calling database shell to create databases.

Results from Oltpbench are written in CSV files, we parse the files and write to

database after benchmark is finished. Some results are not standard time series data (i.e. in-

cremented id), so we store them in relational databases for now. We already submitted part of

the changes in a pull request 1 to upstream.

4.1.1.2 Change to BenchHub

A table is created using the following schema to store the aggregated result from

Oltpbench. Some attributes like scale-factor is not always presented because it is ignored by
1https://github.com/oltpbenchmark/oltpbench/pull/241

29

https://github.com/oltpbenchmark/oltpbench/pull/241

several workloads.

Name Type Description
database varchar name of database tested
version varchar version of database

workload varchar name of workload
config text raw xml config

scale-factor int number of points written
terminal int number of threads per node

worker nodes int number of loader nodes
tps int number of transactions per second

Table 4.1: Oltpbench: Result schema in BenchHub

4.1.2 Xephon-B: Time series database

Xephon-B is a workload designed for time series database [37], time series database

is also used by BenchHub to store metrics. An example configuration of Xephon-B is shown in

figure 4.1.

4.1.2.1 Change to workload

Integrating Xephon-B with BenchHub requires the following changes. Xephon-B is

maintained by the authors, so the changes are merged into master branch already.

• create database using database’s API remotely

• report aggregated result to database

Although most time series databases are schema-less and usable out of box, some still

requires creating database (i.e., InfluxDB), Creating database is added so Xephon-B can create

database in a separated stage before loading to avoid human interaction.

30

Xephon-B supports writing metrics to time series database out of the box because it

was designed to benchmark time series database. But aggregated results are simply echoed to

stdout, the framework Xephon-B is using has driver for relational database, so it is modified to

write to database directly, bypassing BenchHub API, this is subject to change in the future due

to security and compatibility.

4.1.2.2 Change to BenchHub

On BenchHub side, Xephon-B is a shell task in job spec, configuration of workload

and remote databases is passed using environment variables, environment variables are written

as template in configuration and are rendered based on states in current job. Xephon-B itself

can write result to database directly, so BenchHub creates a table in following schema and no

parser is needed.

Name Type Description
database varchar name of database tested
version varchar version of database

workload varchar name of workload
workload version varchar version of workload

config text raw xephon-b config
points int number of points written
series int number of series in single request

duration int time of loading phases
throughput int number of requests per second

Table 4.2: Xephon-B: Result schema in BenchHub

31

4.2 Databases

Most databases are already packaged into docker containers, the only extra effort for

running database on BenchHub is defining the task for checking readiness of database server.

BenchHub node agent ships with a helper binary called wait-for-it, it can listen to TCP port and

exit with 0 if the port is ready or 1 if it has waited for too long.

4.2.1 Single node database

For single node databases, only one stage is needed to start database and run it in

background. Figure 4.2 shows how to run a single node MySQL server on BenchHub. In ready

task, waitforit connects to port 3306, which is the default port used by MySQL. Docker task

driver maps port 3306 from container to host so loader generator can reach it using node’s IP

address, which is passed as parameters when rendering task templates.

4.2.2 Distributed database

For distributed databases, especially those require start up order, BenchHub’s spec

allow using multiple stages to model this behavior. Figure 4.3 is an example of setting a three

node Cassandra cluster [40].

Node assignment acquires three nodes from idle nodes and give them name first,

second abd third. In first stage, only one node is started, after this node is ready, we proceed

to next stage. In second stage, two nodes are selected and ip address of first node is passed using

template as seed for cluster, allowing two nodes to join the cluster. After both of the nodes are

ready, the second stage is marked as complete.

32

Figure 4.1: Xephon-B config example

33

Figure 4.2: Database: single node MySQL

34

Figure 4.3: Database: Three nodes Cassandra Cluster

35

Chapter 5

Application

This chapter presents the result of running various workloads on BenchHub and po-

tential usage of these results. Evaluation of RDBMS and Time Series Database (TSDB) are

covered. Detailed hardware spec for results presented in this chapter can be found in Appendix

A.

5.1 Track performance change of a database

Using BenchHub database developers can run and compare benchmark results of their

system in different versions using one job spec. The results can tell if performance is degrading

due to breaking changes in implementation.

We compared minor versions of MySQL (Fig 5.1) and PostgreSQL (Fig 5.2) using

TPC-C workload in Oltpbench. The load generator is configured to use the default config with

two client threads. Database servers run on 4 cores machine with 32 GB RAM and 120 GB

SATA SSD, workload generators run on different machines (Appendix A). This is the default

36

setup for benchmarks in this chapter.

Figure 5.1: Oltpbench: Throughput of MySQL in different version

Figure 5.2: Oltpbench: Throughput of PostgreSQL in different version

The throughput of MySQL does not change much between minor releases, newest

release (8.0) is not tested because Oltpbench’s driver for MySQL is too old. PostgreSQL how-

ever, does show significant changes between different versions, version 10.1 almost doubled the

throughput compared with version 9.2. Before 9.5, PostgreSQL’s throughput is always lower

37

than MySQL’s.

We also compared the throughput of InfluxDB in different versions using the time se-

ries workload (Xephon-B). In contrast to conventional assumptions, the throughput of InfluxDB

does not increase with version number, it decreases in the middle (version 1.2) (Fig 5.3). How-

ever, in InfluxDB’s developer blog, they said version 1.2 reduced lock contention and write

performance increased 50% 1.

Figure 5.3: Xephon-B: Throughput of InfluxDB in different version

5.2 Compare performance of different databases

BenchHub can compare different databases directly because it stores results in databases.

Results from different sources can be compared as long as the workload and hardware match.

We compared three time series databases, KairosDB [32], InfluxDB [6] and Graphite

[5]. They are representatives for three popular storage backends, Cassandra, columnar store and

1InfluxDb 1.2 50 better write performance on larger hardware

38

https://www.influxdata.com/blog/influxdb-1-2-released-with-subqueries-and-50-better-write-performance-on-larger-hardware/

round-robin file (RRD) respectively. The result is shown in Figure 5.4. To our surprise, Graphite

is not slow regarding throughput, we were expecting Graphite to be the slowest because it is

written in Python. However, it is faster than InfluxDB which is written in Go and KairosDB

which is written in Java. One possible explanation is Graphite is using raw TCP while InfluxDB

and KairosDB are using HTTP, when the payload is small, the overhead of HTTP protocol is

significant. Another explanation is TCP clients do not wait for response, because some time

series databases do not give response for write requests in TCP protocol. This finding results in

more protocols being added to our time series database prototype Xephon-K [29]

Figure 5.4: Xephon-B: Compare throughput of Graphite, KairosDB, InfluxDB

To validate the assumption that Graphite’s throughput is from using TCP protocol,

we run another benchmark. As shown in (Figure 5.5), all the databases use raw TCP. KairosDB

supports both HTTP and Telnet, when KairosDB is using HTTP, Graphite’s throughput is almost

10 times of KairosDB. However, after KaiorsDB switched to TCP, its throughput is 2 times of

Graphite. Akumuli [1] is written in C++ and uses a redis like protocol, its throughput is much

39

higher than other databases.

Figure 5.5: Xephon-B: Compare throughput of Akumuli, Graphite, KairosDB

5.3 Store latency result in time series database

Figure 5.6 shows client latency when benchmarking InfluxDB. Writing to time series

database is more accurate and easier to use than summarizing via histogram, it does not require

any pre-configuration or knowledge of value range. The reporter in workload generator writes

metrics in full precision to time series database. Using a time series database also gives near

real-time visualization of ongoing benchmarks.

5.4 Use server metrics for trouble shooting

Client side metrics can not tell everything about server while server side metrics can

even tell about client. When running database using container, BenchHub can use cAdvisor [2]

40

Figure 5.6: BenchHub: Write latency (ns) stored in time series database during benchmark

or docker API to collect metrics. cAdvisor comes with a default UI, so the graph can be viewed

in realtime as shown in Figure 5.7 and 5.8.

One interesting observation is the periodical curves in server CPU usages. In our

workload, we didn’t limit QPS, the only thing that changes periodically is series identifier (series

churn), it is used to simulate microservice deployment. However, the number of curves does not

match the number of churns in benchmark, this reveals our benchmark (Xephon-B) is having

bottleneck in itself that forces workers to stop generating load periodically. Later we found the

reporter buffer is too small, once this buffer is filled up, workers are blocked until the buffer

get drained. Without metrics collected on server sides, it is hard to detect this kind of anomaly

using only client-side metrics.

41

Figure 5.7: BenchHub: Real-time CPU usage during benchmark InfluxDB

Figure 5.8: BenchHub: Real-time memory and network usage during benchmark InfluxDB

42

Chapter 6

Future work

6.1 Infrastructure

Current infrastructure implementation is a single tenant system, future development

will mainly focus on the scheduler to make it multi-tenant.

Another direction is building BenchHub on top of existing systems like Kubernetes

and Mesos, the job scheduling logic can be ported as a controller in Kubernetes or a framework

in Mesos. This migration allows BenchHub to run along side other workloads without allocating

dedicated hardware.

6.2 BenchBoard: a client for BenchHub

BenchHub requires setting up node agents and the central node, which is an overkill

for microbenchmarks that can be run on a single machine. The spec for BenchHub can be

adapted to support pure local execution, results are stored in user’s home directory. SQLite

43

can replace PostgreSQL and Xephon-K’s local storage [29] can replace dedicated time series

database server. Furthermore, BenchBoard can synchronize data with BenchHub and serve as a

local visualization tool.

6.3 Use machine learning for auto tunning

Using machine learning for tuning databases is becoming the new trend. Oracle an-

nounced their machine learning based tunning to reduce database maintenance cost, Google

has published Vizier [25], CMU-DB group has published Ottertune [42]. One challenge for

running machine learning using data from BenchHub is efficient data loading between Bench-

Hub’s data store and machine learning frameworks, Apache Arrow [18] is a possible solution

for sharing memory. Another more aggressive approach is moving machine learning algorithm

into database, which might scale better for larger data.

44

Chapter 7

Conclusion

BenchHub defines a job spec for running database benchmarks in distributed environ-

ment and provides the reference infrastructure implementation. Given the infrastructure, users

only need a job spec to reproduce the benchmark. Benchmark results are stored in databases,

allowing efficient query for both human and machine. BenchHub has builtin integrations with

workloads like Oltpbench and Xephon-B. The integration process only requires a few changes

in workloads and proper packaging on databases. Metrics collected by BenchHub can discover

anomalies during benchmarks. With BenchHub, database developers can focus more on ana-

lyzing benchmark results instead of getting them. Database users can have more transparent

performance comparisons thanks to the reduced cost of querying and reproducing benchmarks.

BenchHub is open sourced under MIT license, the code is available at https://

github.com/benchhub/benchhub

45

https://github.com/benchhub/benchhub
https://github.com/benchhub/benchhub

Appendix A

Benchmark hardware

Most time series database I tested using BenchHub are not distributed, the default

setup is just two nodes. One is a small machine (type 0) as loader and a regular machine (type

1) as database 1. For more than one nodes setup, all database nodes are using type 1. All the

nodes are in same VPC in one datacenter (SJ1).

Type 0 has 4 cores 2.4GHZ with 8GB DDR3 RAM, 80GB SSD and 1GPS network.

Type 1 has 4 cores 3.5GHZ with 32GB DDR3 RAM, 120 GB SSD and 2GPS network. SSD

brand is SAMSUNG MZ7KM240.

ulimit for linux user running loader and database are both set to max to avoid is-

sues like running out of file descriptors, other tweaks are set in cloud-init when provisioning

machines and not written in job spec.

1https://www.packet.net/bare-metal/

46

https://www.packet.net/bare-metal/

Bibliography

[1] Akumuli. https://github.com/akumuli/Akumuli. Accessed: 2018-03-31.

[2] cadvisor. https://github.com/google/cadvisor. Accessed: 2018-03-31.

[3] Flood.io. https://flood.io/. Accessed: 2018-03-31.

[4] The go programming language. https://golang.org/. Accessed: 2018-03-31.

[5] Graphite. https://graphiteapp.org/. Accessed: 2018-03-31.

[6] Influxdb. https://github.com/influxdata/influxdb. Accessed: 2018-03-31.

[7] Jenkins. https://jenkins.io/. Accessed: 2018-03-31.

[8] Kubernetes appcontroller. https://github.com/Mirantis/k8s-AppController. Ac-
cessed: 2018-03-31.

[9] libtsdb. https://github.com/libtsdb. Accessed: 2018-03-31.

[10] Locust. https://github.com/locustio/locust. Accessed: 2018-03-31.

[11] Mzbench. https://github.com/satori-com/mzbench. Accessed: 2018-03-31.

[12] Soasta. https://www.soasta.com/load-testing/. Accessed: 2018-03-31.

[13] Transaction processing performance council. http://www.tpc.org/. Accessed: 2018-
03-31.

[14] Travis ci. https://travis-ci.org. Accessed: 2018-03-31.

[15] Alibaba. Dragonfly. https://github.com/alibaba/dragonfly. Accessed: 2018-03-
31.

[16] Alibaba. Pouch. https://github.com/alibaba/pouch. Accessed: 2018-03-31.

[17] Peter Amstutz, Michael R Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael
Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, et al. Com-
mon workflow language, v1. 0. 2016.

[18] Apache. Apache arrow. https://arrow.apache.org/. Accessed: 2018-03-31.

47

https://github.com/akumuli/Akumuli
https://github.com/google/cadvisor
https://flood.io/
https://golang.org/
https://graphiteapp.org/
https://github.com/influxdata/influxdb
https://jenkins.io/
https://github.com/Mirantis/k8s-AppController
https://github.com/libtsdb
https://github.com/locustio/locust
https://github.com/satori-com/mzbench
https://www.soasta.com/load-testing/
http://www.tpc.org/
https://travis-ci.org
https://github.com/alibaba/dragonfly
https://github.com/alibaba/pouch
https://arrow.apache.org/

[19] Andreas Bader. Comparison of time series databases. PhD thesis, Diploma Thesis, Insti-
tute of Parallel and Distributed Systems, University of Stuttgart, 2016.

[20] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,
omega, and kubernetes. ACM Queue, 14:70–93, 2016.

[21] CERN. Zenodo. https://zenodo.org/. Accessed: 2018-03-31.

[22] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM sympo-
sium on Cloud computing, pages 143–154. ACM, 2010.

[23] CoreOS. etcd: a dirstibued key-value store using raft. https://github.com/coreos/
etcd/. Accessed: 2018-03-31.

[24] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux. Oltp-
bench: An extensible testbed for benchmarking relational databases. Proceedings of the
VLDB Endowment, 7(4):277–288, 2013.

[25] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D Sculley. Google vizier: A service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1487–1495. ACM, 2017.

[26] GRAIL. Reflow. https://github.com/grailbio/reflow. Accessed: 2018-03-31.

[27] Jim Gray and Andreas Reuter. Transaction processing: concepts and techniques. Elsevier,
1992.

[28] Pinglei Guo. Awesome time series databases. https://github.com/xephonhq/
awesome-time-series-database. Accessed: 2018-03-31.

[29] Pinglei Guo. Xephon-k: A multi backend time series database prototype. https://
github.com/xephonhq/xephon-k. Accessed: 2018-03-31.

[30] Pinglei Guo and Zheyuan Chen. Xephon-b: A time series database benchmark suite.
https://github.com/xephonhq/xephon-b. Accessed: 2018-03-31.

[31] HashiCorp. Terraform. https://www.terraform.io/. Accessed: 2018-03-31.

[32] Brian Hawkins. Kairosdb. https://github.com/kairosdb/kairosdb. Accessed:
2018-03-31.

[33] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph,
Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In NSDI, volume 11, pages 22–22, 2011.

[34] Lorin Hochstein and Rene Moser. Ansible: Up and Running: Automating Configuration
Management and Deployment the Easy Way. ” O’Reilly Media, Inc.”, 2017.

48

https://zenodo.org/
https://github.com/coreos/etcd/
https://github.com/coreos/etcd/
https://github.com/grailbio/reflow
https://github.com/xephonhq/awesome-time-series-database
https://github.com/xephonhq/awesome-time-series-database
https://github.com/xephonhq/xephon-k
https://github.com/xephonhq/xephon-k
https://github.com/xephonhq/xephon-b
https://www.terraform.io/
https://github.com/kairosdb/kairosdb

[35] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX annual technical confer-
ence, volume 8. Boston, MA, USA, 2010.

[36] Docker Inc. Docker compose. https://github.com/docker/compose. Accessed:
2018-03-31.

[37] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Time series man-
agement systems: A survey. IEEE Transactions on Knowledge and Data Engineering,
29(11):2581–2600, 2017.

[38] Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead, Kathryn
Mohror, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. The popper convention:
Making reproducible systems evaluation practical. In Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International, pages 1561–1570. IEEE,
2017.

[39] Kyle Kingsbury. Jepsen: A framwork for distributed system verification, with fault injec-
tion. https://jepsen.io/. Accessed: 2018-03-31.

[40] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[41] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth
Gibson, Adam Fuchs, and Billie Rinaldi. Ycsb++: benchmarking and performance debug-
ging advanced features in scalable table stores. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, page 9. ACM, 2011.

[42] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In Proceedings
of the 2017 ACM International Conference on Management of Data, pages 1009–1024.
ACM, 2017.

49

https://github.com/docker/compose
https://jepsen.io/

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Workload is just part of a benchmark
	Storing benchmark result in databases is better than plain text

	Contributions and Outlines

	Job specification
	Challenges
	Distributed execution
	Dependencies in distributed system
	Readiness of a long running process

	Elements
	Node assignment
	Pipeline
	Stage
	Node selector
	Task group

	Task

	Example
	Requirements for infrastructure
	Real distributed environment
	Scheduler without bin packing
	Node agent

	Related work
	Popper
	Workflow Language

	Infrastructure
	Overview
	Central
	Node management
	Scheduler
	Planner
	Provisioner
	Executor

	Agent
	Runner
	Monitor
	Distributor

	Storage
	Meta
	Benchmark result
	Time Series

	Implementation
	Limitation
	Related work and Discussion
	Automated database benchmark
	Load testing
	Continuous integration
	Jepsen

	Conclusion

	Integration
	Workloads
	Oltpbench: Relational database
	Change to workload
	Change to BenchHub

	Xephon-B: Time series database
	Change to workload
	Change to BenchHub

	Databases
	Single node database
	Distributed database

	Application
	Track performance change of a database
	Compare performance of different databases
	Store latency result in time series database
	Use server metrics for trouble shooting

	Future work
	Infrastructure
	BenchBoard: a client for BenchHub
	Use machine learning for auto tunning

	Conclusion
	Benchmark hardware
	Bibliography

