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A Connectionist Account of Perceptual Category-Learning in Infants'

Denis Mareschal
Centre for Brain and Cognitive Development
Department of Psychology
Birkbeck College
London, WCI1E 7THX, UK
d.mareschal@bbk.ac.uk

Abstract

This paper presents a connectionist model of correlation-
based categorization by 10-month-old infants (Younger,
1985). Simple autoencoder networks were exposed to the
same stimuli used to test 10-month-olds. Both infants and
networks used co-variation information (when available) to
segregate items into scparate categories. The model
provides a mechanistic account of category learning within
a test session. It shows how distinct categories are
developed and demonstrates how categorization arises as the
product of an inextricable interaction between the subject
(the infant) and the environment (the stimuli).

Introduction

The ability to categorize underlies much of cognition. It is
a way of reducing the load on memory and other cognitive
processes (Rosch, 1975). Because of its fundamental role,
any developmental changes in the ability of infants to
categorize is likely have a significant impact on subsequent
cognitive development as a whole. As a result,
categorization is one of the most fertile areas of research in
infant cognitive development.

Many studies of infant categorization have relied on
visually presented material. The basic idea of these studies
is to show infants a series of images that could be
construed as forming a category. The infant’s subsequent
response to a previously unseen image is used to gauge
whether the infant has formed a category based on his or
her experience with the familiarization exemplars.
Generalization to a novel exemplar from the familiar
category, coupled with a preference or heightened
responsiveness to a novel exemplar from a novel category
is taken as evidence of category formation. There is
considerable evidence that young infants can form
categorical representations of shapes, animals, furniture,
faces, etc. (see Quinn & Eimas, 1996, for a recent review).

At first, the categories developed by infants may
appear similar to those developed by adults. However,
occasionally, infant categories differ dramatically from
those of adults. Quinn, Eimas, and Rosenkrantz (1993)
report one striking example. These authors found that when
3.5-month-olds were shown a series of cat photographs, the
infants would develop a category of CAT that included
novel cats and excluded novel dogs (in accordance with the
adult category of CAT). However, when 3.5-month-olds
were shown a series of dog photographs, they would
develop a category of DOG that included novel dogs but

' A longer version of this paper will appear in Infancy.
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also included novel cats (in contrast to the adult category
of DOG). There is an asymmetry in the exclusivity of the
CAT and DOG categories developed by 3.5-month-olds.

To understand the source of this asymmetry, one needs
to explore the basis on which infants categorize items.
While there have been many studies describing infant
categorization competence at various ages, there have been
few mechanistic accounts of how the underlying
categorical representations might emerge. One partial
exception is the work by Quinn and Johnson (1997). These
authors used a connectionist model to explore the order in
which basic and super-ordinate level categories are
acquired. Because the model was implemented as a
working computer simulation, it is one of the first studies
to ask how the mechanisms of learning constrain the nature
of the categories that are acquired. Although this work
explored how the characteristics of exemplars at different
levels might dictate the order in which categories are
acquired by infants as a whole, it did not directly address
the issue of how categories are learned within the short-
term testing sessions characteristic of many published
categorization studies.

We believe that the way to a comprehensive synthesis
of the numerous competence studies that abound in the
infancy literature is to shift the debate to a mechanistic
level. If the different studies are tapping into a common
categorization ability, then there must exist a common set
of mechanisms that can account for the observed
behaviors. The search for a common set of mechanisms
underlying performance on different tasks has already been
successfully applied to explaining the causes of the
exclusivity asymmetry mentioned above and a catastrophic
interference effect in infant memory studies (Mareschal &
French, 1997; Mareschal, French, & Quinn, submitted).

Mareschal & French (1997) and Mareschal er al
(submitted) presented connectionist networks with the
same cat and dog exemplars used to familiarize infants in
the original Quinn er al. (1993) study. The networks
developed the same exclusivity asymmetries as had the
infants (i.e., the category of CAT excluded novel dogs,
whereas the category of DOG did not exclude novel cats).
This was accounted for in terms of the distribution of
feature values in the familiarization stimuli and the fact
that the connectionist networks developed internal
representations reflecting the variability of the inputs they
experienced. For almost all features, the distribution of
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CAT values was subsumed within the distribution of DOG
values. The same mechanism was used to account for the
fact that sometimes (but not always) material presented to
infants during a retention interval leads to the catastrophic
forgetting of the initial material. The model made the
prediction that the subsequent learning of the DOG
category would disrupt the prior leaming of the CAT
category, but that the subsequent leamning of the CAT
category would not disrupt the prior learning of the DOG
category. This prediction was tested and found to be true
for 3.5-month-olds (Mareschal & French, 1997; Mareschal,
French, & Quinn, submitted). In short, the model
demonstrated how the previously unrelated exclusivity
asymmetry and interference effects were two sides of the
same mechanistic coin.

This previous work establishes that autoassociators
provide a good model of how categories overlap. However,
one purpose of categorization is to parse the world into
distinct units that are then acted on differently. Ultimately
infants learn to separate out categories. In this paper, we
will extend the previous work by exploring the basis on
which distinct categories are developed by infants and
connectionist networks given a series of exemplars.
Younger (1985) showed that 10-month-olds could use the
correlation between feature values to segregate items into
separate categories. Although these results are based on
presenting infants with line drawings of artificial animals,
Younger (1990) found that infants could still use
correlation information with natural kind images similar to
those used in the Quinn gt al, studies. We will explore
whether the autoencoder connectionist architecture used to
model the Quinn et al, data (Mareschal & French, 1997,
Mareschal, French, Quinn, submitted) also responds to
correlation information in the same way as infants.

The rest of this paper unfolds as follows. First we will
describe in detail Younger's (1985) categorization studies
with 10-month-olds. Next we will present connectionist
simulations of categorization using the same stimuli as
Younger used with her infants. We will present an
illustration of the internal representations developed by the
networks.

Category formation in 10-month-olds

The two simulations described below are attempts to
model the behavior of 10-month-olds reported by Younger
(1985). The network training regime is kept as close as
possible to the infant familiarization conditions. Younger
examined 10-month-olds' abilities to use the correlation
between the variation of attributes to segregate items into
categories. In the real world certain ranges of attribute
values tend to co-occur. Thus, animals with long necks
tend to have long legs whereas animals with short necks
tend to have short legs. Younger examined whether infants
could use these co-variation cues to segment artificial
animal line drawings into separate categories.

In a first experiment, infants were familiarized with a
set of exemplars. They were then tested with either: (a) an
exemplar whose attribute values were the average of all the
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previously experienced values along each dimension, or (b)
an exemplar containing the modal attribute values (i.e., the
most frequently experienced values) along each dimension.
Based on the finding that infants direct more attention to
novel or unfamiliar stimuli, preference for a modal versus
the average stimulus was interpreted as evidence that the
infants had formed a single category from all the
exemplars (as evidenced by the greater familiarity of the
average stimulus). Preference for the average stimulus was
interpreted as evidence that the infants had formed two
categories (as indicated by the lesser familiarity of the
average stimulus) since the boundary between correlated
clusters lay on the average values. Younger found that 10-
month-olds looked more at the modal stimuli when the
familiarization set was unconstrained (i.e., all attribute
values occurred with every other attribute value)
suggesting that they had formed a single representation of
the complete set of exemplars. However, the 10-month-
olds looked more at the average stimuli when the
familiarization set was constrained such that ranges of
feature values were correlated suggesting that they had
formed two distinct categories.

In a second experiment, Younger (1985) provided a
more stringent test of category formation in infancy. In this
experiment, the infants were presented with a constrained
familiarization set (i.e., ranges of feature values were
correlated across dimensions). However, the
familiarization set was designed such that the modal
stimulus was identical to the average stimulus. Infants were
then tested with the modal/average stimulus and two
stimuli with previously unseen attribute values but which
were prototypical of the two possible categories contained
within the familiarization set. Preference for the
average/modal stimulus was interpreted as evidence that
the infants had formed two categories (as indicated by the
greater familiarity of the previously unseen stimuli) since
the boundary between correlated clusters lay on the
average/modal values. Preference for the previously unseen
stimuli was interpreted as evidence that the infants had
formed a single category from all the exemplars (as
evidenced by the greater familiarity of the average/modal
stimulus). Younger found that, under these conditions, 10-
month-old infants looked longer at the average/modal
stimuli suggesting that they had formed two distinct
categories.

To model performance on these two experiments (in
simulations 1 and 2 below respectively), the same artificial
animal stimuli used by Younger were encoded for
presentation to the networks. These animals were defined
by their values along 4 dimensions: Leg length (ranging
from 1.5 to 3.5 in intervals of 1.0), Neck length (ranging in
value from 1.2 to 5.2 in intervals of 1.0), Tail length
(ranging in value from 0.5 to 2.3 in intervals of 0.45), and
Ear separation (ranging in values from 0.3 to 2.7 in
intervals of 0.6). Because none of the attributes are
intended to be more salient than any other attribute, each
attribute was scaled to range between 0.0 to 1.0. This
transformation ensures that the greater magnitude of one
dimension (e.g., Ear separation) does not bias the networks



to attend preferentially to that dimension. Normalization
was achieved by dividing each attribute value by the
maximum value along that dimension.

Networks were trained in batch mode. That is, all ¥
familiarization items were presented as a batch to the
network and the cumulative error was used to update the
weights (to drive learning). This ensures that all the 1tems
in the familiarization set are weighted equally by the
networks and is intended to reflect the fact that there were
no significant changes in infant looking times across all
familiarization trials. Batch learning also ensures that all
order effects are averaged out.

Modeling habituation-dishabituation

Infant categorization tasks rely on preferential looking or
habituation techniques based on the finding that infants
direct more attention to unfamiliar or unexpected stimuli.
The standard interpretation of this behavior is that infants
are comparing an input stimulus to an internal
representation of the same stimulus (e.g., Solokov, 1963;
Charlseworth, 1969; Cohen, 1973). As long as there is a
discrepancy between the information stored in the internal
representation and the visual input, the infant continues to
attend to the stimulus. While attending to the stimulus the
infant updates its intermal representation. When the
information in the internal representation is no longer
discrepant with the visual input, attention is directed
elsewhere. When a familiar object is presented there is
little or no attending because the infant already has a
reliable internal representation of that object. In contrast,
when an unfamiliar or unexpected object is presented,
there is much attending because an internal representation
has to be constructed or adjusted. The degree to which a
novel object differs from existing internal representations
determines the amount of adjusting that has to be done, and
hence the duration of attention.

We used a connectionist autoencoder to model the
relation between attention and representation construction.
An autoencoder is a feedforward connectionist network
with a single layer of hidden units. The network leams to
reproduce on the output units the pattern of activation
across the input units. Thus, the input signal also serves as
the training signal for the output units. The number of
hidden units must be smaller than the number of input or
output units. This produces a bottleneck in the flow of
information through the network. Leaming in an
autoencoder consists in developing a more compact
internal representation of the input (at the hidden unit
level) that is sufficiently reliable to reproduce all the
information in the original input. Information is first
compressed into an internal representation and then
expanded to reproduce the original input. The successive
cycles of training in the autoencoder are an iterative
process by which a reliable internal representation of the
input is developed. The reliability of the representation is
tested by expanding it, and comparing the resulting
predictions to the actual stimulus being encoded. Similar
networks have been wused to produce compressed
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representations of video images (Cottrell, Munro, &
Zipser, 1988).

We suggest that during the period of captured attention
infants are actively involved in an iterative process of
encoding the visual input into an intemnal representation
and then assessing that representation against the
continuing perceptual input. This is accomplished by using
the internal representation to predict what the properties of
the stimulus are. As long as the representation fails to
predict the stimulus properties, the infant continues to
fixate the stimulus and to update the internal
representations,

This modeling approach has several implications. It
suggests that infant looking times are positively correlated
with the network error. The greater the error, the longer the
looking time. Stimuli presented for a very short time will
be encoded less well than those presented for a longer
period. However, prolonged exposure after error (attention)
has fallen off will not improve memory of the stimulus.
The degree to which error (looking time) increases on
presentation of a novel object depends on the similarity
between the novel object and the familiar object.
Presenting a series of similar objects leads to a progressive
error drop on future similar objects. All of this is true of
both autoassociators (where output error is the measurable
quantity) and infants (where looking time is the measurable
quantity).

The modeling results reported below are based on the
performance of a standard 4-3-4 (4 input units, 3 hidden
units, and 4 output units) feedforward backpropagation
network. The learning rate was set to 0.1 and momentum to
0.9. Networks were trained for a maximum of 200 epochs
or until all output bits were within 0.2 of their targets. This
was done to reflect the fact that in the Younger (1985)
studies infants were shown pictures for a fixed duration of
time rather than using a proportional looking time criterion.

Simulation 1

In this simulation 24 networks were presented with 8
stimuli in which the full range of values in one dimension
occurred with the full range of values in the other
dimension (the Broad condition). Another 24 networks
were presented with the 8 stimuli in which restricted ranges
of values were correlated (the Narrow condition). The
networks in both conditions were then tested with stimuli
made up of the average feature values or the modal feature
values. Table 1 shows the normalized values defining the
stimuli in the Broad and Narrow familiarization conditions,
and the three test stimuli. Figure 1 shows the networks’
response to the average and modal test stimuli when
familiarized in either the Narrow or Broad conditions. As
with the 10-month-olds, networks familiarized in the
Narrow condition showed more error (preferred to look)
when presented with the average test stimulus than the
modal test stimuli, Similarly, as with the 10-month-olds,
networks familiarized in the Broad condition showed more
error (preferred to look) when presented with the modal test
stimuli than the average test stimuli.



Table 1. Normalized familiarization and test stimuli (Exp. 1)

Familiarization Stimuli

Broad Condition Narrow Condition

Legs Neck Tail Ears Legs Neck Tail Ears

0.27 1.0 022 1.0 027 1.0 0.8 033
027 023 10 1.0 0.27 0.81 1.0 033
045 081 041 0.78 045 081 1.0 0.11
0.45 042 08 0.78 045 1.0 0.8  0.11
082 042 08 033 082 042 022 1.0

082 081 041 033 082 023 041 1.0

1.0 023 10 011 1.0 023 041 0.78

1.0 1.0 022 0.11 1.0 042 022 0.78
Test Stimuli

Average 0.64 | 0.62 0.61 0.56

Modall 0.27 1.0 1.0 0.11

Modal2 1.0 023 |0.22 1.0

Note: Values are scaled to range from 0.0 to 1.0.

This was confirmed by an analysis of variance with one
between-subject factor (Conditions: narrow or broad) and
one within-subject factor (Stimulus: average or modal)
which revealed a significant interaction of Condition x
Stimulus (F(1,46)=752, p<.0001).

Internal category representation
This section describes the internal representations
developed by the networks in Simulation land discusses
how they lead to the observed preferential looking
behaviors described above.
From a behavioral perspective, categorization can be
said to have occurred when identifiably different exemplars

are treated in the same way. In hidden unit space,
members
error Response to Test Stimuli

0.6 1

0.5 -

0.4 -

0.3 -

0_ 4

2 B average stimulus
0.1 8 modal stimulus
0.0 =
Narrow Broad
Condition

Figure 1. Responses to the average and modal test stimuli
for networks familiarized in Broad and Narrow conditions.

of the same category will be mapped to points close
together; they will elicit similar activation patterns across
the hidden units. Members of different categories will be
mapped to points further apart; they will elicit different
activation patterns across the hidden units. Because
members of a category produce similar hidden unit
activation patterns, they will be responded to in a similar
fashion by the output units. In contrast, members of a
different category that produce different hidden unit
activation patterns will be responded to differently by the
output units,
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Figure 2 shows the distribution of exemplars within the
hidden unit space for a representative network trained in
the Narrow and Broad conditions of Simulation 1. In the
Narrow condition (Figure 2a), exemplars are grouped
together in two distinct clusters. One cluster corresponds to
those exemplars forming one category and the other cluster
correspond to those exemplars forming the second
category. The test exemplars are also plotted. Note that the
two modal exemplars each fall within (or very close to)
one of the category clusters whereas the average exemplar
falls between the two clusters. This explains why there is
more error (longer looking) to the average exemplar than
to either of the modal exemplars. The modal patterns fall
within areas that are well covered by the category
representations, and hence, for which the network has
already learned to make accurate responses. In contrast, the
average pattern falls in an area that is not well covered, and
hence, for which the network has no experience of making
accurale responses.

Figure 2b shows the exemplars within hidden unit space
for networks trained in the Broad condition. The internal
representations are spread throughout the hidden unit
space, reflecting the fact that the exemplars are maximally
spread out. Remember that in this condition any feature
value can occur with any other feature value. All three of
the test stimuli (the average and modal stimuli) project to a
similar location at the center of the space. This is because
all three have comparable similarities (in terms of feature
values) to all of the familiarization exemplars considered
individually. There isn’t the space in this article to discuss
the different ways that similarity can be measured, but by
referring to Table 1 we can see intuitively why the test
stimuli have comparable similarities to all the
familiarization exemplars. Because of the systematic
structure of the familiarization set, the average stimulus
has feature values that lie mid-way within the range of all
possible values. Thus, it is about “half as similar” to any
exemplar along any dimension. The modal stimuli have 2
out of the 4 feature values that tend to match the feature
values of any particular exemplar. In some cases the match
is exact and in others the match is approximate (i.e., both
values are high or both values are low). The remaining two
values always go in the opposite direction (i.e., the modal
value is high when the exemplar value is low or vice
versa). In short, the three test stimuli are comparably
related to the exemplars in the familiarization set: the
average stimulus because it has feature values mid-way
between the possible range of feature values, and the
modal stimuli because they share (approximately) 2 out of
4 feature values with every exemplar.

Finally, because the internal representations are located
close to each other in hidden unit space, the network will
tend to respond to them in a similar fashion. Since they are
in sparsely populated region of the space, the network has
little experience with decoding these types of
internal
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Figure 2. Locations of hidden-unit representations of

members of items in the Narrow (2a) and Broad (2b)
conditions. M1 and M2 are modal test items, A is an
average test item,

representation. As a result, it will output an average of all
the outputs it is familiar with. This is fine for the average
stimulus since the correct response is precisely the average
of all responses (remember that the autoassociation task
requires the network to reproduce on the output units the
original input values), but it is completely inappropriate for
the modal stimuli whose feature values lie at the ends of
the possible ranges. Hence, there is more error for the
modal stimuli than the average stimulus.

Simulation 2
Younger’s (1985) experiment 2 provides a stronger test of
category segregation by equating the average and modal
values for the full set of familiarization items. In this
simulation 24 networks were familiarized with the 10
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exemplars designed such that the modal and average values
were the same. Under these conditions, the greater
familiarity of a stimulus containing previously unseen
values (but which are prototypes of two distinct categories)
over the average/modal values, would provide strong
evidence that the items had been segregated into two
distinct categories. As in the Narrow condition of
Experiment 1, familiarization stimuli were constructed
such that restricted ranges of values were correlated. The
networks were then tested with stimuli made up of the
average/modal feature values or the previously unseen
feature values. Table 2 shows the normalized values
defining the stimuli in the Broad and Narrow
familiarization phase, and the three test stimuli,

errer 0257 pesponse to Test Stimuli
0.20 4
0.15

0.10 4

average

novel
Test Stimulus

Figure 3. Network response to the average/modal and
previously unseen test stimuli.

Figure 3 shows the networks response to the average/modal
test stimulus and the previously unseen stimuli. As with
10-month-olds, networks showed more error (longer
looking) when presented with the average/modal test
stimulus than the stimuli with previously unseen values
suggesting that they had formed two distinct categories. A
two-way Student t-test revealed this difference was highly
significant (1(23)=6.59, p<.001).

Discussion

This paper presented a model of correlation based
categorization by  10-month-old infants. Simple
autoencoder networks were exposed to the same stimuli
used to test 10-month-olds. The familiarization regime was
kept as close as possible to that used with the infants. The
model’s performance matched that of the infants. Both
infants and networks used co-variation information (when
available) to segregate items into separate categories.

The model makes the explicit prediction that, in
general, looking time to the test stimuli in the Broad
condition will be higher than that in the Narrow condition.
This can be related to the structure of the internal
representations developed by the networks. Encouraging
trends that support this prediction can be found in the
original Younger (1985) data. Exploration of the model's
internal representations suggests that in the Broad
condition, looking times are determined by the similarity
of the test stimuli to the familiarization stimuli.

This model extends work reported by Mareschal &
French (1997) and Mareschal et al. (submitted). It is a



model of category learning within a single test session, It
leaves open questions of how this categorization ability
develops. In other words, how does

Table 2 Normalized familiarization and test stimuli (Exp 2)

Familiarization Stimuli
Legs Neck Tail Ears
0.27 0.62 1.0 0.56
0.27 1.0 0.61 0.11
0.27 1.0 0.61 0.56
0.64 1.0 1.0 0.11
0.64 0.62 1.0 0.11
0.64 0.62 0.22 1.0
0.64 0.23 0.22 1.0
1.0 0.23 0.61 0.56
1.0 0.23 0.61 1.0
1.0 0.62 0.22 0.56
Test Stimuli
Average/Modal 0.64 0.62 0.61 0.56
Novell 0.45 0.81 0.80 0.33
Novel2 0.82 0.42 0.41 0.78

Note: Values are scaled to range from 0.0 to 1.0

the developmental time scale interact with the course of
learning during a task? Younger & Cohen (1986) describe
a sequence of development from no use of correlation
information at 4 months of age to the use abstract invariant
relations at 10 months. Future modeling needs to explore
how the ability to use correlation information comes about.

The complex relationship between the similarity of
test stimuli to familiarization stimuli, and relative looking
times can be explored through the model before making
further empirical predictions. This illustrates the function
of a model as a tool for reasoning about untested contexts.
In the same way that a model bridge can help engineers
reason about a real bridge, a computer model can help
experimental psychologists reason about categorization.
However, it is also important to understand that in the
same way that a model bridge is never meant to embody all
the characteristics of the real bridge, the computer model is
not meant to capture all the richness of infant behavior.

We do not wish to claim that simple autoassociator
networks can capture the full richness of infant
categorization. There is far more to an infant than 11
neurons! This model is intended as an illustration of the
computational properties of an associative system with
distributed representations. There are other such systems
that share many of the same computational properties (e.g.
Grossberg, 1980; Knapp & Anderson, 1984).

Connectionism has inherited the Hebbian rather than
the Hullian tradition of associative learning. What goes in
inside the head is crucial for understanding behavior.
Connectionist models force us to think about internal
representations, to ask how they interact with each other,
and to ask how they determine observed behaviors. We
argue that connectionist methods are fruitful tools for
exploring perceptual and cognitive development.

Finally, we wish to suggest that the observed infant
categorization behaviors are inextricably linked to both the
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categorization mechanisms internal to the infant, and the
properties of the external stimuli shown to the infants
during the study. Thus, categorization is the product of an
inextricable interaction between the infant and its
environment. The computational characteristics of both
subject and environment must be considered in conjunction
to explain the observed behaviors.
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