
UC Davis
UC Davis Previously Published Works

Title
Ensuring scientific reproducibility in bio-macromolecular modeling via extensive,
automated benchmarks

Permalink
https://escholarship.org/uc/item/1t5563q9

Journal
Nature Communications, 12(1)

ISSN
2041-1723

Authors
Koehler Leman, Julia
Lyskov, Sergey
Lewis, Steven M
et al.

Publication Date
2021

DOI
10.1038/s41467-021-27222-7

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t5563q9
https://escholarship.org/uc/item/1t5563q9#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

ARTICLE

Ensuring scientific reproducibility in bio-
macromolecular modeling via extensive, automated
benchmarks
Julia Koehler Leman 1,2,34✉, Sergey Lyskov 3,34, Steven M. Lewis4,34, Jared Adolf-Bryfogle 5,6,

Rebecca F. Alford3, Kyle Barlow 7, Ziv Ben-Aharon 8, Daniel Farrell 9,10, Jason Fell 11,12,13,

William A. Hansen14,15, Ameya Harmalkar 3, Jeliazko Jeliazkov 16, Georg Kuenze17,18,19, Justyna D. Krys 20,

Ajasja Ljubetič 9,10, Amanda L. Loshbaugh21,22, Jack Maguire23, Rocco Moretti17,18, Vikram Khipple Mulligan1,

Morgan L. Nance 16, Phuong T. Nguyen24, Shane Ó Conchúir21, Shourya S. Roy Burman 3,

Rituparna Samanta3, Shannon T. Smith 18,25, Frank Teets26, Johanna K. S. Tiemann 27, Andrew Watkins28,

Hope Woods 18,25, Brahm J. Yachnin 14,15, Christopher D. Bahl29,30,31, Chris Bailey-Kellogg32,

David Baker 9,10, Rhiju Das 28, Frank DiMaio9,10, Sagar D. Khare14,15, Tanja Kortemme21,22,

Jason W. Labonte3, Kresten Lindorff-Larsen 27, Jens Meiler 17,18,19, William Schief 5,6,

Ora Schueler-Furman 8, Justin B. Siegel11,12,13, Amelie Stein 27, Vladimir Yarov-Yarovoy 24,

Brian Kuhlman 26, Andrew Leaver-Fay 26, Dominik Gront20, Jeffrey J. Gray 3✉ &

Richard Bonneau 1,2,33✉

Each year vast international resources are wasted on irreproducible research. The scientific

community has been slow to adopt standard software engineering practices, despite the

increases in high-dimensional data, complexities of workflows, and computational environ-

ments. Here we show how scientific software applications can be created in a reproducible

manner when simple design goals for reproducibility are met. We describe the imple-

mentation of a test server framework and 40 scientific benchmarks, covering numerous

applications in Rosetta bio-macromolecular modeling. High performance computing cluster

integration allows these benchmarks to run continuously and automatically. Detailed protocol

captures are useful for developers and users of Rosetta and other macromolecular modeling

tools. The framework and design concepts presented here are valuable for developers and

users of any type of scientific software and for the scientific community to create repro-

ducible methods. Specific examples highlight the utility of this framework, and the compre-

hensive documentation illustrates the ease of adding new tests in a matter of hours.

https://doi.org/10.1038/s41467-021-27222-7 OPEN

A full list of author affiliations appears at the end of the paper.

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27222-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27222-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27222-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27222-7&domain=pdf
http://orcid.org/0000-0002-5693-3593
http://orcid.org/0000-0002-5693-3593
http://orcid.org/0000-0002-5693-3593
http://orcid.org/0000-0002-5693-3593
http://orcid.org/0000-0002-5693-3593
http://orcid.org/0000-0001-6380-6712
http://orcid.org/0000-0001-6380-6712
http://orcid.org/0000-0001-6380-6712
http://orcid.org/0000-0001-6380-6712
http://orcid.org/0000-0001-6380-6712
http://orcid.org/0000-0001-8586-1907
http://orcid.org/0000-0001-8586-1907
http://orcid.org/0000-0001-8586-1907
http://orcid.org/0000-0001-8586-1907
http://orcid.org/0000-0001-8586-1907
http://orcid.org/0000-0002-9787-0066
http://orcid.org/0000-0002-9787-0066
http://orcid.org/0000-0002-9787-0066
http://orcid.org/0000-0002-9787-0066
http://orcid.org/0000-0002-9787-0066
http://orcid.org/0000-0002-9623-6071
http://orcid.org/0000-0002-9623-6071
http://orcid.org/0000-0002-9623-6071
http://orcid.org/0000-0002-9623-6071
http://orcid.org/0000-0002-9623-6071
http://orcid.org/0000-0001-7024-7998
http://orcid.org/0000-0001-7024-7998
http://orcid.org/0000-0001-7024-7998
http://orcid.org/0000-0001-7024-7998
http://orcid.org/0000-0001-7024-7998
http://orcid.org/0000-0001-6680-2936
http://orcid.org/0000-0001-6680-2936
http://orcid.org/0000-0001-6680-2936
http://orcid.org/0000-0001-6680-2936
http://orcid.org/0000-0001-6680-2936
http://orcid.org/0000-0001-6863-9634
http://orcid.org/0000-0001-6863-9634
http://orcid.org/0000-0001-6863-9634
http://orcid.org/0000-0001-6863-9634
http://orcid.org/0000-0001-6863-9634
http://orcid.org/0000-0003-4249-1955
http://orcid.org/0000-0003-4249-1955
http://orcid.org/0000-0003-4249-1955
http://orcid.org/0000-0003-4249-1955
http://orcid.org/0000-0003-4249-1955
http://orcid.org/0000-0002-5318-8831
http://orcid.org/0000-0002-5318-8831
http://orcid.org/0000-0002-5318-8831
http://orcid.org/0000-0002-5318-8831
http://orcid.org/0000-0002-5318-8831
http://orcid.org/0000-0002-2171-1579
http://orcid.org/0000-0002-2171-1579
http://orcid.org/0000-0002-2171-1579
http://orcid.org/0000-0002-2171-1579
http://orcid.org/0000-0002-2171-1579
http://orcid.org/0000-0003-0997-9393
http://orcid.org/0000-0003-0997-9393
http://orcid.org/0000-0003-0997-9393
http://orcid.org/0000-0003-0997-9393
http://orcid.org/0000-0003-0997-9393
http://orcid.org/0000-0001-9274-9104
http://orcid.org/0000-0001-9274-9104
http://orcid.org/0000-0001-9274-9104
http://orcid.org/0000-0001-9274-9104
http://orcid.org/0000-0001-9274-9104
http://orcid.org/0000-0002-1225-8928
http://orcid.org/0000-0002-1225-8928
http://orcid.org/0000-0002-1225-8928
http://orcid.org/0000-0002-1225-8928
http://orcid.org/0000-0002-1225-8928
http://orcid.org/0000-0001-7551-6245
http://orcid.org/0000-0001-7551-6245
http://orcid.org/0000-0001-7551-6245
http://orcid.org/0000-0001-7551-6245
http://orcid.org/0000-0001-7551-6245
http://orcid.org/0000-0001-6615-545X
http://orcid.org/0000-0001-6615-545X
http://orcid.org/0000-0001-6615-545X
http://orcid.org/0000-0001-6615-545X
http://orcid.org/0000-0001-6615-545X
http://orcid.org/0000-0001-6812-6329
http://orcid.org/0000-0001-6812-6329
http://orcid.org/0000-0001-6812-6329
http://orcid.org/0000-0001-6812-6329
http://orcid.org/0000-0001-6812-6329
http://orcid.org/0000-0001-7896-6217
http://orcid.org/0000-0001-7896-6217
http://orcid.org/0000-0001-7896-6217
http://orcid.org/0000-0001-7896-6217
http://orcid.org/0000-0001-7896-6217
http://orcid.org/0000-0001-7497-0972
http://orcid.org/0000-0001-7497-0972
http://orcid.org/0000-0001-7497-0972
http://orcid.org/0000-0001-7497-0972
http://orcid.org/0000-0001-7497-0972
http://orcid.org/0000-0002-4750-6039
http://orcid.org/0000-0002-4750-6039
http://orcid.org/0000-0002-4750-6039
http://orcid.org/0000-0002-4750-6039
http://orcid.org/0000-0002-4750-6039
http://orcid.org/0000-0001-8945-193X
http://orcid.org/0000-0001-8945-193X
http://orcid.org/0000-0001-8945-193X
http://orcid.org/0000-0001-8945-193X
http://orcid.org/0000-0001-8945-193X
http://orcid.org/0000-0002-1120-0150
http://orcid.org/0000-0002-1120-0150
http://orcid.org/0000-0002-1120-0150
http://orcid.org/0000-0002-1120-0150
http://orcid.org/0000-0002-1120-0150
http://orcid.org/0000-0002-1624-0362
http://orcid.org/0000-0002-1624-0362
http://orcid.org/0000-0002-1624-0362
http://orcid.org/0000-0002-1624-0362
http://orcid.org/0000-0002-1624-0362
http://orcid.org/0000-0002-5862-1681
http://orcid.org/0000-0002-5862-1681
http://orcid.org/0000-0002-5862-1681
http://orcid.org/0000-0002-5862-1681
http://orcid.org/0000-0002-5862-1681
http://orcid.org/0000-0002-2325-4834
http://orcid.org/0000-0002-2325-4834
http://orcid.org/0000-0002-2325-4834
http://orcid.org/0000-0002-2325-4834
http://orcid.org/0000-0002-2325-4834
http://orcid.org/0000-0003-4907-9699
http://orcid.org/0000-0003-4907-9699
http://orcid.org/0000-0003-4907-9699
http://orcid.org/0000-0003-4907-9699
http://orcid.org/0000-0003-4907-9699
http://orcid.org/0000-0003-4609-4340
http://orcid.org/0000-0003-4609-4340
http://orcid.org/0000-0003-4609-4340
http://orcid.org/0000-0003-4609-4340
http://orcid.org/0000-0003-4609-4340
http://orcid.org/0000-0001-6380-2324
http://orcid.org/0000-0001-6380-2324
http://orcid.org/0000-0001-6380-2324
http://orcid.org/0000-0001-6380-2324
http://orcid.org/0000-0001-6380-2324
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
http://orcid.org/0000-0003-4354-7906
www.nature.com/naturecommunications
www.nature.com/naturecommunications

Reproducibility in science is a systemic problem. In a survey
published by Nature in 2016, 90% of scientists responded
that there is a reproducibility crisis1. Over 70% of the over

1500 researchers surveyed were unable to reproduce another
scientist’s experiments and over half were unable to reproduce
their own experiments. Another analysis published by PLOS One
in 2015 concluded that, in the US alone, about half of preclinical
research was irreproducible, amounting to a total of about $28
billion being wasted per year2!

Reproducibility in biochemistry lab experiments remains
challenging to address, as it depends on the quality and purity of
reagents, unstable environmental conditions, and the accuracy
and skill with which the experiments are performed. Even small
changes in input and method ultimately lead to an altered output.
In contrast, computational methods should be inherently scien-
tifically reproducible since computer chips perform computations
in the same way, removing some variations that are difficult to
control. However, in addition to poorly controlled computing
environment variables, computational methods become increas-
ingly complex pipelines of data handling and processing. This
effect is further compounded by the explosion of input data
through “big data” efforts and exacerbated by a lack of stable,
maintained, tested, and well-documented software, creating a
huge gap between the theoretical limit for scientific reproduci-
bility and the current reality3.

These circumstances are often caused by a lack of best practices
in software engineering or computer science4,5, errors in
laboratory management during project or personnel transitions,
and a lack of academic incentives for software stability, main-
tenance, and longevity6. Shifts in accuracy can occur when re-
writing functionality or when several authors work on different
parts of the codebase simultaneously. An increase in complexity
of scientific workflows with many and overlapping options and
variables can prevent scientific reproducibility, as can code
implementations that lack or even prevent suitable testing4. The
absence of testing and maintenance causes software erosion (also
known as bit rot), leading to a loss of users and often the ter-
mination of a software project. Further, barriers are created
through intellectual property agreements, competition, and
refusal to share inputs, methods, and detailed protocols.

As an example, in 2011 the Open Science Collaboration in
Psychology tried to replicate the results of 100 studies as part of
the Reproducibility Project7. The collaboration consisting of
270 scientists could only reproduce 39% of study outcomes.
Since then, some funding agencies and publishers have imple-
mented data management plans or standards to improve
reproducibility8–11, for instance, the FAIR data management
principles12. Guidelines to enhance reproducibility13,14 are cer-
tainly applicable, are outlined in Table 3, and are discussed in
detail in an excellent editorial15 describing the Ten Year Repro-
ducibility Challenge16 that is published in its own reproducibility
journal ReScience C17. Other efforts focus directly on improving
the methods with which the researchers process their data—for
instance, the Galaxy platform fosters accessibility, transparency,
reproducibility, and collaboration in biomedical data analysis and
sharing13.

Reproducibility is also impacted by how methods are devel-
oped. Comparing a newly developed method to established ones,
or an improved method to a previous version is important to
assess its accuracy and performance, monitor changes and
improvements over time and evaluate the cost/benefit ratio for
software products to commercial entities. However, biases in
publishing positive results or improvements to known methods,
in conjunction with errors in methodology or statistical
analyses18, lead to an acute need to test methods via third parties.
Often, methods are developed and tested on a specific benchmark

set created for that purpose and will perform better on that
dataset than methods not trained on that dataset. A rigorous
comparison and assessment require the benchmark to be inde-
pendently created from the method, which unfortunately is rarely
the case. Compounding issues are lack of diversity in the
benchmark set (towards easier prediction targets) and reported
improvements smaller than the statistical variation of the pre-
dicted results. Guidelines on how to create a high-quality
benchmark19,20 are outlined in Table 3 below.

Scientific reproducibility further requires a stable, maintain-
able, and well-tested codebase. Software testing is typically
achieved on multiple levels4,21. Unit tests check for scientific
correctness of small, individual code blocks, integration tests
check an entire application by integrating various code blocks,
and profile and performance tests ensure consistency in runtime
and program simplicity. Scientific tests or benchmarks safeguard
the scientific validity and accuracies of the predictions. They are
typically only carried out during or after the development of a
new method (static benchmarking), as they require domain
expertise and rely on vast computational resources to test an
application on a larger dataset. However, the accuracy and per-
formance of a method depend on the test set, the details of the
protocol (i.e., specific command lines, options, and variables), and
the software version. To overcome the static benchmarking
approach, blind prediction challenges such as the Critical
Assessments in protein Structure Prediction22, PRediction of
protein Interactions23, Functional Annotation24, Genome
Interpretation25, RNA Puzzles26, and Continuous Automated
Model EvaluatiOn15,27 hold double-blind competitions at regular
intervals. While these efforts are valuable to drive progress in
method development in the scientific community, participation
often requires months of commitment and does not address the
reproducibility of established methods over time.

The Rosetta macromolecular modeling suite28,29 has been
developed for over 20 years by a global community with now
hundreds of developers at over 70 institutions4,30. This history
and growth required us to adopt many best practices in software
engineering4,29, including the implementation of a battery of
tests. A detailed description of our community, including stan-
dards and practices, has previously been provided4. Scientific tests
are important to maintain prediction accuracies for our own
community and our users (including commercial users whose
licensing fees, in our case, support much of Rosetta’s infra-
structure and maintenance). We further want to directly compare
different protocols and implementations and monitor the effect of
score function changes on the prediction results. For many years,
Rosetta applications31,32 and score functions33–36 have been tes-
ted independently using the static benchmarking approach20,37,
often with complete protocol captures38,39. The disadvantage of
static benchmarking is that the results become outdated due to
the lack of automation. Reproducibility becomes impossible due
to a lack of preservation of inputs, options, environment vari-
ables, and data analyses over time.

This background highlights the challenges in rigorously and
continuously testing how codebase changes affect the scientific
validity of a prediction method while maintaining or improving
scientific reproducibility. Running scientific benchmarks con-
tinuously (1) suffers from a lack of incentive to set up as the
maintenance character of these tests collides with academic goals;
(2) requires both scientific and programming/technical expertise
to implement, interpret and maintain; (3) is difficult to interpret
with pass/fail criteria; and (4) requires a continuous investment of
considerable computational resources. Here, we address these
challenges by introducing a general framework for continuously
running scientific benchmarks for a large and increasing number
of protocols in the Rosetta macromolecular modeling suite.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

2 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

We present the general setup of this framework, demonstrate how
we solve each of the above challenges, and present the results of
the individual benchmarks in the Supplementary Information of
this paper, complete with detailed protocol captures. The results
can be used as a baseline by anyone developing macromolecular
modeling methods, and the code of this framework is sufficiently
general to be integrated into other types of software. The design
principles presented here can be used by anyone developing
scientific software, independent of the size of the method. We
highly encourage small software development groups to follow
these guidelines, even though their technical and personnel setup
might differ. Supplementary Note (1) describes several options
that small groups have available to test their software with limited
resources.

Results
Successful software development can be achieved by following a
number of guidelines which are have previously been described in
detail in ref. 4. Software testing is an essential part of this strategy
which ties into scientific reproducibility. Over the past 15 years,
the Rosetta community has created its own custom-built test
server framework connected to a dedicated high-performance
computing (HPC) cluster—its setup is shown in Fig. 1A and
described in the Supplementary Information. The scientific test-
ing setup is integrated into this framework.

Insights from the previous round of scientific tests led to
specific goals. The Rosetta community learned valuable lessons
from the long-term maintenance (or lack thereof) of several sci-
entific benchmark tests set up over 10 years ago (see

Supplementary Note 2). Their deterioration and development life
cycle motivated specific goals that we think lead to more durable
scientific benchmarks (Fig. 1B): (1) simplicity of the framework to
encourage maintenance and support; (2) Generalization to sup-
port all user interfaces to the Rosetta codebase (command line,
RosettaScripts40, PyRosetta41,42); (3) automation to continuously
run the tests on an HPC cluster with little manual intervention;
(4) documentation on how to add tests and scientific details of
each test to allow maintenance by anyone with a general science
or Rosetta background; (5) distribution of the tests to both the
Rosetta community and their users, and publicizing their exis-
tence to encourage the addition of new tests and maintenance by
the community; and (6) maintenance of the tests, facilitated by
each of the previous points.

Goal 1—simplicity: simple setup facilitates broad adoption and
support from our community. To encourage our community to
contribute as many tests as possible, the testing framework needs
to be simple and support fast and easy addition of tests. We
decided on a Python framework that integrates well with our pre-
existing testing HPC cluster (Supplementary Note 3). We further
require these tests to be able to run on local machines (with
different operating systems) as well as various HPC clusters with
minimal adjustments. Debugging the scripts should be as simple
as possible. With these requirements in mind, we decided on a
setup as shown in Fig. 1C. We provide a template directory with
all necessary files (described in detail in Methods). Simple mod-
ifications like naming scripts in the order in which they run—e.g.,
0.compile.py to 9.finalize.py—greatly facilitate debugging or
extension by new users.

Input Method
(run command) Output

Visualization AnalysisRESULTS PAGE

Command line RosettaScripts PyRosetta

Readme Citation Cutoffs

Observers

Documentation

Generalization

MaintenanceDistribution

Simplicity Automation

SQL
database

maintenance
daemon

Web server

back-end
daemon

GitHub

virtualization layer
Singularity/Docker/None

workstations
Linux/Mac/Windows HPC cluster

Web browser

A B

C

Test server setup Goals for scientific tests

Scientific test components and workflow

Fig. 1 Goals and setups for the scientific tests. A Test server setup with the web browser as the user interface, the frontend in bright green, and the
backend in light green. The code is stored in GitHub, shown in dark gray. B Specific goals for our scientific tests, driven by flaws in a previous iteration of
these tests. Each point is described in detail in the text. C Basic infrastructure of the scientific test framework, motivated by simplicity. Each box represents
a file, folder, or script that is either provided in the template folder or generated throughout the protocol run. The basic workflow is highlighted in green
with components that facilitate documentation and maintenance shown in white. [Icons in Fig. 1B were created by Ana Teixeira, Aman, Ben Davis, Gregor
Cresnar, Anna Sophie, and Joel Avery from Noun Project.] SQL structured query language, HPC cluster high-performance computing cluster.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Goal 2—generalization: new tests support interfaces of the
command line, PyRosetta, or RosettaScripts. Rosetta supports
several interfaces to facilitate quick protocol development while
lowering the necessary expertise required by new developers to
join our community4. Many mainstream protocols have been
developed as standalone applications to be run via the command
line, while customized protocols have been developed in
RosettaScripts40 and PyRosetta41,42. For our test server frame-
work, we sought a general code design that allows input from all
three interfaces while supporting different types of outputs,
quality measures, and analyses, sometimes even written in dif-
ferent scripting languages.

Goal 3—automation: tests require substantial compute power
and are run on a dedicated test server. Running scientific
benchmarks requires extensive CPU time; hence we chose to
integrate them with our own custom-built test server framework
connected to a dedicated HPC cluster (Fig. 1A and Supplemen-
tary Information). This test server framework consists of two
main components: the backend holds low-level primitive code for
compilation on different operating systems and HPC environ-
ments, cluster submission scripts, and web server integration
code. The front end contains the test directories that are imple-
mented by the test author. Our test server is accessible through a
convenient web interface (Fig. 2A; available at https://
benchmark.graylab.jhu.edu/). This framework has had a hugely

positive impact on the growth and maintenance of both the
Rosetta software and our community, due to its accessibility,
GitHub integration, ease of use, and automation. In small soft-
ware communities that lack the ability or resources to set up a
dedicated test server, integration testing via external services like
Github Actions43, Drone CI44, Travis CI45, or Jenkins46 is an
excellent alternative. More details can be found in the Supple-
mentary Information.

The RosettaCommons supports our benchmarking effort
through expansion of our centralized test server cluster hardware
and labor with an annual budget (see Supplementary Information
and our previous publication4). Because the scientific tests are
integrated into our test server framework, authors of the tests can
focus on the scientific protocols (starting from a template
directory set up as in Fig. 1C) instead of debugging errors in
compilation, cluster submission, and computational environment.
This pattern also makes these tests system-independent (the
author writes the setup for a local machine and runs it on this
server), i.e., portable between operating systems and computa-
tional environments. We currently limit the runtime per scientific
test to typically 1000–2000 CPU hours.

Due to the required computational resources, we are unable to
test every code revision in the main development branch of
Rosetta; instead, we dedicate computational nodes to the scientific
tests and run tests such that the nodes are continuously occupied.
We found that scheduling the earliest-run test on an individual
rolling basis, as compute nodes become available, is most efficient

A BTest server dashboard Example for test documentation

Fig. 2 Webpages for the main dashboard and documentation of the tests. A Dashboard of our benchmark server testing infrastructure. Each test is
colored according to its test results: red denotes breakage, magenta denotes script failure, green denotes passing of a test, yellow denotes the test is
currently running, and white denotes the test has yet to be run. All broken tests are shown prominently at the top of the page. All scientific tests are shown
in the blue tab below (also encircled in bold black). Tests of the latest revision merged into the main branch are shown below with information about the
committer, the pull request ID, a link to the code difference, and the commit message. B The results page shows the results of the run, the documentation,
and the description of whether the test passes or fails. Results pages are automatically generated at the end of the run for each test.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

4 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

https://benchmark.graylab.jhu.edu/
https://benchmark.graylab.jhu.edu/
www.nature.com/naturecommunications

in balancing the server load while keeping nodes available for
tests in feature branches. Upon discovery of a test failure and to
find the specific revision (and therefore the code change) that
caused the failure, our bisect tool schedules intermediate revisions
on a low-priority basis. All test results are stored in the database
and are accessible through a web interface (Fig. 2).

Goal 4—documentation: anyone can quickly and easily add
new tests. Creating well-designed scientific benchmarks requires
expertise in defining the scientific objective, establishing a pro-
tocol, and creating a high-quality test dataset. The last step of
incorporating the test into our framework should be as simple as
possible (as per our simplicity requirement). Once the dataset,
interface (command line, RosettaScripts, or PyRosetta), specific
command line, and quality measures have been chosen, the
author can simply follow the individual steps outlined on the
documentation page47 to contribute the test; the template guides
the setup (Supplementary Note 4). We found that the setup is
simple enough that untrained individuals can contribute a test in
a few hours based on documentation alone—hence we achieved
our goal of simplicity and detail in our documentation.

One of the reasons for the deterioration of earlier scientific tests
was lack of maintenance due to insufficient documentation. Our
goal is to drive the creation of extensive documentation for each
test such that anybody with an average scientific knowledge of
biophysics and introductory knowledge of programming in
Rosetta can understand and maintain the tests. To ensure
comprehensive documentation and consistency between tests, we
provide a readme template with specific sections and questions
that need to be answered for each test (see Supplementary
Information). The template discourages writing short, insuffi-
cient, free-form documentation, and instead encourages the
addition of important details and significantly lowers the barrier
for writing extensive documentation. The questionnaire-style
readme template (see Supplementary Information) saves time to
locate necessary details to repair broken tests. The extent and
quality of documentation is independently approved by a pull-
request reviewer before the test is merged into the main
repository. The benchmarking framework is configured such that
documentation needs to be written once and is then directly
embedded into the results page. Thus, the documentation is
accessible both in the code and on the web interface while
eliminating text duplication that could lead to discrepancies and
confusion.

Goal 5—distribution: additions and usage of tests by our
community requires broad distribution. Earlier scientific tests
also deteriorated due to poor communication as to the existence
of these tests, which resulted in a small pool of maintainers.
Because our new scientific tests are integrated into our test server
framework which most of our community uses and monitors,
developers are immediately aware of the tests that exist and their
pass/fail status. In conjunction with regular announcements to
our community, this visibility should significantly broaden the
number of people able and willing to sustain the scientific tests for
a long time. If we nevertheless find that our new tests deteriorate,
we will host a hackathon (eXtreme Rosetta Workshop4) to sup-
plement or repair these tests in a concentrated effort.

Goal 6—maintenance: test failures are handled by a defined
procedure. The often overlooked, real work in software devel-
opment is not necessarily the development of the software itself,
but its maintenance. We have a system in place outlining how test
failures are handled and by whom. Each test has at least one
dedicated maintainer (aka ‘observer’, usually the test author) who

is notified of the test breakage via email and whose responsibility
it is to repair the test. Test failures can be three-fold: technical
failures, stochastic failures, or scientific failures. Technical failures
(such as compiler errors, script failures due to new versions of
programs, etc.) typically require small adjustments and fall under
the responsibility of the test author and our dedicated test
engineer.

Stochastic failures are an uncommon feature in software testing
and are a rare but possible occurrence in this framework. Rosetta
often uses Metropolis Monte Carlo algorithms and thus has an
element of randomness present in most protocols. Setting specific
seeds is done for integration tests in Rosetta (which are
technically regression tests, discussed in the Supplementary
Information of a previous publication4), which are not discussed
here in detail. We refrain from setting random seeds in our
scientific tests because the goal is to check whether the overall
statistical and scientific interpretations hold after running the
same protocol twice, irrespective of the initial seed. Further, a
change in the vast Rosetta codebase that adds or removes a
random number generator call is expected to cause trajectory
changes even with set random seeds. The scientific tests are scaled
so that individual trajectories are treated statistically and the lack
of response to both seed changes and minor code changes is a
feature and goal of the test. Moreover, due to the reasons above,
rare stochastic failures are not a concern in our case and point to
a sensibly chosen cutoff value (Supplementary Note 5). Scientific
tests are interpreted in a Boolean pass/fail fashion but generally
have an underlying statistical interpretation and are sampling
from a distribution against a chosen target value. The statistical
interpretation often varies from test to test and depends on the
output of the protocol, the types of quality metrics, and sample
sizes; therefore, we cannot provide specific suggestions as to
which statistical measures should be used in general. Details
about which statistics are used in which protocol are provided in
the Supplementary Information and the linked tests. The
randomness of Monte Carlo will occasionally cause a stochastic
test failure because those runs happen to produce poor
predictions by the tested metric. This is handled by simply
rerunning the test: rare “stochastic” failures are either not
stochastic—i.e., the test is signaling breakage—or are a symptom
that the structure or pass/fail criteria of the test are not working as
intended.

A scientific failure requires more in-depth troubleshooting and
falls under the responsibility of the maintainer. If the maintainer
does not fix the test, we have a rank-order of responsibilities to
enforce the test repair. The principal investigator of the test
designates someone in their lab. If the necessary expertise does
not exist in the lab at the time (usually because people have
moved on in their career), repairing the test becomes the
responsibility of the person who broke it. If this developer lacks
the expertise, the repair becomes community responsibility,
which typically falls onto one of our senior developers.

Most major Rosetta protocols are now implemented as scien-
tific benchmarks. Using the framework described above, our
community implemented 40 scientific benchmarks spanning a
broad range of applications including antibody modeling, dock-
ing, loop modeling, incorporation of NMR data, ligand docking,
protein design, flexible peptide docking, membrane protein
modeling, etc. (Table 1 and Supplementary Note 6). Each
benchmark is unique in its selection of targets in the benchmark
set, the specific protocol that is run, the quality metrics that are
evaluated, and the analysis to define the pass/fail criterion. The
details for all the benchmarks are provided in the comprehensive
supplement to this paper. We further publish the benchmarks

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

T
ab

le
1
S
ci
en

ti
fi
c
te
st
s
fo
r
bi
o-
m
ac
ro
m
ol
ec
ul
ar

m
od

el
in
g,

co
nt
in
uo

us
ly

ru
nn

in
g
on

ou
r
te
st
in
g
se
rv
er

fr
am

ew
or
k.

T
es
t
su
it
e

T
es
ts

R
ef
s.

T
es
t
au

th
or

Q
ua

lit
y
m
ea
su
re
s

T
ar
ge

ts
ns
tr
uc
t

R
un

ti
m
e

in
C
P
U
h

A
nt
ib
od

ie
s

an
tib

od
y_
gr
af
tin

g
55

Je
lia
zk
o
Je
lia
zk
ov

Fr
ac
tio

n
re
si
du

es
w
ith

in
rm

sd
to

na
tiv

e
4
8

1
3

an
tib

od
y_
h3

_m
od

el
in
g

56
Sc
or
e
vs
.
rm

sd
6

50
0

30
0
0

an
tib

od
y_
sn
ug

do
ck

57
I_
sc

vs
.I
_r
m
sd

6
50

0
30

0
0

C
ar
bo

hy
dr
at
es

gl
yc
an
_d
oc
k,

(d
oc
k_
gl
yc
an
s)

*
58

,5
9

Ja
so
n
La
bo

nt
e,

M
or
ga
n
N
an
ce

I_
sc

vs
.L

_r
m
sd

6
10
0
0

11
0
0

gl
yc
an
_s
tr
uc
tu
re
_p
re
di
ct
io
n

6
0

Ja
re
d
A
do

lf-
Br
yf
og

le
Sc
or
e
vs
.
rm

sd
4

50
0

9
50

C
om

pa
ra
tiv

e
m
od

el
in
g

R
os
et
ta
C
M

6
1

Ja
so
n
Fe
ll

G
D
T
-M

M
16

20
0

18
0
0

D
es
ig
n

dd
g_
al
an
in
e_
sc
an

6
2

A
ja
sj
a
Lj
ub

et
ič

R
,
M
A
E,

fr
ac
tio

n
co
rr
ec
tly

cl
as
si
fi
ed

19
:3

8
1

1
3

D
es
ig
n

SE
W

IN
G

6
3

Fr
an
k
T
ee
ts

M
ot
ifS

co
re
r,
In
te
rM

od
el
M
ot
ifS

co
re
r

1
10
0

75
D
es
ig
n

en
zy
m
e_
de

si
gn

6
4

R
oc
co

M
or
et
ti

V
ar
io
us

se
qu

en
ce

re
co
ve
ri
es

50
1

50
D
es
ig
n

de
si
gn

_f
as
t

6
5

Ja
ck

M
ag
ui
re
,
C
hr
is

Ba
hl

Sc
or
e
vs
.
se
qr
ec

4
8

10
0

26
0
0

D
es
ig
n,

in
te
rf
ac
es

co
fa
ct
or
_b
in
di
ng

_s
ite

s
6
6

A
m
an
da

Lo
sh
ba
ug

h
ra
nk

to
p,

po
si
tio

n
pr
ofi

le
si
m
ila
ri
ty

7
20

0
17
0

de
si
gn

,
im

m
un

e
sy
st
em

m
hc
_e
pi
to
pe

_e
ne

rg
y

6
7

Br
ah
m

Y
ac
hn

in
D
eg
re
e
of

de
-i
m
m
un

iz
at
io
n,

am
on

g
ot
he

rs
50

10
0

20
0
0

do
ck
in
g

pr
ot
ei
n_
pr
ot
ei
n_
do

ck
in
g

6
8

Sh
ou

ry
a
SR

Bu
rm

an
I_
sc

vs
.I
_r
m
sd

10
50

0
0

8
33

en
se
m
bl
e
do

ck
in
g

6
9

A
m
ey
a
H
am

al
ka
r

I_
sc

vs
I_
rm

sd
3

50
0
0

30
0
0

Fl
ex
Pe

pD
oc
k

Fl
ex
Pe

pD
oc
k

70
Z
iv

Be
n-
A
ha
ro
n

re
w
ei
gh

te
d
I_
sc

vs
ba
ck
bo

ne
I_
rm

sd
2

20
0

70
fr
ag
m
en

ts
fr
ag
m
en

t_
pi
ck
in
g

71
Ju
st
yn
a
K
ry
s,
D
om

in
ik

G
ro
nt

rm
sd

10
4
0
0

20
0
0

fr
ag
m
en

ts
m
ak
e
fr
ag
m
en

ts
pi
pe

lin
e

71
D
an
ie
l
Fa
rr
el
l

C
ov
er
ag
e,

pr
ec
is
io
n

6
5

1
30

0
0

lig
an
d
do

ck
in
g

lig
an
d_
do

ck
in
g

50
Sh

an
no

n
Sm

ith
D
el
ta
_I
sc

vs
.l
ig
an
d_
rm

sd
50

20
0

20
0
0

lig
an
d_
sc
or
in
g_
ra
nk
in
g

50
Sp

ea
rm

an
an
d
Pe

ar
so
n
co
rr
el
at
io
n

co
ef
fi
ci
en

t
57

:
28

5
1

2

lo
op

m
od

el
in
g

lo
op

_m
od

el
in
g_
C
C
D

72
Ph

uo
ng

T
ra
n,

Sh
an
e
Ó

C
on

ch
úi
r

Sc
or
e
vs
.
lo
op

_r
m
sd

7
50

0
50

0
lo
op

_m
od

el
in
g_
K
IC

73
Sc
or
e
vs
.
lo
op

_r
m
sd

7
50

0
6
20

lo
op

_m
od

el
in
g_
K
IC
_f
ra
gm

en
ts

74
Sc
or
e
vs
.
lo
op

_r
m
sd

7
50

0
76

0
lo
op

_m
od

el
in
g_
N
G
K

75
Sc
or
e
vs
.
lo
op

_r
m
sd

7
50

0
57

0
m
em

br
an
e
pr
ot
ei
n-
en

er
gy

fu
nc
tio

n
m
p_
f1
9
_e
ne

rg
y_
la
nd

sc
ap
e#

37
R
itu

pa
rn
a
Sa
m
an
ta
,
R
eb

ec
ca

A
lfo

rd
dd

G
,d

ep
th

an
d
tit
le

an
gl
e

4
1

10
m
p_
f1
9
_d
ec
oy
_d
is
cr
im

in
at
io
n

37
Sc
or
e
vs
.
rm

sd
,
W

rm
s

4
×
10
0

1
20

0
0

m
p_
f1
9
_s
eq

ue
nc
e_
re
co
ve
ry

37
se
qu

en
ce

re
co
ve
ry
,K

ul
lb
ac
k-
Le
ib
le
r

di
ve
rg
en

ce
13
0

1
50

0

m
p_
f1
9
_d
dG

_o
f_
m
ut
at
io
n

76
Pe

ar
so
n
co
rr
el
at
io
n
co
ef
fi
ci
en

t
3

1
1

m
em

br
an
e
pr
ot
ei
ns

m
p_
do

ck
77

Ju
lia

K
oe

hl
er

Le
m
an
,R

eb
ec
ca

A
lfo

rd
I_
sc

vs
.I
_r
m
sd

10
10
0
0

20
0

m
p_
do

m
ai
n_
as
se
m
bl
y

78
Sc
or
e
vs
.
rm

sd
5

50
0
0

70
0

m
p_
lip
id
_a
cc

79
A
cc
ur
ac
y

22
3

1
2

m
p_
re
la
x

77
Sc
or
e
vs
.
rm

sd
4

10
0

4
0

m
p_
sy
m
do

ck
77

I_
sc

vs
.r
m
sd

5
10
0
0

14
0

PD
B
di
ag
no

st
ic

PD
B_
di
ag
no

st
ic

N
A

St
ev
en

Le
w
is
,W

ill
ia
m

H
an
se
n,

Se
rg
ey

Ly
sk
ov

R
ea
d-
in

er
ro
r
ty
pe

en
tir
e
PD

B
1

10
0
0

pe
pt
id
e
st
ru
ct
ur
e
pr
ed

ic
tio

n
si
m
pl
e_
cy
cp
ep

_p
re
di
ct

4
8

V
ik
ra
m

K
.M

ul
lig
an

Sc
or
e
vs
.
rm

sd
,
PN

ea
r

1
~8
0
0
,0
0
0

32
0

pe
pt
id
e_
pn

ea
r_
vs
_i
c5
0

51
IC
50

vs
.f
ol
di
ng

en
er
gy

7
8
0
,0
0
0

4
0
0

re
fi
ne

m
en

t
re
la
x_
ca
rt
es
ia
n

32
Ju
lia

K
oe

hl
er

Le
m
an

Sc
or
e
vs
.
rm

sd
12

10
0

12
0

re
la
x_
fa
st

8
0

Sc
or
e
vs
.
rm

sd
12

10
0

12
0

re
la
x_
fa
st
_5
ite

r
8
0

Sc
or
e
vs
.
rm

sd
12

10
0

12
0

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

6 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

with results and protocol captures on our website (https://
graylab.jhu.edu/download/rosetta-scientific-tests/) twice per year
for our users to see, download, run, and compare their own
methods against. This transparency is crucial for the repre-
sentation of realistic performance and to enhance the scientific
reproducibility of our tools.

Standardizing workflows highlights heterogeneity in score
function implementations. Standardizing the workflows and
creating this framework provides us with the possibility of run-
ning some protocols with different score functions. Rosetta has
been developed over the past 25 years and the score function has
been constantly improved over this timeframe. Details of this
evolution and the latest standard score function REF2015 can be
found in references35,36. The attempt to easily switch score
functions for an application reveals a major challenge: many
applications employ the global default score function differently,
a problem exacerbated by the various user interfaces to the code
(see Supplementary Note 7). The heterogeneity in implementa-
tions makes it impossible to easily test different score functions
for all of the applications and reveals that it hinders both progress
and unification of the score functions, possibly into a single one.

Use case (1): test framework allows comparison of score
functions for multiple protocols. Using our framework allows us
to directly compare runs with different variables. For instance, we
can compare different score functions for various applications:
protein–protein docking, high-resolution refinement, loop mod-
eling, design, ligand docking, and membrane protein ddG’s
(Table 2 and Figs. 3–5). We test the latest four score functions:
score12, talaris2013, talaris2014, and REF2015 for all but ligand
docking and membrane protein ddG’s. Ligand docking has a
special score function and requires adjustments—we test the
ligand score function, talaris2014, REF2015, and the experimental
score function betaNov2016. Membrane protein ddG’s are tested
on the membrane score functions mpframework2012,
REF2015_mem, franklin2019, and the non-membrane score
function REF2015 as a control.

The benchmark sets and quality metrics are described in
Table 2 and in detail in the Supplementary Information. To
compare the score functions, we plot each application’s quality
metrics (for instance interface score vs. interface RMSD for
protein-protein docking, total score vs. loop RMSD for loop
modeling). We then evaluate the “funnel quality” by computing
the PNear metric, which falls between 0 and 1, with higher values
indicating higher quality48,49. For the protein design test, we
compute the average sequence similarity of the 10 lowest-scoring
(best) models instead of PNear and for the membrane ddG test, we
use the Pearson correlation coefficient between experimental and
predicted ddG’s. We further summarize the quality metrics per
protocol and score function by a “winner-takes-it-all” comparison
(Fig. 5A) and by an average metric overall target per application
per score function (Fig. 5B).

A few main observations follow from this comparison: at first
glance, in this comparison, REF2015 performs generally better
overall, yet the best score function to use depends on the
application—even different types of protocols can impact
prediction accuracy. However, it should be noted that some tests
have a small sample size due to the required computational
resources, therefore impacting the statistical significance of these
outcomes. Second, more recent score functions are not auto-
matically better for any given application, likely because
performance depends on how the score function was developed
and tested. For a more detailed discussion, see the Supplementary
Information. Third, results differ in some cases depending onT

ab
le

1
(c
on

ti
nu

ed
)

T
es
t
su
it
e

T
es
ts

R
ef
s.

T
es
t
au

th
or

Q
ua

lit
y
m
ea
su
re
s

T
ar
ge

ts
ns
tr
uc
t

R
un

ti
m
e

in
C
P
U
h

R
N
A

rn
a_
de

no
vo
_f
av
or
ite

s
8
1

A
nd

y
W

at
ki
ns

Sc
or
e
vs
.
rm

sd
12

20
0

12
0

st
ep

w
is
e_
rn
a_
fa
vo
ri
te
s

8
2

Sc
or
e
vs
.
rm

sd
12

20
0

24
0

R
os
et
ta
N
M
R

ab
in
iti
o_
R
os
et
ta
N
M
R
_r
dc

8
3

G
eo

rg
K
ue

nz
e,

Ju
lia

K
oe

hl
er

Le
m
an

Sc
or
e
vs
.
rm

sd
3

20
0
0

17
0

ab
in
iti
o_
R
os
et
ta
N
M
R
_p
cs

8
3

Sc
or
e
vs
.
rm

sd
3

20
0
0

14
0
0

T
he

nu
m
be

r
of

te
st
s
is
co
ns
ta
nt
ly
be

in
g
ex
pa
nd

ed
.T

he
te
st

su
ite

is
th
e
ov
er
al
la
pp

lic
at
io
n,

th
e
te
st

is
th
e
sp
ec
ifi
c
te
st
,i
m
pl
em

en
te
d
by

th
e
te
st

au
th
or
(s
).
T
he

qu
al
ity

m
ea
su
re
s
ar
e
ev
al
ua
te
d
to

ch
oo

se
a
pa
ss
/f
ai
lc
ri
te
ri
on

.T
he

ta
rg
et
s
ar
e
th
e
nu

m
be

r
of

di
ff
er
en

t
pr
ot
ei
ns

(o
r

bi
om

ol
ec
ul
es
)
te
st
ed

on
,
ns
tr
uc
t
is

th
e
nu

m
be

r
of

m
od

el
s
bu

ilt
fo
r
ea
ch

ta
rg
et
,
an
d
th
e
ru
nt
im

e
in

C
PU

ho
ur
s
is
th
e
to
ta
l
ru
nt
im

e
ov
er

al
l
ta
rg
et
s.

* T
he

do
ck
_g
ly
ca
ns

te
st

ha
s
be

en
su
pe

rc
ed

ed
by

gl
yc
an
_d
oc
k.

#
T
he

m
p_
f1
9
_e
ne

rg
y_
la
nd

sc
ap
e
te
st

ha
s
be

en
re
na
m
ed

to
m
p_
f1
9
_t
ilt
_a
ng

le
.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 7

https://graylab.jhu.edu/download/rosetta-scientific-tests/
https://graylab.jhu.edu/download/rosetta-scientific-tests/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

how the data were summarized; the top-performing score
functions per application from the “winner-takes-it-all” compar-
ison are not necessarily the top performers when the average of
the PNear value is used, as can be seen in ligand docking (Fig. 5B—
reference50 discussed this in-depth).

Use case (2): scientific test framework facilitates bug fixes and
maintenance. The scientific test framework is also useful for code
maintenance, to ensure that the correction of bugs does not
invalidate the scientific performance of the application. This can
be achieved by comparing the scientific performance of a run
before and after fixing a bug in the code. For example, in October
2019, we identified an integer division error in one of our core
libraries: the fraction 2/3 was incorrectly assumed to evaluate to
0.6666…, when in fact integer division discards remainders,
yielding 0. This calculation affected the computation of hydrogen
bonding energies and their derivatives and correcting it resulted
in a small but perceptible change in some of the hydrogen bond
energies. This led to the need to balance between fixing the bug
and managing the complex interdependencies or to preserve the
existing scoring behavior since the rest of the score function had
been calibrated with the bug present. By running the scientific
tests on a development branch in which we had fixed the bug, we
confirmed that although the correction results in a small change
in the energies, it had no perceptible effect on the scientific
accuracy of large-scale sampling runs for structure prediction,
docking, design, and any other protocol tested. This allowed us to
make the correction without harming Rosetta’s scientific perfor-
mance. We are certain that the scientific tests will be invaluable
for ensuring that future bug-fixing and refactoring efforts do not
hinder the scientific performance of our software, thus illustrating
a key example of scientific benchmarks informing substantive
decisions developers must make as they navigate code life cycles.

Use case (3): test framework allows detailed investigation of
new score functions under development. Our framework can
also be used to test how major code improvements would affect
scientific performance before they are adopted as default options
in the code. As an example, we can test how newly developed
score functions perform: although small molecules and proteins
are generally more rigid structures, intermediate-scale molecules
are frequently disordered and flexible. A recent study shows that
Rosetta’s estimates of rigidity (using the funnel quality metric
PNear computed to a designed binding conformation) for peptides
designed to bind to and inhibit a target of therapeutic interest
correlate well with IC50 values51. Since this prediction has rele-
vance to computer-aided drug development efforts, we want to
ensure that future protocol development would not impair these
predictions. We created a test (called peptide_pnear_vs_ic50) that
performs rigidity analysis on a pool of peptides that were pre-
viously characterized experimentally and computes the correla-
tion coefficient for the PNear values from predicted models to the
experimentally measured IC50 values. We find that the current
default score function, REF2015, produces much better predic-
tions than the legacy talaris2013 and talaris2014 score functions
(R2= 0.53, 0.53, and 0.90 for talaris2013, talaris2014, and
REF2015, respectively), indicating an improvement of the score
function accuracy for this particular application35. However, this
correlation is considerably worse with the score function Beta
currently under development (R2= 0.19). This reveals problems
in the candidate’s next-generation score function that will have to
be addressed before it becomes the default. Our scientific tests
embedded in the test server framework provide a means of
rapidly benchmarking and addressing these problems.T

ab
le

2
T
es
ts

fo
r
w
hi
ch

w
e
co
m
pa

re
di
ff
er
en

t
sc
or
e
fu
nc
ti
on

s
(s
co
re
12
,
ta
la
ri
s2
0
13
,
ta
la
ri
s2
0
14

,
re
f2
0
15
,
lig

an
d,

be
ta
N
ov

16
,
m
pf
ra
m
ew

or
k,

re
f2
0
15
m
em

,
an

d
fr
an

kl
in
20

19
),

co
m
pl
et
e
w
it
h
qu

al
it
y
m
ea

su
re
s,

nu
m
be

r
of

ta
rg
et
s
in

ea
ch

be
nc
hm

ar
k,

nu
m
be

r
of

m
od

el
s
cr
ea

te
d
(n
st
ru
ct
)
an

d
ru
nt
im

e
in

C
P
U

ho
ur
s
pe

r
sc
or
e
fu
nc
ti
on

.

T
es
t
su
it
e

T
es
ts

sc
or
e1
2

lig
an

d
m
pf
ra
m
ew

or
k

ta
la
ri
s1
3

ta
la
ri
s1
4

re
f2
0
15

re
f2
0
15
m
em

be
ta
N
ov

16
fr
an

kl
in
20

19
Q
ua

lit
y
m
ea
su
re
s

T
ar
ge

ts
ns
tr
uc
t

R
un

ti
m
e

in
C
P
U
h

D
oc
ki
ng

do
ck
in
g

x
x

x
x

I_
sc

vs
.
I_
rm

sd
10

10
0
0

15
0

D
es
ig
n

de
si
gn

_f
as
t

x
x

x
x

Sc
or
e
vs
.
se
qr
ec

4
8

10
0

26
0
0

Lo
op

m
od

el
in
g

lo
op

_m
od

el
in
g_
C
C
D

x
x

x
x

Sc
or
e
vs
.l
oo

p_
rm

sd
7

50
0

50
0

lo
op

_m
od

el
in
g_
K
IC

x
x

x
x

Sc
or
e
vs
.l
oo

p_
rm

sd
7

50
0

6
20

lo
op

_m
od

el
in
g_
K
IC
_f
ra
gm

en
ts

x
x

x
x

Sc
or
e
vs
.l
oo

p_
rm

sd
7

50
0

76
0

lo
op

_m
od

el
in
g_
N
G
K

x
x

x
x

Sc
or
e
vs
.l
oo

p_
rm

sd
7

50
0

57
0

R
efi

ne
m
en

t
re
la
x_
fa
st

x
x

x
x

Sc
or
e
vs
.
rm

sd
12

10
0

12
0

re
la
x_
fa
st
5

x
x

x
x

Sc
or
e
vs
.
rm

sd
12

10
0

12
0

re
la
x_
ca
rt

x
x

x
x

Sc
or
e
vs
.
rm

sd
12

10
0

12
0

Li
ga
nd

do
ck
in
g

lig
an
d_
do

ck
in
g

x
x

x
x

D
el
ta
_I
sc

vs
.

lig
an
d_
rm

sd
50

20
0

20
0
0

M
em

br
an
e

pr
ot
ei
ns

m
p_
dd

g
(d
dG

of
m
ut
at
io
n)

x
x

x
x

Pe
ar
so
n
co
rr
el
at
io
n

3
50

18
0
0

T
he

lig
an
d
do

ck
in
g
an
d
m
em

br
an
e
dd

G
ap
pl
ic
at
io
ns

re
qu

ir
e
sp
ec
ia
liz
ed

sc
or
e
fu
nc
tio

ns
.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

8 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

Use case (4): this framework and tests encourage scientific
reproducibility on several levels. How is this framework useful
beyond the specific tests mentioned here? Its usefulness for
Rosetta developers and users lies in the protocol captures, the
specific performance of each protocol, and the knowledge that
scientific performance is monitored over time. Developers of
macromolecular modeling methods outside of Rosetta can use

and run the exact test protocol captures to compare Rosetta’s
results to their own, newly developed methods. The code for the
general framework to run large-scale, continuous, automated tests
is available under the standard Rosetta license and is useful for
developers of any type of software. Lastly, the framework high-
lights how software can be developed in a scientifically repro-
ducible manner, lessons of which are useful and necessary for the

Docking

Ligand docking

3EO1 4BQH

H

G

F

E

D

C

B

A

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

scientific community at large. While we recognize the time and
work required to implement such tests and the underlying fra-
mework, the benefits far outweigh the effort spent in trying to
reproduce results that were implemented in a manner that lacks
necessary aspects for reproducibility, as discussed in Table 3.

Discussion
Here, we present a test server framework for continuously run-
ning scientific benchmarks on an integrated HPC cluster and
detail the way this framework has had a positive and substantive
effect on our large community of scientists. The framework itself
is sufficiently general that it could in principle be used on many
types of scientific software. We use it on Rosetta protocols that
cover the three main interfaces to the codebase: the command
line, RosettaScripts, and PyRosetta. New benchmarks are easily
added and debugged, and the workflow for setting them up is
well-documented and general: new tests can be added in a matter
of hours and require minimal coding experience in Rosetta. We
provide detailed documentation and consistency in the pre-
sentation of results, thereby facilitating maintenance by more
than just experts in the community and ensuring the longevity of
these tests. Automated and continuous runs of these tests allow us
to recognize shifts in performance, as development is simulta-
neously carried out on several interdependent but otherwise
unrelated fronts. Thus, we can build a longitudinal map of
accuracy and scientific correctness in a constantly evolving
codebase (for ourselves and our users), provide realistic protocol
captures of how to run applications, and build tools that follow
guidelines for improving reproducibility. Diversity in the choice
of targets in the benchmark sets provides a realistic performance
somewhat insulated from institutional and career incentives. So
far, 40 benchmarks for various biomolecular systems and pre-
diction tasks have been added to our server framework and more
will be added over time. Due to the size of our software and the
large number of protocols available, running these benchmarks
requires a substantial amount of resources, which are funded
through RosettaCommons, since such benchmarks are a priority
for software sustainability. Even though our setup involves the
integration of a custom software framework and web interface
with typical HPC hardware, we expect our design choices to be of
general interest and integrable with paid services such as Drone
CI44, Travis CI45, or Jenkins46, which are great options for small
software development communities or labs that lack the hardware
or personnel resources. This framework demonstrates how
challenges in scientific reproducibility can be approached and
handled in a general manner, even in a large and diverse
community.

Implementation of a modular testing system addressing the
goals above is a crucial step in achieving the reproducibility of
software codes. Yet, several challenges remain that are mostly due
to a lack of incentive structure. (1) In the past several years,
funding agencies and journals have introduced requirements for
data sharing, storing, and ensuring reproducibility. However,
even if data/detailed workflows and output are shared and

available, grant or paper reviewers are likely not going to take the
time to run the code because it often comes with a substantial
time investment for which the reviewers do not get much in
return. We argue that offering high-value incentives, such as co-
authorship on the paper, mini-grants, or other compensation to
the reviewer, in return for them running the code and comparing
the data, could potentially make a huge difference in closing the
gap in the reproducibility crisis. Alternatively, funding agencies
and journals could require that another scientist, independent
from the group publishing the method, is the independent code
reviewer and becomes a co-author. (2) Both funding agencies and
academic labs working on smaller software tools need to under-
stand that the bulk of the work in developing a tool is not the
development of the tool itself, but its maintenance, requiring
years of sustained effort for it to thrive into something valuable
and useful with actual impact on the scientific community. (3)
Similarly, funding agencies and labs need to understand that code
is cheap but high-quality code is expensive to create. The short-
term nature of most academic research labor (undergraduate,
graduate student, and postdoctoral researcher) conflicts with the
long-term necessity of maintenance. Sustainable research tooling
requires careful oversight and long-term management by a pro-
ject leader, ensuring that maintenance responsibilities are con-
tinually reassigned as the labor pool shifts.

Methods
The RosettaCommons community of developers has emphasized software testing
for over 15 years. To support our community of hundreds of developers, our user
base of tens of thousands of users, and the codebase of over 3 million lines of
code4, we implemented a custom testing architecture to fit our needs. We use this
platform (a.k.a. the “Benchmark Server”) to run all our tests including unit tests,
integration tests, profile tests, style tests, score function tests, build tests, and
others. Using this benchmark server to implement scientific tests is therefore a
natural extension of its current use. Our custom testing software runs on a
dedicated HPC cluster (which also runs the ROSIE server52), paid for by the
RosettaCommons from government and non-profit funding, and commercial
licensing fees.

The backend of the benchmark infrastructure. Our testing infrastructure con-
sists of a number of machines:

Database server. Our data center stores information about revisions, test, and
sub-test results as well as auxiliary data like comments to revisions or a list of
branches that are currently tracked via GitHub4,53. We are using PostgreSQL.
Web server. The web interface for Rosetta developers connects to the database
server. When a developer asks for a particular revision or test results, the
webserver gathers these data from the database server, generates the HTML
page, and sends it to the developer who looks at the page in a web browser. The
web server also allows developers to queue new tests through the submit page
on the web interface.
Revision daemon. This application watches the state of various branches,
queues tests, and sends notifications. The daemon tracks the list of branches
and periodically checks if a new revision for a particular branch was committed.
When a new revision has been committed, it schedules the default test set for
that branch. The daemon also watches for open pull requests on GitHub, and
for each pull request, it checks for specific test labels (for instance “standard
tests”). The revision daemon schedules any tests with that label for that pull
request.

Because scientific tests require an enormous amount of computing power, we
are currently unable to test every single revision in the Rosetta main branch.

Fig. 3 Score function comparison for specific proteins for protein–protein docking and ligand docking. Comparison of different score functions for
different applications using the PNear metric as an indication of “funnel quality”. PNear falls between 0 (no funnel or incorrect global minimum) and 1 (the
perfect funnel). The lambda parameter indicates the spread on the x-axis and is set to 4.0. Score functions are sorted from oldest to newest (left to right)
and the models are colored in gray as the native (PDB) structure, then according to the score functions in order: yellow, green, cyan, and teal. A, B
comparison for protein-protein docking on target with PDB ID 3eo1. The starting model is shown in dark blue—the docking partner of the starting model is
too far away to be shown in the picture. The quality of the prediction improves over different score functions as indicated by tightening of the energy
funnel. C, D comparison for ligand docking on target 4bqh. The native ligand pose is shown in dark blue. The quality of the prediction improves over
different score functions as indicated by tightening of the energy funnel. E–H Ligand docking comparison on targets 3tll and 4uwc, respectively. Newer
score functions lower the energy of an incorrect, alternative docking conformation, leading to a worse prediction.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

10 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

Loop modeling

C
yc

lic
 C

oo
rd

in
at

e
D

es
ce

nt
Ki

ne
m

at
ic

 C
lo

su
re

KI
C

 w
ith

 fr
ag

m
en

ts
N

ex
t-G

en
er

at
io

n
KI

C

D

C

B

A

Fig. 4 Score function comparison for one protein and different loop modeling protocols. The protocols are A cyclic coordinate descent—CCD, B
kinematic closure—KIC, C KIC with fragments, and D next-generation KIC—NGK. Score functions are sorted from oldest to newest (left to right) and the
models are colored in gray as the native (PDB) structure, then according to the score functions in order: yellow—score12, green—talaris13, cyan—talaris14,
and teal—ref2015. This figure shows a particularly interesting example, which is not necessarily representative of other targets. Interesting for this target
are the differences in the energy landscapes that are sampled and the presence of a second, incorrect conformation with low energy for some protocols
and some score functions, but not others. For 3 out of 7 targets in our comparison, including this one, most conformations that KIC (kinematic closure)
with fragments samples, are close to the native structure. Again, for larger benchmarks, this is likely not as often the case.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Instead, we run scientific tests on a best-effort basis. The tests run continuously, but
because there are sometimes multiple updates to the main branch per day and it
takes the scientific tests about a week to run, many revisions in the main branch
remain untested. In case of a test failure, the revision daemon performs a binary
search bisecting the untested revisions to determine the exact revision that is
responsible for the breakage.

[4.-N.] Testing daemons. The testing daemons run on various platforms: Mac,
Linux, and Windows. We currently have 18 of these daemons, some of which are
meant for build tests (i.e., on Windows) and some of which are capable of running
tests on our HPC cluster. Each daemon periodically checks the list of queued tests
from the database server. If there is any test which that daemon is capable of
running, it runs the test and then uploads the test results (logs, result files, and test
results encoded in JSON) to our SQL database.

This backend code is specific to our hardware, HPC use patterns, and system
administration environment, and maintained separately from the code that
performs or tests science. This code does not include the frontend scientific
testing framework (next paragraph) and is not needed to replicate any of the
scientific results. The frontend implementation of the scientific testing

framework including all the scientific benchmarks is fully available under the
RosettaCommons license.

Setup of the scientific tests. We chose a simple setup as shown in Fig. 1C. Each
scientific test requires a small number of files, available in a template directory. All
files in this directory are well documented with comments, and the lines that
require editing for specific tests are highlighted. Each scientific test directory starts
from a template containing the following files:

● input files—are either located in this directory or in a parallel git submodule
if the input files exceed 5 MB. This policy prevents our main code
repository from becoming overly inflated with thousands of input files for
scientific benchmarking.

● 0.compile.py—compiles the Rosetta and/or PyRosetta executable.
● 1.submit.py—submits the benchmark jobs either to the local machine or to

the HPC cluster. Note that this “or” provides hardware non-specificity; the
user writes and debugs locally and can run at scale on the benchmark
server.

M
in

 (W
or

st
)

Ar
bi

tra
ry

 u
ni

ts
(B

es
t)

M
axA

B

Fig. 5 Summary of score function comparisons. Comparison of different score functions (one per column) for different applications and protocols, using
the PNear metric as an indication of “funnel quality”. PNear falls between 0 (no funnel or incorrect global minimum) and 1 (the perfect funnel). The lambda
parameter indicates the spread on the x-axis and is set to 4.0 in our comparison. Cells are colored according to the color bar on the right, teal is better.
Unavailable data is indicated in gray. A The panel uses a “winner-takes-all” comparison: for each protein, the score function with the highest (i.e., best)
PNear value (see methods) gets a point. Points are then summed by column, identifying the score function with the most and highest PNear values across
proteins, the higher the better. B The averages of the PNear values for each score function were used, i.e., computed over each column. Higher values are
better.

Table 3 Guidelines for reproducible research and for the development of high-quality methods.

General guidelines for reproducibility Guidelines for high-quality benchmarks

1. Document artifacts 1. Define scientific questions for the benchmark
2. Share input, output, and exact workflow in detail under an open license in

public repositories
2. Define quality metrics that are practically relevant

3. Cite the data, software, and workflows 3. Diversify examples in the benchmark set to cover easy and difficult
targets

4. Use persistent links in the publication 4. Separate benchmark set from the developed method
5. Journals should check for reproducibility 5. Pick cutting edge methods to compare your method to
6. Funding agencies should fund reproducibility research 6. Use benchmarked methods that are freely available

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

12 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

● 2.analyze.py—analyzes the output data, depending on the scientific
objective. Analysis functions that are specific to this particular test live in
this script, while broadly useful analysis functions are located in a file that
is part of the overall Python test server framework and that contains
functions to evaluate quality measures.

● 3.plot.py—plots the output data via matplotlib54, or other plotting software
as appropriate.

● … – other numbered scripts can be added as needed; they will run
consecutively as numbered.

● 9.finalize.py—gathers the output data and classifies the test as passed or
failed, creates an HTML page by combining the documentation from the
readme file, the plots of the output data and the pass/fail criterion. The
HTML page is the main results page that developers, maintainers, and
observers examine.

● citation—includes all relevant citations that describe the protocol, the
benchmark set, or the quality measures.

● cutoffs—contains the cutoffs used for distinguishing between a pass or a
failure for this test.

● observers—email addresses of developers that either set up the test and/or
maintain it. If a test fails on the test server, an email is sent to the observers
to inform them of the test breakage.

● readme.md—is a questionnaire-style markdown file that contains all
necessary documentation to understand the purpose and detailed methods
of the test. Obtaining detailed documentation is essential for the
maintenance and longevity of the test. The goal is that anyone with basic
Rosetta expertise and training can understand, reproduce, and maintain the
test. The template readme file is provided in the Supplementary
Information of this paper.

Most Rosetta protocols use the Monte-Carlo sampling protocol to create protein
or biomolecule conformations, which are then evaluated by a score function.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All Rosetta code and the frontend implementation of the scientific testing framework
including all the scientific benchmarks are fully available under the RosettaCommons
license. In addition, complete protocol captures for all benchmarks with input files,
command lines, output files, analyses, and result summaries are publicly available to view
and download at https://graylab.jhu.edu/download/rosetta-scientific-tests/. These
complete protocol captures are available in two code revisions and will be automatically
expanded with new revisions added about every 6 months. Older revisions remain on the
server. Details about each of the 42 datasets with accession codes etc. are provided under
the link above.

Code availability
Rosetta is licensed and distributed through https://www.rosettacommons.org. Licenses
for academic, non-profit, and government laboratories are free of charge; there is a
license fee for industry users. A license is required to gain access to the Github repository.
Specific version numbers are given in the Supplementary Information.

Received: 8 April 2021; Accepted: 2 November 2021;

References
1. Baker, M. & Penny, D. Is there a reproducibility crisis? Nature 533, 452–454

(2016).
2. Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of

reproducibility in preclinical research. PLOS Biol. 13, e1002165 (2015).
3. Peng, R. D. Reproducible research in computational science. Science 334,

1226–1227 (2011).
4. Koehler Leman, J. et al. Better together: elements of successful scientific

software development in a distributed collaborative community. PLOS
Comput. Biol. 16, e1007507 (2020).

5. Adorf, C. S., Ramasubramani, V., Anderson, J. A. & Glotzer, S. C. How to
professionally develop reusable scientific software—and when not to. Comput.
Sci. Eng. 21, 66–79 (2019).

6. Baker, M. 1,500 scientists lift the lid on reproducibility: nature news &
comment. Nature 533, 452 (2016).

7. Open Science Collaboration. Estimating the reproducibility of psychological
science. Science 349, aac4716–aac4716 (2015).

8. Stodden, V. et al. Enhancing reproducibility for computational methods.
Science 354, 1240–1241 (2016).

9. Jeffrey Mervis. NSF to Ask Every Grant Applicant for Data Management Plan
| Science | AAAS. Science. https://www.sciencemag.org/news/2010/05/nsf-ask-
every-grant-applicant-data-management-plan (2010).

10. Editorial. Everyone needs a data-management plan. Nature 555, 286–286
(2018).

11. Williams, M., Bagwell, J. & Nahm Zozus, M. Data management plans: the
missing perspective. J. Biomed. Inform. 71, 130–142 (2017).

12. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data
management and stewardship. Sci. Data 3, 1–9 (2016).

13. Afgan, E. et al. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44,
W3–W10 (2016).

14. Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules
for reproducible computational research. PLoS Comput. Biol. 9, e1003285
(2013).

15. Perkel, J. M. Challenge to scientists: does your ten-year-old code still run?
Nature 584, 656–658 (2020).

16. ReScience C—Ten Years Reproducibility Challenge. https://rescience.github.io/
ten-years/.

17. ReScience C. http://rescience.github.io/.
18. Van Bavel, J. J., Mende-Siedlecki, P., Brady, W. J. & Reinero, D. A. Contextual

sensitivity in scientific reproducibility. Proc. Natl Acad. Sci. USA 113,
6454–6459 (2016).

19. Peters, B., Brenner, S. E., Wang, E., Slonim, D. & Kann, M. G. Putting
benchmarks in their rightful place: the heart of computational biology. PLOS
Comput. Biol. 14, e1006494 (2018).

20. Ó Conchúir, S. et al. A web resource for standardized benchmark datasets,
metrics, and Rosetta protocols for macromolecular modeling and design. PLoS
ONE 10, e0130433 (2015).

21. Huizinga, D. & Kolawa, A. Automated Defect Prevention: Best Practices in
Software Management | Wiley. https://www.wiley.com/en-us/Automated
+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-
9780470042120 (2007).

22. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A.
Critical assessment of methods of protein structure prediction (CASP)—
round XII. Proteins Struct. Funct. Bioinforma. 86, 7–15 (2018).

23. Wodak, S. J. & Janin, J. Modeling protein assemblies: critical assessment of
predicted interactions (CAPRI) 15 years hence. Proteins Struct. Funct.
Bioinforma. 85, 357–358 (2017).

24. Friedberg, I. & Radivojac, P. Methods Mol. Biol. 1446, 133–146 (2017).
25. Daneshjou, R. et al. Working toward precision medicine: predicting

phenotypes from exomes in the Critical Assessment of Genome Interpretation
(CAGI) challenges. Hum. Mutat. 38, 1182–1192 (2017).

26. Miao, Z. et al. RNA-Puzzles round IV: 3D Structure predictions of four
ribozymes and two aptamers. RNA 26 (2020).

27. Haas, J. et al. Continuous Automated Model EvaluatiOn (CAMEO)
complementing the critical assessment of structure prediction in CASP12.
Proteins Struct. Funct. Bioinforma. 86, 387–398 (2018).

28. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the
simulation and design of macromolecules. Methods Enzymol. 487, 545–574
(2011).

29. Koehler Leman, J. et al. Macromolecular modeling and design in Rosetta:
recent methods and frameworks. Nat. Methods 17, 665–680 (2020).

30. RosettaCommons. https://www.rosettacommons.org/.
31. Kaufmann, K. W. & Meiler, J. Using RosettaLigand for small molecule

docking into comparative models. PLoS ONE 7, e50769 (2012).
32. Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation

of backbone bond geometry improves protein energy landscape modeling.
Protein Sci. 23, 47–55 (2014).

33. Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy
function improvement. Methods Enzymol. 523, 109–143 (2013).

34. O’Meara, M. J. et al. Combined covalent-electrostatic model of hydrogen
bonding improves structure prediction with Rosetta. J. Chem. Theory Comput.
11, 609–622 (2015).

35. Park, H. et al. Simultaneous optimization of biomolecular energy functions on
features from small molecules and macromolecules. J. Chem. Theory Comput.
12, 6201–6212 (2016).

36. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular
modeling and design. J. Chem. Theory Comput. 13, 1–35 (2017).

37. Alford, R. F., Samanta, R. & Gray, J. J. Diverse scientific benchmarks for
implicit membrane energy functions. J. Chem. Theory. Comput. 17,
5248–5261 (2021).

38. Renfrew, P. D., Campbell, G., Strauss, C. E. M. & Bonneau, R. The 2010
Rosetta developers meeting: macromolecular prediction and design meets
reproducible publishing. PLoS ONE 6, e22431 (2011).

39. Bender, B. J. et al. Protocols for Molecular Modeling with Rosetta3 and
RosettaScripts. Biochemistry https://doi.org/10.1021/acs.biochem.6b00444
(2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 13

https://graylab.jhu.edu/download/rosetta-scientific-tests/
https://www.rosettacommons.org
https://www.sciencemag.org/news/2010/05/nsf-ask-every-grant-applicant-data-management-plan
https://www.sciencemag.org/news/2010/05/nsf-ask-every-grant-applicant-data-management-plan
https://rescience.github.io/ten-years/
https://rescience.github.io/ten-years/
http://rescience.github.io/
https://www.wiley.com/en-us/Automated+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-9780470042120
https://www.wiley.com/en-us/Automated+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-9780470042120
https://www.wiley.com/en-us/Automated+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-9780470042120
https://www.rosettacommons.org/
https://doi.org/10.1021/acs.biochem.6b00444
www.nature.com/naturecommunications
www.nature.com/naturecommunications

40. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the
Rosetta Macromolecular modeling suite. PLoS ONE 6, 1–10 (2011).

41. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for
implementing molecular modeling algorithms using Rosetta. Bioinformatics
26, 689–691 (2010).

42. Gray, J. J., Chaudhury, S., Lyskov, S. & Labonte, J. W. The PyRosetta
Interactive Platform for Protein Structure Prediction and Design: A Set of
Educational Modules. http://www.amazon.com/PyRosetta-Interactive-
Platform-Structure-Prediction/dp/1500968277 (2014).

43. Features • GitHub Actions · GitHub. https://github.com/features/actions.
44. Drone CI—Automate Software Testing and Delivery. https://www.drone.io/.
45. Travis CI—continuous integration. https://travis-ci.org/.
46. Jenkins. https://jenkins.io/.
47. RosettaCommons. Rosetta documentation—Scientific Benchmarks. http://

new.rosettacommons.org/docs/latest/development_documentation/test/
Scientific-Benchmarks.

48. Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained
peptides. Nature 538, 329–335 (2016).

49. Hosseinzadeh, P. et al. Comprehensive computational design of ordered
peptide macrocycles. Science 358, 1461–1466 (2017).

50. Smith, S. T. & Meiler, J. Assessing multiple score functions in Rosetta for drug
discovery. PLoS ONE 15, e0240450 (2020).

51. Mulligan, V. K. et al. Computationally designed peptide macrocycle inhibitors
of New Delhi metallo-β-lactamase 1. Proc. Natl Acad. Sci. USA 118 (2021).

52. Lyskov, S. et al. Serverification of molecular modeling applications: the
Rosetta Online Server that Includes Everyone (ROSIE). PLoS ONE 8, e63906
(2013).

53. GitHub. https://github.com/.
54. Matplotlib: Python plotting—Matplotlib 3.4.1 documentation. https://

matplotlib.org/.
55. Weitzner, B. D. et al. Modeling and docking of antibody structures with

Rosetta. Nat. Protoc. 12, 401–416 (2017).
56. Weitzner, B. D. & Gray, J. J. Accurate structure prediction of CDR H3 loops

enabled by a novel structure-based C-terminal constraint. J. Immunol. 198,
505–515 (2017).

57. Sircar, A. & Gray, J. J. SnugDock: paratope structural optimization during
antibody-antigen docking compensates for errors in antibody homology
models. PLoS Comput. Biol. 6, e1000644 (2010).

58. Nance, M. L., Labonte, J. W., Adolf-Bryfogle, J. & Gray, J. J. Development and
evaluation of GlycanDock: a protein–glycoligand docking refinement
algorithm in Rosetta. J. Phys. Chem. B https://doi.org/10.1021/
ACS.JPCB.1C00910 (2021).

59. Labonte, J. W., Adolf-Bryfogle, J., Schief, W. R. & Gray, J. J. Residue-centric
modeling and design of saccharide and glycoconjugate structures. J. Comput.
Chem. 38, 276–287 (2017).

60. Adolf-Bryfogle, J. et al. Growing glycans in Rosetta: accurate de-novo glycan
modeling, density fitting, and rational sequon design. Prep. (2021).

61. Song, Y. et al. High-resolution comparative modeling with RosettaCM.
Structure 21, 1735–1742 (2013).

62. Kortemme, T., Kim, D. E. & Baker, D. Computational alanine scanning of
protein-protein interfaces. Sci. STKE 2004, pl2 (2004).

63. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for
requirement-driven protein design in the Rosetta modeling program. J. Chem.
Inf. Model. 58, 895–901 (2018).

64. Nivón, L. G., Bjelic, S., King, C. & Baker, D. Automating human intuition for
protein design. Proteins 82, 858–866 (2014).

65. Maguire, J. B. et al. Perturbing the energy landscape for improved packing
during computational protein design. Proteins Struct. Funct. Bioinforma. 89,
436–449 (2021).

66. Loshbaugh, A. L. & Kortemme, T. Comparison of Rosetta flexible-backbone
computational protein design methods on binding interactions. Proteins
Struct. Funct. Bioinforma. 88, 206–226 (2020).

67. Yachnin, B. J., Mulligan, V. K., Khare, S. D. & Bailey-Kellogg, C.
MHCEpitopeEnergy, a flexible rosetta-based biotherapeutic deimmunization
platform. J. Chem. Inf. Model. 61, 2368–2382 (2021).

68. Gray, J. J. et al. Protein–protein docking with simultaneous optimization of
rigid-body displacement and side-chain conformations. J. Mol. Biol. 331,
281–299 (2003).

69. Marze, N. A., Roy Burman, S. S., Sheffler, W. & Gray, J. J. Efficient flexible
backbone protein–protein docking for challenging targets. Bioinformatics 34,
3461–3469 (2018).

70. Alam, N. & Schueler-Furman, O. Methods Mol. Biol. 1561 139–169 (Humana
Press Inc., 2017).

71. Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E. M. & Baker, D.
Generalized Fragment Picking in Rosetta: Design, Protocols and Applications.
6, e23294 (2011).

72. Canutescu, A. A. & Dunbrack, R. L. Cyclic coordinate descent: a robotics
algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).

73. Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in
protein loop reconstruction by robotics-inspired conformational sampling.
Nat. Methods 6, 551–552 (2009).

74. Fernandez, A. J. et al. The structure of the colorectal cancer-associated enzyme
GalNAc-T12 reveals how nonconserved residues dictate its function. Proc.
Natl Acad. Sci. USA 116, 20404–20410 (2019).

75. Stein, A. & Kortemme, T. Improvements to robotics-inspired conformational
sampling in rosetta. PLoS ONE 8, e63090 (2013).

76. Alford, R. F., Fleming, P. J., Fleming, K. G. & Gray, J. J. Protein structure
prediction and design in a biologically realistic implicit membrane. Biophys. J.
118, 2042–2055 (2020).

77. Alford, R. F. et al. An integrated framework advancing membrane protein
modeling and design. PLoS Comput. Biol. 11, e1004398 (2015).

78. Koehler Leman, J. & Bonneau, R. A novel domain assembly routine for
creating full-length models of membrane proteins from known domain
structures. Biochemistry 57, 1939–1944 (2018).

79. Koehler Leman, J., Lyskov, S. & Bonneau, R. Computing structure-based lipid
accessibility of membrane proteins with mp_lipid_acc in RosettaMP. BMC
Bioinforma. 18, 115 (2017).

80. Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy
landscape mapping. J. Mol. Biol. 405, 607–618 (2011).

81. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo Rosetta
prediction of complex global RNA folds. Structure 28, 963–976.e6 (2020).

82. Watkins, A. M. et al. Blind prediction of noncanonical RNA structure at
atomic accuracy. Sci. Adv. 4, eaar5316 (2018).

83. Kuenze, G., Bonneau, R., Leman, J. K. & Meiler, J. Integrative protein
modeling in Rosetta NMR from sparse paramagnetic restraints. Structure 27,
1721–1734.e5 (2019).

Acknowledgements
ARO MURI W911NF-16-1-0372 to Watkins; American Heart Association
18POST34080422 to Kuenze; BSF 2015207 to Schueler-Furman, Ben-Aharon; Cancer
Research Institute Irvington Postdoctoral Fellowship (CRI 3442) to Roy Burman; Can-
dian Institutes of Health Research Postdoctoral Fellowship to Yachnin; Cyrus Bio-
technology to Lewis; Simons Foundation to Bonneau, Koehler Leman, Mulligan; German
Research Foundation KU 3510/1-1 to Kuenze; H2020 MSCA IF CC-LEGO 792305 to
Ljubetic; HHMI to Baker; Hertz Foundation Fellowship to Alford; ISF 717/2017 to
Schueler-Furman, Ben-Aharon; Lundbeck Foundation Fellowship R272-2017-4528 to
Stein; Mistletoe Research Foundation Fellowship to Yachnin; NCN 2018/29/B/ST6/01989
to Gront, Krys; NIAID R01AI113867 to Schief, Adolf-Bryfogle; NIEHS P42ES004699 to
Siegel; NIH 1R01GM123089 to Farrell, DiMaio; NIH 2R01GM098977 to Bailey-Kellogg;
NIH F31-CA243353 to Smith; NIH F31-GM123616 to Jeliazkov; NIH GM067553 to
Maguire; NIH NCI R21 CA219847 and NIH R01 GM121487 to Das, Watkins; NIH
NHLBI 2R01HL128537 to Yarov-Yarovoy; NIH NIAID R21 AI156570 and NIH NIBIB
R21 EB028342 to Bahl; NIH NIAID U01 AI150739, NIH NIDA R01 DA046138 to
Meiler, Moretti; NIH NIGMS R01 GM080403 to Meiler, Moretti and Kuenze; NIH
NIGMS R01 GM073151 to Kuhlman, Gray, Leaver-Fay, Lyskov, Moretti, Meiler; NIH
NIGMS R01 GM121487 and NIH NIGMS R35 GM122579 to Das; NIH NIGMS
1R01GM132110 and NIH NINDS 1R01NS103954 to Yarov-Yarovoy; NIH NINDS
UG3NS114956 to Nguyen, Yarov-Yarovoy; NIH F32 CA189246 to Labonte; NIH R01
GM 076324-11 to Siegel; NIH R01 GM129261 to Woods; NIH R01 GM078221 to
Harmalkar, Roy Burman, Jeliazkov, Nance, Samanta, and Gray; NIH R01 GM127578 to
Gray and Labonte; NIH R01 GM110089 to Loshbaugh, Kortemme, Barlow; NIH R35
GM131923 to Leaver-Fay, Teets, Kuhlman; NIH R01 GM132565 to Hansen, Khare; NSF
1507736 to Gray, Roy Burman; NSF 1627539 and NSF 1827246 to Siegel; NSF 1805510 to
Siegel, Fell; NSF 2031785 to Bahl; NSF DBI‐1564692 to Loshbaugh, Kortemme, Barlow
and O’Connor; NSF GRFP Fellowship to Alford; NSF CBET1923691 to Hansen, Khare;
Novo Nordisk Foundation NNF18OC0033950 to Tiemann, Stein, Lindorff-Larsen;
RosettaCommons Licensing Fund RC8010 to Bahl; RosettaCommons to Hansen, Mor-
etti, Lyskov, Khare, Gray; NIH NRSA T32AI007244 and NIH U19AI117905 to Schief,
Adolf-Bryfogle. The authors further thank Matt Mulqueen for expert administration of
the multiple benchmark testing servers and cluster, RosettaCommons for hardware and
staff support after the NIH ended their software infrastructure program, and companies
that license Rosetta, providing support for critical software sustainability practices.

Author contributions
The benchmark testing server framework was implemented and is being maintained by S.
Lyskov. The scientific testing framework was created jointly by J.K.L., S. Lyskov, and S.M.
Lewis. Specific tests were implemented and validated by the test authors as outlined in
Table 1, namely J.J., J.W.L., M.N., J.A.B., A. Loshbaugh, F.T., R.M., J. Maguire, C.B., A.
Ljubetic, B.Y., S.S.R.B., A.H., Z.B.A., J.K., D.G., D.F., S.S., P.N., J.F., S.O.C., R.S., R.A.,
J.K.L., S.M. Lewis, W.H., Slyskov, V.K.M., A.W., and G.K. All tests went through inde-
pendent scientific and technical review by S.M. Lewis, J.K.L., S. Lyskov with help from
V.K.M., R.M., A.M.W., and others for review of pull requests. Further, benchmarks were
provided by J.M., C.B., K.B., S.O.C., G.K., and H.W. and independently reviewed by
J.K.S.T., A.S, and K.L.L. J.J.G. supervised the creation of the benchmark infrastructure

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7

14 NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications

http://www.amazon.com/PyRosetta-Interactive-Platform-Structure-Prediction/dp/1500968277
http://www.amazon.com/PyRosetta-Interactive-Platform-Structure-Prediction/dp/1500968277
https://github.com/features/actions
https://www.drone.io/
https://travis-ci.org/
https://jenkins.io/
http://new.rosettacommons.org/docs/latest/development_documentation/test/Scientific-Benchmarks
http://new.rosettacommons.org/docs/latest/development_documentation/test/Scientific-Benchmarks
http://new.rosettacommons.org/docs/latest/development_documentation/test/Scientific-Benchmarks
https://github.com/
https://matplotlib.org/
https://matplotlib.org/
https://doi.org/10.1021/ACS.JPCB.1C00910
https://doi.org/10.1021/ACS.JPCB.1C00910
www.nature.com/naturecommunications

and secured funding, together with B.K. This project was jointly supervised by R.B., J.J.G.,
D.G., A.L.F., C.B., C.B.K., D.B., R.D., F.D.M., S.K., T.K., J.W.L., J. Meiler, W.S., O.S.F.,
J.S., A.S., V.Y.Y. and B.K.

Competing interests
Rosetta software has been licensed to numerous non-profit and for-profit organizations.
Rosetta Licensing is managed by UW CoMotion, and royalty proceeds are managed by
the RosettaCommons. Under institutional participation agreements between the Uni-
versity of Washington, acting on behalf of the RosettaCommons, their respective insti-
tutions may be entitled to a portion of the revenue received on licensing Rosetta software
including programs described here. D.B., J.J.G., R.B., O.S.F., D.G., T.K., J.M., and V.Y.Y.
are unpaid board members of the RosettaCommons. As members of the Scientific
Advisory Board of Cyrus Biotechnology, D.B. and J.J.G. are granted stock options. S.M.L.,
A.L.L., and D.F. are employed by or have a relationship with Cyrus Biotechnology. Cyrus
Biotechnology distributes the Rosetta software, which includes the methods discussed in
this study. V.K.M. is a co-founder of and shareholder in Menten Biotechnology Labs, Inc.
The content of this manuscript is relevant to work performed at Menten. J.M. is
employed by Menten with granted stock options. D.B. is a cofounder of, shareholder in,
or advisor to the following companies: ARZEDA, PvP Biologics, Cyrus Biotechnology,
Cue Biopharma, Icosavax, Neoleukin Therapeutics, Lyell Immunotherapeutics, Sana
Biotechnology, and A-Alpha Bio. CBK is a co-founder and manager of Stealth Biologics,
LLC, a biotechnology company. R.B. is executive director of Prescient Design/Genentech,
a member of the Roche group. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27222-7.

Correspondence and requests for materials should be addressed to Julia Koehler Leman,
Jeffrey J. Gray or Richard Bonneau.

Peer review information Nature Communications thanks Charlotte Deane, Thomas
Kude, and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

1Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA. 2Department of Biology, New York
University, New York, NY 10003, USA. 3Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,
USA. 4Cyrus Biotechnology, 1201 Second Ave, Suite 900, Seattle, WA 98101, USA. 5Department of Immunology and Microbiology, Scripps
Research, La Jolla, CA 92037, USA. 6IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA 92037, USA. 7Graduate Program in
Bioinformatics, University of California San Francisco, San Francisco, CA 94158, USA. 8Department of Microbiology and Molecular Genetics,
Hebrew University, Hadassah Medical School, POB 12272 Jerusalem 91120, Israel. 9Department of Biochemistry, University of Washington,
Seattle, WA 98195, USA. 10Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. 11Genome Center, University of
California, Davis, CA 95616, USA. 12Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA.
13Department of Chemistry, University of California, Davis, CA 95616, USA. 14Department of Chemistry and Chemical Biology, Rutgers, The State
University of New Jersey, Piscataway, NJ 08904, USA. 15Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey,
Piscataway, NJ 08904, USA. 16Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA. 17Department of
Chemistry, Vanderbilt University, Nashville, TN 37235, USA. 18Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA.
19Institute for Drug Discovery, Medical School, Leipzig University, 04103 Leipzig, Germany. 20Faculty of Chemistry, Biological and Chemical
Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. 21Department of Bioengineering and Therapeutic Sciences,
University of California San Francisco, San Francisco, CA 94158, USA. 22Biophysics Graduate Program, University of California San Francisco, San
Francisco, CA 94158, USA. 23Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA. 24Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA. 25Chemical
and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA. 26Department of Bioochemistry and Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA. 27Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of
Copenhagen, DK-2200 Copenhagen N., Denmark. 28Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305,
USA. 29Institute for Protein Innovation, Boston, MA 02115, USA. 30Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
02115, USA. 31Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. 32Department of Computer Science, Dartmouth,
Hanover, NH 03755, USA. 33Department of Computer Science, New York University, New York, NY 10003, USA. 34These authors contributed
equally: Julia Koehler Leman, Sergey Lyskov, Steven M. Lewis. ✉email: julia.koehler.leman@gmail.com; jgray@jhu.edu; bonneau@nyu.edu

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27222-7 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6947 | https://doi.org/10.1038/s41467-021-27222-7 | www.nature.com/naturecommunications 15

https://doi.org/10.1038/s41467-021-27222-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:julia.koehler.leman@gmail.com
mailto:jgray@jhu.edu
mailto:bonneau@nyu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks
	Results
	Insights from the previous round of scientific tests led to specific goals
	Goal 1—simplicity: simple setup facilitates broad adoption and support from our community
	Goal 2—generalization: new tests support interfaces of the command line, PyRosetta, or RosettaScripts
	Goal 3—automation: tests require substantial compute power and are run on a dedicated test server
	Goal 4—documentation: anyone can quickly and easily add new tests
	Goal 5—distribution: additions and usage of tests by our community requires broad distribution
	Goal 6—maintenance: test failures are handled by a defined procedure
	Most major Rosetta protocols are now implemented as scientific benchmarks
	Standardizing workflows highlights heterogeneity in score function implementations
	Use case (1): test framework allows comparison of score functions for multiple protocols
	Use case (2): scientific test framework facilitates bug fixes and maintenance
	Use case (3): test framework allows detailed investigation of new score functions under development
	Use case (4): this framework and tests encourage scientific reproducibility on several levels

	Discussion
	Methods
	The backend of the benchmark infrastructure
	Setup of the scientific tests

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

