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ABSTRACT OF THE DISSERTATION 

 

Characterizing Biomolecular Recognition and Solvation with End-Point Free 
Energy Calculations and Implicit Solvent Models 
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Professor J. Andrew McCammon, Chair 

Professor Elizabeth Komives, Co-chair 
 

 Biomolecular recognition, the nexus of individual molecules and function, and solvation, the 

medium in which it occurs, are two of the most important, well-studied, and yet enigmatic 

phenomena in biology.  This thesis explores the combination of theory and computational 

algorithms to study these two phenomena.  End-point free energy calculations are used to predict 

and characterize biomolecular recognition.  A theoretical framework is presented which properly 

accounts for standard state conditions and highlights several areas of potential improvement.  A 

novel method is presented for calculating the association free energy, which arises from one 

molecule losing its translational and rotational freedom upon binding.  The entropic penalties of 

protein-ligand and protein-protein associations are compared and the physical trends that affect 

this penalty are presented.   Compatibility between the implicit and explicit solvent energies is 

shown to be especially important in end-point free energy analysis.  Energetic compatibility, in 

addition to implicit solvent accuracy, can be improved by fitting implicit solvent parameters to 

explicit solvent simulations.  Several variations of this approach are presented, each of which 

optimizes the solute radii which define the dielectric boundary between the low dielectric solute 

and the high dielectric solvent in Poisson-based implicit solvent models.  The radii are first 

optimized to reproduce explicit solvent charging free energies from explicit solvent simulations.  



 

xiv 

Then, atomic forces are shown to increase the optimization efficiency and improve the resulting 

implicit solvent parameters.  Molecular surfaces are compared to atom-centered dielectric 

functions, and the latter are shown to create unphysical high dielectric regions in spaces between 

atoms which are too small for water molecules to penetrate.  Optimized radii are presented for 

molecular surfaces and spline-smoothed surfaces created for stable and efficient force 

calculations.  Finally, the coupling between polar and nonpolar solvation energies is discussed.  

This coupling has never been accounted for in an implicit solvent framework, but has been 

demonstrated in solutes ranging from small molecules to nanosolutes, including several 

biological systems.  A new implicit solvent formalism is presented which accounts for coupling 

by expressing the system free energy as a functional of the solvent volume exclusion function. 
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Chapter One 

Introduction 

Biomolecular recognition, the specific association of two biomolecules, is of fundamental 

importance in the study of biological systems; it is the phenomenon that initiates and perpetuates 

most cellular processes from replication, transcription, and translation, to cell trafficking and 

neuronal signaling.    Measuring the probability of molecular association is an essential tool in 

experimental biology.  It is most commonly accomplished with binding assays which report 

concentrations of bound and unbound molecules.  Similarly, predicting the probability of 

association is an important tool in theoretical biology.  Theory and computational simulations can 

provide access to systems that can not be analyzed in the laboratory and insight into the 

microscopic nature of molecular association.  Such insights not only help us characterize 

biological systems but help us mimic and constructively manipulate them.  In fact most 

pharmaceuticals interfere with or use molecular recognition to alter the function of specific 

biomolecules.  Similarly, many biomimetic sensing approaches use recognition to signal the 

presence of specific molecules.  For these reasons, predicting the probability of molecular 

association, i.e. binding affinities, is essential in rational drug design; developing theoretical 

techniques for doing so has been an active area of medically-motivated research.   

Noncovalent association is traditionally thought to be driven by inter-solute Coulombic 

attraction, the burial of hydrophobic surfaces and concomitant release of bound water molecules.  

The process can, however, be intriguingly complex.  Examples of interesting binding interactions 

include negative electrostatic potential in anion binding sites, increased entropic freedom for 

proteins and water molecules upon binding, and a diverse array of specific solute-solvent 
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interactions (e.g. bridging water molecules in binding interfaces).[1]  Such complexity and 

diversity not only deserves but demands continued theoretical and experimental attention.  The 

first half of this thesis explores the prediction and characterization of noncovalent biomolecular 

association with end-point free energy and entropy calculations.  

Since this phenomenon is largely influenced by the surrounding aqueous environment, 

properly accounting for the influence of water is an additional focus.  In fact accounting for 

solvation is essential in almost all biophysical queries, so the need for accurate and efficient 

solvation models pervades computational biophysics.  The most rigorous models represent 

solvent molecules atomistically while more efficient models represent water implicitly by 

replacing individual molecules with a linearly polarizable continuum.  Improving the accuracy 

and fundamental theory of such implicit solvent models is the focus of the second half of this 

thesis.  

1.1 Predicting Biomolecular Recognition with Free Energy and Entropy 

Calculations 

The probability that any physical process will occur is logarithmically related the change 

in free energy associated with that process.  Experimentalists generally measure the probability of 

molecular association directly with the concentrations of bound and unbound molecules, i.e. 

equilibrium constants.  Theoreticians, on the other hand, predict association by calculating the 

change in free energy upon binding, i.e. a binding free energy.     The statistical mechanics that 

connects binding free energies (or equilibrium constants) to the microscopic interactions between 

the solutes (hereafter referred to as protein and ligand) and solvent molecules has been well 

known for some time.[2, 3]  The computational application of this theory, however, remains a 

constantly evolving challenge.[1, 4, 5]  Several formalisms have been developed, each with 

differing degrees of efficiency and accuracy.  The most rigorous methods use particle based 
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simulations to measure the change in free energy of either alchemical or positional 

transformations.  The alchemical transformations make use of a thermodynamic cycle in which 

the bound molecule (ligand A) is transformed into a new molecule (ligand B) in the bound 

complex and in the liquid environment.[6]  Free energy perturbation (FEP) or thermodynamic 

integration (TI) are used to calculate the free energies for these two simple processes, the 

difference of which is the binding free energy of ligand B relative to ligand A.  Because these 

simulations require adequate sampling of the transformation intermediates, they are most 

amenable to simple transformations between similar ligands.  They are ideal for the final stages of 

drug development when a limited number of similar drug candidates need to be accurately 

compared and each can be afforded several days of simulation time.[7] 

In order to calculate an absolute binding affinity, the ligand must be transformed 

completely out of existence (i.e. interaction) in the bound complex and aqueous environment.  

This process, often referred to as the ‘double decoupling’ method, has historically been limited to 

small ligands due to its computational expense.[8]  It was recently applied to a set of eight larger 

ligands on the Folding at Home distributed computing architecture.[9]  An alternative approach 

uses a positional transformation to pull the ligand out of the binding pocket.  Integrating the free 

energy along the pulling trajectory (i.e. the potential of mean force; PMF) yields the absolute 

binding affinity.  This approach has also seen limited application because of the high 

computational demand and challenge of sampling along the pulling reaction coordinate.  

However, a recent advance introduced by Woo and Roux[10] circumvents sampling limitations 

by restricting the ligand’s position, orientation, and conformation to that found in the complex.  

These so called ‘staged free energy calculations’ have been applied to a range of ligands and 

show great promise for attaining accurate absolute binding affinities.[11]  They will likely be 

challenging when the ligand is significantly buried such that the protein either has to be forced 

open and closed or passed through to reach the unbound form. 
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Despite continued development and progress, the particle-based approaches remain too 

computationally expensive for most large and/or complex systems and for high-throughput 

applications, such as the early stages of rational drug design where libraries of thousands of drug 

candidates have to be screened for potential leads.  For such applications, replacing portions of 

the system, such as the solvent, with continuum models decreases computational demands 

significantly.  Continuum solvation models represent water as a linearly polarizable medium.  

The most commonly used methods solve either the Poisson, the Poisson-Boltzmann[12, 13], or 

the generalized Born[14, 15] equations for electrostatic solvation effects and use a term 

proportional to the molecule’s solvent accessible surface area (SASA)[16, 17] for the 

nonelectrostatic effects.  These methods will be the focus of chapters 4-7.  Combining continuum 

models with perturbation approaches decreases simulation times as recently demonstrated by Lee 

et al. who used continuum PMF simulations to calculate the absolute binding affinity of same 

system that will be explored in chapter 2.[18]   

Another technique that reduces computational demand is to limit the sampling to only the 

two end points of the binding reaction, i.e. the bound and unbound states.  Taking the difference 

between the total free energies of the bound and unbound systems yields the absolute binding free 

energy.  The most popular end-point free energy method was co-developed by the late Peter 

Kollmann and David. A. Case in the late nineties.[19]  It quickly became known by its acronym, 

MM/PBSA, so named because it averages molecular mechanics (MM) enthalpies and Poisson-

Boltzmann surface area (PBSA) solvation free energies of conformations generated with an 

explicit solvent simulation for the total system free energy.   Although it is not included in the 

acronym, the entropic contribution to the binding free energy is usually approximated with 

methods such as normal mode analysis or quasi-harmonic analysis.  Continued development of 

MM/PBSA-like approaches have been highly sought after by the rational drug design community 

for several reasons.  First, they offer insight in to the microscopic phenomena and energetic 

trends that govern association.  These insights can be used to improve physically motivated 
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docking and scoring functions, which typically include energy approximations and empirical 

entropy corrections.  Second, they can be used to re-score drug candidates which have been 

selected by less accurate docking algorithms.  The “relaxed complex method”  uses the technique 

to incorporate protein flexibility into the drug design protocol.[20]  In the relaxed complex 

method an ensemble of protein conformations is generated with standard or accelerated molecular 

dynamics, a select number of ligands are then docked to these conformations, and finally the 

docked structures are rescored with MM/PBSA for a more accurate ranking of potential drugs. 

When this thesis work began, MM/PBSA had received over five years of widespread 

development and application.  It was still, however, lacking the theoretical foundation necessary 

to account for standard state conditions and to attain rigorous results.  This foundation is 

presented in chapter 2 with a derivation that connects end-point free energy approaches, such as 

MM/PBSA, to statistical thermodynamics.   This work highlights several shortcomings of 

previous MM/PBSA implementations, including: the failure to account for the association free 

energy, which results from one molecule’s loss of translational and rotational freedom from its 

standard state concentration; inaccurate and inconsistent conformational free energies, those 

which result from changes in both molecules’ intramolecular motions; and incompatibility 

between the explicit and implicit solvent models.  A simple protein-ligand system is used to 

present a novel method for calculating the association free energy directly from a molecular 

dynamics simulation, and to demonstrate the challenges of calculating the conformational free 

energy. 

The theoretical formalism presented in chapter 2 clearly defines the association free in 

terms of the ligand’s loss of translational and rotational freedom upon binding.  The entropic 

contribution to the association free energy has been well understood for over 40 years,[21] but 

calculating the bound molecule’s residual freedom has been a continually evolving challenge.  

Chapter 2 provides a brief history of efforts to meet this challenge and compares them to our 

presented method, which measures the bound ligand’s residual freedom directly from the 
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molecular dynamics simulation.  A protein-small molecule system is used to emphasize the 

importance of using the principal modes of translational and rotational motion and accounting for 

correlations between these modes.  In chapter 3, we extend this analysis from protein-small 

molecule association to the first application to date of protein-protein association.  Chapter 3 

additionally explores improvements on single-well and coupling approximations of the ligand’s 

translational and rotational freedom with histogram analysis. 

Decomposing a binding free energy into specific contributions such as conformational 

and association entropies is difficult to do rigorously.  The necessary assumptions that are 

discussed in chapters 2 and 3 introduce small errors into energy components.  Nevertheless, 

calculating energetic components yields insights into the physical driving forces behind 

association.  For example, comparing association entropies for water-protein, small molecule-

protein, and protein-protein binding reveals several interesting trends in the entropic penalty of 

association.  Small molecules with weak protein-ligand interactions have the most translational 

and rotational freedom in the bound form.  In fact, water molecules have been shown to actually 

gain entropy upon binding.[22]  Similarly, small ligands, such as butanone in chapter 2, have 

significant translational and rotational freedom and low association entropic penalties.  In 

contrast, large ligands, such as the protein-protein complex studied in chapter 3, have much less 

translational and rotational freedom and larger entropic penalties.  These findings point to a 

simple trend: larger ligands, stronger intermolecular interaction energies, and larger binding 

interfaces all increase the entropic penalty of association.  

1.2 Improving Poisson-based Implicit Solvent Models 

One of the main limitations of accuracy in end-point free energy methods is a lack of 

compatibility between the implicit and explicit energy models.  This compatibility is a necessary 

requirement of any method that energetically couples implicit and explicit solvent models 
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including continuum dynamics, pKa calculations, hybrid implicit-explicit solvation schemes, etc.  

It is particularly important in end-point free energy calculations since the solute-solute interaction 

energy and the solutes’ solvation energies are large and opposing numbers which largely cancel 

for a comparatively small total free energy.  Thus, relatively small errors in either MM 

electrostatic or PB solvation energies result in large free energy errors.  In order to minimize 

these errors the implicit solvent model can be empirically fit to explicit solvent quantities such as 

solvation free energies and forces.    

The dynamic and thermodynamic properties of a solvated solute are strongly influenced 

by microscopic solute-solvent interactions and the resulting microscopic structure and 

organization of the water that surrounds the solute.  Therefore predicting solvation free energies 

and forces accurately for a variety of solutes requires a formalism that accounts for solute-solvent 

interactions (electrostatic and nonelectrostatic) with sufficient detail.  Microscopic models (e.g. 

explicit solvent simulations) are successful in this regard because they treat these interactions 

explicitly.  Implicit solvent models offer a less physically accurate but more computationally 

efficient macroscopic approach, replacing individual molecular interactions with an implicit 

representation of water.   It has long been recognized that the lack of physical accuracy must be 

compensated by fitting empirical parameters to known quantities in an atom and/or system 

specific manner,[23] e.g. fitting Born radii to solvation free energies.[24, 25]    

The relationship between explicit and implicit solvent models is explored in chapters 4 

through 8.  Chapter 4 through 6 focus on the polar portion of implicit solvent models, specifically 

those which solve the Poisson or Poisson-Boltzmann equation for the electrostatic potential of a 

system as a function of the solute’s charge distribution and a spatially varying dielectric 

coefficient.  The resulting solvation energies and forces are particularly sensitive to the nature and 

location of the boundary which separates the low dielectric solute from the high dielectric 

solvent.   
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In chapter 4 the solute radii used to define this boundary are optimized with explicit 

solvent charging free energies.  Two dielectric boundary definitions are explored.  The first, and 

most commonly used, definition is an abrupt transition from low to high dielectric values at the 

molecular surface, as defined by Lee and Richards[26] or Connolly[27].  This surface is defined 

by the contact surface between a solvent probe and the solute atoms as the probe is rolled around 

the solute.  The second dielectric boundary, designed for stable and efficient continuum force 

calculations, defines a smooth dielectric transition at the solute surface with overlapping atom-

centered polynomial or Gaussian functions.[28, 29]  Changing the nature of the dielectric 

transition also changes its optimal location.  Therefore solute radii are optimized for either the 

molecular or the spline smoothed surface definitions in chapter 4.   

In the molecular surface definition, the spaces in between solute radii (herein called 

interstitial spaces) which are two small for the solvent probe to penetrate are included in the low 

dielectric solute.  In atom-centered definitions interstitial spaces are included in the high dielectric 

solvent region.  Although interstitial high dielectrics are not physically accurate, their role in 

continuum calculations has been not fully appreciated in recent literature.  Chapter 5 explores the 

magnitude and impact of interstitial high dielectric regions formed by the spline-smoothed 

surfaces.  The magnitude is shown to be quite large for a variety of protein systems and their 

presence is shown to introduce errors in solvation free energies and the free energy surfaces of 

nonbonded interactions.  

In chapter 6, a novel approach of implicit solvent optimization is presented in which 

explicit solvent atomic forces are used instead of molecular solvation free energies.  This proves 

to be much more efficient and robust as it provides atomic information on the performance of an 

implicit solvent model.  It can be applied to any system with explicit solvent parameters; thus it 

can be used to determine the optimal continuum parameters when experimental solvation energies 

are unavailable and explicit solvent charging free energies are computationally prohibitive.  This 

chapter continues to probe the limitations of atom-centered dielectric functions and shows that 
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errors are more significant in large, globular solutes.  Despite these limitations, spline smoothed 

surfaces show surprising accuracy for small, compact systems. 

The concept of polar and nonpolar coupling is introduced in chapter 6.  As previously 

mentioned canonical implicit solvent models divide the solvation free energy into polar and 

nonpolar contributions.  This division is rigorously based on a thermodynamic cycle in which the 

solute charges are turned off in vacuum, the neutral solute cavity is solvated, and the solute is 

recharged in the solvent environment.  The polar contribution is treated with electrostatic 

calculations as previously described.  The nonpolar contribution, due to hydrophobic and 

dispersion interactions, is commonly, though inadequately[30, 31], treated with a solvent 

accessible surface area (SASA) model.[16, 17, 32]  Both polar and nonpolar models depend 

critically on the location of the solvent-solute interface.  Similarly the location of the solvent-

solute interface can vary according to local polar and nonpolar solvent-solute potentials.  This 

suggests that polar and nonpolar solvation contributions are coupled and should be treated as 

coupled in implicit solvation formalisms.  In fact the strong coupling that exists between polar 

and nonpolar solvation contributions has been emphasized in many recent studies on everything 

from small amphiphiles to protein folding.[33, 34]  In chapters 7 and 8 a novel continuum 

formalism is presented which accounts for polar and nonpolar coupling by expressing the system 

free energy as a functional of the solute volume exclusion function.  Unlike existing implicit 

solvent approaches, the solvent accessible surface is an output of this theory.  Accounting for 

coupling is expected to be crucial for a complete characterization of biomolecular solvation.  The 

theory presented in chapters 7 and 8 is only limited by crude curvature and dielectric descriptions.  

Future efforts to improve these descriptions based on physical rational and further empirical 

corrections may lead to the first implicit solvent framework that can describe the solvation of 

diverse solutes without system-dependent-fit-parameters and that captures the sensitive balance of 

polar and nonpolar solvation contributions.  
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In summary, this dissertation explores the theory and methodology of end-point free 

energy and association entropy calculations for the prediction of noncovalent biomolecular 

association, and implicit solvation models for the representation of biomolecular solvation.  
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Chapter Two 

Revisiting Free Energy Calculations: A Theoretical Connection to 

MM/PBSA and Direct Calculation of the Association Free Energy 

ABSTRACT 

The prediction of absolute ligand-receptor binding affinities is essential in a wide range 

of biophysical queries, from the study of protein-protein interactions to structure based drug 

design. End-point free energy methods, such as the Molecular Mechanics Poisson Boltzmann 

Surface Area (MM/PBSA) model, have received much attention and widespread application in 

recent literature. These methods benefit from computational efficiency as only the initial and 

final states of the system are evaluated, yet there remains a need for strengthening their 

theoretical foundation. In this chapter a clear connection between statistical thermodynamics and 

end-point free energy models is presented. The importance of the association free energy, arising 

from one molecule’s loss of translational and rotational freedom from the standard state 

concentration, is addressed. A novel method for calculating this quantity directly from a 

molecular dynamics simulation is described.  The challenges of accounting for changes in the 

protein conformation and its fluctuations from separate simulations are discussed. A simple first 

order approximation of the configuration integral is presented to lay the ground work for future 

efforts.  This model has been applied to FKBP12, a small immunophilin that has been widely 

studied in the drug industry for its potential immunosuppressive and neuroregenerative effects.   
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2.1  Introduction 

The theoretical prediction of binding affinities is one of the most important problems in 

computational biochemistry. It complements experimental analysis and adds molecular insight to 

the macroscopic properties measured therein. It serves as a cornerstone in disease research and 

rational drug design where accurate scoring functions remain a challenge.  It is no wonder, then, 

that computational models aimed at the prediction of binding affinities have been highly sought 

after for over half a century and are the subject of frequent reviews [1, 2, 4, 5].  

The theory underlying binding affinities has been well described by many, yet the 

complexity and accuracy of its application has varied. The most rigorous methods involve 

alchemical or structural transformations such as Free Energy Perturbation (FEP) and 

Thermodynamic Integration (TI) [6, 35]. The accuracy of these methods relies on equilibrium 

sampling of the entire transformation path, from an initial to a final state. The computational 

demand of adequate sampling makes relative binding affinities between similar ligands the most 

amenable targets of FEP and TI. Relative binding affinities between diverse ligands and absolute 

binding affinities pose more of a challenge. 

End-point free energy models, wherein only the initial and final states of the system are 

evaluated, present a desirable alternative to perturbation simulations. They are less 

computationally expensive making them suitable for a greater variety of systems and problems. 

They are typically based on partitioning the free energy into a sum of enthalpic and entropic 

contributions [36-38].  Frameworks that use implicit solvent approximations reduce 

computational demands even further. Although all such models are founded in statistical 

mechanics, there is a need for strengthening the theoretical framework of many to account for 

standard state dependence and entropic considerations. Other implicit solvent, end-point models 

have thorough theoretical descriptions [39-41], yet their remains a need for further analyses 
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regarding which contributions to include, how to measure them, and which approximations are 

appropriate to make. 

This chapter focuses on providing a clear theoretical foundation for end-point free 

energy models. Two issues that have been inconsistently applied in previous analyses are 

highlighted; the association free energy, which results from one molecule’s loss of translational 

and rotational freedom from the standard state, and the conformational free energy due to 

changes in both molecules’ intramolecular motions. An implicit solvent approximation is used to 

evaluate the initial and final equilibrium ensembles generated during explicit solvent MD 

simulations. The association free energy is thoroughly discussed and measured from the 

simulation. Determining the conformational free energy represents the most challenging aspect 

of this work and of all such methods as it is tied to the evaluation of the internal configuration 

integral of the bound and free systems.  A first order approximation assumes that the changes in 

conformational freedom are minimal and that the energy landscape can be characterized from a 

sufficiently long MD simulation. This simplification serves as a necessary stepping stone for 

more advanced evaluations of the configuration integral.  

To illustrate this method, a small, fairly rigid protein-ligand system, FK506 binding 

protein (FKBP12) and the ligand 4-hydroxy-2-butanone, was chosen. FKBP12 is an 

immunophilin that, when bound by the immunosuppressant drug FK506, blocks early T-cell 

activation via calcineurin inhibition.  Smaller ligands that mimic FK506 as potential 

immunosuppressive drugs have been highly sought after.  In an attempt to characterize its 

binding properties, the crystal structure of FKBP12 bound by several small molecules including 

4-hydroxy-2-butanone (BUT) was determined [42]. With only six heavy atoms and four 

rotatable bonds, BUT was one of the smallest ligands to bind FKBP12 with a measured binding 

affinity, Ki, of 500 µM.  Despite the current method’s exclusion of the changes in 

conformational free energy, which is expected to be positive, the calculated change in free 

energy was only 10 kJ/mol lower than that measured in experiment.  The small magnitude of this 
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discrepancy is consistent with the low binding affinity of the ligand, which is unlikely to 

substantially perturb the protein’s conformation or fluctuations. 

First, the theoretical framework will be described.  Some of the foundation presented in 

the literature [2] will be reviewed for a complete description.  The simulation methods and 

numerical results will then be presented.  Evaluation of the association free energy will be 

compared to previously published methods and deviations from experimental results will be 

discussed.  Finally the method and its potential to contribute to future efforts will be 

summarized. 

2.2  Theory  

We are interested in calculating the standard change in free energy upon non-covalent 

molecular association.  Consider the following reaction: 

 A B AB+ ⇔  2.1 

where A represents the protein, B the ligand, and AB the protein-ligand complex. Each molecule 

can be described by a sum of translational, rotational and internal modes of freedom. Upon 

binding, the ligand’s external translational and rotational motions become internal motions of the 

complex. According to classical statistical mechanics, after the kinetic contributions of each 

species have cancelled [2], the standard change in free energy can be expressed as a ratio of 

configuration integrals: 

 

, ,
2

, ,
ln   

8
N AB N O

AB AB
N A N B

Z ZCG RT P V
Z Zπ

° ⎛ ⎞°⎛ ⎞Δ = − + ° Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  2.2 

where R is the gas constant, T is the absolute temperature, C° is the standard state concentration 

(typically 1 M or 1 molecule/1660 Å3), N is the number of solvent molecules, and ABP V° Δ  is 

the pressure-volume work associated with changing the system size from the replacement of two 

free molecules by one bound species. The last term is generally considered to be negligibly small 
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in water at 1 atm. It is important to note that all mass dependent terms have cancelled in equation 

2.2.  This is a direct result of the equal kinetic contribution to the partition function of the bound 

and the free species. The configuration integral of the protein, A, in solution is: 

2.3 

where ( , )A SU r r  is the potential energy as a function of all solute coordinates, rA , and solvent 

coordinates, rS , and β is the reciprocal of the product of the Boltzmann constant and 

temperature. A similar equation gives ,N BZ  for the ligand. The configuration integral of the 

solvent alone is:  

 ( )
,  Z e S

N O
U r

Sdrβ−= ∫  2.4 

The ratio of configuration integrals in equation 2.2 can be simplified with an implicit solvent 

approximation: 

2.5 

 

where, 

2.6 

represents the solvation free energy of species A, and the quantity ( , )A SU r rΔ is 

( , ) ( ) ( )A S A SU r r U r U r− − . Analogous equations hold for the complex and ligand.   The 

complex, however, contains six degrees of freedom that represent the residual translational and 

rotational motions of the bound ligand.  In order to account for these modes of motion, it is 

helpful to introduce a set of coordinates, 1 2 3 1 2 3( , , , , , , )B x x xδ ξ ξ ξ≡ , which define the bound 

ligand’s position and orientation with respect to the protein.  The complete complex 

configuration integral is:  

2.7 [ ( , , ) ( , , )]e   A B B A B B
AB

U r r W r r
A B BZ dr dr dβ δ δ δ′ ′− +

′= ∫
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where rB' represents the bound ligand’s remaining internal coordinates and Bδ  spans 

conformations where A and B form a complex.  As will be seen below, the displacements of 

Bδ in the dynamics of the complex are very small.  It is therefore reasonable to assume that the 

higher order coupling terms in the potential energy function due to the effect of the ligand’s 

translational/rotational motions on either species’ internal vibrational motions are very small.  

Thus, the potential and solvation energies in equation 2.7 are separable: 

2.8 

If one defines a potential of mean force [43] for a particular ligand position and orientation, Bδ : 

 

2.9 

 

Equation 2.9 shows that the ligand’s potential and solvation energies are equal to within a 

constant of the potential of mean force. 

A similar assumption about the correlation between translational and rotational motions, 

permits further decomposition of 1 2 3 1 2 3( ) ( , , ) ( , , )BU U x x x Uδ ξ ξ ξ≅ +  and 

1 2 3 1 2 3( ) ( , , ) ( , , )BW W x x x Wδ ξ ξ ξ≅ + .  These separate contributions can be directly 

measured from a MD simulation as described in the methods section.  Substituting equations 2.5 

and 2.9 into 2.2 we have: 

 

2.10 

where ( ) ( )1 2 3 1 2 3[ , , , , ]
1 2 3e , ,U x x x W x x xtrans

Bz dx dx dxβ− +
′ = ∫ , ( ) ( )1 2 3 1 2 3[ , , , , ]
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Bz d d dβ ξ ξ ξ ξ ξ ξ ξ ξ ξ− +
′ = ∫  and 

( )e A BU r r
AB A BZ dr drβ ′−

′ ′= ∫ .  Equation 2.10 holds the most challenging aspect of this work, the 

evaluation of many-dimensional configuration integrals.  As a first order approximation, one can 
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assume that the energetic landscape of each species has an energy and a volume that can be 

determined from a sufficiently long MD simulation:   

 

2.11 

 ( ) ( )A A AE U r W r≡ +  represents the average molecular mechanics plus solvation energy 

over the simulation and int
Az  is the internal configuration integral. Equivalent equations hold for 

the ligand, BZ , and the complex ABZ ′ . If one assumes that the volumes of configuration space 

occupied by the ligand and protein change negligibly upon association, that is, int int int
A B ABz z z ′=  , 

then all internal configuration integrals cancel in the ratio, leaving: 

 

2.12 

Alternatively, the volume of configuration space occupied by each species can be approximated 

and the changes in conformational entropy can be included, as described in the discussion 

section. 

2.3  Methods 

2.3.1  Molecular Dynamics Protocol 

The coordinates of the ligand, the protein and the complex were taken from the 1.85 Å 

resolution complex crystal structure in the Brookhaven Protein Data Bank (PDB code 1D7J) 

[42].  The free ligand was optimized with Gaussian 98 [44] at the Hartree-Fock level with the 6-

31G* basis set.  It was assigned RESP charges as implemented in the Antechamber module from 

AMBER 7.0 [45]. The complex was prepared in three steps.  First, the program GRID [46] was 

used to add 142 buried and first shell water molecules to 126 crystal waters already present.  

WHAT IF [47] was then used to place hydrogens and to assign favorable protonation states of 

( )2 ln
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histidine residues, as well as the favorable orientations of glutamine and asparagine sidechains.  

Finally, the system was placed in a 80.2 Å  x 78.9 Å x 78.9 Å TIP3 water box with the Leap 

module from AMBER 7.0 [48]. One of the bulk water molecules was replaced with a chloride 

ion to neutralize the system.   

Simulations of the complex, protein, and ligand were run under constant N,P,T 

conditions with AMBER 7.0. Periodic boundary conditions, particle-mesh Ewald treatment of 

the electrostatics, and SHAKE-enabled 2 fs time-steps were employed.  The protein and ligand 

heavy atoms were restrained during a 500 step minimization.  Restraints were maintained 

through a 40 ps gradual warming from 0 to 300 K under constant volume and temperature 

conditions (N,V,T).  Ten picoseconds of constant pressure and temperature (N,P,T) allowed the 

system to reach the proper density.  A minor modification of the Sander module, allowed a linear 

release of the heavy atom restraints over 30 ps. Unrestrained N,P,T completed the equilibration 

phase, and three nanoseconds of production phase was collected.  

2.3.2  Energetic Analysis 

The binding affinity was approximated from both a single simulation, in which the 

protein and ligand structures were taken from the complex simulation, and from separate 

simulations.  Snapshots taken every 2 ps from the 3 ns of production phase simulation were 

evaluated for a total of 1500 structures.  The molecular mechanics energy, MMU , was evaluated 

in a single MD step in the Sander module using an infinite cutoff for non-bonded interactions.  

The solvation free energy can be decomposed into electrostatic and non-electrostatic 

components, npeel
PBSA PB SAW W W= + . The electrostatic contribution to the solvation free energy, 

eel
PBW , was calculated with the Adaptive Poisson Boltzmann Solver (APBS)[49].  The interior of 

the protein was given a dielectric constant of one, in agreement with simulation conditions. The 

reference system had a solvent dielectric of one and 0 M salt concentration.  The solvated system 
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had a solvent dielectric of 78.4 and 100 mM salt concentration. The electrostatic energy of the 

reference system was subtracted from that of the solvated system to yield the solvation energy. 

Harmonic smoothing was used to define the protein boundary.  Finally, the nonpolar 

contribution to the solvation free energy, np
SAW , was approximated with the commonly used 

solvent accessible surface area (SASA) model, (SASA)np
SAW γ βΔ = + , where γ  = 0.00542 

kcal/mol Å2 and β = 0.92 kcal/mol [50].  The SASA was estimated with a 1.4 Å solvent-probe 

radius as implemented in Sander.    

2.3.3  Ligand Translational Freedom  

The bound ligand’s translational configuration integral, trans
Bz ′ , can be conceptually 

linked to the volume of space that its center of mass occupies through the simulation. As 

previously mentioned, Bδ ′  in equation 2.7 spans conformations where A and B form a complex. 

Thus, this analysis is only valid for simulations where the ligand remains bound to the protein.  

The effective volume was measured with the quasi-harmonic model, which relies on the 

assumption that the translational motion can be described by a multivariate Gaussian probability 

distribution.  Superimposition of every snapshot according to protein C-alpha atoms defined a 

static protein reference system and an average ligand structure. Centered at the origin, the 

ligand’s center of mass covariance matrix was then evaluated, accounting for the possible 

coupling of motions along different axes. The resulting eigenvalues, iλ , describe the 

variance 2
ixΔ  along each principal axis by 2

i ixλ = Δ . The equipartition theorem allows one to 

relate the variance to the force constant of the classical harmonic oscillator as the average 

potential energy for one dimension is ( ) ( )2( ) ( ) 1/ 2 1/ 2 BU x W x x k Tκ+ = Δ ≅ , such that 

2/Bk T xκ ≅ Δ .  Thus, trans
Bz ′  can be calculated as: 
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( ) ( )

2 2 2
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1 2 32
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π

− Δ − Δ − Δ
′ =

= Δ Δ Δ

∫ ∫ ∫
2.13 

2.3.4  Ligand Rotational Freedom  

The ligand’s rotational freedom, rot
Bz ′ , was accounted for in a similar manner.  

Quaternions, an elegant alternative to Euler angles, were used to represent the ligand’s rotational 

motion.  Quaternions are hypercomplex numbers that can be represented as a linear combination 

of a scalar ( 1a ) and a vector ( ],,[ 432 aaan ≡K ) : 

2.14 

The rotation of point p through angleφ  about a normalized axis ],,[ zyx nnnn KKKK ≡ can be 

computed with the quaternion q and its complex conjugate q*. 

 

2.15 

The rotational transformation of any point about three axes is the product of three 

quaternion.  Thus, the transformation of each ligand snapshot, within the protein reference 

binding pocket, was described by the product of three quaternion, each defining the rotation 

about one axis.  When the angles of rotation are small the cross terms of this product will be 

negligibly small. 

 

2.16 

This small angle approximation reduces the product of three quaternion to a single quaternion 

which is sinusoid ally related to three angles of rotation. The covariance matrix was evaluated to 

account for coupling between axes. The resulting eigenvalues were related to a spring force 

constant assuming a Gaussian distribution and rot
Bz ′  was evaluated according to equation 2.13, 

1 2 3 4 1( , )q a a i a j a k a n= + + + =
G

2 2 2 2
*

cos sin sin sinx y zq n i n j n k

p qpq
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replacing ( )1 2 3, ,x x xΔ Δ Δ  with ( )321 ,, φφφ ΔΔΔ .  Although the present analysis assumes that the 

bound ligand’s translational and rotational motions are dominated by a single minimum energy 

well, it is easily extendible to multiple minima. 

2.4  Results and Discussion 

2.4.1  Energetic Convergence 

Each simulation reached a satisfactory equilibrium after 100 ps as indicated by the total 

system energy. The protein’s energetic contributions as a function of time in the simulation of 

the complex are shown in Figure 2.1.  Similar plots were obtained for the complex and ligand 

from the complex simulation as well as the protein and ligand from the separate simulations.  

The variation in the solvation energy and the molecular mechanics energy (Figure 2.1a) are anti-

correlated, yielding a fairly stable total energy (Figure 2.1b).  This is further supported by the 

average energetic contributions and standard deviations of the complex simulation evaluations, 

shown in Table 2.1.  The standard deviations of the molecular mechanics and solvation energies 

are consistently four to five percent while that of the total energy is less than one percent. 

Table 2.1: Average Complex, Protein, and Ligand Energies (kJ/mol)* 

 
* average of 1500 snapshots from 100 – 3100 ps, standard deviations in parentheses.  
# molecular mechanical energy,  
§ electrostatic solvation energy, ¶ non-polar solvation energy,   
||  MM/PBSA energy: <GMM/PBSA > =  <UMM> + <WPB> + <WSA> 
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Figure 2.1:  Running Protein Energies.  (a) The protein’s solvation energy, light grey, and 
molecular mechanics energy, dark grey, across 3 ns of simulation. The darker solid and dashed 
lines represent a 100 ps running averages.  (b) The protein’s total energy , ETOT = UMM + WPBSA, 
and running average. 
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2.4.2  Relaxation Energies and Protein Flexibility 

The ideal mimicry of an in vitro binding event would be to run three separate 

simulations and calculate the energetic components of each. This would include the effects of the 

conformational changes upon binding, e.g. protein flexibility.  The relaxation energy would be 

captured in the molecular mechanics and solvation energy, and the conformational free energy 

would be captured by a complete evaluation of the configuration integral. This evaluation relies 

on sufficient sampling of configuration space, which remains a major challenge on the timescale 

of MD simulations. 

In an approximate single simulation evaluation, the protein and ligand structures are 

taken from the complex simulation. This, in theory, assumes that the structures and 

conformational freedom of the protein and ligand change negligibly upon binding. In practice, 

taking all structures from a single simulation cancels the noise that would result from sampling 

inconsistencies and the error inherent in force-field and implicit solvation energies. Although the 

analysis based on simulations of separate species (results not shown) generated similar trends to 

the single simulation analysis, it was clearly dependent on simulation length and dominated by 

noise. A striking representation of this phenomenon is shown in Figure 2.2, where the 

differences in energetic contributions are given as a function of time for both the single and the 

separate simulations. It should be noted that the corresponding structures from the free and 

bound simulations can not be equated for any given timeframe.  Thus plot A is a non-physical 

measurement.  Given the commutative nature of averages, however, the total energies, shown as 

the smoothed dark line, are the quantitative results of the molecular mechanic and solvation free 

energies. The same axis scales are used to emphasize the noise of the separate simulations 

compared to the single simulation. 
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Figure 2.2:  Running MM Binding Energy. The change in free energy (EAB – EA – EB ) of each 
snapshot for (a) the separate and (b) the single simulation evaluations.  The lightest shade is the 
molecular mechanics energy, the middle is the solvation energy, the darkest is the total, and the 
smooth black line is a 100 frame running average of the total energy. 

 

While it was clear that the protein sampling was insufficient, the small ligand sampling 

was extensive. It was possible, therefore, to capture the ligand’s relaxation energy, LREΔ , which 

is the difference between the total energy of the ligand from the complex simulation and that 

from the free simulation. The final calculated binding free energy and its components, including 

the ligand relaxation energy of 1.7 kJ/mol, are shown in Table 2.2.  
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 Table 2.2:  Contributions to the free energy ( kJ/mol )   

 
 * MM/PBSA energy, # association entropy,  §ligand relaxation energy,   
 ¶ total calculated free energy,  || experimental free energy 

 

2.4.3  Association Free Energy 

At 1 M standard concentration, a free molecule has 1660 Å3 (C° = 1/1660 Å3 in equation 

2.12) of translational freedom and 8π2 of rotational freedom. Upon association, one solute 

molecule loses translational and rotational freedom while released solvent molecules gain 

translational and rotational of freedom.  As previously described, the solvent’s enthalpic and 

entropic contributions are accounted for in the implicit approximation of the solvation free 

energy. The solute’s contribution, which is presently described as the association free energy, 

was directly measured from the simulation (see Methods).  To provide some context for this 

evaluation, a brief, and therefore incomplete, historical account of comparable theoretical studies 

on the association free energy is helpful. 

The free energy change, and particularly the entropic cost, due to one molecule’s loss of 

translational and rotational freedom has been well recognized for over 40 years [51]. These 

degrees of freedom do not disappear but are transformed into internal motions within the 

complex.  The range of these motions determines the magnitude of the entropic cost.  More 

tightly bound ligands will have a higher entropic cost than loosely bound ligands. Quantifying 

the ligand’s residual translational and rotational motions, however, is not an easy task.  Many 

authors have estimated them with cubic box translational and isotropic rotational 

approximations, such that T∆Strans = RT ln(∆x3/1660Å3) and  T∆Srot = RT ln(∆θ3/8π2) .  

Finkelstein and Janin [52] assumed that the atomic motions in crystals were 

representative of any bound ligand’s motion.  Using Debye-Waller temperature factors, they 
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estimated a standard deviation of 0.25 Å along three principal axes, resulting in a translational 

entropic cost of -15 kcal/mol. Since the magnitudes of rotational oscillations in crystals were 

unknown at the time, they assumed a similar angular displacement from 2 /x dδθ δ= , where d is 

the distance to the ligand interface.  This resulted in a rotational entropic cost of -7.2 kcal/mol 

and a total association entropy of -22.2 kcal/mol.  

Tidor and Karplus [53] took a different approach.  Using normal mode analysis (NMA) 

to study insulin dimerization, they found the internal vibrational modes of the complex 

increased, contributing -7.2 kcal/mol to the binding free energy. Although the six introduced 

modes of motion are included in this estimate, it is impossible to separate them to account for the 

range of the bound ligand’s motion or the exact association entropy.  Assuming no change in 

internal vibrational modes and estimating the free energy change due to complete loss of 

rotational and translational motion from gas phase (T∆S = -27.3 kcal/mol), they reported an 

association entropy around -20 kcal/mol. 

Hermans and Wang [8] presented the first complete evaluation of an absolute binding 

free energy with FEP.  In this study they evaluated the effective volume of the bound ligand in 

two independent ways.  First, they applied translational restraints to the ligand in the standard 

state gas phase. Releasing the restraints in the protein environment and taking the difference in 

free energies for the two processes, they measured the association entropy (-7 kcal/mol).  

Second, they estimated the ligand’s positional and orientational root mean square displacement 

(RMSD) directly from the simulation. It should be emphasized that these two methods of 

obtaining the effective volume, using RMSD’s versus the energetically measured volume, are 

very different. The point, in this case, is a methodological one as the two are similarly small.  

The calculated RMSD volume, 0.184 Å3, and the energetically measured volume, 0.4 Å3, result 

in -5.0 kcal/mol and -5.4 kcal/mol entropic contributions respectively. 

Lazaridis et al. [40] evaluated the ranges of deviation in the ligand’s center of mass and 

orientation, described with Euler angles, from a dynamics simulation.  They weighted these 
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ranges according to their probability distributions.  It is not clear whether they evaluated these 

deviations along the principal axes or along an arbitrary reference frame.  Our results indicated 

that similar range assumptions resulted in significantly larger translational and rotational motions 

that were sensitive to simulation length. This could explain the smaller translational and 

rotational entropic contributions measured in this study. 

Luo and Sharp [39] used quasi-harmonic analysis of short simulations to account for the 

ligand’s translational, rotational, as well as internal vibrational motions. They assumed that the 

rotational motion was isotropic and divided by a factor of 33/2 to yield; T∆Srot = RT ln(σ 3 /(6π)1/2).  

They measured association entropies between -1.5 kcal/mol and -7.5 kcal/mol for four different 

ligands. 

As described in the methods section, this chapter presents a similar evaluation of the 

association free energy using the quasi-harmonic model.  The covariance matrix accounts for 

coupled motions in different dimensions and defines the principal components, capturing a more 

accurate variation than an arbitrary reference frame. Quaternions were found to be a desirable 

alternative description of angular motions, eliminating the cumbersome conversion to Euler 

angles. They smoothly converted into a covariance matrix and produced three different 

eigenvalues.  This finding discourages the assumption that rotational motion is isotropic. As 

summarized in Table 2.3, the ligand experienced 1.72 Å3 of translational motion and 6.57 

radians of rotational motion.  This correlates to a free energy change of 17.1 kJ/mol and 6.2 

kJ/mol, respectively.  Thus, the total association free energy was 23.3 kJ/mol. If one assumes 

that the translational and orientational motions of the ligand within the complex can in fact be 

described as classical harmonic oscillator displacements, then this total free energy of 

association can be separated into enthalpic and entropic components.  The six configurational 

degrees of freedom would contribute an equipartition enthalpy of 3RT ≈ 7.5 kJ/mol. The 

remainder, about 15.8 kJ/mol, then represents the entropic cost of limiting the ranges of 

translational and rotational motion. 
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Table 2.3: Contributions to the association free energy.  

 
*All energies reported in kJ/mol,  
# Translational configuration integral (Å3),  
§ Rotational configuration integral, ¶ association free energy. 

 

2.4.4  Conformational Free Energy 

Detailed evaluations of the configuration integrals in equation 2.10 would inherently 

capture the exact changes in conformational free energy upon binding. This remains, to date, 

computationally infeasible. Changes in intramolecular conformational free energy have 

traditionally been approximated with quasi-harmonic analysis, normal mode analysis, or side-

chain rotational analysis. Yet the validity and accuracy of these methods remain questionable.  In 

the current study, quasi-harmonic analysis was extensively explored (data not shown).  Although 

the results followed the expected trends, making the calculated free energy of binding less 

favorable, they were clearly sensitive to simulation length.   Similar to the separate simulation 

analysis, this lack of convergence indicates inadequate sampling.  This is likely compounded by 

a large noise to signal ratio due to the weak binding nature of this ligand. A system with stronger 

interactions may prove more amenable to analysis.  Given the challenges of a weak binding 

system and the excluded protein relaxation energy and configurational free energy, both of 

which are expected to be slightly positive, it is encouraging to find the calculated binding free 

energy only 10 kJ/mol lower than that measured in experiment.   

2.5  Conclusions 

Although the theory of binding affinity calculations has been discussed by many 

previous authors, it remains an ongoing topic of research. The implementation of end-point free 

energy models has improved with increasing computational resources and thoughtful design.  A 
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connection between theory and implementation was the focus of this paper.  This chapter has 

discussed the statistical mechanical basis for the change in free energy upon binding and its link 

to obtaining this quantity from a molecular dynamics trajectory.  The importance of the standard 

state dependence has been emphasized.  A novel method for evaluating a bound ligand’s residual 

translational and rotational motion from an MD simulation has been presented and these 

quantities have been used to calculate the association free energy. Finally, an attempt has been 

made to establish the proper groundwork for end point free energy calculations such that future 

efforts can focus on the inclusion of protein relaxation energies and changes in conformational 

free energy. 

 

This chapter is a reprint in full of material that appeared in. Revisiting free energy calculations: 

A theoretical connection to MM/PBSA and direct calculation of the association free energy 

Jessica M.J. Swanson, Richard H. Henchman, and J. Andrew McCammon. Biophysical Journal, 

86 67-74, January 2004. I was the primary researcher and author of this work. 

 

 

http://www.biophysj.org/cgi/content/full/86/1/67
http://www.biophysj.org/cgi/content/full/86/1/67
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Chapter Three 

The Entropic Cost of Protein-Protein Association: A Case Study on 

Acetylcholinesterase Binding to Fasciculin-2 

ABSTRACT 

Protein-protein association is accompanied by a large reduction in translational and 

rotational (external) entropy.  In this chapter a 15 ns MD simulation of acetylcholinesterase 

(AChE) in complex with fasciculin 2 (Fas2) is used to estimate the loss in external entropy 

using quasiharmonic analysis and histogram-based approximations of the probability 

distribution function.  The external entropy loss of AChE-Fas2 binding, about 30 cal/mol K, is 

found to be significantly larger than most previously characterized protein-ligand systems.  

However, it is less than the entropy loss estimated by Finkelstein and Janin (1989), which was 

based on atomic motions in crystals. 

 

3.1  Introduction 

Entropic changes upon noncovalent binding are difficult to estimate because extensive 

phase space sampling is required [54].  For example, to calculate the external (translational and 

rotational) entropy, the range of residual motion in the complex must be known. Finkelstein and 

Janin [55] were the first to estimate residual motion; using the average fluctuation of crystal 

atoms they estimated an entropy loss of 50 cal/mol K.  Many studies since have calculated the 

external entropy of protein-ligand systems [39, 56, 57], but none to date have targeted protein-
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protein association. In this chapter, the external entropy loss is estimated using MD sampling 

and integrating over different forms of the probability distribution function (PDF). 

3.2  Methods 

This analysis is applied to a 15 ns MD trajectory of mouse acetylcholinesterase (AChE) 

in complex with fasciculin-2 (Fas2) [58, 59].  AChE, which catalyzes the hydrolysis of the 

neurotransmitter acetylcholine in cholinergic synapses, is inhibited by the snake toxin Fas2, a 

high affinity binder with a slow dissociation rate. The initial external entropy for AChE-Fas2 is 

given by the Sackur-Tetrode equation and a rotational entropy term.[3]  For the final state, the 

entropy of restricted modes is estimated using the Gibbs entropy for translational and rotational 

modes.  Assuming no change in momenta and moments of inertia upon binding, the entropic 

change is, 

 
2ln ( ) ln ( )

8ext ext ext
CS R R p q p q dq
π
°⎛ ⎞Δ = −⎜ ⎟

⎝ ⎠ ∫
, 3.1

 

where C° is standard concentration (1 molecule/1660 Å3) and ( )extp q  is the external mode 

PDF. 

Molecular dynamics simulations of the AChE-Fas2 complex have been previously 

described [58, 59].  The proteins are assumed to be bound over the course of the simulation.  

After 1.1 ns of equilibration, snapshots from every 10 ps of a 14.9 ns trajectory were 

superimposed according to the C-α atoms of an alignment molecule, either AChE or Fas2, 

allowing a reference structure to be defined by their average.  Translational coordinates were 

defined by the center of mass of the other (hereafter referred to as the test) molecule.  

Quaternions were used for least squares alignment of the test molecule with respect to the 

reference structure, and were converted to Euler angles through the small angle approximation 
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[57].  Principal components analysis was performed by diagonalizing the zero-mean covariance 

matrices for the rotational and translational motions.  The calculations were performed using 

either two 3x3 or a single 6x6 covariance matrix.  The eigenvalues iλ  are equivalent to the 

variances 2
iσ  in each principal axis. 

In quasiharmonic (QH) analysis [60], the molecule is assumed to have a Gaussian 

distribution, leading to a Gibbs entropy of 22ln ieR σπ−   for each dimension.  The PDF was 

also estimated by direct histogram analysis of the simulation.  After projecting the coordinates 

into principal component space, histograms were constructed with 70 bins in each dimension, 

allowing )(qpext  to be calculated by normalizing the histogram and numerically integrating the 

configurational integral using the composite Simpson's rule.  In Gaussian fit methods, a single 

Gaussian (sGF) or the sum of two Gaussians (dGF) was fitted to the histogram using non-linear 

least-squares regression.  The configuration integrals were numerically evaluated by adaptive 

Lobatto quadrature over three standard deviations from the extrema.  To validate the integration 

procedure, it was tested on the sGF and found to match the analytical result. 

3.3  Results 

In the AChE-Fas2 simulation, most of the external coordinate histograms are singly 

peaked, except for the doubly peaked most important components (Figure 3.1).  Thus, the dGF 

PDF more closely follows the simulation histogram than other PDFs.  The histogram shape is 

due to sampling of several local minima over time.  The similarity between dGF and direct 

histogram entropies is advantageous in the limit of extensive ensemble sampling.  However, in 

this limit, the value of the harmonic oscillator assumption is debatable.  A multiple Gaussian fit 

may be most applicable in cases where multiple nearby energy wells are sparsely sampled. 
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When there are multiple energy wells, the accuracy of QH analysis is questionable [61].  

If the wells are distant from one another, assuming a normal distribution will overestimate the 

entropy.  To illustrate this principle, the entropy of a double-well distribution was compared to 

the QH value (Figure 3.2).  As separation is increased, the double well entropy stabilizes while 

the QH entropy continues to increase. 

 

 

 

 

 
Figure 3.1: Probability Distributions of Translational and Rotational Degrees of Freedom with 
AChE (top) and Fas2 (bottom) as alignment molecules.  Black dots signify the histogram-
derived probabilities; the dashed blue line is the QH distribution; the green line is sGF; the red 
line is dGF.  Translation units are Å and rotational units are radians. 
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Figure 3.2: QH (green) and Gibbs (blue) entropies as a function of well separation.  The 
double-well distribution was generated using the sum of two equally weighted Gaussians and 
varying the distance between peaks. 

 

Calculated entropies are qualitatively similar for every technique (Table 3.1). Entropy 

losses are slightly lower, by less than 1 cal/mol K, when a single Gaussian is used, in agreement 

Figure 3.2 calculations.  If Fas2 is used as the alignment molecule, the rotational entropy of the 

complex is estimated to be about 2 cal/mol K higher.  This may be due to difficulty of 

accurately aligning to a smaller reference molecule, leading to artefactual phase space 

excursions.  One way to remove this artefact is to treat the six external modes all together. 

 

Table 3.1: External Entropy Changes (cal/mol K) with AChE as alignment molecules.  
Decoupled entropies denote values obtained from a 6x6 covariance matrix.  Error values 
for AChE meassurements, enclosed in parentheses, are the standard deviation of 500 
entropies calculations from 500 randomly selected snapshots. 

 
 

The degree of coupling between translational and rotational modes is given by 

( )coupling combined trans rotS S S S= − + .  Entropic analysis was performed for a 6x6 covariance 

matrix encompassing all external modes.  Because generating this matrix combines angular and 
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Cartesian coordinates, the eigenvectors are extremely sensitive the units used in the equation.  

Therefore, dimensionless units of length 
* /(x x C 1/3= °)  and angle 

* 1/3/(8 )l l π=  were used to 

generate a the matrix and histograms (Fig 5).  In the QH method, when either AChE or Fas2 

were used as the alignment molecule, the entropy change estimate is -31.1 cal/mol K.  The 

similarity of external entropy values evinces the successful decoupling of translational and 

rotational entropy terms.  The coupling terms for AChE and Fas2 alignment molecules are 2.4 

and 5.0 cal/mol K, respectively.  Retrospectively, it is clear that considering the translational 

and rotational degrees of freedom separately led to artefactual motions in rotational phase space. 
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Figure 3.3: Probability Distributions of External Degrees of Freedom, Fas2 as alignment 
molecule.  Black dots signify the histogram-derived probabilities; the dashed blue line is the QH 
distribution; the green line is sGF; the red line is dGF. 

 

 

3.4  Conclusions 

Molecular dynamics simulations provide evidence for enhanced conformational 

fluctuations of AChE-Fas2 in complex in comparison to apo form [59].  These fluctuations may 

lead to increased internal entropy to compensate for the external entropy loss upon binding.  

The external entropy loss upon protein-protein complexation is of greater magnitude than for 

protein-water binding (0 to 7 cal/mol K) [62] and protein-small molecule systems [39, 56, 57].  

For example, in chapter 2 the association of FKBP and 4-hydroxy-2-butanone leads to 
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translational and rotational entropy changes of 10.6 and 2.0 cal/mol K, respectively. With 

protein-protein complexation, the larger interaction surface leads to a more substantial reduction 

of the external entropy, particularly for the rotational degrees of freedom.  However, the entropy 

loss estimated is less than expected from analysis of atomic motions in crystals [55], even for 

the tight binding AChE-Fas2 complex.  This is a reasonable result reflecting the enhanced 

fluctuations of proteins in solution. 

 

This chapter is a reprint in full of material that appeared in The Entropic Cost of Protein-Protein 

Association: A Case Study on Acetylcholinesterase Binding to Fasciculin-2, David D.L. Minh, 

J.M. Bui, C.E. Chang, T. Jain, J.M.J. Swanson, J.A. McCammon, Biophys. J. 89, L25-L27 

(2005).  I was a secondary researcher and author of this work. 
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Chapter Four 

Implicit Solvation Free Energies: Optimized Radii for Poisson-

Boltzmann Calculations with the AMBER Force Field  

ABSTRACT 

Implicit solvent models are a standard tool for assessing the electrostatics of biomolecular 

systems.  The accuracy of quantitative predictions, such as pKa values, transfer free energies, 

binding energies, and solvation forces, is strongly dependent on one’s choice of continuum 

parameters: the solute charges, dielectric coefficient, and radii, which define the dielectric 

boundary.  To ensure quantitative accuracy, these parameters can be benchmarked against 

explicit solvent simulations.  In this chaptert two sets of optimized radii are presented to define 

either abrupt or cubic-spline smoothed dielectric boundaries in Poisson-Boltzmann calculations 

of protein systems with AMBER (parm99) charges.  Spline smoothing stabilizes the 

electrostatic potential at the molecular surface, allowing for continuum force calculations.  Most 

implementations, however, require significantly different radii than the abrupt boundary 

surfaces.  The optimal continuum radii are initially approximated from the solvent radial charge 

distribution surrounding each atom type.  A genetic algorithm is then used to fine-tune the 

starting values to reproduce charging free energies measured from explicit solvent simulations.  

The optimized radii are tested on four protein-like polypeptides.  The results show increased 

accuracy of molecular solvation energies and atomic forces relative to commonly used 

continuum parameter sets.  These radii are suitable for Poisson-Boltzmann calculations with the 
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AMBER force field and offer energetic congruence to any model that combines molecular 

mechanics and Poisson-Boltzmann solvation energies. 

4.1  Introduction 

Continuum solvation models are a useful link between the microscopic and 

macroscopic realms of theoretical biochemistry, and are widely used to evaluate the 

electrostatics of biomolecular systems. One of the most common models solves the Poisson 

Equation (PE) [63] or the Poisson-Boltzmann Equation (PBE)[64, 65] equation as a function of 

the solute’s charge density, a spatially dependent dielectric coefficient, and, in the case of the 

PBE, ion concentration. The resulting electrostatic potential can be used, for example, to predict 

electrostatic complementarity of molecular surfaces, to estimate electrostatic binding and 

transfer free energies, to approximate pKa values, and to supply electrostatic forces for use in 

molecular dynamics.   

The accuracy of continuum models is dependent on the parameters that are used to 

define the solute charges, the solvent and solute dielectric coefficients, and the atomic radii 

which define the dielectric boundary.  It has been shown that the average solvent charge density 

in the continuum model is a sharply peaked function in the region of dielectric 

discontinuity.[23]  The solvent charge density gives rise to the solvent reaction field.  Thus, 

quantitative results are especially sensitive to the location of the solvent-solute dielectric 

boundary, i.e., the molecular surface.  To appreciate where the dielectric boundary should be, it 

is helpful to relate its macroscopic and microscopic descriptions.  Early studies comparing 

atomistic simulations of aqueous solutions of monatomic ions to the Born model were helpful in 

elucidating this connection.[25, 66, 67]  These studies revealed significant differences in the 

solvent structure surrounding anions and cations with the same ionic radius but different 
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solvation energies.  The Born model correctly predicts disparate anionic and cationic solvation 

energies if, and only if, the radii used to define the continuum dielectric boundary correspond 

with the first peak in the microscopic solvent density.  Thus, the optimal Born radii are not the 

ionic radii, a function of the ion alone, but those that trace out solvent excluded cavities, which 

are a function of both the ion and the surrounding solvent structure.   

Optimal biomolecular radii could, presumably, be measured in a similar manner.  

Biomolecules are, however, more complicated because the solvent structure surrounding each 

atom is influenced by neighboring atoms and the solute’s conformation.  Continuum radii for 

biomolecules must, therefore, balance accuracy for a given conformation with robustness across 

multiple conformations.  Though the solvent structure can still be used to approximate the 

location of the dielectric boundary, the radii that define that boundary must ultimately be 

benchmarked against quantitative observables such as solvation energies or forces.  Several 

continuum parameter sets, consisting of solute charges and radii that complement a specified 

protein dielectric constant and molecular surface definition, have been optimized to reproduce 

either experimental solvation energies[68, 69] or explicit solvent simulations[70, 71].  These 

two methods will be considered in turn.   

Referencing continuum models against experimentally determined solvation free 

energies is an appealing approach because there are many small molecule data to draw upon and 

because computational models should ultimately be benchmarked by experiment.  There are, 

however, two disadvantages to this approach.  First, it necessitates estimating the non-polar 

contribution to the solvation free energy since electrostatic and non-electrostatic contributions 

can not be clearly distinguished in experiment. Solvation energies, rigorously defined as the 

reversible work involved in transferring a molecule from gas phase to bulk solvent, are typically 

separated into electrostatic and non-electrostatic contributions via a thermodynamic cycle.  This 

cycle involves cavity formation, the introduction of solute-solvent vdW interactions, and the 
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introduction of solute-solvent electrostatic interactions; elecvdWcavitysolv GGGG Δ+Δ+Δ=Δ  . 

PB calculations only account for the electrostatic contribution, elecGΔ .  The remaining nonpolar 

contribution is commonly approximated by the Solvent Accessible Surface Area (SASA) 

model, SASA Δ≅Δ+Δ=Δ γvdwcavitynp GGG , despite its inadequacy as discussed by 

Gallicchio et al..[30]  The second disadvantage is that one is limited to the small, neutral 

molecules for which experimental results are available.  Accordingly, the transferability of these 

parameters to biomolecular systems such as proteins, where backbone hydrogen bonding and 

charged residues likely affect solvent-solute interactions, is unknown.   

Benchmarking continuum parameters against explicit solvent simulations avoids the 

aforementioned challenges; simulations can be applied to charged molecules that mimic 

biomolecular systems, and thermodynamic cycles can be used to separate solvation energies 

into electrostatic and non-electrostatic contributions.  In the first leg of the thermodynamic 

cycle, the ‘growth’ phase, the nonpolar contributions are accounted for by growing a neutral 

solute cavity into bulk solvent and introducing solute-solvent vdW interactions.  In the next leg, 

the ‘charging’ phase, the electrostatics contributions are measured by introducing solvent-solute 

charge-charge interactions.  The main disadvantage to using explicit solvent simulations is the 

error inherent in modern force fields, limited sampling, and simulations techniques.   It is 

encouraging that attempts to minimize these errors have become increasingly successful.[72, 

73] Simulations additionally offer energetic congruence to methods that combine continuum 

solvation and molecular mechanics energies such as end-point free energy calculations [19, 57], 

pKa calculations[74, 75] continuum dynamics [76], and constant pH molecular dynamics.[77] 

It is also possible to compare the forces acting on specific atoms from explicit solvent 

simulations and continuum models.[78]  Continuum force evaluations require a smooth 

dielectric boundary because abrupt boundaries often result in numerical instability in the 
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electrostatic potential.  Techniques such as Gaussian[28] and cubic spline[29] based volume 

functions have been introduced to smooth the dielectric boundary, making continuum force 

calculations and continuum dynamics possible.  Spline smoothed surfaces are now standard 

options in several Poisson Boltzmann solvers.[49, 79]  To maintain quantitative accuracy, 

however, these implementations require significant rescaling of the radii used to define the 

dielectric boundary.  If the radii are not rescaled, solvation energies and forces tend to be 

overestimated by 10 to 40% (results not shown).  Nina et al. used explicit solvent simulations to 

optimize of a set of radii for the CHARMM22 force field for abrupt boundary definitions[70] 

and later rescaled these radii for spline smoothed boundary definitions.[70, 71].  Since the 

location of the dielectric boundary is highly dependent on the solute charge distribution, the 

Nina et al. radii are not transferable to other solute charge definitions.  Thus, a similar effort is 

needed for other force fields as has been suggested by a number of authors.[76, 78, 80]   

In this chapter two sets of optimized radii are presented for the AMBER (parm99) force 

field for either abrupt or cubic spline smoothed dielectric boundary definitions.  The radii are 

initially approximated from the solvent charge distributions measured during explicit solvent 

simulations and then optimized with a genetic algorithm (GA) to reproduce explicit solvent 

charging energies.  Several commonly used continuum parameter sets are tested on the model 

compounds and four protein-like polypeptide chains. The latter were included to demonstrate 

the transferability of these parameters to protein systems.  Both sets of optimized radii improve 

the accuracy of continuum solvation energies and the smooth boundary radii improve the 

correlation between explicit and implicit forces.  These radii are suitable for PB quantitative 

measurements with AMBER partial charges and are recommended for methods that combine 

AMBER molecular mechanics and PB solvation energies. 

The next section describes the model systems and the methodology used in the explicit 

solvent simulations, the continuum calculations and the genetic algorithm optimizations.  
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Section 3 defines the radius groups, discusses the explicit solvent charging energies, compares 

continuum solvation energies from different parameter sets, verifies radii transferability to 

proteins with protein test cases, and presents the quantitative affects of these radii on atomic 

forces.  Section 4 summarizes the work and possible future directions. 

4.2 Methods 

4.2.1 Model Systems 

The explicit solvent simulations, continuum calculations, and genetic algorithm optimizations 

were divided into two stages.  First, the protein backbone atoms were optimized using 14 

polyalanine peptides of varying lengths in common secondary structure conformations.  Each 

conformation (see Table 4.1) was modeled from fragments of either lysozyme (pdb code 1ati) 

or crambin (pdb code 1ejg).  The fragments were mutated to polyalanine and terminated with 

neutral blocking groups with the MMTSB Tool Set.[81]  Second, the side chain radii were 

optimized using 20 nonzwiterionic N-acetyl-X-N’-methylamide dipeptides where X represents 

one of the twenty standard amino acids.  Two conformations of each side chain dipeptide were 

used.  The first conformation, chosen for the sake of comparison with previous 

optimizations[70], used extended backbone phi and psi angles (180º, 180º) and the most 

frequent side chain dihedral angles from a Dunbrack backbone-independent rotamer library.   

The second conformation used a much more common backbone conformation (-60º, -40º) and 

the most frequent rotamers from a Dunbrack backbone-dependent rotamer library.[82] All 

model conformations are provided in the Supporting Information. 
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Table 4.1:  The 14 polyalanine peptides used to optimize the backbone radii.   
Polypeptidea Residues Descriptionb H-bonding
l-beta1 17-20 type II Yes
l-beta2 36-39 type I’ Yes
l-beta3 39-42 type I Yes
l-beta4 59-62 type IV No
l-beta5 60-63 type I No
l-beta6 85-88 type VIII No
l-helix1 5-14 type H Yes
l-helix2 109-114 type H Yes
l-hairpin1 42-53 class 3:5 IG Yes
l-hairpin2 51-59 class 4:4 Yes
c-beta1 17-20 type I Yes
c-beta2 42-45 type IV No
c-helix1 7-20 type H Yes
c-helix2 23-30 type H Yes  

a Peptides taken from lysozyme (1aki) and crambin (1ejg). b Secondary structure 
descriptions provided by PDBsum.[83] 

 

4.2.2 Explicit Solvent Simulations 

The AMBER parm99 force field converted to CHARMM format was used in all 

simulations.   Hydrogen atoms were first energy minimized in vacuum with 50 steps of steepest 

descent followed by 1000 steps of the Adopted Basis Newton Raphson (ABNR) method.  All 

solute atoms were then fixed for the duration of the simulation.  Each model compound was 

solvated in a sphere of explicit TIP3P water molecules that extended 6.5 Å beyond the 

dipeptides and 10.0 Å beyond the polyalanine peptides. This resulted in 3-4 hydration shells 

around every solute atom.  Running simulations with larger and smaller solvent shells verified 

that the chosen dimensions were sufficient for energetic convergence.  The spherical solvent 

boundary potential (SSBP) model including Kirkwood’s mulitpolar expansion reaction field 

was used to approximate the influence of bulk water beyond the explicit water sphere.[84]   

This model alleviates many of the difficulties that result from perturbing charged systems with 

periodic boundary conditions and has been shown to give reliable results for proteins, nucleic 

acids, and, most recently, small molecules.[23, 73, 85]  The solvent was first energy minimized 
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with 50 steps of steepest descent followed by 1000 steps of the ABNR method and then 

equilibrated for 100 ps.   

All simulations employed Langevin dynamics at constant temperature (300 K) using 

SHAKE enabled 2 fs time steps, infinite cutoffs for nonbonded interactions, and a friction 

constant corresponding to a relaxation time of 5 ps applied to water oxygen atoms.  The pre-

equilibrated fully charged systems were simulated for 200 ps to obtain the solvent charge 

distribution surrounding each solute atom.  The solvent charge distributions were used to verify 

that the continuum radii were properly grouped and to estimate their starting values.   

The charging free energies were measured with free energy perturbation (FEP) 

simulations run in the PERT module of CHARMM.[79]   Each simulation consisted of 10 

windows in which the solute’s charge was scaled by a thermodynamic coupling parameter λ 

varying by ± 0.1 from 0 to 1 and then from 1 to 0 according to, finalqq λλ =)( .  The weighted 

histogram analysis method (WHAM) was used to combine the results of the individual windows 

to calculate the total charging free energy.  WHAM is a self-consistent iterative procedure that 

optimizes the distribution of data from separate simulations and thus decreases the amount of 

sampling required for convergence.[86]  Two tests were used to ensure that the simulations 

were converged.  First, the standard error, calculated as half the difference between the forward 

and reverse WHAM post processed results and shown in Table 4.4, was required to be less than 

3% of the total energy.  Second, simulations of twice the length were required to be within 2% 

of the original simulations for the largest and most charged model compounds (results not 

shown).  Different window lengths were required for convergence by the backbone and side 

chain model compounds; the polyalanine peptides were equilibrated for 10 ps followed by 40 ps 

of collection, while the dipeptides showed convergence in 5 ps of equilibration followed by 20 

ps of collection. 



46 

 

4.2.3 Continuum Calculations 

All continuum calculations were performed with the Adaptive Poisson Boltzmann 

Solver (APBS)[49] using zero bulk ionic strength, a temperature of 300 K, a solvent dielectric 

of 78.4, and a solute dielectric of 1.  The PB grid was centered on each solute and extended at 

least 20 Å beyond its dimensions.  A grid resolution of 0.25 Å was proven sufficient for 

energetic convergence by comparing calculations with 0.15 Å grid resolution, which resulted in 

a correlation coefficient of 0.9995 and an average absolute error (AAE) of 0.97 kcal/mol.  

Solute charges were distributed onto grid points using a cubic B-spline discretization.  

Electrostatic solvation free energies were calculated from the energetic difference in the 

solvated (ε bulk = 78.4) and gas phase systems (ε bulk = 1).  The molecular surface was defined by 

the interface of a 1.4 Å solvent probe and the solute radii.   

Some of the choices made in the continuum calculations protocol warrant explanation.  

First, the molecular surface traced by rolling a solvent probe, r = 1.4 Å, around the solute atoms 

was used to define the location of the abrupt dielectric boundary.  Previous PB radii 

optimizations[70] have used the van der Waals (vdW) surface made up of overlapping solute 

atoms which excludes the interstitial spaces that lie between solute crevices from the molecular 

volume.  Although the vdW surface definition works well for small molecules, it often results in 

buried high dielectric pockets in larger molecules such as proteins.[87]  These pockets can 

change quantitative results significantly, making the radii less robust across similar 

conformations.  The vdW surface is particularly problematic in continuum dynamics as high 

dielectric pockets can appear and disappear as frequently as every time step, resulting in 

numerical instability.[76]  Second, for the spline smoothed surfaces, cubic B-spline charge 

discretization was used instead of trilinear interpolation to avoid large orientational 
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artifacts.[28]  Finally, a solute dielectric of 1 was chosen for consistency with the non-

polarizable force field and fixed solute conformation.   

4.2.4 GA Optimization 

The GA was used to optimize the radii to their final values.  The GA is an efficient 

stochastic optimization method that has been widely applied to minimization problems because 

it is ideally suited for multiple-dimensional global search problems where the search space 

contains multiple local minima and the search variables may or may not be correlated.  The GA 

begins with the generation of an initial population of a given number of solutions.  The fitness 

of each solution is evaluated and a new population is generated via selection, crossover and 

mutation.  This process is repeated until a desired fitness is reached or the maximum number of 

generations exceeded. 

In the initial evolutions, populations of 50 solutions were run for 100 generations.  In 

subsequent evolutions, populations of 100 solutions run for 50 generations.  Solutions in the 

initial population of a given evolution were generated from a uniform distribution +/- 0.10 Å 

around the starting radii.  In subsequent generations, solutions were generated via a process of 

selection followed by crossover or mutation.  Selections were performed with the Stochastic 

Universal Sampling algorithm,[88] which is designed to give zero bias in the selection and 

minimal spread.  It selects solutions with a probability proportional to their fitness:  
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where pi is the probability that solution i will be selected and Fi is its fitness.  The 

fitness function was normalized to ensure that fitness scores remained between 0 (poor) and 1 

(perfect): 
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where AAEi is the average absolute error of solution i. A uniform crossover process 

was applied to 90% of the population.  Each crossover event consisted of randomly distributing 

the radii from two previous-generation solutions to two new-generation solutions.  Mutations 

were applied to 20% of the population and consisted of perturbing a solution’s radii using a 

Gaussian distribution with a standard deviation of ± 0.05 Å.  The evolution was terminated if 

the total fitness and the best solution converged to the same value for 6 consecutive generations.  

In the absence of convergence a new evolution was started with the best radii from the previous 

evolution. 

4.3. Results and Discussion 

4.3.1 Radii Grouping and Starting Values  

In optimization procedures, the number of parameters that can be meaningfully 

optimized is generally limited by the number of reference values.  Although there is likely an 

ideal radius for every atom in every conformation, it is desirable to find a set of radii that are 

robust across multiple conformations.  It is generally accepted that atoms in similar chemical 

environments have comparable surrounding solvent structures and thus similar optimal 

continuum radii.  The factors directly influencing solvent structure are the atom’s charge, vdW 

parameters, and structural neighbors.  It may seem appealing to use AMBER atom types to 

define a set of continuum radius groups.  This does not work, however, since AMBER atom 

types are distinguished by vdW parameters and often have significantly different charges in 

different residues.  Instead, atoms were initially grouped according to similar chemical 

environments.  The groups were then tested for similar surrounding solvent structure.   
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The solvent charge distribution surrounding each atom type was measured from 100 ps 

of Langevin dynamics of solvent plus rigid, fully-charged solute molecules.  The first peak in 

the solvent charge distribution corresponds to the closest explicit water molecules and can be 

used to approximate the optimal continuum radius.  Figure 4.1a shows almost identical solvent 

charge distributions for the carboxyl oxygen in both conformations of the aspartate and 

glutamate residues.  As expected, the first peak is positive due to electropositive water 

hydrogens crowding around the negatively charged carboxyl oxygen.  Conversely, the first peak 

in the solvent charge distribution surrounding positively charged atoms, such as the amine 

nitrogen in arginine and lysine (results not shown), are negative due to electronegative water 

oxygen atoms.  Figure 4.1b shows the solvent charge distribution for alpha-carbons in alanine, 

asparagine, lysine, and glycine.  It demonstrates a slightly smaller solvent excluded volume for 

the alpha-carbon in glycine, likely due to the absence of a side chain.  Thus, glycine’s alpha 

carbon was put in a separate radius group from the rest of the alpha carbons.  Similar plots were 

used to classify all of the radius groups which are shown in Table 4,2 along with their starting 

values. 

There are two important distinctions between the optimizations presented in this chapter 

and those previously presented by Nina et al,.[70] which also used the solvent charge 

distribution to approximate starting radii. First, non-zero hydrogen radii were used.  This was 

deemed important because FEP charging free energies deviated 2-13% depending upon 

hydrogen placement (results not shown).  GB models have also shown sensitivity to hydrogen 

radii.[89]  Although the GB and PB models are fundamentally different, both are hopeful 

methods for DNA dynamics and both will likely need to fine tuned their hydrogen radii.  

Second, although the starting radii work well with vdW surface definitions, as used by Nina et 

al, they clearly underestimated solvation effects with molecular surface definitions.  Decreasing 
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the starting values by 10% reduced the number of evolutions necessary to converge the radii to 

their optimal values. 

 

 
Figure 4.1: Radial solvent charge distributions show that similar chemical environments result 
in similar solvent structures around (A) the electronegative carboxyl oxygen in asp and glu as 
well as (B) the alpha carbons of ala, asn, and lys.  The alpha carbon of gly reveals a unique 
solvent structure. 
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Table 4.2: Radius groups with GA starting values and the final optimized values. 

Atom Namea Residues
Start 
Value

Final 

Valueb
Final 

Valuec

Backbone
C all 2.30 1.903 2.170
O all 1.58 1.454 1.742
N all 2.50 1.835 2.262
CA all except G 2.80 1.591 2.339
CA G 2.60 1.654 2.133
CAY/CAT  ACE,NME 2.51 2.595 2.375

Side Chains
CB D,E,C,H,M,F,S,T,W,Y 2.55 2.087 2.370
CB A,R,N,Q,I,L,K,V 2.75 1.829 2.063
CG* R,Q,I,L,K,M,T,V 2.49 2.039 2.329
CG H,F,W,Y 2.10 1.651 2.290
CG/CD N,Q,D 2.19 1.995 2.257
CG E 2.45 1.942 2.432
CB/CG/CD P 2.70 2.008 2.157
CD R,K 2.81 2.034 2.303
CD* I,L 2.45 1.897 2.103

CD*/CE*/CZ H,F,W,Y 2.05 1.837 2.122

CE M 2.40 1.902 2.157
CZ/CE R,K 2.66 2.020 2.414
OD*/OE* N,Q,D,E 1.55 1.516 1.727
OG* S,T 1.65 1.562 1.832
OH Y 1.72 1.738 2.022
NE,NH*,NZ R,K 2.48 1.523 1.861
ND2/NE2 N,Q 2.12 2.222 2.453
ND1,NE2 H 1.90 1.436 1.782
NE1 W 2.11 1.898 2.147
SG/SD C,M 2.00 1.978 2.169

Hydrogensd

type H bb HN 1.20 1.600 1.967
type H bound to N 1.20 1.119 1.379
type HO/HS bound to O/S 1.00 1.201 1.406
type H1/HP polar 1.31 1.914 2.033
type HC/HA nonpolar 1.30 0.840 1.321  

a Radius groups are distinguished by AMBER atom names for all heavy atoms and by atom type 
for hydrogen atoms. b Final radii for abrupt dielectric surfaces and c spline smoothed surfaces d 
Hydrogens specified by atom type with type ‘H’ divided into two groups; amide backbone ‘HN’ 
and all other N-bound hydrogens. 
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4.3.2 FEP Simulations  

The approximate starting radii were fine tuned to reproduce explicit solvent FEP 

charging free energies. These energies, shown in tables 4.3 and 4.4, were used as the target 

values in the GA optimizations.  All simulations were well converged as previously described, 

and as indicated by the reported standard errors.  Values for the polyalanine peptides ranged 

from -31 to -81 kcal/mol depending on their length and conformation, while those of the side 

chain dipeptides ranged from -12 to -83 kcal/mol.  The neutral nonpolar residues had the lowest 

magnitudes, -12 to -16 kcal/mol; the polar residues were slightly higher, -16 to -28 kcal/mol; 

and the charged residues were the highest, -61 to 83 kcal/mol.  Comparing the charging free 

energies between dipeptide conformations demonstrates a moderate range of conformational 

sensitivity.   Lysine demonstrated the largest range with a charging free energy of -61 kcal/mol 

for one conformation and -77 kcal/mol for the other.   

 

Table 4.3: FEP charging and continuum solvation energies for 
the 14 polyalanine peptides using AMBER and optimized radii. 

Polypep WHAM AMBER Opta Optb

l-beta1 -34.17 (0.06) -31.87 -35.44 -33.53
l-beta2 -32.69 (0.05) -25.67 -30.68 -31.85
l-beta3 -30.89 (0.48) -27.88 -31.40 -30.79
l-beta4 -31.42 (0.31) -28.89 -32.26 -32.88
l-beta5 -33.69 (0.03) -32.18 -34.83 -32.87
l-beta6 -31.09 (0.06) -27.27 -31.53 -32.34
l-helix1 -65.29 (0.45) -53.78 -64.15 -65.31
l-helix2 -49.18 (0.42) -43.36 -48.18 -51.49
l-hairpin1 -66.50 (1.33) -55.70 -66.14 -66.63
l-hairpin2 -81.45 (1.06) -69.17 -81.60 -81.43
c-beta1 -34.72 (0.24) -33.64 -34.54 -33.90
c-beta2 -40.90 (0.24) -36.47 -40.88 -41.06
c-helix1 -68.91 (0.44) -54.99 -66.39 -67.15
c-helix2 -51.91 (0.04) -44.01 -51.05 -51.77  

All energies in kcal/mol.  Standard errors are reported as half the 
difference between the forward and reverse WHAM energies. a 
Abrupt and b spline smoothed dielectric boundary definitions. 
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Table 4.4: Explicit solvent charging free energies (WHAM) and continuum solvation 
energies for the 20 dipeptide amino acid mimics using AMBER and optimized radii. 
Res AMBER Opta Optb Res AMBER Opta Optb

Gly -13.91 (0.10) -14.35 -14.43 -13.93 Thr -16.25 (0.18) -17.06 -16.69 -16.52
Gly2 -18.45 (0.15) -18.51 -18.36 -18.11 Thr2 -19.58 (0.30) -19.68 -19.11 -19.24
Ala -14.01 (0.18) -13.77 -14.26 -13.82 Cys -18.18 (0.36) -18.69 -18.17 -18.11
Ala2 -17.86 (0.02) -16.97 -16.92 -16.90 Cys2 -17.97 (0.07) -18.39 -17.96 -17.95
Val -12.48 (0.17) -11.22 -12.58 -12.45 Tyr -19.78 (0.13) -20.49 -20.42 -19.77
Val2 -18.79 (0.45) -16.99 -17.36 -17.73 Tyr2 -25.30 (0.23) -25.32 -25.08 -24.26
Leu -12.58 (0.02) -11.72 -12.68 -12.40 Asn -20.88 (0.10) -23.09 -20.89 -20.86
Leu2 -18.45 (0.06) -16.77 -17.97 -17.94 Asn2 -23.38 (0.47) -24.96 -23.36 -23.12
Ile -11.99 (0.06) -10.87 -12.01 -12.00 Gln -18.40 (0.47) -20.16 -18.43 -18.68
Ile2 -19.29 (0.06) -17.25 -17.52 -17.85 Gln2 -27.63 (0.24) -29.29 -26.40 -26.35
Pro -14.75 (0.01) -13.29 -14.76 -14.74 His -23.63 (0.07) -24.24 -24.77 -24.26
Pro2 -16.84 (0.16) -14.66 -16.75 -16.98 His2 -22.12 (0.16) -21.13 -22.52 -21.56
Phe -16.42 (0.46) -14.68 -16.45 -16.43
Phe2 -21.95 (0.01) -20.16 -21.66 -20.97 Arg -60.99 (0.44) -69.19 -63.89 -63.05
Trp -19.76 (0.04) -19.50 -19.73 -19.73 Arg2 -77.28 (0.70) -81.88 -76.10 -74.50
Trp2 -22.23 (0.45) -23.25 -23.14 -21.93 Lys -65.99 (0.06) -71.66 -67.44 -68.71
Met -12.98 (0.02) -12.76 -13.12 -13.09 Lys2 -82.65 (1.14) -85.93 -81.69 -80.33
Met2 -19.53 (0.23) -18.40 -18.85 -19.04 Asp -77.86 (0.47) -72.05 -77.90 -78.02

Neutral Polar Groups Asp2 -79.38 (0.18) -71.06 -77.35 -77.33
Ser -17.34 (0.03) -18.28 -17.33 -17.29 Glu -79.00 (0.51) -72.09 -79.09 -78.99
Ser2 -19.60 (0.18) -21.03 -19.68 -19.82 Glu2 -76.31 (0.24) -69.47 -76.30 -76.30

Charged Polar Groups

WHAM
Nonpolar Groups
WHAM

 

All energies in kcal/mol. Conformation 1 and 2 have phi/psi angles of (180º,180º) and (-40º,-
60º) respectively.  Standard errors are reported as half the difference between the forward and 
reverse WHAM energies.  a Abrupt and b spline smoothed dielectric boundary definitions. 

4.3.3 GA Optimizations 

Results for the GA optimizations were typical for a highly dimensional rough energy 

landscapes.  Specifically, different radius sets with similar fitness values were often 

encountered.  After 6 evolutions the optimal abrupt and smooth boundary radii, as presented in 

Table 4.2, had AAEs of 0.5433 and 0.6355 respectively.   

4.3.4 Continuum Calculations Testing Parameter Sets 

In order to gauge the importance of these optimized radii they were compared to several 

commonly used continuum parameter sets: AMBER (parm99) charges combined with parm99 

vdW radii, Bondi radii, and the previously optimized Nina et al. radii in addition to PARSE 

charges combined with PARSE radii.  Figure 4.2 shows the resulting continuum solvation 
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energies compared to explicit solvent charging energies.  The relative performance between 

parameter sets is more clearly illustrated in Figure 4.3a where the continuum deviation for each 

model compound is represented as a single point.   

Each parameter set was tested for the appropriate solute dielectric and surface 

definitions for the comparisons made in figures 4.2 and 4.3a.  Failure to use the appropriate 

solute dielectric and surface definitions results in overestimating or underestimating solvation 

effects. For example, the PARSE parameters, originally optimized with a solute dielectric of 2, 

consistently overestimate solvation effects when used with a solute dielectric of 1. Likewise the 

Nina et al. radii, which were optimized with a vdW surface, underestimate solvation effects 

with a molecular surface definition.  Although changing either the solute dielectric or the 

surface representation generally increases or decreases solvation energies it has little effect on 

the relative solvation energies between different solutes.  This is demonstrated in Figure. 4.3b 

with the Bondi radii where using a vdW surface and solute dielectric of 1 overestimates 

solvation effects and a molecular surface with a solute dielectric of 2 underestimates them. 

The AMBER parm99 vdW radii were tested because they are frequently chosen for use 

with parm99 charges despite the fact that they have never been optimized for continuum 

models.  Optimal performance, found with a molecular surface definition and a solute dielectric 

of 1, yielded an AAE of 3.18 kcal/mol.    The Bondi radii [90] were tested because they are the 

most common choice for the intrinsic radii used in generalized Born models.[14]  Using a solute 

dielectric of 1 and a molecular surface representation they performed the best out of the un-

optimized parameters, with an AAE of 2.27 kcal/mol.   

The Nina et al. radii were tested to query the transferability of radii between the 

AMBER and CHARMM force fields.  They were not expected to work perfectly with the 

AMBER charges because continuum charge and radius definitions are strongly interdependent. 

It has been postulated, however, that the two force fields should have similar solute-solvent 
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interactions, similar charging free energies, and thus similar continuum radii.[91]   To test this, 

FEP simulations were run with the CHARMM force field.  They yielded substantially different 

charging free energies and solvent radial distributions.  In continuum calculations using a solute 

dielectric of 1 and a vdW surface, the Nina et al. radii combined with AMBER charges resulted 

in an AAE of 2.67 kcal/mol.  This is an improvement over parm99 vdW radii but worse than the 

Bondi radii.  It is far worse than their performance with the CHARMM charges when compared 

to FEP simulations run with the CHARMM force field (results not shown), which had an AAE 

of 0.69 kcal/mol.  Differences in the FEP charging free energies, the solvent radial distribution 

functions, and the optimal continuum radii for AMBER and CHARMM are likely due to 

differences in partial charges. 

Finally, the PARSE parameters were tested as they have likely been the most respected 

and frequently used continuum charge and radius definitions since their development in 

1994.[68]  Their performance relative to the explicit solvent model was worse than expected.  

Regardless of the surface and solute dielectric definitions, they consistently overestimated 

solvation effects on the model systems.  Optimal performance was found with a molecular 

surface definition and a solute dielectric of 2 resulting in an AAE of 5.22 kcal/mol. 
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Figure 4.2: Explicit solvent charging free energies versus continuum solvation free energies 
calculated with the AMBER charges and different radii.   
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Figure 4.3: Continuum solvation energy deviations from explicit solvent reference values. Each 
circle represents one model compound.  (A) Five different parameter sets are compared with 
their optimal surface definitions and solute dielectrics: PARSE charges with PARSE radii, a 
molecular surface, and solute dielectric of 2; AMBER charges with AMBER radii a molecular 
surface and solute dielectric of 1; AMBER charges with Bondi radii a molecular surface and 
solute dielectric of 1; AMBER charges with Nina radii a vdW surface and solute dielectric of 1; 
and AMBER charges with the newly optimized radii a molecular surface and solute dielectric of 
1.  (B) The effect of different surface and solute dielectric definitions on solvation energies 
calculated with the Bondi radii. 

4.3.5 Protein Test Cases 

The optimized radii clearly perform better on the model compounds for which they 

were optimized, but this is a biased test.  As an unbiased test and to evaluate their transferability 

to proteins, FEP simulations were run on four short polypeptide chains: Trpcage (1l2y),[92] the 

C-terminal fragment (41-56) of protein G (2gb1),[93] the C-peptide of ribonuclease A 

(8rat)[94], and the first helix taken from lysozyme (residues 5-14) with all of the native side 

chains present.  The proteins were prepared and simulated with the same procedures used on the 

model compounds.  Simulations were held to the same requirements for energetic convergence.  
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The resulting charging free energies are shown in Table 4.5 in addition to continuum deviations 

with the AMBER, PARSE, Bondi, and newly optimized radii.  The surface definitions and 

solute dielectrics found optimal for the model compounds, as described in the previous section, 

were used for consistency.   The optimized radii perform the best on abrupt boundary surfaces 

with an AAE of 5.96 kcal/mol.  All abrupt boundary radius sets overestimated solvation 

energies by 20-40% when used with the spline smoothed surfaces (results not shown).  The 

smooth boundary radii, presented in the 9th column, are a significant improvement, but still 

overestimate solvation effects slightly.  The source of this systematic overestimation is 

unknown.  It can be compensated for by using a higher solute dielectric, which, as previously 

mentioned, shifts all solvation energies down but has little effect relative continuum deviations.  

As shown in the final column, the AAE can be decreased to 4.42 kcal/mol by using a solute 

dielectric of 1.15 instead of 1.0. 

 

Table 4.5: FEP charging energies and continuum deviations for 4 protein-like polypeptides. 
Protein WHAM-40ps WHAM-60ps AMBER PARSE Bondi Nina Opta Optb Optc

trpcage -309.85 (2.00) -308.63 (1.89) -20.47 -27.41 1.10 -2.97 0.51 19.57 -3.32
protein G -314.37 (0.51) -314.60 (0.25) -17.78 14.58 21.55 70.55 15.74 19.72 4.86
ribonucleaseA -167.77 (1.55) -165.25 (1.21) -6.21 38.76 11.69 45.41 3.82 17.37 3.83
lysozyme 257.88 (3.89) -259.79 (2.53) 4.99 -3.09 1.93 31.16 3.77 5.99 -5.69
AAE 12.36 20.96 9.07 37.52 5.96 15.66 4.43  
All energies in kcal/mol.  FEP standard errors are reported as half the difference between the 
forward and reverse WHAM energies. a Abrupt and b spline smoothed dielectric boundary 
definitions with solute dielectric of 1. c spline smoothed boundary with solute dielectric of 1.15. 

 

4.3.6 Spline Smoothed Radii and Atomic Forces 

If abrupt boundary radii are used with a spline smoothed dielectric boundary, then 

solvation forces, similar to solvation energies, tend to be overestimated by 10 to 40% (results 

not shown).  The width of the spline smoothed dielectric transition region, often referred to as 
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the spline window, has been shown to effect solvation energies.[71]  Thus, the optimal spline 

smoothed radii will be dependent on the spline window width.  Previous optimizations have 

shown that reasonable quantitative accuracy can be maintained by rescaling abrupt-boundary 

radii by a single factor that is dependent on the spline window width.[71]  This, however, 

assumes that all radii are equally affected by the spline smoothing.  This assumption was tested 

by optimizing a set of radii for a single spline window of 0.3 Å with the GA.  These radii were 

compared to abrupt boundary radii scaled by a single scaling factor.  A simplex optimization 

showed that the optimal single scaling factor was 0107.1*)3.0( += abruptspline RR .  The 

independently optimized radii, shown in Table 4.2, are significantly different from those 

obtained from the single scaling factor. The AAEs for the independently optimized and single 

scaled radii were 0.66 kcal/mol and 2.11 kcal/mol respectively. 

Recently, Wagoner et al. suggested comparing continuum and explicit solvent forces 

instead of molecular solvation energies to test the continuum model.[78]  To obtain the explicit 

solvent electrostatic forces they averaged the total minus non-polar solvent-solute interactions 

from a simulation of a 131-residue protein in a fixed conformation.  They used the AMBER 

parm99 vdW radii and demonstrated reasonable correlation between continuum and explicit 

solvent forces with a correlation coefficient r = 0.88.  As expected, however, the continuum 

forces were systematically overestimated by a factor of 2.2, as indicated by the slope from 

linear regression analysis.  To see what effect the optimized radii have on atomic forces, the 

same procedure was carried out with Trpcage and the C-terminus of G-Protein. Explicit solvent 

forces were reasonably converged after 200ps of simulation.  This was tested by comparing 

forces from a 500 ps simulation which resulted in a correlation coefficient of 0.9987 and an 

AAE of 0.10 kcal/mol.  Figure 4.4a shows the improved correlation for atomic forces calculated 

with the optimized radii, r = 0.94, versus the AMBER radii, r = 0.84.  The AMBER radii still 
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systematically overestimate the continuum forces by a factor of 1.99 while the optimized radii 

slightly underestimate the forces by a factor of 0.80.  Figure 4.4b shows the optimized atomic 

forces according to atom type and demonstrates that forces on oxygen atoms are most often 

underestimated.  Comparing specific atomic forces from continuum and explicit solvent models 

may prove useful in future optimization efforts. 

 

 
Figure 4.4:  Comparison of explicit solvent and continuum forces. Lines indicate y = x NOT 
best fit.  A) Continuum forces calculated with AMBER radii in red: correlation coefficient 0.84; 
slope 1.99; intercept 0.03 kcal mol-1 Å-1. Continuum forces calculated with optimized radii in 
blue: correlation coefficient 0.94; slope 0.80; intercept 0.29 kcal mol-1 Å-1.  B) Continuum 
forces calculated with optimized radii only distinguishing different elements by color.     

 



61 

 

4.4. Conclusions  

Computational biochemistry is a field with multiple levels of models and theories 

whose computational requirements scale proportionally with accuracy.  The success of the 

lower level, less accurate, more efficient models relies upon their connection to the higher level, 

more accurate, less efficient models while the latter are complimented by the former to 

characterize complex biological systems.  As methodology advances, opportunities for 

improved synergy between levels of theory and models are created.  As microscopic, explicit 

solvent simulations become more accurate and the numerical methods used in continuum 

models improve, there is an increasing opportunity and need to benchmark continuum models 

on microscopic simulations. 

The main results of this paper are two sets of optimized continuum radii, presented in 

Table 4.2, for PB calculations with the AMBER force field using either abrupt or spline 

smoothed dielectric boundary definitions.  Thirty-one radius groups were defined based on 

similar chemical environments.  Both sets of optimized radii improve quantitative agreement 

with microscopic simulations when compared to AMBER parm99 vdW, Bondi, and Nina et al. 

radii as well as the PARSE parameters.  The Bondi radii combined with a protein dielectric of 1 

and a molecular surface definition were the best alternative choice for AMBER charges.  The 

PARSE parameters, shown to work optimally with a solute dielectric of 2 and a molecular 

surface definition, were less accurate. The abrupt boundary radii work quite well for protein 

systems.  The smooth boundary radii offer a significant improvement over abrupt boundary 

radii used on spline smoothed surfaces, but still overestimated the solvation energies of four 

protein-like polypeptides.  This overestimation can be compensated for by using a solute 

dielectric of 1.15 instead of 1.0.  The smooth boundary radii greatly improve agreement 

between continuum and explicit solvent atomic forces.   
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 Future efforts will focus on identifying the source of deviations of the smoothed 

boundary radii on protein systems as well as small molecule parameterization and coupling 

these parameters with nonpolar solvation effects. If one hopes to use these radii on systems 

involving small molecule ligands, it will be important to characterize the appropriate radii for 

certain small molecules as well.  It will also be of great use to test the complementarity of these 

electrostatic parameters with various nonpolar solvation models by comparing total solvation 

energies to either explicit solvent simulations or experimental solvation energies.  It is expected 

that the nonpolar and polar contributions to continuum solvation models will be coupled and 

that the greatest degree of accuracy will require them to be treated as such.   

 

This chapter is a reprint in full of material that appeared in Optimized radii for Poisson-

Boltzmann calculations with the AMBER force field, Swanson, J.M.J., S.A. Adcock, and J.A. 

McCammon, J. Chem. Theory Comput. (3); 484-493 (2005).  I was the primary researcher and 

author of this work. 
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Chapter Five 

Limitations of Atom-Centered Dielectric Functions in Implicit Solvent 

Models.  

ABSTRACT 

Many recent advances in Poisson-Boltzmann and Generalized Born implicit solvent models 

have used atom-centered polynomial or Gaussian functions to define the boundary separating 

low and high dielectric regions.  In contrast to the Lee and Richards molecular surface, atom-

centered surfaces result in inter-atomic crevices and buried pockets of high dielectric which are 

too small for a solvent molecule to occupy.  We show that these interstitial high dielectric 

regions are of significant magnitude in globular proteins, that they artificially increase solvation 

energies, and that they distort the free energy surface of non-bonded interactions.  These results 

suggest that implicit solvent dielectric functions must exclude interstitial high dielectric regions 

in order to yield physically meaningful results. 

5.1  Introduction  

 Continuum solvent models have become an increasingly useful tool in the 

characterization of biomolecular systems.  The most popular such methods employ either the 

Poisson-Boltzmann (PB) or Generalized Born (GB) models, treating the solute as a set of point 

charges in a low dielectric cavity and the surrounding solvent as a uniform high dielectric 

medium.  The PB model is generally considered to be more accurate and is often used to 
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benchmark GB models.   GB has found more extensive application in dynamical simulations, 

however, because it is computationally efficient and more amenable to force calculations. 

 One of the main challenges in the use of PB for dynamics has been the determination 

of numerically stable and accurate forces.  Most PB calculations have used a dielectric 

boundary based on the molecular surface (MS) as defined by Lee and Richards,[26] which 

results in forces that are unstable over time, lack analytical definition, converge poorly, and are 

sensitive to grid discretization.[28]  Furthermore, an abrupt dielectric transition results in 

numerical instability regardless of the location of the boundary.  Recent advances in PB 

methods have avoided these difficulties by using overlapping atom-centered Gaussian or 

polynomial functions to define the solute surface, resulting in analytically defined, 

differentiable dielectric functions with smooth transitions between low and high dielectric 

values.[28, 29]  These dielectric definitions increase force stability and computational 

efficiency.  However, unless modifications such as those presented by Lu and Luo[76] or Lee et 

al.[95] are employed, they result in inter-atomic crevices and buried pockets of high dielectric 

which are too small for a solvent molecule to occupy.[18, 76, 95]  It was originally postulated 

that the consequences of these regions, henceforth called interstitial high dielectrics, would be 

minimal and that either a MS or an atom-centered surface definition should be physically and 

theoretically equivalent,[28, 96] but more recent work has suggested that atom-centered 

surfaces are physically flawed.[18, 95] Nevertheless, implicit solvent models based on 

unmodified atom-centered dielectric functions are becoming increasingly popular in the 

biophysical community.[28, 29, 78, 96-98]    

Here we report results showing that atom-centered surfaces create interstitial high 

dielectric regions of significant magnitude in globular proteins, increase solvation energies, and 

distort the free energy surface of non-bonded interactions.   Although similar results are 

expected for most atom-centered smoothed dielectric boundaries, we focus on the spline 
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surfaces (SS) introduced by Im et al. [29]  and implemented in the Adaptive Poisson-Boltzmann 

Solver (APBS),[49] the PBEQ module in CHARMM,[79] and the GBSW model.[97]  

5.2  Methods  

 The protein surface and energy calculations were performed with APBS 0.3.2 using a 

grid resolution of 0.2 Å.  To facilitate comparison between the different dielectric boundaries, 

we have chosen to use the Nina et al. optimized radii to define the van der Waals surface 

(vdWS), MS, and SS.[70, 71]  For the results with different surface definitions to be 

comparable, the radii must be rescaled for the MS and particularly for the SS; we have 

performed the recommended rescaling. To check that results were not specific to Nina et al. 

radii, they were verified with AMBER optimized radii,[99] parm22 radii,[79] and Bondi 

radii.[90]   The latter two were augmented by the spline window width (w = 0.3 Å) for the SS: a 

generic but very reasonable scaling.    APBS versions 0.3.2 and earlier have a flaw in the MS 

algorithm that, in our testing, overestimates MS volumes by 2-5% and underestimates solvation 

energies by 1-3%.   Results shown here were calculated with a modified algorithm that corrects 

this problem.  The energy calculations were performed with zero bulk ionic strength, a 

temperature of 300 K, a solvent dielectric of 80, a solute dielectric of 1 and charges from the 

CHARMM22 all hydrogen force field in accordance with the radii.   

Implicit solvent potentials of mean force (PMFs) for hydrogen bond formation were 

calculated by combining solvation, coulomb and vdW energies.  PB solvation energies were 

calculated with APBS and the same parameters as used for protein solvation energies except for 

a finer grid resolution of 0.1 Å.   GBMV and GBSW solvation energies, coulombic energies and 

vdW energies were calculated with CHARMM 31a1.  AMBER GB solvation energies were 

calculated using the igb=1 model in AMBER 8. Because AMBER GB models are not 
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compatible with atoms having zero radius, the hydrogen radii were increased to 0.8 Å. This 

made the outer surfaces of the hydrogen atoms approximately coincident with the surfaces of 

the atoms to which they were bound. The explicit solvent PMFs were calculated by WHAM 

from results of umbrella sampling in TIP3P solvent. Umbrella sampling was carried out using 

the PMEMD module of sander, modified to apply harmonic restraints to only the y and z 

coordinates of the peptides. Due to the use of different force fields for implicit and explicit 

solvent measurements, no quantitative comparison should be made. However, explicit solvent 

potentials calculated with the CHARMM force field have the same general shape.[100] 

5.3  Results and Discussion  

 To probe the magnitude of interstitial high dielectric regions in globular proteins we 

compared the solute volumes generated by vdWS, MS, and SS.  Figure 5.1 shows the MS and 

SS dielectric values on a plane intersecting a structure of Intestinal Fatty Acid Binding Protein 

(IFABP) taken from a molecular dynamics (MD) simulation.  Although MD conformations 

might be expected to contain more interstitial high dielectrics than NMR or crystal structures, 

surprisingly similar plots were obtained for all the systems in Table 5.1.  The solute volumes, 

reported in Table 5.1, show a consistent trend across all 6 structures: substantial interstitial high 

dielectrics with the SS definition. Within the MS volume the SS renders 65 – 262 Å3 of 

interstitial high dielectric space with a value of 80 and an additional 502 - 1121 Å3 with values 

over 20.  The total interstitial high dielectric space ranges from 12% for the crystal structures to 

15% for the NMR and MD structures.  The quantitative effects of these regions on electrostatic 

solvation energies are shown in Table 5.2; SS energies are overestimated by 11 – 21%, only 

slightly less than the overestimation by vdWS.   
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The volume and dielectric value of the interstitial spaces created by the SS can be 

decreased by using a larger spline smoothing window for SS or longer Gaussian tails for 

Gaussian surfaces, but interstitial high dielectrics can not be eliminated altogether.[28]  

Unfortunately, this overestimates the size of solvent exposed atoms and creates unphysical 

bulges around overlapping and adjacent atoms.[95]   These expanded dielectric boundaries yield 

solvation energies and forces that are severely underestimated.  For example when a spline 

window of 1.0 Å is applied to the systems in Table 5.1, interstitial high dielectrics with ε > 20 

are essentially eliminated, but the volume of lowered dielectric outside the MS is increased 

dramatically and the solvation energies are underestimated by 35% to 48%.  This over or under-

estimation of solvation energies by SS has also been reported by Lee et al.6 who used hybrid 

explicit/implicit solvation energies to test various continuum surface definitions.     

 

Figure 5.1: Dielectric maps of IFABP.  Dielectric values on a plane intersecting IFABP for the 
vdWS (A), SS (B) and MS (C).  Red regions have ε =1, blue have ε = 80 and white regions have 
intermediate dielectric values. The location of the intersecting plane is shown in (D).   
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Table 5.2: Electrostatic solvation energies (kcal/mol) for different surface 
definitions.  The SS yields energies much larger than the MS and similar to the 
vdWS.  Percentages of vdWS and SS overestimation relative to the MS energies are 
given in parenthesis. 

 
 

 While the ability to calculate atomic forces in a PB model is an important advance, 

such forces can have useful application only if the potential they are derived from accurately 

represents the physics of the system.  In particular, solvation models employed in dynamical 

simulations must be capable of accurately calculating high energy as well as low energy 

conformations. Therefore, dynamics may constitute a more demanding test of a solvation model 

than calculating solvation energies of static structures, which tend to be dominated by low 

energy configurations of atoms. 

 Hydrogen bonds are of particular interest in simulations of biomolecules; since 

solvation effects make a large contribution to these interactions, the PMF for the separation of a 

hydrogen bond can be used as a test of the quality of a solvation model.  The PMF of hydrogen 

bonding between the delta hydrogen and the epsilon nitrogen of two delta protonated histidines 

calculated with a variety of solvation methods is shown in Figure 5.2.   Both PB and GB results 

based on a MS dielectric boundary faithfully represent the important features of the explicit 

solvent PMF: a narrow minimum and a significant barrier to separation of the hydrogen bond. 

The energetic barrier in the MS PMFs comes about because the electrostatic energy rises rapidly 

as soon as the hydrogen bond participants are separated, but the solvation energy does not 

substantially increase in magnitude (become more negative) until the bond is sufficiently 
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separated that the solvent probe will fit between the participants. The SS based implicit solvent 

models have good performance near the minimum and at long distances, but fail to capture the 

appropriate energetic barrier. At the separation where the MS PMF energy peaks, the SS has 

large interstitial high dielectrics, which result in a more negative solvation energy. This 

produces an artifactual minimum -- or in less extreme cases, a shoulder – near a location where 

the PMF should have a maximum. Discrepancies between MS and SS PMFs are most dramatic 

for interactions between sterically bulky groups, where the magnitude of the interstitial high 

dielectrics is largest, but are observed to a greater or lesser degree across a variety of hydrogen 

bond and salt bridge systems as shown in figures 5.3 through 5.6. AMBER (igb=1) GB results, 

based on the model of Hawkins, Cramer and Truhlar[101], illustrate that the lack of a barrier to 

separation is a general feature of implicit solvent models that allow interstitial high dielectrics. 

In comparison to the SS results, the AMBER GB PMF is somewhat broader near the minimum, 

but is smoother and avoids the second minimum seen in the SS PMF. For simplicity, apolar 

solvation contributions have been ignored in the implicit solvent PMFs presented here. A 

traditional surface area apolar term changes the depth of the minimum, but has no appreciable 

effect on the discrepancies between MS and SS PMFs. 
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Figure 5.2: PMF for the illustrated histidine-histidine hydrogen bond.  Distances 
are measured between the hydrogen and nitrogen atoms participating in the bond.  
Spline-based dielectric boundaries fail to capture the free energy barrier to 
hydrogen bond separation because they allow interstitial high dielectrics near the 
hydrogen bond as it is separated. 

 
Figure 5.3: PMF for the illustrated asparagine-asparagine hydrogen bond. 
Distances are measured between the hydrogen and oxygen atoms participating in 
the bond. 
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Figure 5.4:  PMF for the illustrated asparagine-asparagine hydrogen bond, which 
is similar to that seen in Figure 5.3, but with one of the bonding partners rotated 
180 degrees about the axis of the hydrogen bond. Distances are measured 
between the hydrogen and oxygen atoms participating in the bond. 

 
Figure 5.5: PMF for the illustrated arginine-aspartate salt bridge. Distances are 
measured between the hydrogen and oxygen atoms participating in the bond. 
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Figure 5.6:  PMF for the hydrogen bonding between alanine backbones atoms. 
Distances are measured between the hydrogen and oxygen atoms participating in 
the bond. 

 

5.4 Conclusions  

 The introduction of atom-centered dielectric functions has been a significant advance 

for PB force calculations.  They can be analytically defined and easily smoothed allowing for 

numerical stability and increased efficiency.  However, this paper demonstrates that atom-

centered surfaces produce large volumes of interstitial high dielectrics in globular proteins 

which artificially overestimate solvation energies and distort the free energy profile of non-

bonded interactions such as hydrogen bonds and salt bridges.  Dynamical simulations conducted 

using these dielectric boundaries will sample incorrect conformational ensembles.  These 

findings suggest that although the optimal surface definition should be smooth and 

differentiable it should also exclude interstitial high dielectrics as the MS does.   Dielectric 
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boundaries that address this issue, such as those proposed by Luo et al.[76], and Lee et al.[95] 

will be critical for further improvement of PB and GB models.  

 

This chapter is a reprint in full of material that appeared in Limitations of atom-centered 

dielectric functions in implicit solvent models. Jessica M.J. Swanson, John Mongan and J. 

Andrew McCammon. Journal of Physical Chemistry B, 109(31) 14769-14772, August 2005. I 

was the primary researcher and author of this work. 
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Chapter Six 

Optimizing the Poisson Dielectric Boundary with Explicit Solvent 

Forces: Lessons Learned with Atom-Centered Dielectric Functions 

ABSTRACT 

Implicit solvent models rely on system- and/or atom-specific parameters which have been 

optimized to accurately reproduce solvation energies obtained from experiments or more 

detailed explicit solvent simulations.  Models based on the Poisson or Poisson-Boltzmann 

equation are particularly sensitive to the nature and location of the boundary which separates the 

low dielectric solute from the high dielectric solvent.  Here we present a novel method for 

optimizing the solute radii, which define the dielectric boundary, based on explicit solvent 

forces and charging free energies.  We use this method to optimize radii for protein systems 

defined by AMBER ff99 partial charges and a spline-smoothed solute surface.  The spline-

smoothed surface is an atom-centered dielectric function which was introduced by Im and co-

workers for stable and efficient force calculations.   We explore the relative performance of 

radii optimized with forces alone and those optimized with forces and energies.  Our radii 

reproduce the explicit solvent forces and energies more accurately than four other parameter 

sets commonly used in conjunction with the AMBER force field, each of which has been 

appropriately scaled for use with spline-smoothed surfaces.  Finally, we show that spline-

smoothed surfaces show surprising accuracy for small, compact systems, but may have 

limitations for highly-solvated protein systems.  The presented optimization method is efficient 
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and applicable to any system with explicit solvent parameters.  It can be used to determine the 

optimal continuum parameters when experimental solvation energies are unavailable and the 

computational costs of explicit solvent charging free energies are prohibitive. 

 

6.1 Introduction  

Properly accounting for solvation effects is a long-standing and constantly evolving 

challenge in computational biophysics.  Both the dynamic and thermodynamic properties of a 

solvated molecule are strongly influenced by the microscopic structure and organization of the 

water that surrounds it.  Predicting solvation free energies and forces accurately across different 

chemical architectures requires a formalism that collectively accounts for electrostatic, 

nonelectrostatic, and specific (e.g. hydrogen bonding) solute-solvent interactions.  Microscopic 

formalisms treat these interactions explicitly with an atomistic representation of water.  

Macroscopic formalisms offer a less physically accurate but more computationally efficient 

approach: they replace individual molecular interactions with an implicit representation of 

water, most often as a linearly polarizable continuum.[23]  The efficiency of implicit solvent 

models makes them ideal for large systems and computationally expensive problems such as 

extensive conformational sampling or high throughput analyses.  The lack of physical accuracy 

can be compensated by parameterization, e.g. fitting Born radii to solvation free energies,[24, 

25]  which generally results in more accurate quantitative predictions for specific solutes but 

questionable transferability between solutes and solute conformations.   

Most implicit solvent models divide the solvation free energy into polar and nonpolar 

contributions, np
solv

p
solvsolv GGG Δ+Δ=Δ .  This division is rigorously based on a thermodynamic 
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cycle (Figure 6.1A) in which the solute charges are turned off in vacuum ( chg
vacΔG− ), the neutral 

solute cavity is solvated ( np
solvΔG ), and the solute is recharged in the solvent environment 

( chg
aqΔG ).  The nonpolar contribution, due to hydrophobic and dispersion interactions, is 

commonly, though inadequately[30, 31], treated with a solvent accessible surface area (SASA) 

model.[16, 17, 32]  Improvements on this model include independently accounting for 

dispersion contributions[30] and, more recently, including a term proportional to the solvent 

volume in addition that proportional to surface area.[31]  
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Figure 6.1: Solvation thermondynamic cycle in which solvation occurs in three path-dependent 
phases and according to which the total solvation free energy, solvΔG  , is decomposed into polar, 

p np
solv solv solvG G GΔ = Δ + Δ  , and nonpolar, np

solvΔG  , contributions.  (A) Depicts to parallel plates 
separated 5.0 Ǻ.  The hydrophobic forces for the neutral plates are greater than the attractive 
dispersion forces such that the region between the neutral plates is void of water. (B) The same 
plates separated 5.1 Ǻ with dispersion forces that are stronger than the hydrophobic forces such 
that the region between the neutral plates is fully solvated. 

 

The polar contribution is the difference between charging the system in vacuum and the 

solvent environment chg
vac

chg
aq

p
solv ΔΔΔ GGG −= .  It can be approximated in a number of 

ways,[23] but we will focus on methods which solve the Poisson equation,[13, 102, 103]  

)(4)]()([ rrr πρφε −=∇⋅∇ , 
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 for the electrostatic potential of the system, )(rφ , given a position-dependent dielectric 

coefficient, )(rε , and the solute charge distribution, )(rρ .   Solving the electrostatic potential of 

a solute in vacuum, vacφ , and in the solvent environment, aqφ , yields the polar solvation free 

energy, 

[ ]∫ −−= drrrrρG )()()(1/2Δ vacaq
p
solv φφ . 

The parameters which go into both the polar and nonpolar approximations are generally 

optimized against solvation energies from experiment[68] or explicit solvent simulations[31, 

104]. The polar parameters in Poisson calculations include the solute charge distribution and a 

spatially-varying dielectric coefficient.  Energies and forces obtained from the Poisson equation 

are particularly sensitive to the nature and location of the boundary which separates the low 

dielectric solute ( 201−=ε ) from the high dielectric solvent ( 80≅ε ).   

Traditionally, the dielectric boundary has been an abrupt transition from low to high 

dielectric values at the molecular surface, as defined by Lee and Richards[26] or Connolly[27].  

Much work has gone in to optimizing solute radii for molecular surfaces such that implicit 

solvent calculations reproduce accurate solvation energies.[68, 69, 85]  Although molecular 

surfaces work well for most purposes involving static biomolecular structures, they are 

problematic for continuum solvent dynamics simulations because they are computationally 

costly and result in unstable forces which vary rapidly with changes in molecular 

conformation.[28]  These problems can be avoided by defining a smooth dielectric transition at 

the solute surface with overlapping atom-centered polynomial or Gaussian functions.[28, 29]  

One such surface, the spline-smoothed surface introduced by Im et al.[29], shows great potential 

for continuum dynamics due to its smoothness which improves force calculation efficiency and 

numerical stability.  Changing the nature of the dielectric transition, however, also changes its 

optimal location as defined by the solute radii.  The spline-smoothed surface not only has a 
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gradual dielectric transition, it is also fundamentally different from the molecular surface; it 

defines interstitial spaces between atoms as high dielectric solvent as opposed to low dielectric 

solute.  For these reasons, radii appropriate for an abrupt transition at either the van der Waals 

or molecular surface are not appropriate for spline-smoothed surfaces[71]; in fact, they result in 

solvation energies and forces which are overestimated by 10-40%.[78, 99]   

Here we present optimized Poisson radii for protein systems defined by spline-

smoothed surfaces and AMBER ff99 partial charges.[105]   We compare our optimized radii to 

four other commonly-used Poisson parameter sets,[68, 90, 105, 106] each of which has been 

properly scaled for spline-smoothed surfaces.  We explore the effects of atom-centered surface 

definitions on radii optimizations and discuss their limitations in protein systems.  More 

importantly, we present an efficient method for optimizing the Poisson dielectric boundary 

based on explicit solvent simulations.  Following the work of Wagoner and Baker[31, 107], we 

demonstrate how mean atomic solvation forces can be used in addition to molecular solvation 

energies to optimize the solute radii for a given partial charge set and surface definition.  This 

approach is closely related to force-matching techniques used in multiscale models[108, 109] 

and provides atomically-detailed information about the performance of implicit solvent models.  

It is significantly more efficient than previous optimization schemes which have relied on either 

experimental solvation free energies[68, 69, 106, 110, 111] or explicit solvent charging free 

energies.[70, 71, 85, 99]  Finally, this parameterization approach can be applied to large, 

unusual, or highly charged solutes for which solvation energies are unavailable and charging 

free energies are computationally expensive.   

Wagoner and Baker used nonpolar solvation forces from explicit solvent simulations to 

successfully optimize nonpolar implicit solvent parameters which are useful in the prediction of 

solvation forces and energies.[112]  In the present work, we compare Poisson radii that have 

been optimized with forces alone to those optimized with forces and energies, showing that the 
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latter are superior when both forces and energies are important.  Combining these polar 

parameters with the recently developed and complimentary nonpolar parameters[112] should 

greatly increase the accuracy of the Poisson-based implicit solvent framework for protein 

systems.  

6.2 Theory  

As described by Roux and Simonson,[23] the statistical mechanics formalism for 

implicit solvent models begins with the potential energy of a solute in an aqueous medium 

decomposed into 

  ),()()(),( YXUYUXUYXUTOT ++= , 6.1 

where X and Y are the solute and solvent degrees of freedom, respectively, )(XU  is the 

intramolecular solute potential, )(YU is the solvent-solvent potential, and Y)U(X,  is the 

solute-solvent potential.  The system’s free energy is 

 ( )∫∫ ++−=− )],()()([ln),( YXUYUXUdYedXYXG ββ . 6.2 

where β=(kBT)-1 is the inverse thermal energy.  Equation. 6.2 can be used to derive a potential of 

mean force, W(X), in the usual way[3, 23]: 

 ∫
∫

−

++−
− =

dYe

dYe
e

YU

YXUYUXU
XW

)]([

)],()()([
)(

β

β
β

, 6.3 

 

Note that the integral of )( XWe β−  over the solute degrees of freedom gives solvGe Δ−β  where 

solvΔG  is the solvation free energy.  Choosing the unsolvated solute as the reference state, the 

solvation free energy of a particular solute conformation X is )()()(Δ XUXWXW −= .  To 
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decompose the solvation free energy into polar and nonpolar terms, one must first express the 

solute-solvent potential as a sum of polar and nonpolar 

contributions[23], ),(),(),( npp YXUYXUYXU += , such that 

 )(Δ)(Δ)(Δ pnp XWXWXW += , 6.4 

 ∫
∫
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− =
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∫
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These contributions can be calculated in two successive stages of a free energy perturbation or 

thermodynamic integration[6] according to 

  
0)2(λ1

np1

0
1

np

λ
),(λ)(Δ

=
∂

∂
= ∫

YXUdXW
 and 6.7

  

 
1)1(λ2

p1

0
2

p

λ
),(λ)(Δ

=
∂

∂
= ∫

YXUdXW
, 6.8 

where 1λ  and 2λ  are coupling parameters that scale the nonpolar and polar solvent-solute 

interactions from 0 (off) to 1 (on).  The polar contribution is therefore a ‘charging free energy’, 

but is often referred to as the polar solvation free energy.  The mean forces can be obtained by 

differentiation of )(XW with respect to the solute coordinates[23], X, 
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where np…  and p… denote the ensemble averages with nonpolar only and full (nonpolar 

and polar) solute-solvent interactions, respectively.  In this work we will focus on polar 

contributions, pp
solv( )W X GΔ ≡ Δ  and pp ( )F X F≡ .  A similar treatment of nonpolar 

contributions has been presented by Wagoner et al.[107] 

It is important to emphasize that the decomposition expressed in equations. 6.4-6.6 

describes the process of solvation as the second and third phases of the path dependent 

thermodynamic cycle shown in Figure 6.1.  The coupling that exists between polar and nonpolar 

(i.e., hydrophobic and dispersion) interactions (see Dzubiella et al.[113, 114]  for discussion) is 

not explicitly defined in this thermodynamic cycle, but is implicitly included in the charging 

phase, 
chg
aqΔG .  The magnitude of this coupling is extremely sensitive to the molecular makeup 

and conformation of the system.  Consider, as an extreme example, a very small conformational 

change in a system composed of two parallel plates separated by fixed distances of 5.0 Ǻ and 

5.1 Ǻ as depicted in Figure 6.1.  The dispersion forces during phase 2, 
np
solvΔG , will be much 

greater for system (B) than system (A).  Similarly, the change in the dispersion forces during 

phase 3, 
chg
aqΔG , will be significantly less for system (B) than system (A).  The polar and 

nonpolar parameters that would reproduce these phenomena would be very different for the two 

systems, despite their similarity.  This illustrates that it is not possible to define a set of 

independent polar and nonpolar parameters that will be accurate across widely disparate 



84 

 

molecular systems or for all system conformations.  Fortunately, biomolecular systems are 

predominantly composed of similar subunits (e.g. amino and nucleic acids) with significant 

solute-solvent dispersion interactions; thus, conformational changes will rarely result in such 

extreme changes in the solvation structure and density surrounding biomolecules.   

It has been shown that optimizing complimentary polar and nonpolar parameters in a 

system- and/or atom-dependent manner can result in fairly accurate, though sometimes system-

dependent, solvation frameworks.[68, 110, 111]   The SMx models, for example, can predict 

solvation free energies for neutral molecules with errors less than 1 kcal/mol and have shown 

recent success in treating charged solutes and ions with the addition of an explicit water 

molecule.[110, 111]  The goal of the present work is to fit the polar solvation energies and 

forces calculated with the Poisson equation to those calculated with explicit solvent simulations 

and thereby optimize a set of radii to define the Poisson spline-smoothed dielectric boundary for 

protein systems.  Combining these polar parameters with the nonpolar parameters recently 

developed by Wagoner and Baker[112] should greatly increase the accuracy of the Poisson-

based implicit solvent framework for protein systems.  

6.3 Methods  

The force-based optimizations involve three steps, described in more detail below.  

First, explicit solvent forces are collected for each solute in the training set in one or more fixed 

conformations.  Next, the continuum calculations are set up such that energies and forces are 

well converged, i.e. independent of grid resolution, boundary conditions, etc.  Finally, the 

Poisson atomic radii are optimized to reproduce the explicit solvent forces.    Optimizations 

using both energies and forces additionally require calculating explicit solvent charging free 

energies with thermodynamic integration or free energy perturbation simulations as previously 

reported.[99] 
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6.3.1 Training Sets  

To test the limitations of our methodology, we began by optimizing each atomic radius 

in three non-zwiterionic N-acetyl-X-N’-methylamide dipeptides, where X represents alanine 

with phi/psi angles 180°/180° (ala1), alanine with phi/psi angles -60°/-40° (ala2), and serine 

with phi/psi angles 180°/180° (ser).  As previously described,[99] using simple PARSE- or 

Bondi- or AMBER vdW-like atom types limits the accuracy of our parameter set due to 

significant differences in the solvation structures, energies, and forces for atoms within these 

type groups.  Therefore, we used 31 ‘atom types’ or radius groups (Table 6.2) which were 

previously identified as having similar chemical signatures and surrounding solvation structures 

according to explicit solvent charge distribution functions.[99]  The importance each group was 

further tested based on final optimization fitness values and unique optimal solutions.  

The training and test sets are summarized in Table 6.1.  Two model systems were used 

in our force-based optimizations.  The first was 2 conformations of intestinal fatty acid binding 

protein (IFABP) representing highly populated conformational clusters from a prior fully-

equilibrated explicit solvent simulation.[78]  The second was two short polypeptide chains: 

Trpcage (1l2y)[92] and the C-terminal fragment (residues 41-56) of protein G (2gb1)[93], 

hereafter called G-peptide.  The energy and force-based optimizations additionally used the 

explicit solvent charging free energies of 20 N-acetyl-X-N’-methylamide dipeptides where X 

represents each of the amino acids (phi/psi angles 180°/180°) and 7 polyalanine peptides with 

common secondary structures (3 beta turns, 2 helices, and 2 beta hairpins).  Each of the 

polyalanine peptides was modeled from fragments of lysozyme (pdb code 1ati) or crambin (pdb 

code 1ejg) which were mutated to polyalanine and capped with neutral blocking groups.  The 

specific peptide conformations and explicit solvent charging free energies were previously 

reported.[99] 
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Table 6.1:  Solutes used to training and test sets   
Training Sets Additional Test Sets
Solute[s] Quantity Trained Radii Solute[s] Quantity
IFABP conformations 1 & 2 forces force optimized 1 IFABP conformations 3-8 forces
Trpcage & G-peptide forces force optimized 2 20 dipeptides conformation 2 energies
Trpcage & G-peptide forces force-energy optimized poly-alanine peptides 8-12 energies
20 dipeptides conformation 1 energies force-energy optimized 4 protein-like peptides energies
poly-alanine peptides 1-7 energies force-energy optimized  

6.3.2 Testing Sets  

To see if the optimized radii are transferable to molecules outside of the training set, we 

used the forces and solvation energies of the opposing test systems as well as the solvation 

energies of the following molecules: Trpcage, G-peptide, 2 additional protein-like polypeptides, 

5 new polyalanine peptides, and 20 amino acid dipeptides in a new side chain and backbone 

conformation (phi/psi angles -60°/-40°).[99]  We also used the forces of IFABP in 6 new 

conformations.  The relative RMSD values for all 8 IFABP structures ranged from 1.2 – 2.2 

Ǻ.[78]  All of the aforementioned systems were used to compare the optimized radii to 4 other 

continuum parameter sets: AMBER ff99 partial charges combined with ff99 van der Waals 

(vdW) radii,[105] Bondi radii,[90] and a set of radii recently published by Luo et al.,[106]  as 

well as the PARSE parameters (charges and radii).[68]  Each of the comparison parameter sets 

was scaled for use with spline-smoothed surfaces as described below.  

6.3.3 Explicit Solvent Forces 

As shown in equation. 6.10, the polar solvation forces are calculated by subtracting the 

nonpolar solvation forces from the total forces, ( nppnpp FFF −= + ).  The nonpolar forces are 

averaged from an ensemble generated with only nonpolar (vdW) solute-solvent interactions, 

while the total forces are averaged from an ensemble generated with both polar (electrostatic) 

and nonpolar solvent-solute interactions  Thus, polar forces require two simulations, one with 
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all solute-solvent interactions and one with only nonpolar interactions (i.e., solute charges set to 

zero).   

The IFABP simulations were performed, as previously reported,[31] with the AMBER 

ff99[105] force field using AMBER 7 software.[115]  Eight conformations were obtained by 

clustering a 2.5 ns simulation which started from an NMR structure (pdb code 1ael)[116] and 

was run in TIP3P water in the presence of ~160 mM NaCl at 300K and 1 atm pressure.  Each 

conformation was then constrained via belly dynamics and simulated for 1.05 ns with SHAKE 

enabled 2 fs time steps under isobaric-isothermal conditions.  The forces for conformations 3-6 

were averaged from 250 snapshots taken every 4 ps from the last 1 ns of simulation.  The 

simulations of conformations 1 and 2 were extended an additional 4 ns and forces were 

averaged from 1000 snapshots taken every 4 ps from the last 4 ns of simulation.  The average 

squared residual for forces from 1 and 5 ns was 0.08556 kcal/mol Ǻ.  

Trpcage, G-peptide, and the three dipeptides (ala1, ala2, ser) were simulated with the 

AMBER ff99 converted to CHARMM format and the CHARMM software (version 31a1).[79]  

The solutes were protonated and solvated in a sphere of TIP3P water molecules that extended 

10.0Ǻ beyond the solute resulting in 3-4 hydration shells. The spherical solvent boundary 

potential including Kirkwood’s multipolar expansion reaction field was used to approximate the 

influence of bulk water beyond the explicit water sphere.[84]  This model was previously used 

in the free energy perturbation simulations to calculate charging free energies[99] because it 

alleviates difficulties that result from perturbing charged systems with periodic boundary 

conditions.  It was chosen here for consistency with the molecular charging free energies.  It has 

been shown to give reliable results for proteins, nucleic acids, and small molecules.[23, 73, 85]  

All solute atoms were restrained to their original coordinates. The solvent was first energy 

minimized with 50 steps of steepest descent followed by 1000 steps of the ABNR method and 

then equilibrated for 200 ps.  Langevin dynamics were employed at constant temperature (300 
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K) using SHAKE enabled 2 fs time steps, infinite cutoffs for nonbonded interactions, and a 

friction constant corresponding to a relaxation time of 5 ps applied to water oxygen atoms.  

The peptide forces were averaged from snapshots taken every 0.2 ps over 500 ps of pre-

equilibrated simulation for a total of 2500 conformations.  Comparing forces from the first 200 

ps with those from the full 500 ps resulted in a root mean square deviation ( pRMSD_F ) of 

0.187 kcal/mol Ǻ and an average relative error of 0.0884 kcal/mol Ǻ, demonstrating reasonable 

convergence after only 200 ps.  Comparing duplicate 500 ps simulations of the dipeptides 

dropped pRMSD_F  to 0.05-0.09 kcal/mol Ǻ, which was considered sufficient convergence.  

Since the IFABP and peptide systems were being used in independent optimizations, any small 

differences that may have resulted from different simulation protocols were not a major 

concern. 

6.3.4 Implicit Solvent Forces  

All implicit solvent energies and forces were calculated with the Adaptive Poisson-

Boltzmann Solver (APBS; http://apbs.sf.net/) version 0.4.0.[49]  APBS employs the analytical 

force evaluation method of Im. et al.[29]  In order to maintain numerical stability, the transition 

between high and low dielectric regions must be gradual; thus, the solute surface proposed by 

Im et al. and used in APBS is defined by atom-centered cubic polynomials.  The resulting total 

solvation force is composed of three terms: a reaction field force due to interaction of the solute 

charge with the total electric field, a dielectric boundary force due to spatial variation in the 

dielectric function, and an ionic boundary force for systems with ions.  The last term was zero 

in this study since we used zero bulk ionic strength.  The abruptness of the transition between 

the solute and solvent values in these spline-smoothed surfaces is controlled by the spline 

window width, w, a user defined parameter in APBS.  We optimized our radii with the 

http://apbs.sf.net/
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recommended value, w = 0.3 Ǻ.  We additionally scaled these radii for spline windows 0.2 Ǻ ≤ 

w ≤ 1.0 Ǻ with both force and force-energy based genetic algorithm optimizations (as described 

below).  We solved the Poisson equation at a temperature of 300 K with the multiple Debye-

Hückel sphere boundary condition, and cubic B-spline charge discretization.  We used the 

experimental solvent dielectric of 78.4.  Calculations run with the PARSE parameters used a 

solute dielectric of 2.0 in agreement with their original development.[68]  All other calculations 

used a solute dielectric of 1.0, which is appropriate for calculations which explicitly sample 

solute conformations and desirable for consistency with nonpolarizable force fields.  It is 

important to ensure that the chosen continuum parameters, particularly the grid parameters, are 

appropriate for energetic and force convergence.  We did so by comparing the energies and 

forces calculated with successively-finer grids (down to 0.10 Ǻ), requiring the relative errors to 

be less than 0.5%.  Our final grids had resolutions of either 0.2 Ǻ or 0.25 Ǻ depending on the 

solute, and dimensions which extended beyond the solute by 35% of its length in each 

dimension. 

6.3.5 Genetic Algorithm Optimizations  

We used a genetic algorithm to optimize the radii from various starting values 

(AMBER ff99 vdW, Bondi, and our previously published smooth boundary radii[99]) to their 

final values.  Populations of 50 solutions were run for 10 to 100 generations.  The initial 

populations were generated from a uniform distribution which varied from 0.1 Ǻ to 0.3 Ǻ 

around the starting values, depending on the optimization.  The fitness of each solution was 

evaluated and the next population was generated via selection, crossover and mutation. 

Selections were based on the Stochastic Universal Sampling algorithm,[88] which selects 

solutions based on a probability proportional to their fitness,  
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where pi is the probability that solution i will be selected and fi is its fitness defined by, 

 ( ) 1p
ii RMSD_1f −

+= F , 6.12 

where pRMSD_F  is the standard deviation of all 3N force components in an N-atom system 

for the radii solution set, i. The fitness scores range from 0 (poor) to 1 (perfect).  A uniform 

crossover process in which two solutions from the previous generation were randomly 

distributed to two new solutions was applied to either 80% or 90% of the population, while 

mutations selected from a Gaussian distribution with standard deviations which ranged from 

±0.025 Ǻ to ±0.1 Ǻ were applied to anywhere from 5% to 30%.  The various different crossover 

and mutation values were tested to ensure that the final solutions were not an artifact of limiting 

genetic algorithm run parameters. This process was repeated until a desired fitness is reached or 

the maximum number of generations exceeded. 

    As we will demonstrate, accurately fit solvation forces do not necessarily ensure 

accurate solvation energies.  Thus, we ran a second set of optimizations that incorporated the 

solvation energies of 20 amino acid dipeptides and 7 polyalanine peptides as well as the 

Trpcage and G-peptide solvation forces into the fitness function according to, 

 ( ) 1solv
p_i

p
ii )AAE_ΔRMSD_(2/11f −
++= GF , 6.13 

where pRMSD_F  is the defined as before and solv
p_iAAE_ GΔ  is the average absolute error for 

the 27 solutes’ polar solvation energies for solution set, i.   
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6.3.6  Scaling Radii for Spline-Smoothed Surfaces 

Radii which work well with molecular surfaces will overestimate solvation energies and 

forces by 10-40% when used with spline-smoothed surfaces.[78, 99]  Therefore, a direct 

comparison between the four comparison parameter sets and our optimized radii was not 

possible.  Instead, the optimal scaling factor, x, for each parameter set was determined 

according to Rnew = Rf/fe + x, where Rnew is the new radius and Rf/fe is the force or force-energy-

optimized radius from Table 6.2.  The scaling function was chosen over a function used in 

previous optimizations, Rnew = x(Rf/fe + w), because it resulted in slightly higher final fitness 

values and converged in one to three fewer generations.  Both were used, each with the 

respective optimized radii.  We also scaled our radii for different spline window widths 

according to, Rw = R0.3 + x, where Rw is the new radius for w = 0.2 to 1.0 Ǻ and R0.3 is the w = 

0.3 Ǻ force or force-energy-optimized radius from Table 6.2.   

6.4  Results  

6.4.1  Dipeptide Test Case 

It is important know what degree of accuracy one can expect from the presented 

methodology, i.e., the limitations of force and force-energy based optimizations.  To address 

this question, we generated “perfect (Poisson) radii”[117] by optimizing every atom’s radius in 

three simple dipeptides, alanine in two different conformations (ala1, ala2) and serine (ser).  We 

used both the force and the force-energy based approaches (equations. 6.11 and 6.12, 

respectively).  To ensure that the results were independent of the genetic algorithm run and 

parameters, the optimizations were repeated 30 times varying the initial population distribution 

from ± 0.1 to 0.4 Ǻ, the mutation distribution from +/- 0.025 to 0.1 Ǻ, and the mutation ratio 

from 0.05 to 0.4 (i.e., mutations were applied to 5% to 40% of the solutions in the next 

generation).  The resulting force and polar solvation energy statistics (shown in Table 6.1) 

demonstrate errors that are larger than the inherent errors in the explicit and implicit 
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calculations.  The explicit solvation energy and force errors were 
solv
pGΔΔ ≈ 0.02-0.17 kcal/mol 

and 
pRMSD_F  ≈ 0.05-0.09 kcal/mol Ǻ, respectively, while the continuum were 

solv
pGΔΔ ≈ 

0.03 kcal/mol and 
pRMSD_F  ≈ 0.05 kcal/mol Ǻ.   

 

Table 6.1: Individually-optimized radii solvation energy and force 
results for ala1, ala2, and ser.   

ala1 -1.753 (0.290) 0.147 (0.009) 0.000 (0.005) 0.244 (0.025)
ala2 -1.594 (0.336) 0.358 (0.013) 0.152 (0.073) 0.432 (0.026)
ser -3.314 (0.247) 0.344 (0.020) -1.633 (0.164) 0.333 (0.046)

ala1 -1.865 (0.359) 0.302 (0.009) -0.054 (0.103) 0.287 (0.020)
ala2 -1.906 (0.265) 0.160 (0.003) -0.001 (0.005) 0.322 (0.046)
ser -3.810 (0.391) 0.412 (0.011) -1.820 (0.168) 0.342 (0.027)

ala1 -0.603 (0.210) 0.291 (0.036) 1.476 (0.171) 0.422 (0.027)
ala2 -0.450 (0.209) 0.390 (0.009) 1.603 (0.148) 0.616 (0.024)
ser -2.420 (0.233) 0.200 (0.009) 0.000 (0.002) 0.418 (0.025)

ala1 0.376 0.262 0.217 0.265
ala2 0.569 0.444 0.449 0.476
ser -0.831 0.560 -0.842 0.598

force optimized force-energy optimized

force optimized radii force-energy optimized radii

ser radii ser radii

ΔΔGsolv
a RMSD_F b ΔΔGsolv

a RMSD_F b

force optimized force-energy optimized

force optimized force-energy optimized

ala1 radii ala1 radii

ΔΔGsolv
a RMSD_F b ΔΔGsolv

a RMSD_F b

ΔΔGsolv
c RMSD_F d ΔΔGsolv

c RMSD_F d

ala2 radii ala2 radii

ΔΔGsolv
a RMSD_F b ΔΔGsolv

a RMSD_F b

 

a) The average solvation energy deviation [kcal/mol] and (b) average force RMSD 
[kcal/mol Ǻ] for three dipeptides using individually force and force-energy-optimized 
radii.  Statistics collected from 30 independent genetic algorithm optimizations.  Standard 
deviations given in parentheses.  c) The solvation energy deviation [kcal/mol] and (d) force 
RMSD [kcal/mol Ǻ] for the three dipeptides using the force and force-energy-optimized 
radii presented in Table 6.2. 

 

There are five key points to take away from this example.  First, the genetic algorithm 

solution phase space is highly frustrated.  The majority of optimizations generated similar but 

unique solutions, indicating that there are multiple solutions with similar fitness even for simple 
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molecules with independently fit radii.  Second, the explicit solvent forces can not be perfectly 

reproduced.  Whether this discrepancy is caused by the limited dielectric definition (i.e., the 

union of spline-smoothed spheres) or limitations in Poisson equation itself (i.e., the assumption 

of linear and local solvent response) is not clear.  It is our expectation that all of these 

limitations factor in, but that the limited dielectric definition is a major source of error.  This 

puts the limit of accuracy for implicit solvent forces calculated with this surface at pRMSD_F  

>
�

 0.15 kcal/mol Ǻ.  Third, each solute molecule is unique.  When the force-optimized radii for 

serine are used on alanine or vice-versa, the average pRMSD_F  increases from 0.15–0.20 to 

0.29-0.41 kcal/mol Ǻ.  Similarly, when the force-energy-optimized radii are switched, the 

average solv
pGΔΔ  increases from between −0.001 and 0.000 kcal/mol to between −1.820 and 

−0.054 kcal/mol.  This increase indicates that neighboring atoms change the optimal continuum 

radius for any given atom type.  Third, the solute’s conformation is important.  When the radii 

are switched for ala1 and ala2, we observe a similar, though less dramatic, increase in the 

average pRMSD_F  to between 0.30 and 0.36 kcal/mol Ǻ and the average solv
pGΔΔ  to 

between −0.054 and 0.152 kcal/mol.  Although the goal of optimizing radii with multiple 

solutes and conformations is to find a solution set which is transferable, there is no guarantee 

that they will be more accurate than those individually optimized for such similar solutes.  Thus, 

one can expect the limit of accuracy of force-optimized radii used on varying conformations, 

across unique amino acid architectures to be pRMSD_F  ≈ 0.29 kcal/mol Ǻ, and that of force-

energy-optimized radii to be solv
pGΔΔ  ≈ 0.05 kcal/mol.  Our optimized radii show errors just 

above these limits for both forces and solvation energies (Table 6.1).   

As observed by Wagoner and Baker for alkane solvation energies[107], better-fit forces 

do not necessarily translate into better fit solvation energies.  In fact, the solvation energies are 
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overestimated by the individually force-optimized radii by between 0.45 to 3.81 kcal/mol, 

which is 0.073 to 3.433 kcal/mol larger than solvation energy deviations of the force-optimized 

radii presented in Table 6.2.  This apparent contradiction to the theoretical framework presented 

in section II is caused by fundamental differences in the implicit and explicit solvent potentials.  

The relationship presented in Eqn. 10 is exact within a given solvent model, and it can be used 

to fit the implicit potential of mean force to the explicit potential of mean force, as we are 

attempting to do here.  However, fitting the directional derivative (i.e. slope) of the potential of 

mean force from one solvent model to the other does not guarantee that the change in free 

energy will be equally well fit.  In fact, the approximate, at best, agreement between implicit 

and explicit solvent potentials of mean force for salt bridges and hydrogen bonds[100, 118] 

suggests that more accurate forces (slopes) would necessitate less accurate energies ( solv
pGΔ ).  

The results shown in tables 6.1 and 6.3 confirm this expectation. 
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Table 6.2:  Force and force-energy-optimized radii.   

atom namea residues
opt. 
radiib

opt. 
radii.c

Backbone
C all 2.338 2.307
O all 1.766 1.760
N all 2.331 2.348
CA all except G 2.425 2.365
CA G 2.122 2.225
CAY/CAT  ACE,NME 2.022 2.095

Side Chains
CB D,E,C,H,M,F,S,T,W,Y 2.128 2.050
CB A,R,N,Q,I,L,K,V 2.209 2.344
CG* R,Q,I,L,K,M,T,V 2.414 2.492
CG H,F,W,Y 2.147 2.126
CG/CD N,Q,D 2.197 2.232
CG E 2.195 2.275
CB/CG/CD P 2.506 2.311
CD R,K 2.316 2.392
CD* I,L 2.640 2.659
CD*/CE*/CZ H,F,W,Y 2.282 2.319
CE M 1.940 1.976
CZ/CE R,K 2.398 2.360
OD*/OE* N,Q,D,E 1.729 1.729
OG* S,T 1.956 1.979
OH Y 1.871 1.961
NE,NH*,NZ R,K 2.323 2.355
ND2/NE2 N,Q 2.122 2.227
ND1,NE2 H 1.927 1.986
NE1 W 1.880 1.915
SG/SD C,M 2.406 2.420

Hydrogensd

type H bb HN 1.244 1.283
type H bound to N 1.228 1.225
type HO/HS bound to O/S 0.999 0.991
type H1/HP polar 1.905 1.886
type HC/HA nonpolar 1.809 1.774  

a) Radius groups are distinguished by AMBER atom names for all heavy atoms and by 
atom type for hydrogen atoms. b) Final radii [Ǻ] from force-only optimizations. c) Final 
radii [Ǻ] from force-energy optimization. d) Hydrogens specified by atom type with type 
‘H’ divided into two groups; amide backbone ‘HN’ and all other N-bound hydrogens. 

6.4.2  Protein Radii Optimizations 

Similar to the dipeptides, the solution phase space for the force and force-energy based 

optimizations was highly frustrated with many similarly well-fit solutions.  The various 

different starting radii (AMBER ff99 vdW, Bondi, and our previously optimized radii) had no 
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distinguishable effect on the final solutions, but did affect the speed of the optimizations, the 

latter two being the most efficient.  Increasing the number of target values generally decreases 

the frustration in the solution phase-space.  Thus using 3N atomic solvation forces as opposed to 

one solvation energy for an N-atom solute makes the optimization substantially more efficient 

and decreases the likelihood that the final solution is locally trapped far from the global 

minimum.  The force based optimizations reached complete convergence, i.e. the exact same 

solution set was found for 5 consecutive generations, in a single evolution of 20 – 80 

generations.  The force-energy based optimizations never reached complete convergence, but 

converged to a minimum fitness deviation ( 002.0ΔRMSD_ p ≤F ) in 1-2 evolutions of ~ 65 

generations.  Both methods are considerably faster than our previous optimizations which used 

solvation energies alone and took 6 or more evolutions to reach a minimum fitness 

convergence.  

Ideally both continuum forces and energies would be faithfully predicted by a single 

parameter set.  However, the discrepancy in implicit and explicit potentials demonstrated by the 

dipeptides suggests that the accuracy of one or the other must be sacrificed.  This was indeed 

the case for the protein radii as shown in Table 6.3.   The force-optimized radii performed 1.8% 

better on forces than the force-energy-optimized radii. The force-energy-optimized radii 

perform 14.1-17.2% better on polar solvation energies.  Depending on the problem at hand, 

forces or energies may be more important; thus, both sets are presented in Table 6.2.  The force-

energy-optimized radii are recommended when both forces and energies are important. The 

force-optimized radii (column 2) are those from Trpcage and G-peptide optimizations since they 

perform much better than those from IFABP for reasons which we will now explore. 
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6.4.3   Effects of Interstitial High Dielectrics 

The two model systems used in the force based optimizations resulted in strikingly 

different solution sets.  The IFABP radii were 1-10% larger than the Trpcage and G-peptide 

radii, and underestimated solvation energies by 1-26% (Table 6.3).  Close inspection of the 

IFABP atomic forces that were being significantly over and under-estimated revealed the source 

of this discrepancy.  The significant outliers were atoms found proximal to interstitial high 

dielectrics (IHDs).  IHDs are regions which have a higher dielectric value (i.e., are solvent) in 

atom-centered dielectric functions, but a low dielectric value (i.e. are solute) in molecular 

surfaces.  They are too small for an explicit water molecule to penetrate.  The dielectric constant 

in these regions is the same as the solvent’s ( 80≈ε ) in a vdW surface, but can take on a range 

of values ( 801 ≤< ε ) in spline-smoothed surfaces.  Figure 6.2 shows a series of slices through 

the dielectric map of IFABP.  The magnitude of IHDs demonstrated by comparing the 

molecular surface (panel A) and the spline-smoothed surface (panel B) through a single plane of 

intersection, is consistent through the entire structure.  Both surfaces are rendered in panels C 

through E to show just 3 examples of atoms proximal to IHDs with significantly overestimated 

continuum forces (tyr70 OH, glu63 OE1, and glu85 N).  This overestimation occurs regardless 

of the parameter set used to define each atom’s radius; it is 3.6, 5.2, and 2.9 kcal/mol Ǻ, and 

2.8, 3.9, and 3.7 kcal/mol Ǻ for the Trpcage/G-peptide and IFABP force-optimized radii, 

respectively.  Figure 6.3 shows the proportion of forces with large deviations increases with the 

volume of IHDs within 1 Ǻ of the atom’s radial boundary.  The deviation cut-off values were 

chosen just below the pRMSD_F  for IFABP conformations 1 and 2 using the force-optimized 

radii (from Table 6.2).  This trend lends support to the notion that the force deviations are 

related to the formation of IHDs.  Figure 6.4 shows that IFABP has a larger force deviations 

than Trpcage and G-peptide, when defined by either the force-optimized  or scaled Bondi radii.  



98 

 

This illustrates that IHDs introduce errors in the entire protein, not just in proximal atoms.  

Finally, the statistics in Table 6.3 show that IFABP has larger larger pRMSD_F  values for 

each of the tested parameter sets.  
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Figure 6.2:  Dielectric maps of IFABP.  Dielectric values of planes intersecting IFABP in 
which red represents high dielectric (ε =80), blue represents low dielectric (ε =1), and white is 
in between. Comparing the molecular surface (A) and the spline smoothed surface (B) shows 
the magnitude of IHD’s created by the latter.  A top-down view of both surfaces shows that 
IHD’s (purple regions) are proximal to (C) tyr 70 OH, (D) glu63 OE1, and (E) glu 85 N.   
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Figure 6.3: Percentage of IFABP atoms with large force deviations as a 
function of IHD ( 60ε ≥ ) density within 1.0 Ǻ of the atom’s radial 
boundary.  Deviation cutoff values 

 

 
Figure 6.4:  Comparison of expicit solvent and implicit solvent force 
components for IFABP and Trpcage/G-peptide forces showing increased 
distribution of the former.  Bondi radii are in pink (IFAPB) and turquoise 
(Trpcage/G-peptide) while force optimized radii are in red (IFAPB) and dark 
blue(Trpcage/G-peptide). 
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IFABP is a highly solvated protein with a significant number of solvent-exposed 

residues in the “interior” fatty acid binding sites.  Therefore, one might expect it to be more 

susceptible to the formation of IHDs than Trpcage or G-peptide, both of which have small, 

compact structures.  These findings point to a simple explanation for the different force-

optimized solution sets; the IFABP optimized radii were systematically increased to decrease 

the over and under-estimation of forces proximal to IHDs, whereas the Trpcage and G-peptide 

optimized radii were less affected.  As a result, the Trpcage/G-peptide radii perform better on 

polar solvation energies and forces for every tested molecule other than IFABP.  They will be 

more widely applicable to compact systems, but will not compensate for errors resulting from 

excessively large IHDs in globular systems.  In retrospect, we believe that the formation of 

IHDs was also the source of differences between our previously presented abrupt boundary and 

spline-smoothed radii.  The former, fit to molecular surfaces, could not be scaled to perform as 

well on spline-smoothed surfaces as the latter.  Moreover, the latter overestimated solvation 

energies for larger peptide systems because they were fit to small peptides, those least altered by 

the spline-smoothed surfaces.  

It has been suggested that the width of the spline smoothing window can be increased to 

counteract the deleterious effects of IHDs.  Although it is not possible to eliminate them 

completely, their magnitude and dielectric value can be significantly decreased with larger 

smoothing windows.  Unfortunately, this moves the dielectric boundary too far from surface 

atoms and creates unphysical bulges around overlapping and adjacent atoms, both of which 

result in underestimated solvation energies and forces.  If it were possible to distinguish surface 

and buried atoms, then using larger radii or larger smoothing windows on buried atoms would 

significantly reduce the IHDs and related errors.  For most globular systems, however, a clean 

distinction is impossible since many atoms are both exposed and buried.  Thus, more involved 

modifications of the spline-smoothed surfaces, such as those proposed by Lu and Luo[76]. and 
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Lee et al.[95], seem necessary for consistently accurate forces and energies.  Despite these 

limitations, the surprisingly accurate solvation energies and forces in Table 6.3 suggest that 

spline-smoothed surfaces work quite well for reasonably compact systems. 

6.4.4  Comparison to Other Parameter Sets  

Several of the continuum parameter sets commonly used in conjunction with the 

AMBER force field were tested alongside our optimized radii to assess their relative accuracy.  

These included the AMBER ff99 charges combined with ff99 vdW radii,[105] Bondi radii,[90] 

and a set of radii recently published by Luo et al,.[106]  as well as PARSE charges combined 

with two variants of PARSE radii. [68]  As previously mentioned, each set of radii had to be 

scaled for use with the spline-smoothed surfaces.  The scaling factors were determined with 

both force and force-energy based genetic algorithm optimizations in an analogous manner to 

the radii presented in Table 6.2.  With only one parameter to fit, these optimizations converged 

in 1 to 5 generations.  Replica optimizations found the same scaling factors, indicating that the 

results were independent of the run parameters.  
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Table 6.3: Summary of force RMSD’s and solvation energy average absolute errors (AAE’s) 
for optimized radii and comparison parameter sets.  

parametersa
scaling 
factor

trpcage & G-
peptide*b IFABPc

di/poly-ala 
peptides*d

di/poly-ala 
peptidese

Amber-f 0.378 0.870 1.020 4.953 4.719 20.296 7.60%
Amber-fe 0.281 1.055 1.222 1.986 1.873 14.997 6.02%
Parse-f 0.236 1.801 2.438 4.766 6.346 26.608 10.99%
Parse-fe 0.310 1.822 2.178 2.944 3.342 11.213 4.00%
Parse0-f 0.236 1.812 2.456 4.186 4.346 27.778 11.47%
Parse0-fe 0.269 1.816 2.327 3.929 3.342 14.725 6.23%
Bondi-f 0.311 1.216 1.460 3.314 2.356 28.122 11.29%
Bondi-fe 0.373 1.240 1.443 1.088 0.971 7.014 2.99%
Luo-f 0.403 0.923 1.014 5.565 5.173 15.108 5.67%
Luo-fe 0.283 1.150 1.360 1.902 1.949 26.472 10.74%
IFABP Opt-f na 0.750 0.906 4.136 3.799 11.379 4.35%
Optimized-f na 0.656 0.971 1.035 0.832 7.4545 3.00%
Optimized-fe na 0.667 0.978 0.889 0.689 5.9838 2.34%

 RMSD_F  [kcal/mol Ǻ]                  AAE_ΔG solv [kcal/mol]                        

protein peptidesf

 

a) Optimized radii and comparison parameter sets scaled by scaling factor [Ǻ], x, (rnew = rorig + 
x) to fit forces (-f) or forces and energies (-fe). b) Trpcage and G-peptide forces used in force 
and force-energy training sets. c) IFABP forces used in IFABP force optimization training set. 
d) Di- and poly-alanine peptides used in force-energy training set. e) Di- and poly-alanine 
peptides not used in training set. f) Four protein-like peptides not used in training sets. 

 

The two variants of the PARSE parameters differed only in the value of the nonpolar 

hydrogen radius. The first set used 1 Ǻ, as intended in the original publication, while the second 

used 0 Ǻ, the standard value in PARSE parameter implementation.  The first set (RHnp = 1 Ǻ) 

performed marginally better on both forces and energies, validating Sitkoff’s intention for the 

PARSE radii to be the same as the standard Pauling vdW radii (with the exception of hydrogens 

which were decreased from 1.2 Ǻ to 1.0 Ǻ).[68] 

The final results for the scaled radii (Table 6.3) show that the scaling factors for the 

force and force-energy optimizations were significantly different for each of the parameter sets. 

Nevertheless, they followed several trends demonstrated by our optimized radii: the force-

optimized radii performed better on forces and worse on energies than the force-energy radii, 

the spread in deviations for IFABP were larger than those for Trpcage and G-peptide, and the 

solvation energy deviations for the amino acid dipeptides and polyalanine peptides in the test set 
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were of comparable or lesser value to those in the training set.  The only unexpected result was 

the larger solvation energy deviation for the protein-like peptides from the Luo force-energy 

radii than the Luo force radii.  Out of the comparison parameter sets, the AMBER and Luo radii 

performed best on forces while the Bondi radii performed best on solvation energies.  As 

expected, our force and force-energy-optimized radii (presented in Table 6.2) performed better 

on forces and energies than all of the comparison sets. 

 
Figure 6.5:  Solvation energy deviations for training set dipepetides and polyalanine peptides 
using (A) force and force-energy optimized radii, (B) force-energy optimized, Amber ff99, 
Bondi, Luo and PARSE parameters. (C) Same as (B) on test set of dipeptides and polyalanine 
peptides. 

6.4.5 Scaled Radii for Varying Spline Window Widths  

The spline window width used in our optimizations (w = 0.3 Ǻ) will not be optimal for every 

problem or chosen by every user.  We, therefore, scaled our radii for a range of spline window 

widths (w = 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 Ǻ).  Similar to the comparison parameter 

sets, a single scaling factor was determined with both force and force-energy optimizations.  
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forcea force-energyb

0.2 -0.051 -0.057
0.3 0.000 0.000
0.4 0.051 0.054
0.5 0.093 0.103
0.6 0.129 0.147
0.7 0.178 0.188
0.8 0.225 0.226
0.9 0.267 0.258
1.0 0.303 0.287

scaling factor x  [Ǻ]spline width 
w [Ǻ]

The optimizations converged in 1 to 5 generations and replica optimizations found the same 

scaling factors, indicating that the results were independent of the run parameters.  The final 

results are presented in Table 6.4 and plotted in Figure 6.6.  Both the force and force-energy 

scaling values are well fit by quadratic polynomials,  x = -0.0509 w2  + 0.5027 w - 0.1471 and x 

= -0.2036 w2 + 0.6741 w - 0.1836 respectively.  These functions can be used to determine 

scaling values for any spline window width, but widths less than 0.1 Ǻ or larger than 1.1 Ǻ are 

not expected to yield reliable results.  

Table 6.4: Scaling factors for different spline 
window widths for (a) force and (b) force-
energy-optimized radii. 
 
 

 
 

 

 

 

 

 

  
Figure 6.6:  Scaling factors for different spline 
window widths.  The force results (diamonds) are best 
fit by  x = -0.0509 w2  + 0.5027 w - 0.1471 (dashed).  
The force-energy results (stars) are best fit by  x = -
0.2036 w2 + 0.6741 w - 0.1836 (solid).  

 



106 

 

6.5 Conclusions 

We have presented two sets of radii optimized to define spline-smoothed dielectric 

boundaries in Poisson electrostatics calculations on protein systems using AMBER ff99 partial 

charges.  These optimizations were based on explicit solvent simulations, and thus offer forces 

and energies consistent with explicit solvent polar forces and charging free energies.  More 

importantly, we have presented a method of optimizing the Poisson dielectric boundary based 

on atomic forces, which is substantially more efficient and widely applicable than previous 

optimization approaches.  It can be used, for example, on highly charged, large, or unusual 

systems for which experimental solvation energies are unavailable and explicit solvent charging 

free energies are computationally challenging or prohibitive.   

We have shown that optimizations based on forces alone generate radii that reproduce 

forces accurately, but solvation energies less accurately.  Optimizations based on both forces 

and energies, on the other hand, decrease the accuracy of forces minimally and increase 

solvation energy accuracy significantly.  Thus, our force-energy-optimized radii are more 

appropriate than our force-optimized radii when both energies and forces are important.  As 

anticipated, our optimized radii perform better than four other parameter sets commonly used in 

conjunction with the AMBER force field, each of which was scaled for use with spline-

smoothed dielectric boundaries.  Of these comparison sets, the AMBER and Luo radii perform 

best on forces while the Bondi radii perform best on energies.   

Finally, we have shown that atom-centered dielectric functions, such as the spline-

smoothed surface used in our optimizations, form regions of high dielectric in interstitial spaces, 

thereby limiting the accuracy of solvation forces and energies.  These errors seem less 

pronounced in compact systems, where the IHDs fill the crevices between atoms, than in 

globular systems, where buried IHDs can be copious.  Thus, our optimized radii, and spline-
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smoothed surfaces in general, are expected to work well for compact systems, but will produce 

errors in highly-solvated globular proteins.  Efforts to correct atom-centered, smooth surfaces 

will be crucial for the continued development of Poisson based implicit solvent models, 

especially in the area of continuum dynamics.   

It is important, however, to appreciate the complexity of the problem at hand.  The 

specific nature of the optimal dielectric boundary most rigorously depends on the locally 

defined solute-solvent potential, [113, 114]   a complex and coupled function of solute geometry 

(i.e., surface curvature), electrostatic and nonelectrostatic solvent-solute interactions.  Thus, 

theory and our analysis agree that an optimal continuum radius can not be defined by atom type 

alone.  Consequently we anticipate that corrected smooth surfaces will greatly reduce 

inaccuracies and inconsistencies, but that it will take a more physically accurate and coupled 

framework to eliminate them. 

 

This chapter is a reprint in full of material that will appear in Optimizing the Poisson dielectric 

boundary with explicit solvent forces: Lessons learned with atom-centered dielectric functions. , 

Jessica M.J. Swanson, J. Wagoner, N. A. Baker, and J.A. McCammon, J Chem Theory and 

Comput (submitted).  I was the primary researcher and author of this work. 
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Chapter Seven 

Coupling Hydrophobicity, Dispersion, and Electrostatics in 

Continuum Solvent Models 

ABSTRACT 

This chapter presents an implicit solvent model that couples hydrophobic, dispersion, and 

electrostatic solvation energies by minimizing the system Gibbs free energy with respect to the 

solvent volume exclusion function. The solvent accessible surface is the output of the theory. 

The method is illustrated with the solvation of simple solutes on different length scales and 

captures the sensitivity of hydration to the particular form of the solute-solvent interactions in 

agreement with recent computer simulations.  

7.1  Introduction 

Much progress has been made in the last decade in the understanding of hydrophobic 

solvation on different length scales [1,2]. Most of this work has been devoted to study solvation 

of purely repulsive, hard-sphere-like solutes, while less attention has been given to the influence 

and incorporation of dispersion or electrostatic contributions. Likewise, an entire field in the 

biophysical community has explored electrostatic solvation effects in the absence or uncoupled 

addition to hydrophobic considerations; see, e.g., [3] for a review. Recently, however, several 

computer simulations have demonstrated a strong coupling between hydrophobicity, solute-

solvent dispersion attractions, and electrostatics. For example, simulations of explicit water 
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between platelike solutes revealed that hydrophobic attraction and dewetting phenomena are 

strongly sensitive to the nature of solute-solvent dispersion interactions [4,5]. Similarly, 

simulations of hydrophobic channels [6,7] and nanosolutes [8] have shown that electrostatic 

potentials strongly affect the dewetting behavior and potentials of mean force (pmf). A fully 

atomistic simulation of the folding of the two-domain protein BphC enzyme [9] further 

supported coupling by showing that the region between the two domains was completely 

dewetted when solvent-solute van der Waals (vdW) and electrostatic interactions were turned 

off, but accommodated 30% of the density of bulk water with the addition of vdW attractions, 

and 85%–90% with the addition of electrostatics, in accord with experimental results. Finally, 

Liu et al. recently observed a dewetting transition in the collapse of the melittin tetramer, which 

was strongly sensitive to the type and location of the hydrophobic residues proving that these 

observations apply to realistic biomolecular systems [10].  

In this chapter a continuum description of solvation is proposed that explicitly couples 

hydrophobic, dispersion, and electrostatic contributions.  The Gibbs free energy is expressed as 

a functional of the solute cavity shape, the latter given by the volume exclusion function of the 

solvent [11], and obtain the optimal shape by minimization. This leads to an expression similar 

to the Laplace-Young equation for the geometrical description of capillary surfaces [12], but in 

contrast to existing approaches explicitly includes the inhomogeneous distributions of dispersion 

and electrostatic contributions as well as curvature corrections. Geometry-based approaches 

similar to our formalism exist in related fields, such as the Helfrich description of membranes 

shapes [12], wetting in colloids and granular media [12], and electrowetting [13].  As opposed 

to other implicit solvent models, the solvent accessible surface (SAS) is an output of our theory.   

We begin by verifying that this method is able to describe the solvation of small alkanes 

on molecular scales.  We then demonstrate that our theory captures the strong sensitivity of 

dewetting and hydrophobic hydration to solute-solvent interactions on larger scales for a model 
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system of two alkane-assembled spheres. In this striking example the strong hydrophobic 

attraction decreases almost 2 orders of magnitude in units of the thermal energy, kBT, and 

dewetting is partially or completely suppressed when realistic dispersion and electrostatic 

contributions are included. We expect our approach to be particularly useful in solvation studies 

of proteins, where the hydrophobic surfaces are highly irregular and laced with hydrophilic 

units [1,10] and superhydrophobic nanosolutes [15].  

7.2  Theory and Methods 

Let us consider an assembly of solutes with arbitrary shape and composition surrounded 

by a dielectric solvent in a macroscopic volume W.  We define a subvolume V empty of solvent 

for which we can assign a volume exclusion function in space given by 0)( =rv K  for Vr ∈K  

and 1)( =rv K  elsewhere.  We assume that the surface bounding the volume is continuous and 

closed.  The absolute volume V and interface area S of V can then be expressed as functionals of 

)(rv K  via ∫ −=
W

rvrdvV )](1[][ 3 K  and ∫ ∇=
W

rvrdvS )(][ 3 KK
, where rK

KG
∇≡∇ is the usual gradient 

operator. The density distribution of the solvent is either zero or 0ρ  defined by )()( 0 rvr KK ρρ = , 

where 0ρ  is the bulk density of the solvent at fixed temperature and pressure. The solutes’ 

positions and conformations are fixed.  

We suggest expressing the Gibbs free energy G[v] of the system as a functional of )(rv K  

and obtaining the optimal volume and surface via minimization 0)(/][ =rvvG Kδδ .  We adopt 

the following ansatz for the Gibbs free energy:   

 { }∫ ∫∫ Ψ∇++∇+=
W WW

rrrdrUrrdrvrrdvPVvG )()(
2

)()()()(][][ 23033 KKKKKKKK ε
ε

ργ . 7.1 
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The first term in (7.1) is the energy of creating a cavity in the solvent against the difference in 

bulk pressure between the liquid and vapor, vl PPP −= . The second term describes the 

energetic cost due to solvent rearrangement close to the cavity surface in terms of a parameter 

)(rKγ . This interfacial energy penalty is thought to be the main driving force for hydrophobic 

phenomena [1].  )(rKγ  is not only a solvent specific quantity but also depends on the topology 

of the surface in a nonlocal way [16]; i.e., it is a functional of the volume exclusion function, 

])[;()( vrr γγ =K . The exact form of this functional is not known. For planar macroscopic 

solvent-cavity interfaces )(rKγ  is usually identified by the liquid-vapor surface tension,  lvγ , of 

the solvent, which we also employ here. Furthermore, we make a local curvature 

approximation; i.e., we assume that )(rKγ  can be expressed solely as a function of the local 

mean curvature of the cavity interface, ))(()( rHr KK γγ = , with 2/)]()([)( 21 rrrH KKK κκ += , 

where 1κ  and 2κ  are the two principal curvatures. We then apply the first order curvature 

correction to lvγ  given by scaled-particle theory [17], the commonly used ansatz to study the 

solvation of hard spheres, arriving at   

 )](21[)( rHr lv
KK δγγ −= , 7.2 

where δ  is a constant and positive length expected to be of the order of the solvent particle size 

[17]. The curvature is positive or negative for convex or concave surfaces, respectively. Note 

that this leads to an increased surface tension for concave surfaces. It has been shown by 

simulations that (2) predicts the interfacial energy of growing a spherical cavity in water rather 

well for radii ≥3 Ǻ [18].  

The third term in (7.1) is the total energy of the nonelectrostatic solute-solvent 

interaction given a density distribution )(0 rv Kρ . The energy ∑ −=
i ii rrUrU )()( KKK  is the sum 

of the short-ranged repulsive and long-ranged attractive dispersion interactions iU  between 
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each solute atom i and a solvent molecule. Classical solvation studies typically represent iU  as 

an isotropic Lennard-Jones (LJ) potential, ])/()/[(4)( 612 rrrU LJ σσε −= , with an energy 

scale ε  and a length scale σ . The importance of treating dispersion interactions independently, 

as opposed to absorbing them into the surface tension term, has been emphasized by Gallicchio 

et al. in their study of cyclic alkanes [19].  

 The fourth term in (7.1) describes the total energy of the electrostatic field expressed 

by the local electrostatic potential )(rKΨ  and the position-dependent dielectric constant )(rKε  

assuming linear response of the dielectric solvent. The electrostatic potential Ψ  is evaluated by 

Poisson’s equation, 0/)()]()([ ελε rrr KKKKK
−=Ψ∇⋅∇ , where )(rKλ  is the solute’s charge density 

distribution. The most common approximation for )(rKε  is proportional to the volume exclusion 

function )(rv K  [3]  

 ))(()( vlv rvr εεεε ++= KK
;  7.3 

where vε  and lε  are the dielectric constants inside and outside the volume V , respectively. 

Plugging in (7.2) and (7.3) in functional (7.1) and using the calculus of functional derivatives, 

the minimization yields  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ψ∇−−−+=

vl
lv rrrUrKrHP

εε
ε

ε
ρδγ 11)]()([

2
)()]()([20 20

0
KKKK .   7.4  

 

Equation 7.4 is a partial second order differential equation for the optimal solvent accessible 

volume and surface expressed in terms of pressure, surface curvatures, dispersion interactions, 

and electrostatics, all of which have dimensions of force per surface area or energy density.  

)()()( 21 rrrK KKK κκ=  is the Gaussian curvature and follows from the variation of the surface 

integral over )(rH K  in (1). Thus, in our approach the geometry of the surface, expressed by H  
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and K , is directly related to the inhomogeneous dispersion and electrostatic energy 

contributions. Note that the SAS is presently defined with respect to the LJ centers of the 

solvent molecules.  

In the following we illustrate solutions of (7.4) in spherical and cylindrical symmetries. 

For a spherical solute (4) reduces to a function of R , the radius of the solvent accessible sphere, 

RH /1=  and 2/1 RK = . In cylindrical symmetry the SAS can be expressed by a one-

dimensional shape function r(z), where z is the coordinate on the symmetry axis and r the radial 

distance to it. The surface in three-dimensional space is obtained by revolving r(z) around the z 

axis. The principal curvatures are then given by )1/(1 2
1 +−= rrκ  and 

])1/[( 2/32
2 +′′= rrκ , where the primes indicate the partial derivative with respect to z. We 

solve (7.4) and Poisson’s equation numerically, using standard forward time relaxation 

schemes.  

7.3 Results and Discussion 

7.3.1 Molecular Length Scales 

We now study the solvation of methane and ethane in water and compare our results to 

the simple point charge (SPC) explicit water simulations by Ashbaugh et al. [20], in which the 

alkanes are modeled by neutral LJ spheres [21].We fix the liquid-vapor surface tension for SPC 

water at 300 K to 2mJ/m 65=lvγ [18]. Since we deal with water under ambient conditions, the 

pressure term can be neglected and the length δ  remains the only free parameter. For methane 

we can reproduce the simulation solvation energy GΔ  with a fit δ = 0.85 Ǻ. This is in good 

agreement with Huang et al. [18] who measured δ = 0.76 ± 0.05 Ǻ for SPC water. Solving the 

cylindrically symmetric problem for the diatomic ethane with the same δ  = 0.85 Ǻ, we obtain a 
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fit-parameter-free GΔ  = 11.40 kJ/mol, which is only 7% larger than the simulation results. 

Alternatively, the best fit δ  = 0.87 Ǻ reproduces the simulation energy exactly. This is 

surprisingly good agreement given the crude curvature correction we apply and the fact that the 

large curvature of the system varies locally in space. This supports the validity of our continuum 

approach down to a molecular scale.  

The curvature and shape functions )(zH , )(zK , and )(zr  are plotted in Fig. 1 

together with the vdW surface and the canonical SAS obtained from rolling a probe sphere with 

a typically chosen radius pr =1.4 Ǻ over the vdW surface [14]. Away from the center of mass 

≥z 1 Ǻ the curvatures follow the expected trends RH /1≅  and 2/1 RK ≅  with ≅R 3.1 Ǻ 

for the spherical surfaces. The surface resulting from our theory is smaller than the canonical 

SAS, and is smooth at the center of mass (z = 0) where the canonical SAS has a kink. Thus, our 

surface has a smaller mean curvature at z = 0 and an almost zero Gaussian curvature, which is 

typical for a cylinder geometry for which one of the principal curvatures is zero. These results 

may justify the use of smooth surfaces in coarse-grained models of closely packed hydrocarbon 

surfaces, a possibility we now explore with solvation on larger length scales where dewetting 

effects can occur.  
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Figure 7.1:  Mean )(zH  and Gaussian )(zK  curvature and shape function )(zr  (solid lines) 
for ethane. The canonical SAS (dashed line) from rolling a probe sphere with radius pr  1.4 Ǻ 
over the vdW surface (shaded region) is also shown. 

 

7.3.2 Nano Length Scales 

Let us consider two spherical solutes that we assume to be homogeneously assembled 

of CH2 groups with a uniform density ρ = 0.024 Ǻ-3 up to a radius R =15 Ǻ, defined by the 

maximal distance between a CH2 center and the center of the solute [22]. The integration of the 

CH2-water LJ interaction over the volume of a sphere yields a 9-3-like potential for the 

interaction between the center of the paraffin sphere and a water molecule [23]. The intrinsic, 

nonelectrostatic solute-solute interaction )( 12rU ss  in a center-to-center distance 12r  can be 

obtained in a similar fashion. The solvation of the two solutes is studied for a fixed surface-to-

surface distance, which we define as 0120 2Rrs −= . We obtain an effective SAS radius of one 
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sphere of about 4.20 +≅ RR Ǻ so that the effective surface-to-surface distance is roughly 

8.40 −≅ ss Ǻ. Since we are also interested in the effects of charging up the solutes we place 

opposite charges Ze± , where e  is the elementary charge, in the center or on the edge of the 

two spheres.  

In the following we focus on a separation distance of =0s 8 Ǻ to investigate the 

influence of different contributions to the energy functional on the shape function, )(zr , and 

the curvatures, )(zK  and )(zH . For 80 =s Ǻ, it follows that 2.3≅s Ǻ, such that two water 

molecules could fit between the solutes on the z axis. We systematically change the solute-

solute and solute-solvent interactions, as summarized in Table 7.1. We begin with only the LJ 

repulsive interactions in system I and then add a curvature correction with δ = 0.75 Ǻ vdW 

attractions, and sphere centered charges Z = 4 and Z = 5 in systems II–V, respectively. To study 

the influence of charge location, we reduce the magnitude of each charge in system VI to Z = 1 

and move them to the edge of the spheres on the symmetry axis such that they are 8 Ǻ apart 

(indicated by arrows in Figure 7.2). The surface tension and dielectric constant of the vapor and 

liquid are fixed to lvγ = 72 mJ/m2, vε = 1, and vε = 78, respectively.   

Table 7.1:  Studied systems for two alkane-assembled spherical solutes. If r_z _ 0_ _ 0 the 
system is ‘‘dewetted.’’ In VI the solutes’ charge is located off-center (OC) at the solute 
surface. 
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Figure 7.2:  Mean )(zH  and Gaussian )(zK  curvatures and shape function )(zr  for two 
alkane-assembled solutes of radius 150 =R Ǻ (shaded region) for systems I–VI. The position of 
the charges Z ± 1 in VI are indicated by arrows.  Curvatures are not shown for the ‘‘wet’’ 
systems V and VI. 

 

The results for the curvatures and r(z) for systems I–VI are shown in Figure 7.2. Away 

from the center of mass ( 10≥z  Ǻ), systems I–VI show very little difference. The curvatures 

are RH /1≅  and 2/1 RK ≅  with ≅R 17.4 Ǻ. Close to the center of mass ( 0≅z ), however, 

the influence of changing the parameters is considerable. In system I, equation 7.4 reduces to 

the minimum surface equation 0)( =zH  for 0≅z . For two adjacent spheres the solution of 

this equation is the catenoid )cosh()( zzr ∝ , which features zero mean curvature ( 1κ  and 2κ  

cancel each other) and negative Gaussian curvature. This leads to a vapor bubble bridging the 

solutes. When curvature correction is applied (system II), the mean curvature becomes nonzero 

and negative (concave) at 0≅z , while the Gaussian curvature grows slightly more negative. 

As a consequence, the total enveloping surface area becomes larger and the solvent inaccessible 
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volume shrinks; i.e., the value of )0( ≅zr  decreases. Turning on solute-solvent dispersion 

attraction amplifies this trend significantly as demonstrated by system III. Mean and Gaussian 

curvatures increase fivefold, showing strongly enhanced concavity, and the volume empty of 

water decreases considerably, expressed by 7.10)0( ≅=zr Ǻ dropping to ≅= )0(zr 6.3 Ǻ. 

These trends continue with the addition of electrostatics in system IV. When the sphere charges 

are further increased from Z = 4 to Z = 5 (system IV → V), we observe a wetting transition: the 

bubble ruptures and the SAS jumps to the solution for two isolated solutes, where ≅= )0(zr  

0. The same holds when going from III to VI, when only one charge, Z = 1, is placed at each of 

the solutes’ surfaces. Importantly, this demonstrates that the present formalism captures the 

sensitivity of dewetting phenomena to specific solvent-solute interactions as demonstrated in 

previous studies [4 –10]. Note that the SAS at ≅z  2 Ǻ is closer to the solutes in VI compared 

to V due to the proximity of the charge to the interface. Clearly, the observed effects, in 

particular, the transition from III to VI, cannot be described by existing solvation models, which 

use the SAS [14], or effective surface tensions and macroscopic contact angles [12] as input. 

The significant change of the SAS with the solutesolvent interaction has a strong impact on the 

pmf, )()()()( 0ss00 sUGsGsW +∞−= . Values of 8( 0 =sW Ǻ) are given in Table 7.1. From 

system I to VI the total attraction between the solutes decreases almost 2 orders of magnitude. 

Interestingly, the curvature correction (I → II) lowers W by a large 23.5 kBT, even though 

δ>>R .  A striking effect occurs when vdW contributions are introduced (II → III): the 

intersolute attraction decreases by ~ 28 kBT while the dispersion solute-solute potential, 

8( 0ss =sU Ǻ), changes by only -0.44 kBT. Similarly, adding charges of Z = 5  (III → V) at the 

solutes’ centers or Z = 1 (III → VI) at the solutes’ surfaces decreases the total attraction by 1.2 

kBT and 5 kBT, respectively. Note that the total attraction decreases although electrostatic 
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attraction has been added between the solutes. The same trends have been observed in explicit 

water simulations of a similar system of charged hydrophobic nanosolutes [8].  

7.4  Conclusions 

These results clearly demonstrate that solvation effects and solvent mediated 

phenomena are not only strongly influenced by solute-solvent interactions, but that these 

interactions are inherently coupled. By including coupling, our formalism captures the balance 

between hydrophobic, dispersive, and electrostatic forces, which has been observed in previous 

studies [4–10] but never described in a single theoretical framework. Nonpolar and polar 

coupling is expected to be crucial for a complete characterization of biomolecular solvation. 

The present formalism is limited only by the crude curvature and dielectric descriptions 

currently employed. Future efforts to improve these approximations are critical to accurately 

describe solvation effects on multiple length scales and for more complicated geometries.  

 

This chapter is a reprint in full of material that appeared in Coupling Hydrophobicity, 

Dispersion, and Electrostatics in Continuum Solvent Models. Dzubiella J., J.M.J. Swanson, J.A. 

McCammon, Phys. Rev. Lett.96, 087802 (2006).  I was a secondary researcher and author of 

this work. 

 

 



 

120 

Chapter Eight 

Coupling Nonpolar and Polar Solvation Free Energies in Implicit 

Solvent Models 

ABSTRACT 

Recent studies on the solvation of atomistic and nanoscale solutes indicate that a strong coupling 

exists between the hydrophobic, dispersion, and electrostatic contributions to the solvation free 

energy, a facet not considered in current implicit solvent models.  In this chapter we extend our  

theoretical formalism which accounts for coupling by minimizing the Gibbs free energy of the 

solvent with respect to a solvent volume exclusion function. The resulting differential equation is 

similar to the Laplace-Young equation for the geometrical description of capillary interfaces but 

is extended to microscopic scales by explicitly considering curvature corrections as well as 

dispersion and electrostatic contributions. Unlike existing implicit solvent approaches, the 

solvent accessible surface is an output of our model. The presented formalism is illustrated on 

spherically or cylindrically symmetrical systems of neutral or charged solutes on different length 

scales. The results are in agreement with computer simulations and, most importantly, 

demonstrate that our method captures the strong sensitivity of solvent expulsion and dewetting to 

the particular form of the solvent-solute interactions.  
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8.1  Introduction 

Implicit solvent models are widely used in theoretical chemistry to study the solvation of 

biomolecular systems, as well described in the review of Roux and Simonson.[23]  They provide 

a more efficient, although generally less accurate, alternative to atomistically resolved explicit 

solvent simulations. The solvation free energy in these models is usually split into nonpolar (np) 

and polar (p) terms,  

 pnp GGG Δ+Δ=Δ  8.1 

which are treated in separate energetic evaluations. The nonpolar term includes the 

energetic cost of cavity formation, solvent rearrangement, and solute-solvent dispersion 

interactions introduced when the uncharged solute is brought from vacuum into the solvent 

environment. The polar term describes the free energy of charging the mono- or multi-polar 

solute in the dielectric medium.  

The nonpolar term is commonly approximated by surface area models, i.e., SG γ≅Δ np , 

where S is the solvent accessible surface area[119] and γ  is an energy per surface area constant, 

which is a priori not known but fit to atomistic simulations. The deficiencies of this simple 

surface area approach have been recognized and a further decomposition of the nonpolar term 

into cavity (cav) and van der Waals dispersion (vdW) terms has been proposed,[120, 121] 

vdWcavnp GGG Δ+Δ=Δ . This approach has shown improved results for the solvation of 

alkanes,[121, 122] the alanine peptide,[123] and nonpolar native and misfolded proteins.[124] 

The electrostatic (polar) contribution of the solvation free energy is often approximated by 

generalized Born[125] (GB) or Poisson-Boltzmann[12] (PB)  models. Both methods use a 

position-dependent dielectric constant,[23] assigned on the basis of the solute surface, which can 

be defined in several ways[126] or defined implicitly by integration methods. It has been 
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emphasized that all three contributions, cavGΔ , vdWGΔ , and pGΔ , depend critically on the 

location of the solvent-solute interface. It has also been shown that the effective location of the 

solvent-solute interface can vary according to the local electrostatic[70] and dispersion[127] 

potentials. This suggests that interfacial, dispersion, and electrostatic contributions should be 

coupled in implicit solvent approaches. The importance of capturing the right balance between 

nonpolar and electrostatic contributions in implicit solvation models was emphasized by 

Ashbaugh et al. in their study of amphiphiles.[128] 

The significance of the coupling of nonpolar and polar solvation becomes even more 

evident when solvation is studied on length scales which are large compared to the solvent 

molecule (typically ≥ 1 nm for water), where solvent dewetting (“drying”) can occur. In this 

mechanism, first envisioned by Stillinger,[129] the solvent molecules tend to move away from 

the surface of a large nonpolar solute forming a liquidgas- like interface parallel to the solute 

interface. When the surfaces of two large solutes come together dewetting can be amplified due 

to the gain of interfacial free energy (by decreasing the total liquid-vapor interface area) giving 

rise to a strong effective attraction.[130-132]  Early evidence of confinement-induced dewetting 

was given only by explicit water simulations for smooth platelike solutes with a purely repulsive 

solute-solvent interaction.[133] More recently, however, it has been demonstrated in varying 

degrees in several  systems with attractive solute-solvent interactions including  smooth parallel 

platelike solutes,[134] atomistically resolved paraffin plates,[135] graphite plates,[136] carbon 

nanotubes,[137] and hydrophobic ion channels.[138-140]  

Several of these studies indicated that the magnitude of dewetting is sensitive to the 

nature of the solute-solvent attractive dispersion interactions.[134-136] A similar sensitivity was 

found in systems where the solutes carry charges or are exposed to an external electric field, e.g., 

electrostatic interactions have been shown to strongly affect the dewetting behavior of 

hydrophobic channels[141-143] and hydrophobic spherical nanosolutes..[144, 145]  
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Furthermore, two recent simulations of proteins supported the importance of solvent dewetting 

and its sensitivity in realistic biomolecular systems. First, a simulation of the two-domain BphC 

enzyme showed that the region between the two domains was completely dewetted when vdW 

and electrostatic interactions were turned off, but accommodated 30% of the bulk density with 

the addition of vdW attraction (water was found mainly at the edges of the considered volume, 

while the central region was still empty), and 85%–90% with the addition of electrostatic 

interactions.[146]  Second, Liu et al. observed a clear dewetting transition in the simulation of 

the collapse of the melittin tetramer, which was strongly sensitive to the type and location of the 

hydrophobic residues around the dewetted region.[33]  

Considering the aforementioned studies, we postulate that coupling of the nonpolar and 

polar solvation contributions in implicit solvent models is crucial for an accurate determination 

of solvation free energies without too many system-dependent fit parameters. We suggest a 

general theoretical formalism in which the particular energetic contributions are coupled. Similar 

to the approach of Parker et al. in their study of bubble formation at hydrophobic surfaces,[147] 

we express the Gibbs free energy as a functional of the solvent volume exclusion function[148] 

and obtain the optimal solute surface via minimization. As we will show, this minimization leads 

to an expression which is similar to the Laplace-Young equation for the description of 

macroscopic capillary interfaces[149] but is generalized to explicitly include curvature 

corrections and solvent-solute interactions, i.e., short-range repulsion (excluded volume), 

dispersion, and electrostatics. This extension of the Laplace-Young theory allows a geometric 

description of solvation on mesoscopic and microscopic scales. Related approaches in other 

fields are the Helfrich description of vesicle and membrane surfaces,[150, 151] wetting in 

colloids and granular media,[149, 152] and functional treatments of electrowetting.[153]  

While most implicit solvent approaches define the solute surface with a geometrical 

evaluation of the molecular surface, vdW surface, or canonical solvent accessible surface 
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(SAS),[119, 126] it is an output of our theory. The surface obtained by minimizing our free 

energy functional will, in general, be very different than the aforementioned established surface 

definitions. In particular, our solvent accessible surface should not be confused with the 

canonical SAS,[119] which is simply the envelope surrounding probe-inflated spheres. 

Similarly, phenomenological continuum theories applied to solvent dewetting always assume a 

certain, simplified geometry for the dry region, e.g., a cylindrical volume for systems  such as 

hydrophobic ion channels,[139, 142, 154] platelike particles,[130, 134] or two hydrophobic 

spherical solutes.[155] For a few simple systems this might be a valid approximation but for 

more complicated solute geometries the shape of the dewetted volume is unknown and a 

different approach, as suggested in this work, is necessary. We expect our formalism to be 

particularly useful in solvation studies of large protein assemblies where the hydrophobic 

surfaces are highly irregular and laced with hydrophilic units,[156, 157] and for which a unified 

description of hydration on different length scales is important.[132] Another potential 

application is the solvation of superhydrophobic nanosolutes[158] and wetting/dewetting in near-

critical colloidal mixtures.[152]  

A brief summary of this work was presented in chapter 7.  In this chapter we present 

more challenging test cases and an expanded discussion of the approximations and limitations of 

this model.  For clarity, the theoretical formalism is presented again and the chosen 

approximations are expanded upon. The method is then verified to describe solvation on 

molecular scales with noble gases, ions, and small alkanes.  It is then demonstrated to capture the 

strong sensitivity of dewetting and hydrophobic hydration to specific solute-solvent interactions 

on larger scales with two alkane-assembled spheres.  
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8.2  Theory 

8.2.1 Basic Formalism 

Let us consider an assembly of solutes with arbitrary shape and composition surrounded 

by a dielectric solvent in a volume W . Furthermore, we define a subvolume (or cavity) V  

empty of solvent for which we can assign a volume exclusion function given by  

 
0for

( )
1else

r V
v r

∈ ;⎧
= ⎨ .⎩

G
G

 8.2 

We assume that the surface surrounding the volume is continuous and closed, i.e. has no 

boundary. The absolute volume V  and surface area S  of V  can then be expressed as 

functionals of ( )v rG  via  

 3[ ] d [1 ( )]
W

V v r v r= −∫
G

 

 3[ ] d ( )
W

S v r v r= |∇ |,∫
G

 8.3 

 
where r∇ ≡∇ G  is the usual gradient operator with respect to the position vector rG  and ( )v r| ∇ |

G
 

gives a δ -function-like contribution only at the volume boundary. The expression 

3d ( ) dr v r S| ∇ |≡
G

 can thus be identified as the infinitesimal surface element. In this continuum 

solvent model, V  defines the volume which is not accessible to solvent molecules and the 

solvent density distribution is simply 0( ) ( )r v rρ ρ=G G
, where 0ρ  is the bulk density of the 

solvent at the desired temperature and pressure. Local inhomogeneities of the solvent density, 

apart from the zero to 0ρ  transition at the volume boundaries, are neglected. The solutes’ 

positions and conformations are fixed, so that the solutes can be considered as an external 

potential to the solvent without any degrees of freedom.  
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As motivated before, we suggest expressing the Gibbs free energy [ ]G v  as a functional 

of the volume exclusion function ( )v rG , and obtaining the optimal solute volume via 

minimization  

 [ ] [ ] 0G v v rδ δ/ = ,
G

 8.4 
 
where δ  denotes the functional derivative. We adopt following ansatz for the Gibbs free energy 

of the solvent:  

 pr int ne es[ ] [ ] [ ] [ ] [ ]G v G v G v G v G v= + + +   

 3[ ] d ( [ ]) ( )
W

PV v r r v v rγ= + ; | ∇ |∫
G G

 

 3
0 d ( ) ( )

W
r v r U rρ+ ∫

G G
 8.5
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Let us discuss each of the terms in equation 8.5 in turn. The first term, pr[ ]G v , 

proportional to the volume V , is the energy of creating a cavity in the solvent against the 

difference in bulk pressure between the liquid and vapor phase, l vP P P= − . For water in 

ambient conditions, which is close to the liquid-vapor transition, this term is relatively small and 

can generally be neglected for solutes on microscopic scales. The second term int[ ]G v  describes 

the energetic cost due to solvent rearrangement around the cavity interface with area S  in terms 

of a free energy/surface area functional ( [ ])r vγ ;
G

. This interfacial energy penalty is thought to be 

the main driving force behind hydrophobic phenomena.[132] γ  is a solvent specific quantity 

that also depends on the particular topology of the cavity-solvent interface , i.e. it varies locally 

in space and is a functional of the volume exclusion function ( [ ])r vγ γ= ;
G

.[159] The exact form 

of this functional is not known.  
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The third term, ne[ ]G v , is the total energy of the non-electrostatic solute-solvent 

interaction given a solvent density distribution 0 ( )v rρ G
. The potential ( ) ( )iii

U r U r r= −∑G G G  is 

the sum of the (short-ranged) repulsive exclusion and attractive dispersion interaction between 

each solute atom i  at position irG  and a solvent molecule at rG . Classical solvation studies 

typically represent the interaction between a solute atom and a solvent molecule, iU , as an 

isotropic Lennard-Jones (LJ) potential,  

 
12 6

LJ ( ) 4U r
r r
σ σε

⎡ ⎤⎛ ⎞ ⎛ ⎞= − ,⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 8.6 

 
with an energy scale ε , length scale σ , and center-to-center distance r . Using the form of (8.6) 

implies that ( )v rG  is defined with respect to the LJ-centers of the solvent molecules.  

The last term, es[ ]G v , describes the total energy of the electrostatic field and the mobile 

ions in the system expressed by the local electrostatic potential ( )rΨ
G

 assuming linear response 

of the dielectric solvent.[63]  Similar to ( [ ])r vγ ;
G

, the position-dependent dielectric constant 

depends on the geometry of ( )v rG , i.e. ( ) ( [ ])r r vε ε= ;
G G

 with an unknown functional form. ( )rλ G  

is the fixed charge density distribution of the solutes and the local energy density of the mobile 

ions is[12, 160]  

 mi ( ) {exp[ ( )] 1}B j j j
j

U r k T q q rρ β
=+,−

= − Ψ − .∑G G
 8.7 

 
with the thermal energy 1

Bk T β −= . Variation of (8.5) for a fixed ( )v rG  with respect to ( )rΨ
G

 

yields the Poisson-Boltzmann equation [12, 160] 

 0PB( ) 0 [ ( [ ]) ( )] ( )r r v r rε ε λ= = ∇⋅ ; ∇Ψ +
G G G G

 

 ( ) exp[ ( )]j j j
j

v r q q rρ β
=+,−

+ − Ψ ,∑G G
 8.8 
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where jq  and jρ  are the charge and concentration of the mobile ion species j = +,− . Note that 

the ionic charge density in (8.8) is multiplied by ( )v rG  to account for the fact that ions usually 

cannot penetrate the volume empty of polar solvent due to a huge free energy penalty.  

Let min ( )v rG  be the exclusion function which minimizes the functional (8.5). Then, the 

resulting Gibbs free energy of the system is given by min[ ]G v . The solvation free energy GΔ  is 

the reversible work to solvate the solute and is given by  

 min 0[ ]G G v GΔ = − ,  8.9 
 
where 0G  is a constant reference energy which can refer to the pure solvent state and an 

unsolvated solute. The potential of mean force (pmf) along some given reaction coordinate x  

(e.g. the distance between two solutes’ centers of mass) is given, within a constant, by min[ ]G v , 

where min ( )v rG  must be evaluated for every x . In order to proceed we will need valid 

approximations for ( [ ])r vγ ;
G

 and ( [ ])r vε ;
G

 with which min ( )v rG  can be calculated by explicitly 

minimizing our free energy functional (8.5) according to (8.4).  

8.2.2 Approximations for ( [ ])r vγ ;
G

 and ( [ ])r vε ;
G

 

Let us start with a possible description of ( [ ])r vγ ;
G

. For a planar macroscopic interface 

the parameter γ  is usually identified by the surface tension of the solvent adjacent to the second 

medium. This surface tension obviously depends on the microscopic interactions between the 

medium and the solvent and is generally decreased by attractive dispersion or electrostatic 

contributions. It seems that microscopic interactions are adequately represented by a 

macroscopic quantity like γ  if their range is much smaller than the investigated length scales, 

such as the radii of curvature or mean particle distances. The effect of the microscopic 
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interactions are then absorbed in γ . This has been exemplified with large, neutral plate-like or 

spherical alkane-assembled solutes.[127, 134] For the description of solvation on smaller length 

scales, however, it seems important to separate the free energy into a part which accounts for the 

formation of a cavity and a part which describes the dispersion interactions explicitly.[120] 

Furthermore, it has been shown that the water liquid-vapor surface tension lvγ  is the asymptotic 

value of the solvation free energy per surface area for hard spherical cavities in water in the limit 

of large radii.[130, 161] These considerations motivate our choice of the second and third term 

in the functional (8.5) and lead to the assumption lvγ γ=  in the limit of vanishing curvatures.  

The surfaces of realistic (bio)molecules, however, display highly curved shapes, so 

( [ ])r vγ ;
G

 will strongly depend on the interface geometry around rG  in a complicated fashion. In 

the following we make a local curvature approximation, i.e. we assume that ( [ ])r vγ ;
G

 can be 

expressed solely as a function of the local mean curvature  

 ( ) 1
1 2( ) ( ) ( ) 2 ( )H r r r R rκ κ −= + / = ,

G G G G
 8.10 

 
where R  is the radius of mean curvature and 1( )rκ G

 and 2 ( )rκ G
 are the local principal 

curvatures of the interface. The latter are formally given by the eigenvectors of the Hessian (or 

shape operator) of v , Ŝ , which can be expressed by the vector gradient of the unit normal 

vector field ( )n rG G  of the surface, ( )
( )

ˆ ( ) v r
v rS n r ∇

|∇ |= ∇ = ∇
G
G

G G
.  The mean curvature H  is only defined 

at the boundary of ( )v rG . We have chosen the convention in which the curvatures are negative 

for convex surfaces (e.g. a spherical cavity) and positive for concave surfaces (e.g. a spherical 

droplet).  

The curvature dependence of the liquid-vapor surface tension is a long standing subject 

of research but still under steady discussion.[152, 162, 163] For water, which is close to the 

critical point under ambient conditions, the curvature correction is argued to be nonanalytical in 
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curvature.[163] The first order correction term, however, is likely to be linear in curvature as 

predicted by scaled-particle theory,[164] the commonly used ansatz to study the solvation of 

hard spherical cavities. Although this result is only strictly valid for the case of spherical 

particles, we assume that it can be applied to local mean curvatures such that ( [ ])r vγ ;
G

 reduces 

to the function  

 lv( ) (1 2 ( ))r H rγ γ δ= + ,
G G

 8.11 
 
where δ  is the Tolman length, which is expected to be of molecular size.[165] In our study we 

assume δ  is constant and positive, while the curvature can be positive or negative as defined 

above. Note that this leads to an increase of surface tension for concave surfaces. It has been 

shown by computer simulations of growing a hard spherical cavity in water that (8.11) predicts 

the interfacial energy rather well for radii 3 Å.[160] A major drawback of approximation (8.11) 

is that it gives unphysical results if the radius of mean curvature is smaller than twice the Tolman 

length, 2R δ| |< . It yields negative and diverging surface tensions for convex and concave 

surfaces, respectively, the latter not possible due to the finite size of the solvent molecules. Thus, 

with approximation (8.11) care has to be taken when investigating systems which can exhibit 

radii of curvature 2R δ| |< .  

Let us now turn to electrostatics. The most common approximation for the position-

dependent dielectric constant is proportional to the volume exclusion function ( )v rG ,1 and the 

functional ( [ ])r vε ;
G

 reduces to the function  

 ( ) ( )( )v l vr v rε ε ε ε= + − ,
G G

 8.12 
 
where vε  and lε  are the dielectric constants inside and outside the volume V , respectively. 

Equation 8.12 is valid only in the limit large solute sizes when the molecular size of the solvent 

is negligible. For charged solutes on a molecular scale, let’s say mono- or polyvalent ions, two 

difficulties arise. First the electric field close to the highly curved solutes can be very strong and 
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the dielectric constant becomes field dependent. This formally affects the form of the 

electrostatic term in the free energy functional which assumes a linear response of the solvent. 

An improvement for continuum models along these lines has been proposed by Luo and 

Tucker.[166]  Second, the effective position of the dielectric boundary is known to depend on 

the sign of the charge carried by the solute for asymmetric solvent molecules like water. This 

expresses itself for instance in different Born radii for two equally charged ions which have 

exact the same LJ parameters but a different sign of charge. A reasonable improvement of (8.12) 

would be to shift the dielectric boundary at rG  parallel to the volume boundary by a potential 

dependent amount ( ( ))rξ Ψ
G

:  

 ( )( ) ( ) ( ) ( )v l vr v r n rε ε ξ ε ε= + − Ψ − .
G G G G

 8.13 
 
We do not attempt however, to find an approximation for the function ( )ξ Ψ  in this work and 

postpone this investigation to later studies. For further illustration of our approach we content 

ourselves with the approximations (8.11) for ( [ ])r vγ ;
G

 and (8.12) for ( [ ])r vε ;
G

.  

8.2.3 Minimization of the Free Energy Functional 

For the functional derivative of the interfacial term, int[ ]G v , we utilize  

 3d ( ) d 2
W W

r v r S H
v v
δ δ
δ δ ∂

| ∇ |= = −∫ ∫
G

 8.14 

 
and  

 3d ( ) d
W W

r H v r S H K
v v
δ δ
δ δ ∂

| ∇ |= = −∫ ∫
G

 8.15 

 
which has been derived in detail by Zhong-can and Helfrich by means of differential 

geometry.[150] The variable 1 2( ) ( ) ( )K r r rκ κ=
G G G

 is the Gaussian curvature of the interface, 



132 

 

which is an intrinsic geometric property of v . The other derivatives follow from functional 

analysis and the total result of the minimization is  

 [ ]lv 00 de( ) 2 ( ) ( ) ( )r P H r K r U rγ δ ρ= = − + −
G G G G

 

 20
mi
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⎝ ⎠

G G G
 

  8.16 
 
Equation 8.16 is a partial second order differential equation (de) for the optimal exclusion 

function min ( )v rG  expressed in terms of pressure, curvatures, short-range repulsion, dispersion, 

and electrostatic terms, all of which have dimensions of energy density. It can also be interpreted 

as a mechanical balance between the forces per surface area generated by each of the particular 

contributions. Thus, in our approach the surface shape and geometry, expressed by H  and K , 

are directly related to the inhomogeneous potential contributions. Note that the constant solute 

charge density ( )rλ G  does not appear explicitly in (8.16) but is implicitly considered in the PB 

equation (8.8), which must be solved simultaneously. If curvature correction ( K -term) and the 

last three energetic terms are neglected one obtains the Laplace-Young equation,  

 2 lvP Hγ= ,  8.17 
 
which is exclusively used for the shape description of macroscopic capillary and interfacial 

phenomena in conjunction with appropriate boundary conditions, e.g. prescribed liquid-solid 

contact angles at the solid surfaces.[149]  In our description the boundary conditions are 

provided by the constraints given by the short-ranged repulsive term in ( )U rG , and the 

distribution of dispersion and electrostatics, allowing an extrapolation of the Laplace-Young 

description to mesoscopic and microscopic scales. Notice that in our approach the solvent is 

treated as a continuum while the solute is explicitly resolved. One could use a coarse-grained 

treatment for the solute by including the appropriate non-electrostatic and electrostatic 

interactions in (8.5).  

The solution of (8.16) requires an appropriate parametrization, i.e. coordinate representation, 

for the curvatures H  and K , such that the equation is expressed as a function of the vector rG  

and its first and second derivatives in space. Analytical solutions to the much simpler  (8.17) and 
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thus to (8.16) are only available for systems with very simple geometries.[149] Thus we use 

numerical solutions of (8.16) in the following to further illustrate our theory.  

8.3  Applications 

First, we will consider the solvation of microscopic solutes such as noble gases, simple 

alkanes, and ions which can be treated as neutral or charged Lennard-Jones spheres. Then, we 

will investigate alkane assemblies on a larger scale, where interfacial and dewetting effects are 

much more dominant. For simplicity, mobile ions (counterions, salt) will be neglected in these 

illustrations.  

8.3.1 One Lennard-Jones Sphere 

In this section we compare our approach to published simulation results using explicit 

water models, such as SPC and SPC/E.[167]  We refrain from comparing to real experiments for 

two reasons: first, approximations in computer experiments are more easily controlled and 

second, the LJ parameters of the solutes are commonly parametrized to yield accurate results in 

classical computer simulations.  

For a spherical solute with a charge Q  homogeneously distributed over its surface, the 

functional (8.5) with approximations (8.11) and (8.12) and no mobile ions reduces to a function 

of R , the radius of the sphere empty of solvent. The solvation free energy is  

 pr int ne es( ) ( ) ( ) ( ) ( )G R G R G R G R G RΔ = Δ + Δ + Δ + Δ  
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Note that the last term in (8.18) is equivalent to the Born electrostatic solvation free energy. 

Differentiation of (8.18) with respect to R  and subsequent division by 24 Rπ  yields  

 lv
0 LJ

20 1 ( )P U R
R R
γ δ ρ⎛ ⎞= + − −⎜ ⎟

⎝ ⎠
 

 
2

2 4
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1 1
32 l v
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− − ,⎜ ⎟
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 8.19 

 
which is in accord with Eq. (8.16) given sphere-like curvatures, 1H R= − /  and 21K R= / . We 

can now calculate the solvation free energies of simple spherical solutes, such as noble gases or 

ions, by finding the radius minR  which minimizes (8.19).  The free parameters are the pressure 

P , Tolman length δ , liquid-vapor surface tension lvγ , and dielectric constants vε  and lε .  

8.3.2 One Neutral LJ Sphere 

First, let us focus on uncharged spheres, for which the electrostatic term in (8.18) can be 

neglected. We compare the results from our theory to those calculated by Hummer et al. [168]  

for neutral LJ spheres in SPC water, and those calculated by Paschek[169] for noble gases in 

SPC and SPC/E water. The solute-water LJ parameters σ  and ε  are summarized in Table 8.1. 

The surface tension lvγ  was set to that estimated for SPC and SPC/E water at 300K, 

lv 65γ = mJ/m 2  and lv 72γ = mJ/m 2 , respectively.[161, 170]  The pressure is fixed to 1atm. 

Finally, the remaining free parameter δ  was fit to reproduce the simulation solvation free 

energies. The solvation free energies from simulation simGΔ  and best fit Tolman lengths bfδ  are 

shown in tables 8.1 and 8.2 for the SPC and SPC/E models, respectively.  

Before we discuss the results let us show the particular energy contributions ( )iG RΔ  

with pr,int,nei =  for one chosen example, a neutral LJ-sphere with sodium-water LJ-



135 

 

parameters, Na 0 , plotted in Figure. 8.1. As anticipated, the pressure term pr ( )G RΔ  with 

1P = atm is negligible compared to the other contributions. The interfacial term int ( )G RΔ  is an 

increasing function of the cavity radius R  trying to decrease cavity size. The integrated LJ-

interaction term ne ( )G RΔ  shows long-range attraction and a steep short-ranged repulsion with a 

minimum at 0( ) 2 85R Naσ= = . Å. The total solvation free energy for the Na 0  shows a single 

minimum at min 2 32R = . Å  with 9 2GΔ = . kJ/mol for a bfδ =0.79Å.  

 
Figure 8.1:  The particular solvation energy contributions ( )iG RΔ  with i p int ne= , ,  in 
equation 8.8 for one LJ sphere with Na 0  parameters given in Table 8.1. The pressure term prGΔ  
(thin solid line) with 1P = atm is basically zero on this scale. The interfacial term int ( )G RΔ  
(dotted line) with lv 65γ = mJ/m 2  increases with radius R . The LJ term ne ( )G RΔ  is given by the 
dashed line.  The sum of the three contribution gives the total ( )G RΔ  (solid line) with a 
minimum at min 2 32R = . Å  for the uncharged sodium Na 0 . The inset shows the electrostatic 
contribution es ( )G RΔ  (dot-dashed line) and the total ( )G RΔ  for the charged Na +  with a 
minimum at min 1 83R = . Å. The best fit Tolman length is 0 79δ = . Å  in this example. 

 

The results for the other LJ-spheres, summarized in tables  8.1 and 8.2, reveal several 

noteworthy observations.  First, the best fit Tolman lengths bfδ  range from 0.76Å  to 1.00Å ; 
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they are not only of molecular size, as expected, but are approximately half the LJ-radius of a 

SPC or SPC/E water molecule. Moreover, the bfδ  values for noble gases in SPC/E water (Table 

8.2) are approximately 10%  larger than those in SPC water (Table 8.1). This is in qualitative 

agreement with Huang et al. who measured δ = 0 76 0 05. ± . Å  and δ = 0 90 0 03. ± . Å  for SPC 

and SPC/E, respectively, by fitting equation 8.11 to the hydration free energy of hard spheres 

with varying radii.  

Second, it seems that on average bfδ  also differs between the works of Hummer and 

Paschek for the same water model, showing that δ  may be a sensitive quantity. When further 

inspecting the quite accurate data of Paschek, we observe a systematic increase of bfδ  with 

solute size. The inability of our theory to be fit by one fixed constant bfδ  points to the already 

expected fact that equation 8.11 can not capture strong curvature effects accurately and will have 

to be refined for small solutes. Despite this shortcoming, these results show surprisingly good 

agreement; if we assume a fixed delta, for instance 0 91δ = . Å  for all noble gases in the SPC 

data of Paschek, the theoretical prediction would give results within 15%  of the simulation data, 

thereby providing a quick and reasonable prediction of the solvation free energy. Finally, we 

observe that the effective optimal sphere radius minR  is always smaller than the radius of the 

canonical SAS with a typical probe radius of 1.4Å,[171] min ( 2 1 4Å)ssR σ σ< / + . � , but larger 

than the vdW surface, min 2ssR σ> / , where ssσ  is the solute-solute LJ-length.  
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Table 8.1:  Solute-water LJ parameters and solvation free energy simGΔ  for neutral 
Lennard-Jones spheres from the SPC water simulations performed by Hummer et al.[168] 
and Paschek.[169] bfδ  is the Tolman length best fit to simGΔ  (rounded to two digits after the 
decimal point). minR  is the resulting optimal radius excluded of solvent. Also shown are the 
values for the simple alkanes methane (Me), ethane, propane, and butane from the study of 
Ashbaugh et al.[128] Simulation errors are given in parentheses. 
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Table 8.2:  Solvation free energies for neutral Lennard-Jones spheres in SPC/E 
water from the simulations of Paschek.[169] bfδ  and minR  are defined as in Tab. I. 

 
 

8.3.3 One Charged LJ Sphere 

Let us now turn to charged Lennard-Jones spheres (ions) also examined in the paper by 

Hummer et al. with SPC water simulations. We assume δ  to be the previously obtained bfδ  

values for uncharged spheres. The dielectric constants are set to 1vε =  and 65lε =  in accord 

with SPC water.[172]  The electrostatic contribution es ( )G RΔ  and the total ( )G RΔ  are 

exemplified for Na +  in the inset of Figure 8.1 The electrostatic contribution shifts the optimal 

radius to a smaller min 1 83R = . Å  compared to the uncharged case giving a solvation free energy 

of 334GΔ = − kJ/mol. In fact, the optimal sphere radius minR  is always considerably smaller for 

the charged solutes, shown in Table 8.3, than for their neutral counterparts (Table 8.1). This is 

caused by the strong compressing force of the polar solvent attempting to penetrate the low 

dielectric cavity. The results for GΔ  from theory are compared to those from simulation for all 

ions investigated by Hummer et al. (also shown in  Table 8.3). While the theory describes the 

hydration free energies for positively charged ions within 15% , it considerably underestimates 

those of the negative ions. This qualitative disagreement between positive and negative ions 

could be anticipated considering that the fitted Born radii for anions are always smaller than 

those for cations, a consequence of the different solvation structure around charged solutes with 
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opposite signs. As mentioned in the previous section, the position of the dielectric boundary has 

to be refined for accurate estimates of the electrostatic contribution to the hydration free energy. 

If we apply the correction (8.13) to the dielectric boundary with a crude potential-independent 

shift 0 25ξ+ = − . Å  for positive and 1 05ξ− = − . Å  for negative spheres, implying that the 

dielectric boundary sphere has a radius bR R Rξ±= + < , all simulation values can be 

reproduced within 10%  by our approach!  

  
Table 8.3. Solvation free energies for charged LJ spheres in SPC water from the 
simulations of Hummer et al. compared to the theoretical result GΔ . For δ  we use the best 
fits bfδ  to the solvation of neutral spheres as shown in Table.8.1 

 

8.3.4 Linear Alkanes 

Let us now consider simple polyatomic molecules, such as ethane, propane, or butane in 

a one-dimensional chain conformation, which can be treated as cylindrically symmetric 

geometries. Other conformations will be neglected. The cylindrical symmetry allows us to 

express the volume exclusion function ( )v rG  of the enveloping surface by a one dimensional 

shape function ( )r z , where z  is the coordinate on the symmetry axis and r  the radial distance 

to it. The full surface in three-dimensional space is obtained by revolving the shape function 
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( )r z  around the symmetry axis. In our parametrization we express ( )r r l=  and ( )z z l=  as 

functions of the parameter l . The principal curvatures are then given by[173]  

 1 2 3 22 22 2
( ) ( )

( )
z z r z rr z r z

z rr z r
κ κ /

′ ′ ′′ ′′ ′− −
, = , , = ,

+′ ′+′ ′
 8.20 

 
where the primes indicate the partial derivative with respect to l . Additionally, the unit normal 

vector reads  

 
2 2

(2)1( )
z

n r z
rz r

′⎛ ⎞
, = .⎜ ⎟′−+′ ′ ⎝ ⎠

G
 8.21 

 
The differential equation (8.16) is then solved by a forward relaxation scheme in time t   

 
( )(4) ( )(5)

( )de( )
( ) ( )

r t t r t
t n r z r z

z t t z t
+ Δ⎛ ⎞ ⎛ ⎞

= − Δ , , ,⎜ ⎟ ⎜ ⎟+ Δ⎝ ⎠ ⎝ ⎠

G
 8.22 

 
where the steady-state solution ( ) 0r z t∂ , /∂ =  is the solution of de( ) 0r z, =  we are looking for. 

In the numerical calculations we use a grid of 500 bins and an integration time step of 

tΔ = 0.001. The first and second derivatives are approximated using a symmetric two and three-

step finite difference equation, respectively. Convergence is usually reached after 10 5  time 

steps. The result is observed to be independent of the initial choice of ( )r z  at 0t = .  

The LJ parameters for ethane and methane are the same as those used by Ashbaugh et al. 

[128]  in their SPC simulation of linear alkanes (see Table 8.1). The simulation solvation energy 

of the spherical methane, 10 96GΔ = . kJ/mol, can be reproduced with a fit 0 85δ = . Å. Solving 

the cylindrically symmetric problem for ethane using the same δ , we obtain a fit-parameter-free 

11 40GΔ = . kJ/mol, which is only 7%  larger than the simulation results. Alternatively, the best 

fit 0 87δ = . Å  reproduces the simulation energy exactly. This is surprisingly good agreement 

given the crude curvature correction we apply and the fact that the large curvature of the system 

varies locally in space. The curvature and shape functions are plotted in Figure 8.2 together with 
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the vdW surface and the canonical SAS obtained from rolling a probe sphere with the typically 

chosen radius p 1 4r = . Å  over the vdW surface.[171] Away from the center of mass 1z| | Å  the 

curvatures follow the expected trends for the spherical surfaces: min1H R− /�  and 2
min1K R/�  

with min 3 1R .� Å . The optimal surface resulting from our theory is smaller than the canonical 

SAS and smooth at the center of mass ( 0z = ) where the canonical SAS has a kink. Thus our 

surface has a smaller mean curvature at 0z =  and an almost zero Gaussian curvature, which is 

typical for a cylinder geometry with one of the principal curvatures equal to zero. These results 

may justify the use of smooth surfaces in coarse-grained models of closely-packed 

hydrocarbons, a possibility we will explore in the following section with solvation on larger 

length scales where dewetting effects can occur. If we repeat the above calculation for propane 

and butane (three and four LJ-spheres, see also Table 8.1 for parameters) we need a best fit of 

0 94δ = . Å  and 0 96δ = . Å, respectively, to reproduce the simulation results exactly. The 

growing difference to the best fits for methane and ethane can be probably explained by the fact 

that we perform our calculation only for the cylindrically symmetric conformation of the linear 

alkanes; other conformations are neglected which will change the results.  
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Figure 8.2:  Mean ( )H z  and Gaussian ( )K z  curvature and shape function ( )r z  (solid lines) for 
ethane. The canonical SAS (dashed line) from rolling a probe sphere with radius p 1 4r = . Å  over 
the vdW surface (shaded region) is also shown. The vdW surface is defined by the solute-solute 
LJ-radius 2 1 73ssσ / = . Å. 

8.3.5 Two Spherical Nanosolutes 

Let us now consider two spherical solutes which we assume to be homogeneously 

assembled CH 2  groups with a uniform density ρ =0.024Å
3−
 up to a radius 0 15R = Å, defined 

by the maximal distance between a CH 2  center and the center of the solute. Integration of the 

CH 2 -water LJ interaction over the entire sphere yields a 9-3 like potential ( )iU r  for the 

interaction between the center of the solute ( 1 2i = , ) and a water molecule.[127] The intrinsic, 

nonelectrostatic solute-solute interaction at a surface-to-surface distance 0s , ss 0( )U s , can be 

obtained in a similar fashion. The CH 2 -water LJ parameters, 0 5665ε = . kJ/mol and 

3 52σ = . Å, are taken from the OPLSUA force-field[174] and are similar to those used by 
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Huang et al. in their study on dewetting between paraffin plates.[135]  Minimizing equation 8.18 

for just one sphere we obtain an optimal radius excluded for water min 0 2 4 17 4R R + . = .� Å. 

Since we are also interested in the effects of electrostatic interactions we place opposite charges 

Ze± , where e  is the elementary charge, in the center or on the edge of the two spheres.  

Since we neglect mobile ions in our work, the PB equation reduces to Poisson’s 

equation. It is solved on a two dimensional grid in cylindrical coordinates r  and z  with a finite 

difference method. The gradient and Laplacian are given then by ( )r z∇ = ∂ ,∂  and 

2
r r zrΔ = ∂ + ∂ / + ∂ , respectively. The first and second derivatives are approximated using 

symmetric two or three-step finite-difference equations. An explicit, forward time relaxation 

scheme is used to find the solution of Poisson’s equation:  

 ( ) ( ) PB( ( ))t t r t r t t rΨ +Δ ; = Ψ ; −Δ Ψ ; .
G G G

 8.23 
 

In most cases we use a lattice spacing of 0 4r zΔ = Δ = . Å  on a 100 200r zn n× = ×  grid, and an 

integration time step 0 05tΔ = . . Convergence takes approximately 
510  time steps. For the 

charged particles which are buried in the nanosolutes we use homogeneously charged spheres 

with a radius of 2Å. Instead of a sharp transition for the dielectric boundary [127], we use a 

smoothing function for reasons of numerical stability:  

 ( )
exp( ( )) 1

l v
vr

d r
ε εε ε
κ
−

= + ,
+

G
G  8.24 

 
where the absolute value of the length ( )d rG  is given by the nearest distance to the boundary of 

the volume exclusion function ( )v rG . d  is defined to be positive when r V∈
G

 and negative 

elsewhere. The inverse length κ  defines the width of the boundary region and in the limit 

κ →∞  we recover the sharp transition [127]. We choose a value 13Åκ −  for which the solution 

of Poisson’s equation becomes basically independent of the choice of κ . An example for the 
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dielectric boundary is shown in Figure.8. 3 for two partly dewetted nanosolutes of radius 

0 15R = Å  at a distance 0 7s = Å  carrying a charge 5Q e=  (system V in sec. III.C).  

 
Figure 8.3:  Distribution of the dielectric constant in space for two nanosolutes with 

0 15R = Å  at a distance 0 7s = Å  carrying a charge 5Q e=  (system V). The region 
between the spheres is dewetted. The distribution is scaled by 78lε = . 

 

In order to obtain the optimal shape function min ( )v rG  the shape equation (8.16) has to be 

solved simultaneously with Poisson’s equation when the solutes are charged. In practice, we first 

solve (8.16) without any electrostatic contributions. In the second step, we solve Poisson’s 

equation with the dielectric boundary (8.24) given by the volume exclusion function of the 

former solution. The result for the electric energy density is then plugged back in the shape 

equation in the third step. The last two steps are repeated until the solution for min ( )v rG  is fully 
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converged. Since the results for ( )r z  excluding and including electrostatics are quite similar for 

our systems, full convergence takes usually only 6 to 7 repetitions of the described iteration 

steps.  

The solvation of the two solutes is studied for a fixed surface-to-surface distance which 

we define as 0 12 02s r R= − , where 12r  is the solute center-to-center distance. The effective 

surface-to-surface distance defined by the accessibility of the solvent centers is thus 

12 min 02 4 8s r R s− = − .� Å. In the following we focus on a separation distance of 0 8s = Å  to 

investigate the influence of different energetic contributions on the shape function, ( )r z , and the 

curvatures, ( )K z  and ( )H z . For 0 8s = Å, it follows that 3 2s .� Å, such that two water 

molecules could fit between the solutes on the z -axis. We systematically change the solute-

solute and solute-solvent interactions, as summarized in Table  8.1.  We begin with only the 

repulsive part of the nonelectrostatic interaction ( )iU r  in system I, and then adding a curvature 

correction with 0 75δ = . Å, vdW attractions, and sphere-centered charges 4Z =  and 5Z =  in 

systems II-V, respectively. To study the influence of charge location, we shift each charge to the 

edge of the spheres such that they are 8 Å apart and reduce their magnitude to 1Z =  in system 

VI. The surface tension and dielectric constant of the vapor and liquid are fixed to 

lv 72γ = mJ/m
2

, 1vε = , and 78lε = , respectively.  
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8.3.6 Behavior of Shape Function 

Table 8.4:  Studied systems for two alkane-assembled spherical solutes. 0( )W s  is the inter-
solute pmf. If ( 0) 0r z = ≠  the system is ’dewetted’. In system VI the solutes’ charge is 
located off-center (oc) at the solute surface. 

 
 

 
Figure 8.4:  Mean ( )H z  and Gaussian ( )K z  curvatures and shape function ( )r z  for two alkane-
assembled solutes of radius 0 15R = Å  (shaded region) at a distance 0 8s = Å  for systems I-VI. 
Curvatures are not shown for the ’wet’ systems V and VI.  
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The results for the curvatures and shape function, defined by ( )r z , for systems I-VI are 

shown in Figure 8.3. Away from the center of mass ( 10z| | Å) systems I-VI show very little 

difference. The curvatures are min1H R− /�  and 2
min1K R/�  with min 17 4R .� Å. Close to the 

center of mass ( 0z � ), however, the influence of changing the parameters is considerable. In 

system I, equation 8.16 reduces to the minimum surface equation ( ) 0H z =  for 0z � . For two 

adjacent spheres the solution of this equation is the catenoid ( ) cosh( )r z z� , which features 

zero mean curvature ( 1κ  and 2κ  cancel each other) and negative Gaussian curvature. As a 

consequence, the system exhibits a vapor bubble bridging the solutes. Water is removed from the 

surfaces between the spheres, although it fits in there. This dewetting is captured in our theory by 

the interfacial term intG  which always tries to minimize the liquid-vapor interface.  

When curvature correction is applied (system II) the mean curvature becomes nonzero 

and positive (concave) at 0z � , while the Gaussian curvature grows slightly more negative. 

Thus the total enveloping surface area becomes larger and the solvent inaccessible volume 

shrinks, i.e. the value of the shape function at 0z �  decreases. Turning on solute-solvent 

dispersion attraction amplifies this trend significantly as demonstrated by system III. Mean and 

Gaussian curvatures increase fivefold, showing strongly enhanced concavity, and the volume 

empty of water decreases considerably, expressed by ( 0) 10 7r z = .� Å  dropping to 

( 0) 6 3r z = .� Å. These trends continue with the addition of electrostatics in system IV. When 

the sphere charges are further increased from 4Z =  to 5Z =  (system IV→V), we observe a 

wetting transition: the bubble ruptures and the shape function jumps to the solution for two 

isolated solutes, where ( 0) 0r z =� . The same holds when going from III to VI, when only one 

charge unit, 1Z = , is placed at each of the solutes’ surfaces. Importantly, this demonstrates that 

the present formalism captures the sensitivity of dewetting phenomena to specific solvent-solute 
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interactions as reported in previous studies.[33, 135, 136, 141, 143, 144, 146]  Note that the 

optimal shape function at 2z| | ±� Å  is closer to the solutes in VI compared to V due to the 

proximity of the charge to the interface. Clearly, the observed effects, particularly the transition 

from III to VI, cannot be described by existing solvation models which use the canonical 

SAS[119] or effective surface tensions and macroscopic solvent-solute contact angles[147, 149] 

as input.  

8.3.7 Potential of Mean Force 

The significant change of the shape function with the solute-solvent interaction has a 

strong impact on the potential of mean force (pmf) (or effective interaction) between the solutes  

 0 0 ss 0( ) ( ) ( ) ( )W s G s G U s= − ∞ + .  8.25 

Values of 0( 8Å)W s =  are given in Table 8.4. From system I to VI the total attraction between 

the solutes decreases almost two orders of magnitude. Interestingly, the curvature correction 

(I→ II) lowers W  by a large 23.5 Bk T , even though minR δ� . The reason is that the mean 

radii of curvature between the spheres can assume values δ� , implying that curvature 

correction is also important for large solutes. A striking effect occurs when vdW contributions 

are introduced (II→ III): the inter solute attraction decreases by approximately 28 Bk T  while the 

dispersion solute-solute potential ss 0( 8Å)U s =  changes by only 0 44 Bk T− . . Similarly, adding 

charges of 5Z =  (III →  V) at the solutes’ centers or 1Z =  (III →  VI) at the solutes’ surfaces 

decreases the total attraction by 1.2 Bk T  and 5k B T, respectively. Note that the total attraction 

decreases even though electrostatic attraction has been added between the solutes. The same 

trend has been observed recently in explicit water simulations of a similar system of charged 

hydrophobic nanosolutes.[144, 145]  
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Now we turn our attention to varying the intersolute distance. The pmfs and mean force 

0 0( )F W s s= ∂ /∂  between the solutes versus a whole range of 0s  for systems I,II,III, and VI are 

shown in Figure 8.5. System I, with purely repulsive solute-solvent interactions, displays a 

strong attraction ( 150 BW k T−� ) at 0 2s = Å  which decreases, almost linearly, to zero at a 

distance 0 13 5s = . Å  where the system shows a wetting transition. The corresponding force is 

discontinuous at this critical distance. The steep repulsion at short intersolute distances 

( 0 1 5s .� Å ) stems from the repulsive term of the LJ interaction between the solutes. The 

intrinsic solute-solute interaction 0( )ssU s , shown in Figure 8.5, is almost two orders of 

magnitude smaller than the hydrophobic attraction. Adding the curvature correction in system II 

decreases the range and strength of the pmf by approximately 20% , which is significant and 

unexpected since minR δ� .  

Adding dispersion attractions in system III decreases the range and strength of the 

hydrophobic attraction considerably, but it is still much stronger than the inter solute dispersion 

attraction ssU  alone. When surface charges ( 1Z = ) are added in system VI, the range of 

hydrophobic attraction further decreases but the total attraction increases at short intersolute 

distances. This is due to the increasing size of the bridging bubble ( ( 0)r z =  increases) as the 

two solutes approach each other, which decreases the high dielectric screening of the solute-

solute electrostatic attraction. This again underlines the importance of coupling electrostatics and 

dewetting effects, as the electrostatic attraction (or repulsion) may be magnified by more than an 

order of magnitude when dewetting occurs. For charges with opposite sign this could be 

interpreted as the stabilization of a salt bridge due to dehydration.[175] Systems IV and V, not 

shown in Figure 8.5, exhibit the same qualitative behavior as system VI.  
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Figure 8.5:  Top frame: pmfs for the systems I-III, and VI versus the solute distance 0s . Bottom 
frame: corresponding mean forces. 

8.4 Conclusions  

In summary, we have presented a novel implicit solvent model which couples polar and 

nonpolar solvation contributions by employing a variational formalism in which the Gibbs free 
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energy of the system is expressed as a functional of the solvent volume exclusion function. 

Minimization of the free energy leads to a Laplace-Young like equation for the solvent excluded 

cavity around the solutes, which is extended to describe solvation on mesoscopic and 

microscopic scales. We have shown that the theory gives a reasonable description of the 

solvation of microscopic solutes, such as ions and alkanes. Improved accuracy will require 

further refinement of the curvature dependence of the surface tension ( [ ])r vγ ;
G

 and the 

definition of the position-dependent dielectric constant ( [ ])r vε ;
G

. Extensions based on physical 

rational and further empirical refinements could lead to an accurate implicit solvent description 

with only a few or none fit-parameters.  

We have further demonstrated that on larger scales, where solvent dewetting can play an 

important role in solvation, our formalism captures the delicate balance between hydrophobic, 

dispersive and electrostatic forces which has been observed in previous systems.[130, 148, 159, 

168, 176]  The dewetting in our model is captured by the interfacial term which always tries to 

minimize the solvent interface. A comment must be made here regarding the sensitivity of 

dewetting to the particular solvent-solute interactions. As already argued by Chandler[132] 

extended fluid interfaces near phase coexistence are often referred to as ’soft’ because they can 

be deformed with only little or no free-energy change.[177] In our approach this sensitivity 

seems to be considered, because little changes of the constraints in the differential equation 8.16 

for the shape function, given e.g. by the dispersion potential close to the solute surface, can lead 

to a major deformation or even rupture (wetting transition) of the dewetted region. As we have 

shown this can significantly change the pmf for the solutes. Thus we anticipate that slight 

changes in the geometry of the considered system, e.g. a slight concave or convex bending of 

two plate-like solutes,[135, 136] can lead to very different results for the dewetting magnitude 

and the pmf.  
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The current illustrations utilized spherical and cylindrical symmetries. More complex 

molecules, such as proteins, will require solving the full three dimensional problem. Numerical 

algorithms for the calculation of interface evolution for more complicated geometries are 

provided by efficient level-set methods or fast marching methods.[178] We believe that even in 

the full three-dimensional (3D) case, our method will be much more efficient than other 

mesoscopic approaches which partly resolve the water structure (e.g. the Lum-Chandler-Weeks 

(LCW) theory[130] or information theory[168, 176] as only a two-dimensional surface is sought 

rather than a 3D density distribution.  

 
 

This chapter is a reprint in full of material that appeared in Coupling nonpolar and polar 

solvation free energies in implicit solvent models. Dzubiella J., J.M.J. Swanson, J.A. 

McCammon, J. Chem. Phys.12, 084905 (2006).  I was a secondary researcher and author of this 

work. 
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