
UC Riverside
UC Riverside Previously Published Works

Title
Using beta diversity to inform agricultural policies and conservation actions on 
Mediterranean farmland

Permalink
https://escholarship.org/uc/item/1t24s5qd

Journal
Journal of Applied Ecology, 54(6)

ISSN
0021-8901

Authors
Santana, Joana
Porto, Miguel
Reino, Luís
et al.

Publication Date
2017-12-01

DOI
10.1111/1365-2664.12898
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t24s5qd
https://escholarship.org/uc/item/1t24s5qd#author
https://escholarship.org
http://www.cdlib.org/


Using beta diversity to inform agricultural policies and

conservation actions on Mediterranean farmland

Joana Santana*,1,2 , Miguel Porto1,2 , Lu�ıs Reino1,2 , Francisco Moreira2,3 ,

Paulo Flores Ribeiro4 , Jos�e Lima Santos4 , John T. Rotenberry5 and Pedro Beja2,6

1CIBIO/InBIO, Centro de Investigac�~ao em Biodiversidade e Recursos Gen�eticos, Universidade do Porto, Campus

Agr�ario de Vair~ao, Rua Padre Armando Quintas, 4485-601 Vair~ao, Portugal; 2CEABN/InBIO, Centro de Ecologia

Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-

017 Lisboa, Portugal; 3REN Biodiversity Chair, CIBIO/InBIO, Centro de Investigac�~ao em Biodiversidade e Recursos

Gen�eticos, Universidade do Porto, Campus Agr�ario de Vair~ao, Rua Padre Armando Quintas, 4485-601 Vair~ao,

Portugal; 4CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da

Ajuda, 1349–017 Lisboa, Portugal; 5Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint

Paul, MN 55108, USA; and 6C�atedra EDP Biodiversidade, CIBIO/InBIO, Centro de Investigac�~ao em Biodiversidade e

Recursos Gen�eticos, Universidade do Porto, Campus Agr�ario de Vair~ao, Rua Padre Armando Quintas, 4485-601

Vair~ao, Portugal

Summary

1. Spatial variation in species composition (b-diversity) is an important component of farm-

land biodiversity, which together with local richness (a-diversity) drives the number of species

in a region (c-diversity). However, b-diversity is seldom used to inform conservation, due to

limited understanding of its responses to agricultural management, and lack of clear links

between b-diversity changes and conservation outcomes.

2. We explored the value of b-diversity to guide conservation on farmland, by quantifying

the contribution of bird a- and b-diversity to c-diversity variation in low- and high-intensity

Mediterranean farmland, before (1995–1997) and after (2010–2012) the Common Agricultural

Policy reform of 2003. We further related b-diversity to landscape heterogeneity, and assessed

the conservation significance of b-diversity changes.

3. In 1995–1997, bird diversity was highest in low-intensity farmland, where it further

increased in 2010–2012 due to a strong positive contribution of a-diversity to c-diversity. In
high-intensity farmland, diversity converged over time to much the same values of low-inten-

sity farmland, with strong positive contributions of both a- and b-diversity. These patterns

were largely consistent for total, farmland and species of European conservation concern

assemblages, and less so for steppe birds.

4. Beta diversity increased with landscape heterogeneity, particularly related to spatial gradi-

ents from agricultural to natural habitats in low-intensity farmland, and from annual to per-

manent crops (olive groves) in high-intensity farmland. The first gradient was associated with

the replacement of steppe birds of high conservation concern by more generalist species, while

the second was associated with the replacement between species with lower or higher affinity

for woodland and shrubland habitats.

5. Synthesis and applications. In low-intensity farmland, spatial variation in species composi-

tion (b-diversity) was largely stable over time, reflecting a positive conservation outcome

related to persistence of landscape heterogeneity patterns required by endangered steppe bird

species. In contrast, b-diversity in high-intensity farmland was favoured by increases in land-

scape heterogeneity driven by olive grove expansion, contributing to enhancement of total

bird diversity. Overall, our results stress the value of b-diversity to understand impacts

of agricultural policies and conservation actions, but also highlight the need to evaluate

b-diversity changes against specific conservation goals.

*Correspondence author. E-mail: joanafsantana@cibio.up.pt
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Introduction

The effects of human activities on biodiversity are gener-

ally assessed by estimating trends in local species richness

(alpha diversity, a, sensu Whittaker 1960) for particular

species assemblages (Newbold et al. 2015). However, this

metric provides only a partial view of biodiversity change,

because the total number of species represented in a region

(i.e. gamma diversity, c) is shaped by both a-diversity and

by variation in species composition among sites (beta

diversity, b) (Whittaker 1960). Therefore, examining trends

in b-diversity may be useful to understand the impacts of

anthropogenic drivers whose effects on c-diversity may

not be adequately captured by a-diversity alone (Socolar

et al. 2016). For instance, land-use changes increasing

habitat diversity may increase b-diversity due to species

replacement among sites with different habitats (i.e. the

replacement component of b-diversity, bRepl; Legendre

2014), and thus increase c-diversity without necessarily

changing a-diversity (Gaston et al. 2007; Monnet et al.

2014). Alternatively, land-use changes affecting habitat

attributes may cause variation in the number of species

among sites with different habitat characteristics (i.e. the

richness difference component of b-diversity, bRichDiff;

Legendre 2014), without necessarily affecting bRepl. In this

case, the contribution of b-diversity to c-diversity will

likely be relatively small, and local factors affecting

a-diversity may be particularly relevant. There is thus a

need to consider b-diversity and its components, bRepl and

bRichDiff, in conservation research to understand biodiver-

sity changes and their underlying ecological mechanisms

(Socolar et al. 2016; _Zmihorski et al. 2016).

On farmland, the diversity and spatial arrangement of

habitats (i.e. landscape heterogeneity) are widely recog-

nised as key for biodiversity conservation (Benton, Vick-

ery & Wilson 2003; Fahrig et al. 2011; but see B�aldi &

Bat�ary 2011). Loss of heterogeneity due for instance to

crop specialisation, loss of crop rotations, enlargement of

fields and loss of non-crop habitats (e.g. woodland

patches, scattered trees, hedgerows, and ponds), is a

dominant driver of farmland biodiversity declines (e.g.

Benton, Vickery & Wilson 2003). As a consequence,

agri-environment schemes and other agricultural policies

aim to maintain or restore landscape heterogeneity,

though their actual biodiversity benefits remain disputed

(Stoate et al. 2009; Bat�ary et al. 2015). A few studies

have used b-diversity to address these issues, providing

evidence that b-diversity was lower in intensive than in

extensive farmland (Ekroos, Heli€ol€a & Kuussaari 2010;

Flohre et al. 2011; Karp et al. 2012), and in conventional

than in organic farms (Gabriel et al. 2006; Clough et al.

2007), though the patterns observed varied across spatial

scales, taxa and functional groups. However, to the best

of our knowledge no study has yet evaluated how b-
diversity varies through time in response to changes in

agricultural policies and conservation actions, though

understanding this variation would be relevant for

improving agricultural policies, land planning and con-

servation management prescriptions to reverse farmland

biodiversity loss.

Here, we address these issues by quantifying the patterns

and correlates of farmland bird diversity during a period

of major land-use change. We focused on two contrasting

areas in southern Portugal, one of which was a special pro-

tection area (SPA) representative of low-intensity farmland

and holding internationally important steppe bird popula-

tions, while the other was a nearby high-intensity farmland

area (Ribeiro et al. 2014; Santana et al. 2014, 2017a). The

study was conducted before (1995–1997) and after (2010–
2012) the Common Agricultural Policy (CAP) reform of

2003, which in our area was associated with marked expan-

sions in land uses previously scarce in the region (Ribeiro

et al. 2014), and with significant increases in a-diversity of

breeding birds due primarily to increases in species that

benefited from woodland and shrubland habitats and olive

groves (Santana et al. 2014, 2017a). We hypothesise that

these changes should also have affected c-diversity, both
due to the observed increases in a-diversity, and because

likely increases in landscape heterogeneity should have

contributed to increasing species replacement (bRepl) and

thus overall b-diversity. However, we also hypothesise that

the effects of heterogeneity on diversity probably varied

across species groups, because while some species are

favoured by heterogeneity (Fahrig et al. 2011), others such

as steppe birds are associated with relatively homogeneous

landscapes (B�aldi & Bat�ary 2011). To test these ideas, we

examined: (i) temporal trends in landscape heterogeneity

and the contribution of specific land uses to such trends;

(ii) temporal trends in bird diversity and the contribution

of a- and b-diversity to c-diversity; (iii) the relations

between b-diversity and landscape heterogeneity; and (iv)

the identity of species contributing most to the relations

between b-diversity and landscape heterogeneity. Results

were used to discuss the value and limitations of b-diversity
to inform conservation management on farmland.

Materials and methods

STUDY AREA

The study was conducted in southern Portugal, within a low-

intensity farmland area included in the SPA of Castro Verde

© 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society, Journal of Applied Ecology, 54, 1825–1835
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(37°410N, 8°000W), and within the nearby (about 10-km distant)

high-intensity farmland area of Ferreira do Alentejo (38°030N,

8°060W) (Fig. 1). The low-intensity area was dominated for dec-

ades by a traditional farming system characterised by the rota-

tion of rain-fed cereals and fallows typically grazed by sheep,

which provide habitat for steppe bird species of conservation

concern (Delgado & Moreira 2000; Santana et al. 2014). To pre-

serve this system, a voluntary agri-environment scheme was

established in 1995, while legal regulations setting restrictions to

afforestation, the development of irrigation infrastructures, and

the expansion of permanent crops were established after the cre-

ation of the SPA in 1999 (Ribeiro et al. 2014). Furthermore,

there were conservation projects targeting mainly great bustard

Otis tarda, little bustard Tetrax tetrax and lesser kestrel Falco

naumanni, which included the purchase and management of criti-

cal areas, and improvement of breeding and foraging habitats

(Santana et al. 2014 and references within). Despite these inter-

ventions, over the last decade there were marked shifts from the

traditional system towards the specialised production of either

cattle or sheep, with declines in cereal and fallow land, and

increases in pastures (Ribeiro et al. 2014). This probably resulted

from the decoupling of payments from production introduced by

the CAP reform of 2003 (i.e. farmers were no longer required to

maintain production for receiving CAP payments), as arable

crops were completely decoupled while sheep and suckler cows

remained partially and fully coupled, respectively (Ribeiro et al.

2014). The high-intensity farmland contrasted markedly to the

SPA, because it had irrigation infrastructures, better soils, and

no constraints to crop conversion (Ribeiro et al. 2014). At begin-

ning of the study, this farmland area mainly produced irrigated

annual crops, but thereafter there was a major shift towards the

production of permanent crops (mainly olive groves) (Ribeiro

et al. 2014).

SAMPLING DESIGN

The study was based on a network of 250-m transects established

in 1995, where birds were counted annually in 1995–1997 and

2010–2012, thus covering periods before and after the CAP

reform of 2003 and the development of steppe bird conservation

programs (Stoate, Ara�ujo & Borralho 2003; Santana et al. 2014).

These transects were initially designed to evaluate the effects of

an agri-environment scheme (Stoate, Ara�ujo & Borralho 2003),

with 46 transects set in the SPA and 32 in a nearby high-intensity

farmland area (Santana et al. 2014). From these, we retained 43

transects in low-intensity and 30 transects in high-intensity farm-

land that were surveyed in at least 2 years in each period (San-

tana et al. 2017a). Transects followed a random bearing, and

they started at grid intersections of a 1-km square grid overlaid

on the study area, which were selected based on access con-

straints and the presence of agricultural land uses (Stoate, Ara�ujo

& Borralho 2003).

HABITAT CHARACTERISATION

We characterised the habitats within 250-m buffers (32�12 ha) of

each transect using the land cover maps for 1995–1997 and 2010–

2012 described in Santana et al. (2017a) (Fig. 1). Briefly, maps

were produced using digital aerial photographs from 1995 (scale

1 : 40 000), and Bing Aerial images from October 2010 to July

2011, respectively. Mapping was refined with information from a

governmental database of agricultural land uses at the parcel

scale (Ribeiro et al. 2014), using data from 2000 and 2010 to rep-

resent crop types in 1995–1997 and 2010–2012, respectively.

Using a single land cover map for each study period is reasonable

because our land cover categories were not expected to drastically

change within each 3-year period. These categories were selected

1995-1997 2010-2012

0 5 10
km

High-intensity

Low-intensity

0 0·5 1
km

±

Annual dry crops and fallows
Annual irrigated crops
Arable land with scattered trees
Permanent pastures
Permanent crops
Woodlands
Open woodlands
Streams
Water bodies
Human structures

SpainPortugal
Ferreira do Alentejo

Castro Verde SPA Land cover types

Fig. 1. Location of the study area in Southern Portugal and distribution of the 71 sampling units in the high- and low-intensity farmland

areas, with examples of landscape changes from 1995–1997 to 2010–2012. [Colour figure can be viewed at wileyonlinelibrary.com]
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to reflect potentially important bird habitats, considering both

the natural (woodlands, open woodlands, shrublands, streams

and water bodies) and production (annual dry crops and fallows,

permanent pastures, annual irrigated crops, arable land with scat-

tered trees and permanent crops) components of the landscape

(Santana et al. 2017a). We also computed metrics reflecting habi-

tat diversity and configuration (number of different cover types,

mean patch size and edge density), which were estimated sepa-

rately for the natural and the production components, using

Fragstats 4.2 (McGarigal & Ene 2013).

LANDSCAPE HETEROGENEITY

Landscape heterogeneity was estimated following the approach

described by Anderson, Ellingsen & McArdle (2006), which was

previously used in our study area to compare landscape patterns

across farming systems (Ribeiro et al. 2016a). First, we com-

puted for each farmland area and time period the average dis-

similarity in habitat characteristics from individual transects to

their group centroid in multivariate space, which is a multivari-

ate dispersion metric that can be interpreted as a measure of

overall landscape heterogeneity (Anderson, Ellingsen & McArdle

2006). To avoid inflating the effects of potentially correlated

variables, estimates were made using the axes of a principal com-

ponent analysis on the habitat variables (Habitat PCA) (see

below). Second, we estimated dispersion along each independent

Habitat PCA axis, to evaluate which habitat gradients con-

tributed the most to overall landscape heterogeneity. Finally, we

estimated pairwise landscape heterogeneity as the Euclidean dis-

tance between each pair of transects along each Habitat PCA

(Anderson, Ellingsen & McArdle 2006), which was used in analy-

ses relating b-diversity metrics to landscape heterogeneity (see

below).

BIRD SURVEYS

In each study year, transects were walked in early morning and

late afternoon in April–May, and birds species detected within

250-m bands were registered (details in Santana et al. 2014).

The months of sampling were adjusted to cover the breeding

periods of both resident species and trans-Saharan migrants

(Table S1, Supporting Information). Before analysis, we pooled

species occurrences at each transect within each 3-year period,

to minimise potential confounding effects resulting from year-

to-year fluctuations in species occurrences unrelated to local

habitat conditions, differences in observer skills, and the possi-

bility of missing some species when sampling on a single sam-

pling occasion per year. To aid interpretation of ecological

effects, bird species were categorised according to their speciali-

sation in farmland habitats (Santana et al. 2014; Table S1):

farmland birds – species associated with a range of farmland

habitats (e.g. arable fields, permanent crops, hedgerows); and

steppe birds – a subset of farmland birds occurring only in

open grassland habitats. We also categorised birds with unfa-

vourable conservation status in Europe (SPEC1-3, BirdLife

International 2004). Aquatic birds were discarded because they

were not adequately sampled (Table S1). Because no birds were

observed for some transects in a given period, they were dis-

carded from subsequent analyses, corresponding to three tran-

sects for steppe birds, and two transects for the other bird

categories.

BIRD DIVERSITY METRICS

The c-diversity in each farmland area was computed for each

3-year period, while correcting for differences in sampling effort

between areas. We used Chao estimator implemented in ‘iNEXT’

(Hsieh, Ma & Chao 2016) for R 3.2.3 (R Core Team 2016),

assuming that sampling was thorough enough so that the land-

scape heterogeneity was well captured within the sampled sites

(Santana et al. 2017a). Specifically, we estimated how many spe-

cies would be observed if sample size was as large in high- as in

low-intensity farmland, and computed the 95% confidence inter-

vals of estimates. Sample size-based rarefaction and sample com-

pleteness curves were used to evaluate whether our sampling

effort was reasonable to estimate species richness.

Estimates of a-diversity were taken from Santana et al.

(2017a), and they were used here to allow comparisons with spa-

tial and temporal trends in b- and c-diversity. Total beta diversity

(bTot) was estimated by calculating pairwise dissimilarity in spe-

cies composition between all pairs of transects within each farm-

land area and period, using the Jaccard index (Legendre 2014).

The index was additively decomposed into two components to

identify the dominant process driving compositional change: (i)

species replacement (bRepl) – differences in species composition

between transects; and (ii) species richness difference (bRichDiff) –

differences in the number of species between transects (Legendre

2014; see Table S2 for formulation). The different number of

transects sampled in each farmland area was unlikely to have

effects on pairwise b-diversity metrics because they were based on

the average of the differences in species composition between

transects. The mean and the range of the distances between tran-

sects were similar in high- (mean distance between transects;

min–max: 8�6 km; 0�76–22�7 km) and low-intensity farmland

(10�4 km; 0�79–23�0 km).

STATISTICAL ANALYSIS

Before analysis, we used the angular transformation on propor-

tional data and the log-transformation on habitat diversity and

configuration metrics, to minimise potential problems associated

with the unit sum constraint and the undue influence of extreme

values. For each farmland area, we then carried out a principal

component analyses of habitat variables (Habitat PCA), with

varimax rotation on components with eigenvalues >1�0 (Legendre

& Legendre 1998), to describe the main habitat gradients and

estimate landscape heterogeneity metrics. Land cover types with

less than three occurrences were excluded to reduce the possible

unduly large influence of rare land-use categories (Legendre &

Legendre 1998). We used t-tests to evaluate differences between

time periods in the mean (habitat patterns) and dispersion (over-

all landscape heterogeneity) of transect scores along each Habitat

PCA axis.

We used multiple linear models to analyse how bTot, bRepl and

bRichDiff varied between time periods [1995–1997 (0) vs. 2010–

2012 (1)] and farmland area [high-intensity (0) vs. low-intensity

(1)], and whether temporal trends varied between farmland area

(interaction term). Under our model parameterisation, positive

coefficients for the interaction term indicate that temporal trends

in b-diversity metrics were more positive (or less negative) in low-

intensity farmland compared to high-intensity farmland. The sig-

nificance of model coefficients was tested using a permutation

approach (Legendre & Legendre 1998), because the underlying

© 2017 The Authors. Journal of Applied Ecology © 2017 British Ecological Society, Journal of Applied Ecology, 54, 1825–1835
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data matrix was comprised of pairwise indices that are computed

for all combinations of two transects, thereby inflating estimates

of parametric significance due to pseudo-replication. Therefore,

we compared the coefficients estimated for each model with the

frequency distribution of coefficients estimated using 10 000 ran-

dom permutations of transects among farmland areas, and time

periods, but maintaining the original number of transects per

area and period.

We used multiple regression on distance matrices (MRM; Lich-

stein 2007) to model the relationships between pairwise b-diversity
metrics and pairwise landscape heterogeneity along each Habitat

PCA axis. A separate model was fit for each farmland area and

time period, including in each case all principal components and

the matrix of geographical distances between the coordinates of

transects to account for spatial autocorrelation (Lichstein 2007).

We did not use any model selection procedure, because the num-

ber of variables was low in relation to the number of observa-

tions, and variables were not intercorrelated. Statistical

significance of model coefficients was estimated using a permuta-

tion procedure with 10 000 permutations (Legendre, Lapointe &

Casgrain 1994).

To help explain the observed variations of b-diversity metrics

in terms of actual spatial variations in bird assemblage composi-

tion (e.g. Legendre, Borcard & Peres-Neto 2005; Tuomisto &

Ruokolainen 2006), we used partial constrained correspondence

analysis (pCCA) (Legendre & Legendre 1998) to investigate how

assemblage composition varied in relation to the gradients

derived from the Habitat PCA. This analysis provides informa-

tion on what species contribute to differences in assemblage com-

position between transects (i.e. b-diversity), and how such

differences are driven by variation in habitat characteristics

between transects (i.e. landscape heterogeneity) (Legendre, Bor-

card & Peres-Neto 2005; Tuomisto & Ruokolainen 2006). The

pCCA was carried out separately for high- and low-intensity

farmland, using the presences of the most widespread species, i.e.

species with >25% of occurrences in the dataset considering the

two 3-year periods. We used the habitat gradients obtained by

PCA as constraining variables, and the sampling period as a

conditioning variable. Model building was based on a forward-

backward stepwise procedure, using Monte Carlo permutation

tests with 10 000 permutations (Oksanen et al. 2016).

Analyses were performed in R 3.2.3 (R Core Team 2016), using

‘psych’ (Revelle 2015) and ‘GPArotation’ (Bernaards & Jennrich

2005) for PCA, ‘lm’ for multiple linear models, ‘ecodist’ (Goslee

& Urban 2007) for MRM, and ‘vegan’ (Oksanen et al. 2016) for

pCCA.

Results

HABITAT PATTERNS AND LANDSCAPE

HETEROGENEITY

In high-intensity farmland, the Habitat PCA extracted five

axes (74�9% of variation; Tables S3), three of which

showed significant variation between 1995–1997 and

2010–2012 in mean transect scores (Table 1), reflecting

temporal habitat changes. Over time, there were increases

in permanent crops and crop patch size, and declines in

irrigated crops, crop richness and edge density (PC2high;

21�5%); increases in pastures and water bodies (PC4high;

10�3%); and increases in annual irrigated crops and decli-

nes in open fields with scattered trees, annual dry crops

and fallows (PC5high; 9�2%). No significant temporal

changes were found along the gradient from predomi-

nantly agricultural habitats, with larger crop patches, to

more natural habitats with higher cover by streams and

woodlands, and higher natural habitat richness and edge

density (PC1high; 23�4%), nor along the gradient reflecting

increases in open woodland cover and natural habitat

patch size (PC3high; 10�5%). Regarding landscape hetero-

geneity, the multivariate dispersion of transect scores did

not change significantly over time, but dispersion

increased significantly along PC2high and PC4high
(Table 1).

In low-intensity farmland, mean transect scores varied

significantly across time periods in two out of six axes

extracted from the Habitat PCA (82�3% of variation;

Tables 1 and S4). In 2010–2012, there were increases in

permanent pastures at the expense of annual dry crops

and fallows (PC3low; 11�8%), and increases in water bod-

ies (PC5low; 7�6%). No changes were found along the

gradients reflecting increases in predominantly agricul-

tural habitats, with larger crop patches, at the expense of

natural habitats with higher cover by shrubland, streams

and woodlands, more natural habitat types, and higher

edge densities (PC1low; 26�7%); increases in agricultural

habitats at the expense of habitats with more open

woodland and larger natural habitat patches (PC2low;

18�1%); increases in arable land with scattered trees

(PC4low; 9�7%); and increases in annual irrigated crops

(PC6low; 8�4%). Overall landscape heterogeneity did not

change significantly over time, but heterogeneity

increased significantly along PC5low and declined along

PC6low (Table 1).

BIRD DIVERSITY

The number of transects was always sufficient to record over

90% of species in each farmland area and period (Fig. S1).

The estimated total number of species (c-diversity) was

much lower in high- than in low-intensity farmland in

1995–1997, but not in 2010–2012, when richness increased

markedly in both areas (Fig. 2). A similar pattern was

found for farmland and SPEC1-3 species groups, while

the richness of steppe birds remained higher in low-inten-

sity farmland in both periods, and variation between peri-

ods was much smaller (Fig. 2). Overall, variation in

a-diversity was broadly similar to that of c-diversity,
albeit with a less pronounced increase between time

periods, particularly in high-intensity farmland.

Variation in bTot was significantly affected by farmland

area, sampling period and their interaction (Table 2). In

general, bTot was much higher in low- than in high-inten-

sity farmland in 1995–1997, but the two converged to

much the same values in 2010–2012, mainly due to a

sharp increase in high-intensity, and a small decline in

low-intensity farmland (Fig. 3). Similar results were found
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for bRepl of total, farmland and SPEC1-3 species (Fig. 3,

Table 2), with sharp increases in high-intensity farmland

and stability or slight declines in low-intensity farmland

(Fig. 3). This pattern was broadly similar but not statisti-

cally significant for steppe birds (Fig. 3, Table 2). There

were declines between time periods for bRichDiff of total,

farmland and SPEC1-3 species, while bRichDiff of SPEC1-3

species was higher in high- than in low-intensity farmland

(Table 2; Fig. 3). There were no interaction effects for

bRichDiff.

EFFECTS OF LANDSCAPE HETEROGENEITY ON BETA

DIVERSITY

In high-intensity farmland, there were only a few signifi-

cant relations between b-diversity and landscape

heterogeneity (Table S5). In 1995–1997, bRichDiff and bRepl

of the total assemblage were positively and negatively

related, respectively, to heterogeneity along PC5high (an-

nual irrigated crops vs. arable land with scattered trees).

In 2010–2012, bRepl of the total and farmland bird assem-

blages were positively related to heterogeneity along

PC2high (annual irrigated vs. permanent crops).

In low-intensity farmland, there were several significant

relations between b-diversity and landscape heterogeneity

(Table S6). There were often significant positive relations

between bTot, bRepl (mainly in 1995–1997), and bRichDiff

(mainly in 2010–2012) and the geographical distance

between transects. In both periods, bTot and bRepl were

often positively related to heterogeneity along PC1low
(more agricultural vs. more natural habitats) and PC2low
(more agricultural habitats vs. open woodland) gradients,

Table 1. Temporal variation between 1995–1997 (T0) and 2010–2012 (T1) in habitat patterns and landscape heterogeneity in the study

area. Habitat change was estimated from paired t-tests comparing the mean scores of bird sampling transects along the axis extracted

from principal component analysis of habitat variables (PC#), in high- and low-intensity farmland (Tables S3 and S4). Landscape

heterogeneity was estimated from paired t-tests comparing the dispersion of scores, either along each axis (PC#) or in multivariate space

(All PC). Bold denotes P < 0�05

Habitat gradient

Habitat patterns Landscape heterogeneity

T0 T1 t P T0 T1 t P

High-intensity farmland (n = 28)

PC1high (agricultural to natural habitats) �0�12 0�12 1�98 0�058 0�87 0�72 �0�94 0�353
PC2high (annual irrigated to permanent crops) �0�38 0�38 3�75 0�001 0�42 0�99 4�06 <0�001
PC3high (open woodlands and natural habitat patches) 0�13 �0�13 �1�32 0�197 0�60 0�63 0�13 0�894
PC4high (permanent pastures and water bodies) �0�36 0�36 2�91 0�007 0�35 0�81 2�46 0�018
PC5high (annual irrigated crops to arable land with

scattered trees)

0�27 �0�27 �3�16 0�004 0�80 0�57 �1�24 0�220

All PChigh 1�94 2�02 0�37 0�711
Low-intensity farmland (n = 43)

PC1low (agricultural to natural habitats) 0�01 �0�01 �0�22 0�830 0�81 0�79 �0�17 0�864
PC2low (agricultural habitats to open woodlands) �0�02 0�02 0�88 0�384 0�74 0�70 �0�23 0�818
PC3low (permanent pastures to annual dry crops and

fallows)

0�40 �0�40 �4�89 <0�001 0�77 0�68 �0�69 0�491

PC4low (arable land with scattered trees) �0�01 0�01 0�20 0�846 0�67 0�62 �0�25 0�799
PC5low (water bodies) �0�20 0�20 2�92 0�006 0�51 0�94 3�18 0�002
PC6low (annual irrigated crops) 0�17 �0�17 �1�67 0�102 0�79 0�34 �2�67 0�011
All PClow 2�15 2�20 0�27 0�790

Fig. 2. Estimates of a-diversity (dots) and

c-diversity (bars) of the total (a), farmland

(b), steppe (c) and species of European

conservation concern (SPEC1-3; d) bird

assemblages, in high- and low-intensity

farmland, before (1995–1997) and after

(2010–2012) the CAP reform of 2003.

We estimated a-diversity as the mean

(�SE) species richness per transect, and c-
diversity (�95% confidence intervals)

using Chao’s estimator (Fig. S1).
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while relations for bRichDiff tended to be negative. In

2010–2012, bRepl and bRichDiff of steppe birds were nega-

tively and positively related, respectively, to heterogeneity

along PC4low (increasing cover by arable land with

scattered trees).

BIRD ASSEMBLAGE VARIATION IN RELATION TO

LANDSCAPE HETEROGENEITY

In high-intensity farmland, the first pCCA (41�4% of vari-

ance) reflected a progressive replacement of steppe (little

bustard) and some generalist farmland (quail Coturnix

coturnix, zitting cisticola Cisticola juncidis, red-legged

partridge Alectoris rufa, and bee-eater Merops apiaster)

species, by other generalist farmland (sparrows Passer

spp., goldfinch Carduelis carduelis, and barn swallow

Hirundo rustica) and non-farmland (stonechat Saxicola

rubicola, blackbird Turdus merula) species, and was signifi-

cantly associated with gradients from more agricultural to

more natural habitats (PC1high, F = 3�56, P < 0�001), and
of increasing cover by permanent vs. annual irrigated

crops (PC2high, F = 3�31, P < 0�001) (Fig. 4a). The second

pCCA (31�4%) reflected a replacement between species

associated with either increasing cover by permanent

crops (PC2high; bee-eater, greenfinch Chloris chloris,

black-eared wheatear Oenanthe hispanica, and blackbird),

Table 2. Models relating bird total beta diversity (btot), species replacement (bRepl) and species richness differences (bRichDiff), to time

period [1995–1997 (0) vs. 2010–2012 (1)] and farmland area [high-intensity (0) vs. low-intensity (1)]. For each model, we present the esti-

mated coefficients (Coef) and standard error (SE), and their statistical significance for two-tailed tests (P). Significant differences

(P < 0�05) are in bold and negative coefficients are underlined. A positive interaction coefficient implies that diversity metrics increased

more in low- than in high-intensity farmland; negative coefficients indicate the opposite trend

Beta diversity metric

Time period Farmland area Period 9 area

Coef SE P Coef SE P Coef SE P

All species

btot 0�09 0�01 0�001 0�10 0�01 <0�001 �0·10 0·01 0·004
bRepl 0�22 0�01 <0�001 0�15 0�01 0�003 �0·21 0·02 0·003
bRichDiff �0·14 0·01 0·011 �0�05 0�01 0�287 0�12 0�02 0�085
Farmland

btot 0�08 0�01 0�001 0�10 0�01 <0�001 �0·10 0·01 0·002
bRepl 0�19 0�01 <0�001 0�19 0�01 <0�001 �0·21 0·02 0·003
bRichDiff �0·11 0·01 0·038 -0�08 0�01 0�063 0�11 0�02 0�086
Steppe

btot 0�08 0�01 0�038 0�13 0�01 <0�001 �0·11 0·02 0·018
bRepl 0�08 0�02 0�164 0�14 0�01 0�004 �0�09 0�02 0�170
bRichDiff 0�00 0�02 0�931 �0�01 0�01 0�866 �0�02 0�02 0�759
SPEC 1-3

btot 0�09 0�01 <0�001 0�09 0�01 0�001 �0·10 0·01 0·003
bRepl 0�24 0�02 <0�001 0�22 0�01 <0�001 �0·23 0·02 0·006
bRichDiff �0·14 0·01 0·023 �0·13 0·01 0·020 0�13 0�02 0�110

Fig. 3. Estimates of total beta diversity,

and its species replacement (dark grey)

and richness difference (light grey) compo-

nents, for the total (a), farmland (b),

steppe (c) and species of European conser-

vation concern (SPEC1-3; d) bird assem-

blages, in high- and low-intensity

farmland, before (1995–1997) and after

(2010–2012) the CAP reform of 2003.
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or with more natural habitats (PC1high) and arable land

with scattered trees (PC5high, F = 1�83, P = 0�042), such

as red-legged partridge, zitting cisticola, barn swallow,

stonechat and sparrows.

In low-intensity farmland, the first pCCA (62�2%)

reflected the replacement of steppe bird species of conser-

vation concern such as great bustard, little bustard, calan-

dra lark Melanocorypha calandra, and short-toed lark, by

more generalist farmland species of lower concern such as

bee-eater, Galerida larks, barn swallow, and red-legged

partridge, and was significantly associated with gradients

from more agricultural habitats to either more natural

habitats (PC1low, F = 5�59, P < 0�001) or habitats with

higher cover by open woodlands and large natural patches

vs. agricultural habitats (PC2low, F = 5�72, P < 0�001)
(Fig. 4b). The second pCCA (15�6%) was mainly related

to increasing cover by arable land with scattered trees

(PC4low, F = 3�97, P < 0�001) and, to a lesser extent, to

the agricultural-natural gradient (PC1low), which was

associated with the replacement of species such as white

stork, great bustard and calandra lark, by species such as

Montagu’s harrier Circus pygargus, red-legged partridge

and little bustard.

Discussion

Our study supported the idea that the expansion of previ-

ously scarce land uses after the CAP reform of 2003 con-

tributed to increasing landscape heterogeneity, mainly due

to spreading out of permanent crops (i.e. olive groves) in

high-intensity farmland (Ribeiro et al. 2014). Also, we

found that a-diversity was the main driver of the temporal

increase in c-diversity in low-intensity farmland, while

both a- and b-diversity (bRepl, but not bRichDiff) strongly

contributed to increase c-diversity in high-intensity farm-

land. These patterns were largely similar for all species

groups, albeit much less markedly for steppe birds. There

were significant relationships between b-diversity and land-

scape heterogeneity, but the actual land-use types influenc-

ing such relationships varied between areas, time periods

and species group considered. Finally, we found that b-
diversity was associated with the spatial replacement of

species with contrasting habitat affinities along the main

gradients of environmental heterogeneity, involving in

some cases the replacement of steppe birds of high conser-

vation concern by more common and generalist species.

Overall, our study supports the value of b-diversity in con-

servation research (Socolar et al. 2016), by showing that

information on patterns and drivers of spatial variation in

assemblage composition add significantly to the analysis of

local species richness for providing meaningful conserva-

tion management prescriptions on farmland.

Before the CAP reform (1995–1997), the higher bird

diversity observed in low- than in high-intensity farmland

was probably a consequence of its more favourable agri-

cultural habitats and landscape heterogeneity patterns.

During this period, the low-intensity area was dominated

by a traditional farming system (Ribeiro et al. 2014), with

high a-diversity likely supported by the presence of

favourable habitats such as woodlands, riparian vegeta-

tion and fallows (Delgado & Moreira 2000; Stoate,

Ara�ujo & Borralho 2003; Santana et al. 2017a), and prob-

ably also by beneficial crop management practices

(Ribeiro et al. 2016b). Likewise, our results suggest that
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Fig. 4. Biplot of the first two axes extracted from a partial canonical correspondence analysis (pCCA) in the high- (a) and low-intensity

(b) farmland areas, showing the influence of landscape heterogeneity described by the main habitat gradients (arrows) on variation in bird

assemblage composition (b-diversity). The proportion of total variation represented in each axis is also provided. Species abbreviations

are provided in Table S1.
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high b-diversity was supported by high landscape hetero-

geneity, particularly with that associated with the gradient

from natural to agricultural habitats. This gradient

strongly affected spatial variation in assemblage composi-

tion, primarily through species replacement (bRepl). The

favourable conditions for both a- and b-diversity thus

probably contributed to the relatively high c-diversity esti-

mated in low-intensity farmland.

In marked contrast, the low diversity observed in high-

intensity farmland in 1995–1997 probably resulted from

the prevalence of a farming system specialised on annual

irrigated crops (Ribeiro et al. 2014), which was likely

associated with poor bird habitats and landscape homo-

geneity (Ribeiro et al. 2016a,b). These crops tend to sup-

port low a-diversity in Mediterranean farmlands,

probably due to their structural characteristics, the heavy

use of agro-chemicals and other unfavourable manage-

ment practices (Stoate, Ara�ujo & Borralho 2003; Brotons,

Ma~nosa & Estrada 2004; Santana et al. 2017a). The pro-

duction of annual irrigated crops is also associated with

low landscape heterogeneity (Ribeiro et al. 2016b), which

probably explains the low b-diversity in high-intensity

farmland, and the lack of consistent relations between

b-diversity and landscape heterogeneity observed in this

area. Although we found a tendency similar to that of

low-intensity farmland for assemblage composition chang-

ing along the gradient from natural to agricultural habi-

tats, this was probably not sufficient to increase the

overall b-diversity due to the low representation of natu-

ral habitats in high-intensity farmland (Santana et al.

2017a). Whatever the mechanism, these low values of

both a- and b-diversity were responsible for the low

c-diversity observed in high-intensity farmland before the

CAP reform of 2003.

After the CAP reform (2010–2012), diversity metrics

(except bRichDiff) largely increased and converged in high-

intensity farmland to the values observed in low-intensity

farmland. It is unlikely that these changes were primarily

due to biases arising from variations in species detectabil-

ity, because the open habitats with high visibility were lar-

gely retained across sampling periods in low-intensity

farmland, while the number of species detected in high-

intensity farmland increased markedly despite the expan-

sion of closed habitats with potentially lower visibility

(i.e. permanent crops). It is more likely that the increase

in a-diversity observed in low-intensity farmland reflected

a positive effect of conservation management of the SPA,

without any noticeable negative effects of the transition

from traditional to livestock specialised farming systems

(Ribeiro et al. 2014; Santana et al. 2014). This farming

system change did not affect the main gradients of land-

scape heterogeneity (Ribeiro et al. 2016b; this study),

which probably explains the lack of change in b-diversity
observed in this farmland area. Regarding high-intensity

farmland, the increase in a-diversity was probably due to

the expansion of olive groves at the expense of annual

irrigated crops, providing habitat for a range of woodland

and shrubland species that were previously absent or

scarce in this area (Santana et al. 2014, 2017a). This

change also contributed to increased landscape hetero-

geneity, which was likely responsible for the observed

increase in b-diversity, mainly due to species replacement

(bRepl) among sites dominated by contrasting agricultural

habitats. In fact, the gradient from annual irrigated crops

to olive groves was strongly associated with spatial varia-

tion in assemblage composition, thereby promoting the

coexistence of more species. Overall, therefore, while the

increase in c-diversity observed in low-intensity farmland

was mainly driven by increasing a-diversity, both a- and

b-diversity were responsible for the increase in c-diversity
in high-intensity farmland.

CONSERVATION IMPLICATIONS

This study illustrates how b-diversity can be used to pro-

vide practical insights on the management of specific farm-

land areas, beyond those supported solely on information

from the local patterns of assemblage richness and compo-

sition (e.g. Delgado & Moreira 2000; Stoate, Ara�ujo & Bor-

ralho 2003; Santana et al. 2014, 2017a). In our low-

intensity farmland area, results suggest that management

should be directed at maintaining a stable b-diversity, with
any temporal increases in b-diversity potentially reflecting

negative conservation outcomes. This is because the area is

devoted to steppe bird conservation, and high b-diversity
was associated with the spatial replacement of steppe bird

species by species of low conservation concern. Therefore,

maintaining the dominance of open agricultural habitats is

critical in this and possibly other farmland areas (e.g. B�aldi

and Bat�ary 2011), even though this may be negative for

landscape heterogeneity, and for overall b- and c-diversity.
In contrast, managing for high b-diversity may be sensible

in our high-intensity farmland area, where increases in b-
diversity after the CAP reform of 2003 probably reflect pos-

itive conservation outcomes. This is because increasing

overall diversity rather than the diversity of any particular

species group is generally the main goal in high-intensity

farmland (e.g. Fahrig et al. 2011; Karp et al. 2012), and in

our case this was favoured by recent increases in landscape

heterogeneity associated with the expansion of olive groves.

Therefore, maintaining a patchwork of arable and perma-

nent crops may be a key management goal in this area, as

this provides conditions for both farmland and woodland

and shrubland species at the landscape scale (Santana et al.

2017a), and thus high b- and c-diversity. Further expansion
of olive groves may turn out to be negative, however, if it

leads to progressive homogenisation of the landscape,

requiring this potential outcome to be assessed through

continued monitoring of b-diversity.
In general, our study underlined the value of b-diver-

sity to inform agricultural policies and conservation

actions on farmland, supporting previous suggestions that

it may be essential to capture processes that are hard or

impossible to detect using only local diversity metrics
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(Clough et al. 2007; Gaston et al. 2007; Monnet et al.

2014; Socolar et al. 2016; _Zmihorski et al. 2016). First,

our results illustrated the importance of b-diversity to

understand the consequences of land-use changes, as

focusing solely on a-diversity would have missed impor-

tant links between biodiversity and anthropogenic drivers.

This was particularly evident in high-intensity farmland,

where variation in c-diversity was mainly driven by

b-diversity. Second, the analysis of b-diversity helped

identify the main land-use types shaping functional land-

scape heterogeneity (sensu Fahrig et al. 2011), which is

critical for farmland conservation management. In fact,

although there was a variety of land uses shaping a range

of habitat gradients, only heterogeneity associated with

the gradients from agricultural to natural habitats in the

low-intensity farmland area, and from arable to perma-

nent crops in the high-intensity farmland area, could be

considered functional, in the sense that they strongly

affected spatial variation in assemblage composition.

Finally, our results showed that while temporal variations

in b-diversity may be used to assess biodiversity trends,

the meaning of such changes should be carefully consid-

ered, as we found high levels of b-diversity to be linked

with potentially negative conservation outcomes in low-

intensity farmland. This supports the view that higher

b-diversity does not necessarily equate to higher conser-

vation value (Socolar et al. 2016), and thus that the

management of landscape heterogeneity and b-diversity
should be fine-tuned in relation to well-defined conserva-

tion goals (e.g. B�aldi & Bat�ary 2011).
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Fig S1 Sample-size-based rarefaction (solid lines) and extrapola-

tion (dotted lines) curves (a–d), and sample completeness curves

(e–h) in each farmland area and sampling period using Chao’s

estimator and q = 0 (species richness).

Table S1 List of bird species recorded in high- and low-intensity

farmland areas in southern Portugal, before (1995–1997) and after

(2010–2012) the CAP reform of 2003.

Table S2 Formulation of the indices used to estimate beta diversity

and its components following Podani & Schmera (2011), Carvalho,

Cardoso & Gomes (2012) and Carvalho et al. (2013).

Table S3 Loadings of habitat variables in high-intensity farmland

on varimax rotated axes (PC#high) extracted from a principal

component analysis (PCA).

Table S4 Loadings of habitat variables in low-intensity farmland

on varimax rotated axes (PC#low) extracted from a principal

component analysis (PCA).

Table S5 Summary of models relating b-diversity metrics (total beta

diversity, bTot; species replacement, bRepl; species richness differ-

ence, bRichDiff) to variation in landscape heterogeneity in high-

intensity farmland.

Table S6 Summary of models relating b-diversity metric (total beta

diversity, bTot; species replacement, bRepl; species richness differ-

ences, bRichDiff) to variation in landscape heterogeneity in low-

intensity farmland.
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