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low-rank time integration of vector fields that can be evalu-
ated entry-wise. A key advantage of our approach is that it 
does not require the vector field to exhibit low-rank struc-
ture, thereby overcoming significant limitations of traditional 
dynamical low-rank methods based on orthogonal projec-
tion. To construct the interpolatory projectors, we develop 
a sparse tensor sampling algorithm based on the discrete 
empirical interpolation method (DEIM) that parameterizes 
tensor train manifolds and their tangent spaces with cross 
interpolation. Using these projectors, we propose two time 
integration schemes on low-rank tensor train manifolds. The 
first scheme integrates the solution at selected interpolation 
indices and constructs the solution with cross interpolation. 
The second scheme generalizes the well-known orthogonal 
projector-splitting integrator to interpolatory projectors. We 
demonstrate the proposed methods with applications to sev-
eral tensor differential equations arising from the discretiza-
tion of partial differential equations.
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1. Introduction

Consider the initial value problem

∂u(x, t)
∂t

= G(u,x, t), u(x, 0) = u0(x), (1)

governing the time evolution of a quantity of interest u : Ω × [0, T ] → R, where Ω is 
a subset of Rd (d � 1) and G is a nonlinear operator that may depend on x and t. 
Equations of the form (1) are found in many areas of physical sciences, engineering, and 
mathematics. For example, in applications of kinetic theory such as the Fokker–Planck 
equation [41] and the Boltzmann equation [4], in optimal mass transport [19], and as 
finite-dimensional approximations of functional differential equations [53,52]. Discretiz-
ing (1) with a method of lines yields the tensor differential equation

dX(t)
dt

= G(X(t), t), X(0) = X0, (2)

where X(t) : [0, T ] → Rn1×···×nd is the time-dependent solution tensor and G :
Rn1×···×nd × [0, T ] → Rn1×···×nd is a discrete form of the operator G. At any time t, 
the solution tensor X(t) has O(nd) degrees of freedom that make its computation and 
storage prohibitively expensive, even for small d.

Several algorithms based on tensor networks have recently been proposed to reduce 
the number of degrees of freedom in the solution tensor X(t) and integrate (2) at a 
reasonable computational cost. A tensor network is a factorization of a high-dimensional 
tensor, such as X(t), into a network of low-dimensional tensors with significantly fewer 
degrees of freedom. The number of degrees of freedom in a network depends on the chosen 
tensor format, e.g., tensor train (TT) [38], Tucker [34,13], Hierarchical Tucker [22,33,23]
or canonical polyadic (CP) [29], and the tensor rank. For instance, tensors in the TT 
format with rank r can be parameterized with O(dnr2) degrees of freedom, a significant 
reduction from O(nd) when the rank r is sufficiently small. The set of all tensors in a 
chosen format with fixed rank forms a smooth manifold on which the solution to (2) can 
be integrated.

Two classes of algorithms for integrating (2) on smooth tensor manifolds are step-
truncation methods [42] and dynamical low-rank methods [10]. Step-truncation methods 
allow the solution rank to naturally increase in a controlled manner during a time step 
before truncating back to the desired rank. Dynamical low-rank methods integrate the so-
lution on a fixed-rank manifold by projecting G(X, t) onto a tangent space of the manifold 
at each time t. Both methods aim to efficiently compute the best approximate solution 
to (2) on a fixed-rank tensor manifold at each time t and are consistent with each other 
as the temporal step-size approaches zero (see, e.g., [9, Section 3.3]). These methods have 
been utilized for several applications including uncertainty quantification [2,45], plasma 
physics [54,17], numerical approximation of functional differential equations [53,44] and 
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machine learning [48,46], and substantial research efforts have recently been made to 
improve their accuracy, efficiency, and robustness. These efforts have resulted in sev-
eral innovations including rank-adaptive integrators [9,5,42], implicit low-rank methods 
[43,36,50], conservative low-rank methods [25,3,18,16] and coordinate-adaptive low-rank 
methods [11,12].

Despite these recent advancements, existing low-rank time integration schemes still 
have significant limitations in their applicability. Most notably, they require the tensor-
valued map G defining the differential equation (2) to have low-rank structure comple-
mentary to that of the solution. Such low-rank structure is key to increasing the solution 
rank in a controlled manner for step-truncation methods or efficiently computing the 
orthogonal projection of G(X, t) onto the tangent space for dynamical low-rank meth-
ods. In either case, the low-rank structure of G is crucial for obtaining practical time 
integration schemes with computational cost and storage requirements comparable to 
the storage cost of the chosen tensor format. However, many instances of G that arise 
from discretizing (1) lack low-rank structure. For example, when G includes a polynomial 
nonlinearity computing a low-rank representation of G(X, t) or its orthogonal projection 
onto the tangent space is expensive due to the non-optimal rank that results from mul-
tiplying low-rank tensors. The situation is worse for other common nonlinearities, such 
as exponential or fractional, as there are currently no reliable algorithms for performing 
these nonlinear arithmetic operations with low-rank tensors. In such cases, (2) may ad-
mit an approximate low-rank solution. However, existing step-truncation and dynamical 
low-rank methods cannot efficiently compute it.

In this paper, we introduce a new class of dynamical low-rank methods that can effi-
ciently integrate the solution to (2) on a low-rank tensor manifold even when G does not 
have low-rank structure. Our proposed methods rely on a new class of oblique projec-
tors onto low-rank tangent spaces with a cross interpolation property. In the context of 
dynamical low-rank approximation, these projectors collocate (2) on a tensor manifold 
and yield equations of motion on the manifold that are efficient to integrate whenever 
it is possible to evaluate G entry-wise. The oblique projectors are defined by sets of 
multi-indices that identify tensor fibers along which the projector interpolates. To se-
lect these multi-indices, we introduce a new algorithm, based on the discrete empirical 
interpolation method (DEIM), to efficiently compute indices that parameterize tensor 
manifolds with cross interpolation [37]. Using these projectors we propose two low-rank 
time integration schemes. The first integrates subtensors of the solution defining a ten-
sor cross interpolant and then constructs the low-rank solution later in time with tensor 
cross interpolation. The second we obtain by applying a splitting scheme to the oblique 
tangent space projector. Splitting schemes for orthogonal tangent space projectors were 
introduced in [31] for matrices and were subsequently generalized to TTs [32], Tucker 
tensors [30] and tree tensor networks [7]. Our method directly generalizes these orthog-
onal projector-splitting schemes to oblique projectors in the TT format. Related time 
integration schemes based on oblique projections onto the low-rank manifold (instead 
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Fig. 1. A sketch of the low-rank manifold Mr and its tangent space TY Mr at the point Y ∈ Mr . Also 
depicted is Z ∈ Rn1×···×nd and its orthogonal projection P̂Y Z and oblique projection PY Z onto the tangent 
space TY Mr. The orthogonal projection is the best approximation of Z on the tangent space with respect 
to the Frobenius norm but is impractical compute when G lacks rank structure. The oblique projection is 
a quasi-optimal approximation of Z on the tangent space that is efficient to compute for any G that can 
be evaluated entry-wise. Such oblique projectors allow us to efficiently apply dynamical low-rank methods 
to a broad class of nonlinear differential equations.

of its tangent space) were recently proposed for computing low-rank approximations to 
matrix differential equations [15,35] and tensor differential equations [21,20].

The rest of this paper is organized as follows. In Section 2 we introduce interpola-
tory tangent space projectors and the proposed dynamical low-rank methods on matrix 
manifolds (d = 2). In Section 3 we briefly recall the TT format and orthogonalization 
of tensors in the TT format. In Section 4 we recall the orthogonal projector onto the 
TT tangent space and introduce new oblique projectors onto the tangent space. Then 
we describe a special class of oblique projectors with a cross interpolation property. In 
Section 5 we present a new index selection algorithm, referred to as TT-cross-DEIM, for 
constructing oblique projectors onto the TT tangent space. We show that indices ob-
tained with the TT-cross-DEIM algorithm define oblique tangent space projectors and 
parameterize TT manifolds with cross interpolation. In Section 6 we introduce new dy-
namical low-rank time integration schemes for (2) using oblique tangent space projectors. 
In Section 7 we demonstrate the proposed dynamical low-rank methods and compare the 
results with existing time integration methods on low-rank tensor manifolds. The main 
findings are summarized in Section 8.

2. Dynamical low-rank matrix approximation

Before introducing dynamical low-rank tensor approximation, we describe the pro-
posed low-rank methods for matrices (d = 2). The goal is to find an approximate solution 
Y (t) to (2) that lies on the manifold Mr of rank-r matrices for all time t. A rank-r ma-
trix can be expressed through left and right factor matrices with dimensions n1r and 
n2r, respectively. Thus approximating the solution to (2) with Y (t) ∈ Mr reduces the 
storage cost from n1n2 to (n1 +n2)r. Dynamical low-rank methods integrate the approx-
imate solution Y (t) on the manifold Mr by projecting (2) onto a tangent space of Mr
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at each time t. Assuming the initial condition X0 belongs to Mr, this procedure yields 
the evolution equation

dY (t)
dt

= PY (t)G(Y (t), t), Y (0) = X0, (3)

where PY (t) : Rn1×n2 → TY (t)Mr projects onto the tangent space of Mr at Y (t). The 
solution to (3) remains on Mr for all t ≥ 0 and serves as an approximate solution to 
(2). Classical dynamical low-rank methods use an orthogonal tangent space projector to 
minimize the error of the approximation in the Frobenius norm at each time t. Let U(t)
and V (t) be matrices whose columns form orthonormal bases for the range and co-range 
of Y (t), respectively. Such matrices can be obtained, for example, from the SVD of Y (t). 
Then the orthogonal tangent space projector can be expressed as [31]

P̂Y Z = ZV V T − UUTZV V T + UUTZ, (4)

where Z ∈ Rn1×n2 and we suppressed dependence on t for simplicity. When Z =
G(Y (t), t) computing the projection (5) at each time step to integrate (3) can be compu-
tationally expensive, especially if G does not have low-rank structure. For most nonlinear 
functions G, computing such orthogonal projection has computational cost scaling as 
n1n2, making the integration of the approximate solution Y (t) ∈ Mr as expensive as 
solving for the full solution X(t) using standard methods.

2.1. Interpolatory dynamical low-rank approximation

Algorithm 1 DEIM index selection (adapted from [49]).
Require: V ∈ Rn×r with n ≥ r
Ensure: l, a vector with r distinct indices from {1, . . . , n}
1: v = V (:, 1)
2: [ , l1] = max(|v|)
3: for j = 2, 3, . . . , r do
4: v = V (:, j)
5: c = V (l, 1 : j − 1)−1v(l)
6: r = v − V (:, 1 : j − 1)c
7: [ , lj ] = max(|r|)
8: l = [l; lj ]
9: end for

To develop efficient dynamical low-rank integrators for nonlinear G we propose a new 
interpolatory tangent space projector PY to replace the orthogonal projector. This inter-
polatory projector is a specialized oblique tangent space projector, obtained by replacing 
the orthogonal projectors UUT and V V T in (4) with oblique projectors onto the same 
spaces. A general form of these oblique projectors is U(ATU)−1AT and V (BTV )−1BT

where A ∈ Rn1×r and B ∈ Rn2×r are any matrices such that (ATU) and (BTV ) are 
invertible. Interpolatory projectors onto the columns of U and V are obtained by se-
lecting A and B as specific columns of the identity matrix with appropriate dimensions. 
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Specifically A = In1(:, I) and B = In2(:, J ) where I contains r indices from {1, . . . , n1}
and J contains r indices from {1, . . . , n2}. The matrix A can extract r rows from Z via 
left multiplication ATZ = Z(I, :) and the matrix B can extract r columns from Z via 
right multiplication ZB = Z(:, J ). Moreover, A can be defined by choosing r indices in 
the set I, and similarly, B can be defined by choosing r indices in the set J . Such indices 
are to be chosen so that ATU = U(I, :) and BTV = V (J , :) are invertible, and ideally 
with a small condition number. This can be achieved with a sparse sampling algorithm 
such as the discrete empirical interpolation method (DEIM). The DEIM, summarized 
in Algorithm 1, is a greedy algorithm that selects an index for each column of U or V
to minimize the condition number of the interpolatory projector as much as possible. 
Other sparse sampling strategies, such as Q-DEIM or oversampling methods, can also 
be used and may yield better-conditioned interpolatory projectors than DEIM in certain 
cases. Replacing the orthogonal projectors in (4) with interpolatory projectors onto the 
columns of U and V results in an interpolatory projector onto the tangent space TYMr

of the form

PY Z = Z(:,J )V (J , :)−TV T − UU(I, :)−1Z(I,J )V (J , :)−TV T + UU(I, :)−1Z(I, :).
(5)

It is easy to verify that (PY Z)(i, j) = Z(i, j) whenever i ∈ I or j ∈ J . In other words, 
the projection PY Z interpolates Z along rows and columns specified by the index sets I
and J .

2.1.1. Matrix cross integrator
A straightforward low-rank time integration scheme can be derived by evaluating the 

dynamical low-rank evolution equation (3) at the sampled indices I and J and leveraging 
the interpolation property. This leads to the system of evolution equations

dY (I(t), :, t)
dt

= GY (I(t), :, t),

dY (:,J (t), t)
dt

= GY (:,J (t), t),
(6)

where GY (t) = G(Y (t), t). Equation (6) consists of (n1 + n2)r coupled nonlinear differ-
ential equations governing the evolution of a subset of the entries in the approximate 
solution, which can be integrated using standard explicit or implicit methods. The in-
dices I(t) and J (t) that define the interpolatory projector (5) are chosen at each time 
t to ensure that the projector remains well-defined during time integration. If G arises 
from the spatial discretization of a PDE (1) involving differential operators, evaluating 
GY (I, :, t) and GY (:,J , t) requires entries of Y at indices adjacent to I and J . The 
values of Y at adjacent indices can always be obtained by constructing the solution Y (t)
as a low-rank matrix using CUR decomposition. For example given Y (I, :) and Y (:, J )
at any time t the approximate solution Y can be obtained as
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Y = Y (:,J )Y (I,J )−1Y (I, :). (7)

If Y = UΣV T is the SVD and the indices I and J defining the interpolatory projector 
are chosen so that U(I, :) and V (J , :) are well-conditioned, then constructing Y using 
(7) involves Y (I, J )−1 = V (J , :)−TΣ−1U(I, :)−1. Thus the condition number of the 
middle matrix is inversely proportional to the smallest singular value of Y . Instead of 
constructing Y in this way, if we first take a QR decomposition Y (:, J ) = QR, then we 
can write Y (I, J ) = Q(I, :)R and the CUR formula (7) becomes

Y = QQ(I, :)−1Y (I, :), (8)

which is an interpolatory projection of Y (I, :) onto the orthonormal basis Q. In particular 
the stability of constructing the solution using (8) depends on the condition of the 
interpolatory projector and is independent of the singular values of Y . Computing the 
right hand side of (6), and hence integrating the system, is efficient for any nonlinear G
that can be evaluated entry-wise, regardless of its low-rank structure. This enables us to 
efficiently compute dynamical low-rank approximations for problems where orthogonal 
tangent space projection is too expensive.

2.1.2. Projector-splitting integrator
An alternative approach to the matrix-cross integrator presented above for integrating 

(3) is to apply a standard splitting method, similar to the integrators proposed for 
orthogonal projectors in [31]. Since (3) is a sum of three terms, applying Lie-Trotter 
splitting yields three substeps commonly referred to as K-, S-, and L-step. Beginning 
from the rank-r decomposition of the approximate solution Y (t0) = U(t0)S(t0)V T(t0)
at time t0, each step updates a single factor matrix. After all three steps we obtain 
the low-rank factors for the approximate solution Y (t1) = U(t1)S(t1)V T(t1) at time 
t1 = t0 +Δt. The substeps for interpolatory projector-splitting integrator are as follows. 
We denote by DEIM(·) a subroutine that takes a matrix of size n ×r as input and outputs 
a collection of r indices computed with the DEIM index selection (Algorithm 1).

1. K-step: update U(t0) → U(t1) and S(t0) → R(t1).
Compute interpolation indices J = DEIM(V (t0)). Then integrate the n1 × r differen-
tial equation

dK(t)
dt

= GK (:,J , t) [V (J , :, t0)]−T
, K(t0) = U(t0)S(t0), (9)

where GK(t) = G 
(
K(t)V (t0)T, t

)
from t0 to t1, and perform a QR-decomposition 

K(t1) = U(t1)R(t1).
2. S-step: update R(t1) → S̃(t1).

Compute interpolation indices I = DEIM(U(t1)). Then integrate the r × r matrix 
differential equation
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dS̃(t)
dt

= − [U (I, :, t1)]−1
GS (I,J , t) [V (J , :, t0)]−T

, S̃(t0) = R(t1), (10)

where GS(t) = G 
(
U(t1)S(t)V (t0)T, t

)
from t0 to t1.

3. L-step: update V (t0) → V (t1) and S̃(t1) → S(t1).
Integrate the n2 × r matrix differential equation

dL(t)
dt

= GL (I, :, t)T [U (I, :, t1)]−T
, L(t0) = V (t0)S̃(t1)T, (11)

where GL(t) = G 
(
U(t1)L(t)T, t

)
from time t0 to t1, and perform a QR-decomposition 

L(t1) = V (t1)S(t1)T.

Similar to the matrix-cross integrator, the interpolatory projector-splitting integrator 
requires evaluating the output of G at only a subset of nr indices in the K- and L-step and 
r2 indices in the S-step. These evaluations can be performed efficiently for any G that can 
be evaluated entry-wise. Meanwhile the corresponding steps of the orthogonal projector-
splitting integrator (summarized in [6]) involve inner products involving the output of 
G that are only efficient to compute when G has low-rank structure. The difference 
between the interpolatory projector-splitting integrator and the matrix cross integrator 
is the order in which interpolatory projection and time integration are performed. The 
former applies the interpolatory projection on the vector-field and then integrates the 
factor matrices of the solution. The latter integrates the solution at the specified indices 
and then performs an interpolatory projection onto the updated basis Q in (8).

3. Tensor train (TT) format

In the following sections we propose dynamical low-rank approximation with interpo-
latory projections for tensors (d ≥ 2) in the tensor train (TT) format. When d = 2 the TT 
algorithms described hereafter reduce to the matrix algorithms discussed in Section 2. 
We begin with a brief review of the TT format and orthogonal TT representations. For 
a more detailed introduction to the TT format we refer the reader to [38]. Throughout 
the remainder of this paper, matrices are denoted by boldface letters, while tensors are 
denoted by regular (non-bold) letters. The kth unfolding of a tensor Y ∈ Rn1×···×nd is 
the matrix Y 〈k〉 ∈ R(n1···nk)×(nk+1···nd) with rows and columns indexed colexicograph-
ically. The TT-rank of Y is defined as the vector r = (1, r1, . . . , rd, 1) where rk is the 
rank of the unfolding matrix Y 〈k〉. Any tensor Y with TT-rank r can be represented in 
the TT format as

Y (i1, i2, . . . , id) = C1(i1)C2(i2) · · ·Cd(id), (12)

where each Ck is a rk−1×nk×rk tensor referred to as a TT-core and Ck(ik) is a rk−1×rk
matrix for a fixed index ik. Each TT-core has a left unfolding matrix C〈l〉

k ∈ Rrk−1nk×rk

and a right unfolding C〈r〉
k ∈ Rrk−1×nkrk obtained by reshaping the elements of Ck
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C
〈l〉
k (αk−1ik, αk) = C

〈r〉
k (αk−1, ikαk) = Ck(αk−1, ik, αk), k = 1, 2, . . . , d.

The left and right unfoldings of each TT-core are full rank whenever Y has TT-rank r. 
To simplify notation of tensors in the TT format we often omit indices so that (12) is 
replaced by Y = C1C2 · · ·Cd. To obtain even more compact representations, we define 
partial products of TT-cores C≤k ∈ Rn1×···×nk×rk and C>k ∈ Rrk×nk+1×···×nd with 
entries

C≤k(i1, . . . , ik, :) = C1(i1) · · ·Ck(ik, :),

C>k(:, ik+1, . . . , id) = Ck+1(:, ik+1) · · ·Cd(id),
(13)

so that Y = C≤kC>k. We also define certain unfolding matrices of these partial product 
tensors

C≤k(i1 · · · ik, :) = C≤k(i1, . . . , ik, :),

C>k(ik+1 · · · id, :) = C>k(:, ik+1, . . . , id),
(14)

where C≤k ∈ R(n1···nk)×rk and C>k ∈ R(nk+1···nd)×rk , which allows us to write the kth 
unfolding matrix of Y as Y 〈k〉 = C≤kC

T
>k.

3.1. Orthogonalization of tensor trains

Orthogonal TT representations are fundamental for executing many operations in the 
TT format. We will use them in this paper to obtain projectors onto the tangent spaces 
of TT manifolds. Hereafter, we recall an algorithm for orthogonalizing TTs by recursively 
applying QR-decomposition to TT-core unfoldings. Begin by taking a QR-decomposition 
of the left unfolding of C1

C
〈l〉
1 = U

〈l〉
1 R1,

to obtain the matrix R1 ∈ Rr1×r1 and the new TT-core U1 ∈ Rr0×n1×r1 defined by its 
left unfolding. The new TT-core is called left-orthogonal because it satisfies

[
U

〈l〉
1

]T
U

〈l〉
1 = Ir1 ,

where Ir1 denotes the r1 × r1 identity matrix. Next define a new second core Ĉ2(i2) =
R1C2(i2) to obtain the TT representation Y = U1Ĉ2C>2 of the tensor (12). Then take 
a QR-decomposition of the left unfolding of the second core

Ĉ
〈l〉
2 = U

〈l〉
2 R2,
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Fig. 2. Tensor network diagrams of a d = 6 dimensional tensor in the TT format. (a) No orthogonalization 
with the TT-core partial products C≤2 and C>2 indicated. (b) Orthogonalized TT (15) with k = 2 and left 
orthogonal TT-cores U≤2 and right orthogonal TT-cores V>2 indicated.

to obtain R2 ∈ Rr2×r2 and the left-orthogonal TT-core U2 ∈ Rr1×n2×r2 . Define a new 
third core Ĉ3(i3) = R2C3(i3) to write Y = U≤2Ĉ3C>3 where now the first two cores are 
left orthogonal. Proceeding recursively in this way we obtain the TT representation

Y = U≤kRkC>k,

where Uj is left-orthogonal for j = 1, 2, . . . , k and Rk ∈ Rrk×rk . Similar to orthogo-
nalizing cores from left to right, we can also orthogonalize cores from right to left by 
recursively performing QR-decompositions on right unfoldings (see [38, Section 3]) to 
obtain

Y = U≤kRkRk+1V>k,

where Rk+1 ∈ Rrk×rk and the Vj are right-orthogonal, i.e.,

V
〈r〉
j

[
V

〈r〉
j

]T
= Irj−1 , j = k + 1, . . . , d.

Letting Sk = RkRk+1 we obtain the orthogonalized TT representation

Y = U≤kSkV>k. (15)

Utilizing the unfolding matrices of partial products (14) we also have a decomposition 
of the kth unfolding matrix

Y 〈k〉 = U≤kSkV
T
>k. (16)

It follows from the left orthogonality of Uj and right orthogonality of Vj that the columns 
of U≤k and V >k are orthonormal, i.e., UT

≤kU≤k = V T
>kV >k = Irk . The decomposi-

tion (16) resembles a SVD however Sk is not necessarily diagonal. If the TT-rank of 
Y is r then Sk is invertible. What is important for the projectors defined in the sub-
sequent section is that the columns of U≤k and V >k form orthonormal bases for the 
range and co-range of Y 〈k〉 respectively. In Fig. 2 we summarize the TT format and TT 
orthogonalizations using tensor network diagrams.
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4. Projections onto the TT tangent space

It is well-known that the collection of all rank-r TTs

Mr = {Y ∈ Rn1×···×nd | TT-rank(Y ) = r}, (17)

is a smooth embedded submanifold of Rn1×···×nd [27]. Hence for any tensor Y ∈ Mr

we can define the tangent space TY Mr, which is a vector subspace of Rn1×···×nd that 
linearizes the manifold Mr around Y . Given a TT representation (12) of Y , any element 
of the tangent space can be written (non-uniquely) as

δY = δC1C2 · · ·Cd + C1δC2C3 · · ·Cd + · · · + C1 · · ·Cd−1δCd, (18)

where δCk ∈ Rrk−1×nk×rk are first order variations of the TT-cores.

4.1. The orthogonal tangent space projector

The orthogonal projector P̂Y : Rn1×···×nd → TY Mr onto the tangent space considered 
in [32] determines the best approximation of a given tensor Z ∈ Rn1×···×nd in the tangent 
space relative to the Frobenius norm. Such orthogonal projector can be constructed from 
the orthogonal projectors

P̂≤k = U≤kU
T
≤k, P̂>k = V >kV

T
>k, k = 1, 2, . . . , d− 1, (19)

onto the range and co-range of Y 〈k〉. The orthogonal bases U≤k and V >k for the range 
and co-range of Y 〈k〉 can be obtained from the TT-orthogonalization procedure described 
in Section 3.1. These projectors act on the matrix space R(n1···nk)×(nk+1···nd). To con-
struct the orthogonal tangent space projector P̂Y it is convenient to define projectors 
corresponding to (19) that act on the tensor space Rn1×···×nd by

P̂≤kZ = Tenk

[
P̂≤kZ

〈k〉
]
, P̂>kZ = Tenk

[
Z〈k〉P̂>k

]
, (20)

where Tenk denotes the tensorization operator that is the inverse of the kth unfolding, 
i.e., Tenk

(
Z〈k〉

)
= Z. The projectors P̂≤j , P̂>k commute whenever j ≤ k and can be 

used to construct the orthogonal projector onto the tangent space [32, Corollary 3.2]

P̂Y =
d−1∑
k=1

P̂≤k−1P̂>k − P̂≤kP̂>k + P̂≤d−1, (21)

where we set P̂≤0 = 1.
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4.2. Oblique tangent space projectors

The computational cost of dynamical low-rank approximation of (2) with orthogonal 
tangent space projections can scale as O(nd) when G lacks low-rank structure. In this 
case, the orthogonal dynamical low-rank method is impractical as its computational cost 
is comparable to solving (2) without low-rank compression. To enable efficient dynamical 
low-rank approximation in such cases, we introduce oblique projections onto the TT 
tangent space that can be computed in only O(dnr3) operations for many applications 
where orthogonal projections require O(nd). We construct such oblique projectors by 
replacing the orthogonal projectors defined in (19) with oblique projectors onto the 
same spaces

P≤k = U≤k

(
XT

≤kU≤k

)−1
XT

≤k, P>k = X>k

(
XT

>kV >k

)−T
V T

>k, (22)

defined for any matrices X≤k ∈ R(n1···nk)×rk and X>k ∈ R(nk+1···nd)×rk such that (
XT

≤kU≤k

)
and 

(
XT

>kV >k

)
are invertible. Just as before, it is convenient to define 

oblique projectors corresponding to (22) that act on the tensor space Rn1×···×nd by

P≤kZ = Tenk

[
P≤kZ

〈k〉
]
, P>kZ = Tenk

[
Z〈k〉P>k

]
. (23)

With these projectors we can construct an oblique tangent space projector with the same 
form as the orthogonal tangent space projector (21).

Proposition 4.1. Let Y ∈ Mr with orthogonal decompositions of its unfolding matrices 
given in (16) and suppose X≤k, X>k define oblique projectors (22). Then the map

PY =
d−1∑
k=1

P≤k−1P>k − P≤kP>k + P≤d−1, (24)

with P≤0 = 1, defined for any tensor Z ∈ Rn1×···×nd , is an oblique projector onto the 
tangent space TY Mr.

Proof. First we show that the image of PY is contained in TY Mr. Note that TY Mr is a 
linear space and thus it is sufficient to show that the image of each term in (24) belongs 
to TY Mr. To do so we utilize [32, Corollary 3.2] which shows that P≤j , P>k commute 
whenever j ≤ k and

P≤k−1P>kZ = Tenk

{
[Ink

⊗ P≤k−1]Z〈k〉P>k

}
. (25)

Note that the result is stated for orthogonal projectors P̂≤k, P̂>k however the proof 
does not require orthogonality of the projectors and thus holds for oblique projectors 
P≤k, P>k. Inserting the oblique projectors (22) into (25) we obtain
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P≤k−1P>kZ

=Tenk

{[
Ink

⊗U≤k−1

(
XT

≤k−1U≤k−1

)−1
XT

≤k−1

]
Z〈k〉

[
X>k

(
XT

>kV >k

)−T

V T
>k

]}
=Tenk {[Ink

⊗U≤k−1][
Ink

⊗
(
XT

≤k−1U≤k−1

)−1
XT

≤k−1Z
〈k〉X>k

(
XT

>kV >k

)−T
]
V T

>k

}
=Tenk

{
[Ink

⊗U≤k−1] δC〈l〉
k V T

>k

}
(26)

where we used the mixed product property of the Kronecker product to obtain the second 
equality and defined δCk as the rk−1 × nk × rk TT-core with left unfolding

δC
〈l〉
k = Ink

⊗
(
XT

≤k−1U≤k−1

)−1
XT

≤k−1Z
〈k〉X>k

(
XT

>kV >k

)−T

. (27)

Using the identity

C≤k = (Ink
⊗C≤k−1)C〈l〉

k , (28)

and (14) we can write (26) in TT format

P≤k−1P>kZ = U≤k−1δCkV>k, (29)

which has the form (18) and thus belongs to the tangent space TYMr. For the P≤kP>k

terms we have

P≤kP>kZ = Tenk

{
P≤kZ

〈k〉P>k

}
= Tenk

{
U≤k

[(
XT

≤kU≤k

)−1
XT

≤kZ
〈k〉X>k

(
XT

>kV >k

)−T
]
V T

>k

}
,

(30)

which we write in the TT format as

P≤kP>kZ = U≤kδSkV>k, (31)

where

δSk =
(
XT

≤kU≤k

)−1
XT

≤kZ
〈k〉X>k

(
XT

>kV >k

)−T

, (32)

belongs to Rrk×rk . Absorbing δSk into its left neighboring core Uk we rewrite (31) as

P≤kP>kZ = U≤k−1δCkV>k, (33)



156 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
where δCk(ik) = Uk(ik)δSk, which has the form (18) and therefore belongs to the tangent 
space TY Mr.

It remains to show that PY is idempotent, which we verify by checking that P≤k and 
P>k are idempotent for all k = 1, . . . , d − 1. For P≤k we have

P 2
≤kZ = P≤kTenk

[
P≤kZ

〈k〉
]

= Tenk

[
P 2

≤kZ
〈k〉
]

= Tenk

[
P≤kZ

〈k〉
]

= P≤kZ,

(34)

for all k = 1, . . . , d −1. The idempotence of P>k for k = 1, . . . , d −1 is also easy to verify 
directly. �

We remark that the orthogonality of the bases U≤k and V >k is not necessary for the 
construction of oblique tangent space projectors (24). However, imposing such orthogo-
nality is advantageous for the numerical stability and accuracy of the projectors.

4.3. Interpolatory tangent space projectors

Next we introduce a special class of oblique tangent space projectors with a cross 
interpolation property that enables efficient dynamical low-rank approximation. Such 
oblique projectors are obtained by selecting X≤k and X>k in (24) as rk columns of the 
identity matrix with appropriate dimension

X≤k = In1···nk

(
:, I≤k

)
, X>k = Ink+1···nd

(
:, I>k

)
. (35)

Here, I≤k contains rk indices of the form i1 · · · ik and I>k contains rk indices of the 
form ik+1 · · · id. The matrix X≤k can extract rk rows determined by the index sets I≤k

from a tensor Z〈k〉 with matrix multiplication from the left XT
≤kZ

〈k〉 = Z〈k〉(I≤k, :). 
Similarly, the matrix X>k can extract rk columns from Z〈k〉 with matrix multiplication 
from the right Z〈k〉X>k = Z〈k〉(:, I>k). Moreover, when X≤k, X>k are defined as in 
(35) the oblique projectors in (22) become interpolatory projectors[

P≤kZ
〈k〉
] (

I≤k, :
)

= Z〈k〉 (I≤k, :
)
,

[
Z〈k〉P>k

] (
:, I>k

)
= Z〈k〉 (:, I>k

)
. (36)

Since each index i1 · · · ik corresponds to a multi-index (i1, . . . , ik) and ik+1 · · · id corre-
sponds to a multi-index (ik+1, . . . , id), we identify the sets of rk indices I≤k and I>k

with sets of rk multi-indices I≤k and I>k. With such identification the matrix inter-
polation property (36) is equivalent to an interpolation property of the corresponding 
tensor operators (23)
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[P≤kZ]
(
I≤k, ik+1, . . . , id

)
= Z

(
I≤k, ik+1, . . . , id

)
,

[P>kZ]
(
i1, . . . , ik, I>k

)
= Z

(
i1, . . . , ik, I>k

)
.

(37)

In order to obtain an oblique tangent space projectors (24) that interpolate, we consider 
multi-indices that satisfy the nested conditions

I≤k ⊂ I≤k−1×{1, . . . , nk}, I>k ⊂ {1, . . . , nk}×I>k+1, k = 1, 2, . . . , d−1. (38)

To prove that (38) is sufficient for the oblique tangent space projector (24) to interpolate, 
we have the following Lemma.

Lemma 4.1. For any nested indices (38) defining oblique projectors (23) and k =
1, 2, . . . , d − 1, the projector P≤k−1P>k satisfies

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
=

⎧⎪⎪⎨⎪⎪⎩
Z
(
I≤j−1, ij , I>j

)
, j = k,

[P≤kP>kZ]
(
I≤j−1, ij , I>j

)
, j > k,

[P≤k−1P>k−1Z]
(
I≤j−1, ij , I>j

)
, j < k.

(39)

Proof. The case j = k follows directly from the interpolation property (37). For j > k

the nesting condition (38) ensures that the first k−1 indices of each multi-index in I≤j−1

are a multi-index in I≤k−1 and that the first k indices of each multi-index in I≤j−1 are 
a multi-index in I≤k. Therefore we can use the interpolation property (37) to obtain

[P≤k−1Z]
(
I≤j−1, ij , . . . , id

)
= [P≤kZ]

(
I≤j−1, ij , . . . , id

)
= Z

(
I≤j−1, ij , . . . , id

)
.

(40)
Since P≤k and P≤k−1 act only on the first k dimensions of Z and P>k acts only on 
dimensions k + 1, . . . , d we can use the preceding equation to obtain

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
= [P≤kP>kZ]

(
I≤j−1, ij , I>j

)
,

establishing the case j > k. When j < k the nested condition ensures that the d − j

indices of each multi-index in I>j appear in multi-indices belonging to I>k and I>k−1. 
Therefore from the interpolation property (37) we have

[P>kZ]
(
i1, . . . , ij , I>j

)
= [P>k−1Z]

(
i1, . . . , ij , I>j

)
= Z

(
i1, . . . , ij , I>j

)
, (41)

from which we obtain the result for j < k. �
Theorem 4.1. For any Y ∈ Mr and {I≤j , I>j} nested multi-indices defining interpola-
tory projectors (22) the oblique tangent space projector (24) has the cross interpolation 
property

[PY Z]
(
I≤j−1, ij , I>j

)
= Z

(
I≤j−1, ij , I>j

)
, j = 1, 2, . . . , d. (42)
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Proof. Rearrange the terms in (24) to write

[PY Z] =
d∑

k=1

P≤k−1P>kZ −
d−1∑
k=1

P≤kP>kZ, (43)

with P>d = 1 and evaluate at the indices 
(
I≤j−1, ij , I>j

)
[PY Z]

(
I≤j−1, ij , I>j

)
=

d∑
k=1

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
−

d−1∑
k=1

[P≤kP>kZ]
(
I≤j−1, ij , I>j

)
.

(44)

Applying Lemma 4.1 to each term in the first summation in (44) we obtain

d∑
k=1

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
=

(
j−1∑
k=1

[P≤kP>kZ]
(
I≤j−1, :, I>j

))
+ Z

(
I≤j−1, ij , I>j

)

+

⎛⎝ d∑
l=j+1

[P≤l−1P>l−1Z]
(
I≤j−1, ij , I>j

)⎞⎠ .

(45)

Re-indexing the final summation in (45) with k = l − 1 and combining the result with 
the first summation in (45) yields

d∑
k=1

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
=Z

(
I≤j−1, ij , I>j

)
+

d−1∑
k=1

[P≤kP>kZ]
(
I≤j−1, ij , I>j

)
.

(46)

Finally substituting (46) into (44) the two summations cancel and the proof is com-
plete. �

The cross interpolation property (42) of the tangent space projector resembles the 
interpolation property of TT-cross approximation [47] with nested indices. Next, we 
describe a novel index selection algorithm for constructing interpolatory projectors onto 
the tangent space TY Mr.

5. Index selection for oblique projectors and cross interpolation

In the preceding section we constructed tangent space projectors (24) with the cross 
interpolation property (42) from oblique projectors (22) onto the bases U≤k and V >k. 
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We now devise an efficient algorithm based on the discrete empirical interpolation method 
(DEIM) for computing indices {I≤k, I>k}, or equivalently multi-indices {I≤k, I>k}, that 
yield well-defined interpolatory projectors (22) defined by the matrices (35). The DEIM 
(recalled in Algorithm 1) greedily selects indices to minimize the condition number of 
interpolatory projectors onto a given basis, e.g., U≤k or V >k, as much as possible. 
However we can not apply such algorithm directly to the matrices U≤k, V >k as they 
have dimensions (n1 · · ·nk) × rk and (nk+1 · · ·nd) × rk, respectively, which is too large 
to store in memory and process with the DEIM algorithm. To address the problem 
of memory, we do not store the matrices U≤k and V >k directly but rather the left 
orthogonal cores Uj and right orthogonal cores Vj that can be used to construct these 
matrices

U≤k(i1 · · · ik, :) = U1(i1) · · ·Uk(ik, :),

V >k(ik+1 · · · id, :) = Vk+1(:, ik+1) · · ·Vd(id), k = 1, 2, . . . , d− 1.
(47)

To address the computational cost we propose an algorithm that only samples from a 
small subset of entries of the matrices U≤k, V >k. The key idea is to compute the indices 
I≤k recursively for k = 1, 2, . . . , d − 1 by sampling from U≤k only indices corresponding 
to multi-indices I≤k that are nested (38). By considering only nested indices we reduce 
the number of possible indices i1 · · · ik ∈ I≤k from n1 · · ·nk to rk−1nk. We use the same 
idea to construct the nested index sets I>k sequentially for k = d − 1, d − 2, . . . , 1. Since 
the indices obtained from this sampling approach are nested by construction, the result-
ing tangent space projector (24) has the cross interpolation property (42). Such cross 
interpolation property will be useful for the dynamical low-rank approximation schemes 
presented in Section 6. Hereafter we present the nested index selection algorithm in de-
tail and then show in Theorem 5.1 that this nested sampling method always produces 
well-defined interpolatory projectors.

5.1. The TT-cross-DEIM algorithm

To compute the indices I≤j , begin by applying the DEIM algorithm to the n1 × r1
matrix U≤1

I≤1 = DEIM (U≤1) . (48)

To obtain I≤2, construct the r1n2 × r2 matrix

Û≤2(α1i2, α2) = U≤2
(
I≤1
α1

i2, α2
)
, (49)

which is the restriction of U≤2 to the indices I≤1 with I≤1
α1

denoting the α1st index in 
I≤1. Then sample r2 indices from this restricted matrix

l≤2 = DEIM
(
Û≤2

)
. (50)
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Due to the construction of Û≤2 in (49), each index l≤2(α2) corresponds to a multi-
index (p≤1(α2), p2(α2)) where p≤1(α2) identifies an index in I≤1 and p2(α2) identifies 
an index in {1, . . . , n2}. Construct the multi-index set

I≤2
α2

=
(
I≤1
p≤1(α2),p2(α2)

)
, α2 = 1, 2, . . . , r2, (51)

which corresponds to the set of indices I≤2. The remaining sets of indices I≤j are 
obtained inductively with a similar procedure. After computing I≤j−1, construct the 
rj−1nj × rj matrix

Û≤j(αj−1ij , αj) = U≤j

(
I≤j−1
αj−1

ij , αj

)
, (52)

which is the restriction of U≤j to the indices I≤j−1. Then sample rj indices from the 
restricted matrix

l≤j = DEIM
(
Û≤j

)
. (53)

Due to the construction of Û≤j in (52) each index l≤j(αj) corresponds to a multi-
index (p≤j−1(αj), pj(αj)) where p≤j−1(αj) identifies a multi-index in I≤j−1 and pj(αj)
identifies an index in {1, . . . , nj}. Construct the set I≤j with multi-indices

I≤j
αj

=
(
I≤j−1
p≤j−1(αj),pj(αj)

)
, αj = 1, 2, . . . , rj , (54)

which corresponds to I≤j . This procedure computes index sets I≤j sequentially for j =
1, 2, . . . , d − 1 by applying the DEIM sampling algorithm to the restricted matrices Û≤j

of dimension rj−1nj × rj . In practice the restricted matrices Û≤j are not obtained from 
U≤j as written in (52) but rather from the low-dimensional tensor cores Uj that construct 
U≤j in (47).

We compute the index sets I>j in a similar manner. First obtain I>d−1 by sampling 
the nd × rd−1 matrix V >d

I>d−1 = DEIM (V >d−1) . (55)

Then construct index sets I>j inductively for j = d − 2, d − 3, . . . , 1 as follows. After 
computing I>j+1, construct the nj+1rj+1 × rj matrix V̂ >j

V̂ >j (ij+1αj+1, αj) = V >j

(
ij+1I

>j+1
αj+1

, αj

)
(56)

which is the restriction of V >j to the indices I>j+1. Then sample rj indices from the 
restricted matrix

l>j = DEIM
(
V̂ >j

)
. (57)
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Fig. 3. Illustration of the TT-cross-DEIM left-to-right sweep that computes multi-indices I≤j sequentially 
for j = 1, 2, . . . , d − 1 with d = 4.

Due to the construction of V̂ >j in (56) each index l>j(αj) corresponds to a multi-
index (pj+1(αj), p>j+1(αj)), where pj+1(αj) identifies an index in {1, . . . , nj+1} and 
p>j+1(αj) identifies a multi-index in I>j+1. Construct the set I>j with multi-indices

I>j
αj

=
(
pj+1(αj), I>j+1

p>j+1(αj)

)
, αj = 1, 2, . . . , rj , (58)

which corresponds to I>j . Just as in the computation of I≤j, the restricted matrices 
V̂ >j are not obtained from V >j as written in (56) but rather from the low-dimensional 
tensor cores Vj that construct V >j in (47).

The entire algorithm is summarized in Algorithm 2 and a tensor network diagram of 
the left-to-right sweep for computing I≤j from the TT-cores Uj is shown in Fig. 3 with 
d = 4. In Algorithm 2 we denote by ind2sub the Matlab function that reshapes linear 
indices to multi-indices. As mentioned above, the multi-index sets I≤k, I>k obtained in 
(54) and (58) are nested (38) by construction. Thus the oblique tangent space projector 
(24) constructed from these indices is a cross interpolant (see Theorem 4.1), provided it 
is well-defined. It is shown in Section 5.2 that such projector is in fact well-defined.

Computational cost To simplify the operation count of the proposed TT-cross-DEIM 
algorithm, we assume that rk = r and nk = n for all k = 1, 2, . . . , d. The Algorithm 
requires access to all d − 1 orthogonal representations (15) which can be computed in 
O(dnr3) operations [38]. With these orthogonal representations available, each index set 
I≤k and I>k for k = 1, 2, . . . , d − 1 is computed by applying DEIM to a matrix of size 
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Algorithm 2 TT-cross-DEIM index selection.
Require:

U≤j , V >j , j = 1, . . . , d − 1, orthogonal bases for range and co-range of Y 〈j〉 as in (16)
Ensure:

{I≤j , I>j}, nested multi-index sets defining oblique projectors (22) via (35)
1: I≤1 = DEIM

(
U≤1

)
� left-to-right sweep: computing I≤j

2: for j = 2 to d − 1 do
3: Û≤j = U≤j

(
I≤j−1 :, :

)
4: l≤j = DEIM(Ûj)
5: p≤j−1, pj = ind2sub([rj−1, nj ], l≤j)
6: I≤j

αj
=

(
I≤j−1
p≤j−1(αj),pj(αj)

)
, αj = 1, 2, . . . , rj

7: end for
8: I>d−1 = DEIM (V >d−1) � right-to-left sweep: computing I>j

9: for j = d − 2 to 1 do
10: V̂ >j = V >j

(
: I>j+1, :

)
11: l>j = DEIM

(
V̂ >j

)
12: pj+1, p>j+1 = ind2sub([nj , rj ], l>j)
13: I>j

αj
=

(
pj+1(αj), I>j+1

p>j+1(αj)

)
, αj = 1, 2, . . . , rj

14: end for

rn ×r each of which requires O(nr) operations. Therefore the total number of operations 
in the TT-cross-DEIM algorithm is O(dnr3).

Note that the operation count of TT-cross-DEIM is dominated by the computation of 
orthogonal TT representations and thus has the same complexity as many common TT 
algorithms, e.g., TT rounding.

5.2. Condition of the oblique projectors

For the oblique projectors (22) to be defined (and thus for the oblique tangent space 
projector (24) to be defined) the rj × rj matrices M j = XT

≤jU≤j and N j = XT
>jV >j

must be invertible. For interpolatory projectors, i.e., when X≤j and X>j are defined as 
in (35), these matrices are given entry-wise by

M j(αj , βj) = U≤j

(
I≤j
αj

, βj

)
, N j(αj , βj) = V >j

(
I>j
αj

, βj

)
. (59)

The following result shows that the TT-cross-DEIM produces indices that yield invertible 
matrices (59) and therefore define oblique projectors (22) and (24).

Theorem 5.1. If Y ∈ Mr and I≤j , I>j are obtained with the TT-cross-DEIM then the 
rj × rj matrices (59) are invertible for all j = 1, 2, . . . , d − 1.

Proof. We prove the result for M j by induction on j. The r1 indices I≤1 are obtained 
in (48) from U≤1 with the DEIM. Because Y ∈ Mr, the unfolding matrix U≤1 is full 
rank. Thus we have from [49, Lemma 3.1] that the r1 × r1 matrix M1 = U≤1

(
I≤1, :

)
is full rank, establishing the result for M j when j = 1. Now assume that M j−1 is full 
rank. Rewriting (52) using (13)-(14) we have
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Û j(αj−1ij , αj) = U≤j−1 I≤j−1

αj−1
, : U

〈r〉
j (:, ijαj)

= M j−1(αj−1, :)U 〈r〉
j (:, ijαj).

(60)

By assumption M j−1 is full rank and since Y ∈ Mr both unfoldings of U j are full rank. 
It follows that Û j is full rank. In (53) the rj indices l≤j are obtained from Û j with the 
DEIM and invoking [49, Lemma 3.1] we have that the rj × rj matrix Û j(l≤j , :) is full 
rank. The indices I≤j are obtained from l≤j in (54) so that

U≤j

(
I≤j
αj

, βj

)
= Û≤j (l≤j(αj), βj) , (61)

proving the result for M j . The statement for N j is proven similarly with induction on 
j = d − 1, d − 2, . . . , 1. �

In addition to generating invertible matrices (59), the TT-cross-DEIM is a greedy 
algorithm that aims to minimize the condition number of these matrices as much as 
possible while ensuring the indices remain nested. Indeed, the DEIM algorithm is used 
to compute l≤j in (53) and l>j in (57), selecting indices greedily to keep the condition 
numbers of Û≤j(l≤ j, :) and V̂ >j(l> j, :) small. Moreover, Û≤j is the restriction of U≤j

to the indices I≤j−1 (see (52)), and V̂ >j is the restriction of V >j to the indices I>j+1

(see (56)). We also note that other sparse sampling methods can be used in place of 
DEIM in the TT-cross-DEIM algorithm, e.g., Q-DEIM or oversampling methods, which 
can yield better conditioned interpolatory projectors in some cases.

5.3. Tensor cross interpolation

We have shown above that the multi-indices obtained with the TT-cross-DEIM pro-
duce a well-defined interpolatory projector (24) onto the tangent space. Incidentally, we 
can use the same multi-index sets to parameterize Y with tensor cross interpolation. 
Recall that TT-cross approximation [14,37,47,40] is a specific instance of the TT format 
(12) that generalizes the matrix CUR decomposition to tensors. In this representation 
the TT-cores are defined by the entries of Y

Ỹ (i1, . . . , id) =
d−1∏
k=1

Y
(
I≤k−1, ik, I>k

) [
Y
(
I≤k, I>k

)]−1
Y
(
I≤d−1, id

)
, (62)

where for convenience we set I≤0 = ∅. It is well-known that the nested condition (38) is 
sufficient for the tensor cross approximation (62) to be a tensor cross interpolant [47]

Ỹ
(
I≤k−1, ik, I>k

)
= Y

(
I≤k−1, ik, I>k

)
, k = 1, 2, . . . , d. (63)

We now use the nested multi-index sets constructed by the TT-cross-DEIM to prove 
that any TT can be exactly represented as a TT-cross interpolant. This result follows as 
a Corollary of Theorem 5.1.
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Corollary 5.1. Any Y ∈ Mr can be exactly represented as a rank-r TT-cross interpolant 
with nested indices.

Proof. Let {I≤j , I>j} be nested index sets obtained with the TT-cross-DEIM. Using 
(16) write the rj × rj matrix Y

(
I≤j , I>j

)
as

Y
(
I≤j , I>j

)
= U≤j

(
I≤j , :

)
SjV >j

(
I>j , :

)T
= M jSjN

T
j ,

(64)

where we used (59) to obtain the second equality. We have shown in Theorem 5.1 that 
M j and N j are invertible and since Y ∈ Mr, the matrices Sj are also invertible 
for all j = 1, 2, . . . , d − 1. Therefore the matrices Y

(
I≤j , I>j

)
are invertible for all 

j = 1, 2, . . . , d − 1 and hence by [14, Theorem 2] the nested multi-indices {I≤j , I>k}
provide an exact representation of Y with TT-cross interpolation. �

Several algorithms for computing tensor cross approximations (62) from black-box 
tensors based on the maximum volume principle have recently been developed [37,14]. 
The purpose of our proposed TT-cross-DEIM algorithm is to obtain interpolatory tan-
gent space projections for a tensor Y ∈ Mr, not for black-box tensor approximation. 
However, it was recently demonstrated in [20] that DEIM-based cross approximation al-
gorithms can be applied iteratively to obtain tensor cross approximations from black-box 
tensors with comparable performance to the corresponding maximum volume algorithms.

6. Time integration on tensor train manifolds

We now consider the dynamical low-rank evolution equation (3) for tensors (d ≥ 2) 
using interpolatory projectors (24) onto tangent spaces of TT manifolds. The concept 
of dynamical low-rank tensor approximation is a natural extension the dynamical low-
rank matrix approximation described in Section 2. Similar to the matrix case, classical 
dynamical low-rank tensor approximation uses the orthogonal projector (21) to obtain 
the best approximation (in the Frobenius norm) of G(Y, t) in the tangent space of the 
TT manifold (see Fig. 1). However, as noted earlier, orthogonal projection onto the TT 
tangent space can have a computational cost O(nd) when G lacks low-rank structure. By 
replacing the orthogonal projector with an interpolatory projector onto the TT tangent 
space we propose new dynamical low-rank methods with computational cost scaling as 
O(dnr3) for a large class of nonlinear functions G that do not have rank structure. In 
particular, the proposed interpolatory dynamical low-rank tensor methods are efficient 
whenever it is possible to evaluate the tensor G(X, t) entry-wise.

We also point out that cross approximation algorithms based on the maximum volume 
principle developed in [37] are designed to obtain TT approximations of tensors that can 
be evaluated entry-wise. TT-cross based on maximum volume can be used to obtain a 
low-rank approximation of the tensor G(Y, t) at each time step. Such approximation can 
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then be projected orthogonally onto the tangent space for a dynamical low-rank method 
or used in a step-truncation scheme. The TT-cross-DEIM index selection strategy devel-
oped in the present work differs in that it selects interpolation indices from the solution 
tensor Y (t), not from G(Y, t). Such indices are selected so that Y can be represented 
using a TT-cross interpolant. More importantly, it allows G(Y, t) to be interpolated di-
rectly onto the tangent space of the TT manifold at Y , making the TT-cross-DEIM 
particularly suitable for efficient dynamical low-rank approximation.

Hereafter we propose two time integration schemes for solving the dynamical low-
rank equation (3) with interpolatory TT tangent space projectors (24). The first scheme, 
referred to as TT-cross time integration, extends the matrix cross integrator described 
in Section 2.1.1 to tensors in the TT format. This method integrates forward in time the 
entries of the solution tensor Y (t) required to construct the TT-cross interpolant (62)
at any time t. The second scheme extends the projector-splitting scheme described in 
Section 2.1.2 to tensors in the TT format. It is a direct generalization of the projector-
splitting integrator for orthogonal dynamical low-rank approximation introduced in [31]
for matrices and subsequently generalized to TTs [32], Tucker tensors [30] and tree tensor 
networks [7], to interpolatory tangent space projectors in the TT format.

6.1. TT-cross integrator

The time-dependent interpolatory TT tangent space projector (24) in (3) is defined 
at each time t by a set of time-dependent multi-indices {I≤k(t), I>k(t)}. Selecting such 
with the TT-cross-DEIM ensures that they are nested (38) at each time t. Hence the 
tangent space projector has the cross interpolation property (42) at each t. Evaluating 
(3) at the multi-indices {I≤k(t), I>k(t)} and utilizing the cross interpolation property 
yields evolution equations for the entries of Y (t) defining a TT-cross interpolant

dY
(
I≤k−1(t), :, I>k(t), t

)
dt

= GY

(
I≤k−1(t), :, I>k(t), t

)
, k = 1, 2, . . . , d, (65)

where we defined the tensor GY (t) = G (Y (t), t). Equation (65) consists of 
∑d

k=1 rk−1nkrk
coupled nonlinear differential equations governing the evolution of a subset of entries in 
the approximate solution Y (t) ∈ Mr, which can be integrated using standard methods. If 
G arises from the spatial discretization of a PDE (1) involving differential operators then 
evaluating GY

(
I≤k−1, :, I>k

)
requires entries of Y at indices adjacent to {I≤k, I>k}. 

Letting I≤k
(a) , I

>k
(a) denote the union of I≤k, I>k with the required adjacent indices, the 

right-hand side tensors in (65) are computed by

GY

(
I≤k−1, :, I>k, t

)
= G

(
Y
(
I≤k−1

(a) , :, I>k
(a) , t

)
, t
)
, k = 1, 2, . . . , d. (66)

The values of Y at adjacent indices can always be obtained by constructing the low-
rank solution Y (t) in the TT format using TT cross interpolation as described below. 
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Computing (66) is efficient for any nonlinear G that we can evaluate entry-wise, re-
gardless of the low-rank structure in G. This gives the evolution equations (65) a clear 
computational advantage over the evolution equations of orthogonal dynamical low-rank 
approximation or step-truncation methods [42], which require a low-rank representation 
of G to be practical. We also note that the stiffness of the evolution equations (65) is 
independent of the singular values of the solution tensor Y (t), unlike other dynamical 
low-rank methods. However, the stability of constructing the solution in TT format using 
cross interpolation, which is often needed to evaluate the right-hand side of (65), depends 
on the condition of the interpolatory projectors obtained through the TT-cross-DEIM 
index selection as shown below.

6.1.1. Constructing the low-rank solution in TT format
We can access entries of the approximate solution Y (t) at indices other than the 

interpolation indices by constructing Y (t) using TT-cross interpolation (62)

Y (i1, . . . , id, t)

=
d−1∏
k=1

Y
(
I≤k−1(t), ik, I>k(t), t

) [
Y
(
I≤k(t), I>k(t), t

)]−1
Y
(
I≤d−1(t), id, t

)
.

(67)

Such entries are often needed to evaluate the right-hand side of (65) and the TT-
representation (67) is also needed to construct indices for interpolatory projection onto 
the tangent space. Constructing Y (t) using (67) can lead to numerical instability as the 
time-dependent rk × rk matrices Y

(
I≤k, I>k, t

)
can be ill-conditioned. Hereafter we 

describe a more robust method for computing Y (t) by orthogonalization, omitting the 
dependence on t to simplify notation. Take QR-decompositions[

Y
(
I≤k−1, :, I>k

)]〈l〉 = Q
〈l〉
k Rk, k = 1, 2, . . . , d− 1, (68)

to write

Y
(
I≤k−1, ik, I>k

)
= Qk(ik)Rk, Y

(
I≤k, I>k

)
= Q

〈l〉
k (l≤k, :)Rk, (69)

where l≤k is defined in (53). Then substitute (69) into (67) to obtain

Y (i1, . . . , id) =
d−1∏
k=1

Qk(ik)Rk

[
Q

〈l〉
k (l≤k, :)Rk

]−1
Y
(
I≤d−1, id

)
=

d−1∏
k=1

Qk(ik)
[
Q

〈l〉
k (l≤k, :)

]−1
Y
(
I≤d−1, id

)
.

(70)

Computing Y via (70) instead of (67) yields a more stable numerical algorithm as the 
matrices Q̂k = Q

〈l〉
k (l≤k, :) are related to the orthogonal bases U≤k from which the multi-

index sets I≤k, I>k were obtained with the TT-cross-DEIM index selection algorithm 
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and therefore have smaller condition number than Y
(
I≤k, I>k

)
. The improvement in 

condition number is verified by our numerical experiments as shown in Fig. 5(d).

6.1.2. Discrete-time TT-cross integrator
Let us describe one step of the TT-cross time integration scheme from time t0 to 

t1 = t0 + Δt starting from the rank-r TT representation

Y (t0) = C1(t0)C2(t0) · · ·Cd(t0). (71)

First compute the indices 
{
I≤k(t0), I>k(t0)

}
for the interpolatory projector defining the 

dynamical low-rank evolution equation (3) using the TT-cross-DEIM algorithm. Then 
integrate the evolution equations (65) from time t0 to t1 using an explicit time stepping 
scheme with multi-indices fixed at time t0, e.g., Euler forward yields

Y
(
I≤k−1(t0), :, I>k(t0), t1

)
=Y

(
I≤k−1(t0), :, I>k(t0), t0

)
+ ΔtGY

(
I≤k−1(t0), :, I>k(t0), t0

)
,

(72)

for all k = 1, 2, . . . , d. Use the result of explicit time integration (72) to construct TT-
cores for the solution at time t1

Y (t1) = C1(t1)C2(t1) · · ·Cd(t1), (73)

with the QR-stabilized procedure described in (68)-(70), i.e.,

Ck(ik, t1) = Qk(ik, t1)
[
Q

〈l〉
k (l≤k(t0), :, t1)

]−1
, k = 1, 2, . . . , d− 1,

Cd(t1) = Y
(
I≤d−1(t0), :, t1

)
.

(74)

This completes one step of the TT-cross time integration scheme.

Computational cost To simplify the operation count of one step of the TT-cross inte-
grator, we assume that rk = r and nk = n for all k = 1, 2, . . . , d. As shown in Section 5, 
the TT-cross-DEIM algorithm used to obtain the indices {I≤k, I>k} requires O(dnr3)
operations. Preparing the tensors Y (I≤k−1, : I>k) required to take the explicit time step 
(72) requires d − 1 matrix multiplications with matrices of size r × r and r × (nr) for a 
number of operations scaling as O(dnr3). For many G that can be evaluated entry-wise 
(e.g., entry-wise nonlinearities), the cost of evaluating GY (≤k−1, :, I>k; t) is on the same 
order of computing the subtensors Y (I≤k−1, : I>k), i.e., O(dnr3). Finally reconstruct-
ing the tensor cores at time t1 in (74) requires d − 1 QR-decompositions of matrices 
with size r × (nr) and inverting d − 1 matrices of size r × r with total cost scaling as 
O(dnr3). Thus the computational cost of one step of the TT-cross time integrator scales 
as O(dnr3). We note that it is not strictly necessary to perform these steps at every 
time step as multi-indices can be reused over many time steps, provided the condition of 
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Q
〈l〉
k (l≤k, :, t) remains under control. If the computation of new indices is not required 

then (72) can be iterated for a number of time steps at a cost of O(dnr2) operations 
before computing new indices.

6.2. Interpolatory projector-splitting integrator

Next, we propose a second time integration scheme by directly applying a splitting 
integrator to the dynamical low-rank evolution equation (3). This method is a direct 
generalization of the orthogonal projector-splitting integrator introduced in [32] for TTs. 
As we will see, the oblique projector-splitting integrator satisfies the same desirable 
properties: it is robust to small singular values, it exactly reproduces low-rank solutions, 
and one step of the integrator can be implemented as an efficient sweeping algorithm. The 
derivation of the integrator and the proofs of these results follow the same steps as the 
orthogonal projector-splitting integrator. Inserting the oblique tangent space projector 
(24) into the dynamical low-rank evolution equation (3) we see that the right-hand side 
is a sum of 2d − 1 terms

PY G(Y, t) =
d−1∑
j=1

P+
j G(Y, t) − P−

j G(Y, t) + P+
d G(Y, t), (75)

where P+
j = P≤j−1P>j and P−

j = P≤jP>j . Integrating (3) from time t0 to t1 = t0 + Δt

with first order Lie-Trotter splitting requires solving the 2d − 1 substeps

dY +
1 (t)
dt

= P+
1 G

(
Y +

1 , t
)
, Y +

1 (t0) = Y (t0),

dY −
1 (t)
dt

= −P−
1 G

(
Y −

1 , t
)
, Y −

1 (t0) = Y +
1 (t1),

...

dY +
j (t)
dt

= P+
j G

(
Y +
j , t

)
, Y +

j (t0) = Y −
j−1(t1),

dY −
j (t)
dt

= −P−
j G

(
Y −
j , t

)
, Y −

j (t0) = Y +
j (t1),

...

dY +
d (t)
dt

= P+
d G

(
Y +
d , t

)
, Y +

d (t0) = Y −
d−1(t1),

(76)

in consecutive order to obtain the approximate solution Y (t1) = Y +
d (t1) at time t1. Note 

that the projectors P+
j , P−

j depend on solutions to each substep Y +
j (t) or Y −

j (t) and thus 
are time-dependent. In the case of orthogonal tangent space projector-splitting it was 
shown in [32, Theorem 4.1] that P+

j , P−
j can be kept constant during each substep and 
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each of the differential equations (76) can be solved exactly by updating a single TT-core. 
We have an analogous result for the oblique projector-splitting integrator. In the following 
Theorem we suppress the dependence of the multi-indices I≤k, I>k on t although it is 
assumed that such indices are selected at each time t so that the interpolatory tangent 
space projector (24) is well-defined.

Theorem 6.1. Each split differential equation in (76) is solved exactly using time-
independent projectors P+

j and P−
j at Y +

j (t0) and Y −
j (t0), respectively. Moreover, if 

Y +
j (t0) has the TT representation

Y +
j (t0) = U≤j−1 [UjSj ]V>j (77)

then

Y +
j (t) = U≤j−1Kj(t)V>j ,

where

dKj(t)
dt

=
[
U≤j−1

(
I≤j−1, :

)]−1
G+

j

(
I≤j−1, :, I>j , t

) [
V>j

(
:, I>j

)]−T
, Kj(t0) = UjSj ,

(78)
and G+

j (t) = G 
(
Y +
j (t), t

)
.

Similarly if Y −
j (t0) has the TT representation Y −

j (t0) = U≤jSj(t0)V>j then

Y −
j (t) = U≤jSj(t)V>j ,

where

dSj(t)
dt

= −
[
U≤j

(
I≤j , :

)]−1
G−

j

(
I≤j , I>j , t

) [
V>j

(
:, I>j

)]−T
, (79)

and G−
j = G 

(
Y −
j (t), t

)
.

Proof. The proof follows a similar approach to the analogous proof for the orthogonal 
projector-splitting integrator. First recall that we have shown in the proof of Proposi-
tion 4.1 that P≤j−1P>j maps onto a tangent space of Mr at each time t. This ensures 
that Y +

j (t) belongs to Mr for all t and therefore admits a time-dependent orthogonalized 
rank-r TT decomposition of the form

Y +
j (t) = U≤j−1(t)Kj(t)V>j(t). (80)

Substituting (80) into (76) and using the product rule we obtain
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dU≤j−1(t)
dt

Kj(t)V>j(t) + U≤j−1(t)
dKj(t)

dt
V>j(t) + U≤j−1(t)Kj(t)

dV>j(t)
dt

= P≤j−1P>jG
(
Y +
j (t), t

)
= U≤j−1(t)δCj(t)V>j(t),

(81)

where we used (29) to obtain the third line with

δCj(t) =
[
U≤j−1

(
I≤j−1, :, t

)]−1
G+

j

(
I≤j−1, :, I>j , t

) [
V>j

(
:, I>j , t

)]−T (82)

Equation (81) is solved exactly by setting dU≤j−1(t)/dt = 0, dV>j(t)/dt = 0 and 
dKj(t)/dt = δCj(t) and from the initial condition Y +

j (t0) in (77) we obtain

U≤j−1(t) = U≤j−1, V>j(t) = V>j , Kj(t0) = UjSj , (83)

proving the result for Y +
j (t). The proof of the assertion for Y −

j (t) is similar. �
Similar to the TT-cross evolution equations (65), computing the right-hand side of 

the differential equation (78) requires evaluating G+
j at a subset of rj−1njrj indices 

and computing the right-hand side of (79) requires evaluating G−
j at a subset of r2

j

indices. These evaluations are efficient for any G that can be evaluated entry-wise and 
do not require G to have any low-rank structure. The differential equations (78) and 
(79) involve inverses of rj × rj matrices U≤j

(
I≤j , :

)
and V>j

(
:, I>j

)
. These matrices 

define the interpolatory projectors (22) and we select the multi-indices I≤j , I>j with 
the TT-cross-DEIM at each time t to keep their condition number is small during time 
integration.

6.2.1. Sweeping algorithm for interpolatory projector-splitting integrator
One complete step of the interpolatory projector-splitting integrator from time t0 to 

t1 = t0+Δt can be implemented by sweeping through the cores of Y updating individual 
cores from t0 to t1. As we update the TT-cores we also update the multi-index sets 
{I≤j , I>j} to ensure the interpolatory projectors remain well-defined. We begin with an 
orthogonal TT representation of solution at time t0 of the form

Y (t0) = U1(t0)S1(t0)V>1(t0), (84)

and the multi-indices I>j(t0) defining interpolatory projectors onto the bases V>j(t0) for 
j = 1, 2, . . . , d − 1. The sweeping algorithm solves the equations in (76) sequentially by 
updating the solution TT-cores Uj(t0) to Uj(t1) and then computes the indices I≤j(t1)
for the oblique projectors (22) onto the updated bases U≤j(t1) required for the next step 
in the sweep.

To begin we apply Theorem 6.1 to solve the first differential equation in (76) by 
integrating
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dK1(t)
dt

= G+
1
(
:, I>1(t0), t

) [
V>1

(
:, I>1(t0), t0

)]−T
, K1(t0) = U1(t0)S1(t0), (85)

from t0 to t1. The solution Y +
1 (t1) = K1(t1)V>1(t0) is the starting value Y −

1 (t0) = Y +
1 (t1)

for the second equation in (76). We then prepare Y −
1 (t0) for the application of Theo-

rem 6.1 by decomposing K1(t1) = U1(t1)R1(t1) to obtain Y −
1 (t0) = U1(t1)R1(t1)V>1(t0)

where U1(t1) is left-orthogonal and compute indices I≤1(t1) = DEIM(U≤1(t1)). Now we 
can apply Theorem 6.1 to solve the second differential equation in (76) by integrating

dS1(t)
dt

= −
[
U≤1

(
I≤1(t1), :, t1

)]−1
G−

1
(
I≤1(t1), I>1(t0), t

) [
V>1

(
:, I>1(t0), t0

)]−T
,

S1(t0) = R1(t1),
(86)

from time t0 to t1 to obtain the solution Y −
1 (t1) = U1(t1)S1(t1)V>1(t0). The algorithm 

proceeds recursively with step j of the sweep described below.

Computation of Y +
j (t1) The starting value Y +

j (t0) = Y −
j−1(t1) is available in the form

Y +
j (t0) = U≤j−1(t1)Sj−1(t1)V>j−1(t0), (87)

from the computation of Y −
j−1(t1), as are the multi-index sets I≤j−1(t1) and I>j(t0). To 

apply Theorem 6.1 we write (87) as

Y +
j (t0) = U≤j−1(t1) [Sj−1(t1)Vj(t0)]V>j(t0), (88)

and then integrate

dKj(t)
dt

=
[
U≤j−1

(
I≤j−1(t1), :, t1

)]−1
G+

j

(
I≤j−1(t1), :, I>j(t0), t

) [
V>j

(
:, I>j(t0), t0

)]−T
,

Kj(t0) = Sj−1(t1)Vj(t0),
(89)

from t0 to t1 to obtain the solution Y +
j (t1) = U≤j−1(t1)Kj(t1)V>j(t0).

Computation of Y −
j (t1) The starting value Y −

j (t0) = Y +
j (t1) is available in the form

Y −
j (t0) = U≤j−1(t1)Kj(t1)V>j(t0), (90)

from the computation of Y +
j (t1) as are the multi-index sets I≤j−1(t1) and I>j(t0). 

We prepare Y −
j (t0) for the application of Theorem 6.1 by decomposing Kj(t1) =
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Uj(t1)Rj(t1) where Uj(t1) is left-orthogonal (see Section 3.1) which allows us to write 
the starting value (90) as

Y −
j (t0) = U≤j(t1)Rj(t1)V>j(t0). (91)

Then we obtain the multi-indices I≤j(t1) from I≤j−1(t1) and the TT-cores U≤j(t1)
with a substep of the TT-cross-DEIM algorithm as described in (52)-(54). Then by 
Theorem 6.1, integrating

dSj(t)
dt

= −
[
U≤j

(
I≤j(t1), :, t1

)]−1
G−

j

(
I≤j(t1), I>j(t0), t

) [
V>j

(
:, I>j(t0), t0

)]−T
,

Sj(t0) = Rj(t1),
(92)

from time t0 to t1 yields the solution Y −
j (t1) = U≤j(t1)Sj(t1)V>j(t0).

Iterating these steps until we obtain Y +
d (t1) = U≤d−1(t1)Kd(t1) = Y (t1) completes 

one step of the first-order splitting integrator. To take another time step the TT rep-
resentation of Y (t1) must be orthogonalized from right to left to obtain an orthogonal 
representation of the solution at time t in the form of (15) with k = 1. During this 
orthogonalization procedure, the indices I>j(t1) can be computed with the right-to-left 
TT-cross-DEIM sweep as described in Section 5.1. Similar to the orthogonal projector-
splitting integrator, obtaining the second-order Strang projector-splitting integrator is 
straightforward by composing the Lie-Trotter integrator with its adjoint. In this case the 
forward sweep described above is performed with step-size Δt/2 and is then followed by 
a backward sweep also with step-size Δt/2. The oblique projector-splitting integrator 
has the same computational complexity as the TT-cross integrator. Just as with the 
corresponding matrix integrators described in Section 2, the difference between these 
two integrators is the order in which interpolatory projection and time integration are 
performed.

6.3. Rank-adaptive time integration

The solution to (2) is often not accurately represented on a tensor manifold Mr with 
constant rank for all t ∈ [0, T ]. Therefore the dynamical low-rank integrators must be 
able to decrease or increase the solution rank during time integration. To decrease the 
solution rank we use the TT-SVD truncation algorithm at each time t which requires d −1
orthogonal representations (15) of the solution. Such orthogonalizations are required for 
the TT-cross-DEIM index selection algorithm and thus rank decrease can be performed 
during time integration with either the TT-cross or interpolatory projector-splitting 
algorithms at no additional computational cost.

To increase the kth component of the TT solution rank during integration with the 
TT-cross integrator we modify Algorithm 2 to sample r̂k > rk indices l≤k from the left 
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singular vectors (53) and r̂k indices l>k from right singular vectors in (57) by augmenting 
the DEIM indices with additional indices selected by another sparse index selection al-
gorithm, e.g., GappyPOD+E [39]. From the l≤k, l>k we construct I≤k, I>k in (54), (58)
each with r̂k indices. We then integrate the solution Y (t) forward in time on the man-
ifold Mr̂ using the equations (65). It is well-known that the solution Y (t) with rank 
r belongs to the boundary of the higher rank manifold Mr̂ where the tangent space 
is not well-defined [51]. Nevertheless, the evolution equations (65), which define the in-
terpolatory tangent space projection, are well-defined on the boundary of Mr̂. These 
equations allow us to integrate Y (t) forward in time on Mr̂ thereby increasing the so-
lution rank. To increase the kth component of the TT solution rank during integration 
with the projector-splitting integrator we add new (orthogonal) basis vectors to the TT 
cores with zero singular value and then sample indices from this augmented basis and ap-
ply the projector-splitting integrator to the augmented solution. Once again adding new 
basis vectors with zero singular values places the approximate solution on the boundary 
of a higher rank manifold Mr̂. The projector-splitting integrator is robust to zero sin-
gular values and allows us to integrate the solution off of the boundary of the low-rank 
manifold. A simple criterion for determining when to increase the kth component of the 
TT-rank vector is based on the singular values {σk(αk, t)}rkαk=1 of the unfolding matrix 
Y 〈k〉. We select the rank to ensure that the relative size of the smallest singular value

εk(t) = σk(rk, t)√√√√ rk∑
αk=1

σk(αk, t)2
, k = 1, 2, . . . , d− 1 (93)

remains in a desired range εl ≤ εk(t) ≤ εu. This criterion is an adaptation of the rank-
adaptive criterion proposed in [15] for matrix differential equations and subsequently 
generalized to the Tucker format [21], to the TT format.

7. Numerical examples

We now apply the proposed dynamical low-rank collocation methods to several tensor 
differential equations (2) arising from the discretization of partial differential equations 
(1) and compare the accuracy and efficiency with existing time integration schemes on 
tensor manifolds. We measure the accuracy of the low-rank approximations Y (t) to the 
solution X(t) of (2) in the relative Frobenius norm

E(t) =
‖Y (t) −X(t)‖F

‖X(t)‖F
. (94)

We compute a reference solution X(t) for each application below by integrating the 
differential equation (2) with the four-stage explicit Runge-Kutta (RK4) method using 
time step-size Δt = 10−3.
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7.1. 2D Vlasov-Poisson equation

We begin with a two-dimensional example (d = 2) demonstrating the proposed meth-
ods on low-rank matrix manifolds described in Section 2. We consider the Vlasov-Poisson 
equation ⎧⎨⎩

∂u(x, v, t)
∂t

+ v
∂u(x, v, t)

∂x
+ E(x)∂u(x, v, t)

∂v
= 0

u(x, v, 0) = u0(x, v),
(95)

from [24, Example 4.4] with initial condition f(x, v, 0) = exp(−20(x2 +v2)), electric field 
E(x) = 0.5 sin(πx) and x ∈ Ωx = [−1, 1], v ∈ Ωv = [−1, 1]. Discretizing Ωx and Ωv using 
n = 64 points and approximating derivatives with a Fourier pseudo-spectral method [26]
we obtain a semi-discrete version of the Vlasov-Poisson equation (95) in the form of a 
differential equation (2) with d = 2, i.e., a matrix differential equation.

We compared the TT-cross integrator presented in Section 6.1 with a step-truncation 
method using SVD-based truncation (ST-SVD). For both integrators we used Adams-
Bashforth 2 with step-size Δt = 10−3. We utilized the rank-adaptive mechanism de-
scribed in Section 6.3 for TT-cross with parameter εl = 10−7. For the ST-SVD solution 
we set relative truncation tolerance δ = 10−7 at each time step allowing the solution 
rank to adapt in time accordingly. In Fig. 4(b) we plot the rank of the TT-cross and 
ST-SVD solutions versus time and the numerical rank of the reference RK4 solution with 
singular value threshold δ = 10−7, i.e., the number of singular values with relative size 
larger than δ. The rank grows rapidly during time integration which allows us to assess 
the robustness of the rank-adaptive mechanism for the TT-cross integrator. In Fig. 4(a) 
we plot the relative error of the TT-cross and ST-SVD solutions in the Frobenius norm 
versus time. We observe that the TT-cross solution is more accurate than the ST-SVD 
solution due to the TT-cross solution rank being slightly larger than the rank of the ST-
SVD solution at each step. The error of the TT-cross solution remains controlled during 
time integration, demonstrating the effectiveness of the rank-adaptive mechanism.

Next we compared the interpolatory projector-splitting integrator (i-PS) presented in 
Section 6.2 with the orthogonal projector-splitting integrator (o-PS) introduced in [31]. 
For the interpolatory and orthogonal projector-splitting integrators we used step-size 
Δt = 10−3 and solved the differential equations in the K-, S-, and L-step with RK4. We 
also used the rank-adaptive mechanism described in Section 6.3 with parameter εl = 10−7

for both solutions. In Fig. 4(b) we plot the solution ranks versus time and the numerical 
rank of the reference RK4 solution with singular value threshold 10−7. Both solutions 
have the same rank until approximately t = 0.7 when the i-PS solution rank becomes 
slightly smaller than the o-PS solution rank. In Fig. 4(a) we plot the relative errors in 
the Frobenius norm versus time. The error of the i-PS and o-PS solutions is similar until 
around t = 0.4, at which point the i-PS solution becomes slightly less accurate. This 
difference in accuracy is due to the i-PS method computing a quasi-optimal projection 
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Fig. 4. Low-rank approximations to the solution of the two-dimensional Vlasov-Poisson equation (95). (a) 
Relative error versus time of TT-cross and ST-SVD solutions. The TT-cross solution was computed using 
rank-adaptive singular value threshold εl = 10−7 and the ST-SVD solution was computed using truncation 
threshold δ = 10−7. (b) Rank versus time of the rank-adaptive TT-cross and ST-SVD solutions and the 
numerical rank of the reference RK4 solution with singular value threshold 10−7. (c) Relative error ver-
sus time of solutions computed with interpolatory and orthogonal projector-splitting using rank-adaptive 
singular value threshold εl = 10−7. (d) Rank versus time of the rank-adaptive solutions computed with 
interpolatory and orthogonal projector splitting integrators and the numerical rank of the reference RK4 
solution with singular value threshold 10−7.

onto the tangent space, while the o-PS method computes the optimal projection at each 
time step. In addition, the slight difference in rank of the solutions also contributes to 
the difference in accuracy.

7.2. 3D Allen-Cahn equation

The Allen-Cahn equation is a reaction-diffusion PDE that models phase separation 
in multi-component alloy systems [1,28]. A simple form of such equation features a 
Laplacian and a cubic non-linearity
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⎧⎨⎩
∂u(x, t)

∂t
= αΔu(x, t) + u(x, t) − u(x, t)3,

u(x, 0) = u0(x).
(96)

We consider the spatial domain Ω = [0, 2π]3 with periodic boundary conditions, initial 
condition u0(x1, x2, x3) = g(x1, x2, x3) − g(2x1, x2, x3) + g(x1, 2x2, x3) − g(x1, x2, 2x3)
where

g(x1, x2, x3) =

(
e− tan(x1)2 + e− tan(x2)2 + e− tan(x3)2

)
sin(x1 + x2 + x3)

1 + e| csc(−x1/2)| + e| csc(−x2/2)| + e| csc(−x3/2)|
, (97)

and diffusion parameter α = 0.1. Discretizing Ω using n = 64 points in each dimension 
and approximating derivatives with a Fourier pseudo-spectral method [26], we obtain a 
semi-discrete version of the Allen-Cahn equation in the form of (2).

We compared the TT-cross integrator presented in Section 6.1 with the step-
truncation SVD (ST-SVD) integrator [42] using different relative truncation tolerances 
δ = 10−3, 10−4, 10−6, 10−10 for determining the solution rank at each time step. We 
set the solution rank in the TT-cross simulations equal to the ranks obtained from the 
ST-SVD simulations with truncation tolerances in order to compare the methods for so-
lutions computed with the same rank. The rank decrease was performed using TT-SVD 
truncation and the rank increase by sampling more tensor cross indices than singular 
vectors using the GappyPOD+E algorithm [39] as described in Section 6.3. Time in-
tegration for both ST-SVD and TT-cross was performed with Adams-Bashforth 2 and 
step-size Δt = 10−3.

In Fig. 5(b), we plot the 1-norm of the ST-SVD and TT-cross solution ranks. The 
smoothing effects due to diffusion in the Allen-Cahn equation cause the TT ranks to 
decay relatively quickly from time t = 0 to time t ≈ 1.5. In Fig. 5(a), we plot the 
relative error measured in the Frobenius norm of the ST-SVD and TT-cross solutions 
versus time. The ST-SVD solution is more accurate than the TT-cross solution com-
puted with the same rank, which is expected. Indeed, the ST-SVD method computes 
the best rank-r projection of the solution onto the low-rank manifold Mr at each time 
step while the TT-cross method computes a quasi-optimal projection onto the tangent 
space of the manifold at each time step. When the rank of the TT solutions is large 
enough (in this case corresponding to δ = 10−10), the time integration error dominates 
the low-rank approximation error and the ST-SVD and TT-cross methods produce solu-
tions with the same accuracy. When the low-rank error dominates the time integration 
error (δ = 10−4, 10−6) we observe in Fig. 5(a) that the ST-SVD is about half an order 
of magnitude more accurate than the TT-cross solution of the same rank for all ranks 
and at each time t. In Fig. 5(c), we compare the accuracy of the interpolatory projection 
(i-proj) onto the tangent space computed from the TT-cross solution and the orthogonal 
projection (o-proj) onto the tangent space computed from the ST-SVD simulation. The 
orthogonal projection is more accurate than the interpolatory projection by approxi-
mately one order of magnitude or less at each time t. Similar to the difference in error 
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Fig. 5. Low-rank approximations to the solution of the three-dimensional Allen-Cahn equation (96) computed 
with the TT-cross and ST-SVD methods. The ranks were determined using different truncation tolerances 
δ = 10−4, 10−6, 10−10 in the ST-SVD method. (a) Relative error in the Frobenius norm versus time. (b) 1-
norm of the TT-rank vector versus time. (c) Relative error of interpolatory (i-proj) and orthogonal (o-proj) 
projections onto the tensor manifold tangent space versus time. (d) Condition number of the matrices non-
orthogonalized matrices in (67) and the corresponding orthogonalized matrices in (70) used to construct 
the TT-cross solution at each time step.

between the solutions, the difference in error between the i-proj and o-proj is constant 
over all ranks and for all time t.

The improved accuracy of the ST-SVD method over the TT-cross method comes at a 
significant computational cost due to the cubic nonlinearity in the Allen-Cahn equation 
(96). The reason is that the ST-SVD method requires computing a TT representation 
of G(Y (t), t) at each time t, which is costly. Indeed, recall that standard algorithms for 
multiplying two TTs Y1 and Y2 with ranks r1 = [r1 · · · r1 ] and r2 = [r2 · · · r2 ]
results in a TT Y1Y2 with rank equal to the Hadamard (element-wise) product of the 
two ranks r1 ◦r2. These ranks are in general not optimal and to control the TT rank we 
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Fig. 6. Low-rank approximations to the solution of the three-dimensional Allen-Cahn equation (96) computed 
with the interpolatory and orthogonal projector-splitting integrators. Solutions are truncated at each time t
using tolerances TT-SVD with relative tolerance δ = 10−6, 10−10. (a) Relative error in the Frobenius norm 
versus time. (b) 1-norm of the TT-rank vector versus time.

perform a TT-SVD truncation requiring O(dn(r1r2)3) operations. We used two TT-SVD 
truncations Tδ with relative accuracy δ to compute the cubic term

(Y )3 = Tsvd
δ

(
Y Tsvd

δ (Y Y )
)
, (98)

incurring a cost of O(dnr6) operations at each time t. It is possible to accelerate the com-
putation G(Y, t) by carrying out sums and products of TTs with approximate low-rank 
tensor arithmetic, black-box tensor cross approximation [14], or randomized algorithms 
[8]. However such algorithms introduce additional errors in the low-rank approximation 
that can be difficult to control. In comparison, the TT-cross integrator does not re-
quire G(Y, t) in a low-rank form and instead evaluates G(Y, t) at O(dnr2) indices. Thus 
the computational cost of the cubic nonlinearity for TT-cross is negligible compared to 
the O(dnr3) cost of the TT-cross-DEIM index selection algorithm and evaluating the 
subtensors of Y (t) required to integrate the system of equations (65).

We also compared the interpolatory projector-splitting (i-PS) integrator presented in 
Section 6.2 with the orthogonal projector-splitting (o-PS) integrator from [32] using two 
different truncation tolerances δ = 10−6, 10−10 on the singular values of the solutions. 
In both cases we used first-order Lie-Trotter splitting with time step-size Δt = 10−3

and solved each of the substeps in (76) with RK4. In Fig. 6(a) we plot the error of 
the solutions computed with the i-PS and o-PS methods versus time. We observe that 
the i-PS method is less accurate than the o-PS method. This is expected since the i-PS 
method integrates Y (t) on Mr using a quasi-optimal tensor in the tangent space while 
the o-PS method integrates uses the optimal tensor in the tangent space. The difference 
in error is similar to the comparison of TT-cross and ST-SVD except for t ∈ [0, 5] in 
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Table 1
CPU-time and accuracy of low-rank methods for integrating the 3D Allen-Cahn equa-
tion (96). The ranks were chosen using δ = 10−3 and δ = 10−4.

Method Average rank ‖r(t)‖1 Runtime (min) Relative Error (t = 10)

TT-cross AB2 24.2 4.0 2.5 × 10−2

ST-SVD AB2 24.2 16.7 7.13 × 10−3

i-PS RK4 24.2 23.9 2.21 × 10−2

o-PS RK4 24.2 287.6 7.13 × 10−3

TT-cross AB2 32.4 4.3 3.6 × 10−3

ST-SVD AB2 32.4 27.2 1.0 × 10−3

i-PS RK4 32.4 21.8 3.6 × 10−3

o-PS RK4 32.4 522.1 1.0 × 10−3

the simulations using δ = 10−10 where the difference in error is significantly larger. In 
Fig. 6(b) we plot the ranks of the i-PS and o-PS solutions versus time.

In Table 1 we compare the runtime and relative error at time t = 10 of the low-rank 
solutions computed using existing methods (ST-SVD AB2, o-PS RK4) with the solutions 
computed using the proposed methods (TT-cross AB2, i-PS RK4). We consider two 
different rank-adaptive simulations with ranks determined by δ = 10−3, 10−4 and report 
the average 1-norm of the rank vector over all time steps. The TT-cross AB2 method 
with an average rank of 24.2 is approximately 4.2 times faster than the ST-SVD AB2 
method at the same rank, while being roughly half an order of magnitude less accurate. 
With an average rank of 32.4, the TT-cross AB2 method is approximately 6.3 times 
faster than the ST-SVD AB2 method, while being less than half an order of magnitude 
less accurate. The speedup observed for the projected RK4 methods is even greater, as 
these methods require more evaluations of the right-hand side tensor, which includes the 
cubic nonlinearity. The i-PS RK4 method with an average rank of 24.2 is approximately 
12 times faster than the o-PS RK4 method at the same rank, while being roughly half 
an order of magnitude less accurate. With an average rank of 32.4, the i-PS RK4 method 
is approximately 24 times faster than the ST-SVD AB2 method, while being less than 
half an order of magnitude less accurate.

7.3. 4D advection-diffusion-reaction equation

Finally we consider the advection-diffusion-reaction (ADR) equation

⎧⎨⎩
∂u(x, t)

∂t
= ∇ · (μi(x, t)u(x, t)) + σΔu(x, t) + R(u)

u(x, 0) = u0(x),
(99)

where R(u) is a nonlinear reaction term. We consider the spatial domain Ω = [0, 2π]4
with periodic boundary conditions and set

p0(x) = exp(sin(x1) sin(x2) sin(x3) sin(x4)), (100)
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Fig. 7. The (x1, x2)-marginals of the reference solution to the four-dimensional ADR equation (99) at time 
t = 0 and t = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

R(u) = −0.1u/(1 + u2), σ = 1/4 and

μ(x) = 1
2

⎡⎢⎣g(x2, x3)
g(x3, x4)
g(x4, x1)
g(x2, x3)

⎤⎥⎦ , (101)

where g(x, y) = exp(sin(x) cos(y)). Discretizing Ω using n = 32 points in each dimension 
and approximating derivatives with a Fourier pseudo-spectral method [26] we obtain a 
semi-discrete version of the ADR equation (99) in the form of (2). In Fig. 7 we plot 
(x1, x2)-marginals of the RK4 reference solution at time t = 0 and t = 1.

We computed two approximate low-rank solutions on a TT manifold (17) with the 
step-truncation SVD method (ST-SVD) [42] using different relative truncation tolerances 
δ = 10−6, 10−8. Computing the ST-SVD solution requires a low-rank approximation of 
G(Y (t), t) at each time t, which is challenging for the nonlinear ADR equation (99) as 
there are no reliable algorithms available for computing the fractional nonlinearity in the 
low-rank format. To compute the G(Y (t), t), we construct the full tensor representation 
of the TT-SVD solution with n4 degrees of freedom, compute the fractional nonlinearity, 
and then compress the result into a TT with a recursive SVD. This approach is of course 
not viable in higher dimensions but it allows us to compare our TT-cross solution with 
the ST-SVD method in this case which computes the best low-rank approximate solution 
at each time step.

The map G obtained from discretizing (99) includes four coefficient tensors c1, c2, c3,
c4 ∈ Rn×n×n×n (resulting from the discretization of g(x, y)) that are not expressed in 
a low-rank format upon discretization of G. In order to compute G(Y (t), t) in low-rank 
format at each time, we decomposed the four coefficient tensors in G using TT-SVD 
compression with relative accuracy δ. For δ = 10−6 and δ = 10−8 we obtained coefficient 
tensors of the same rank
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Fig. 8. Low-rank approximations to the solution of the four-dimensional ADR equation (99) computed with 
the TT-cross and ST-SVD integrators. The ranks were determined using different truncation tolerances 
δ = 10−6, 10−8 in the ST-SVD method. (a) Relative error in the Frobenius norm versus time. (b) 1-norm 
of the TT-rank vector versus time.

TT-rank(c1) = [1 1 12 1 1] ,

TT-rank(c2) = [1 1 1 12 1] ,

TT-rank(c3) = [1 13 13 13 1] ,

TT-rank(c4) = [1 1 12 1 1] .

(102)

We computed G(Y (t), t) in the ST-SVD method at each time step by taking products 
of the low-rank approximate coefficient tensors ck with the low-rank solution tensor Y
and then used TT-SVD truncation to compress the product. We then added the TT 
representation of the reaction term and applied TT-SVD truncation after adding two 
low-rank tensors in order to control tensor rank when computing G(Y (t), t) at each time 
t. Time integration for the ST-SVD simulation was performed with AB2 and time step-
size Δt = 10−3. In Fig. 8(b) we plot the 1-norm of the TT-rank of each ST-SVD solution 
versus time. We observe that the ranks of both solution increase until around t = 0.5
and then stabilize for t ∈ [0.5, 1].

We then computed two approximate low-rank solutions on the TT manifold Mr us-
ing the proposed TT-cross integrator. In order to compare the results with the ST-SVD 
simulations we set the solution ranks in the TT-cross simulations equal to the ranks 
obtained from the ST-SVD simulations with truncation tolerances δ = 10−6, 10−8. We 
computed the right-hand side of the TT-cross evolution equations (65) by simply evalu-
ating the coefficient tensors at the indices determined by the TT-cross-DEIM Algorithm 
at each time step. The cost of computing the right hand-hand side for the TT-cross 
evolution equations is negligible compared to the O(dnr3) cost of the TT-cross-DEIM 
index selection algorithm and evaluating the subtensors of Y (t) required to integrate the 
system of equations (65). In Fig. 8(a) we compare the relative error in the Frobenius 
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norm of the TT-cross solutions and the ST-SVD solutions. We observe that the TT-cross 
solutions are less accurate than the ST-SVD solutions of the same rank and the differ-
ence in accuracy is constant over all solution ranks and for all time t. This is expected 
as the ST-SVD method computes the best rank-r projection of the solution onto the TT 
manifold Mr at each time step while the TT-cross method computes a quasi-optimal 
projection onto the tangent space of the low-rank manifold at each time step.

8. Conclusions

We introduced new general purpose dynamical low-rank methods for solving non-
linear differential equations on low-rank manifolds. The methods rely on a particular 
class of oblique projectors onto the tangent space of a low-rank manifold with a cross-
interpolation property. Such projectors collocate the differential equation on a low-rank 
tensor manifold and give rise to efficient time integration schemes that allow us to inte-
grate differential equations defined by vector fields that can be evaluated entry-wise. To 
construct the oblique projections we introduced a new index selection algorithm based 
on the DEIM for tensors in the TT format. Furthermore, we showed that such index 
selection algorithm parameterizes low-rank TT manifolds and their tangent spaces with 
cross interpolation. Our numerical results demonstrate that the oblique projections onto 
the tangent space yield good approximations on the low-rank manifold in the Frobenius 
norm that are efficiently computed for problems defined by vector fields without low-
rank structure. Our proposed methods thus make dynamical low-rank approximation 
applicable to a broader class of differential equations and facilitate its use in various 
practical applications.
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