
Lawrence Berkeley National Laboratory
LBL Publications

Title
Collocation methods for nonlinear differential equations on low-rank
manifolds

Permalink
https://escholarship.org/uc/item/1sz9921z

Author
Dektor, Alec

Publication Date
2025

DOI
10.1016/j.laa.2024.11.001

Copyright Information
This work is made available under the terms of a Creative Commons
Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sz9921z
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Linear Algebra and its Applications 705 (2025) 143–184
Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

Collocation methods for nonlinear differential
equations on low-rank manifolds

Alec Dektor
Applied Mathematics & Computational Research Division, Lawrence Berkeley
National Laboratory, Berkeley (CA) 94720, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2024
Received in revised form 30 October
2024
Accepted 1 November 2024
Available online 6 November 2024
Submitted by D. Kressner

MSC:
15A69
65F99
65L05
90C06

Keywords:
Low-rank approximation
Time-dependent tensors
Tensor differential equations
Tensor cross approximation
Tensor train format

We introduce new methods for integrating nonlinear differ-
ential equations on low-rank manifolds. These methods rely
on interpolatory projections onto the tangent space, enabling
low-rank time integration of vector fields that can be evalu-
ated entry-wise. A key advantage of our approach is that it
does not require the vector field to exhibit low-rank struc-
ture, thereby overcoming significant limitations of traditional
dynamical low-rank methods based on orthogonal projec-
tion. To construct the interpolatory projectors, we develop
a sparse tensor sampling algorithm based on the discrete
empirical interpolation method (DEIM) that parameterizes
tensor train manifolds and their tangent spaces with cross
interpolation. Using these projectors, we propose two time
integration schemes on low-rank tensor train manifolds. The
first scheme integrates the solution at selected interpolation
indices and constructs the solution with cross interpolation.
The second scheme generalizes the well-known orthogonal
projector-splitting integrator to interpolatory projectors. We
demonstrate the proposed methods with applications to sev-
eral tensor differential equations arising from the discretiza-
tion of partial differential equations.

© 2024 The Author. Published by Elsevier Inc. This is an
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

E-mail address: adektor@lbl.gov.
https://doi.org/10.1016/j.laa.2024.11.001
0024-3795/© 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY
license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.laa.2024.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2024.11.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:adektor@lbl.gov
https://doi.org/10.1016/j.laa.2024.11.001
http://creativecommons.org/licenses/by/4.0/

144 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
1. Introduction

Consider the initial value problem

∂u(x, t)
∂t

= G(u,x, t), u(x, 0) = u0(x), (1)

governing the time evolution of a quantity of interest u : Ω × [0, T] → R, where Ω is
a subset of Rd (d � 1) and G is a nonlinear operator that may depend on x and t.
Equations of the form (1) are found in many areas of physical sciences, engineering, and
mathematics. For example, in applications of kinetic theory such as the Fokker–Planck
equation [41] and the Boltzmann equation [4], in optimal mass transport [19], and as
finite-dimensional approximations of functional differential equations [53,52]. Discretiz-
ing (1) with a method of lines yields the tensor differential equation

dX(t)
dt

= G(X(t), t), X(0) = X0, (2)

where X(t) : [0, T] → Rn1×···×nd is the time-dependent solution tensor and G :
Rn1×···×nd × [0, T] → Rn1×···×nd is a discrete form of the operator G. At any time t,
the solution tensor X(t) has O(nd) degrees of freedom that make its computation and
storage prohibitively expensive, even for small d.

Several algorithms based on tensor networks have recently been proposed to reduce
the number of degrees of freedom in the solution tensor X(t) and integrate (2) at a
reasonable computational cost. A tensor network is a factorization of a high-dimensional
tensor, such as X(t), into a network of low-dimensional tensors with significantly fewer
degrees of freedom. The number of degrees of freedom in a network depends on the chosen
tensor format, e.g., tensor train (TT) [38], Tucker [34,13], Hierarchical Tucker [22,33,23]
or canonical polyadic (CP) [29], and the tensor rank. For instance, tensors in the TT
format with rank r can be parameterized with O(dnr2) degrees of freedom, a significant
reduction from O(nd) when the rank r is sufficiently small. The set of all tensors in a
chosen format with fixed rank forms a smooth manifold on which the solution to (2) can
be integrated.

Two classes of algorithms for integrating (2) on smooth tensor manifolds are step-
truncation methods [42] and dynamical low-rank methods [10]. Step-truncation methods
allow the solution rank to naturally increase in a controlled manner during a time step
before truncating back to the desired rank. Dynamical low-rank methods integrate the so-
lution on a fixed-rank manifold by projecting G(X, t) onto a tangent space of the manifold
at each time t. Both methods aim to efficiently compute the best approximate solution
to (2) on a fixed-rank tensor manifold at each time t and are consistent with each other
as the temporal step-size approaches zero (see, e.g., [9, Section 3.3]). These methods have
been utilized for several applications including uncertainty quantification [2,45], plasma
physics [54,17], numerical approximation of functional differential equations [53,44] and

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 145
machine learning [48,46], and substantial research efforts have recently been made to
improve their accuracy, efficiency, and robustness. These efforts have resulted in sev-
eral innovations including rank-adaptive integrators [9,5,42], implicit low-rank methods
[43,36,50], conservative low-rank methods [25,3,18,16] and coordinate-adaptive low-rank
methods [11,12].

Despite these recent advancements, existing low-rank time integration schemes still
have significant limitations in their applicability. Most notably, they require the tensor-
valued map G defining the differential equation (2) to have low-rank structure comple-
mentary to that of the solution. Such low-rank structure is key to increasing the solution
rank in a controlled manner for step-truncation methods or efficiently computing the
orthogonal projection of G(X, t) onto the tangent space for dynamical low-rank meth-
ods. In either case, the low-rank structure of G is crucial for obtaining practical time
integration schemes with computational cost and storage requirements comparable to
the storage cost of the chosen tensor format. However, many instances of G that arise
from discretizing (1) lack low-rank structure. For example, when G includes a polynomial
nonlinearity computing a low-rank representation of G(X, t) or its orthogonal projection
onto the tangent space is expensive due to the non-optimal rank that results from mul-
tiplying low-rank tensors. The situation is worse for other common nonlinearities, such
as exponential or fractional, as there are currently no reliable algorithms for performing
these nonlinear arithmetic operations with low-rank tensors. In such cases, (2) may ad-
mit an approximate low-rank solution. However, existing step-truncation and dynamical
low-rank methods cannot efficiently compute it.

In this paper, we introduce a new class of dynamical low-rank methods that can effi-
ciently integrate the solution to (2) on a low-rank tensor manifold even when G does not
have low-rank structure. Our proposed methods rely on a new class of oblique projec-
tors onto low-rank tangent spaces with a cross interpolation property. In the context of
dynamical low-rank approximation, these projectors collocate (2) on a tensor manifold
and yield equations of motion on the manifold that are efficient to integrate whenever
it is possible to evaluate G entry-wise. The oblique projectors are defined by sets of
multi-indices that identify tensor fibers along which the projector interpolates. To se-
lect these multi-indices, we introduce a new algorithm, based on the discrete empirical
interpolation method (DEIM), to efficiently compute indices that parameterize tensor
manifolds with cross interpolation [37]. Using these projectors we propose two low-rank
time integration schemes. The first integrates subtensors of the solution defining a ten-
sor cross interpolant and then constructs the low-rank solution later in time with tensor
cross interpolation. The second we obtain by applying a splitting scheme to the oblique
tangent space projector. Splitting schemes for orthogonal tangent space projectors were
introduced in [31] for matrices and were subsequently generalized to TTs [32], Tucker
tensors [30] and tree tensor networks [7]. Our method directly generalizes these orthog-
onal projector-splitting schemes to oblique projectors in the TT format. Related time
integration schemes based on oblique projections onto the low-rank manifold (instead

146 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Fig. 1. A sketch of the low-rank manifold Mr and its tangent space TY Mr at the point Y ∈ Mr . Also
depicted is Z ∈ Rn1×···×nd and its orthogonal projection P̂Y Z and oblique projection PY Z onto the tangent
space TY Mr. The orthogonal projection is the best approximation of Z on the tangent space with respect
to the Frobenius norm but is impractical compute when G lacks rank structure. The oblique projection is
a quasi-optimal approximation of Z on the tangent space that is efficient to compute for any G that can
be evaluated entry-wise. Such oblique projectors allow us to efficiently apply dynamical low-rank methods
to a broad class of nonlinear differential equations.

of its tangent space) were recently proposed for computing low-rank approximations to
matrix differential equations [15,35] and tensor differential equations [21,20].

The rest of this paper is organized as follows. In Section 2 we introduce interpola-
tory tangent space projectors and the proposed dynamical low-rank methods on matrix
manifolds (d = 2). In Section 3 we briefly recall the TT format and orthogonalization
of tensors in the TT format. In Section 4 we recall the orthogonal projector onto the
TT tangent space and introduce new oblique projectors onto the tangent space. Then
we describe a special class of oblique projectors with a cross interpolation property. In
Section 5 we present a new index selection algorithm, referred to as TT-cross-DEIM, for
constructing oblique projectors onto the TT tangent space. We show that indices ob-
tained with the TT-cross-DEIM algorithm define oblique tangent space projectors and
parameterize TT manifolds with cross interpolation. In Section 6 we introduce new dy-
namical low-rank time integration schemes for (2) using oblique tangent space projectors.
In Section 7 we demonstrate the proposed dynamical low-rank methods and compare the
results with existing time integration methods on low-rank tensor manifolds. The main
findings are summarized in Section 8.

2. Dynamical low-rank matrix approximation

Before introducing dynamical low-rank tensor approximation, we describe the pro-
posed low-rank methods for matrices (d = 2). The goal is to find an approximate solution
Y (t) to (2) that lies on the manifold Mr of rank-r matrices for all time t. A rank-r ma-
trix can be expressed through left and right factor matrices with dimensions n1r and
n2r, respectively. Thus approximating the solution to (2) with Y (t) ∈ Mr reduces the
storage cost from n1n2 to (n1 +n2)r. Dynamical low-rank methods integrate the approx-
imate solution Y (t) on the manifold Mr by projecting (2) onto a tangent space of Mr

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 147
at each time t. Assuming the initial condition X0 belongs to Mr, this procedure yields
the evolution equation

dY (t)
dt

= PY (t)G(Y (t), t), Y (0) = X0, (3)

where PY (t) : Rn1×n2 → TY (t)Mr projects onto the tangent space of Mr at Y (t). The
solution to (3) remains on Mr for all t ≥ 0 and serves as an approximate solution to
(2). Classical dynamical low-rank methods use an orthogonal tangent space projector to
minimize the error of the approximation in the Frobenius norm at each time t. Let U(t)
and V (t) be matrices whose columns form orthonormal bases for the range and co-range
of Y (t), respectively. Such matrices can be obtained, for example, from the SVD of Y (t).
Then the orthogonal tangent space projector can be expressed as [31]

P̂Y Z = ZV V T − UUTZV V T + UUTZ, (4)

where Z ∈ Rn1×n2 and we suppressed dependence on t for simplicity. When Z =
G(Y (t), t) computing the projection (5) at each time step to integrate (3) can be compu-
tationally expensive, especially if G does not have low-rank structure. For most nonlinear
functions G, computing such orthogonal projection has computational cost scaling as
n1n2, making the integration of the approximate solution Y (t) ∈ Mr as expensive as
solving for the full solution X(t) using standard methods.

2.1. Interpolatory dynamical low-rank approximation

Algorithm 1 DEIM index selection (adapted from [49]).
Require: V ∈ Rn×r with n ≥ r
Ensure: l, a vector with r distinct indices from {1, . . . , n}
1: v = V (:, 1)
2: [, l1] = max(|v|)
3: for j = 2, 3, . . . , r do
4: v = V (:, j)
5: c = V (l, 1 : j − 1)−1v(l)
6: r = v − V (:, 1 : j − 1)c
7: [, lj] = max(|r|)
8: l = [l; lj]
9: end for

To develop efficient dynamical low-rank integrators for nonlinear G we propose a new
interpolatory tangent space projector PY to replace the orthogonal projector. This inter-
polatory projector is a specialized oblique tangent space projector, obtained by replacing
the orthogonal projectors UUT and V V T in (4) with oblique projectors onto the same
spaces. A general form of these oblique projectors is U(ATU)−1AT and V (BTV)−1BT

where A ∈ Rn1×r and B ∈ Rn2×r are any matrices such that (ATU) and (BTV) are
invertible. Interpolatory projectors onto the columns of U and V are obtained by se-
lecting A and B as specific columns of the identity matrix with appropriate dimensions.

148 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Specifically A = In1(:, I) and B = In2(:, J) where I contains r indices from {1, . . . , n1}
and J contains r indices from {1, . . . , n2}. The matrix A can extract r rows from Z via
left multiplication ATZ = Z(I, :) and the matrix B can extract r columns from Z via
right multiplication ZB = Z(:, J). Moreover, A can be defined by choosing r indices in
the set I, and similarly, B can be defined by choosing r indices in the set J . Such indices
are to be chosen so that ATU = U(I, :) and BTV = V (J , :) are invertible, and ideally
with a small condition number. This can be achieved with a sparse sampling algorithm
such as the discrete empirical interpolation method (DEIM). The DEIM, summarized
in Algorithm 1, is a greedy algorithm that selects an index for each column of U or V
to minimize the condition number of the interpolatory projector as much as possible.
Other sparse sampling strategies, such as Q-DEIM or oversampling methods, can also
be used and may yield better-conditioned interpolatory projectors than DEIM in certain
cases. Replacing the orthogonal projectors in (4) with interpolatory projectors onto the
columns of U and V results in an interpolatory projector onto the tangent space TYMr

of the form

PY Z = Z(:,J)V (J , :)−TV T − UU(I, :)−1Z(I,J)V (J , :)−TV T + UU(I, :)−1Z(I, :).
(5)

It is easy to verify that (PY Z)(i, j) = Z(i, j) whenever i ∈ I or j ∈ J . In other words,
the projection PY Z interpolates Z along rows and columns specified by the index sets I
and J .

2.1.1. Matrix cross integrator
A straightforward low-rank time integration scheme can be derived by evaluating the

dynamical low-rank evolution equation (3) at the sampled indices I and J and leveraging
the interpolation property. This leads to the system of evolution equations

dY (I(t), :, t)
dt

= GY (I(t), :, t),

dY (:,J (t), t)
dt

= GY (:,J (t), t),
(6)

where GY (t) = G(Y (t), t). Equation (6) consists of (n1 + n2)r coupled nonlinear differ-
ential equations governing the evolution of a subset of the entries in the approximate
solution, which can be integrated using standard explicit or implicit methods. The in-
dices I(t) and J (t) that define the interpolatory projector (5) are chosen at each time
t to ensure that the projector remains well-defined during time integration. If G arises
from the spatial discretization of a PDE (1) involving differential operators, evaluating
GY (I, :, t) and GY (:,J , t) requires entries of Y at indices adjacent to I and J . The
values of Y at adjacent indices can always be obtained by constructing the solution Y (t)
as a low-rank matrix using CUR decomposition. For example given Y (I, :) and Y (:, J)
at any time t the approximate solution Y can be obtained as

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 149
Y = Y (:,J)Y (I,J)−1Y (I, :). (7)

If Y = UΣV T is the SVD and the indices I and J defining the interpolatory projector
are chosen so that U(I, :) and V (J , :) are well-conditioned, then constructing Y using
(7) involves Y (I, J)−1 = V (J , :)−TΣ−1U(I, :)−1. Thus the condition number of the
middle matrix is inversely proportional to the smallest singular value of Y . Instead of
constructing Y in this way, if we first take a QR decomposition Y (:, J) = QR, then we
can write Y (I, J) = Q(I, :)R and the CUR formula (7) becomes

Y = QQ(I, :)−1Y (I, :), (8)

which is an interpolatory projection of Y (I, :) onto the orthonormal basis Q. In particular
the stability of constructing the solution using (8) depends on the condition of the
interpolatory projector and is independent of the singular values of Y . Computing the
right hand side of (6), and hence integrating the system, is efficient for any nonlinear G
that can be evaluated entry-wise, regardless of its low-rank structure. This enables us to
efficiently compute dynamical low-rank approximations for problems where orthogonal
tangent space projection is too expensive.

2.1.2. Projector-splitting integrator
An alternative approach to the matrix-cross integrator presented above for integrating

(3) is to apply a standard splitting method, similar to the integrators proposed for
orthogonal projectors in [31]. Since (3) is a sum of three terms, applying Lie-Trotter
splitting yields three substeps commonly referred to as K-, S-, and L-step. Beginning
from the rank-r decomposition of the approximate solution Y (t0) = U(t0)S(t0)V T(t0)
at time t0, each step updates a single factor matrix. After all three steps we obtain
the low-rank factors for the approximate solution Y (t1) = U(t1)S(t1)V T(t1) at time
t1 = t0 +Δt. The substeps for interpolatory projector-splitting integrator are as follows.
We denote by DEIM(·) a subroutine that takes a matrix of size n ×r as input and outputs
a collection of r indices computed with the DEIM index selection (Algorithm 1).

1. K-step: update U(t0) → U(t1) and S(t0) → R(t1).
Compute interpolation indices J = DEIM(V (t0)). Then integrate the n1 × r differen-
tial equation

dK(t)
dt

= GK (:,J , t) [V (J , :, t0)]−T
, K(t0) = U(t0)S(t0), (9)

where GK(t) = G
(
K(t)V (t0)T, t

)
from t0 to t1, and perform a QR-decomposition

K(t1) = U(t1)R(t1).
2. S-step: update R(t1) → S̃(t1).

Compute interpolation indices I = DEIM(U(t1)). Then integrate the r × r matrix
differential equation

150 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
dS̃(t)
dt

= − [U (I, :, t1)]−1
GS (I,J , t) [V (J , :, t0)]−T

, S̃(t0) = R(t1), (10)

where GS(t) = G
(
U(t1)S(t)V (t0)T, t

)
from t0 to t1.

3. L-step: update V (t0) → V (t1) and S̃(t1) → S(t1).
Integrate the n2 × r matrix differential equation

dL(t)
dt

= GL (I, :, t)T [U (I, :, t1)]−T
, L(t0) = V (t0)S̃(t1)T, (11)

where GL(t) = G
(
U(t1)L(t)T, t

)
from time t0 to t1, and perform a QR-decomposition

L(t1) = V (t1)S(t1)T.

Similar to the matrix-cross integrator, the interpolatory projector-splitting integrator
requires evaluating the output of G at only a subset of nr indices in the K- and L-step and
r2 indices in the S-step. These evaluations can be performed efficiently for any G that can
be evaluated entry-wise. Meanwhile the corresponding steps of the orthogonal projector-
splitting integrator (summarized in [6]) involve inner products involving the output of
G that are only efficient to compute when G has low-rank structure. The difference
between the interpolatory projector-splitting integrator and the matrix cross integrator
is the order in which interpolatory projection and time integration are performed. The
former applies the interpolatory projection on the vector-field and then integrates the
factor matrices of the solution. The latter integrates the solution at the specified indices
and then performs an interpolatory projection onto the updated basis Q in (8).

3. Tensor train (TT) format

In the following sections we propose dynamical low-rank approximation with interpo-
latory projections for tensors (d ≥ 2) in the tensor train (TT) format. When d = 2 the TT
algorithms described hereafter reduce to the matrix algorithms discussed in Section 2.
We begin with a brief review of the TT format and orthogonal TT representations. For
a more detailed introduction to the TT format we refer the reader to [38]. Throughout
the remainder of this paper, matrices are denoted by boldface letters, while tensors are
denoted by regular (non-bold) letters. The kth unfolding of a tensor Y ∈ Rn1×···×nd is
the matrix Y 〈k〉 ∈ R(n1···nk)×(nk+1···nd) with rows and columns indexed colexicograph-
ically. The TT-rank of Y is defined as the vector r = (1, r1, . . . , rd, 1) where rk is the
rank of the unfolding matrix Y 〈k〉. Any tensor Y with TT-rank r can be represented in
the TT format as

Y (i1, i2, . . . , id) = C1(i1)C2(i2) · · ·Cd(id), (12)

where each Ck is a rk−1×nk×rk tensor referred to as a TT-core and Ck(ik) is a rk−1×rk
matrix for a fixed index ik. Each TT-core has a left unfolding matrix C〈l〉

k ∈ Rrk−1nk×rk

and a right unfolding C〈r〉
k ∈ Rrk−1×nkrk obtained by reshaping the elements of Ck

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 151
C
〈l〉
k (αk−1ik, αk) = C

〈r〉
k (αk−1, ikαk) = Ck(αk−1, ik, αk), k = 1, 2, . . . , d.

The left and right unfoldings of each TT-core are full rank whenever Y has TT-rank r.
To simplify notation of tensors in the TT format we often omit indices so that (12) is
replaced by Y = C1C2 · · ·Cd. To obtain even more compact representations, we define
partial products of TT-cores C≤k ∈ Rn1×···×nk×rk and C>k ∈ Rrk×nk+1×···×nd with
entries

C≤k(i1, . . . , ik, :) = C1(i1) · · ·Ck(ik, :),

C>k(:, ik+1, . . . , id) = Ck+1(:, ik+1) · · ·Cd(id),
(13)

so that Y = C≤kC>k. We also define certain unfolding matrices of these partial product
tensors

C≤k(i1 · · · ik, :) = C≤k(i1, . . . , ik, :),

C>k(ik+1 · · · id, :) = C>k(:, ik+1, . . . , id),
(14)

where C≤k ∈ R(n1···nk)×rk and C>k ∈ R(nk+1···nd)×rk , which allows us to write the kth
unfolding matrix of Y as Y 〈k〉 = C≤kC

T
>k.

3.1. Orthogonalization of tensor trains

Orthogonal TT representations are fundamental for executing many operations in the
TT format. We will use them in this paper to obtain projectors onto the tangent spaces
of TT manifolds. Hereafter, we recall an algorithm for orthogonalizing TTs by recursively
applying QR-decomposition to TT-core unfoldings. Begin by taking a QR-decomposition
of the left unfolding of C1

C
〈l〉
1 = U

〈l〉
1 R1,

to obtain the matrix R1 ∈ Rr1×r1 and the new TT-core U1 ∈ Rr0×n1×r1 defined by its
left unfolding. The new TT-core is called left-orthogonal because it satisfies

[
U

〈l〉
1

]T
U

〈l〉
1 = Ir1 ,

where Ir1 denotes the r1 × r1 identity matrix. Next define a new second core Ĉ2(i2) =
R1C2(i2) to obtain the TT representation Y = U1Ĉ2C>2 of the tensor (12). Then take
a QR-decomposition of the left unfolding of the second core

Ĉ
〈l〉
2 = U

〈l〉
2 R2,

152 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Fig. 2. Tensor network diagrams of a d = 6 dimensional tensor in the TT format. (a) No orthogonalization
with the TT-core partial products C≤2 and C>2 indicated. (b) Orthogonalized TT (15) with k = 2 and left
orthogonal TT-cores U≤2 and right orthogonal TT-cores V>2 indicated.

to obtain R2 ∈ Rr2×r2 and the left-orthogonal TT-core U2 ∈ Rr1×n2×r2 . Define a new
third core Ĉ3(i3) = R2C3(i3) to write Y = U≤2Ĉ3C>3 where now the first two cores are
left orthogonal. Proceeding recursively in this way we obtain the TT representation

Y = U≤kRkC>k,

where Uj is left-orthogonal for j = 1, 2, . . . , k and Rk ∈ Rrk×rk . Similar to orthogo-
nalizing cores from left to right, we can also orthogonalize cores from right to left by
recursively performing QR-decompositions on right unfoldings (see [38, Section 3]) to
obtain

Y = U≤kRkRk+1V>k,

where Rk+1 ∈ Rrk×rk and the Vj are right-orthogonal, i.e.,

V
〈r〉
j

[
V

〈r〉
j

]T
= Irj−1 , j = k + 1, . . . , d.

Letting Sk = RkRk+1 we obtain the orthogonalized TT representation

Y = U≤kSkV>k. (15)

Utilizing the unfolding matrices of partial products (14) we also have a decomposition
of the kth unfolding matrix

Y 〈k〉 = U≤kSkV
T
>k. (16)

It follows from the left orthogonality of Uj and right orthogonality of Vj that the columns
of U≤k and V >k are orthonormal, i.e., UT

≤kU≤k = V T
>kV >k = Irk . The decomposi-

tion (16) resembles a SVD however Sk is not necessarily diagonal. If the TT-rank of
Y is r then Sk is invertible. What is important for the projectors defined in the sub-
sequent section is that the columns of U≤k and V >k form orthonormal bases for the
range and co-range of Y 〈k〉 respectively. In Fig. 2 we summarize the TT format and TT
orthogonalizations using tensor network diagrams.

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 153
4. Projections onto the TT tangent space

It is well-known that the collection of all rank-r TTs

Mr = {Y ∈ Rn1×···×nd | TT-rank(Y) = r}, (17)

is a smooth embedded submanifold of Rn1×···×nd [27]. Hence for any tensor Y ∈ Mr

we can define the tangent space TY Mr, which is a vector subspace of Rn1×···×nd that
linearizes the manifold Mr around Y . Given a TT representation (12) of Y , any element
of the tangent space can be written (non-uniquely) as

δY = δC1C2 · · ·Cd + C1δC2C3 · · ·Cd + · · · + C1 · · ·Cd−1δCd, (18)

where δCk ∈ Rrk−1×nk×rk are first order variations of the TT-cores.

4.1. The orthogonal tangent space projector

The orthogonal projector P̂Y : Rn1×···×nd → TY Mr onto the tangent space considered
in [32] determines the best approximation of a given tensor Z ∈ Rn1×···×nd in the tangent
space relative to the Frobenius norm. Such orthogonal projector can be constructed from
the orthogonal projectors

P̂≤k = U≤kU
T
≤k, P̂>k = V >kV

T
>k, k = 1, 2, . . . , d− 1, (19)

onto the range and co-range of Y 〈k〉. The orthogonal bases U≤k and V >k for the range
and co-range of Y 〈k〉 can be obtained from the TT-orthogonalization procedure described
in Section 3.1. These projectors act on the matrix space R(n1···nk)×(nk+1···nd). To con-
struct the orthogonal tangent space projector P̂Y it is convenient to define projectors
corresponding to (19) that act on the tensor space Rn1×···×nd by

P̂≤kZ = Tenk

[
P̂≤kZ

〈k〉
]
, P̂>kZ = Tenk

[
Z〈k〉P̂>k

]
, (20)

where Tenk denotes the tensorization operator that is the inverse of the kth unfolding,
i.e., Tenk

(
Z〈k〉

)
= Z. The projectors P̂≤j , P̂>k commute whenever j ≤ k and can be

used to construct the orthogonal projector onto the tangent space [32, Corollary 3.2]

P̂Y =
d−1∑
k=1

P̂≤k−1P̂>k − P̂≤kP̂>k + P̂≤d−1, (21)

where we set P̂≤0 = 1.

154 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
4.2. Oblique tangent space projectors

The computational cost of dynamical low-rank approximation of (2) with orthogonal
tangent space projections can scale as O(nd) when G lacks low-rank structure. In this
case, the orthogonal dynamical low-rank method is impractical as its computational cost
is comparable to solving (2) without low-rank compression. To enable efficient dynamical
low-rank approximation in such cases, we introduce oblique projections onto the TT
tangent space that can be computed in only O(dnr3) operations for many applications
where orthogonal projections require O(nd). We construct such oblique projectors by
replacing the orthogonal projectors defined in (19) with oblique projectors onto the
same spaces

P≤k = U≤k

(
XT

≤kU≤k

)−1
XT

≤k, P>k = X>k

(
XT

>kV >k

)−T
V T

>k, (22)

defined for any matrices X≤k ∈ R(n1···nk)×rk and X>k ∈ R(nk+1···nd)×rk such that (
XT

≤kU≤k

)
and

(
XT

>kV >k

)
are invertible. Just as before, it is convenient to define

oblique projectors corresponding to (22) that act on the tensor space Rn1×···×nd by

P≤kZ = Tenk

[
P≤kZ

〈k〉
]
, P>kZ = Tenk

[
Z〈k〉P>k

]
. (23)

With these projectors we can construct an oblique tangent space projector with the same
form as the orthogonal tangent space projector (21).

Proposition 4.1. Let Y ∈ Mr with orthogonal decompositions of its unfolding matrices
given in (16) and suppose X≤k, X>k define oblique projectors (22). Then the map

PY =
d−1∑
k=1

P≤k−1P>k − P≤kP>k + P≤d−1, (24)

with P≤0 = 1, defined for any tensor Z ∈ Rn1×···×nd , is an oblique projector onto the
tangent space TY Mr.

Proof. First we show that the image of PY is contained in TY Mr. Note that TY Mr is a
linear space and thus it is sufficient to show that the image of each term in (24) belongs
to TY Mr. To do so we utilize [32, Corollary 3.2] which shows that P≤j , P>k commute
whenever j ≤ k and

P≤k−1P>kZ = Tenk

{
[Ink

⊗ P≤k−1]Z〈k〉P>k

}
. (25)

Note that the result is stated for orthogonal projectors P̂≤k, P̂>k however the proof
does not require orthogonality of the projectors and thus holds for oblique projectors
P≤k, P>k. Inserting the oblique projectors (22) into (25) we obtain

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 155
P≤k−1P>kZ

=Tenk

{[
Ink

⊗U≤k−1

(
XT

≤k−1U≤k−1

)−1
XT

≤k−1

]
Z〈k〉

[
X>k

(
XT

>kV >k

)−T

V T
>k

]}
=Tenk {[Ink

⊗U≤k−1][
Ink

⊗
(
XT

≤k−1U≤k−1

)−1
XT

≤k−1Z
〈k〉X>k

(
XT

>kV >k

)−T
]
V T

>k

}
=Tenk

{
[Ink

⊗U≤k−1] δC〈l〉
k V T

>k

}
(26)

where we used the mixed product property of the Kronecker product to obtain the second
equality and defined δCk as the rk−1 × nk × rk TT-core with left unfolding

δC
〈l〉
k = Ink

⊗
(
XT

≤k−1U≤k−1

)−1
XT

≤k−1Z
〈k〉X>k

(
XT

>kV >k

)−T

. (27)

Using the identity

C≤k = (Ink
⊗C≤k−1)C〈l〉

k , (28)

and (14) we can write (26) in TT format

P≤k−1P>kZ = U≤k−1δCkV>k, (29)

which has the form (18) and thus belongs to the tangent space TYMr. For the P≤kP>k

terms we have

P≤kP>kZ = Tenk

{
P≤kZ

〈k〉P>k

}
= Tenk

{
U≤k

[(
XT

≤kU≤k

)−1
XT

≤kZ
〈k〉X>k

(
XT

>kV >k

)−T
]
V T

>k

}
,

(30)

which we write in the TT format as

P≤kP>kZ = U≤kδSkV>k, (31)

where

δSk =
(
XT

≤kU≤k

)−1
XT

≤kZ
〈k〉X>k

(
XT

>kV >k

)−T

, (32)

belongs to Rrk×rk . Absorbing δSk into its left neighboring core Uk we rewrite (31) as

P≤kP>kZ = U≤k−1δCkV>k, (33)

156 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
where δCk(ik) = Uk(ik)δSk, which has the form (18) and therefore belongs to the tangent
space TY Mr.

It remains to show that PY is idempotent, which we verify by checking that P≤k and
P>k are idempotent for all k = 1, . . . , d − 1. For P≤k we have

P 2
≤kZ = P≤kTenk

[
P≤kZ

〈k〉
]

= Tenk

[
P 2

≤kZ
〈k〉
]

= Tenk

[
P≤kZ

〈k〉
]

= P≤kZ,

(34)

for all k = 1, . . . , d −1. The idempotence of P>k for k = 1, . . . , d −1 is also easy to verify
directly. �

We remark that the orthogonality of the bases U≤k and V >k is not necessary for the
construction of oblique tangent space projectors (24). However, imposing such orthogo-
nality is advantageous for the numerical stability and accuracy of the projectors.

4.3. Interpolatory tangent space projectors

Next we introduce a special class of oblique tangent space projectors with a cross
interpolation property that enables efficient dynamical low-rank approximation. Such
oblique projectors are obtained by selecting X≤k and X>k in (24) as rk columns of the
identity matrix with appropriate dimension

X≤k = In1···nk

(
:, I≤k

)
, X>k = Ink+1···nd

(
:, I>k

)
. (35)

Here, I≤k contains rk indices of the form i1 · · · ik and I>k contains rk indices of the
form ik+1 · · · id. The matrix X≤k can extract rk rows determined by the index sets I≤k

from a tensor Z〈k〉 with matrix multiplication from the left XT
≤kZ

〈k〉 = Z〈k〉(I≤k, :).
Similarly, the matrix X>k can extract rk columns from Z〈k〉 with matrix multiplication
from the right Z〈k〉X>k = Z〈k〉(:, I>k). Moreover, when X≤k, X>k are defined as in
(35) the oblique projectors in (22) become interpolatory projectors[

P≤kZ
〈k〉
] (

I≤k, :
)

= Z〈k〉 (I≤k, :
)
,

[
Z〈k〉P>k

] (
:, I>k

)
= Z〈k〉 (:, I>k

)
. (36)

Since each index i1 · · · ik corresponds to a multi-index (i1, . . . , ik) and ik+1 · · · id corre-
sponds to a multi-index (ik+1, . . . , id), we identify the sets of rk indices I≤k and I>k

with sets of rk multi-indices I≤k and I>k. With such identification the matrix inter-
polation property (36) is equivalent to an interpolation property of the corresponding
tensor operators (23)

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 157
[P≤kZ]
(
I≤k, ik+1, . . . , id

)
= Z

(
I≤k, ik+1, . . . , id

)
,

[P>kZ]
(
i1, . . . , ik, I>k

)
= Z

(
i1, . . . , ik, I>k

)
.

(37)

In order to obtain an oblique tangent space projectors (24) that interpolate, we consider
multi-indices that satisfy the nested conditions

I≤k ⊂ I≤k−1×{1, . . . , nk}, I>k ⊂ {1, . . . , nk}×I>k+1, k = 1, 2, . . . , d−1. (38)

To prove that (38) is sufficient for the oblique tangent space projector (24) to interpolate,
we have the following Lemma.

Lemma 4.1. For any nested indices (38) defining oblique projectors (23) and k =
1, 2, . . . , d − 1, the projector P≤k−1P>k satisfies

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
=

⎧⎪⎪⎨⎪⎪⎩
Z
(
I≤j−1, ij , I>j

)
, j = k,

[P≤kP>kZ]
(
I≤j−1, ij , I>j

)
, j > k,

[P≤k−1P>k−1Z]
(
I≤j−1, ij , I>j

)
, j < k.

(39)

Proof. The case j = k follows directly from the interpolation property (37). For j > k

the nesting condition (38) ensures that the first k−1 indices of each multi-index in I≤j−1

are a multi-index in I≤k−1 and that the first k indices of each multi-index in I≤j−1 are
a multi-index in I≤k. Therefore we can use the interpolation property (37) to obtain

[P≤k−1Z]
(
I≤j−1, ij , . . . , id

)
= [P≤kZ]

(
I≤j−1, ij , . . . , id

)
= Z

(
I≤j−1, ij , . . . , id

)
.

(40)
Since P≤k and P≤k−1 act only on the first k dimensions of Z and P>k acts only on
dimensions k + 1, . . . , d we can use the preceding equation to obtain

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
= [P≤kP>kZ]

(
I≤j−1, ij , I>j

)
,

establishing the case j > k. When j < k the nested condition ensures that the d − j

indices of each multi-index in I>j appear in multi-indices belonging to I>k and I>k−1.
Therefore from the interpolation property (37) we have

[P>kZ]
(
i1, . . . , ij , I>j

)
= [P>k−1Z]

(
i1, . . . , ij , I>j

)
= Z

(
i1, . . . , ij , I>j

)
, (41)

from which we obtain the result for j < k. �
Theorem 4.1. For any Y ∈ Mr and {I≤j , I>j} nested multi-indices defining interpola-
tory projectors (22) the oblique tangent space projector (24) has the cross interpolation
property

[PY Z]
(
I≤j−1, ij , I>j

)
= Z

(
I≤j−1, ij , I>j

)
, j = 1, 2, . . . , d. (42)

158 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Proof. Rearrange the terms in (24) to write

[PY Z] =
d∑

k=1

P≤k−1P>kZ −
d−1∑
k=1

P≤kP>kZ, (43)

with P>d = 1 and evaluate at the indices
(
I≤j−1, ij , I>j

)
[PY Z]

(
I≤j−1, ij , I>j

)
=

d∑
k=1

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
−

d−1∑
k=1

[P≤kP>kZ]
(
I≤j−1, ij , I>j

)
.

(44)

Applying Lemma 4.1 to each term in the first summation in (44) we obtain

d∑
k=1

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
=

(
j−1∑
k=1

[P≤kP>kZ]
(
I≤j−1, :, I>j

))
+ Z

(
I≤j−1, ij , I>j

)

+

⎛⎝ d∑
l=j+1

[P≤l−1P>l−1Z]
(
I≤j−1, ij , I>j

)⎞⎠ .

(45)

Re-indexing the final summation in (45) with k = l − 1 and combining the result with
the first summation in (45) yields

d∑
k=1

[P≤k−1P>kZ]
(
I≤j−1, ij , I>j

)
=Z

(
I≤j−1, ij , I>j

)
+

d−1∑
k=1

[P≤kP>kZ]
(
I≤j−1, ij , I>j

)
.

(46)

Finally substituting (46) into (44) the two summations cancel and the proof is com-
plete. �

The cross interpolation property (42) of the tangent space projector resembles the
interpolation property of TT-cross approximation [47] with nested indices. Next, we
describe a novel index selection algorithm for constructing interpolatory projectors onto
the tangent space TY Mr.

5. Index selection for oblique projectors and cross interpolation

In the preceding section we constructed tangent space projectors (24) with the cross
interpolation property (42) from oblique projectors (22) onto the bases U≤k and V >k.

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 159
We now devise an efficient algorithm based on the discrete empirical interpolation method
(DEIM) for computing indices {I≤k, I>k}, or equivalently multi-indices {I≤k, I>k}, that
yield well-defined interpolatory projectors (22) defined by the matrices (35). The DEIM
(recalled in Algorithm 1) greedily selects indices to minimize the condition number of
interpolatory projectors onto a given basis, e.g., U≤k or V >k, as much as possible.
However we can not apply such algorithm directly to the matrices U≤k, V >k as they
have dimensions (n1 · · ·nk) × rk and (nk+1 · · ·nd) × rk, respectively, which is too large
to store in memory and process with the DEIM algorithm. To address the problem
of memory, we do not store the matrices U≤k and V >k directly but rather the left
orthogonal cores Uj and right orthogonal cores Vj that can be used to construct these
matrices

U≤k(i1 · · · ik, :) = U1(i1) · · ·Uk(ik, :),

V >k(ik+1 · · · id, :) = Vk+1(:, ik+1) · · ·Vd(id), k = 1, 2, . . . , d− 1.
(47)

To address the computational cost we propose an algorithm that only samples from a
small subset of entries of the matrices U≤k, V >k. The key idea is to compute the indices
I≤k recursively for k = 1, 2, . . . , d − 1 by sampling from U≤k only indices corresponding
to multi-indices I≤k that are nested (38). By considering only nested indices we reduce
the number of possible indices i1 · · · ik ∈ I≤k from n1 · · ·nk to rk−1nk. We use the same
idea to construct the nested index sets I>k sequentially for k = d − 1, d − 2, . . . , 1. Since
the indices obtained from this sampling approach are nested by construction, the result-
ing tangent space projector (24) has the cross interpolation property (42). Such cross
interpolation property will be useful for the dynamical low-rank approximation schemes
presented in Section 6. Hereafter we present the nested index selection algorithm in de-
tail and then show in Theorem 5.1 that this nested sampling method always produces
well-defined interpolatory projectors.

5.1. The TT-cross-DEIM algorithm

To compute the indices I≤j , begin by applying the DEIM algorithm to the n1 × r1
matrix U≤1

I≤1 = DEIM (U≤1) . (48)

To obtain I≤2, construct the r1n2 × r2 matrix

Û≤2(α1i2, α2) = U≤2
(
I≤1
α1

i2, α2
)
, (49)

which is the restriction of U≤2 to the indices I≤1 with I≤1
α1

denoting the α1st index in
I≤1. Then sample r2 indices from this restricted matrix

l≤2 = DEIM
(
Û≤2

)
. (50)

160 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Due to the construction of Û≤2 in (49), each index l≤2(α2) corresponds to a multi-
index (p≤1(α2), p2(α2)) where p≤1(α2) identifies an index in I≤1 and p2(α2) identifies
an index in {1, . . . , n2}. Construct the multi-index set

I≤2
α2

=
(
I≤1
p≤1(α2),p2(α2)

)
, α2 = 1, 2, . . . , r2, (51)

which corresponds to the set of indices I≤2. The remaining sets of indices I≤j are
obtained inductively with a similar procedure. After computing I≤j−1, construct the
rj−1nj × rj matrix

Û≤j(αj−1ij , αj) = U≤j

(
I≤j−1
αj−1

ij , αj

)
, (52)

which is the restriction of U≤j to the indices I≤j−1. Then sample rj indices from the
restricted matrix

l≤j = DEIM
(
Û≤j

)
. (53)

Due to the construction of Û≤j in (52) each index l≤j(αj) corresponds to a multi-
index (p≤j−1(αj), pj(αj)) where p≤j−1(αj) identifies a multi-index in I≤j−1 and pj(αj)
identifies an index in {1, . . . , nj}. Construct the set I≤j with multi-indices

I≤j
αj

=
(
I≤j−1
p≤j−1(αj),pj(αj)

)
, αj = 1, 2, . . . , rj , (54)

which corresponds to I≤j . This procedure computes index sets I≤j sequentially for j =
1, 2, . . . , d − 1 by applying the DEIM sampling algorithm to the restricted matrices Û≤j

of dimension rj−1nj × rj . In practice the restricted matrices Û≤j are not obtained from
U≤j as written in (52) but rather from the low-dimensional tensor cores Uj that construct
U≤j in (47).

We compute the index sets I>j in a similar manner. First obtain I>d−1 by sampling
the nd × rd−1 matrix V >d

I>d−1 = DEIM (V >d−1) . (55)

Then construct index sets I>j inductively for j = d − 2, d − 3, . . . , 1 as follows. After
computing I>j+1, construct the nj+1rj+1 × rj matrix V̂ >j

V̂ >j (ij+1αj+1, αj) = V >j

(
ij+1I

>j+1
αj+1

, αj

)
(56)

which is the restriction of V >j to the indices I>j+1. Then sample rj indices from the
restricted matrix

l>j = DEIM
(
V̂ >j

)
. (57)

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 161
Fig. 3. Illustration of the TT-cross-DEIM left-to-right sweep that computes multi-indices I≤j sequentially
for j = 1, 2, . . . , d − 1 with d = 4.

Due to the construction of V̂ >j in (56) each index l>j(αj) corresponds to a multi-
index (pj+1(αj), p>j+1(αj)), where pj+1(αj) identifies an index in {1, . . . , nj+1} and
p>j+1(αj) identifies a multi-index in I>j+1. Construct the set I>j with multi-indices

I>j
αj

=
(
pj+1(αj), I>j+1

p>j+1(αj)

)
, αj = 1, 2, . . . , rj , (58)

which corresponds to I>j . Just as in the computation of I≤j, the restricted matrices
V̂ >j are not obtained from V >j as written in (56) but rather from the low-dimensional
tensor cores Vj that construct V >j in (47).

The entire algorithm is summarized in Algorithm 2 and a tensor network diagram of
the left-to-right sweep for computing I≤j from the TT-cores Uj is shown in Fig. 3 with
d = 4. In Algorithm 2 we denote by ind2sub the Matlab function that reshapes linear
indices to multi-indices. As mentioned above, the multi-index sets I≤k, I>k obtained in
(54) and (58) are nested (38) by construction. Thus the oblique tangent space projector
(24) constructed from these indices is a cross interpolant (see Theorem 4.1), provided it
is well-defined. It is shown in Section 5.2 that such projector is in fact well-defined.

Computational cost To simplify the operation count of the proposed TT-cross-DEIM
algorithm, we assume that rk = r and nk = n for all k = 1, 2, . . . , d. The Algorithm
requires access to all d − 1 orthogonal representations (15) which can be computed in
O(dnr3) operations [38]. With these orthogonal representations available, each index set
I≤k and I>k for k = 1, 2, . . . , d − 1 is computed by applying DEIM to a matrix of size

162 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Algorithm 2 TT-cross-DEIM index selection.
Require:

U≤j , V >j , j = 1, . . . , d − 1, orthogonal bases for range and co-range of Y 〈j〉 as in (16)
Ensure:

{I≤j , I>j}, nested multi-index sets defining oblique projectors (22) via (35)
1: I≤1 = DEIM

(
U≤1

)
� left-to-right sweep: computing I≤j

2: for j = 2 to d − 1 do
3: Û≤j = U≤j

(
I≤j−1 :, :

)
4: l≤j = DEIM(Ûj)
5: p≤j−1, pj = ind2sub([rj−1, nj], l≤j)
6: I≤j

αj
=

(
I≤j−1
p≤j−1(αj),pj(αj)

)
, αj = 1, 2, . . . , rj

7: end for
8: I>d−1 = DEIM (V >d−1) � right-to-left sweep: computing I>j

9: for j = d − 2 to 1 do
10: V̂ >j = V >j

(
: I>j+1, :

)
11: l>j = DEIM

(
V̂ >j

)
12: pj+1, p>j+1 = ind2sub([nj , rj], l>j)
13: I>j

αj
=

(
pj+1(αj), I>j+1

p>j+1(αj)

)
, αj = 1, 2, . . . , rj

14: end for

rn ×r each of which requires O(nr) operations. Therefore the total number of operations
in the TT-cross-DEIM algorithm is O(dnr3).

Note that the operation count of TT-cross-DEIM is dominated by the computation of
orthogonal TT representations and thus has the same complexity as many common TT
algorithms, e.g., TT rounding.

5.2. Condition of the oblique projectors

For the oblique projectors (22) to be defined (and thus for the oblique tangent space
projector (24) to be defined) the rj × rj matrices M j = XT

≤jU≤j and N j = XT
>jV >j

must be invertible. For interpolatory projectors, i.e., when X≤j and X>j are defined as
in (35), these matrices are given entry-wise by

M j(αj , βj) = U≤j

(
I≤j
αj

, βj

)
, N j(αj , βj) = V >j

(
I>j
αj

, βj

)
. (59)

The following result shows that the TT-cross-DEIM produces indices that yield invertible
matrices (59) and therefore define oblique projectors (22) and (24).

Theorem 5.1. If Y ∈ Mr and I≤j , I>j are obtained with the TT-cross-DEIM then the
rj × rj matrices (59) are invertible for all j = 1, 2, . . . , d − 1.

Proof. We prove the result for M j by induction on j. The r1 indices I≤1 are obtained
in (48) from U≤1 with the DEIM. Because Y ∈ Mr, the unfolding matrix U≤1 is full
rank. Thus we have from [49, Lemma 3.1] that the r1 × r1 matrix M1 = U≤1

(
I≤1, :

)
is full rank, establishing the result for M j when j = 1. Now assume that M j−1 is full
rank. Rewriting (52) using (13)-(14) we have

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 163()

Û j(αj−1ij , αj) = U≤j−1 I≤j−1

αj−1
, : U

〈r〉
j (:, ijαj)

= M j−1(αj−1, :)U 〈r〉
j (:, ijαj).

(60)

By assumption M j−1 is full rank and since Y ∈ Mr both unfoldings of U j are full rank.
It follows that Û j is full rank. In (53) the rj indices l≤j are obtained from Û j with the
DEIM and invoking [49, Lemma 3.1] we have that the rj × rj matrix Û j(l≤j , :) is full
rank. The indices I≤j are obtained from l≤j in (54) so that

U≤j

(
I≤j
αj

, βj

)
= Û≤j (l≤j(αj), βj) , (61)

proving the result for M j . The statement for N j is proven similarly with induction on
j = d − 1, d − 2, . . . , 1. �

In addition to generating invertible matrices (59), the TT-cross-DEIM is a greedy
algorithm that aims to minimize the condition number of these matrices as much as
possible while ensuring the indices remain nested. Indeed, the DEIM algorithm is used
to compute l≤j in (53) and l>j in (57), selecting indices greedily to keep the condition
numbers of Û≤j(l≤ j, :) and V̂ >j(l> j, :) small. Moreover, Û≤j is the restriction of U≤j

to the indices I≤j−1 (see (52)), and V̂ >j is the restriction of V >j to the indices I>j+1

(see (56)). We also note that other sparse sampling methods can be used in place of
DEIM in the TT-cross-DEIM algorithm, e.g., Q-DEIM or oversampling methods, which
can yield better conditioned interpolatory projectors in some cases.

5.3. Tensor cross interpolation

We have shown above that the multi-indices obtained with the TT-cross-DEIM pro-
duce a well-defined interpolatory projector (24) onto the tangent space. Incidentally, we
can use the same multi-index sets to parameterize Y with tensor cross interpolation.
Recall that TT-cross approximation [14,37,47,40] is a specific instance of the TT format
(12) that generalizes the matrix CUR decomposition to tensors. In this representation
the TT-cores are defined by the entries of Y

Ỹ (i1, . . . , id) =
d−1∏
k=1

Y
(
I≤k−1, ik, I>k

) [
Y
(
I≤k, I>k

)]−1
Y
(
I≤d−1, id

)
, (62)

where for convenience we set I≤0 = ∅. It is well-known that the nested condition (38) is
sufficient for the tensor cross approximation (62) to be a tensor cross interpolant [47]

Ỹ
(
I≤k−1, ik, I>k

)
= Y

(
I≤k−1, ik, I>k

)
, k = 1, 2, . . . , d. (63)

We now use the nested multi-index sets constructed by the TT-cross-DEIM to prove
that any TT can be exactly represented as a TT-cross interpolant. This result follows as
a Corollary of Theorem 5.1.

164 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Corollary 5.1. Any Y ∈ Mr can be exactly represented as a rank-r TT-cross interpolant
with nested indices.

Proof. Let {I≤j , I>j} be nested index sets obtained with the TT-cross-DEIM. Using
(16) write the rj × rj matrix Y

(
I≤j , I>j

)
as

Y
(
I≤j , I>j

)
= U≤j

(
I≤j , :

)
SjV >j

(
I>j , :

)T
= M jSjN

T
j ,

(64)

where we used (59) to obtain the second equality. We have shown in Theorem 5.1 that
M j and N j are invertible and since Y ∈ Mr, the matrices Sj are also invertible
for all j = 1, 2, . . . , d − 1. Therefore the matrices Y

(
I≤j , I>j

)
are invertible for all

j = 1, 2, . . . , d − 1 and hence by [14, Theorem 2] the nested multi-indices {I≤j , I>k}
provide an exact representation of Y with TT-cross interpolation. �

Several algorithms for computing tensor cross approximations (62) from black-box
tensors based on the maximum volume principle have recently been developed [37,14].
The purpose of our proposed TT-cross-DEIM algorithm is to obtain interpolatory tan-
gent space projections for a tensor Y ∈ Mr, not for black-box tensor approximation.
However, it was recently demonstrated in [20] that DEIM-based cross approximation al-
gorithms can be applied iteratively to obtain tensor cross approximations from black-box
tensors with comparable performance to the corresponding maximum volume algorithms.

6. Time integration on tensor train manifolds

We now consider the dynamical low-rank evolution equation (3) for tensors (d ≥ 2)
using interpolatory projectors (24) onto tangent spaces of TT manifolds. The concept
of dynamical low-rank tensor approximation is a natural extension the dynamical low-
rank matrix approximation described in Section 2. Similar to the matrix case, classical
dynamical low-rank tensor approximation uses the orthogonal projector (21) to obtain
the best approximation (in the Frobenius norm) of G(Y, t) in the tangent space of the
TT manifold (see Fig. 1). However, as noted earlier, orthogonal projection onto the TT
tangent space can have a computational cost O(nd) when G lacks low-rank structure. By
replacing the orthogonal projector with an interpolatory projector onto the TT tangent
space we propose new dynamical low-rank methods with computational cost scaling as
O(dnr3) for a large class of nonlinear functions G that do not have rank structure. In
particular, the proposed interpolatory dynamical low-rank tensor methods are efficient
whenever it is possible to evaluate the tensor G(X, t) entry-wise.

We also point out that cross approximation algorithms based on the maximum volume
principle developed in [37] are designed to obtain TT approximations of tensors that can
be evaluated entry-wise. TT-cross based on maximum volume can be used to obtain a
low-rank approximation of the tensor G(Y, t) at each time step. Such approximation can

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 165
then be projected orthogonally onto the tangent space for a dynamical low-rank method
or used in a step-truncation scheme. The TT-cross-DEIM index selection strategy devel-
oped in the present work differs in that it selects interpolation indices from the solution
tensor Y (t), not from G(Y, t). Such indices are selected so that Y can be represented
using a TT-cross interpolant. More importantly, it allows G(Y, t) to be interpolated di-
rectly onto the tangent space of the TT manifold at Y , making the TT-cross-DEIM
particularly suitable for efficient dynamical low-rank approximation.

Hereafter we propose two time integration schemes for solving the dynamical low-
rank equation (3) with interpolatory TT tangent space projectors (24). The first scheme,
referred to as TT-cross time integration, extends the matrix cross integrator described
in Section 2.1.1 to tensors in the TT format. This method integrates forward in time the
entries of the solution tensor Y (t) required to construct the TT-cross interpolant (62)
at any time t. The second scheme extends the projector-splitting scheme described in
Section 2.1.2 to tensors in the TT format. It is a direct generalization of the projector-
splitting integrator for orthogonal dynamical low-rank approximation introduced in [31]
for matrices and subsequently generalized to TTs [32], Tucker tensors [30] and tree tensor
networks [7], to interpolatory tangent space projectors in the TT format.

6.1. TT-cross integrator

The time-dependent interpolatory TT tangent space projector (24) in (3) is defined
at each time t by a set of time-dependent multi-indices {I≤k(t), I>k(t)}. Selecting such
with the TT-cross-DEIM ensures that they are nested (38) at each time t. Hence the
tangent space projector has the cross interpolation property (42) at each t. Evaluating
(3) at the multi-indices {I≤k(t), I>k(t)} and utilizing the cross interpolation property
yields evolution equations for the entries of Y (t) defining a TT-cross interpolant

dY
(
I≤k−1(t), :, I>k(t), t

)
dt

= GY

(
I≤k−1(t), :, I>k(t), t

)
, k = 1, 2, . . . , d, (65)

where we defined the tensor GY (t) = G (Y (t), t). Equation (65) consists of
∑d

k=1 rk−1nkrk
coupled nonlinear differential equations governing the evolution of a subset of entries in
the approximate solution Y (t) ∈ Mr, which can be integrated using standard methods. If
G arises from the spatial discretization of a PDE (1) involving differential operators then
evaluating GY

(
I≤k−1, :, I>k

)
requires entries of Y at indices adjacent to {I≤k, I>k}.

Letting I≤k
(a) , I

>k
(a) denote the union of I≤k, I>k with the required adjacent indices, the

right-hand side tensors in (65) are computed by

GY

(
I≤k−1, :, I>k, t

)
= G

(
Y
(
I≤k−1

(a) , :, I>k
(a) , t

)
, t
)
, k = 1, 2, . . . , d. (66)

The values of Y at adjacent indices can always be obtained by constructing the low-
rank solution Y (t) in the TT format using TT cross interpolation as described below.

166 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Computing (66) is efficient for any nonlinear G that we can evaluate entry-wise, re-
gardless of the low-rank structure in G. This gives the evolution equations (65) a clear
computational advantage over the evolution equations of orthogonal dynamical low-rank
approximation or step-truncation methods [42], which require a low-rank representation
of G to be practical. We also note that the stiffness of the evolution equations (65) is
independent of the singular values of the solution tensor Y (t), unlike other dynamical
low-rank methods. However, the stability of constructing the solution in TT format using
cross interpolation, which is often needed to evaluate the right-hand side of (65), depends
on the condition of the interpolatory projectors obtained through the TT-cross-DEIM
index selection as shown below.

6.1.1. Constructing the low-rank solution in TT format
We can access entries of the approximate solution Y (t) at indices other than the

interpolation indices by constructing Y (t) using TT-cross interpolation (62)

Y (i1, . . . , id, t)

=
d−1∏
k=1

Y
(
I≤k−1(t), ik, I>k(t), t

) [
Y
(
I≤k(t), I>k(t), t

)]−1
Y
(
I≤d−1(t), id, t

)
.

(67)

Such entries are often needed to evaluate the right-hand side of (65) and the TT-
representation (67) is also needed to construct indices for interpolatory projection onto
the tangent space. Constructing Y (t) using (67) can lead to numerical instability as the
time-dependent rk × rk matrices Y

(
I≤k, I>k, t

)
can be ill-conditioned. Hereafter we

describe a more robust method for computing Y (t) by orthogonalization, omitting the
dependence on t to simplify notation. Take QR-decompositions[

Y
(
I≤k−1, :, I>k

)]〈l〉 = Q
〈l〉
k Rk, k = 1, 2, . . . , d− 1, (68)

to write

Y
(
I≤k−1, ik, I>k

)
= Qk(ik)Rk, Y

(
I≤k, I>k

)
= Q

〈l〉
k (l≤k, :)Rk, (69)

where l≤k is defined in (53). Then substitute (69) into (67) to obtain

Y (i1, . . . , id) =
d−1∏
k=1

Qk(ik)Rk

[
Q

〈l〉
k (l≤k, :)Rk

]−1
Y
(
I≤d−1, id

)
=

d−1∏
k=1

Qk(ik)
[
Q

〈l〉
k (l≤k, :)

]−1
Y
(
I≤d−1, id

)
.

(70)

Computing Y via (70) instead of (67) yields a more stable numerical algorithm as the
matrices Q̂k = Q

〈l〉
k (l≤k, :) are related to the orthogonal bases U≤k from which the multi-

index sets I≤k, I>k were obtained with the TT-cross-DEIM index selection algorithm

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 167
and therefore have smaller condition number than Y
(
I≤k, I>k

)
. The improvement in

condition number is verified by our numerical experiments as shown in Fig. 5(d).

6.1.2. Discrete-time TT-cross integrator
Let us describe one step of the TT-cross time integration scheme from time t0 to

t1 = t0 + Δt starting from the rank-r TT representation

Y (t0) = C1(t0)C2(t0) · · ·Cd(t0). (71)

First compute the indices
{
I≤k(t0), I>k(t0)

}
for the interpolatory projector defining the

dynamical low-rank evolution equation (3) using the TT-cross-DEIM algorithm. Then
integrate the evolution equations (65) from time t0 to t1 using an explicit time stepping
scheme with multi-indices fixed at time t0, e.g., Euler forward yields

Y
(
I≤k−1(t0), :, I>k(t0), t1

)
=Y

(
I≤k−1(t0), :, I>k(t0), t0

)
+ ΔtGY

(
I≤k−1(t0), :, I>k(t0), t0

)
,

(72)

for all k = 1, 2, . . . , d. Use the result of explicit time integration (72) to construct TT-
cores for the solution at time t1

Y (t1) = C1(t1)C2(t1) · · ·Cd(t1), (73)

with the QR-stabilized procedure described in (68)-(70), i.e.,

Ck(ik, t1) = Qk(ik, t1)
[
Q

〈l〉
k (l≤k(t0), :, t1)

]−1
, k = 1, 2, . . . , d− 1,

Cd(t1) = Y
(
I≤d−1(t0), :, t1

)
.

(74)

This completes one step of the TT-cross time integration scheme.

Computational cost To simplify the operation count of one step of the TT-cross inte-
grator, we assume that rk = r and nk = n for all k = 1, 2, . . . , d. As shown in Section 5,
the TT-cross-DEIM algorithm used to obtain the indices {I≤k, I>k} requires O(dnr3)
operations. Preparing the tensors Y (I≤k−1, : I>k) required to take the explicit time step
(72) requires d − 1 matrix multiplications with matrices of size r × r and r × (nr) for a
number of operations scaling as O(dnr3). For many G that can be evaluated entry-wise
(e.g., entry-wise nonlinearities), the cost of evaluating GY (≤k−1, :, I>k; t) is on the same
order of computing the subtensors Y (I≤k−1, : I>k), i.e., O(dnr3). Finally reconstruct-
ing the tensor cores at time t1 in (74) requires d − 1 QR-decompositions of matrices
with size r × (nr) and inverting d − 1 matrices of size r × r with total cost scaling as
O(dnr3). Thus the computational cost of one step of the TT-cross time integrator scales
as O(dnr3). We note that it is not strictly necessary to perform these steps at every
time step as multi-indices can be reused over many time steps, provided the condition of

168 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Q
〈l〉
k (l≤k, :, t) remains under control. If the computation of new indices is not required

then (72) can be iterated for a number of time steps at a cost of O(dnr2) operations
before computing new indices.

6.2. Interpolatory projector-splitting integrator

Next, we propose a second time integration scheme by directly applying a splitting
integrator to the dynamical low-rank evolution equation (3). This method is a direct
generalization of the orthogonal projector-splitting integrator introduced in [32] for TTs.
As we will see, the oblique projector-splitting integrator satisfies the same desirable
properties: it is robust to small singular values, it exactly reproduces low-rank solutions,
and one step of the integrator can be implemented as an efficient sweeping algorithm. The
derivation of the integrator and the proofs of these results follow the same steps as the
orthogonal projector-splitting integrator. Inserting the oblique tangent space projector
(24) into the dynamical low-rank evolution equation (3) we see that the right-hand side
is a sum of 2d − 1 terms

PY G(Y, t) =
d−1∑
j=1

P+
j G(Y, t) − P−

j G(Y, t) + P+
d G(Y, t), (75)

where P+
j = P≤j−1P>j and P−

j = P≤jP>j . Integrating (3) from time t0 to t1 = t0 + Δt

with first order Lie-Trotter splitting requires solving the 2d − 1 substeps

dY +
1 (t)
dt

= P+
1 G

(
Y +

1 , t
)
, Y +

1 (t0) = Y (t0),

dY −
1 (t)
dt

= −P−
1 G

(
Y −

1 , t
)
, Y −

1 (t0) = Y +
1 (t1),

...

dY +
j (t)
dt

= P+
j G

(
Y +
j , t

)
, Y +

j (t0) = Y −
j−1(t1),

dY −
j (t)
dt

= −P−
j G

(
Y −
j , t

)
, Y −

j (t0) = Y +
j (t1),

...

dY +
d (t)
dt

= P+
d G

(
Y +
d , t

)
, Y +

d (t0) = Y −
d−1(t1),

(76)

in consecutive order to obtain the approximate solution Y (t1) = Y +
d (t1) at time t1. Note

that the projectors P+
j , P−

j depend on solutions to each substep Y +
j (t) or Y −

j (t) and thus
are time-dependent. In the case of orthogonal tangent space projector-splitting it was
shown in [32, Theorem 4.1] that P+

j , P−
j can be kept constant during each substep and

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 169
each of the differential equations (76) can be solved exactly by updating a single TT-core.
We have an analogous result for the oblique projector-splitting integrator. In the following
Theorem we suppress the dependence of the multi-indices I≤k, I>k on t although it is
assumed that such indices are selected at each time t so that the interpolatory tangent
space projector (24) is well-defined.

Theorem 6.1. Each split differential equation in (76) is solved exactly using time-
independent projectors P+

j and P−
j at Y +

j (t0) and Y −
j (t0), respectively. Moreover, if

Y +
j (t0) has the TT representation

Y +
j (t0) = U≤j−1 [UjSj]V>j (77)

then

Y +
j (t) = U≤j−1Kj(t)V>j ,

where

dKj(t)
dt

=
[
U≤j−1

(
I≤j−1, :

)]−1
G+

j

(
I≤j−1, :, I>j , t

) [
V>j

(
:, I>j

)]−T
, Kj(t0) = UjSj ,

(78)
and G+

j (t) = G
(
Y +
j (t), t

)
.

Similarly if Y −
j (t0) has the TT representation Y −

j (t0) = U≤jSj(t0)V>j then

Y −
j (t) = U≤jSj(t)V>j ,

where

dSj(t)
dt

= −
[
U≤j

(
I≤j , :

)]−1
G−

j

(
I≤j , I>j , t

) [
V>j

(
:, I>j

)]−T
, (79)

and G−
j = G

(
Y −
j (t), t

)
.

Proof. The proof follows a similar approach to the analogous proof for the orthogonal
projector-splitting integrator. First recall that we have shown in the proof of Proposi-
tion 4.1 that P≤j−1P>j maps onto a tangent space of Mr at each time t. This ensures
that Y +

j (t) belongs to Mr for all t and therefore admits a time-dependent orthogonalized
rank-r TT decomposition of the form

Y +
j (t) = U≤j−1(t)Kj(t)V>j(t). (80)

Substituting (80) into (76) and using the product rule we obtain

170 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
dU≤j−1(t)
dt

Kj(t)V>j(t) + U≤j−1(t)
dKj(t)

dt
V>j(t) + U≤j−1(t)Kj(t)

dV>j(t)
dt

= P≤j−1P>jG
(
Y +
j (t), t

)
= U≤j−1(t)δCj(t)V>j(t),

(81)

where we used (29) to obtain the third line with

δCj(t) =
[
U≤j−1

(
I≤j−1, :, t

)]−1
G+

j

(
I≤j−1, :, I>j , t

) [
V>j

(
:, I>j , t

)]−T (82)

Equation (81) is solved exactly by setting dU≤j−1(t)/dt = 0, dV>j(t)/dt = 0 and
dKj(t)/dt = δCj(t) and from the initial condition Y +

j (t0) in (77) we obtain

U≤j−1(t) = U≤j−1, V>j(t) = V>j , Kj(t0) = UjSj , (83)

proving the result for Y +
j (t). The proof of the assertion for Y −

j (t) is similar. �
Similar to the TT-cross evolution equations (65), computing the right-hand side of

the differential equation (78) requires evaluating G+
j at a subset of rj−1njrj indices

and computing the right-hand side of (79) requires evaluating G−
j at a subset of r2

j

indices. These evaluations are efficient for any G that can be evaluated entry-wise and
do not require G to have any low-rank structure. The differential equations (78) and
(79) involve inverses of rj × rj matrices U≤j

(
I≤j , :

)
and V>j

(
:, I>j

)
. These matrices

define the interpolatory projectors (22) and we select the multi-indices I≤j , I>j with
the TT-cross-DEIM at each time t to keep their condition number is small during time
integration.

6.2.1. Sweeping algorithm for interpolatory projector-splitting integrator
One complete step of the interpolatory projector-splitting integrator from time t0 to

t1 = t0+Δt can be implemented by sweeping through the cores of Y updating individual
cores from t0 to t1. As we update the TT-cores we also update the multi-index sets
{I≤j , I>j} to ensure the interpolatory projectors remain well-defined. We begin with an
orthogonal TT representation of solution at time t0 of the form

Y (t0) = U1(t0)S1(t0)V>1(t0), (84)

and the multi-indices I>j(t0) defining interpolatory projectors onto the bases V>j(t0) for
j = 1, 2, . . . , d − 1. The sweeping algorithm solves the equations in (76) sequentially by
updating the solution TT-cores Uj(t0) to Uj(t1) and then computes the indices I≤j(t1)
for the oblique projectors (22) onto the updated bases U≤j(t1) required for the next step
in the sweep.

To begin we apply Theorem 6.1 to solve the first differential equation in (76) by
integrating

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 171
dK1(t)
dt

= G+
1
(
:, I>1(t0), t

) [
V>1

(
:, I>1(t0), t0

)]−T
, K1(t0) = U1(t0)S1(t0), (85)

from t0 to t1. The solution Y +
1 (t1) = K1(t1)V>1(t0) is the starting value Y −

1 (t0) = Y +
1 (t1)

for the second equation in (76). We then prepare Y −
1 (t0) for the application of Theo-

rem 6.1 by decomposing K1(t1) = U1(t1)R1(t1) to obtain Y −
1 (t0) = U1(t1)R1(t1)V>1(t0)

where U1(t1) is left-orthogonal and compute indices I≤1(t1) = DEIM(U≤1(t1)). Now we
can apply Theorem 6.1 to solve the second differential equation in (76) by integrating

dS1(t)
dt

= −
[
U≤1

(
I≤1(t1), :, t1

)]−1
G−

1
(
I≤1(t1), I>1(t0), t

) [
V>1

(
:, I>1(t0), t0

)]−T
,

S1(t0) = R1(t1),
(86)

from time t0 to t1 to obtain the solution Y −
1 (t1) = U1(t1)S1(t1)V>1(t0). The algorithm

proceeds recursively with step j of the sweep described below.

Computation of Y +
j (t1) The starting value Y +

j (t0) = Y −
j−1(t1) is available in the form

Y +
j (t0) = U≤j−1(t1)Sj−1(t1)V>j−1(t0), (87)

from the computation of Y −
j−1(t1), as are the multi-index sets I≤j−1(t1) and I>j(t0). To

apply Theorem 6.1 we write (87) as

Y +
j (t0) = U≤j−1(t1) [Sj−1(t1)Vj(t0)]V>j(t0), (88)

and then integrate

dKj(t)
dt

=
[
U≤j−1

(
I≤j−1(t1), :, t1

)]−1
G+

j

(
I≤j−1(t1), :, I>j(t0), t

) [
V>j

(
:, I>j(t0), t0

)]−T
,

Kj(t0) = Sj−1(t1)Vj(t0),
(89)

from t0 to t1 to obtain the solution Y +
j (t1) = U≤j−1(t1)Kj(t1)V>j(t0).

Computation of Y −
j (t1) The starting value Y −

j (t0) = Y +
j (t1) is available in the form

Y −
j (t0) = U≤j−1(t1)Kj(t1)V>j(t0), (90)

from the computation of Y +
j (t1) as are the multi-index sets I≤j−1(t1) and I>j(t0).

We prepare Y −
j (t0) for the application of Theorem 6.1 by decomposing Kj(t1) =

172 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Uj(t1)Rj(t1) where Uj(t1) is left-orthogonal (see Section 3.1) which allows us to write
the starting value (90) as

Y −
j (t0) = U≤j(t1)Rj(t1)V>j(t0). (91)

Then we obtain the multi-indices I≤j(t1) from I≤j−1(t1) and the TT-cores U≤j(t1)
with a substep of the TT-cross-DEIM algorithm as described in (52)-(54). Then by
Theorem 6.1, integrating

dSj(t)
dt

= −
[
U≤j

(
I≤j(t1), :, t1

)]−1
G−

j

(
I≤j(t1), I>j(t0), t

) [
V>j

(
:, I>j(t0), t0

)]−T
,

Sj(t0) = Rj(t1),
(92)

from time t0 to t1 yields the solution Y −
j (t1) = U≤j(t1)Sj(t1)V>j(t0).

Iterating these steps until we obtain Y +
d (t1) = U≤d−1(t1)Kd(t1) = Y (t1) completes

one step of the first-order splitting integrator. To take another time step the TT rep-
resentation of Y (t1) must be orthogonalized from right to left to obtain an orthogonal
representation of the solution at time t in the form of (15) with k = 1. During this
orthogonalization procedure, the indices I>j(t1) can be computed with the right-to-left
TT-cross-DEIM sweep as described in Section 5.1. Similar to the orthogonal projector-
splitting integrator, obtaining the second-order Strang projector-splitting integrator is
straightforward by composing the Lie-Trotter integrator with its adjoint. In this case the
forward sweep described above is performed with step-size Δt/2 and is then followed by
a backward sweep also with step-size Δt/2. The oblique projector-splitting integrator
has the same computational complexity as the TT-cross integrator. Just as with the
corresponding matrix integrators described in Section 2, the difference between these
two integrators is the order in which interpolatory projection and time integration are
performed.

6.3. Rank-adaptive time integration

The solution to (2) is often not accurately represented on a tensor manifold Mr with
constant rank for all t ∈ [0, T]. Therefore the dynamical low-rank integrators must be
able to decrease or increase the solution rank during time integration. To decrease the
solution rank we use the TT-SVD truncation algorithm at each time t which requires d −1
orthogonal representations (15) of the solution. Such orthogonalizations are required for
the TT-cross-DEIM index selection algorithm and thus rank decrease can be performed
during time integration with either the TT-cross or interpolatory projector-splitting
algorithms at no additional computational cost.

To increase the kth component of the TT solution rank during integration with the
TT-cross integrator we modify Algorithm 2 to sample r̂k > rk indices l≤k from the left

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 173
singular vectors (53) and r̂k indices l>k from right singular vectors in (57) by augmenting
the DEIM indices with additional indices selected by another sparse index selection al-
gorithm, e.g., GappyPOD+E [39]. From the l≤k, l>k we construct I≤k, I>k in (54), (58)
each with r̂k indices. We then integrate the solution Y (t) forward in time on the man-
ifold Mr̂ using the equations (65). It is well-known that the solution Y (t) with rank
r belongs to the boundary of the higher rank manifold Mr̂ where the tangent space
is not well-defined [51]. Nevertheless, the evolution equations (65), which define the in-
terpolatory tangent space projection, are well-defined on the boundary of Mr̂. These
equations allow us to integrate Y (t) forward in time on Mr̂ thereby increasing the so-
lution rank. To increase the kth component of the TT solution rank during integration
with the projector-splitting integrator we add new (orthogonal) basis vectors to the TT
cores with zero singular value and then sample indices from this augmented basis and ap-
ply the projector-splitting integrator to the augmented solution. Once again adding new
basis vectors with zero singular values places the approximate solution on the boundary
of a higher rank manifold Mr̂. The projector-splitting integrator is robust to zero sin-
gular values and allows us to integrate the solution off of the boundary of the low-rank
manifold. A simple criterion for determining when to increase the kth component of the
TT-rank vector is based on the singular values {σk(αk, t)}rkαk=1 of the unfolding matrix
Y 〈k〉. We select the rank to ensure that the relative size of the smallest singular value

εk(t) = σk(rk, t)√√√√ rk∑
αk=1

σk(αk, t)2
, k = 1, 2, . . . , d− 1 (93)

remains in a desired range εl ≤ εk(t) ≤ εu. This criterion is an adaptation of the rank-
adaptive criterion proposed in [15] for matrix differential equations and subsequently
generalized to the Tucker format [21], to the TT format.

7. Numerical examples

We now apply the proposed dynamical low-rank collocation methods to several tensor
differential equations (2) arising from the discretization of partial differential equations
(1) and compare the accuracy and efficiency with existing time integration schemes on
tensor manifolds. We measure the accuracy of the low-rank approximations Y (t) to the
solution X(t) of (2) in the relative Frobenius norm

E(t) =
‖Y (t) −X(t)‖F

‖X(t)‖F
. (94)

We compute a reference solution X(t) for each application below by integrating the
differential equation (2) with the four-stage explicit Runge-Kutta (RK4) method using
time step-size Δt = 10−3.

174 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
7.1. 2D Vlasov-Poisson equation

We begin with a two-dimensional example (d = 2) demonstrating the proposed meth-
ods on low-rank matrix manifolds described in Section 2. We consider the Vlasov-Poisson
equation ⎧⎨⎩

∂u(x, v, t)
∂t

+ v
∂u(x, v, t)

∂x
+ E(x)∂u(x, v, t)

∂v
= 0

u(x, v, 0) = u0(x, v),
(95)

from [24, Example 4.4] with initial condition f(x, v, 0) = exp(−20(x2 +v2)), electric field
E(x) = 0.5 sin(πx) and x ∈ Ωx = [−1, 1], v ∈ Ωv = [−1, 1]. Discretizing Ωx and Ωv using
n = 64 points and approximating derivatives with a Fourier pseudo-spectral method [26]
we obtain a semi-discrete version of the Vlasov-Poisson equation (95) in the form of a
differential equation (2) with d = 2, i.e., a matrix differential equation.

We compared the TT-cross integrator presented in Section 6.1 with a step-truncation
method using SVD-based truncation (ST-SVD). For both integrators we used Adams-
Bashforth 2 with step-size Δt = 10−3. We utilized the rank-adaptive mechanism de-
scribed in Section 6.3 for TT-cross with parameter εl = 10−7. For the ST-SVD solution
we set relative truncation tolerance δ = 10−7 at each time step allowing the solution
rank to adapt in time accordingly. In Fig. 4(b) we plot the rank of the TT-cross and
ST-SVD solutions versus time and the numerical rank of the reference RK4 solution with
singular value threshold δ = 10−7, i.e., the number of singular values with relative size
larger than δ. The rank grows rapidly during time integration which allows us to assess
the robustness of the rank-adaptive mechanism for the TT-cross integrator. In Fig. 4(a)
we plot the relative error of the TT-cross and ST-SVD solutions in the Frobenius norm
versus time. We observe that the TT-cross solution is more accurate than the ST-SVD
solution due to the TT-cross solution rank being slightly larger than the rank of the ST-
SVD solution at each step. The error of the TT-cross solution remains controlled during
time integration, demonstrating the effectiveness of the rank-adaptive mechanism.

Next we compared the interpolatory projector-splitting integrator (i-PS) presented in
Section 6.2 with the orthogonal projector-splitting integrator (o-PS) introduced in [31].
For the interpolatory and orthogonal projector-splitting integrators we used step-size
Δt = 10−3 and solved the differential equations in the K-, S-, and L-step with RK4. We
also used the rank-adaptive mechanism described in Section 6.3 with parameter εl = 10−7

for both solutions. In Fig. 4(b) we plot the solution ranks versus time and the numerical
rank of the reference RK4 solution with singular value threshold 10−7. Both solutions
have the same rank until approximately t = 0.7 when the i-PS solution rank becomes
slightly smaller than the o-PS solution rank. In Fig. 4(a) we plot the relative errors in
the Frobenius norm versus time. The error of the i-PS and o-PS solutions is similar until
around t = 0.4, at which point the i-PS solution becomes slightly less accurate. This
difference in accuracy is due to the i-PS method computing a quasi-optimal projection

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 175
Fig. 4. Low-rank approximations to the solution of the two-dimensional Vlasov-Poisson equation (95). (a)
Relative error versus time of TT-cross and ST-SVD solutions. The TT-cross solution was computed using
rank-adaptive singular value threshold εl = 10−7 and the ST-SVD solution was computed using truncation
threshold δ = 10−7. (b) Rank versus time of the rank-adaptive TT-cross and ST-SVD solutions and the
numerical rank of the reference RK4 solution with singular value threshold 10−7. (c) Relative error ver-
sus time of solutions computed with interpolatory and orthogonal projector-splitting using rank-adaptive
singular value threshold εl = 10−7. (d) Rank versus time of the rank-adaptive solutions computed with
interpolatory and orthogonal projector splitting integrators and the numerical rank of the reference RK4
solution with singular value threshold 10−7.

onto the tangent space, while the o-PS method computes the optimal projection at each
time step. In addition, the slight difference in rank of the solutions also contributes to
the difference in accuracy.

7.2. 3D Allen-Cahn equation

The Allen-Cahn equation is a reaction-diffusion PDE that models phase separation
in multi-component alloy systems [1,28]. A simple form of such equation features a
Laplacian and a cubic non-linearity

176 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
⎧⎨⎩
∂u(x, t)

∂t
= αΔu(x, t) + u(x, t) − u(x, t)3,

u(x, 0) = u0(x).
(96)

We consider the spatial domain Ω = [0, 2π]3 with periodic boundary conditions, initial
condition u0(x1, x2, x3) = g(x1, x2, x3) − g(2x1, x2, x3) + g(x1, 2x2, x3) − g(x1, x2, 2x3)
where

g(x1, x2, x3) =

(
e− tan(x1)2 + e− tan(x2)2 + e− tan(x3)2

)
sin(x1 + x2 + x3)

1 + e| csc(−x1/2)| + e| csc(−x2/2)| + e| csc(−x3/2)|
, (97)

and diffusion parameter α = 0.1. Discretizing Ω using n = 64 points in each dimension
and approximating derivatives with a Fourier pseudo-spectral method [26], we obtain a
semi-discrete version of the Allen-Cahn equation in the form of (2).

We compared the TT-cross integrator presented in Section 6.1 with the step-
truncation SVD (ST-SVD) integrator [42] using different relative truncation tolerances
δ = 10−3, 10−4, 10−6, 10−10 for determining the solution rank at each time step. We
set the solution rank in the TT-cross simulations equal to the ranks obtained from the
ST-SVD simulations with truncation tolerances in order to compare the methods for so-
lutions computed with the same rank. The rank decrease was performed using TT-SVD
truncation and the rank increase by sampling more tensor cross indices than singular
vectors using the GappyPOD+E algorithm [39] as described in Section 6.3. Time in-
tegration for both ST-SVD and TT-cross was performed with Adams-Bashforth 2 and
step-size Δt = 10−3.

In Fig. 5(b), we plot the 1-norm of the ST-SVD and TT-cross solution ranks. The
smoothing effects due to diffusion in the Allen-Cahn equation cause the TT ranks to
decay relatively quickly from time t = 0 to time t ≈ 1.5. In Fig. 5(a), we plot the
relative error measured in the Frobenius norm of the ST-SVD and TT-cross solutions
versus time. The ST-SVD solution is more accurate than the TT-cross solution com-
puted with the same rank, which is expected. Indeed, the ST-SVD method computes
the best rank-r projection of the solution onto the low-rank manifold Mr at each time
step while the TT-cross method computes a quasi-optimal projection onto the tangent
space of the manifold at each time step. When the rank of the TT solutions is large
enough (in this case corresponding to δ = 10−10), the time integration error dominates
the low-rank approximation error and the ST-SVD and TT-cross methods produce solu-
tions with the same accuracy. When the low-rank error dominates the time integration
error (δ = 10−4, 10−6) we observe in Fig. 5(a) that the ST-SVD is about half an order
of magnitude more accurate than the TT-cross solution of the same rank for all ranks
and at each time t. In Fig. 5(c), we compare the accuracy of the interpolatory projection
(i-proj) onto the tangent space computed from the TT-cross solution and the orthogonal
projection (o-proj) onto the tangent space computed from the ST-SVD simulation. The
orthogonal projection is more accurate than the interpolatory projection by approxi-
mately one order of magnitude or less at each time t. Similar to the difference in error

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 177
Fig. 5. Low-rank approximations to the solution of the three-dimensional Allen-Cahn equation (96) computed
with the TT-cross and ST-SVD methods. The ranks were determined using different truncation tolerances
δ = 10−4, 10−6, 10−10 in the ST-SVD method. (a) Relative error in the Frobenius norm versus time. (b) 1-
norm of the TT-rank vector versus time. (c) Relative error of interpolatory (i-proj) and orthogonal (o-proj)
projections onto the tensor manifold tangent space versus time. (d) Condition number of the matrices non-
orthogonalized matrices in (67) and the corresponding orthogonalized matrices in (70) used to construct
the TT-cross solution at each time step.

between the solutions, the difference in error between the i-proj and o-proj is constant
over all ranks and for all time t.

The improved accuracy of the ST-SVD method over the TT-cross method comes at a
significant computational cost due to the cubic nonlinearity in the Allen-Cahn equation
(96). The reason is that the ST-SVD method requires computing a TT representation
of G(Y (t), t) at each time t, which is costly. Indeed, recall that standard algorithms for
multiplying two TTs Y1 and Y2 with ranks r1 = [r1 · · · r1] and r2 = [r2 · · · r2]
results in a TT Y1Y2 with rank equal to the Hadamard (element-wise) product of the
two ranks r1 ◦r2. These ranks are in general not optimal and to control the TT rank we

178 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Fig. 6. Low-rank approximations to the solution of the three-dimensional Allen-Cahn equation (96) computed
with the interpolatory and orthogonal projector-splitting integrators. Solutions are truncated at each time t
using tolerances TT-SVD with relative tolerance δ = 10−6, 10−10. (a) Relative error in the Frobenius norm
versus time. (b) 1-norm of the TT-rank vector versus time.

perform a TT-SVD truncation requiring O(dn(r1r2)3) operations. We used two TT-SVD
truncations Tδ with relative accuracy δ to compute the cubic term

(Y)3 = Tsvd
δ

(
Y Tsvd

δ (Y Y)
)
, (98)

incurring a cost of O(dnr6) operations at each time t. It is possible to accelerate the com-
putation G(Y, t) by carrying out sums and products of TTs with approximate low-rank
tensor arithmetic, black-box tensor cross approximation [14], or randomized algorithms
[8]. However such algorithms introduce additional errors in the low-rank approximation
that can be difficult to control. In comparison, the TT-cross integrator does not re-
quire G(Y, t) in a low-rank form and instead evaluates G(Y, t) at O(dnr2) indices. Thus
the computational cost of the cubic nonlinearity for TT-cross is negligible compared to
the O(dnr3) cost of the TT-cross-DEIM index selection algorithm and evaluating the
subtensors of Y (t) required to integrate the system of equations (65).

We also compared the interpolatory projector-splitting (i-PS) integrator presented in
Section 6.2 with the orthogonal projector-splitting (o-PS) integrator from [32] using two
different truncation tolerances δ = 10−6, 10−10 on the singular values of the solutions.
In both cases we used first-order Lie-Trotter splitting with time step-size Δt = 10−3

and solved each of the substeps in (76) with RK4. In Fig. 6(a) we plot the error of
the solutions computed with the i-PS and o-PS methods versus time. We observe that
the i-PS method is less accurate than the o-PS method. This is expected since the i-PS
method integrates Y (t) on Mr using a quasi-optimal tensor in the tangent space while
the o-PS method integrates uses the optimal tensor in the tangent space. The difference
in error is similar to the comparison of TT-cross and ST-SVD except for t ∈ [0, 5] in

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 179
Table 1
CPU-time and accuracy of low-rank methods for integrating the 3D Allen-Cahn equa-
tion (96). The ranks were chosen using δ = 10−3 and δ = 10−4.

Method Average rank ‖r(t)‖1 Runtime (min) Relative Error (t = 10)

TT-cross AB2 24.2 4.0 2.5 × 10−2

ST-SVD AB2 24.2 16.7 7.13 × 10−3

i-PS RK4 24.2 23.9 2.21 × 10−2

o-PS RK4 24.2 287.6 7.13 × 10−3

TT-cross AB2 32.4 4.3 3.6 × 10−3

ST-SVD AB2 32.4 27.2 1.0 × 10−3

i-PS RK4 32.4 21.8 3.6 × 10−3

o-PS RK4 32.4 522.1 1.0 × 10−3

the simulations using δ = 10−10 where the difference in error is significantly larger. In
Fig. 6(b) we plot the ranks of the i-PS and o-PS solutions versus time.

In Table 1 we compare the runtime and relative error at time t = 10 of the low-rank
solutions computed using existing methods (ST-SVD AB2, o-PS RK4) with the solutions
computed using the proposed methods (TT-cross AB2, i-PS RK4). We consider two
different rank-adaptive simulations with ranks determined by δ = 10−3, 10−4 and report
the average 1-norm of the rank vector over all time steps. The TT-cross AB2 method
with an average rank of 24.2 is approximately 4.2 times faster than the ST-SVD AB2
method at the same rank, while being roughly half an order of magnitude less accurate.
With an average rank of 32.4, the TT-cross AB2 method is approximately 6.3 times
faster than the ST-SVD AB2 method, while being less than half an order of magnitude
less accurate. The speedup observed for the projected RK4 methods is even greater, as
these methods require more evaluations of the right-hand side tensor, which includes the
cubic nonlinearity. The i-PS RK4 method with an average rank of 24.2 is approximately
12 times faster than the o-PS RK4 method at the same rank, while being roughly half
an order of magnitude less accurate. With an average rank of 32.4, the i-PS RK4 method
is approximately 24 times faster than the ST-SVD AB2 method, while being less than
half an order of magnitude less accurate.

7.3. 4D advection-diffusion-reaction equation

Finally we consider the advection-diffusion-reaction (ADR) equation

⎧⎨⎩
∂u(x, t)

∂t
= ∇ · (μi(x, t)u(x, t)) + σΔu(x, t) + R(u)

u(x, 0) = u0(x),
(99)

where R(u) is a nonlinear reaction term. We consider the spatial domain Ω = [0, 2π]4
with periodic boundary conditions and set

p0(x) = exp(sin(x1) sin(x2) sin(x3) sin(x4)), (100)

180 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
Fig. 7. The (x1, x2)-marginals of the reference solution to the four-dimensional ADR equation (99) at time
t = 0 and t = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

R(u) = −0.1u/(1 + u2), σ = 1/4 and

μ(x) = 1
2

⎡⎢⎣g(x2, x3)
g(x3, x4)
g(x4, x1)
g(x2, x3)

⎤⎥⎦ , (101)

where g(x, y) = exp(sin(x) cos(y)). Discretizing Ω using n = 32 points in each dimension
and approximating derivatives with a Fourier pseudo-spectral method [26] we obtain a
semi-discrete version of the ADR equation (99) in the form of (2). In Fig. 7 we plot
(x1, x2)-marginals of the RK4 reference solution at time t = 0 and t = 1.

We computed two approximate low-rank solutions on a TT manifold (17) with the
step-truncation SVD method (ST-SVD) [42] using different relative truncation tolerances
δ = 10−6, 10−8. Computing the ST-SVD solution requires a low-rank approximation of
G(Y (t), t) at each time t, which is challenging for the nonlinear ADR equation (99) as
there are no reliable algorithms available for computing the fractional nonlinearity in the
low-rank format. To compute the G(Y (t), t), we construct the full tensor representation
of the TT-SVD solution with n4 degrees of freedom, compute the fractional nonlinearity,
and then compress the result into a TT with a recursive SVD. This approach is of course
not viable in higher dimensions but it allows us to compare our TT-cross solution with
the ST-SVD method in this case which computes the best low-rank approximate solution
at each time step.

The map G obtained from discretizing (99) includes four coefficient tensors c1, c2, c3,
c4 ∈ Rn×n×n×n (resulting from the discretization of g(x, y)) that are not expressed in
a low-rank format upon discretization of G. In order to compute G(Y (t), t) in low-rank
format at each time, we decomposed the four coefficient tensors in G using TT-SVD
compression with relative accuracy δ. For δ = 10−6 and δ = 10−8 we obtained coefficient
tensors of the same rank

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 181
Fig. 8. Low-rank approximations to the solution of the four-dimensional ADR equation (99) computed with
the TT-cross and ST-SVD integrators. The ranks were determined using different truncation tolerances
δ = 10−6, 10−8 in the ST-SVD method. (a) Relative error in the Frobenius norm versus time. (b) 1-norm
of the TT-rank vector versus time.

TT-rank(c1) = [1 1 12 1 1] ,

TT-rank(c2) = [1 1 1 12 1] ,

TT-rank(c3) = [1 13 13 13 1] ,

TT-rank(c4) = [1 1 12 1 1] .

(102)

We computed G(Y (t), t) in the ST-SVD method at each time step by taking products
of the low-rank approximate coefficient tensors ck with the low-rank solution tensor Y
and then used TT-SVD truncation to compress the product. We then added the TT
representation of the reaction term and applied TT-SVD truncation after adding two
low-rank tensors in order to control tensor rank when computing G(Y (t), t) at each time
t. Time integration for the ST-SVD simulation was performed with AB2 and time step-
size Δt = 10−3. In Fig. 8(b) we plot the 1-norm of the TT-rank of each ST-SVD solution
versus time. We observe that the ranks of both solution increase until around t = 0.5
and then stabilize for t ∈ [0.5, 1].

We then computed two approximate low-rank solutions on the TT manifold Mr us-
ing the proposed TT-cross integrator. In order to compare the results with the ST-SVD
simulations we set the solution ranks in the TT-cross simulations equal to the ranks
obtained from the ST-SVD simulations with truncation tolerances δ = 10−6, 10−8. We
computed the right-hand side of the TT-cross evolution equations (65) by simply evalu-
ating the coefficient tensors at the indices determined by the TT-cross-DEIM Algorithm
at each time step. The cost of computing the right hand-hand side for the TT-cross
evolution equations is negligible compared to the O(dnr3) cost of the TT-cross-DEIM
index selection algorithm and evaluating the subtensors of Y (t) required to integrate the
system of equations (65). In Fig. 8(a) we compare the relative error in the Frobenius

182 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
norm of the TT-cross solutions and the ST-SVD solutions. We observe that the TT-cross
solutions are less accurate than the ST-SVD solutions of the same rank and the differ-
ence in accuracy is constant over all solution ranks and for all time t. This is expected
as the ST-SVD method computes the best rank-r projection of the solution onto the TT
manifold Mr at each time step while the TT-cross method computes a quasi-optimal
projection onto the tangent space of the low-rank manifold at each time step.

8. Conclusions

We introduced new general purpose dynamical low-rank methods for solving non-
linear differential equations on low-rank manifolds. The methods rely on a particular
class of oblique projectors onto the tangent space of a low-rank manifold with a cross-
interpolation property. Such projectors collocate the differential equation on a low-rank
tensor manifold and give rise to efficient time integration schemes that allow us to inte-
grate differential equations defined by vector fields that can be evaluated entry-wise. To
construct the oblique projections we introduced a new index selection algorithm based
on the DEIM for tensors in the TT format. Furthermore, we showed that such index
selection algorithm parameterizes low-rank TT manifolds and their tangent spaces with
cross interpolation. Our numerical results demonstrate that the oblique projections onto
the tangent space yield good approximations on the low-rank manifold in the Frobenius
norm that are efficiently computed for problems defined by vector fields without low-
rank structure. Our proposed methods thus make dynamical low-rank approximation
applicable to a broader class of differential equations and facilitate its use in various
practical applications.

Declaration of competing interest

None.

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy Of-
fice of Science, Office of Advanced Scientific Computing Research, Scientific Discovery
through Advanced Computing (SciDAC) program under the contract No. DE-AC02-
05CH11231. This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
using NERSC award ASCR-ERCAP-m1027.

Data availability

Data will be made available on request.

A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184 183
References

[1] S.M. Allen, J.W. Cahn, Ground state structures in ordered binary alloys with second neighbor
interactions, Acta Metall. 20 (3) (1972) 423–433.

[2] H. Babaee, M. Choi, T.P. Sapsis, G.E. Karniadakis, A robust bi-orthogonal/dynamically-orthogonal
method using the covariance pseudo-inverse with application to stochastic flow problems, J. Comput.
Phys. 344 (2017) 303–319.

[3] L. Baumann, L. Einkemmer, C. Klingenberg, J. Kusch, Energy stable and conservative dynamical
low-rank approximation for the Su–Olson problem, SIAM J. Sci. Comput. 46 (2) (2024) B137–B158.

[4] C. Cercignani, The Boltzmann Equation and Its Applications, Springer, 1988.
[5] G. Ceruti, J. Kusch, C. Lubich, A rank-adaptive robust integrator for dynamical low-rank approx-

imation, BIT Numer. Math. 62 (4) (2022) 1149–1174.
[6] G. Ceruti, C. Lubich, An unconventional robust integrator for dynamical low-rank approximation,

BIT Numer. Math. 62 (1) (Mar. 2022) 23–44.
[7] G. Ceruti, C. Lubich, H. Walach, Time integration of tree tensor networks, SIAM J. Numer. Anal.

59 (1) (2021) 289–313.
[8] H.A. Daas, G. Ballard, P. Cazeaux, E. Hallman, A. Miedlar, M. Pasha, T.W. Reid, A.K. Saibaba,

Randomized algorithms for rounding in the tensor-train format, SIAM J. Sci. Comput. 45 (1) (2023)
A74–A95.

[9] A. Dektor, A. Rodgers, D. Venturi, Rank-adaptive tensor methods for high-dimensional nonlinear
PDEs, J. Sci. Comput. 88 (36) (2021) 1–27.

[10] A. Dektor, D. Venturi, Dynamic tensor approximation of high-dimensional nonlinear PDEs, J.
Comput. Phys. 437 (2021) 110295.

[11] A. Dektor, D. Venturi, Tensor rank reduction via coordinate flows, J. Comput. Phys. 491 (2023)
112378.

[12] A. Dektor, D. Venturi, Coordinate-adaptive integration of PDEs on tensor manifolds, Commun.
Appl. Math. Comput. (2024).

[13] S. Dolgov, D. Kressner, C. Strössner, Functional Tucker approximation using Chebyshev interpola-
tion, SIAM J. Sci. Comput. 43 (3) (2021) A2190–A2210.

[14] S. Dolgov, D. Savostyanov, Parallel cross interpolation for high-precision calculation of high-
dimensional integrals, Comput. Phys. Commun. 246 (2020) 106869.

[15] M. Donello, G. Palkar, M.H. Naderi, D.C. Del, Rey Fernández, H. Babaee, Oblique projection for
scalable rank-adaptive reduced-order modelling of nonlinear stochastic partial differential equations
with time-dependent bases, Proc. R. Soc. A, Math. Phys. Eng. Sci. 479 (2278) (2023) 20230320.

[16] L. Einkemmer, J. Kusch, S. Schotthöfer, Conservation properties of the augmented basis update &
Galerkin integrator for kinetic problems, arXiv preprint arXiv :2311 .06399, 2023.

[17] L. Einkemmer, C. Lubich, A low-rank projector-splitting integrator for the Vlasov–Poisson equation,
SIAM J. Sci. Comput. 40 (5) (2018) B1330–B1360.

[18] L. Einkemmer, A. Ostermann, C. Scalone, A robust and conservative dynamical low-rank algorithm,
J. Comput. Phys. 484 (2023) 112060.

[19] W. Gangbo, W. Li, S. Osher, M. Puthawala, Unnormalized optimal transport, J. Comput. Phys.
399 (2019) 108940.

[20] B. Ghahremani, H. Babaee, Cross interpolation for solving high-dimensional dynamical systems on
low-rank Tucker and tensor train manifolds, Comput. Methods Appl. Mech. Eng. 432 (2024) 117385.

[21] B. Ghahremani, H. Babaee, A DEIM Tucker tensor cross algorithm and its application to dynamical
low-rank approximation, Comput. Methods Appl. Mech. Eng. 423 (2024) 116879.

[22] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl.
31 (4) (2010) 2029–2054.

[23] L. Grasedyck, C. Löbbert, Distributed hierarchical svd in the hierarchical Tucker format, Numer.
Linear Algebra Appl. 25 (6) (2018) e2174.

[24] W. Guo, J.-M. Qiu, A low rank tensor representation of linear transport and nonlinear Vlasov
solutions and their associated flow maps, J. Comput. Phys. 458 (2022) 111089.

[25] W. Guo, J.-M. Qiu, A conservative low rank tensor method for the Vlasov dynamics, SIAM J. Sci.
Comput. 46 (1) (2024) A232–A263.

[26] J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cam-
bridge Monographs on Applied and Computational Mathematics, vol. 21, Cambridge University
Press, Cambridge, 2007.

[27] S. Holtz, T. Rohwedder, R. Schneider, On manifolds of tensors of fixed TT-rank, Numer. Math.
120 (4) (2012) 701–731.

http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA692506BC67044CD3B5A6EAB0EC2F672s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA692506BC67044CD3B5A6EAB0EC2F672s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEBC3D579D8A37E20F1E8D4A2E385A868s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEBC3D579D8A37E20F1E8D4A2E385A868s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEBC3D579D8A37E20F1E8D4A2E385A868s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibD37480DE5E6A951B89164FBBC64406ECs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibD37480DE5E6A951B89164FBBC64406ECs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEA76E0890909C30EF35AA16C2A77B634s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib2114504F5301F7810DC7D2F456023472s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib2114504F5301F7810DC7D2F456023472s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF4079043B053A0495E43B077439A9C5Ds1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF4079043B053A0495E43B077439A9C5Ds1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib4E251D3CD4CEEDB175080FA71A1719C2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib4E251D3CD4CEEDB175080FA71A1719C2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib3EF92BC43B7F3A85375FCB8C8A4484C8s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib3EF92BC43B7F3A85375FCB8C8A4484C8s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib3EF92BC43B7F3A85375FCB8C8A4484C8s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibDF13A0579A1E93C761C9CDF72BC24E7Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibDF13A0579A1E93C761C9CDF72BC24E7Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA3C22FC04A62E8AFB4D4E2E916CA90A2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA3C22FC04A62E8AFB4D4E2E916CA90A2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF574BEFA35A9D14433D4A0956622649Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF574BEFA35A9D14433D4A0956622649Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibB03FDE418322E4C31EF3A1216E546369s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibB03FDE418322E4C31EF3A1216E546369s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF2D1873E8291886B34CD05384A94A8B4s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF2D1873E8291886B34CD05384A94A8B4s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib71D163FB7DC1F8DA18D2624DC0C9CB50s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib71D163FB7DC1F8DA18D2624DC0C9CB50s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib46E2BA17CD2D313A643D864D89BB99D3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib46E2BA17CD2D313A643D864D89BB99D3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib46E2BA17CD2D313A643D864D89BB99D3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF9174B2D44516B0800A82D643B1C29E2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF9174B2D44516B0800A82D643B1C29E2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib95F08A12D9A75DE00480372E175AE7A3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib95F08A12D9A75DE00480372E175AE7A3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib0F9CD115A66DE25C92501F10EF96A847s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib0F9CD115A66DE25C92501F10EF96A847s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib09E113BD6E577862A66500857DCAA046s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib09E113BD6E577862A66500857DCAA046s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibC8418727BC7501E0CFB7C9F2EB8510C2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibC8418727BC7501E0CFB7C9F2EB8510C2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9C0CEC5A051D0F970498755C82CC203Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9C0CEC5A051D0F970498755C82CC203Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib0F51F9768DD3CDDE1B26A5DCB356A14Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib0F51F9768DD3CDDE1B26A5DCB356A14Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib95ADF2F8D188D4260A396351541D06A9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib95ADF2F8D188D4260A396351541D06A9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5BB25F1A98DC7257CDC931EA02524E33s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5BB25F1A98DC7257CDC931EA02524E33s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5FC0D97CDFCB2C6E3D7A1885B22CB053s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5FC0D97CDFCB2C6E3D7A1885B22CB053s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5E2CBF30FCABE943A6C300D223BA272Ds1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5E2CBF30FCABE943A6C300D223BA272Ds1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib5E2CBF30FCABE943A6C300D223BA272Ds1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibBF7123EEE804C560D4ADE7ED8101D090s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibBF7123EEE804C560D4ADE7ED8101D090s1

184 A. Dektor / Linear Algebra and its Applications 705 (2025) 143–184
[28] A.-K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput.
26 (4) (2005) 1214–1233.

[29] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (3) (2009) 455–500.
[30] C. Lubich, Time integration in the multiconfiguration time-dependent Hartree method of molecular

quantum dynamics, Appl. Math. Res. Express 2015 (2) (2015) 311–328.
[31] C. Lubich, I.V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation,

BIT Numer. Math. 54 (1) (2014) 171–188.
[32] C. Lubich, I.V. Oseledets, B. Vandereycken, Time integration of tensor trains, SIAM J. Numer.

Anal. 53 (2) (2015) 917–941.
[33] C. Lubich, T. Rohwedder, R. Schneider, B. Vandereycken, Dynamical approximation by hierarchical

Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl. 34 (2) (2013) 470–494.
[34] O.A. Malik, S. Becker, Low-rank Tucker decomposition of large tensors using tensorsketch, Adv.

Neural Inf. Process. Syst. 31 (2018).
[35] M.H. Naderi, H. Babaee, Adaptive sparse interpolation for accelerating nonlinear stochastic reduced-

order modeling with time-dependent bases, Comput. Methods Appl. Mech. Eng. 405 (2023) 115813.
[36] J. Nakao, J. Qiu, L. Einkemmer, Reduced augmentation implicit low-rank (RAIL) integrators for

advection-diffusion and Fokker-Planck models, arXiv :2311 .15143, 2023, pp. 1–25.
[37] I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra

Appl. 432 (1) (2010) 70–88.
[38] I.V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317.
[39] B. Peherstorfer, Z. Drmač, S. Gugercin, Stability of discrete empirical interpolation and gappy

proper orthogonal decomposition with randomized and deterministic sampling points, SIAM J. Sci.
Comput. 42 (5) (2020) A2837–A2864.

[40] Z. Qin, A. Lidiak, Z. Gong, G. Tang, M.B. Wakin, Z. Zhu, Error analysis of tensor-train cross
approximation, Adv. Neural Inf. Process. Syst. 35 (2022) 14236–14249.

[41] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, second edition,
Mathematics in Science and Engineering, vol. 60, Springer-Verlag, 1989.

[42] A. Rodgers, A. Dektor, D. Venturi, Adaptive integration of nonlinear evolution equations on tensor
manifolds, J. Sci. Comput. 92 (39) (2022) 1–31.

[43] A. Rodgers, D. Venturi, Implicit integration of nonlinear evolution equations on tensor manifolds,
J. Sci. Comput. 97 (2) (2023) 33.

[44] A. Rodgers, D. Venturi, Tensor approximation of functional differential equations, Phys. Rev. E
110 (1) (2024) 015310.

[45] T.P. Sapsis, P.F.J. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic
dynamical systems, Phys. D, Nonlinear Phenom. 238 (23–24) (2009) 2347–2360.

[46] D. Savostianova, E. Zangrando, G. Ceruti, F. Tudisco, Robust low-rank training via approximate
orthonormal constraints, Adv. Neural Inf. Process. Syst. 36 (2024).

[47] D. Savostyanov, Quasioptimality of maximum-volume cross interpolation of tensors, Linear Algebra
Appl. 458 (2014) 217–244.

[48] S. Schotthöfer, E. Zangrando, J. Kusch, G. Ceruti, F. Tudisco, Low-rank lottery tickets: finding
efficient low-rank neural networks via matrix differential equations, Adv. Neural Inf. Process. Syst.
35 (2022) 20051–20063.

[49] D.C. Sorensen, M. Embree, A DEIM induced CUR factorization, SIAM J. Sci. Comput. 38 (3)
(2016) A1454–A1482.

[50] M. Sutti, B. Vandereycken, Implicit low-rank Riemannian schemes for the time integration of stiff
partial differential equations, J. Sci. Comput. 101 (1) (2024) 3.

[51] A. Uschmajew, B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear
Algebra Appl. 439 (1) (2013) 133–166.

[52] D. Venturi, The numerical approximation of nonlinear functionals and functional differential equa-
tions, Phys. Rep. 732 (2018) 1–102.

[53] D. Venturi, A. Dektor, Spectral methods for nonlinear functionals and functional differential equa-
tions, Res. Math. Sci. 8 (27) (2021) 1–39.

[54] E. Ye, N.F. Loureiro, Quantized tensor networks for solving the Vlasov–Maxwell equations, J.
Plasma Phys. 90 (3) (2024) 805900301.

http://refhub.elsevier.com/S0024-3795(24)00415-4/bib55873AF152472C17D2B868EAC3CF1283s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib55873AF152472C17D2B868EAC3CF1283s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib1038F59794F83DB88448F05D8E51D325s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA72464ADDA4952805B395B4D70C8CE93s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA72464ADDA4952805B395B4D70C8CE93s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib2320F70A3D97B903A992BB76017AEC3Fs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib2320F70A3D97B903A992BB76017AEC3Fs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA2DA18257A6C22BE221B438164B164A3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA2DA18257A6C22BE221B438164B164A3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA219A73616B862C02F8AB47F4F0E3A15s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibA219A73616B862C02F8AB47F4F0E3A15s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibDCF60FD3DEB25F7E5BF5EBF7465AFB1Cs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibDCF60FD3DEB25F7E5BF5EBF7465AFB1Cs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib6ACBC541EC89A248BD87882157B3A48Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib6ACBC541EC89A248BD87882157B3A48Bs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib139EA80570478DF2C191B242B4BDF4F1s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib139EA80570478DF2C191B242B4BDF4F1s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib7FAD37B0613F304D8148C9F0620C04F0s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib7FAD37B0613F304D8148C9F0620C04F0s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib92C187FB34879B2673C63920A6165EC9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib371ABC323ED47BFED7ED63ABAEF96D57s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib371ABC323ED47BFED7ED63ABAEF96D57s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib371ABC323ED47BFED7ED63ABAEF96D57s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibC54F7A7A20BB8D24907A96D609E2150Fs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibC54F7A7A20BB8D24907A96D609E2150Fs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEBA5A21FE5AA711C9ED18874A175D0C0s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEBA5A21FE5AA711C9ED18874A175D0C0s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib8A77629CB4309E168AFD510B1C625CD9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib8A77629CB4309E168AFD510B1C625CD9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib480476A4AEF2E003120288FCF68BF4B9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib480476A4AEF2E003120288FCF68BF4B9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib2E5BB61A3F8917ED1A3A3C68829D80A3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib2E5BB61A3F8917ED1A3A3C68829D80A3s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF7E04A0421C9F640125E57C6B1458A53s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibF7E04A0421C9F640125E57C6B1458A53s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib4976D37DC7CF346769D7AE0A98147CADs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib4976D37DC7CF346769D7AE0A98147CADs1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9B3797B1741E3E66DD0220773DAFC419s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9B3797B1741E3E66DD0220773DAFC419s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibD82BBA89061A82DE90D2C25C7FE7B9F9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibD82BBA89061A82DE90D2C25C7FE7B9F9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibD82BBA89061A82DE90D2C25C7FE7B9F9s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9733BEA9C167A63857B04CDEA63C8AC6s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9733BEA9C167A63857B04CDEA63C8AC6s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9F84A66E0B8A33144C87038B1B35F41Es1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib9F84A66E0B8A33144C87038B1B35F41Es1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib1BA90BBC2FF2BB55CB91F2FB83A059B5s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bib1BA90BBC2FF2BB55CB91F2FB83A059B5s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibE8BCD95C79EE0FFBA6520995FC08BCB1s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibE8BCD95C79EE0FFBA6520995FC08BCB1s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEAAA066A670C68715AD61D4CAB6D19D2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibEAAA066A670C68715AD61D4CAB6D19D2s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibFE0B1824D42B6709BF012ADCD7026559s1
http://refhub.elsevier.com/S0024-3795(24)00415-4/bibFE0B1824D42B6709BF012ADCD7026559s1

	Collocation methods for nonlinear differential equations on low-rank manifolds
	1 Introduction
	2 Dynamical low-rank matrix approximation
	2.1 Interpolatory dynamical low-rank approximation
	2.1.1 Matrix cross integrator
	2.1.2 Projector-splitting integrator

	3 Tensor train (TT) format
	3.1 Orthogonalization of tensor trains

	4 Projections onto the TT tangent space
	4.1 The orthogonal tangent space projector
	4.2 Oblique tangent space projectors
	4.3 Interpolatory tangent space projectors

	5 Index selection for oblique projectors and cross interpolation
	5.1 The TT-cross-DEIM algorithm
	5.2 Condition of the oblique projectors
	5.3 Tensor cross interpolation

	6 Time integration on tensor train manifolds
	6.1 TT-cross integrator
	6.1.1 Constructing the low-rank solution in TT format
	6.1.2 Discrete-time TT-cross integrator
	Computational cost

	6.2 Interpolatory projector-splitting integrator
	6.2.1 Sweeping algorithm for interpolatory projector-splitting integrator
	Computation of Y+j(t1)
	Computation of Y−j(t1)

	6.3 Rank-adaptive time integration

	7 Numerical examples
	7.1 2D Vlasov-Poisson equation
	7.2 3D Allen-Cahn equation
	7.3 4D advection-diffusion-reaction equation

	8 Conclusions
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

