UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Simple+Robust = Pragmatic: A Natural language Query Processing Model for Card-type
Databases

Permalink

btt_gs:[[escholarship.orq/uc/item/lszO784H

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors

Arita, Seigou
Shimazu, Hideo
Takashima, Yosuke

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1sz0784h
https://escholarship.org
http://www.cdlib.org/

Simple+Robust = Pragmatic :
A Natural Language Query Processing Model
for Card-type Databases

Seigou Arita

Hideo Shimazu

Yosuke Takashima

C&C Information Technology Research Laboratories
NEC Corporation
1-1,Miyazaki 4-chome, Miyamae-ku,Kawasaki,Kanagawa 216 Japan
arita%joke.cl.nec.co.jp@uunet.uu.net

Abstract

Real users’ queries to databases written in their nat-
ural language tend to be extra-grammatical, erro-
neous and, sometimes just a sequence of keywords.
Since most conventional natural language interfaces
are seminatural, they cannot treat such real queries
very well. This paper proposes a new natural lan-
guage query interpretation model, named SIMPLA.
Because the model has a keyword-based parsing
mechanism, it is very robust to cope with extra-
grammatical sentences. The strong keyword-based
parsing capability is very dependent upon its tar-
get database’s being a “card”-type. SIMPLA pro-
vides several operators to define peripheral knowl-
edge, regarding the target database. Such periph-
eral knowledge is stored virtually in parts of the tar-
get “card”-type database. Since the target database
with the peripheral knowledge remains “card”-type,
SIMPLA does not decrease its robust natural lan-
guage processing capability, while it embodies the
ability to respond to questions concerning periph-
eral questions.

1. Introduction

As the number of commercial databases increases,
the expectations of ordinary people, with regard
to pragmatic natural language (NL) interface to
databases, are increasing. Though many research
efforts on user interfaces, including menu systems
and friendly command language, are running, they
are still unnatural to ordinary people.

Many research efforts on NL interfaces have
also been implemented for more than 20 years
(Winograd, 1977)(Simmons, 1970)(Hendrix et al.,

690

1978)(Tennant, 1981). Some of them, like IN-
TELLECT (Shneiderman, 1987), have been used in
real business applications. However, they still have
only seminatural language processing capabilities.
Most conventional NL interface systems cannot
treat queries that are written really naturally. Real
users’ queries to databases, written in their natu-
ral language, tend to be extra-grammatical, erro-
neous and, sometimes just a sequence of keywords.
A few research efforts (Carbonell et al., 1984) have
been struggling with extra-grammaticality. How-
ever, they have not yet succeeded in coping with
such real queries.

This paper proposes a new natural language
query interpretation model. Because the model has
a keyword-based parsing mechanism, it is very ro-
bust to cope with extra-grammatical sentences. The
proposed natural language interface model, SIM-
PLA(SIMPle Language Analyzer), has the follow-
ing characteristics:

o Parsing is keyword-based:
SIMPLA extracts only keywords from an input
sentence, and generates its interpretation from
the extracted keywords. Therefore, the pars-
ing is very robust to extra-grammatical expres-
sions. Even a sequence of keywords, as an input
sentence, can be correctly interpreted.

Operators are provided to define peripheral
knowledge and to put it into a target “card”-
type database virtually:

SIMPLA can retrieve appropriate data from its
target “card”-type database, as the response to
a natural language query. NL interface must
respond to queries which are not just a direct
data retrieval of the target database, but are
concerning questions. To interpret and reply

mailto:jp@uunet.uu.net

to such extended questions, the NL interface
must hold peripheral knowledge for the target
database. In SIMPLA, several operators are
provided to define such knowledge. However,
the strong capability of SIMPLA's keyword-
based parsing is very dependent upon its tar-
get database’s being “card”-type. So, SIMPLA
holds such knowledge as if it were placed in
a part of the target “card”-type database. It
looks like the target databases are extended,
but the extension is virtual. The authors call
the extended database a virtual database.
Since the form of the target database remains
“card”-type, SIMPLA does not decrease its
robust natural language processing capability,
while SIMPLA embodies the ability to respond
to peripheral questions.

Section 2 shows an example that provides the con-
cept regarding how SIMPLA processes a query. Sec-
tion 3 describes notions of label base and vocabulary
space. Section 4 illustrates the algorithm for inter-
preting queries. Section 5 explains knowledge rep-
resentation for domain-oriented thesaurus through
the virtual extension of target databases.

2. Basic SIMPLA Idea

SIMPLA’s interpretation mechanism is novel. SIM-
PLA analyzes queries using much simpler gram-
mar than that involved in conventional linguistic
approaches.

First, look at the process for interpreting the fol-
lowing sample query towards a sample database
“world handbook”, shown in Figure 1. It pro-
vides the concept regarding how SIMPLA interprets
queries (Arita et al, 1991).

I Nation Area Population Capital Language I
Korea 99016 42380 Seoul Korean
Canada 9976139 26250 Ouawa English French
Japan 377801 123120 Tokyo Japanese

Figure 1: World handbook

S1: “Where is the capital of Canada?’

When S1 is given to SIMPLA, it extracts only key-
words from the sentence. Here, the keywords are
“capital” and “Canada”. “Capital” is an attribute
name. “Canada” is a value of the “nation” attribute

691

in arecord. SIMPLA constructs the meaning of this
sentence, using only these bits of information. SIM-
PLA searches the target database for the records
whose “nation” attribute has the value, “Canada”,
then, gets the value of the “capital” attribute for
the extracted records. In this case, a record, which
includes the attribute value “Canada”, is the second
record. A value for the attribute name “capital” for
the second record is “Ottawa”. So, “Ottawa” is an
output.

Like the above example, most of those queries fall
into the SELECT-FROM-WHERE type queries in
SQL. SIMPLA regards all the queries as SELECT-
FROM-WHERE instructions.

Thus, the process has been implemented in a key-
word based manner. The above process is tolerant
to extra-grammatical queries. The algorithm is far
more easily implemented than, the ones using con-
ventional linguistic approaches.

SIMPLA’s actual mechanism is more complex.
It includes the notion of a virtual database. The
virtual database is a virtually extended target
database with thesaurus. First, SIMPLA analyzes
an input query as a query targeted to the virtual
database, and generates its internal representation.
Then, it translates the representation to the real
query command to the actual database management
system.

3. Label Base And Vocabulary
Space

SIMPLA regards a query as a sequence of descrip-
tions on a relationship between an atiribute name
and its value. For instance, the S1 sentence, “Where
is the capital of Canada” are regarded as a sequence
of descriptions: (1) “capital” is an attribute name
with no attribute value assigned in the query. (2)
“Canada” is equal to the value of “nation”. On this
semantic, which pairs of an attribute name and its
value are existing in a target database form the most
basic information. In SIMPLA, such information is
prepared in label base and vocabulary space.

Label base is a set of basic pairs of binary rela-
tion:

basic_pair(Attribute, Value).

Here,“Attribute” and “Value” indicate an attribute
name and an attribute value in a target database,
respectively. Vocabulary space is a set of vocabu-
lary pairs of binary relation :

vocabulary_pair(VirtualAttribute,
VirtualValue).

Here, “VirtualAttribute” and “VirtualValue” indi-
cate an attribute name and an attribute value in a
virtual database, respectively. Correspondences be-
tween basic pairs in label base and vocabulary pairs
in vocabulary space are given in anchor. For exam-
ple, label base, vocabulary space and anchor of the
“world handbook” in Figure 1 are shown in Figure 2
and in Figure 4, respectively.

Virtual database is an image of the database,
which is seen by SIMPLA, with vocabulary space
in place of label base (Figure 5). SIMPLA's parser
refers to vocabulary space in order to determine that
an input word is either an attribute name or an
attribute value. An attribute name and an attribute
value respectively appear as a left component and a
right component in a vocabulary pair in vocabulary
space. This is the formal definition for an attribute
name and an attribute value in SIMPLA:

attribute.name(AttributeName)
:- vocabulary_pair(AttributeName, .).

attribute_value(AttributeValue)
:~ vocabulary_pair(_,AttributeValue).

For example, with vocabulary space in Figure 4 in
place of label base in Figure 2, the target database
seems to have “east/west” and “population density”
attributes.

Because, the attribute_name(’east/west’) and
attribute_name(’population density’) hold in
that definition. So, the database appears to have
more attributes than really existing ones ,as “vir-
tual world handbook”, shown in Figure 3.

4. SIMPLA’s Structure

SIMPLA'’s structure is shown in Figure 6. First,
Parser translates the user’s query into virtual
form. Second, Realizer translates the virtual form
to real form. Finally, Generator generates a raw
retrieval form from the given real form , which is
executable by the target database system.

Both virtual form and real form are sequences of
units. Unit shows the relation between an attribute
name and value.

Parser

Parser translates a query to a virtual form, with
reference to vocabulary space. as follows: (1). To
extract a sequence of relational words, attribute
names and attribute values from the query through
reference to vocabulary space. (2). To apply simple

(nation Korea) (nationJapan) (nation,Canada)
(area,99016) (area,9976139) (area,377801)
(population 42380) (population 26250)
(population,123120) (capital.Seoul) (capital, Ottawa)
(capital, Tokyo) (language,Korean) (language,English)
(language.French) (language Japanese)

Figure 2: Label base

| Nation Easywest Area Population Pop.density Capital Language |

Korea East 99016 42380 0428 Seoul
Canada West 9976139 26250 0.003 Ouawa English French
Japan East 377801 123120 0326 Tokyo Japanese

Figure 3: Virtual world handbook

(easi/wesl easl) (east/wesl wesi)
('population density’, number)
(nanon K orea) (nabon) span)

L] L] L] L] .
o Y

Vocabulary space \
just as in label base

(nation,Canads) ——(east/west, west)

(population.x) ~__ SHIY 08
(a1 > POPulation density’, xy)

Anchor (idential : ned)

Figure 4: Vocabulary space and anchor

!.. 1'
! Virtual datsbase !
Database | |
= =
g | (Vociney
Anchor

Figure 5: Virtualization by vocabulary space and
anchor

‘'ocabulary i Label
(paner)

Quary Viruml fom Fomn

Figure 6: SIMPLA'’s structure

692

parse([]) —> [}.

parse([Unit | Units]) --> gen_unit(Unit), parse(Units).

gen_unit(unit(Type,Name Value)) -->
[attribute_name(Name),attribute_value(Value),relational(Type,R)],

{vocabulary_pair(Name, Value)).

(1)

gen_unit(unit{ Type, Name Value)) -->
[attribute_value(Value) relational(Type,R),attribute_name(Name)],

{vocabulary_pair(Name,Value)}.

gen_unit(unit(eq,Name, Value))

(@)

—->

[attribute_name(Name),attribute_value(Value)],

{vocabulary_pair(Name,Value)).

gen_unit(unit(eq,Name, Value))

@)

-

[attribute_value{Value),attribute_name(Name)],

{vocabulary_pair(Name Value)).

gen_unit(unit(eq,Name, Value))
[attribute_value(Value)),

(vocabulary_pair(Name,Value)}.

-—

gen_unit(unit(eq,Name,_))
[attribute_name(Name)],
{vocabulary_pair(Name,_)}.

(4)

->

(5)

(6)

Figure 7: SIMPLA's simple grammar

grammar to the sequence in order to obtain the vir-
tual form. Relational word describes a relation
between an attribute name and its vale.

relational(gtr, ‘‘greater than’’).
relational(sml, ‘‘smaller than’’).

The simple grammar is a set of rules used to trans-
form a sequence of relational words, attribute names
and attribute values into a virtual form. Some of
these rules are shown in Figure 7, in DCG style.

For instance, gen.unit (1) means: if attribute
name Name, attribute value Value and relational
word R for category Type appear at the top of the
sequence and if (Name, Value) appears in the vo-
cabulary space as a vocabulary pair, then gener-
ate unit (Type, Name, Value). The rest of the se-
quence are processed in the same way. The number
of applied rules are equal to the number of gener-
ated units. Parser’s output is virtual form, which is
a sequence of those units.

For instance, look at the process of parsing the
following query:

S2:“List languages in the East.”

First, the query is filtered with vocabulary space
into a sequence:

[attribute_name(language),
attribute_value(east)].

Second, the simple grammar is applied to the se-
quence. The gen_unit (6) matches the top of the
sequence:

genunit(virtual.unit(eq, language, .))
~— [attribute_name(language)]

and vocabulary pair (language,) belongs to the vo-
cabulary space L. So, unit unit(eq, language, _)
is generated. Similarly, by gen_unit (5) is applied to
the rest of the sequence [attribute_value(east)],
unit unit(eq, east/west, east) 1s generated.
Thus, Parser outputs virtual form:

[unit(eq, language, -), unit(eq,
east/west, east)].

Realizer

Since a virtual form may include “virtual” attribute
names or values (as “east/west” in the above exam-
ple), virtual form must be realized to real form by
Realizer. Realization of virtual form to real form is
accomplished by realizing each unit in virtual form.
The unit realization is driven by anchor, which is a
map between basic pairs in label base and vocabu-
lary pairs in vocabulary space. For instance, the vir-
tual form [unit(eq, language, _), unit(eq, east/west,
east)] is realized to a real form [unit(eq, language,
-), unit(eq, nation, korea), unit(eq, nation, japan)],
because anchor in Figure 4 holds a mapping

1" " indicates an uninstantiated variable, just as in Prolog

693

Anchor: (nation, Korea), (nation, Japan)
— (east/west, East)

Generator

Finally, Generator translates real form into a re-
trieval form, which is executable by the target
database system. Unit in real form generates Select-
clause, if its attribute value remains an uninstanti-
ated variable. Other units in real form generate
Where-clause. For instance, real form [unit(eq, lan-
guage, .), unit(eq, nation, korea), unit(eq, nation,
Japan)] is translated into the retrieval form “SE-
LECT language FROM world_handbook WHERE
nation = “Korea” OR nation = “Japan” " | if rep-
resented in SQL.

SIMPLA doesn’t completely interpret all queries
correctly. However, with emphasis on practical
use, SIMPLA’s target is to interpret most practi-
cal queries immediately and robustly, avoiding make
the model too naive and too large regarding the
cost for processing very complicated and unusual
queries.

5. Thesaurus

This section describes how SIMPLA virtualizes a
database. Virtualizing a database is just generat-
ing vocabulary space and anchor associated to the
database. SIMPLA provides several operators to
define a schema for a virtual database, as the ex-
tension of an original database. These operators
are:

Name index operator
name_index(Attribute, AttributeName).
To name an attribute Attribute in a database
as AttributeName.

Value index operator
value_index(AttributeName, Value,
ValueName). To name a value Value for an
attribute AttributeName as a ValueName.

Grouping operator
grouping(A, {V1,...,Vn}, NewA, NewV). To
register a set of some attribute values {V1,
., Vn} for an attribute name A as a new at-
tribute value NewV for a (new) attribute name
NewA.

Compound operator
compound(A, {A1l, ..., An}, ¥). To define
a new attribute A using already defined at-
tributes A1, ..., An in a database, where ¥
is an expression that defines A.

694

Using a name index operator and a value index oper-
ator, the natural language interface designer can as-
sign natural language fragments to each correspond-
ing bit of data in the database. By using a group-
ing operator, the designer can align the database
attributes into a hierarchy. By a compound oper-
ator, the designer can form associations for the at-
tributes. For example, regarding the “World hand-
book” database(Figure 1), the operators in Figure 8
can be implemented, so that the virtual database
“Virtual world handbook” (Figure 3) is obtained.

name_index(Any, Any). (10)
value_index(AttributeName, AnyValue, AnyValue). (11)
group(nation, (korea, japan), 'eastwest’, east). (12)
group(nation, {canada), 'east/west’, west). (13)
compound('population density’, {population, density}, /). (14)

Figure 8: The “virtual world handbook” definition

Virtualizing Database by Vocabulary
Space

Here, virtualizing operators, defined in the previous
section, are implemented as operations on vocabu-
lary space.

First, label base is constructed using name index
operator and value index operator. In the “World
handbook” case, operators (10) and (11) have been
applied, in Fig8. Because they specify nothing spe-
cial, label base consists of all pairs of attribute
names and attribute values. That is, the label base
for the “World handbook” is as shown in Figure 2.
An initial state of vocabulary space is equal to label
base, when the anchor is trivial.

Anchor: vocabulary_pair(A,V)
— basic_pair(A,V)

The grouping operator and the compound opera-
tor modify vocabulary space and anchor.

The grouping oper-
ator grouping(A, {V1,...,Vn}, NewA, NewV) op-
erates on vocabulary space and anchor, as follows:
(1). To add vocabulary pair (NewA, NewV) to vocab-
ulary space VS. (2). To define the image for anchor
Anchor versus the above vocabulary pair , as fol-
lows:

Anchor: vocabulary_pair(NewA, NewV)
— basicpair(A, {V1,...,Va})

(The right-hand side means that attribute name A
takes any one of V..., V, as a value).

In “World
handbook” case, operator (12) grouping(nation,
{korea, japan}, east/west, east) is applied in
Figure 8. It adds vocabulary pair (east/west, east)
to the vocabulary space V'S. The anchor image for
this pair is as follows:

Anchor: vocabulary_pair(east/west, east)
— basic_pair(nation, {korea, japan})

The compound op-
erator compound(A, {A1, ..., An}, ¥) operates
on vocabulary space and anchor as follows: (1). To
add vocabulary pair (A, X) having the first argu-
ment A as an attribute name and a variable X as an
attribute value to vocabulary space V'S. (2). To de-
fine the image for anchor Anchor versus the above
vocabulary pair , by the rest of the arguments as
follows:

Anchor: vocabulary_pair(A, X)
— basic_pair(y(A,,...,An), X)

In “World handbook” case,
operator (14) compound(’population density’,
{population, density}, /) is applied in Fig-
ure 8. It adds vocabulary pair (“population den-
sity”, X) to vocabulary space VS. The anchor im-
age for this pair is as follows:

Anchor: vocabulary_pair(‘population den-
sity’, X)
— basic_pair(population/density, X)

After processing all operators displayed in Fig-
ure 8, SIMPLA gets vocabulary space and anchor,
as illustrated in Figure 4.

Conclusion

In this paper, the authors described SIMPLA, a
new natural language query processing model, and
its implementation. SIMPLA has a very simple
parsing mechanism augmented with the notion of
a virtual database. SIMPLA can interpret extra-
grammatical sentences as well as ordinary natu-
ral language sentences. It even accepts just a se-
quence of keywords, as an input sentence. There-
fore, SIMPLA can be placed among conventional
natural language processing model, command lan-
guage interpreter, and keyword-based information
retrieval model.

Of course, the linguistic capability for SIMPLA
is not as strong as conventional NL systems, which

695

accept predicted seminatural language descriptions.
However, in the real applications, SIMPLA’s hybrid
interpretation ability is more pragmatic for conven-
tional natural language processing model, command
language interpreter, and keyword-based informa-
tion retrieval model. Users can generate queries in
multi-style. If a user can not generate a natural lan-
guage query, which SIMPLA can interpret correctly,
he/she just makes a sequence of keywords, instead.
SIMPLA may accept the sequence appropriately.

The SIMPLA’s response time is faster than that
for a conventional NL interface, because SIMPLA’s
processing work load is far lighter, compared with
the fully parsing approach. According to early ex-
perimental results, the response time for a query to
a database, whose size is more than 2500 records,
was less than two seconds, implemented on Quintus-
Prolog, on Sparc-station-1.

Giving up an attempt to process very complicated
and unusual queries, SIMPLA has gained robust
ability to interpret most of simple queries imme-
diately and correctly. Now, to interpret even those
unusual queries efficiently, the authors are trying
to combine Case-based method with this approach
(Shimazu et al, 1991)(Shimazu et al, 1992).

References

ARITA, S.; SHIMAZU, H.; and TAKASHIMA, Y.
1991. Simple Natural Language Interface Model, In
Proc. of the 5th Annual Conference of JSAI
CARBONELL, J.G.; and HAYES, P.J. 1984. Re-
covery strategies for parsing extragrammtical lan-
guage, Technical Report CMU-CS-84-107, Dept. of
Computer Science, CMU.,

HENDRIX, G.G.; SACERDOTI, E.D.; SAGA-
LOWICZ, D., and SLOCUM, J., 1978. Developing
a Natural Language Interface to Complex Data, In
ACM Trans. on Database Systems.

SHIMAZUH.; ARITA,S.; and TAKASHIMA)Y.
1992. Design Tool Combining Keyword Analyzer
and Case-based Parser for Developing Natural Lan-
guage Database Interfaces, Proc. of COLING-92.
SHIMAZU H.; and TAKASHIMA Y. 1991. Acquir-
ing Knowledge for Natural Language Interpretation
Based On Corpus Analysis, Proc. of [JCAI-91 Nat-
ural Language Learning Workshop.
SHNEIDERMAN, B. 1987. Designing the User In-
terface, Addison-Wesley Pub.

SIMMONS, R.F. 1970. Natural Language
Question-Answering Systems, CACM, Vol. 13, Jan.
TENNANT, H. 1981. Natural Language Process-
ing, Petrocelli Books.
WINOGRAD, T. 1977.
Language, Academic Press.

Understanding natural

	cogsci_1992_690-695

