
UCLA
UCLA Electronic Theses and Dissertations

Title
The Material Point Method for Simulating Elastoplastic Materials

Permalink
https://escholarship.org/uc/item/1sx2k49r

Author
Fu, Chuyuan

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sx2k49r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

The Material Point Method

for Simulating Elastoplastic Materials

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Chuyuan Fu

2018

c© Copyright by

Chuyuan Fu

2018

ABSTRACT OF THE DISSERTATION

The Material Point Method

for Simulating Elastoplastic Materials

by

Chuyuan Fu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Joseph M. Teran, Chair

Simulation in computer graphics must accommodate a wide range of material behaviors

under large deformation, topological changes, contact or collision. This dissertation focuses

on hybrid Lagrangian/Eulerian methods, especially the Material Point Method (MPM) in

computer animation, and we list the major contributions here:

First, we simulate sand dynamics using an elastoplastic, continuum assumption. We

demonstrate that the Drucker-Prager plastic flow model combined with a Hencky-strain-

based hyperelasticity accurately recreates a wide range of visual sand phenomena with mod-

erate computational expense. The Drucker-Prager model naturally represents the frictional

relation between shear and normal stresses through a yield stress criterion. We develop a

stress projection algorithm used for enforcing this condition with a non-associative flow rule.

We further extend the idea of simulating sand dynamics using an elastoplastic contin-

uum assumption to codimensional objects. Our second contribution is to introduce a novel

method for simulation of thin shells with frictional contact using a combination of the MPM

and subdivision finite elements. The shell kinematics are assumed to follow a continuum shell

model which is decomposed into a Kirchhoff-Love motion that rotates the mid-surface nor-

mals followed by shearing and compression/extension of the material along the mid-surface

normal. We use this decomposition to decouple resolving contact and shearing from the

bending resistance components of stress. Our approach is capable of simulating challenging

ii

shell contact scenarios with hundreds of thousands to millions of degrees of freedom with a

moderate cost of only a few minutes per frame.

Our third contribution is to introduce a novel transfer scheme that is used in hybrid

Lagrangian/Eulerian simulations. Recently the Affine Particle-In-Cell (APIC) Method was

introduced to improve the accuracy of the transfers in Particle-In-Cell (PIC) without suf-

fering from the noise present in the historic alternative, Fluid-Implicit-Particle (FLIP). We

generalize APIC by augmenting each particle with a more general local function. Our trans-

fers are designed to select particle-wise polynomial approximations to the grid velocity that

are optimal in the local mass-weighted L2 norm. With only marginal additional cost, our

generalization improves kinetic energy conservation during transfers which leads to better

vorticity resolution in fluid simulations and less numerical damping in elastoplasticity simu-

lations.

iii

The dissertation of Chuyuan Fu is approved.

Luminita Aura Vese

Demetri Terzopoulos

Christopher R. Anderson

Joseph M. Teran, Committee Chair

University of California, Los Angeles

2018

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions . 1

1.2 Dissertation Overview . 1

2 Continuum Mechanics . 3

2.1 Governing equations . 3

2.2 Deformation gradient . 3

2.3 Elastic stress . 4

3 The Material Point Method . 6

3.1 Notation . 6

3.2 Method outline . 6

3.3 Grid Transfers: Particle to Grid . 8

3.4 Grid Momentum Update . 8

3.5 Grid Transfers: Grid to Particle . 10

3.6 Update Positions and Trial Elastic State . 10

3.7 Update Plasticity . 11

4 Drucker-Prager Elastoplasticity for Sand . 12

4.1 Drucker-Prager yield surface derivation . 13

4.1.1 Coulomb friction . 13

4.1.2 Stress admissibility . 14

4.1.3 Kirchhoff stress . 16

4.2 Plastic flow . 17

v

4.2.1 Choosing the direction of the plastic flow 18

4.3 Derivation of return mapping algorithm from plastic flow 20

4.4 Results . 23

4.4.1 Flowing and Piling . 23

4.4.2 Easy Tuning . 24

4.4.3 Two-way Coupling . 25

4.4.4 Drawing and Scooping . 25

5 Thin shell with frictional contact . 27

5.1 Mathematical Details and Notation . 28

5.2 Shell Kinematics . 29

5.2.1 Deformation Gradient . 30

5.2.2 Plasticity . 31

5.3 Elastic Stress and Plastic Constraints . 32

5.3.1 Elastic stress . 33

5.3.2 Bending and Lamina Potential . 33

5.3.3 Frictional Contact Potential . 37

5.3.4 Frictional Contact Yield Condition and Return Mapping 38

5.4 Subdivision and B-spline FEM . 40

5.5 MPM Discretization . 42

5.5.1 Grid Momentum Update . 44

5.5.2 Update Positions and Trial Elastic State 45

5.5.3 Update Plasticity . 46

5.6 Results . 46

5.6.1 Effect of Shell Thickness . 47

vi

5.6.2 Woven Fabrics . 47

5.6.3 Self Collisions . 48

5.6.4 Plasticity for Denting . 49

5.6.5 Two-way Coupling . 49

5.6.6 Resolution Refinement . 50

5.6.7 Bending with Jiang et al. 50

6 A Polynomial Particle-In-Cell Method . 57

6.1 Background . 58

6.1.1 Previous work . 58

6.2 Notation and method outline . 59

6.3 PIC and APIC Revisit . 60

6.4 Velocity Modes . 63

6.5 Method . 64

6.5.1 Transfer from Particle to Grid . 64

6.5.2 Update Grid Momentum . 66

6.5.3 Transfer from Grid to Particle . 66

6.6 MAC grids . 69

6.7 Simulation Results . 70

6.7.1 Incompressible Flow . 70

6.7.2 MPM elastoplasticity . 71

6.7.3 Accuracy and the number of modes 71

6.7.4 Momentum conservation . 72

A Drucker-Prager elastoplasticity derivations 81

A.1 Energy dissipation . 81

vii

A.2 Isotropy . 82

A.3 Kirchhoff stress and hencky strain . 83

A.4 Plastic Dissipation is Nonnegative . 85

B Thin shell derivations . 87

B.1 FEM Force computation . 87

B.2 Grid force computation . 89

B.3 QR and Elastic Potential . 91

B.3.1 Change of basis tensor . 91

B.3.2 Differentials . 91

B.4 Elastic potential and stresses . 92

B.5 Frictional Contact Yield Condition . 94

B.6 Denting Yield Condition and Return Mapping 95

C PolyPIC . 99

C.1 List of Bases . 99

C.1.1 Linear interpolation . 99

C.1.2 Quadratic interpolation . 99

C.2 Grid to Particle . 103

C.3 PolyPIC is lossless . 107

C.4 PolyPIC is linear and angular momentum conserving 108

C.5 Mathematica code . 109

C.5.1 Linear interpolation in 2d . 109

C.5.2 Linear interpolation in 3d . 110

C.5.3 Quadratic interpolation in 2d . 111

C.5.4 Quadratic interpolation in 3d . 113

viii

References . 117

ix

LIST OF FIGURES

2.1 Deformation gradient. 4

4.1 Sand hourglass . 24

4.2 Sand spout . 24

4.3 Sand friction angle . 25

4.4 Sand Young’s modulus . 25

4.5 Sand castle . 26

4.6 Sand butterfly . 26

4.7 Sand zen garden . 26

4.8 Sand shovel . 26

5.1 Continuum shell/Kirchhoff-Love splitting . 28

5.2 Shell kinematics . 29

5.3 Particle type classification . 43

5.4 Pants twister . 47

5.5 Twisting shirt . 48

5.6 Plastic shell deformation . 48

5.7 Six cylinders . 49

5.8 Variation in shell thickness . 50

5.9 Ribbons of increasing thickness . 51

5.10 Twisting Orthotropic Model . 52

5.11 Orthotropic Model . 52

5.12 Elastic spheres on diving boards . 53

5.13 Variation in Coulomb friction coefficient . 53

x

5.14 Shell plasticity: Denting . 54

5.15 Snow cup . 54

5.16 Convergence under spatial refinement . 55

5.17 Bending comparison . 55

5.18 Grid resolution dependent wrinkling . 56

6.1 Grid interpolation . 61

6.2 Velocity modes . 74

6.3 Vortex sheet . 75

6.4 Ink drop . 76

6.5 Rotating column of colored dust . 76

6.6 MPM elastoplasticity . 77

6.7 MPM elastoplasticity refinement . 78

6.8 Energy conservation . 79

6.9 MPM hyperelasticity . 79

6.10 Momentum conservation . 80

B.1 Simplified return mapping . 98

xi

LIST OF TABLES

3.1 Table of notation used in this chapter . 7

6.1 Sparsity pattern: unmodified . 68

6.2 Sparsity pattern: modified . 69

6.3 Polypic: timing . 73

xii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor Professor Joseph Teran,

for his continuous support for my PhD study and research. He shared insights and wis-

dom through near-daily meetings and emails and attention far beyond what was required.

His passionate and diligent pursuit of academic excellence taught me how to be a devoted

scientist.

I thank Professor Demetri Terzopoulos, Professor Chris Andersen, and Professor Lu-

minita Vese for serving on my thesis committee and providing suggestions on improving and

extending my work.

My appreciation goes to my friends and colleagues at UCLA. I thank Chenfanfu Jiang,

Andre Pradhana Tampubolon, Craig Schroeder, Ted Gast, Greg Klar, Qi Guo, Xuchen Han,

David Clyde, Mengyuan Ding, Stephanie Wang, and Masaki Nakada for many insightful

discussions and being the most pleasant companions.

I would like to thank our collaborators Ken Museth at DreamWorks Animation and

Rasmus Tamstorf at Walt Disney Animation Studios, for sharing their knowledge and their

guidance.

I thank the two cats Kaku and Ginsan for being the most beautiful creatures and pos-

sessing the sweetest souls. Their continuous exploration of self-world relation is always

inspirational.

Most of all, I thank my family for their understanding and unconditional love from across

the Pacific Ocean.

xiii

VITA

2010–2013 BSc (Mathematics), University of Hong Kong, Hong Kong, China.

2013–2018 Research Assistant, Mathematics Department, UCLA, USA.

2014–2018 Teaching Assistant, Mathematics Department, UCLA, USA.

2017 Research Intern, Oculus Research, Redmond, USA.

PUBLICATIONS

Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, J.Teran, A Material Point Method for Thin

Shells with Frictional Contact, ACM Transactions on Graphics (SIGGRAPH Asia 2018).

C. Fu, Q. Guo, T. Gast, C. Jiang, J. Teran, A Polynomial Particle-In-Cell Method, ACM

Transactions on Graphics (SIGGRAPH Asia 2017).

A. Pradhana, T. Gast, G. Klar, C. Fu, J. Teran, C. Jiang, K. Museth, Multi-species Sim-

ulation of Porous Sand and Water Mixtures, ACM Transactions on Graphics (SIGGRAPH

2017).

G. Klar, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, J. Teran, Drucker-Prager

Elastoplasticity for Sand Animation, ACM Transactions on Graphics (SIGGRAPH 2016).

T. Gast, C. Fu, C. Jiang, J. Teran, Implicit-shifted Symmetric QR Singular Value Decom-

position of 3x3 Matrices, UCLA Mathematics Department Technical Report (CAM16-19).

xiv

CHAPTER 1

Introduction

1.1 Contributions

We make the following key contributions:

• We introduce a novel information transfer scheme, a Polynomial Particle-In-Cell method.

It generalizes APIC from locally affine to locally polynomial representations and im-

proves kinetic energy conservation in particle/grid transfers (Figure 6.5 and Figure 6.6).

• We develop an elastoplastic formulation for frictional contact and resistance to bend-

ing and denting of thin shells. Furthermore, we develop a strain splitting technique

to separate thin shell motion into Kirchhoff-Love and continuum shell components

(Figure 5.8 and Figure 5.13).

• We derive a plane strain/stress formulation for Kirchhoff-Love thin shells that simplifies

the return mapping algorithm for denting resistance (Figure 5.14).

1.2 Dissertation Overview

The dissertation is structured as follows:

In Chapter 2 we briefly review the mathematical background of continuum mechanics.

We review the notation and the concepts of deformation gradient and elastic stress, which

are key to our simulation methods.

Chapter 3 covers the method outline of MPM in the case of elastoplasticity. The sim-

ulation methods used in this dissertation follow this outline. We assume that readers have

1

basic knowledge about continuum mechanics and the MPM.

Chapter 4 presents modeling sand by considering granular media as an elastoplastic

continuum. Plastic deformation is modeled by defining the Drucker-Prager yield criterion.

In the discrete setting, the yield criterion is satisfied by defining return mapping through

the flow rule. This section contains the essential treatise for elastoplastic simulation with

the MPM which we will extend to dealing with codimensional objects in Chapter 5.

In Chapter 5, we present a novel method for simulation of thin shells with frictional con-

tact using a combination of the MPM and subdivision finite elements. We decompose the

shell kinematics into a Kirchhoff-Love motion and compression/extension of the material.

We use this decomposition to design an elastoplastic constitutive model to resolve frictional

contact by decoupling resistance to contact and shearing from the bending resistance com-

ponents of stress. We show that by resolving frictional contact with a continuum approach,

our hybrid Lagrangian/Eulerian approach is capable of simulating challenging shell contact

scenarios with hundreds of thousands to millions of degrees of freedom.

In Chapter 6, we introduce a novel transfer scheme for hybrid Euler/Lagrangian ap-

proaches. We present a generalization of existing methods by augmenting each particle with

a polynomial function to represent its local velocity field. By viewing the grid-to-particle

transfer as a linear and angular momentum conserving projection of the particle-wise local

grid velocities onto a reduced basis, we greatly improve the energy and vorticity conservation

over the original methods with only marginal additional cost.

2

CHAPTER 2

Continuum Mechanics

2.1 Governing equations

We represent objects, either sand or thin shells, as volumetric elastoplastic continua. While

shells are thin surfaces in 3D, it is useful to conceive of their dynamics as if they have

appreciable thickness in a continuum. The state can be described at each location by its

density ρ(x, t) and velocity v(x, t). The governing equations come from conservation of mass

and momentum (see [16, 5] for derivations)

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv

Dt
= ∇ · σ + ρg. (2.1)

Here σ is the stress, g is gravity and D
Dt

is the material derivative.

2.2 Deformation gradient

The material deformation is characterized in terms of the flow map, φ which maps points

in the original configuration of the material X to points in the time t configuration x as

φ(X, t) = x. The Jacobian of this mapping F = ∂φ
∂X

(X, t) is often referred to as deformation

gradient, and it represents the local deformation of the material. That is, the deformation

gradient yields the best local linear approximation to the mapping: φ(X̃, t) ≈ F(X̃−X) +x

for X̃ near X. For example, if the material is undeformed local to X then F will be a

rotation. If det(F) < 1, the material loses volume locally, and if det(F) > 1, it gains volume

locally. The elastic and frictional contact responses of our model are characterized in terms

3

of deformation gradient. The material derivative of deformation gradient is:

DF

Dt
= (∇v)F.

b

b

X̃

X

Ω̄

b

b

x̃

x

Ωt

F

Figure 2.1: Deformation gradient.

We represent plasticity by factoring deformation gradient into elastic and plastic parts as

F = FEFP . FP represents the portion of the material’s history that has been forgotten. For

example, If a metal can is twisted, then it forgets that it was straight and flat, and behaves as

it was always twisted. The twisting and denting involved in this operation is stored in FP . If

the can is twisted slightly, then it will feel strain (deformation). This is elastic deformation,

which is stored in FE. The can remembers this deformation. In response, the material exerts

stress to try to restore itself to its orignal shape. In this way, we see that only FE should be

used to compute stress.

2.3 Elastic stress

For potential energy density ψ(FE), the Cauchy stress is

σ =
1

det(F)

∂ψ(FE)

∂FE
FET . (2.2)

It is often mathematically convenient when expressing the plasticity constraints as well as

useful for our MPM implementation to work with the Kirchhoff stress τ . It is related to the

4

more commonly used Cauchy stress σ as τ = det(F)σ, i.e.,

τ =
∂ψ(FE)

∂FE
FET . (2.3)

5

CHAPTER 3

The Material Point Method

3.1 Notation

It is helpful to establish the conventions for notation (see Table 3.1 for a list of notation used).

Scalars are represented by non-bold Latin or Greek characters (e.g., mp, w
n
ip). Vectors are

represented by bold lowercase Latin characters (e.g., vnp , xn+1
i). Matrices are represented by

bold uppercase Latin characters or bold Greek characters (e.g., I, FP,n+1
p , σ). Derivatives

alter this in the usual way, so that (∇v)p is a matrix.

Under discretized setting, many quantities are indexed with subscripts, which indicate

where quantities are stored. Quantities that are stored at grid nodes are indexed with i and

particle quantities have the index p. The quantity Fn+1
p represents the quantity corresponding

to one index, and 〈Fn+1
p 〉 represents a vector of all such quantities.

Superscript n is used to indicate a quantity near the beginning of the time step, before

forces are applied, (e.g., mn
i , vnp). Under the updated Lagrangian view (see Section (§3.4)),

we use superscript n+ 1 to denote quantities after momentum update (e.g., xn+1
i , Cn+1

p).

Superscripts E and P are used to denote the elastic or plastic part of a deformation

gradient (e.g., FE,n
p , FP,n

p). Superscript tr is used to denote the trial state (e.g., FE,tr
p).

3.2 Method outline

We use MPM to discretize our elastoplastic model. MPM is a hybrid Lagrangian/Eulerian

approach. However, the primary representation of material for MPM is the Lagrangian state.

At time tn, we store particle position xnp , velocity vnp , initial mass mp, initial volume V 0
p ,

6

Variable Where Type Meaning

I - matrix identity matrix

∆x - scalar grid resolution
D
Dt - - material derivative

g - vector gravity

σ - matrix Cauchy stress

ρ - scalar density

v - vector velocity

F - matrix deformation gradient

mp particles† scalar particle mass

V 0
p particles† scalar initial particle volume

Fn
p , F̂p particles matrix deformation gradient

vn
p , v̂p particles† vector particle velocity

xn
p , x̂p particles† vector particle position

(∇v)p particles matrix grid-based velocity gradient

N - vector → scalar tensor product interpolation spline

wip mixed scalar interpolation weight

∇wip mixed vector interpolation weight gradient

Table 3.1: Table of notation used in this chapter. †These quantities are state on particles.

elastic deformation gradient FE,n
p , affine velocity Cn

p for all materials in the simulation. Note

that the mass does not change with time in accordance with conservation of mass.

In MPM, the Eulerian grid can be viewed as an auxiliary structure for updating the

Lagrangian state. In order to update the Lagrangian state to obtain xn+1
p , vn+1

p etc., we

first transfer the particle mass and momentum state to an equivalent grid counterpart. We

use mn
i to denote the mass of Eulerian grid node xi at time tn, vni to denote its velocity

and pn+1
i to denote its linear momentum after the grid update. The motion of the grid is

then interpolated back to the particles to update the Lagrangian state without ever actually

moving grid nodes.

The yield condition we define for plasticity is satisfied via projection (or return mapping)

of the stress to the feasible region. During simulation, we first take a time step to create a

trial state of stress ignoring the yield condition. By ignoring the condition, we essentially

assume the material undergoes no further plastic deformation. We use FE,tr, FP,tr to denote

this trial state of elastoplastic strains with associated trial stress. This stress may or may

not satisfy the yield condition. The trial stress is then projected to the feasible region to

satisfy the yield condition. The final elastic and plastic strains FE,FP are then computed

from the projected stress.

7

We summarize essential steps in the algorithm below.

1. Transfer to grid: Transfer mass and momentum from particles to grid. (§3.3)

2. Update grid momentum: Update grid momentum from potential-energy-based and

body forces. (§3.4)

3. Transfer to particles: Transfer velocities from grid to particles. (§3.5)

4. Update positions and trial elastic state: Update particle position, deformation

gradient and trial elastic state assuming no plasticity over the time step. (§3.6)

5. Update plasticity: Project trial elastic and plastic deformation gradients for plas-

ticity return mapping. (§3.7)

3.3 Grid Transfers: Particle to Grid

To update the Lagrangian state, we transfer mass and momentum from particles xnp to the

grid nodes xi using APIC [24].

mn
i =

∑
p

wnipmp (3.1)

vni =
1

mn
i

∑
p

wnipmp(v
n
p + Cn

p (xni − xnp)) (3.2)

Here wnip = N(xnp − xi) is the weight of interaction between particle xnp and grid node xi.

The N(x) are linear, quadratic or cubic B-spline kernels used for interpolation over the grid.

vnp and Cn
p define an affine notion of velocity local to the particle.

3.4 Grid Momentum Update

The grid momentum update uses the updated Lagrangian view of the governing physics.

Although we never deform the grid, we conceive of the grid momentum update in terms of

the motion it would cause on the grid. In particular this allows us to define the elastic grid

8

forces through the differentiation of a potential. This use of incremental grid node motion,

is called the updated Lagrangian view, as we essentially view the motion of the grid as

Lagrangian, albeit from the grid configuration at time tn, instead of the rest configuration.

The grid momentum is updated from the force defined as the gradient of the potential

energy with respect to grid node motion. The grid at time tn, after transferring state from

the Lagrangian particles, is an alternative Lagrangian mesh with degrees of freedom xi, vni

and mass mn
i . Its update is derived from the Lagrangian FEM discretization of a problem

with a notion of potential energy: the internal force is the negative gradient of the potential

energy with respect to positional changes. Using xn+1
i and pn+1

i to denote the new position

and linear momentum state after the time step, the grid discretization has the form

xn+1
i = xi +

∆t

mn
i

pn+1
i (3.3)

pn+1
i = mn

i v
n
i −∆t

∂Ψ

∂xi

(〈x̂i〉) + ∆tmn
i g (3.4)

where Ψ(x) is the potential energy which depends on the positional state where we use

〈x̂i〉 = (x̂i1 , x̂i2 , . . .)
T to denote the vector of all grid node positions. In the case of symplectic

Euler integration, 〈x̂i〉 = xi and in the case of backward Euler, 〈x̂i〉 = 〈xn+1
i 〉. We note that

the grid nodes are not actually moved from 〈xi〉 to 〈xn+1
i 〉. Instead, the motion of the grid

is interpolated to the particles (see (§3.5)).

Given elastic energy density ψ, the total potential is computed as Ψ =
∫

Ω̄
ψ dV over

material domain Ω̄. When discretely approximated on particles, we have

Ψ =
∑
p

V 0
p ψ(FE,tr

p), (3.5)

where V 0
p is the undeformed volume of particle p, and the elastic deformation gradient is

updated as

FE,tr
p (x̂) = (∇x̂)pF

E,n
p . (3.6)

9

Here (∇x̂)p =
∑

i x̂i⊗∇wnip and F0
p = I assuming no initial deformation. Putting it together

using chain rule, the grid node forces fi are computed as

fi = −∂Ψ

∂x̂i

= −
∑
p

V 0
p

∂ψ

∂FE
(FE,tr

p) :
∂FE,tr

p

∂xi
. (3.7)

3.5 Grid Transfers: Grid to Particle

The grid to particle transfer defines the time tn+1 affine velocity local to particle xnp in terms

of vn+1
p and Cn+1

p from

vn+1
p =

∑
i

wnip
pn+1
i

mn
i

(3.8)

C̃n+1
p =

12

∆x2(d+ 1)

∑
i

wnip
pn+1
i

mn
i

⊗ (xni − xnp) (3.9)

Cn+1
p = (1− ν) C̃n+1

p +
ν

2

(
C̃n+1
p − (C̃n+1

p)T
)

(3.10)

Here d is the B-spline degree (d = 3 for cubic b-spline interpolation, d = 2 for quadratic

B-spline interpolation) and ∆x is the Eulerian grid spacing. ν is the explicit damping

coefficient from Jiang et al.[23] where ν = 0 is completely undamped, corresponding to the

original APIC transfer, while 1
2

(
C̃n+1
p − (C̃n+1

p)T
)

is the skew symmetric part of C̃n+1
p and

corresponds to the RPIC transfer.

3.6 Update Positions and Trial Elastic State

Particle positions are moved with the interpolated grid node velocities.

xn+1
p = xnp + ∆tvn+1

p =
∑
i

xn+1
i wnip. (3.11)

We first assume there was no additional plastic flow over the time step and consider a

trial state of elastic deformation. The trial elastic deformation FE,tr
p is computed as in

Equations (3.6) with 〈x̂i〉 = 〈xn+1
i 〉.

10

3.7 Update Plasticity

The assumption of no plastic flow over the time step is often safe. However, if the trial state

of elastic stresses are not inside the yield surfaces associated with denting, frictional contact,

etc. then they must be projected to satisfy the constraint. FE,tr
p is projected to FE,n+1

p in

accordance with whichever return mapping is being used. We will discuss the details of

each plasticity for sand in Chapter 4, for shell in Chapter 5 . The product of the projected

elastic and plastic deformation gradients must be equal to the original deformation gradient,

creating a constraint on the return mapping

Fn+1
p = FE,tr

p FP,tr
p = FE,n+1

p FP,n+1
p . (3.12)

11

CHAPTER 4

Drucker-Prager Elastoplasticity for Sand

We simulate sand dynamics using an elastoplastic, continuum assumption. We demonstrate

that the Drucker-Prager plastic flow model combined with a Hencky-strain-based hypere-

lasticity accurately recreates a wide range of visual sand phenomena with moderate com-

putational expense. We use the Material Point Method (MPM) to discretize the governing

equations for its natural treatment of contact, topological change and history dependent

constitutive relations. The Drucker-Prager model naturally represents the frictional relation

between shear and normal stresses through a yield stress criterion.

This chapter explains plasticity in great detail. The idea of handling friction and contact

with a continuum view and expressing the amount of friction allowed through plasticity

constraints is going to be useful for the next Chapter when we talk about shells.

In this chapter, we will present the Drucker-Prager yield surface derivation as well as the

return mapping it induces. The Drucker-Prager yield surface motivates from the Coulomb

condition, defining the admissible states of stress. Plastic flow rule is therefore defined in

order for the stress to satisfy this plasticity constraint. After we derive the proper plastic

flow rule which satisfies the yield condition, second law of thermodynamics, and volume

preservation, we use this flow rule to design its discretized version: the return mapping. We

then show that under Hencky-strain, the return mapping will amount to a simple projection

which allows for straightforward implementation.

12

4.1 Drucker-Prager yield surface derivation

In the continuum conception of sand, mechanical interactions are expressed through elastic-

ity, modified with plasticity to model the effects of frictional contact. We use the Drucker-

Prager plasticity model, which is built to enforce that shear stresses do not exceed a coeffi-

cient times normal stresses in magnitude. In this Section, we detail the connection between

Coulomb friction, and the Drucker-Prager stress condition.

The stress condition defines a notion of admissibility for states of stress. In stress space,

this is a region whose boundary is often referred to as the yield surface. This places a

constraint on the constitutive model defining the mechanical response of the body. The

multiplicative decomposition of the deformation gradient into elastic and plastic parts is a

means for designing a constitutive model that meets these constraints. For states of stress in

the interior of the feasible region, there is no plastic flow since the elastic constitutive model

suffices. However, as a state on the boundary of the region (yield surface) is approached,

plastic flow will be defined as means of modifying the constitutive model to satisfy the

constraints. In Section 4.2 we derive the plastic flow as a means of satisfying the Drucker-

Prager stress constraint.

4.1.1 Coulomb friction

Consider a Coulomb friction interaction between two grains in contact. If cF is the positive

coefficient of friction, then the frictional force ff can only be as large as the coefficient of

friction times the normal force fn: ff ≤ cFfn. The Drucker-Prager model generalizes this to

a continuum. At any point in the continuum body, the Cauchy stress σ expresses the local

mechanical interactions in the material.

If we consider this interaction to be from friction, we can use the Coulomb model to

relate the frictional force (per area) ff = dT t to the normal force (per area) fn = −nT t

as dT t ≤ −cFnT t. Here, d is the normalized projection of the traction t into the plane

orthogonal to n. In terms of σ, this is expressed as dTσn ≤ −cFnTσn.

13

x

n

d

−fnn

ffd

t

The frictional force (per area) ff = dT t is often referred to as the

shear stress (at x, in direction n) and the normal force (per area) is

often referred to as the normal stress (at x, in direction n). If we

consider all shear stresses to arise from friction, then we get a notion

of states of stress consistent with the Coulomb model of frictional

interaction. That is, we consider the stress field σ as admissible (or

consistent with the Coulomb model) if

dTσn ≤ −cFnTσn (4.1)

for all x in the material and for arbitrary directions d and n with dTn = 0. Specifically, at

point x, σ relates the force per area (or traction) t that material on one side of an imaginary

plane with normal n exerts on material on the other side, as t = σn.

When the normal stress nTσn is positive, the material on one side of the imaginary plane

is pulling on the material on the other side. This does not arise from a contact/frictional

interaction and is a cohesive interaction. Note that Equation (4.1) implies that in the

presence of a positive normal stress, the shear stress would have to be zero. In fact, it can

be shown that it is not possible to be consistent with Equation (4.1) (for all d and n) with

a positive normal stress, and thus cohesion is not possible with this model.

4.1.2 Stress admissibility

Consider the two dimensional case and states of stress consistent with Inequality (4.1). In

this case, given normal n, there are only two directions d orthogonal to it, namely d = ±Rn

where

R =

 0 −1

1 0

 . (4.2)

In this case, satisfaction of Inequality (4.1) is achieved when

± nTRσn + cFnTσn ≤ 0 (4.3)

14

for all directions n. Since the Cauchy stress must be symmetric (by conservation of angular

momentum), it has an eigen decomposition

σ = QDQT = Q

 s1

s2

QT (4.4)

where Q is a rotation matrix. Rewriting Inequality (4.3) in terms of the eigenvalue decom-

position gives

± nTRQDQTn + cFnTQDQTn ≤ 0 (4.5)

and since R and Q commute (2D rotations commute), satisfaction of Inequality (4.3) is the

same as

ñT (±RD + cFD) ñ ≤ 0 (4.6)

where ñ = Qn. Since Inequality (4.6) must be true for all ñ and choice of sign, it is equivalent

to require that the maximum of

F (ñ, h) = ñT (hRD + cFD) ñ (4.7)

subject to ‖ñ‖2 = 1 and h2 = 1, is less than 0. Write ñ = (sin θ, cos θ)T , we calculate the

maximum of F (ñ, h):

F (ñ, h) = cF s1 cos2 θ +
h

2
(s1 − s2)2 sin θ cos θ + cF s2 sin2 θ

= cF s1(1− sin2 θ) +
h

2
(s1 − s2)2 sin θ cos θ + cF s2 sin2 θ

= cF s1 − cF (s1 − s2) sin2 θ +
h

2
(s1 − s2)2 sin θ cos θ

= cF s1 − cF (s1 − s2)
1− cos 2θ

2
+
h

2
(s1 − s2)2 sin θ cos θ

= (s1 + s2)
α̃

2
+

1

2
(s1 − s2)(cF cos 2θ + h sin 2θ)

≤ (s1 + s2)
cF
2

+
1

2
|s1 − s2|

√
1 + cF 2.

Dividing by

√
1+c2F√

2
we obtain that

15

(s1 + s2)
cF√

2
√

1 + c2
F

+
|s1 − s2|√

2
≤ 0

tr(σ)α +

∥∥∥∥σ − tr(σ)

2
I

∥∥∥∥
F

≤ 0 (4.8)

Where ‖ · ‖F is the Frobenius norm and α = cF√
2
√

1+c2F
.

If we solve the analogous maximization problem in three dimensions we obtain the Mohr-

Coulomb yield surface [28]. However, there is a simple generalization of Inequality (4.8) that

works for both two and three dimensions given by

tr(σ)α +

∥∥∥∥σ − tr(σ)

d
I

∥∥∥∥
F

≤ 0. (4.9)

where d is the number of space dimensions. The Drucker-Prager model uses Inequality (4.9)

in both two and three dimensions, because it is easier to work with than the Mohr-Coulomb

model in 3D and it is a decent approximation of Mohr-Coulomb in that case.

In summary, the Drucker-Prager model for the stress field σ requires that

y(σ(x)) ≤ 0 (4.10)

for all points x in the domain occupied by the material, where y(σ) = tr(σ)α+‖σ− tr(σ)
d

I‖F

and d is the number of space dimensions.

4.1.3 Kirchhoff stress

As we mentioned in Section 2.3, the Kirchhoff stress τ is related to the Cauchy stress σ as

τ = Jσ where J = det(F) is the determinant of the deformation gradient F. We will find the

Kirchhoff stress useful when deriving and analyzing properties of the plastic flow. Expressing

the Drucker-Prager condition in terms of τ is simply the requirement that y(τ (x)) ≤ 0 for

all x in the domain. Since the constraint can be evaluated as a function of the principal

stresses, we can visualize it as the cone (τ1 + τ2)α+ |τ1−τ2|√
2
≤ 0 for 2D problems, or the cone

16

(τ1 + τ2 + τ3)α +
√∑3

j=1

(
τj −

∑3
i=1

τi
3

)2 ≤ 0 for 3D problems.

The plastic flow will be chosen as a means of satisfying this constraint. When the stress

is in the feasible region, there is no plastic flow. However, when the stress reaches the

boundary of this region, the plastic flow will be chosen in a manner that prevents the stress

from leaving the feasible region. For this reason, the boundary of the feasible region is called

the yield surface, since plastic “yield” occurs when the state of stress reaches it.

4.2 Plastic flow

The plastic flow is characterized by the multiplicative decomposition of the deformation

gradient F = FEFP , however it is convenient for analysis and constitutive modeling to

consider evolution of the left elastic Cauchy-Green strain BE = FEFET = FCP−1
FT where

CP = FP TFP is the right plastic Cauchy-Green strain. Recalling that the deformation then

evolves as DF
Dt

= (∇v)F,

DBE

Dt
= (∇v)BE + BE(∇v)T + F

DCP−1

Dt
FT .

The term FDCP
−1

Dt
FT is the Lie derivative of the of BE with respect to v so we denote it

as LvBE. The Lie derivative of BE is its rate of change independent of deformation in

the flow, and it will be determined to define the plastic flow as a means of satisfying the

stress feasibility condition in Inequality (4.10). When the stress is inside the feasible region,

LvBE = 0. However, when the stress is on the yield surface, it will be chosen to guarantee

that ẏ(t) ≤ 0, thus preventing any future elastic stresses attaining values outside the feasible

region. This can be done in infinitely many ways, however care must be taken to avoid

artifacts associated with non-volume preserving plastic flows, as well as to guarantee that

the plastic flow increases entropy (or decreases the total energy). In particular,

ẏ(t) =
∂y

∂τ
(τ (BE(t))) :

∂τ

∂BE
(BE(t)) :

DBE

Dt
(t)

=
∂y

∂τ
(τ (BE(t))) :

∂τ

∂BE
(BE(t)) :

(
(∇v)BE + BE(∇v)T + LvBE

) (4.11)

17

Here, the : operator denotes a generalized dot product to express the chain rule when dif-

ferentiating the composition of scalar and matrix valued functions of matrix argument. The

material derivative D
Dt

appears in the chain rule because we are considering how y evolves

with time for one particle of the continuum. Defining β as the rate of change of y in the

absence of plasticity (LvBE = 0) gives

β =
∂y

∂τ
(τ (BE(t))) :

∂τ

∂BE
(BE(t)) :

(
(∇v)BE + BE(∇v)T

)
(4.12)

When the stress criteria is satisfied, we have y < 0 and there is no plastic flow, (LvBE = 0).

However, when we reach the boundary of the feasible region in stress space, we choose LvBE

so that ẏ(t) = 0. To conclude

 LvBE = 0, if y < 0 or if y = 0 and β ≤ 0

choose LvBE so that ẏ(t) = 0 if y = 0 and β > 0.
(4.13)

In the next section, we are going to talk about how to choose the direction of plastic flow

LvBE.

4.2.1 Choosing the direction of the plastic flow

Energy dissipation In order to insure that stress never leaves the feasible region, the

direction of plastic flow LvBE only needs to have non-zero component on ∂y
∂τ

(τ (BE(t))) :

∂τ
∂BE

(BE(t)) : LvBE. Thus, for a given value of BE, there are infinitely many choices of

LvBE that will suffice in preventing stresses outside the feasible region. However, care must

be taken to insure that the plastic flow does not decrease the entropy of the system. Or

more specifically, that it does not instantaneously increase the rate of change of the total

energy and thus violate the second law of thermodynamics [16].

We refer to Section A.2 for detailed derivation of two important conclusions in the case

of isotropic potential energy,:

• BE and τ have the same eigen decomposition.

18

• The total energy E(t) = KE(t) + PE(t) satisfies

E(t+ ∆t)− E(t) = W t(t,∆t)−
∫ t+∆t

t

∫
Ω0

ẇP (X, s)dXds (4.14)

where W t(t,∆t) is the work done by external traction t boundary conditions and

ẇP = τ : −1

2
LvBEBE−1

.

In the absence of plasticity, the work done by the mechanical stresses is equal to the

negative change in the potential, and this leads to exact conservation of energy (minus the

effect of the boundary conditions and external forcing). In the case of plasticity, the total

energy may go up or down from the work done by the mechanical stress, and the ẇP term

quantifies that. Specifically, the plastic flow must be designed in a way that ensures non-

negative ẇP , otherwise total energy may increase due to plasticity, which would violate the

second law of thermodynamics.

Principle of maximum plastic dissipation The principle of maximum plastic dissipation

[5] seeks to design the plastic flow in a way that maximizes ẇP to respect this concern. This

leads to an associative plastic flow where

−1

2
LvBEBE−1 ∈ ∂y

∂τ
(τ).

For Drucker-Prager yield surface from Inequality (4.10),

∂y

∂τ
(τ) = αI +

dev(τ)

‖dev(τ)‖F
(4.15)

where we introduce the deviatoric operator to act on matrices:

dev(A) := A− 1

d
trace(A)I, (4.16)

i.e. dev(A) gives the deviatoric part of any arbitrary square matrix A of size d× d.

19

Volume preservation Unfortunately, there is a potential for excessive volume loss or gain

in the model. Indeed, simply using LvBEBE−1 ∈ ∂y
∂τ

(τ) will tend to cause excessive volume

gain during sheering [28]. However, we remedy the artifact by using the deviatoric part

∂y
∂τ

(τ) which induces the non-associative rule:

LvBEBE−1
= −γG

where

G = dev(
∂y
∂τ

(τ)

‖ ∂y
∂τ

(τ)‖F
) =

dev(τ)

‖dev(τ)‖F
(4.17)

and γ is a scalar. The second equality here follows from Equation 4.15.

Furthermore, we show in Section A.4 that the modification still guarantees that ẇP is non-

negative and thus satisfies the second law of thermodynamics. In summary, the plasticity is

expressed through LvBE as

LvBE =

 0, if y < 0 or if y = 0 and β ≤ 0

−γG, if y = 0 and β > 0.
(4.18)

4.3 Derivation of return mapping algorithm from plastic flow

The return mapping algorithm is the discrete equivalent to solving for a strain that satisfies

the plastic flow rule in Equation (4.18) and that lies in the Drucker-Prager yield surface.

In this section first we outline the method of Simo and Meschke [31] to derive the discrete

equations from their continuous versions. This procedure starts by assuming there is no

plastic flow and a return mapping algorithm is derived from the flow equations that shows

how to project back to the yield surface if the assumption of no plastic flow is invalid.

Consider the evolution of BE from time tn to time tn+1 = tn + ∆t. We consider this

evolution per particle, and thus it is useful to take a Lagrangian view. Recall from Section 2.2

that the deformation gradient F defines the deformation from the initial configuration Ω̄ to

the time t configuration Ωt, the Jacobian F̃ = ∂φ̃
∂x̃

defines the deformation from the time tn

20

configuration Ωtn to the time t configuration Ωt, where t ≥ tn. These are related as F = F̃Fn.

Define BE∗ = F̃−1BEF̃−T . Let us consider the difference between the evolution of BE∗

and BE in absence of plasticity at time tn < t < tn+1. By the definition of BE∗,

DBE∗

Dt
= −2γF̃−1GF̃BE∗,

therefore in absence of plasticity BE∗ is constant since DBE∗

Dt
= 0. In contrast, BE

∣∣
t

=

F̃
∣∣∣
t
BE
∣∣
tn

F̃T
∣∣∣
t

in the same case. In other words, BE∗ is constant along characteristics except

for the effect of plasticity, but at the same time BE would also be stretched by the flow. This

isolation of the plastic part allows for a more intuitive discretization. Specifically, combined

with the initial value BE∗
∣∣
tn

= BE
∣∣
tn

, we can use the exponential approximation

BE∗∣∣
tn+1 ≈ exp(−2δγ F̃−1GF̃)

∣∣∣
tn+1

BE
∣∣
tn

where δγ ≥ 0 will be used to enforce the constraint y(τ (BE
∣∣
tn+1)) ≤ 0. Multiplying the

approximation by F̃
∣∣∣
tn+1

on the left and F̃T
∣∣∣
tn+1

on the right, and recalling the definition of

BE∗, we obtain

BE
∣∣
tn+1 = F̃

∣∣∣
tn+1

BE∗∣∣
tn+1F̃

T
∣∣∣
tn+1

(4.19)

≈ F̃
∣∣∣
tn+1

exp(−2δγ F̃−1GF̃)
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

(4.20)

= F̃
∣∣∣
tn+1

F̃−1
∣∣∣
tn+1

exp(−2δγG)|tn+1F̃
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

(4.21)

= exp(−2δγG)|tn+1F̃
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

. (4.22)

We use notation BE,tr = F̃
∣∣∣
tn+1

BE
∣∣
tn

F̃T
∣∣∣
tn+1

for the elastic strain we would get without the

effect of plasticity (trial elastic strain). We also use BE,n+1 for BE
∣∣
tn+1 for slightly cleaner

notation.

If the singular value decomposition of FE is given by FE = UEΣEVET , then BE,tr =

FEFET = UEΣE2
UET . For isotropic yield surface function, we show in Section A.2 that ∂y

∂τ

and BE,tr have the same eigenvectors, so G(τ (BE,n+1)) = UEĜ(ΣE,n+1)UET , and BE,n+1 =

21

UE
(
ΣE,n+1

)2
UET , then we may write Equation (4.19) as

UE
(
ΣE,n+1

)2
UET = exp

(
−2δγUEĜ(ΣE,n+1)UET

)
UEΣE2

UET (4.23)

= UE exp
(
−2δγĜ(ΣE,n+1)

)
ΣE2

UET . (4.24)

Multiplying both sides of Equation (4.23) by UET on the left and by UE on the right, and

taking log results in

2 ln
(
ΣE,n+1

)
= −2δγĜ(ΣE) + 2 ln

(
ΣE
)
. (4.25)

Writing the above equation in Hencky-strain by defining

εtr := ln ΣE and εn+1 := ln ΣE,n+1. (4.26)

Here we use εtr and εn+1 instead of the more descriptive εE,tr and εE,n+1 for brevity of nota-

tion, but we keep in mind that the Hencky-strain is defined to describe the admissible stress

and therefore corresponds to the elastic deformation FE. We may simplify and rearrange

Equation (4.25)

εtr − εn+1 = δγĜ. (4.27)

This is our discrete flow rule. In the return mapping algorithm, we want to solve for εn+1

satisfies Equation (4.27) subject to the constraint

y(τ (εn+1)) ≤ 0. (4.28)

Solving Equation (4.27) and (4.28) can be seen as a ray-cone intersection problem.

Equation (4.27) has no solution if trace(εtr) ≥ 0. In this case the sand is in extension

and we project to the tip εn+1 = 0. Recall the expression for G from Equation (4.17), in

principal space this becomes Ĝ = dev(τ̂)
‖dev(τ̂)‖F

, where τ̂ and Ĝ are diagonal. From (§A.3) we

22

have

τ̂ =
∂ψ

∂ε
= 2µεn+1 + λtr(εn+1)I

because we use the energy density ψ(ε) = µtr((ε)2)+ 1
2
λtr(ε)2. Thus Ĝ = dev(εn+1)

‖dev(εn+1)‖F
. Using

Equation (4.27), we can see that tr(ε) = tr(εn+1), since tr(Ĝ) = 0. Thus

dev(εtr)− dev(εn+1) = δγ
dev(εn+1)

‖dev(εn+1)‖F
,

and collecting like terms we have dev(εtr) =
(

1 + δγ
‖dev(εn+1)‖F

)
dev(εn+1). Thus Ĝ =

dev(εtr)
‖dev(εtr)‖F

. Then plugging the equation for the ray εn+1 = ε−δγ dev(εtr)
‖dev(εtr)‖F

, into the equation

for the cone y(τ (εn+1)) = 0, and solving for δγ, we obtain

δγ = ‖dev(εtr)‖F +

(
dλ+ 2µ

2µ

)
trace(εtr)α. (4.29)

If δγ ≤ 0 we intersect the cone from the inside and thus don’t need to project and have

εn+1 = εtr. Otherwise we project to the cone and we finally have our update rule for ε

εn+1 = εtr − δγεtr.

4.4 Results

4.4.1 Flowing and Piling

We demonstrate the accuracy of our model by showing the characteristic behaviors of sand

flowing and piling. In Figure 4.1, we simulate sand flowing inside an hourglass. The sand

forms a smooth granular flow and piles up at the bottom. Figure 4.2 shows a stream of sand

inflow hitting a high frictional surface. We compare this simulation with real world footage.

Our model successfully captures the interesting avalanche instability [42] of this experiment.

23

Figure 4.1: Sand falls through the narrow neck of an hourglass, accumulating at the bottom.

Figure 4.2: Sand is poured from a spout into a pile in a lab (left) and with our method
(right)

4.4.2 Easy Tuning

In Figure 4.3, we simulate columns of dry sand with different friction angles collapsing on

the ground. Different friction angles directly affect the interaction between sand grains,

therefore the final piling angle. While the real Young’s modulus of sand is 3.537 × 107,

we found that sometimes choosing a moderately smaller value does not change the visual

appearance. In Figure 4.4, we show 2D inflow simulations with different Young’s modulus. A

moderately smaller Young’s modulus improves the efficiency of the implicit solve. However,

the material may exhibit jiggling behavior if it is too small. We assert physically accurate

24

Young’s modulus is always the best choice unless an artistic elastic effect is desirable.

Figure 4.3: Varying the friction angle changes the shape of a pile of sand. A larger angle
produces a taller sand pile with steeper sides.

E = 1kPa E = 10kPa

E = 100kPa E = 1000kPa

Figure 4.4: This simulation shows the effects of Young’s modulus on the behavior of a
simulation. Sand with a very low Young’s modulus tends to be bouncy. The behavior is
more like sand as the Young’s modulus approaches its physical value.

4.4.3 Two-way Coupling

The benefits of using MPM include automatic self collision and coupling between different

materials. In Figure 4.5, we show an elastic ball interacting with a dry sand castle. MPM

naturally handles the two-way coupling without requiring any additional treatment other

than assigning different constitutive models to different particles.

4.4.4 Drawing and Scooping

We further demonstrate the versatility of our method by performing various tasks in a sand

box. Figure 4.6 shows drawing a butterfly with a wooden stick. Figure 4.7 shows raking

sand in a Zen garden. Figure 4.8 shows scooping sand.

25

Figure 4.5: A sand castle is hit with a deformable ball while falling. The sand and ball are
fully coupled in the imulation.

Figure 4.6: A stick is dragged through a bed of sand, tracing out a butterfly shape in the
sand.

Figure 4.7: A rake is dragged around a rock, producing a circular pattern in the sand.

Figure 4.8: A shovel digs through sand and pushes it aside.

26

CHAPTER 5

Thin shell with frictional contact

Terzopoulos et al [38, 37] pioneered cloth simulation by presenting codimensional elastic

objects by a Lagrangian mesh. Such approaches are still primarily used today. With the

Lagrangian mesh model, individual particles are tracked and mesh polygons or segments are

used to approximate the deformation gradient. The mechanics of elasticity are naturally dis-

cretized with this Lagrangian view. However additional modeling is required to include the

effects of self and external contact since these phenomena may cause interactions between

distant regions in the mesh. We present a new approach for codimensional elasticity that

uses MPM discretization to model frictional contact with a continuum view. Unlike tradi-

tional approaches, our elastoplastic description completely characterizes all collision/contact

response in the continuum and requires no separate post-processing.

In this chapter, we first discuss our notation as well as related mathematical details

(Section (§5.1)). We then outline the kinematic details of continuum shells and our splitting

into Kirchhoff-Love and shearing/compression modes (Section (§5.2)). Next, we describe our

continuous elastoplasticity model in terms of the potential energy density in the shell and

its relation to plasticity constraints and associated return mappings for frictional contact as

well as wrinkling and denting (Section (§5.3)). We then discuss subd FEM discretization

of the potential energy and the derivatives of the energy with respect to discrete degrees

of freedom (Section (§5.4)). Lastly we show that, as with many models defined in terms

of an elastic potential [34, 24, 23], it is straightforward to discretize our model with MPM

(Section (§5.5)).

27

5.1 Mathematical Details and Notation

In addition to the general convention of notations we adopt in Section 3.1, we introduce a

few more for the convenience of this chapter. We use brackets around bold face to denote

matrices associated with a tensor in a given basis (e.g [M] ∈ R3×3 is the matrix of entries

mij ∈ R where tensor m = mijei ⊗ ej). We use the convention that Greek indices (e.g. aα)

range from 1−2 and Latin indices (e.g. bi) range from 1−3. We use hat notation to indicate

the upper left 2× 2 sub matrix of a given matrix (e.g.
[
M̂
]
∈ R2×2 consists of entries mαβ

from [M] ∈ R3×3). Unless otherwise stated, we use the summation convention for repeated

indices. For a set of (covariant) basis vectors vi, we use vj to denote the corresponding

contravariant basis vectors satisfying vi · vj = δji .

We assume shells have constant thickness τ and use ωτ = ω × [− τ
2
, τ

2
] to parameterize

the domain of the shell where ω is two-dimensional parameter domain for the mid-surface of

the shell. We use x̄ : ω → Ω̄ and x : ω → Ωt to denote the mappings from the mid-surface

parameter domain to the reference (Ω̄) and time t (Ωt) configurations of the mid-surface.

Similarly we use r̄ : ωτ → Ω̄τ and r : ωτ → Ωτ
t to denote mappings from the shell parameter

domain to the reference (Ω̄τ) and time t (Ωτ
t) configurations of the shell. We illustrate this

in Figure 5.2. We will use ξ = (ξ1, ξ2, ξ3) ∈ ωτ to denote coordinates in parameter space.

We refer to surfaces s(ξ1, ξ2) = r(ξ1, ξ2, ξ̂3) in the shell with fixed values of the thickness

parameter ξ̂3 as laminae and we refer to lines in the l(ξ3) = r(ξ̂1, ξ̂2, ξ3) with fixed values of

the surface parameters ξ̂1, ξ̂2 as fibers. We illustrate fibers and laminae in Figure 5.1.

φKL φS

āα

ḡα

ḡ3 = ā3

aα

gKLα

gKL3 = aKL3

aα

gα

g3

Figure 5.1: Continuum shell/Kirchhoff-Love splitting. Mid-surface tangents and fibers
are shown in red. Laminae are shown as dashed curves, and the local frame at a point on a
lamina is shown in black. On the left is the undeformed reference configuration, while the
deformed configuration is on the right, and the middle shows the intermediate Kirchhoff-Love
deformation.

28

5.2 Shell Kinematics

ω

Ωt

Ω̄
x̄

x

ωτ

Ωτ
t

Ω̄τ

r

r̄

ΩKL,τ
t

φS

φKL

φ = φS ◦ φKL

Figure 5.2: Shell Kinematics. On the left, the mid-surface mappings are illustrated, and
on the right the corresponding volumetric shell mappings are shown.

We assume the kinematics of a continuum shell

r̄(ξ) = x̄(ξ1, ξ2) + ξ3ā3(ξ1, ξ2), r(ξ) = x(ξ1, ξ2) + ξ3a3(ξ1, ξ2) (5.1)

where ā3 is the unit normal to the mid-surface and a3 is the stretched and sheared image of

ā3 under the motion of the shell. We use āα = ∂x̄
∂ξα

to denote the tangents to the mid-surface

of the reference shell. When combined with ā3 = ā1×ā2

|ā1×ā2| , they form a complete basis for R3

(see Figure 5.1).

We decompose the motion of the shell into two steps

r(ξ) = φS(rKL(ξ)). (5.2)

The first step rKL : ωτ → ΩKL,τ
t does not see shearing or compression normal to the mid-

surface. That is, lines originally normal to the mid surface rotate and translate with the

mid-surface so that they remain constant length and normal to the mid-surface. This is

29

consistent with a Kirchhoff-Love kinematic assumption

rKL(ξ) = x(ξ1, ξ2) + ξ3a
KL
3 (ξ1, ξ2). (5.3)

Here aKL3 is the unit normal to the mid-surface which satifsies aKL3 = a1×a2

|a1×a2| where aα =

∂x
∂ξα

. The second step φS : ΩKL,τ
t → Ωτ

t does not move the mid-surface but captures the

shearing and compression/extension of material normal to the mid-surface. That is, lines

that remained normal to the mid-surface and with constant length in the Kirchhoff-Love

mapping rKL are allowed to change length and shear under the mapping φS, thus becoming

non-normal to the mid-surface in general (see Figure 5.1).

5.2.1 Deformation Gradient

In Section 2.2, we introduced how to represent and evolve deformation gradient F at each

point X in space, and later on in Chapter 4 , each particle represents a small chunk of

material that exhibits constitutive behaviors in response to the deformation gradient Fp (or

FE
p in presence of plasticity) associated to this particle. In this section, we will discuss how

to represent the deformation gradient in continuum shell.

The motion of the shell from the reference configuration to the time t configuration is

then obtained from the composition φ : Ω̄τ → Ωτ
t , φ(X) = r(r̄−1(X)) for X ∈ Ω̄τ . The

elastic and frictional contact responses of our model are characterized in terms of the spatial

derivative (our deformation gradient) of this mapping. The deformation gradient of the

motion is F = ∂φ
∂X

= ∂r
∂ξ

(
∂r̄
∂ξ

)−1

, which can further be expressed in terms of derivatives from

the parameter space gi = ∂r
∂ξi

and ḡi = ∂r̄
∂ξi

as

F = gi ⊗ ḡi.

Here ḡi are the contravariant basis vectors associated with ḡi. Furthermore, the composition

30

of motion in Equation (5.2) leads to the multiplicative decomposition

F = FSFKL, FS = gi ⊗ gKL,i, FKL = gKLi ⊗ ḡi (5.4)

where gKLi = ∂rKL

∂ξi
and gKL,j form the corresponding contravariant basis. We note that the

third contravariant counterparts to the Kirchhoff-Love and material configuration bases are

the same as their covariant counterparts because of the preservation of mid-surface normals

in these mappings. That is, gKL3 = gKL,3 = aKL3 and ḡ3 = ḡ3 = ā3 since gKLα · gKL3 = 0 and

ḡα · ḡ3 = 0.

5.2.2 Plasticity

As in Jiang et al.[23], we use an elastoplastic decomposition of the motion to resolve frictional

contact. Following that approach, we allow for plastic deformation in the fiber directions to

enable material separation and frictional sliding. However, in order to decouple the frictional

contact stress from the bending stress, we only apply the frictional contact elastoplastic

decomposition to the shearing component of the motion. Furthermore, unlike in Jiang et

al.[23] we also allow for plastic deformation in the laminae to account for yielding and

denting of the shell. This plastic decomposition is applied to the motion in the Kirchhoff-

Love component of the motion.

The frictional contact elastic stress model in Jiang et al. [23] penalizes compression

and shearing of the surface normals. Since the Kirchhoff-Love component of the motion

does not see any sliding or compression relative to the mid-surface, it is not capable of

resolving frictional contact in this manner. We therefore apply this model to the shearing

and compression/extension component of the shearing motion FS = FS,EFS,P as

FS,E = gα ⊗ gKL,α + aE3 ⊗ gKL3 , (5.5)

FS,P = gKLα ⊗ gKL,α + aP3 ⊗ gKL3 . (5.6)

Here aE3 represents the shearing and compression/extension of normals in the shell that is

31

penalized elastically. Coulomb friction constrains how much shearing and compression is

penalized. aP3 is the discarded shearing and extension in the fiber direction from plastic

yielding associated with this constraint. They are related through FS,EaP3 = a3. We note

FS,P does not affect components in the laminae since we do not want the frictional contact

response to couple with the elastoplasticity of the Kirchhoff-Love component of the shell

motion.

To allow for yielding and denting of the shell in response to loading, we decompose

the Kirchhoff-Love component of the motion into lamina elastic and plastic parts FKL =

FKL,EFKL,P

FKL,E = gKLα ⊗ gP,α + gKL3 ⊗ ḡ3, (5.7)

FKL,P = gPα ⊗ ḡα + ḡ3 ⊗ ḡ3 (5.8)

Here the form of FKL,P is designed to not affect the motion normal to the mid-surface

since the elastoplasticity of denting and wrinkling is expressed only in terms of the lamina

components of defomraiton. The exprssion for FKL,E is then what remains to satisfy the

constraint FKL = FKL,EFKL,P . We note that the gPα (with gPα · ḡ3 = 0) in Equation (5.8) for

FKL,P express the forgotten deformation of plastic yielding in the lamina that is associated

with denting and wrinkling. The {gPα, ḡ3} are the contravariant counterparts to {gPα , ḡ3}.

Lastly, ḡ3 is the same in the covariant and contravariant bases as in Equation (5.4).

5.3 Elastic Stress and Plastic Constraints

In this section, we discuss the elastic stress and plastic constraints used in the shell model.

We first define our elastoplastic constitutive response to deformation and frictional contact

in terms of potential energy. This consists of the response to Kirchhoff-Love motion, and

compression and shearing motions. In the sections that follow, we discuss the two potential

energy and their yield surface and return mapping accordingly.

32

5.3.1 Elastic stress

We define our elastoplastic constitutive response to deformation and frictional contact terms

of potential energy in the shell. We decompose the total elastic potential as a sum of

contributions from the Kirchhoff-Love (lamina elasticity, denting wrinkling etc.) and shearing

(frictional contact) potentials. The contribution from the Kirchhoff-Love motion is

ΨKL =

∫
ω

∫ τ
2

− τ
2

ψ(FKL,E)

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ. (5.9)

and the total elastic potential energy of the shell is

ΨCS = ΨKL +

∫
ω

∫ τ
2

− τ
2

χ(FS,E)

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ (5.10)

where ψ(FKL,E) is the elastic potential energy density of the Kirchhoff-Love motion and

χ(FS,E) is the energy density of the normal shearing and compression in the continuum shell

motion.

5.3.2 Bending and Lamina Potential

The energy density ψ(FKL,E) penalizes only the deformation in the laminae (zero transverse

normal stress) since the Kirchhoff-Love kinematics preclude shearing and compression of the

fibers. According to Section A.3, the stress in the material is the derivative of this potential

with respect to strain. Our approach supports any potential used in Kirchhoff-Love shell

models. In particular we use the orthotropic model for woven fabrics from Clyde et al. [10]

in Figures 5.11a and 5.11b. Here we provide the derivation of a simple energy density useful

for applications with denting that is isotropic in the lamina directions while satisfying the

zero transverse normal stress condition.

With Kirchhoff-Love kinematics, the lamina directions ḡα = āα + ξ3ā3,α and gKLα =

aα + ξ3a
KL
3,α are always tangent to the mid-surface since ḡα · ā3 = gKLα · aKL3 = 0. In order to

satisfy the zero transverse normal stress conditions, we design a potential density with respect

to the lamina directions by first writing the Kirchhoff-Love deformation in the reference mid-

33

surface lamina/fiber basis FKL,E = FKL,E
ij āi⊗ āj. Here the directions āα are the tangents to

the midsurface in the reference configuration and ā3 is the normal. This choice of basis more

clearly identifies deformations in the laminae and normal directions since FKL,E
αβ are then

components of deformation in the laminae. The right Cauchy-Green strain is C = Cijāi⊗ āj

with Cij = FKL,E
ki FKL,E

kj . We define the matrix [Ĉ] ∈ R2×2 with entries Cαβ. This is the

upper left 2× 2 block of the matrix of Cij entries and it represents strain in the lamina. As

in Chapter 4, we use a model that is quadratic in the right Hencky-strain
[
εR
]

= 1
2

log([Ĉ])

ψ(FKL,E) = µεRαβε
R
αβ +

λ

2
(εRδδ)

2. (5.11)

Here the εRαβ are the entries in
[
εR
]
∈ R2×2 and µ, λ are Lame parameters that can be set

intuitively from Young’s modulus and Poisson ratio to control stiffness and incompressibility

in the lamina. We choose the quadratic in Hencky strain model because it simplifies the

return mapping during plastic yielding (see Section (§B.6)).

Similar to Chapter 2, the Kirchhoff stress τ can derived as

τKL = ταβq
KL,E
α ⊗ qKL,Eβ , τKLαβ = 2µεLαβ + λεLγγδαβ. (5.12)

Here we write the stress in terms of the basis defined by the directions qKL,Ei obtained from

the QR decomposition FKL,E = rKL,Eij qKL,Ei ⊗ āj with respect to the reference lamina/fiber

basis āj. Since the Kirchhoff-Love component of the motion preserves normals to the mid-

surface, the first two directions qKL,Eα are tangent to the deformed lamina and the third

direction qKL,E3 is normal to the mid-surface. Therefore, since τKL is expressed only in

terms of qKL,Eα , we see that it satisfies the zero transverse normal stress condition since it

has no components in the directions normal to the laminae. We use εLαβ to denote the entries

in the left Hencky-strain matrix [εL] = 1
2

log([r̂KL,E][r̂KL,E]T) ∈ R2×2. Here, [r̂KL,E] ∈ R2×2

is the matrix with entries rKL,Eαβ . These are the components of the deformation gradient

FKL,E related to the lamina strain.

In order to produce permanent denting and wrinkling phenomena resulting from excessive

34

straining, we introduce a notion of yield stress. Intuitively, stresses satisfying the yield stress

criteria are those associated with elastic, non-permanent deformation in the shell. Those that

do not satisfy the condition are non-physical and permanent plastic deformation will occur

to prevent them from happening. We apply the von Mises yield condition to the Kirchhoff-

Stress in Equation (A.5). This condition states that the shear stress (or magnitude of the

deviatoric component of the stress) must be less than a threshold cvM before permanent

plastic deformation occurs

fvM(τ) = |τ − tr(τ)

3
I|F ≤ cvM . (5.13)

This condition defines a cylindrical region of feasible states in the principal stress space since

fvM (τ) =

√
2

3
(τ1

2 + τ2
2 + τ3

2 − (τ1τ2 + τ2τ3 + τ1τ3)) (5.14)

where τ =
∑

i τiui ⊗ ui with principal stresses τi. Stresses with principal values in the

cylinder do not produce any permanent deformation. Note that zero stress is inside the

cylinder. As deformation becomes significant enough that the principal stresses reach the

boundary of the cylinder, permanent plastic denting and wrinkling will occur. The zero

transverse normal stress nature of τKL =
∑

α τ
KL
α uα ⊗ uα means that its principal stresses

are always in a plane and thus the feasible region is ellipsoidal intersection of the cylinder

and the plane.

As we described in Section 3.7, the yield condition is satisfied via projection (or return

mapping) of the stress to the feasible region. Specifically, We use FKL,Etr
, FKL,P tr

to denote

the trial state of elastoplastic strains with associated trial stress τKL
tr

. The trial stress τKL
tr

is then projected to the feasible region to create τKL which satisfies the yield condition. The

elastic and plastic strains are then computed from the projected stress. We use FKL,E,FKL,P

to denote final elastic and plastic deformation associated with the projected stress τKL. The

product of the projected elastic and plastic deformation gradients must be equal to the

35

original deformation gradient, creating a constraint on the return mapping

FKL = FKL,Etr
FKL,P tr

= FKL,EFKL,P . (5.15)

We describe the process as FKL,Etr
,FKL,P tr → FKL,E,FKL,P .

The projection is naturally done in terms of the QR decomposition of the trial elastic

deformation gradient FKL,Etr
= rKL,Eαβ

tr
qKL,Eα ⊗ āβ + qKL,E3 ⊗ ā3. The trial principle stresses

are

τKL,tr1 = (2µ+ λ) log(σEtr
1) + λ log(σEtr

2) (5.16)

τKL,tr2 = (2µ+ λ) log(σEtr
2) + λ log(σEtr

1) (5.17)

where σEtr
α are the singular values of the matrix [r̂KL,Etr] ∈ R2×2 with entries rKL,Etr

αβ from

the QR decomposition

[r̂KL,Etr] = [UE]

 σE1
tr

σE2
tr

 [VE]T . (5.18)

We project the trial τKL,trα to the intersection of the von Mises yield surface and the (1, 2)

plane to obtain the projected τKLα from which

 log(σE1)

log(σE2)

 =

 2µ+ λ λ

λ 2µ+ λ

−1 τKL1

τKL2

 . (5.19)

We then express the deformation gradient associated with this stress projection as FKL,E =

FKL,E
αβ qKL,Eα ⊗ āβ + qKL,E3 ⊗ ā3 where FKL,E

αβ are the components of the elastic deformation

gradient

[F̂KL,E] = [UE]

 σE1

σE2

 [VE]T . (5.20)

36

The projected plastic deformation gradient is computed from FKL,P = FKL,E−1
FKL in order

to maintain the constraint in Equation (5.15). We provide more detail in this derivation in

Section B.6.

5.3.3 Frictional Contact Potential

As in Jiang et al.[23], we resolve collision and contact through the continuum. We design

the potential energy density χ(FS,E) to penalize compression and shearing in the direction

normal to the mid-surface. The deformation of the fiber from the Kirchhoff-Love configu-

ration is given by aE3 = FS,EaKL3 . We decompose this into shear (aE3S) and normal (sE3 aKL3)

components aE3 = aE3S + sE3 aKL3 where sE3 = aE3 · aKL3 . As material normal to the cloth is

compressed, the normal component sE3 will decrease and as the material separates, it will in-

crease. Similarly, as material slides tangentially to the shell |aE3S| will increase. We therefore

write our potential as

χ(FS,E) =
γ

2
|aE3S|2 + f(sE3) (5.21)

where γ represents the amount of shear resistance and

f(sE3) =

 kc

3
(1− sE3)3 0 ≤ sE3 ≤ 1

0 sE3 > 1
(5.22)

represents the resistance to compression/contact which increases with the parameter kc > 0.

This potential is designed to penalize increasing compressive contact and shear. Note that

in the case of fiber elongation (sE3 > 1) there is no elastic penalty as this would be associated

with cohesive contact.

The potential in Equation (5.21) is constant in the fiber direction since aKL3 is constant

along the fiber from the continuum shell kinematics. Therefore it is convenient to express

the contact potential χ at all points in the fibers in terms of their values at the mid-surface

37

χ(FS,E(ξ1, ξ2, ξ3)) = χ(FS,E(ξ1, ξ2, 0)) since

∫
ω

∫ τ
2

− τ
2

χ(FS,E)

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ =

∫
ω

χ(FS,E)

∫ τ
2

− τ
2

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ (5.23)

in Equation (5.10). On the mid-surface FS,E(ξ1, ξ2, 0) = aα⊗aKL,α+aE3 ⊗aKL3 . Furthermore,

since the potential varies with the normal and tangential components of aE3 , it is equivalent

to write the energy as a function of the tensor aα⊗ āα + aE3 ⊗ ā3 since its QR decomposition

with respect to the āi basis satisfies

aα ⊗ āα + aE3 ⊗ ā3 = rS,Eij qS,Ei ⊗ āj (5.24)

and the energy density can then be written in terms of the QR decomposition

χ(FS,E(ξ1, ξ2, 0)) =
γ

2

(
rS,E13

2
+ rS,E23

2
)

+ f(rS,E33). (5.25)

This follows because the normal and shear components of aE3 can be written in terms of

the basis vectors qS,Ei from the QR decomposition aE3 = rS,Ei3 qS,Ei . With this convention,

sE3 = rS,E33 since span{aα} = span{qS,Eα } and qS,E3 = aKL3 . Using sEi = rS,Ei3 for conciseness

τ S = γsEi s
E
j qS,Ei ⊗ qS,Ej +

(
f ′(sE3)sE3 − γsE3

2
)

qS,E3 ⊗ qS,E3 . (5.26)

We provide a more detailed derivation of energies defined in terms of the QR decomposition

and this specific case in Section 5.3.4.

5.3.4 Frictional Contact Yield Condition and Return Mapping

With a continuum view of frictional contact, Coulomb friction defines a constraint on the

types of stress that are admissible. As in Section 4.1, the contact force per unit area across

a surface with normal n is σn. In the shell, the contact direction is aKL3 . Coulomb friction

38

places a constraint on the stress as

|tS| ≤ −cFσn (5.27)

where σaKL3 = σna
KL
3 + tS. Here σaKL3 is contact force per unit area, σna

KL
3 is its normal

component and tS is the shearing component orthogonal to aKL3 . The condition in Equa-

tion (5.27) states that the magnitude of the shearing component can be no larger than a

coefficient of friction times the normal component, with the convention that no shearing is

allowed in the case of σn > 0 since this would be a separating rather than a compressive

state. We note that each object can have its own coefficient of friction which provides a

simple way of modeling interactions between many objects.

Recall that the Kirchhoff stress is related to the Cauchy stress as τ = det(F)σ. By design,

the Kirchhoff-Love Kirchhoff stress has no component in the aKL3 direction τKLaKL3 = 0.

Therefore, the Coulomb friction constraint applies only to the shearing Kirchhoff stress τ S.

Plugging in the expression for τ S from Equation (5.26) we can see that the continuum stress

Coulomb friction condition is

√
sE1

2
+ sE2

2 ≤


cF k

c

γ

(
1− sE3

)2
, 0 < sE3 ≤ 1

0, sE3 > 1.
(5.28)

Whereas the plastic constraint associated with denting involved the principle stresses of τKL,

only the components sEi = rS,Ei3 of the elastic aE3 in the qS,Ei basis are constrained under the

Coulomb condition. It is satisfied with a return mapping of trial elastic aE3
tr

= sEi
tr
qS,Ei to

the projected aE3 = sEi qS,Ei where the trial and projected coefficients are related through

 sEα = h(aE3
tr

)sEα
tr
, sE3 = sE3

tr
, when 0 < sE3

tr ≤ 1

sEα = 0, sE3 = 1, when sE3
tr
> 1

(5.29)

39

with

h(aE3
tr

) =


cF k

c(1−sE3
tr)

2

γ

√
sE1

tr2
+sE2

tr2
,

√
sEtr

1
2

+ sEtr
2

2
> cF k

c

γ

(
1− sEtr

3

)2

1,

√
sEtr

1
2

+ sEtr
2

2 ≤ cF k
c

γ

(
1− sEtr

3

)2
.

(5.30)

This is the projection from Jiang et al.[23] where 0 < sE3
tr ≤ 1 implies material is compressed

from contact in the normal direction. In this case, the function h regulates the amount of

shearing allowed relative to compression from the Coulomb constraint. In the case sE3
tr
> 1,

material is separating in the normal direction and thus no resistance to shearing or compres-

sion is allowed.

5.4 Subdivision and B-spline FEM

The Kirchhoff-Love kinematics require higher regularity for mid-surface interpolating func-

tions in FEM calculations. This arises from the use of the normal aKL3 in the definition of

the kinematics in Equation (5.3) since the deformation gradient in the shell then depends on

second order derivatives of the kinematics of the mid-surface. Technically the requirement

is H2 regularity, meaning that the interpolating functions and all their derivatives of order

less than or equal to two are square integrable over the mid-surface. In practice, this means

that the interpolating functions must also have continuous first derivatives (C1 continuous)

over the mid-surface. This is a challenging constraint on the interpolating functions. We

represent the shell mid-surfaces as Catmull-Clark subdivision surfaces since they posses the

required regularity.

The Catmull-Clark subdivision scheme takes as input an arbitrary polygonal mesh and

returns a subdivided, refined mesh. The input polygonal mesh is referred to as the control

mesh, and the limiting result of the subdivision process yields a H2 surface [8, 32]. As the

output mesh from Catmull-Clark subdivisions only consists of quadrilateral faces, we may

assume that all input meshes have quadrilateral faces by replacing the control mesh with its

first subdivision if necessary.

40

We denote the world space locations of the control points by xp, where p = 1, ..., np and

np is the number of control points. We use xKL =
(
x1,x2, . . . ,xnp

)T
to denote the collection

of all xp. The limiting surface from subdivision is represented as

x(xKL, ξ1, ξ2) = xpN
SD
p (ξ1, ξ2),

where NSD
p ∈ H2

(
ω → [0, 1]

)
is the FEM basis weight function corresponding to the control

point p. The NSD
p have only local support and for each (ξ1, ξ2) ∈ ω, only a sparse subset

of NSD
p (ξ1, ξ2) are nonzero. We use the OpenSubdiv library to evaluate the basis functions

NSD
p (ξ1, ξ2) and their first and second derivatives.

For each control mesh face, we sample rectangular quadrature points on either side of the

face with ξ3 = − τ
4

and ξ3 = τ
4

for energy density evaluation. The generalized force on each

of the control points is calculated as the negative derivative of the Kirchhoff-Love energy in

Equation (5.10) which we approximate using quadrature

ΨKL =
∑
q

V 0
q ψ(FKL,Etr

q (xKL)) (5.31)

The derivatives satisfy

fKLp = −
∂ΨKL(FKL,Etr

q (xKL))

∂xp
(5.32)

= −
∑
q

V 0
q

∂ψ

∂F
(FKL,Etr

q (xKL))) :
∂FKL,Etr

q

∂xp
(xKL). (5.33)

Here ξq1, ξq2 are the locations of the quadrature points in parameter space and V 0
q are their

associated volumes. For each quadrature point q, the Kirchhoff-Love deformation gradient

at mid-surface configuration xKL is computed from

FKLq (xKL) =
3∑
i=1

gqi(x
KL)⊗ ḡiq. (5.34)

41

Furthermore, in Equation (5.33),

∂ψ

∂F
(FKL,Etr

q (xKL)) = τKL(FKL,Etr
q (xKL))

(
FKL,Etr
q (xKL)

)T
where τKL is from Equation (A.5). This relation follows from the definition of the first

Piola-Kirchhoff stress and its relation to the Kirchhoff stress [5].

The trial elastic deformation FKL,Etr and its derivative with respect to control points

∂FKL,Etr
q

∂xp
(xKL) are computed assuming no further plastic flow over the time step

FKL,Etr
q = FKL

q FKL,P,n
q

−1
(5.35)

∂FKL,Etr
q

∂xp
(xKL) =

∂FKL
q

∂xp
(xKL)FKL,P,n

q

−1
(5.36)

Note that when calculating the generalized force in Equation (5.32)-(5.33), FKL,Etr is used

even though the associated stress may not satisfy the yield criteria. This is a consequence

of the variational FEM discretization of the analogous formula for the stress in terms of

derivative of the strain energy density[5]. We provide the calculation of FKL
q (xKL) and

∂FKLq
∂xp

(xKL) in Section B.1.

5.5 MPM Discretization

We use MPM to discretize our elastoplastic model for frictional contact. We represent the

shell using particles connected with subd interpolation as in (§5.4). That is, we consider

the subd FEM control point as particles in an MPM method. This allows us to resolve

contact and collision automatically through the elastoplastic constitutive behavior when we

transfer to the background grid. There is no need for any collision detection or resolution

other than that inherent in the MPM discretization of the continuum model. Furthermore,

our approach naturally allows for coupling with materials modeled in previous chapters (e.g.

granular sand, snow and soil) simulated with MPM.

we classify particles as either: (i) traditional MPM particles, (ii) subd particles or (iii)

42

x
x

x
x

x

x

x

x

X

traditional MPM particles I(i)

subd particles I(ii)

continuum shell
shearing/compression particles I(iii)

quadrature points I(iv)

Figure 5.3: Particle type classification. A schematic illustration of the different types of
MPM particles and quadrature points.

continuum shell shearing/compression particles. Particles of type (i) are used for coupling

with traditional MPM materials like sand or snow. Types (ii) and (iii) are associated with

elasticity and frictional contact respectively in the subd shell mesh. Furthermore, particles of

type (ii) are control vertices in xKL (see (§5.4)) for the subd shell and particles of type (iii)

are quadrature points for the shearing component of the energy in Equation (5.10) and lie on

the subd surface. For particles of type (i), we store the elastic deformation gradient FE,n
p . For

particles of type (iii), we store the time tn elastic shearing aEp3 and the parameters in the mid-

surface (ξp1, ξp2) associated with the particle. We use the notation I(i), I(ii), I(iii) to represent

the sets of particle indices of types (i), (ii) and (iii) respectively. At each of the quadrature

points used in the Kirchhoff-Love energy, we store the deformation gradient and its elastic

and plastic components FKL,n
q , FKL,E,n

q , FKL,P,n
q , the reference contravariant basis vectors

ḡiq needed for deformation gradient computation, and the mid-surface parameters (ξp1, ξp2)

associated with the point. Although these quadrature points are not MPM particles and

are not used in transfers to and from the grid etc., we additionally use I(iv) to denote the

collection of quadrature points used in the Kirchhoff-Love energy. We illustrate all particle

and quadrature point types in Figure 5.3.

We follow the MPM algorithm presented in Chapter 3. In particular, the transfer to

grid, and transfer to particles steps are identical to Section 3.3 and Section 3.5. However,

we need to take care in the force computation and other plasticity related steps. We present

43

the details in this section.

5.5.1 Grid Momentum Update

The potential energy Ψ is a sum of the contributions from the shell ΨCS and from traditional

MPM particles ψM as in Equation 3.5 used for coupling multiple materials.

Ψ(x̂) =
∑
p∈I(i)

ψM
(

FE,tr
p (x̂)

)
V 0
p + ΨCS(x̂) (5.37)

ΨCS(x̂) =
∑

p∈I(iii)
χ

(
apα(xKL(x̂))⊗ āpα

+ aE,trp3 (xKL(x̂))⊗ āp3

)
V 0
p

+
∑
q∈I(iv)

ψ

(
FKL,Etr
q (xKL(x̂))

)
V 0
q . (5.38)

Here ψM is the contribution from the standard MPM potential discretization and ΨCS is the

contribution from the continuum shell. An advantage of the MPM approach is that coupling

is achieved between any materials whose constitutive behaviors can be defined from potential

energies. With any such models, coupling is achieved by first representing the motion of the

materials in a Lagrangian way (e.g. discrete particles or Lagrangian meshes) and defining

their motion and the way it effects their potential energy in terms of interpolation from the

grid. With this model, coupling is a simple as defining the total potential energy as the sum

of the varied materials.

The energy ΨCS is the sum of the discretization of the Kirchhoff-Love component in

Equation (5.10) given in Equation (5.31) and the frictional contact energy in Equation (5.23)

obtained from the quadrature points q ∈ I(iv) and p ∈ I(iii) respectively. We highlight the

dependence of these potentials on the grid motion x̂.

For particles of type (i), this dependence follows from the updated Lagrangian formula-

tion as in Equation Equations (3.6) . For particles of type (iii), the dependence follows from

44

the updated Lagrangian

aE,trp3 (x̂) =

(∑
i

x̂i ⊗∇wnip

)
aE,np3 (5.39)

and from interpolation the xKL(x̂) in Equation (5.40) in apα(xKL(x̂)). The mid-surface

control points for the shell are interpolated from the grid degrees of freedom as

x̂p =
∑
i

x̂iw
n
ip, p ∈ I(ii). (5.40)

This interpolation also affects the discrete Kirchhoff-Love term through quadrature points

q ∈ I(iv).

Taking the x̂ dependence into account and using the chain rule, the potential energy

based forces obtained from the gradient of Ψ with respect to x̂ are

∂Ψ

∂xi

(x̂) = f
(i)
i (x̂) + f

(ii)
i (x̂) + f

(iii)
i (x̂) (5.41)

f
(i)
i (x̂) =

∑
p∈I(i)

∂ψM

∂FE
(FE,tr

p (x̂))FE,n
p

T∇wnipV 0
p (5.42)

f
(ii)
i (x̂) =

∑
p∈I(ii)

wnipf
KL
p (xKL(x̂)) (5.43)

f
(iii)
i (x∗) =

∑
p∈I(iii)

τ Sp ãβp :
∂apβ
∂xp

wnip + τ Sp ã3
p : ∇wnipa

E,n
p3 (5.44)

In Equation (5.43), fKLp is the generalized Kirchhoff-Love force from Equation (5.32). In

Equation (5.44), the stress τ Sp is from Equation (5.26) and the vector ã3
p is the third con-

travariant basis vector with respect to the covariant basis {aα(x̂), aE,tr3 (x̂)}. We refer to

Section B.2 for the calculation.

5.5.2 Update Positions and Trial Elastic State

For particles of type (i) and (ii), positions are moved with the interpolated grid node veloc-

ities. For particles of type (iii), positions are updated based on interpolation from updated

45

particles of type (ii).

xn+1
p = xnp + ∆tvn+1

p =
∑
i

xn+1
i wnip, p ∈ I(i) ∪ I(ii) (5.45)

xn+1
p =

∑
p(ii)∈I(ii)

xn+1
p(ii)

NSD
p(ii)(ξp1, ξp2), p ∈ I(iii). (5.46)

We first assume there was no additional plastic flow over the time step and consider a trial

state of elastic deformation. For particles of type (i) and (iii), the trial elastic deformation

FE,tr
p and aE,trp3 are computed as in Equations (3.6) and (5.39) respectively with x̂i = xn+1

i .

For Kirchhoff-Love quadrature points q ∈ I(iv), the trial elastic deformation gradient FKL,Etr
q

is computed from Equation (5.35) where xKL(x̂) is interpolated as in Equation (5.40) with

x̂i = xn+1
i .

5.5.3 Update Plasticity

The assumption of no plastic flow over the time step is often safe. However, if the trial state

of elastic stresses are not inside the yield surfaces associated with denting, frictional contact,

etc. then they must be projected to satisfy the constraint. For particles p ∈ I(i), FE,tr
p is

projected to FE,n+1
p in accordance with whichever yield surface is being used. For quadrature

points q ∈ I(iv), FE,tr
q and FP,tr

q are projected to FE,n+1
q and FP,n+1

q in accordance with the

denting return mapping in (§5.3.2). Lastly, the aE,trp3 are projected to an+1
p3 in accordance

with the frictional contact return mapping in Equation (5.29).

5.6 Results

We demonstrate the efficacy of our method on a number of representative examples that

exhibit appreciable bending and persistent self-collision and show that our method automat-

ically allows for coupling with granular materials. Furthermore, we demonstrate the range

of behaviors that are possible with the parameters in our model. We list the runtime per-

formance for all of our examples in Table 6.3. All simulations were run on an Intel Xeon

46

Figure 5.4: Pants twister. Our approach works for clothing simulation with many self-
collisions as shown here in the legs of a twisted pair of pants. The subdivision mesh for the
pants has 393K control points and the simulation runs at 78s per frame.

E5-2687W v4 system with 48 hyperthreads and 128GB of RAM. We report the timing in

terms of average seconds of computation per frame. We chose ∆t in an adaptive manner

that is restricted by a CFL condition when the particle velocities are high. In all of our sim-

ulations we use a CFL number equal to 0.3, i.e., we do not allow particles to move further

than 0.3∆x in a time step.

5.6.1 Effect of Shell Thickness

We control the bending stiffness of the shell by varying the thickness τ . In Figure 5.7,

six cylinders with increasing thickness from left to right free-fall and drop on the ground.

In Figure 5.8, four cylinders of decreasing thickness from left to right buckle under lateral

pressure and exhibit characteristic buckling patterns. In Figure 5.9, ribbons of varying

thickness are planted in plates and twisted to produce interesting buckling phenomena.

5.6.2 Woven Fabrics

We demonstrate that our method supports any potential function in the Kirchhoff-Love shell

model. In particular, we implement the data-driven orthotropic model for woven fabrics from

Clyde et al.[10] with parameters fitted from experimental data. In Figure. 5.10a and 5.10b,

47

Figure 5.5: Twisting shirt. A shirt is undergoing intensive self-contact. Our method
successful resolves the twisting and untwisting.

Figure 5.6: Plastic shell deformation. The effect of the yield condition in Equation (5.13)
is shown here with decreasing values of the coefficient cvM (from left to right). Larger values
correspond to a larger stress needed for before denting plasticity is induced. The cylinders
are twisted and then dropped to the ground to illustrate the plastic deformation.

we twist and compress sleeves made of denim and silk. In Figure. 5.11a and 5.11b, we

suspend squares of silk and denim which then collide with moving spheres. Our model

accurately captures the behaviors of these real-world materials.

5.6.3 Self Collisions

Our model successfully resolves self-collision without any use of collision detection or con-

straint modeling outside the MPM discretization. We demonstrate this in a number of

representative scenarios. In Figure 5.12, the spheres and the diving boards, both modeled as

shells, collide with each other. In Figure 5.5 and Figure 5.4, we demonstrate self-collisions

resolution for clothing simulation stress tests. In Figure 5.13, four decks of cards collide and

48

Figure 5.7: Six cylinders. Six cylinders with increasing thickness from left to right free-fall
and drop on the ground.

then slide against each other to demonstrate the effect of varying friction coefficients.

5.6.4 Plasticity for Denting

Our method naturally incorporates the effect of plasticity in the shell. In Figure 5.6, three

cylinders with different yield stress are twisted and then released. By changing the yield

stress, we are able to control the amount of denting. In Figure 5.14, a square sheet of

metal is compressed and then dented with a rod. The effect of plasticity creates permanent

buckling and denting deformation.

5.6.5 Two-way Coupling

Our MPM approach automatically resolves coupling of different materials. In Figure 5.15, a

cup is filled with slush and then released and toppled. The cup is modeled as a shell and the

slush is modeled as in Stomakhin et al.[34]. This example demonstrates that our method

successfully resolves the interactions between two different materials of millions of particles

49

Figure 5.8: Variation in shell thickness. We demonstrate the effect of the shell thickness
parameter in a compression comparison.

with moderate computation cost.

5.6.6 Resolution Refinement

In Figure 5.16 we examine the behavior of our method under refinement of grid and subd

mesh spatial resolution. This refinement study is done on a sleeve-buckling simulation with

boundary conditions compressing the material at top and bottom. As the spatial resolution

is increased, the simulation converges to the characteristic buckling pattern that is expected.

5.6.7 Bending with Jiang et al.

We demonstrate the failure of the Jiang et al. [23] model in achieving significant bending

resistance. In Figure 5.17 we compare our model with the Jiang et al. generalized to bending

with the addition of bending springs. The frictional contact model in Jiang et al. [23] was

not designed for bending resistance, however, it is possible to simply add bending cross

springs to their model even though it violates the stress assumptions. We show that this is

not capable of generating significant resistance to bending whereas our approach is designed

to support stiff shells and thin membranes.

50

Figure 5.9: Ribbons. We illustrate interesting dynamics achieved from colliding ribbons
with increasing thickness (from left to right).

51

(a) (b)

Figure 5.10: Twisting Orthotropic Model. Using the data-driven model of Clyde et
al. [10] for woven materials, the characteristic wrinkling of silk (left) and denim (right) is
obtained. Our method naturally resolves the many self-collisions induced by the twisting
boundary conditions.

(a) (b)

Figure 5.11: Orthotropic Model. A range of materials can be simulated with our contin-
uum shell formulation. Here we use the data-driven model of Clyde et al. [10] for woven silk
(left) and denim (right) materials. The model naturally allows for characteristic buckling
and wrinkling behaviors in this object collision test.

52

Figure 5.12: Elastic spheres on diving boards. We demonstrate appealing dynamics
achieved with self-collision and appreciable bending for shells. Both the spheres and the
diving boards are simulated as thin shells.

Figure 5.13: Variation in Coulomb friction coefficient. The effect of the friction pa-
rameter cF can be seen in this card comparison. By decreasing cF (from left to right) we
demonstrate a range of surface frictions.

53

Figure 5.14: Denting. We demonstrate plastic deformation of foil induced by object colli-
sion.

Figure 5.15: Snow cup. A cup is filled with slush and then released and toppled. Our
method naturally couples with tranditional MPM particles and automatically resolve contact.

54

Figure 5.16: Convergence under spatial refinement. We demonstrate that our method
converges under refinement of grid and subd mesh spatial resolution in this buckling example.
The simulations have increasing spatial resolution from left to right.

Figure 5.17: Jiang et al. [23] comparison. We demonstrate that only moderate bending
is possible with the approach of Jiang et al. [23]. Our approach allows for a much wider
range of bending resistance.

55

Figure 5.18: Grid resolution dependent wrinkling. Our method suffers from persistent
wrinkling if the subd mesh resolution is too high relative to the grid resolution. We demon-
strate this phenomenon here with a cloth twisting comparison example. In both examples,
the subd mesh ∆x = 0.02. The example on the left has grid ∆x = 0.02 whereas the one on
the right has grid ∆x = 0.04.

56

CHAPTER 6

A Polynomial Particle-In-Cell Method

In this chapter, we present a Polynomial Particle-In-Cell (PolyPIC) Method to improve

the accuracy of the transfers in Particle-In-Cell (PIC) [19] techniques. Recently the Affine

Particle-In-Cell (APIC) Method was proposed by Jiang et al.[24] by augmenting each particle

with a locally affine, rather than locally constant description of the velocity. This reduced

the dissipation of the original PIC without suffering from the noise present in the historic

alternative, Fluid-Implicit-Particle (FLIP) [7]. We present an improvement to APIC that

allows for locally polynomial, rather than locally affine approximations to the grid velocity

field: PolyPIC.

Our generalization improves kinetic energy conservation during transfers which leads to

better vorticity resolution in fluid simulations and less numerical damping in elastoplasticity

simulations. Our transfers are designed to select particle-wise polynomial approximations

to the grid velocity that are optimal in the local mass-weighted L2 norm. This is equivalent

to the reduced basis APIC derivation in [25] for affine modes, but generalized to polynomial

modes. Indeed our notion of transfers reproduces the original PIC if only constants are

used and APIC if only affine polynomials are used. Furthermore, we derive a polynomial

basis that is mass-orthogonal to facilitate rapid solution of the optimality condition. By

design, this reduces the projection to the polynomial basis to the solution of a diagonal

linear system of size equal to the number of local polynomial modes. This has the added

benefit of simplifying applications with staggered grids. We summarize our contributions

as:

• A generalization of APIC from locally affine to locally polynomial representations that

improves kinetic energy conservation in particle/grid transfers.

57

• A mass weighted L2 optimality condition that achieves linear and angular momentum

conservation.

• A mass-orthogonal class of polynomials for rapid solution of projection to the polyno-

mial basis.

• Natural treatment of staggered and collocated grids.

We demonstrate the benefits of our technique in a number of representative applications of

incompressible flow and MPM simulation of elastoplastic materials.

6.1 Background

PIC [19] and PIC approaches like FLIP [7] for incompressible fluids and the MPM [35,

36] for history dependent materials have proven very effective in graphics applications in

recent years. While very powerful, PIC techniques have a number of well known artifacts.

Particles store the primary state like mass and momentum, but the effect of internal stress

on momentum is added on an Eulerian grid. This is reconciled by transfers back and forth

between the particles and grid. There is generally a mismatch in the number of particle

and grid degrees of freedom which can lead to errors during the frequent transfers between

representations [6]. The original PIC possesses a stabilizing filter property since particle

velocities are interpolated from the grid after the stress response. However, this leads to

excessive dissipation since particle modes are essentially overwritten by the generally lower

resolution grid. FLIP removes this limitation by interpolating increments in velocity rather

than velocity itself as in PIC; however this means that particle modes invisible to the grid

persist despite not receiving a meaningful constitutive response. This can lead to particle

artifacts like noise, instability, clumping and volume loss/gain.

6.1.1 Previous work

Various works have improved or modified aspects of the standard PIC techniques commonly

used in graphics. Edwards and Bridson investigated higher-order accuracy [12]. Narrow band

58

and adaptive particle sampling techniques as well as adaptive/unstructured Eulerian grids

dramatically increase efficiency [22, 21, 4, 2, 3, 13]. Ando et al. [1] use a stream function to

enforce incompressibility, rather than the more commonly used MAC projection. Mercier et

al. [29] increase apparent resolution of FLIP with secondary surface wave simulation. Adap-

tive shallow water height field and FLIP coupling achieve impressive simulation rates [9].

Smoothed-particle hydrodynamics (SPH) [11] has proven very powerful for graphics applica-

tions. Several works couple SPH with PIC techniques to improve aspects like performance,

memory usage and discrete incompressibility [27, 21, 26, 15, 43, 30].

There are a number of recent PIC approaches designed to improve robustness to noise

without sacrificing accurate energy and momentum conservation. Hammerquist and Nairn

[18] developed a PIC extension designed to reduce the noise of the FLIP by adding a smooth-

ing term to the FLIP velocity. This strikes a good balance between noise reduction and energy

preservation. Edwards and Bridson also add a regularization term to diminish particle noise

[12]. Gritton and Berzins [17] reduce noise by filtering spatial gradients based on a local

SVD approximation of the null space of the particle-to-grid transfer operator. Wallstedt

and Guilkey use a locally-affine assumption as in [24, 25], but they use FLIP grid-to-particle

transfers that still suffer from noise [41]. Um et al. develop a particle repulsion force to

improve particle bunching associated with the ringing instability [40].

Recently, Jiang et al. [24, 25] developed an Affine Particle-In-Cell (APIC) approach

designed to prevent these artifacts, without incurring the excessive dissipation of PIC. The

idea is to retain the filtering property, but to prevent dissipation by interpolating more

information from the grid to the particles. By allowing particles to store both velocity

and velocity derivative information, Jiang et al. design particle/grid transfers that conserve

angular momentum and generally attain the benefits of both PIC and FLIP.

6.2 Notation and method outline

We follow the convention in Section (§3.1). In particular, the Lagrangian state associated

with particle p at time tn consists of mass mp, position xnp , generalized velocity coefficients cnp

59

and auxiliary quantities An
p . Both the particle velocity vnp and affine velocity Cn

p information

at time tn will be included in generalized velocity coefficients cnp . The auxiliary quantities

in An
p are not relevant to our particle/grid transfers but we include them for completeness.

E.g. in an MPM calculation the deformation gradient Fn
p is auxiliary to transfers and would

be included in An
p . We will generally consider the update of the auxiliary quantities to be

outside the scope of the chapter.

In order to update the Lagrangian state to obtain xn+1
p , cn+1

p and An+1
p , we first transfer

mass and momentum from particle to grid (Section (§6.5.1)), then grid momentum is dynam-

ically updated (Section (§6.5.2)) and finally, we transfer the generalized velocity information

from grid to particle (Section (§6.5.3)). We use the notation mn
i and vni to denote the mass

and velocity transferred to the grid node xi from the particles before the grid momentum

update. The particle to grid transfer in Section (§6.5.1) and grid to particle transfer in Sec-

tion (§6.5.3) are improvements to the tranfers described in Section (§3.3) and Section (§3.5)

respectively. The grid momentum update in Section (§6.5.2) is generally outside the scope

of this chapter, but it is a more general version of the update described in Section (§3.4).

This process is illustrated in following commutative diagram.

mp, xnp , cnp , An
p mp, xn+1

p , cn+1
p , An+1

p

mn
i ,v

n
i mn

i ,v
n+1
i

P2G

Update

Lagrangian State

Update

Grid Momentum

G2P

6.3 PIC and APIC Revisit

Grid-based interpolating functions N(x − xi) provide the mechanism for the transfer of

particle and grid quantities. As in many other recent approaches [33, 34, 24], the grid

interpolating functions are constructed from dyadic products of one-dimensional B-splines.

We use the notation wnip = N(xi − xnp) to denote the weight of interaction between node xi

and particle xnp .

60

Figure 6.1: Grid interpolation. We visualize the weights wnip for multilinear (NB = 1),
collocated (left), multiquadratic (NB = 2), collocated (center) and weights wniαp for linear

(NB = 1), MAC grids (right). We emphasize that the particle interpolates from (NB + 1)d

grid nodes.

Under this interpolation scheme, particle will affect and interpolate from (NB + 1)d grid

nodes where NB is the B-spline interpolating order (1 for linear, 2 for quadratic, etc) and

d = 2, 3 is the spatial dimension. In other words, the particle with position xnp will only have

non-zero weights wnip for the (NB + 1)d grid nodes most local to it. We will use the notation

Vnpα ∈ R(NB+1)d to denote the vector of grid-node velocities represented by the particle in the

α spatial direction, and Vn+1
pα ∈ R(NB+1)d that of updated grid-node velocities

Vnpα =



vnin1pα

vnin2pα
...

vnin
(NB+1)dp

α


, Vn+1

pα =



vn+1
in1pα

vn+1
in2pα

...

vn+1
in
(NB+1)dp

α


.

We use inkp for k = 1, 2, . . . , (NB + 1)d as an index for nodes with non-zero weights wninkpp.

We illustrate this in Figure 6.1. When it is clear from context, we will use either ik, w
n
ikp

or even ik, w
n
ip in lieu of the more descriptive inkp, w

n
inkpp

since the sub and super indices can

become excessive in some expressions.

In the original PIC particle-to-grid transfer, the contribution of a single particle’s mass

61

and momentum to the grid node xi is

mn
ip = wnipmp

(mv)nip = wnip(mpv
n
p) = mn

ipv
n
p ,

and velocity on the grid node xi is

vnip = (mv)nip/m
n
ip = vnp =

d∑
α=1

eαv
n
pα,

where eα ∈ Rd is the αth standard basis vector. Written in matrix form:

Vnpα =


vni1pα

vni2pα
...

vni
(NB+1)dp

α

 =


1

1
...

1

 vnpα.

In the APIC particle-to-grid transfer, the momentum transfer from a single particle is

(mv)nip = wnipmp(v
n
p + Cn

p (xi − xnp)),

so that velocity transferred to the grid node is

vnip = (mv)nip/m
n
ip = vnp + Cn

p (xi − xp),

written in matrix form

Vnpα =


vni1pα

vni2pα
...

vni
(NB+1)dp

α

 =
(


1

1
...

1

 vnpα +
d∑

β=1


xiβ − xnpβ
xiβ − xnpβ

...

xiβ − xnpβ

Cn
pαβ

)
,

where xiβ − xpβ is the β-th spatial component of xi − xnp .

62

6.4 Velocity Modes

Inspired by the orignal PIC and APIC transfers, we think to represent the velocity field local

to the particle at position xnp at timestep n using

vp(x) =
Nr∑
r=1

d∑
α=1

sr(x− xnp)eαc
n
prα (6.1)

where the functions sreα : Rd → Rd are generalized velocity modes, eα ∈ Rd is the αth

standard basis vector and the cnprα are the coefficients of the modes which are stored in the

vector cnp ∈ RdNr for each particle. We build our generalized velocity modes component-by-

component in terms of the scalar functions sr : Rd → R. Nr indicates the total number of

scalar modes that we use. We illustrate these modes in Figure 6.2. Notice that for each

component, we use the same modes, only the coefficients are different, i.e., we can think of

the α-th dimension of the velocity field local to the particle as a scalar field represented by

vpα(x) =
Nr∑
r=1

sr(x− xnp)cnprα. (6.2)

This will allow not only efficient computation in the grid-to-particle transfer (Section (§6.5.3)),

but also clean derivation for staggered MAC grids (Section (§6.6).

We primarily use polynomial modes of the form

s(z) =
d∏

β=1

z
iβ
β . (6.3)

Here zβ is the βth component of z ∈ Rd, the iβ ∈ N are non-negative integer powers. We

note that this reduces to the original PIC when iβ = 0 for 1 ≤ β ≤ d. Furthermore, when

we choose all sr with exactly one of the iβ = 1 and the rest equal to zero, we obtain the

affine modes and the method reduces to APIC. In general, we will modify the polynomial

modes in Equation (6.3) slightly to ensure a mass-orthogonality condition that is essential

for efficiency in the grid to particle transfer (see Section (§6.5.3)).

63

By approximating the velocity local to particle xnp in terms of more general functions, we

allow for a wider range of local behavior than in the original APIC. Notably, we can write

APIC in this way by choosing affine functions for sr. Similarly, we can write PIC in this

way by choosing constant functions for the sr. In either case we note that the coefficients

cnp ∈ RdNr are equivalent to the vnp and Cn
p in the original APIC and PIC. Note that for

APIC, dNr = d+ d2 (d translations and d2 linear functions) and similarly for PIC, dNr = d.

The particle-wise local velocity in Equation (6.1) is used in the particle-to-grid and grid-

to-particle transfers. As in [24, 25], it is used to define a particle’s contribution to the grid

node linear momentum in the particle-to-grid transfer (Section (§6.5.1)). In the grid-to-

particle transfer (Section (§6.5.3)), the coefficients cn+1
p are chosen so that the local velocity

field represented by the particle at xnp approximates that directly interpolated from the grid,

i.e.,

vn+1
p (y) =

Nr∑
r=1

d∑
α=1

sr(y − xnp)eαc
n+1
prα ≈

∑
i

vn+1
i N(y − xi) (6.4)

for y near xnp .

6.5 Method

6.5.1 Transfer from Particle to Grid

The velocity local to the particle vnp : Rd → Rd from Equation (6.1) is used to design the

momentum transfer to the grid. A single particle’s contribution to the momentum local

to the node xi is (mv)nip = mpw
n
ipv

n
p and (mv)ni =

∑
p(mv)nip is the total momentum of

grid node from the contribution of all particles. Similarly, the contribution of the particle’s

mass to the grid node xi is mn
ip = wnipmp and the total grid node mass is the sum of the

contributions from all particles mn
i =

∑
pm

n
ip. Using this we can define the grid node velocity

64

vni by dividing momentum by mass. In summary, this transfer consists of

mn
ip = wnipmp, m

n
i =

∑
p

mn
ip

(mv)nip = mn
ip

Nr∑
r=1

d∑
α=1

sr(xi − xnp)eαc
n
prα

(mv)ni =
∑
p

(mv)nip,

vni =
(mv)ni
mn

i

.

(6.5)

We note that this is essentially the same transfer as in the original APIC approaches [24, 25],

with the only modification being the more general notions of the local velocity.

It is useful to rewrite Equation (6.5) in matrix notation. Similar to the vector of grid-node

velocities Vnpα ∈ R(NB+1)d , we use the notation Qn
p =

[
Qnp1,Qnp2, . . . ,QnpNr

]
∈ R(NB+1)d×Nr

where the columns Qnpr of Qn
p are analogous to Vnpα and have entries equal to the particle-

wise local modes sr(xi − xnp)eα at the grid nodes with non-zero weights

Qnprα =


sr(xi1 − xnp)

sr(xi2 − xnp)
...

sr(xi
(NB+1)d

− xnp)

 .

In matrix notation, the momentum transfer in Equation (6.5) writes

Mn
pVnpα = Mn

pQ
n
pc

n
pα, (6.6)

where the matrix Mn
p ∈ R(NB+1)d×(NB+1)d is diagonal with entries equal to mn

ip. We use the

same matrices Mn
p and Qn

p for all α directions.

65

6.5.2 Update Grid Momentum

The grid momentum update is outside the scope of this chapter. However, we include a

generic description for representative cases that we used to generate our examples: incom-

pressible Euler fluids and elastoplastic solids with MPM. In the case of the incompressible

Euler, we used a MAC grid discretization of the pressure projection to update the fluid ve-

locity. In the case of elastoplastic solids and MPM the update is from the elastic force (see

[14] for more details).

vn+1
i = vni +

∆t

ρ
∇p, (Euler/MAC)

vn+1
i = vni +

∆t

mn
i

(f + g), (elastoplastic/MPM)

where f is the elastic force and g is the gravitational acceleration.

6.5.3 Transfer from Grid to Particle

The transfer from grid to particle is achieved by choosing the generalized velocity coefficients

cn+1
p ∈ RdNr so that the approximation in Equation (6.4) is optimal in the appropriate sense.

Here we show that we can solve a linear system for the coefficients cn+1
p ∈ RdNr , and that

by design our approach

• is equivalent to PIC and APIC if only constant or affine modes are used,

• conserves linear and angular momentum (see [14]) and

• has a diagonal system matrix in the equation for the cn+1
p ∈ RdNr .

We choose the coefficients cn+1
p to minimize the mass-weighted distance dnp (cn+1

p) between

local velocities at the grid nodes and the updated grid-node velocities

66

dnp (cn+1
p) =

∑
i

mn
ip

∣∣vn+1
i − vn+1

p (xi)
∣∣2

=
∑
i

mn
ip

∣∣∣∣∣vn+1
i −

Nr∑
r=1

d∑
α=1

sr(xi − xnp)eαc
n+1
prα

∣∣∣∣∣
2

=
d∑

α=1

(
Vn+1
pα −Qn

pc
n+1
pα

)T
Mn

p

(
Vn+1
pα −Qn

pc
n+1
pα

)
where mn

ip = mpw
n
ip as defined in Equation (6.5), the second equation comes from Equa-

tion (6.1), and the last equation is just a rewrite in terms of matrix notation. The minimizer

of this mass weighted distance can be expressed more concisely in terms of the grid node

locations that received non-zero mass from the particle xnp . The optimal coefficients cn+1
p

can be expressed in terms of these vectors as

cn+1
p =

argmin

c ∈ RdNr
dnp (c)

cn+1
pα =

(
Qn
p
TMn

pQ
n
p

)−1
Qn
p
TMn

pVn+1
pα

(6.7)

for each α dimension.

6.5.3.1 Mass-orthogonal polynomial modes

Our approach is only efficient if the linear system for cn+1
p in Equation (6.7) can be solved

quickly. Fortunately, the individual blocks Qn
p
TMn

pQ
n
p ∈ RNr×Nr have remarkable sparsity

structure. If we assume that we number the modes with increasing degree (e.g. in 2D,

constant modes first: s1 = 1, followed by linear s2 = x, s3 = y, then multilinear: s4 = xy,

etc) and if we use modes sr with r ≤ Nr ≤ 2d, the matrix Qn
p
TMn

pQ
n
p is diagonal. This can

be verified directly using Mathematica and we provide Mathematica code in Section C.5.

Notably, this means that constant modes (r ≤ 1), linear modes (1 < r ≤ d) and multilinear

modes (d < r ≤ 2d) are mass-orthogonal and therefore the coefficients in Equation (6.7) can

be obtained through the solution of a diagonal system.

67

In general for 2d < r ≤ Nr ≤ (NB + 1)d, the matrix Qn
p
TMn

pQ
n
p is not diagonal. We

illustrate this in Table 6.1 with d = 2 for brevity. However, we can obtain a diagonal system

with a modified Gram-Schmidt approach that takes into account the inner product defined

by Mn
p . This amounts to simple modifications of the quadratic scalar modes 2d < r ≤ Nr ≤

(NB + 1)d in Equation (6.3). Remarkably, the Gram-Schmidt mass-orthogonalization does

not modify any of the constant, linear or multilinear modes. Only the quadratic modes are

modified and the change is very simple: each quadratic term z2
β in Equation (6.3) is replaced

with gβ(zβ) given by

gβ(w) = w2 −
xnpβ
(
∆x2 − 4(xnpβ)2

)
∆x2

w − ∆x2

4
. (6.8)

E.g. the mode s5 = g1(x) replaces x2, s6 = g2(y) replaces y2, s7 = g1(x)y replaces x2y,

etc. This trivial modification yields a diagonal Qn
p
TMn

pQ
n
p whose entries we enumerate in

Table 6.2. We give expressions for the individual entries in the solution cn+1
p to Equation (6.7)

with diagonal basis in Section C.1.

We note that (NB + 1)d is a natural upper bound on the number of reduces modes Nr

since the minimization in Equation (6.7) is over determined for Nr > (NB + 1)d.

sr

st 1 x y xy x2 y2 x2y xy2 x2y2

1 X X X X
x X X X X
y X X X X
xy X X X X
x2 X X X X X X
y2 X X X X X X
x2y X X X X X X
xy2 X X X X X X
x2y2 X X X X X X X X X

Table 6.1: Sparsity pattern: unmodified. We illustrate the sparsity pattern of the matrix
(Snp)Tmn

pS
n
p for dimension d = 2 with scalar modes s = xi1yi2 . X indicates a non-zero entry

in the matrix. Note that the multilinear modes (indicated in red) are mass-orthogonal to
one another, but that the multiquadratic modes couple extensively.

68

sr

st 1 x y xy g1(x) g2(y) g1(x)y xg2(y) g1(x)g2(y)

1 a
x b
y b
xy c
g1(x) d(x)
g2(y) d(y)
g1(x)y e(x)
xg2(y) e(y)

g1(x)g2(y) f(x, y)

Table 6.2: Sparsity pattern: modified. We illustrate the sparsity pattern of the matrix
(Snp)Tmn

pS
n
p for dimension d = 2 with the modified quadratic modes given by Equation (6.8).

a = 1, b = ∆x2

4
, c = ∆x2

16
, d(z) = (∆x2−4z2)2(3∆x2−4z2)

16∆x2
, e(z) = (∆x2−4z2)2(3∆x2−4z2)

64
, f(x, y) =

(∆x2−4x2)2(3∆x2−4x2)(∆x2−4y2)2(3∆x2−4y2)
256∆x4

.

6.6 MAC grids

For clarity of exposition, we only consider the case of collocated grids in Sections (§6.5.1)

and (§6.5.3). For incompressible Euler we transfer to and from staggered velocity MAC

grids [20]. Using iα, 1 ≤ α ≤ d to denote the face index for each of the staggered grids,

MAC transfers are done component-wise (see Figure 6.1). Particle xnp transfers mass mn
iαp

to each α face grid from mn
iαp

= mn
pw

n
iαp

. The total mass on each grid face mn
iα

is equal to

the sum of the contribution from each particle mn
iα

=
∑

pm
n
iαp

. The weight of interaction

wniαp = N(xiα − xnp) is between the particle xnp and the MAC face xiα . The component-wise

particle-to-grid momentum transfer is

(mv)niαp = mn
iαp

∑
r

sr(xiα − xnp)cnprα

(mv)niα =
∑
p

(mv)niαp, v
n
iα =

(mv)niα
mn

iα

.
(6.9)

These transfers are very similar to those in Equation (6.5). However, unlike in the

collocated case, the mass matrix and scalar mode vectors will be different on each of the

velocity face grids. We use the notation Mn
pα and Qn

prα to denote this, where the appearance

of α emphasizes that they vary with each face grid. With this convention we can write the

system for the reduced mode components cn+1
p ∈ RdNr as

cn+1
pα =

(
Qn
pα
TMn

pαQ
n
pα

)−1
Qn
pα
TMn

pαVn+1
pα (6.10)

69

for 1 ≤ r ≤ Nr.

6.7 Simulation Results

We demonstrate our method on a number of examples with incompressible flow and MPM

elastoplasticity. We compare PolyPIC with APIC and FLIP in a number of representative

scenarios. All incompressible flow simulations were done using Manta Flow [39]. In a few

of our incompressible examples, we use passive advected particles as a post-process to aid

in visualization. We note that these are simply advected in the flow for post-process visu-

alization and do not use PolyPIC transfers. Also, all grid interpolation is multilinear for

the incompressible flow examples. All grid interpolation is multiquadratic for the MPM

elastoplasticity examples.

6.7.1 Incompressible Flow

In Figure 6.3 we simulate a vortex sheet by setting the velocity inside a circle to be initially

rotating relative to a stationary surrounding fluid. The discontinuity in the velocity induces

vorticity at the interface which produces intricate flow patterns. We compare PolyPIC to

FLIP and APIC and see that it better resolves the vorticial flow.

In Figure 6.4 we simulate an ink droplet in an ambient incompressible fluid by dropping

liquid onto a free surface. We only render the particles in the jet. Note that the ink and

water are both simulated as the same incompressible fluid. We compare PolyPIC to FLIP

and APIC and see that it again better captures the transition to turbulence. We note that

PolyPIC works well even when the grid resolution is rather low. Figure 6.4 was run with a

relatively low grid resolution 64× 256× 64. We used 8 simulated particles per cell, and 8000

passively advected tracer particles per cell in a post-process for visualization.

Figure 6.5 demonstrates a 3D version of the vortex sheet. The cylinder is initially rotat-

ing about its axis relative to a stationary ambient fluid. It was also run on a low resolution

grid (88× 132× 88) with 8 simulated particles per cell for simulation and 216 passively ad-

70

vected tracer particles per cell in a post-process for visualization. Despite the low resolution

simulation, intricate flow patterns are observed.

For all incompressible flow examples we use constant, linear and multilinear modes (i.e.

Nr = 2d) with PolyPIC. This is the maximum number of modes we can use because the grid

interpolation in the incompressible flow solver is multilinear (NB = 1) and, as discussed in

Section (§6.5.3.1), the number of reduced modes is bounded by Nr ≤ (NB + 1)d.

6.7.2 MPM elastoplasticity

In Figure 6.6 we demonstrated the increasingly energetic nature of PolyPIC elastoplasticity

simulations as we add more polynomial modes. Note that with Nr = 6 modes the sand

flows more freely and splashes off the jello more dramatically, while the Jell-O bounces more

readily.

In Figure 6.8 we demonstrate the improved energy conservation of our method over APIC.

In this scenario, a 2D hyperelastic square is initially compressed. The total energy of the

system should be conserved with these initial and boundary conditions (zero traction). As

we add more polynomial modes, the energy preservation improves. In Figure 6.9, we demon-

strate how the increased energy retention affects the dynamics of a Jell-O cube dropped on

the ground.

6.7.3 Accuracy and the number of modes

We verify that adding additional modes increases the accuracy of the simulation. In 6.6

and 6.7 we examine the case of granular sand flowing from a container onto Jell-0. In

Figure 6.6 we see that PolyPIC with Nr = 4 and APIC are less energetic than PolyPIC with

Nr = 6. The flow of the sand in the container suffers from more numerical friction with

PolyPIC Nr = 4 and APIC, therefore sand flows out of the container much slower. We can

see this because the containers are still quite full in the final frame with PolyPIC Nr = 4

and APIC compared to PolyPIC with Nr = 6. In Figure 6.7 we rerun the same simulations

but with higher grid and particle resolution. At this resolution, the PolyPIC Nr = 4 and

71

APIC containers are all nearly empty in the final frame and as a result all flows are similarly

energetic, indicating that PolyPIC with more modes gives a more accurate result since it is

more predictive of the refined behavior.

6.7.4 Momentum conservation

We verify the angular momentum conservation properties of the PolyPIC transfers. In Fig-

ure 6.10 we plot the linear and angular momentum over the course of the time step for the

falling Jell-O example shown in Figure 6.9. Even though the PolyPIC transfers conserve

the momenta, the grid momentum update and the application of boundary conditions (Sec-

tion (§6.5.2)) are not momentum conserving. To illustrate the conservation of the momentum

in the transfers, we can monitor

l̂n = lnP2G +
n−1∑
m=1

lmgrid − lmP2G, p̂n = pnP2G +
n−1∑
m=1

pmgrid − pmP2G (6.11)

where ln =
∑

i xi × miv
n
i and pn =

∑
imiv

n
i are the angular and linear momenta on the

grid. lmP2G lmP2G are computed after the transfer from particle to grid (Section (§6.5.1))

and lmgrid and pmgrid are computed after the grid momentum update (Section (§6.5.2)). The

quantities lmgrid − lmP2G and pmgrid − pmP2G are the momenta lost during the grid momentum

update at time step tm. This is the only source of angular momentum loss for APIC and

PolyPIC and thus the quantities in Equation (6.11) should be constant for those methods.

We visualize the angular momentum loss from transfers in Figure 6.10. The straight lines

indicate conservation.

72

Seconds/Frame ∆tmax Particles Cores

Ink Drop(FLIP99) 20.569 5× 10−2 3.64M 16
Ink Drop(APIC) 23.188 5× 10−2 3.64M 16
Ink Drop(PolyPIC) 31.466 5× 10−2 3.64M 16
Cylinder(PolyPIC) 146.744 2× 10−1 7.86M 12
Vortex Sheet(FLIP99) 2.367 1× 10−1 0.97M 20
Vortex Sheet(APIC) 2.739 1× 10−1 0.97M 12
Vortex Sheet(PolyPIC) 2.760 1× 10−1 0.97M 20
Sand & Jello(APIC) 11.582 4× 10−5 59.7K 12
Sand & Jello(PolyPIC4) 12.616 4× 10−5 59.7K 12
Sand & Jello(PolyPIC6) 17.682 4× 10−5 59.7K 12
Jello(APIC) 4.882 2× 10−4 17.5K 48
Jello(PolyPIC8) 5.713 2× 10−4 17.5K 48
Jello(PolyPIC11) 5.562 2× 10−4 17.5K 48
Jello(PolyPIC14) 5.512 2× 10−4 17.5K 48
Jello(PolyPIC18) 5.852 2× 10−4 17.5K 48

Table 6.3: We list the time step sizes, run times, particle counts and number of cores
used for our simulations. We note that the Jell-O examples demonstrate that increasing the
number of reduced modes Nr in PolyPIC only moderately increases the computational cost
over APIC.

73

Figure 6.2: Velocity modes. We visualize the component-wise velocity modes from Equa-
tion (6.3) in 2D. The top shows bilinear interpolation and the bottom shows biquadratic
interpolation. Constant (peach), linear (green), bilinear (pink) and biquadratic (light blue)
modes are depicted for x (red) and y (blue) components.

74

Figure 6.3: Vortex sheet. We compare from left to right FLIP, APIC, and PolyPIC with 2D
incompressible flow. The initial conditions are of a rotating circle surrounded by stationary
fluid. This creates a vortex sheet which our method effectively resolves. The bottom row
shows that despite the energetic nature of our method, our simulations are stable at long
runtimes.

75

Figure 6.4: Ink drop. We compare from left to right FLIP, APIC, and PolyPIC for an
inkjet in an ambient incompressible fluid. PolyPIC more effectively resolves the vorticial
details.

Figure 6.5: Rotating column of colored dust. We demonstrate intricate vorticial patterns
that arise from simple initial conditions with incompressible flow. PolyPIC achieves great
detail with modest spatial grid resolution (88× 132× 88). The rightmost image shows that
despite the energetic nature of our method, our simulations are stable at long runtimes.

76

Figure 6.6: MPM elastoplasticity. Rainbow colored sand is poured onto an elastic Jell-O
square. We compare APIC (left) vs. PolyPIC with (from left to right) Nr = 4 and Nr = 6.
Notice that increasing degrees of PolyPIC allow for more energetic sand flowing and Jell-O
bouncing.

77

Figure 6.7: MPM elastoplasticity refinement. We verify that the behavior exhibited by
PolyPIC with Nr = 6 at lower resolution in Figure 6.6 is exhibited by PolyPIC with Nr = 4
and APIC under refinement.

78

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E

PolyPIC Nr = 9
PolyPIC Nr = 8
PolyPIC Nr = 6
PolyPIC Nr = 4
APIC

Figure 6.8: Energy conservation. We plot of the total energy as a function of time for an
elastic square with initial compressive dilation. The energy is calculated as the sum of the
elastic potential energy on the particles and the kinetic energy on the grid.

Figure 6.9: MPM hyperelasticity. We compare from left to right APIC (green) and
PolyPIC with Nr = 8 (blue), Nr = 11 (red), Nr = 14 (orange), Nr = 18 (yellow). PolyPIC
better conserves total energy which results in less numerical damping of the deformable
motion.

79

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

7

8

M
om

en
tu

m

Angular(APIC)
Linear(APIC)
Angular(PolyPIC8)
Linear(PolyPIC8)
Angular(PolyPIC11)
Linear(PolyPIC11)
Angular(PolyPIC14)
Linear(PolyPIC14)
Angular(PolyPIC18)
Linear(PolyPIC18)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

A
ng

ul
ar

M
om

en
tu

m

3D Jell-O(APIC)
3D Jell-O(PolyPIC8)
3D Jell-O(PolyPIC11)
3D Jell-O(PolyPIC14)
3D Jell-O(PolyPIC18)
Sand and Jell-O(APIC)
Sand and Jell-O(PolyPIC4)
Sand and Jell-O(PolyPIC6)
Vortex Sheet(FLIP99)
Vortex Sheet(APIC)
Vortex Sheet(PolyPIC)
Vortex Sheet(FLIP50)
Vortex Sheet(PIC)
Ink Drop(PolyPIC)

Figure 6.10: Momentum conservation. The top figure plots the linear and angular mo-
menta for the falling Jell-O’s in Figure 6.9. The bottom illustrates the angular momentum
loss resulting form transfers. We plot the momenta l̂n and p̂n from Equation (6.11) to mon-
itor the transfers effects on conservation. APIC and PolyPIC preserve angular momentum
during transfers, however the FLIP/PIC blends are commonly used in incompressible flow
simulations do not. We illustrate this by comparing with increasing amounts of PIC.

80

APPENDIX A

Drucker-Prager elastoplasticity derivations

A.1 Energy dissipation

The total energy is sum of potential and kinetic energy:

E(t; Ω̄) =

∫
Ω̄

R(X, 0)

2
|V(X, t)|22 dX +

∫
Ω̄

ψ(FE(X, t),FP (X, t))dX. (A.1)

The rate of change of the energy is

E ′(t) =

∫
Ω̄

R(X, 0)V(X, t)A(X, t)dX +

∫
Ω̄

∂ψ

∂FE
(FE(X, t),FP (X, t)) : ḞE(X, t)dX. (A.2)

With P = ∂ψ
∂FE

(FE,FP)FP−T ,

∫
Ω̄

∂ψ

∂FE
: ḞEdX =

∫
Ω̄

∂ψ

∂FE
:
(
ḞFP−1 − FEḞPFP−1

)
dX

=

∫
Ω̄

P :
(
Ḟ− FEḞP

)
dX

= −
∫

Ω̄

V ·
(
∇X ·P

)
dX +

∫
∂Ω̄

V · (PN) ds(X)−
∫

Ω̄

(
FETP

)
: ḞPdX.

Using R(X, 0)A(X, t) = (∇X ·P)(X, t) with Equation (A.2) gives

E ′(t) =

∫
∂Ω̄

V · (PN) ds(X)−
∫

Ω̄

(
FETP

)
: ḞPdX.

81

The rate of energy dissipation due to plasticity is therefore

ẇp = FETP : ḞP (A.3)

= PFT : FEḞPF−1 = τ : FEḞPF−1 (A.4)

A.2 Isotropy

In the case of isotropic potential energy, we have two conclusions:

• τ and BE commute: BEτ = BEτ .

• ẇp = τ : (LvBEBE−1
).

We will prove the two statements in this section.

τ and BE commute

We make the assumption that the energy density ψ is isotropic, so we can write ψ as a

function of the three invariants of FE

ψ(FE,FP) = ψ̂(I(FE), II(FE), III(FE)).

Therefore
∂ψ

∂FE
(FE,FP) = aFE + bBEFE + cFE−T

for some scalar a, b, c and

τ = PFT =
∂ψ

∂FE
(FE,FP)FP−TFT = aBE + bBE2

+ cI.

This means that τ and BE have the principal space. In particular,τ and BE commute:

BEτ = BEτ .

82

Plastic rate of dissipation

We showed in Section A.4 that

ẇp = (FETP) : ḞP = τ :
(
FEḞPF−1

)
.

We will show that this is also equal to τ : (LvBEBE−1
). By definition of LvBE, we have

LvBEBE−1
= −FEFP−T ḞP

T
FE−1 − FEḞPF−1.

Plug this in τ :
(
LvBEBE−1

)
,

τ :
(
LvBEBE−1

)
= −τ :

(
FEFP−T ḞP

T
FE−1

)
− τ :

(
FEḞPF−1

)
= −trace

(
τFEFP−T ḞP

T
FE−1

)
− τ :

(
FEḞPF−1

)
= −trace

(
τFEFETFE−TFP−T ḞP

T
FE−1

)
− τ :

(
FEḞPF−1

)
= −trace

(
τBEF−T ḞP

T
FE−1

)
− τ :

(
FEḞPF−1

)
= −trace

(
BEτF−T ḞP

T
FE−1

)
− τ :

(
FEḞPF−1

)
= −trace

(
τF−T ḞP

T
FE−T

)
− τ :

(
FEḞPF−1

)
= −2τ :

(
FEḞPF−1

)

A.3 Kirchhoff stress and hencky strain

In this section we derive the expression for

τ = ταβqα ⊗ qβ, ταβ = 2µεLαβ + λεLγγδαβ. (A.5)

First notice that we may replace the right Hencky strain with left Hencky strain in the

definition of energy because of the isotropic nature of the energy function. We now give the

drivation of Equation (A.5) with index free notation assuming all variables are in 2D.

83

ψ(F) = ψ(UΣVT)

P(F) = P(UΣVT) = UP(Σ)VT

because the energy is isotropic.

Hence,

P(F) = UP(Σ)VT

= U
∂ψ

∂Σ
VT

= U
(
2µ log(Σ)Σ−1 + λtr(log Σ)Σ−1

)
VT .

Therefore,

τ =
(
U
(
2µ log(Σ)Σ−1 + λtr(log Σ)Σ−1

)
VT
)
FT

= U (2µ log(Σ) + λtr(log Σ)) UT

= 2µεL + λtr(εL)

84

A.4 Plastic Dissipation is Nonnegative

Recall that we have previously defined s = τ − 1
d
tr(τ), and that G = ∂y

∂τ
− 1

d
tr(∂y

∂τ
)I, i.e. it

satisfies G = −γLvBEBE−1
(e.g. see Section (§4.2.1)). Therefore

ẇP = τ : lP

= −τ :
1

2
LvBEBE−1

= γτ : G

=
γ

‖s‖F
τ : s

=
γ

‖s‖F

(
s +

1

d
tr(τ)I

)
: s

= γ‖s‖F .

Thus all that remains to prove is that γ ≥ 0. To do this we use the constraint that ∂y
∂t
≤ 0

when y = 0.

∂y

∂t
=
∂y

∂τ
:
∂τ

∂BE
: ḂE

=
∂y

∂τ
:
∂τ

∂BE
:

(
lBE + BElT − 2γ

∂y

∂τ
BE

)
=
∂y

∂τ
:
∂τ

∂BE
:
(
lBE + BElT

)
︸ ︷︷ ︸

η

−2γ
∂y

∂τ
:
∂τ

∂BE
:

(
∂y

∂τ
BE

)
︸ ︷︷ ︸

ν

.

So

0 = η − 2γν =⇒ γ =
η

2ν

Note that η is what ∂y
∂t

would be in the absence of plastic flow. Thus if η ≤ 0 the material is

deforming in such a way that the yield function is going down, and therefore is undergoing

85

elastic deformation which means γ = 0. Otherwise η > 0 and

ν =
∂y

∂BE
:

(
2

s

‖s‖F
BE

)
= 2

∂y

∂BE
BE :

s

‖s‖F
.

Applying the Hencky strain derivative lemma to y we have

ν =
∂y

∂εE
:

s

‖s‖F

=
∂y

∂τ
:
∂τ

∂εE
:

s

‖s‖F

=

(
s

‖s‖
+ η̃I

)
: C :

s

‖s‖F

= 2µ‖s‖F .

86

APPENDIX B

Thin shell derivations

B.1 FEM Force computation

We compute forces on the control points xp by

fKLp = −∂ΨS(FKL,Etr(xKL))

∂xKLp

= −
∑
q

V 0
q

∂ψ(FKL,Etr
q (xq))

∂xKLp

= −
∑
q

V 0
q

∂ψ

∂FKL
(FKL,Etr

q (xq)) :
∂FKL,Etr

q

∂xKLp
(xq),

where xq’s are positions of the quadrature points. We give expressions for each
∂FKLq
∂xKLpk

(xq)

with fixed p, q and k, where k represents the x, y, or z direction. For simplicity of notation,

we omit the subscripts p, q and superscript KL for now.

Recall from the paper that we have

F =
3∑
i=1

gi ⊗ ḡi, with gα = aα + ξ3a3,α, g3 = a3,

87

where

aα =
∑
j

xj
∂NSD

j

∂ξα
(ξ1, ξ2), α = 1, 2

a3 =
a1 × a2

|a1 × a2|

a3,α = (I− a3 ⊗ a3)
a1,α × a2 + a1 × a2,α

|a1 × a2|

= ã− a3(a3 · ã)

in which we define ã to be

ã =
a1,α × a2 + a1 × a2,α

|a1 × a2|
.

Now we compute ∂F
∂xk

.

∂F

∂xk
=

3∑
i=1

∂gi
∂xk
⊗ ḡi,

and
∂gα
∂xk

=
∂aα
∂xk

+ ξ3
∂a3,α

∂xk

∂g3

∂xk
=
∂a3

∂xk

where

∂aα
∂xk

=
∂NSD

k (ξ1, ξ2)

∂ξα
ek (summation convention does not apply here) (B.1)

∂a3

∂xk
=

∂a1

∂xk
× a2 + a1 × ∂a2

∂xk
− |a1×a2|

∂xk
a3

|a1 × a2|
,

and
|a1 × a2|
∂xk

= a3 · (
∂a1

∂xk
× a2 + a1 ×

∂a2

∂xk
)

Finally,

∂a3,α

∂xk
=

∂ã

∂xk
− a3(

∂a3

∂xk
· ã + a3 ·

∂ã

∂xk
)− ∂a3

∂xk
(a3 · ã),

88

where

∂ã

∂xk
=

a1,α

∂xk
× a2 + a1,α × ∂a2

∂xk
+ ∂a1

∂xk
× a2,α + a1 × ∂a2,α

∂xk

|a1 × a2|
− a1,α × a2 + a1 × a2,α

|a1 × a2|2
∂|a1 × a2|

∂xk
,

in which

∂aα,β
∂xk

=
NSD
k (ξ1, ξ2)

∂ξβ∂ξα
ek (summation convention does not apply here).

B.2 Grid force computation

The force on the MPM grid f iiii (x∗) computes as follows:

f
(iii)
i (x∗) =

∑
p∈I(iii)

∂χ(apα ⊗ āpα + aEp3 ⊗ āp3)

∂xi

V 0
p

=
∑

p∈I(iii)

∂χ(apα ⊗ āpα + aEp3 ⊗ āp3)

∂FE
:
∂
(
apα ⊗ āpα + aEp3 ⊗ āp3

)
∂apβ

:
∂apβ
xi

V 0
p

+
∑

p∈I(iii)

∂χ(apα ⊗ āpα + aEp3 ⊗ āp3)

∂FE
:
∂
(
apα ⊗ āpα + aEp3 ⊗ āp3

)
∂aEp3

:
∂aEp3
xi

V 0
p .

Then, omitting the subscript p, we compute each term in the contraction:

∂χ(aα ⊗ āα + aE3 ⊗ ā3)

∂FE
= τ S

(
aα ⊗ āα + aE3 ⊗ ā3)

)−T
= τ S

(
ãα ⊗ āα + ã3 ⊗ ā3)

)
where τ S is the Kirchhoff stress and ãα and ã3 are the contravariant counterparts of aα and

aE3 respectively.

89

And using index notation, we see that

∂
(
aα ⊗ āα + aE3 ⊗ ā3

)
∂aβ

=
∂aαi āαj
∂aβk

= δαβδikāαj

= δikāβj

Similarly,

∂
(
aα ⊗ āα + aE3 ⊗ ā3

)
∂aE3

= δikā3j

Hence, contracting the first two terms in the summation, each term in the summation

becomes

τ S (ãα ⊗ āα + ã3 ⊗ ā3) āβ :
∂aβ
∂xi

+ τ S (ãα ⊗ āα + ã3 ⊗ ā3) ā3 :
∂aE3
∂xi

= τ Sãβ :
∂aβ
∂xi

+ τ Sã3 :
∂aE3
∂xi

Note that

∂aβ
∂xi

=
∂aβ
∂xp

∂xp
∂xi

=
∂aβ
∂xp

wnip,

and the expression for
∂aβ
∂xp

is given equation (B.1).

Ignoring further plastic flow, we have

aE3 (x∗) =

(∑
j

x∗j ⊗∇wnjp

)
aE,n3 ,

90

and thus,
∂aE3
∂xi

= ∇wnipa
E,n
3

Therefore, we arrive at the final expression for the force of type (iii):

f
(iii)
i (x∗) =

∑
p∈I(iii)

τ Sp ãβp :
∂apβ
∂xp

wnip + τ Sp ã3
p : ∇wnipa

E,n
p3

B.3 QR and Elastic Potential

We can use QR orthogonalization of deformed material directions to define

qirij = Fāj, F = rijqi ⊗ āj, rij = 0 for i > j. (B.2)

B.3.1 Change of basis tensor

Define the change of basis tensor

Q = Qijāi ⊗ āj (B.3)

with Qij = qj · āi. With this convention we see that Qāi = qi and QTQ = I. Furthermore,

defining

R = rijāi ⊗ āj

we have F = QR.

B.3.2 Differentials

The QR differential satisfies

qk · δqirij + δrkj = qk · (δFāj) , δF = δrijqi ⊗ āj + rijδqi ⊗ āj (B.4)

91

where qk · δqi = −qi · δqk from orthogonality of the qi. And

δF = δQR + QδR (B.5)

where δQTQ = −QT δQ from QTQ = I. Furthermore,

δQ = δQijāi ⊗ āj, δQij = δqj · āi, δqi = δQāi (B.6)

δR = δrijāi ⊗ āj (B.7)

and the δrij = 0 for i > j.

B.4 Elastic potential and stresses

Define the hyperelastic potential as

ψ(F) = ψ̂([R]) (B.8)

where

[R] =


r11 r12 r13

r22 r23

r33

 . (B.9)

The differential satisfies

δψ(F) =
∂ψ

∂F
(F) : δF = P : δF =

∂ψ̂

∂rij
([R])δrij (B.10)

where P = ∂ψ
∂F

(F). Therefore

δrijqi · (Pāj) + rijδqi · (Pāj) =
∂ψ̂

∂rij
([R])δrij. (B.11)

92

Similarly,

P : δF = P : (δQR) + P : (QδR) =
∂ψ̂

∂rij
([R])δrij (B.12)

Choosing δF = δrijqi ⊗ āj (i.e. δqi = 0), we can conclude that

qi · (Pāj) δrij =
∂ψ̂

∂rij
([R])δrij (B.13)

for arbitrary δrij with i ≤ j. Therefore the qi · (Pāj) = ∂ψ̂
∂rij

([R]) for i ≤ j. Similarly,

P : (QδR) = (QTP) : δR = δrijāi ·
(
QTPāj

)
= δrijqi · (Pāj) =

∂ψ̂

∂rij
([R])δrij. (B.14)

Choosing δF = rijδqi ⊗ āj (i.e. δrij = 0), we can conclude that

0 = rijδqi · (Pāj) . (B.15)

Similarly,

0 = P : (δQR) =
(
PRT

)
: δQ =

(
PRT

)
:
(
δQQTQ

)
=
(
PRTQT

)
:
(
δQQT

)
=
(
PFT

)
:
(
δQQT

) (B.16)

In other words, the Kirchhoff stress τ = PFT is symmetric since δQQT is arbitrary skew.

Furthermore,

P = Pijqi ⊗ āj, τ = Pijrkjqi ⊗ qk = τikqi ⊗ qk (B.17)

93

and we know Pij = ∂ψ̂
∂rij

for i ≤ j from Equation B.13. Thus


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


P11 P12 P13

P21 P22 P23

P31 P32 P33




r11

r12 r22

r13 r23 r33

 (B.18)

=


P11r11 + P12r12 + P13r13 P12r22 + P13r32 P13r33

P21r11 + P22r12 + P23r13 P22r22 + P23r32 P23r33

P31r11 + P32r12 + P33r13 P32r22 + P33r32 P33r33

 , (B.19)

and since τ = τ T and Pij = ∂ψ̂
∂rij

for i ≤ j,


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


∂ψ̂
∂r11

r11 + ∂ψ̂
∂r12

r12 + ∂ψ̂
∂r13

r13
∂ψ̂
∂r12

r22 + ∂ψ̂
∂r13

r32
∂ψ̂
∂r13

r33

∂ψ̂
∂r12

r22 + ∂ψ̂
∂r13

r32
∂ψ̂
∂r22

r22 + ∂ψ̂
∂r23

r32
∂ψ̂
∂r23

r33

∂ψ̂
∂r13

r33
∂ψ̂
∂r23

r33
∂ψ̂
∂r33

r33

 (B.20)

In particular, the matrix representation of τ S reads


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


0 0 γs1

0 0 γs2

0 0 f ′(s3)




0

0 0

s1 s2 s3

 (B.21)

=


γs2

1 γs1s2 γs1s3

γs1s2 γs2
2 γs2s3

γs1s3 γs2s3 f ′(s3)

 (B.22)

B.5 Frictional Contact Yield Condition

Coulomb friction places a constraint on the stress as

|tS| ≤ −cFσn (B.23)

94

where σn = aKL3 · σaKL3 . Recall that aKL3 = q3 and thus σn = q3 · σq3. On the other hand,

tS is the tangential component of the force density and has the form tS = (cq1 + sq2) · σq3

for some c and s such that c2 + s2 = 1. Hence, we may rewrite the constraint on stress as

(cq1 + sq2) · σq3 + cFq3 · σq3 ≤ 0. (B.24)

Using the fact that σ = det(F)τ , we rewrite the constraint as

(cq1 + sq2) · τq3 + cFq3 · τq3 ≤ 0. (B.25)

Substituting in the expression for τ from equation (B.22), we find that the maximum on

the left-hand-side is

±γs3

√
s2

1 + s2
2 + cFf

′s3

We apply the particular form of f in the paper where f(x) = 1
3
kc(1 − x)3 for x ≤ 1 and 0

otherwise. When s3 > 1, the maximum is γs3

√
s2

1 + s2
2. In this case the return mapping set

s1 and s2 to 0. If 0 < s3 ≤ 1, the maximum is

γs3

√
s2

1 + s2
2 − cFkc(s3 − 1)2s3,

and thus we need √
s2

1 + s2
2 ≤

cFk
c

γ
(1− s3)2.

In this case we uniformly scale back s1 and s2 to satisfy the constraint.

B.6 Denting Yield Condition and Return Mapping

We apply the von Mises yield condition to the Kirchhoff-Stress in Equation (A.5)

This condition states that the deviatoric component of the stress is less than a threshold

95

value cvM

fvM(τ) = |τ − tr(τ)

3
I|F ≤ cvM . (B.26)

This condition defines a cylindrical region of feasible states in the principal stress space since

fvM (τ) =

√
2

3
(τ1

2 + τ2
2 + τ3

2 − (τ1τ2 + τ2τ3 + τ1τ3)) (B.27)

where τ =
∑

i τiui ⊗ ui with principal stresses τi. The plane stress nature of τKL =∑
α τ

KL
α uα⊗uα means that feasible stresses are those where the principal stresses are in the

ellipsoidal intersection of the cylinder and the τKLα plane.

The yield condition is satisfied via associative projection (or return mapping) of the stress

to the feasible region. The elastic and plastic strains are then computed to be consistent

with the projected stress. We use FKL,Etr
,FKL,P tr

to denote the trial state of elastoplastic

strains with associated trial stress τKL
tr

. We use FKL,E,FKL,P , τKL to denote their projected

counterparts.

FKL,Etr
,FKL,P tr

, τKL
tr → FKL,E,FKL,P , τKL. (B.28)

The deformation gradient constraint must be equal to the product of trial and projected

elastic and plastic deformation gradients, creating the constraint on the projection

FKL = FKL,Etr
FKL,P tr

= FKL,EFKL,P . (B.29)

The projection is completed by first computing the trial state of stress τKL
tr

from FKL,Etr

using Equation (A.5). This is done by computing the QR decomposition of the trial elastic

deformation gradient FKL,Etr
= rKL,Eαβ

tr
qKL,Eα ⊗ āβ +qKL,E3 ⊗ ā3. Then we compute the SVD

96

of matrix [rKL,E
tr

] ∈ R2×2 and the trial strain [εL
tr

]

[rKL,E
tr

] = [UE]

 σE1
tr

σE2
tr

 [VE]T (B.30)

[εL
tr

] = [UE]

 log(σE1
tr

)

log(σE2
tr

)

 [UE]T (B.31)

From Equation (A.5) we see that the two non-zero principal stresses τKL
tr
α of τKL

tr
are equal

to the eigenvalues of the matrix [τKL
tr

]

[τKL
tr

] = 2µ[εL
tr

] + λtr([εL
tr

])I = [UE]

 τKL1
tr

τKL2
tr

 [UE]T . (B.32)

We therefore project the eigenvalues (τKL
tr
α → τKLα) into the ellipsoidal intersection the von

Mises yield surface and the (τ1, τ2) plane in the direction that maximizes energy dissipation.

We approximate this region by the diamond shaped region whose boundaries have slopes of

±1 to simplify the return mapping. Note that the direction of the return that maximizes

energy dissipation is a function of the Cauchy-Green strain derivative of the Kirchhoff stress

and thus is non-trivial to find in general. Fortunately, the quadratic Hencky strain model

has the favorable property that the return direction is perpendicular to the yield surface [28]

which greatly simplifies the return mapping. We illustrate this property in Figure B.1. After

projection, we rebuild the matrix without changing the eigenvectors and rebuild τKL from

the matrix

[τKL] = [UE]

 τKL1

τKL2

 [UE]T , τKL = τKLαβ qKL,Eα ⊗ qKL,Eβ (B.33)

where τKLαβ are the entries in the projected matrix [τKL] ∈ R2×2. The projected strain [εL]

97

(a) (b)

Figure B.1: Simplified return Mapping. In general in the return mapping direction is
non trivial (left). Quadratic Hencky strain energy density simplifies the return mapping
(right).

is computed from the projected principal stresses from

[εL] = [UE]

 log(σE1)

log(σE2)

 [UE]T (B.34)

 log(σE1)

log(σE2)

 =

 2µ+ λ λ

λ 2µ+ λ

−1 τKL1

τKL2

 (B.35)

and the projected elastic deformation gradient is FKL,E = FKL,E
αβ qKL,Eα ⊗ āβ + qKL,E3 ⊗ ā3

where

[F̂KL,E] = [UE]

 σE1

σE2

 [VE]T . (B.36)

The projected plastic deformation gradient is computed from FKL,P = FKL,E−1
FKL in order

to maintain the constraint in Equation (5.15).

98

APPENDIX C

PolyPIC

C.1 List of Bases

C.1.1 Linear interpolation

Polynomials of the form

s(z) =
d∏

β=1

z
iβ
β , iβ = 0, 1

are all we need for linear interpolation. We have Snpr ·
(
mn

pSnpt
)

= 0 for all r 6= t.

C.1.2 Quadratic interpolation

For quadratic interpolation, by replacing z
iβ
β with gβ(w) = w2 − xnpβ(∆x2−4(xnpβ)2)

∆x2
w − ∆x2

4
in

s(z) =
d∏

β=1

z
iβ
β , iβ = 0, 1, 2

whenever iβ = 2, we get the full set of basis vectors. For completeness we list all the bases

below.

99

In 2D,

s1(xinkp
− xnp) = 1

s2(xinkp
− xnp) = xikp1 − xnp1 s3(xinkp

− xnp) = xikp2 − xnp2
s4(xinkp

− xnp) = (xikp1 − xnp1)(xikp2 − xnp2)

s5(xinkp
− xnp) = g1(xikp1 − xnp1) s6(xinkp

− xnp) = g2(xikp2 − xnp2)

s7(xinkp
− xnp) = g1(xikp1 − xnp1)(xikp2 − xnp2) s8(xinkp

− xnp) = g2(xikp2 − xnp2)(xikp1 − xnp1)

s9(xinkp
− xnp) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)

In 3D,

s1(xinkp
− xnp) = 1

s2(xinkp
− xnp) = xikp1 − xnp1

s3(xinkp
− xnp) = xikp2 − xnp2

s4(xinkp
− xnp) = xikp3 − xnp3

s5(xinkp
− xnp) = (xikp1 − xnp1)(xikp2 − xnp2)

s6(xinkp
− xnp) = (xikp1 − xnp1)(xikp3 − xnp3)

s7(xinkp
− xnp) = (xikp2 − xnp2)(xikp3 − xnp3)

s8(xinkp
− xnp) = (xikp1 − xnp1)(xikp2 − xnp2)(xikp3 − xnp3)

s9(xinkp
− xnp) = g1(xikp1 − xnp1)

s10(xinkp
− xnp) = g2(xikp2 − xnp2)

s11(xinkp
− xnp) = g3(xikp3 − xnp3)

s12(xinkp
− xnp) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)

s13(xinkp
− xnp) = g2(xikp2 − xnp2)g3(xikp3 − xnp3)

s14(xinkp
− xnp) = g1(xikp1 − xnp1)g3(xikp3 − xnp3)

s15(xinkp
− xnp) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)g3(xikp3 − xnp3)

s16(xinkp
− xnp) = g1(xikp1 − xnp1)(xikp2 − xnp2)

s17(xinkp
− xnp) = g1(xikp1 − xnp1)(xikp3 − xnp3)

s18(xinkp
− xnp) = g1(xikp1 − xnp1)(xikp2 − xnp2)(xikp3 − xnp3)

100

s19(xinkp
− xnp) = g2(xikp2 − xnp2)(xikp1 − xnp1)

s20(xinkp
− xnp) = g2(xikp2 − xnp2)(xikp3 − xnp3)

s21(xinkp
− xnp) = g2(xikp2 − xnp2)(xikp1 − xnp1)(xikp3 − xnp3)

s22(xinkp
− xnp) = g3(xikp3 − xnp3)(xikp1 − xnp1)

s23(xinkp
− xnp) = g3(xikp3 − xnp3)(xikp2 − xnp2)

s24(xinkp
− xnp) = g3(xikp3 − xnp3)(xikp1 − xnp1)(xikp2 − xnp2)

s25(xinkp
− xnp) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)(xikp3 − xnp3)

s26(xinkp
− xnp) = g1(xikp1 − xnp1)g3(xikp3 − xnp3)(xikp2 − xnp2)

s27(xinkp
− xnp) = g2(xikp2 − xnp2)g3(xikp3 − xnp3)(xikp1 − xnp1)

101

The entries for Snpr ·
(
mn

pSnpr
)

, r = 1, 2, · · · , 27 are:

1,

∆x2

4
,
∆x2

4
,
∆x2

4
,

∆x4

16
,
∆x4

16
,
∆x4

16
,
∆x6

64
,

(∆x2 − 4x2)
2

(3∆x2 − 4x2)

16∆x2
,
(∆x2 − 4y2)

2
(3∆x2 − 4y2)

16∆x2
,
(∆x2 − 4z2)

2
(3∆x2 − 4z2)

16∆x2
,

(∆x2 − 4x2)
2

(3∆x2 − 4x2) (∆x2 − 4y2)
2

(3∆x2 − 4y2)

256∆x4
,

(∆x2 − 4x2)
2

(3∆x2 − 4x2) (∆x2 − 4z2)
2

(3∆x2 − 4z2)

256∆x4
,

(∆x2 − 4y2)
2

(3∆x2 − 4y2) (∆x2 − 4z2)
2

(3∆x2 − 4z2)

256∆x4
,

(∆x2 − 4x2)
2

(3∆x2 − 4x2) (∆x2 − 4y2)
2

(3∆x2 − 4y2) (∆x2 − 4z2)
2

(3∆x2 − 4z2)

4096∆x6
,

1

64

(
∆x2 − 4x2

)2 (
3∆x2 − 4x2

)
,

1

64

(
∆x2 − 4x2

)2 (
3∆x2 − 4x2

)
,

1

256

(
3∆x2 − 4x2

) (
∆x3 − 4∆xx2

)2
,

1

64

(
∆x2 − 4y2

)2 (
3∆x2 − 4y2

)
,

1

64

(
∆x2 − 4y2

)2 (
3∆x2 − 4y2

)
,

1

256

(
3∆x2 − 4y2

) (
∆x3 − 4∆xy2

)2
,

1

64

(
∆x2 − 4z2

)2 (
3∆x2 − 4z2

)
,

1

64

(
∆x2 − 4z2

)2 (
3∆x2 − 4z2

)
,

1

256

(
3∆x2 − 4z2

) (
∆x3 − 4∆xz2

)2
,

(∆x2 − 4x2)
2

(3∆x2 − 4x2) (∆x2 − 4y2)
2

(3∆x2 − 4y2)

1024∆x2
,

(∆x2 − 4x2)
2

(3∆x2 − 4x2) (∆x2 − 4z2)
2

(3∆x2 − 4z2)

1024∆x2
,

(∆x2 − 4y2)
2

(3∆x2 − 4y2) (∆x2 − 4z2)
2

(3∆x2 − 4z2)

1024∆x2

102

C.2 Grid to Particle

From grid to particle, we wish to find c such that

Nr∑
t=1

Snpr ·
(
mn

pSnpt
)
cn+1
ptα = Qnprα ·

(
Mn

p V̂n+1
p

)

=

(NB+1)d∑
k=1

mn
inkpp

sr(xinkp
− xnp)v̂n+1

inkpα
.

The bases we choose satisfy the property that Snpr ·
(
mn

pSnpt
)

= 0 for r 6= t. So we have

Snpr ·
(
mn

pSnpr
)
cn+1
prα = Qnprα ·

(
Mn

p V̂n+1
p

)
=

(NB+1)d∑
k=1

mn
inkpp

sr(xinkp
− xnp)v̂n+1

inkpα
.

For linear interpolation, the grid to particle transfer is similar to APIC. For quadratic

interpolation, Snpr ·
(
mn

pSnpr
)

can be zero for some r when xnpα = ±h
2
,±
√

3
2
h. However, we can

still find a meaningful expression for c.

In 2D, mn
inkpp

= mpN(xinkp
−xnp) = mpN1(xinkp

−xnp)N2(xinkp
−xnp), c can be computed from

103

the formula below:

cp1α =

(NB+1)d∑
k=1

N(xinkp
− xnp)v̂n+1

inkpα

cp2α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp1 − xp1)v̂n+1

inkpα

∆x2

4

cp3α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp2 − xp2)v̂n+1

inkpα

∆x2

4

cp4α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp1 − xp1)(xinkp2 − xp2)v̂n+1

inkpα

∆x4

16

cp5α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)(−2)(ikp1−1) mod 2v̂n+1

inkpα

2∆x2

cp6α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)(−2)(ikp2−1) mod 2v̂n+1

inkpα

2∆x2

cp7α =
2
∑(NB+1)d

k=1 (xikp1 − xp1)N2(xinkp
− xnp)(−2)(ikp2−1) mod 2v̂n+1

inkpα

∆x4

cp8α =
2
∑(NB+1)d

k=1 (xikp2 − xp2)N1(xinkp
− xnp)(−2)(ikp1−1) mod 2v̂n+1

inkpα

∆x4

cp9α =

(NB+1)d∑
k=1

1

4∆x4
(−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2v̂inkpα

n+1

In 3D, mn
inkpp

= mpN(xinkp
− xnp) = mpN1(xinkp

− xnp)N2(xinkp
− xnp)N3(xinkp

− xnp), c can be

104

computed from the formula below:

cp1α =

(NB+1)d∑
k=1

N(xinkp
− xnp)v̂n+1

inkpα

cp2α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp1 − xp1)v̂n+1

inkpα

∆x2

4

cp3α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp2 − xp2)v̂n+1

inkpα

∆x2

4

cp4α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp3 − xp3)v̂n+1

inkpα

∆x2

4

cp5α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp1 − xp1)(xinkp2 − xp2)v̂n+1

inkpα

∆x4

16

cp6α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp2 − xp2)(xinkp3 − xp3)v̂n+1

inkpα

∆x4

16

cp7α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp1 − xp1)(xinkp3 − xp3)v̂n+1

inkpα

∆x4

16

cp8α =

∑(NB+1)d

k=1 N(xinkp
− xnp)(xinkp1 − xp1)(xinkp2 − xp2)(xinkp3 − xp3)v̂n+1

inkpα

∆x6

64

105

cp9α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)N3(xinkp

− xnp)(−2)(ikp1−1) mod 2v̂n+1
inkpα

2∆x2

cp10α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N3(xinkp

− xnp)(−2)(ikp2−1) mod 2v̂n+1
inkpα

2∆x2

cp11α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N2(xinkp

− xnp)(−2)(ikp3−1) mod 2v̂n+1
inkpα

2∆x2

cp12α =

∑(NB+1)d

k=1 N3(xinkp
− xnp)(−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2v̂n+1

inkpα

4∆x4

cp13α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)(−2)(ikp1−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

4∆x4

cp14α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)(−2)(ikp2−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

4∆x4

cp15α =

∑(NB+1)d

k=1 (−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2(−2)(ikp3−1) mod 2v̂n+1
inkpα

8∆x6

cp16α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)N3(xinkp

− xnp)(xinkp2 − xp2)(−2)(ikp1−1) mod 2v̂n+1
inkpα

∆x4

2

cp17α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)N3(xinkp

− xnp)(xinkp3 − xp3)(−2)(ikp1−1) mod 2v̂n+1
inkpα

∆x4

2

cp18α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)N3(xinkp

− xnp)(xinkp2 − xp2)(xinkp3 − xp3)(−2)(ikp1−1) mod 2v̂n+1
inkpα

∆x6

8

cp19α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N3(xinkp

− xnp)(xinkp1 − xp1)(−2)(ikp2−1) mod 2v̂n+1
inkpα

∆x4

2

cp20α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N3(xinkp

− xnp)(xinkp3 − xp3)(−2)(ikp2−1) mod 2v̂n+1
inkpα

∆x4

2

cp21α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N3(xinkp

− xnp)(xinkp1 − xp1)(xinkp3 − xp3)(−2)(ikp2−1) mod 2v̂n+1
inkpα

∆x6

8

106

cp22α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N2(xinkp

− xnp)(xinkp1 − xp1)(−2)(ikp3−1) mod 2v̂n+1
inkpα

∆x4

2

cp23α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N2(xinkp

− xnp)(xinkp2 − xp2)(−2)(ikp3−1) mod 2v̂n+1
inkpα

∆x4

2

cp24α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)N2(xinkp

− xnp)(xinkp1 − xp1)(xinkp2 − xp2)(−2)(ikp3−1) mod 2v̂n+1
inkpα

∆x6

8

cp25α =

∑(NB+1)d

k=1 N3(xinkp
− xnp)(xinkp3 − xp3)(−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2v̂n+1

inkpα

∆x6

cp26α =

∑(NB+1)d

k=1 N2(xinkp
− xnp)(xinkp2 − xp2)(−2)(ikp1−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

∆x6

cp27α =

∑(NB+1)d

k=1 N1(xinkp
− xnp)(xinkp1 − xp1)(−2)(ikp2−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

∆x6

C.3 PolyPIC is lossless

In this section, we prove that if we use PolyPIC to transfer grid momentum to particle and

then directly transfer back without advecting, we get the exact same grid momentum back.

For simplicity, we prove it for the one particle case.

Given grid mass Mn
p and grid velocity Vnp , the cn+1

p we find by using full-interpolation

PolyPIC is given by

cn+1
p = (Qn

p
TMn

pQ
n
p)−1Qn

p
TMn

pVnp .

We want to show that the momentum p̂ we get from p̂ = Mn
pQ

n
pc

n+1
p is equal to the original

momentum on the grid Mn
pvi. The key obversation is that Qn

p is invertible: (Qn
p)TMn

pQ
n
p is

107

full rank diagonal, which means that Qn
p is also full rank and therefore invertible.

p̂ = Mn
pQ

n
pc

n+1
p

= (Qn
p
−TQn

p
T)Mn

pQ
n
pc

n+1
p

= (Qn
p
−TQn

p
T)Mn

pQ
n
p (Qn

p
TMn

pQ
n
p)−1Qn

p
TMn

pVnp

= (Qn
p)−T (Qn

p
TMn

pQ
n
p)(Qn

p
TMn

pQ
n
p)−1Qn

p
TMn

pVnp

= Mn
pVnp

C.4 PolyPIC is linear and angular momentum conserving

The ith component of the local linear momentum associated with velocity U is CT
i (Qn

p)TMn
pU

and the jth component of the angular velocity is CT
j+d(Q

n
p)TMn

pU where Cki = δki for 1 ≤

k ≤ d and

Ck(j+d) =

 1, k = 4

−1, k = 5

when d = 2 and

Ck4 =

 1, k = 5

−1, k = 7

Ck5 =

 1, k = 6

−1, k = 10

Ck6 =

 1, k = 9

−1, k = 11

Thus local linear and angular momentum conservation (which implies global) follows from

CT
i (Qn

p)TMn
pVn+1

p = CT
i (Qn

p)TMn
pQ

n
pc

n+1
p

108

C.5 Mathematica code

In this section we present the mathematica code we use to generate the bases and corre-

sponding formula.

C.5.1 Linear interpolation in 2d

(* 2D linear *)(* 2D linear *)(* 2D linear *)

ClearAll[“Global̀*”]ClearAll[“Global̀*”]ClearAll[“Global̀*”]

(* Assume x is in [0, h],(* Assume x is in [0, h],(* Assume x is in [0, h],

N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,

N [x, 2] is the weight of node at h.N [x, 2] is the weight of node at h.N [x, 2] is the weight of node at h.

))*)

N1[x , i] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[x , i] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[x , i] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];

NN[x , y , ii , jj] = N1[x/h, ii] ∗ N1[y/h, jj];NN[x , y , ii , jj] = N1[x/h, ii] ∗ N1[y/h, jj];NN[x , y , ii , jj] = N1[x/h, ii] ∗ N1[y/h, jj];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {4, 2}];r = ConstantArray[0, {4, 2}];r = ConstantArray[0, {4, 2}];

Do[{id = 2 ∗ (i1− 1) + j1;Do[{id = 2 ∗ (i1− 1) + j1;Do[{id = 2 ∗ (i1− 1) + j1;

nodex = (i1− 1) ∗ h;nodex = (i1− 1) ∗ h;nodex = (i1− 1) ∗ h;

nodey = (j1− 1) ∗ h;nodey = (j1− 1) ∗ h;nodey = (j1− 1) ∗ h;

r[[id]][[1]] = (nodex− particlex)/h;r[[id]][[1]] = (nodex− particlex)/h;r[[id]][[1]] = (nodex− particlex)/h;

r[[id]][[2]] = (nodey− particley)/h; }, { i1, 1, 2}, { j1, 1, 2}];r[[id]][[2]] = (nodey− particley)/h; }, { i1, 1, 2}, { j1, 1, 2}];r[[id]][[2]] = (nodey− particley)/h; }, { i1, 1, 2}, { j1, 1, 2}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {4, 4}];M = ConstantArray[0, {4, 4}];M = ConstantArray[0, {4, 4}];

Do[{id = 2 ∗ (i1− 1) + j1;Do[{id = 2 ∗ (i1− 1) + j1;Do[{id = 2 ∗ (i1− 1) + j1;

weight = NN[particlex, particley, i1, j1];weight = NN[particlex, particley, i1, j1];weight = NN[particlex, particley, i1, j1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

109

))*)

Do[{id = 2 ∗ (i1− 1) + j1;Do[{id = 2 ∗ (i1− 1) + j1;Do[{id = 2 ∗ (i1− 1) + j1;

weight = NN[particlex, particley, i1, j1];weight = NN[particlex, particley, i1, j1];weight = NN[particlex, particley, i1, j1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];

B1 = ConstantArray[0, {4, 4}];B1 = ConstantArray[0, {4, 4}];B1 = ConstantArray[0, {4, 4}];

Do[{id = (i1− 1) ∗ 2 + j1;Do[{id = (i1− 1) ∗ 2 + j1;Do[{id = (i1− 1) ∗ 2 + j1;

B1[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1)}, { i1, 1, 2}, { j1, 1, 2}, {idr, 1, 4}];B1[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1)}, { i1, 1, 2}, { j1, 1, 2}, {idr, 1, 4}];B1[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1)}, { i1, 1, 2}, { j1, 1, 2}, {idr, 1, 4}];

Diagonal[M] // MatrixForm;Diagonal[M] // MatrixForm;Diagonal[M] // MatrixForm;

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

MatrixForm[Transpose[B1].M. B1] // SimplifyMatrixForm[Transpose[B1].M. B1] // SimplifyMatrixForm[Transpose[B1].M. B1] // Simplify

C.5.2 Linear interpolation in 3d

(* 3D linear *)(* 3D linear *)(* 3D linear *)

ClearAll[“Global̀*”]ClearAll[“Global̀*”]ClearAll[“Global̀*”]

(* Assume x is in[0, h],(* Assume x is in[0, h],(* Assume x is in[0, h],

N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,

N [x, 2] is the weight of node ath.N [x, 2] is the weight of node ath.N [x, 2] is the weight of node ath.

))*)

N1[x , i] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[x , i] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[x , i] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];

NN[x , y , z , ii , jj , kk] = N1[x/h, ii] ∗ N1[y/h, jj] ∗ N1[z/h, kk];NN[x , y , z , ii , jj , kk] = N1[x/h, ii] ∗ N1[y/h, jj] ∗ N1[z/h, kk];NN[x , y , z , ii , jj , kk] = N1[x/h, ii] ∗ N1[y/h, jj] ∗ N1[z/h, kk];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {8, 3}];r = ConstantArray[0, {8, 3}];r = ConstantArray[0, {8, 3}];

Do[{id = 4 ∗ (i1− 1) + 2 ∗ (j1− 1) + k1;Do[{id = 4 ∗ (i1− 1) + 2 ∗ (j1− 1) + k1;Do[{id = 4 ∗ (i1− 1) + 2 ∗ (j1− 1) + k1;

nodex = (i1− 1) ∗ h;nodex = (i1− 1) ∗ h;nodex = (i1− 1) ∗ h;

nodey = (j1− 1) ∗ h;nodey = (j1− 1) ∗ h;nodey = (j1− 1) ∗ h;

nodez = (k1− 1) ∗ h;nodez = (k1− 1) ∗ h;nodez = (k1− 1) ∗ h;

r[[id]][[1]] = (nodex− particlex)/h;r[[id]][[1]] = (nodex− particlex)/h;r[[id]][[1]] = (nodex− particlex)/h;

r[[id]][[2]] = (nodey− particley)/h;r[[id]][[2]] = (nodey− particley)/h;r[[id]][[2]] = (nodey− particley)/h;

r[[id]][[3]] = (nodez− particlez)/h; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];r[[id]][[3]] = (nodez− particlez)/h; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];r[[id]][[3]] = (nodez− particlez)/h; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];

110

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {8, 8}];M = ConstantArray[0, {8, 8}];M = ConstantArray[0, {8, 8}];

Do[{id = 4 ∗ (i1− 1) + 2 ∗ (j1− 1) + k1;Do[{id = 4 ∗ (i1− 1) + 2 ∗ (j1− 1) + k1;Do[{id = 4 ∗ (i1− 1) + 2 ∗ (j1− 1) + k1;

weight = NN[particlex, particley, particlez, i1, j1, k1];weight = NN[particlex, particley, particlez, i1, j1, k1];weight = NN[particlex, particley, particlez, i1, j1, k1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

))*)

B1 = ConstantArray[0, {4 ∗ 2, 8}];B1 = ConstantArray[0, {4 ∗ 2, 8}];B1 = ConstantArray[0, {4 ∗ 2, 8}];

Do[{id = (i1− 1) ∗ 4 + (j1− 1) ∗ 2 + k1;Do[{id = (i1− 1) ∗ 4 + (j1− 1) ∗ 2 + k1;Do[{id = (i1− 1) ∗ 4 + (j1− 1) ∗ 2 + k1;

B1[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1) ∗ r[[idr]][[3]]∧(k1− 1); },B1[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1) ∗ r[[idr]][[3]]∧(k1− 1); },B1[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1) ∗ r[[idr]][[3]]∧(k1− 1); },

{i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 8}];{i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 8}];{i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 8}];

Diagonal[M] // MatrixForm;Diagonal[M] // MatrixForm;Diagonal[M] // MatrixForm;

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

MatrixForm[Transpose[B1].M. B1] // SimplifyMatrixForm[Transpose[B1].M. B1] // SimplifyMatrixForm[Transpose[B1].M. B1] // Simplify

C.5.3 Quadratic interpolation in 2d

(* 2D quadratic *)(* 2D quadratic *)(* 2D quadratic *)

ClearAll[“Global̀*”]ClearAll[“Global̀*”]ClearAll[“Global̀*”]

(* Assume x is in[−0.5h, 0.5h],we use quadratic interpolation.(* Assume x is in[−0.5h, 0.5h],we use quadratic interpolation.(* Assume x is in[−0.5h, 0.5h],we use quadratic interpolation.

N2[x, 1]is the weight of node at xi = −h,N2[x, 1]is the weight of node at xi = −h,N2[x, 1]is the weight of node at xi = −h,

N2[x, 2]is the weight of node at xi = 0,N2[x, 2]is the weight of node at xi = 0,N2[x, 2]is the weight of node at xi = 0,

N2[x, 3]is the weight of node at xi = h,N2[x, 3]is the weight of node at xi = h,N2[x, 3]is the weight of node at xi = h,

))*)

N2[x , i] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1}, {3/4− x∧2, i == 2},N2[x , i] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1}, {3/4− x∧2, i == 2},N2[x , i] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1}, {3/4− x∧2, i == 2},

{1/2 ∗ (x+ 1/2)∧2, i == 3}}];{1/2 ∗ (x+ 1/2)∧2, i == 3}}];{1/2 ∗ (x+ 1/2)∧2, i == 3}}];

NN[x , y , ii , jj] = N2[x/h, ii] ∗ N2[y/h, jj];NN[x , y , ii , jj] = N2[x/h, ii] ∗ N2[y/h, jj];NN[x , y , ii , jj] = N2[x/h, ii] ∗ N2[y/h, jj];

111

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {9, 2}];r = ConstantArray[0, {9, 2}];r = ConstantArray[0, {9, 2}];

Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;

nodex = (i1− 2) ∗ h;nodex = (i1− 2) ∗ h;nodex = (i1− 2) ∗ h;

nodey = (j1− 2) ∗ h;nodey = (j1− 2) ∗ h;nodey = (j1− 2) ∗ h;

r[[id]][[1]] = (nodex− x);r[[id]][[1]] = (nodex− x);r[[id]][[1]] = (nodex− x);

r[[id]][[2]] = (nodey− y); }, {i1, 1, 3}, {j1, 1, 3}];r[[id]][[2]] = (nodey− y); }, {i1, 1, 3}, {j1, 1, 3}];r[[id]][[2]] = (nodey− y); }, {i1, 1, 3}, {j1, 1, 3}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {9, 9}];M = ConstantArray[0, {9, 9}];M = ConstantArray[0, {9, 9}];

Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;

weight = NN[x, y, i1, j1];weight = NN[x, y, i1, j1];weight = NN[x, y, i1, j1];

M [[id]][[id]] = mass ∗ weight; }, {i1, 1, 3}, {j1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, {i1, 1, 3}, {j1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, {i1, 1, 3}, {j1, 1, 3}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

))*)

B = ConstantArray[0, {9, 9}];B = ConstantArray[0, {9, 9}];B = ConstantArray[0, {9, 9}];

Do[{id = (j1− 1) ∗ 3 + i1;Do[{id = (j1− 1) ∗ 3 + i1;Do[{id = (j1− 1) ∗ 3 + i1;

B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1);

}, {i1, 1, 3}, {j1, 1, 3}, {idr, 1, 9}];}, {i1, 1, 3}, {j1, 1, 3}, {idr, 1, 9}];}, {i1, 1, 3}, {j1, 1, 3}, {idr, 1, 9}];

(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of

1, x, y, xy, x∧2, y∧2, x∧2 ∗ y, x ∗ y∧2, x∧2 ∗ y∧2.1, x, y, xy, x∧2, y∧2, x∧2 ∗ y, x ∗ y∧2, x∧2 ∗ y∧2.1, x, y, xy, x∧2, y∧2, x∧2 ∗ y, x ∗ y∧2, x∧2 ∗ y∧2.

))*)

BS = B[[All, {1, 2, 4, 5, 3, 7, 6, 8, 9}]];BS = B[[All, {1, 2, 4, 5, 3, 7, 6, 8, 9}]];BS = B[[All, {1, 2, 4, 5, 3, 7, 6, 8, 9}]];

(* The first four basis vectors are already othogonal.(* The first four basis vectors are already othogonal.(* The first four basis vectors are already othogonal.

Use Gram-Schmidt and we get the basis vectors corresponding to x∧2 and y∧2.Use Gram-Schmidt and we get the basis vectors corresponding to x∧2 and y∧2.Use Gram-Schmidt and we get the basis vectors corresponding to x∧2 and y∧2.

))*)

BS[[All, 5]] = BS[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗ BS[[All, 2]];BS[[All, 5]] = BS[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗ BS[[All, 2]];BS[[All, 5]] = BS[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗ BS[[All, 2]];

BS[[All, 6]] = BS[[All, 6]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗ BS[[All, 3]];BS[[All, 6]] = BS[[All, 6]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗ BS[[All, 3]];BS[[All, 6]] = BS[[All, 6]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗ BS[[All, 3]];

112

(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)

BS[[All, 7]] = BS[[All, 5]]BS[[All, 3]];BS[[All, 7]] = BS[[All, 5]]BS[[All, 3]];BS[[All, 7]] = BS[[All, 5]]BS[[All, 3]];

BS[[All, 8]] = BS[[All, 6]]BS[[All, 2]];BS[[All, 8]] = BS[[All, 6]]BS[[All, 2]];BS[[All, 8]] = BS[[All, 6]]BS[[All, 2]];

BS[[All, 9]] = BS[[All, 5]] BS[[All, 6]];BS[[All, 9]] = BS[[All, 5]] BS[[All, 6]];BS[[All, 9]] = BS[[All, 5]] BS[[All, 6]];

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

BTMB = Transpose[BS].M.BS//Simplify;BTMB = Transpose[BS].M.BS//Simplify;BTMB = Transpose[BS].M.BS//Simplify;

(* Get the awesome formula to put in your code!*)(* Get the awesome formula to put in your code!*)(* Get the awesome formula to put in your code!*)

MB = M.BS//Simplify;MB = M.BS//Simplify;MB = M.BS//Simplify;

MB//MatrixForm;MB//MatrixForm;MB//MatrixForm;

Inverse[BTMB].Transpose[BS].M//MatrixForm//Simplify;Inverse[BTMB].Transpose[BS].M//MatrixForm//Simplify;Inverse[BTMB].Transpose[BS].M//MatrixForm//Simplify;

C.5.4 Quadratic interpolation in 3d

(* 3D quadratic *)(* 3D quadratic *)(* 3D quadratic *)

ClearAll[“Global̀*”]ClearAll[“Global̀*”]ClearAll[“Global̀*”]

(* Assumex is in[−0.5h, 0.5h], we use quadratic interpolation.(* Assumex is in[−0.5h, 0.5h], we use quadratic interpolation.(* Assumex is in[−0.5h, 0.5h], we use quadratic interpolation.

N2[x, 1] is the weight of node at xi = −h,N2[x, 1] is the weight of node at xi = −h,N2[x, 1] is the weight of node at xi = −h,

N2[x, 2] is the weight of node at xi = 0,N2[x, 2] is the weight of node at xi = 0,N2[x, 2] is the weight of node at xi = 0,

N2[x, 3] is the weight of node at xi = h,N2[x, 3] is the weight of node at xi = h,N2[x, 3] is the weight of node at xi = h,

))*)

N2[x , i] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1}, {3/4− x∧2, i == 2},N2[x , i] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1}, {3/4− x∧2, i == 2},N2[x , i] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1}, {3/4− x∧2, i == 2},

{1/2 ∗ (x+ 1/2)∧2, i == 3}}];{1/2 ∗ (x+ 1/2)∧2, i == 3}}];{1/2 ∗ (x+ 1/2)∧2, i == 3}}];

NN[x , y , z , ii , jj , kk] = N2[x/h, ii] ∗ N2[y/h, jj] ∗ N2[z/h, kk];NN[x , y , z , ii , jj , kk] = N2[x/h, ii] ∗ N2[y/h, jj] ∗ N2[z/h, kk];NN[x , y , z , ii , jj , kk] = N2[x/h, ii] ∗ N2[y/h, jj] ∗ N2[z/h, kk];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {27, 3}];r = ConstantArray[0, {27, 3}];r = ConstantArray[0, {27, 3}];

Do[{id = 9 ∗ (i1− 1) + 3 ∗ (j1− 1) + k1;Do[{id = 9 ∗ (i1− 1) + 3 ∗ (j1− 1) + k1;Do[{id = 9 ∗ (i1− 1) + 3 ∗ (j1− 1) + k1;

nodex = (i1− 2) ∗ h;nodex = (i1− 2) ∗ h;nodex = (i1− 2) ∗ h;

nodey = (j1− 2) ∗ h;nodey = (j1− 2) ∗ h;nodey = (j1− 2) ∗ h;

nodez = (k1− 2) ∗ h;nodez = (k1− 2) ∗ h;nodez = (k1− 2) ∗ h;

r[[id]][[1]] = (nodex− x);r[[id]][[1]] = (nodex− x);r[[id]][[1]] = (nodex− x);

113

r[[id]][[2]] = (nodey− y);r[[id]][[2]] = (nodey− y);r[[id]][[2]] = (nodey− y);

r[[id]][[3]] = (nodez− z); }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];r[[id]][[3]] = (nodez− z); }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];r[[id]][[3]] = (nodez− z); }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {27, 27}];M = ConstantArray[0, {27, 27}];M = ConstantArray[0, {27, 27}];

Do[{id = 9 ∗ (i1− 1) + 3 ∗ (j1− 1) + k1;Do[{id = 9 ∗ (i1− 1) + 3 ∗ (j1− 1) + k1;Do[{id = 9 ∗ (i1− 1) + 3 ∗ (j1− 1) + k1;

weight = NN[x, y, z, i1, j1, k1];weight = NN[x, y, z, i1, j1, k1];weight = NN[x, y, z, i1, j1, k1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

))*)

B = ConstantArray[0, {27, 27}];B = ConstantArray[0, {27, 27}];B = ConstantArray[0, {27, 27}];

Do[{id = (i1− 1) ∗ 4 + (j1− 1) ∗ 2 + k1;Do[{id = (i1− 1) ∗ 4 + (j1− 1) ∗ 2 + k1;Do[{id = (i1− 1) ∗ 4 + (j1− 1) ∗ 2 + k1;

B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1) ∗ r[[idr]][[3]]∧(k1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1) ∗ r[[idr]][[3]]∧(k1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1) ∗ r[[idr]][[3]]∧(k1− 1);

}, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 27}];}, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 27}];}, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 27}];

(* The basisvectors corresponding to1, x, y, z are already orthogonal.(* The basisvectors corresponding to1, x, y, z are already orthogonal.(* The basisvectors corresponding to1, x, y, z are already orthogonal.

Use gram− schmidt and we get the basis corresponding to x∧2, y∧2, andz∧2.Use gram− schmidt and we get the basis corresponding to x∧2, y∧2, andz∧2.Use gram− schmidt and we get the basis corresponding to x∧2, y∧2, andz∧2.

))*)

B[[All, 9]] = B[[All, 5]]B[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗B[[All, 5]];B[[All, 9]] = B[[All, 5]]B[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗B[[All, 5]];B[[All, 9]] = B[[All, 5]]B[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗B[[All, 5]];

B[[All, 10]] = B[[All, 3]]B[[All, 3]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗B[[All, 3]];B[[All, 10]] = B[[All, 3]]B[[All, 3]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗B[[All, 3]];B[[All, 10]] = B[[All, 3]]B[[All, 3]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗B[[All, 3]];

B[[All, 11]] = B[[All, 2]]B[[All, 2]]− h∧2/4− z(h∧2− 4z∧2)/h∧2 ∗B[[All, 2]];B[[All, 11]] = B[[All, 2]]B[[All, 2]]− h∧2/4− z(h∧2− 4z∧2)/h∧2 ∗B[[All, 2]];B[[All, 11]] = B[[All, 2]]B[[All, 2]]− h∧2/4− z(h∧2− 4z∧2)/h∧2 ∗B[[All, 2]];

(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)

B[[All, 12]] = B[[All, 2]]B[[All, 9]];B[[All, 12]] = B[[All, 2]]B[[All, 9]];B[[All, 12]] = B[[All, 2]]B[[All, 9]];

B[[All, 13]] = B[[All, 3]]B[[All, 9]];B[[All, 13]] = B[[All, 3]]B[[All, 9]];B[[All, 13]] = B[[All, 3]]B[[All, 9]];

B[[All, 14]] = B[[All, 2]]B[[All, 3]]B[[All, 9]];B[[All, 14]] = B[[All, 2]]B[[All, 3]]B[[All, 9]];B[[All, 14]] = B[[All, 2]]B[[All, 3]]B[[All, 9]];

B[[All, 15]] = B[[All, 2]]B[[All, 10]];B[[All, 15]] = B[[All, 2]]B[[All, 10]];B[[All, 15]] = B[[All, 2]]B[[All, 10]];

B[[All, 16]] = B[[All, 5]]B[[All, 10]];B[[All, 16]] = B[[All, 5]]B[[All, 10]];B[[All, 16]] = B[[All, 5]]B[[All, 10]];

114

B[[All, 17]] = B[[All, 2]]B[[All, 5]]B[[All, 10]];B[[All, 17]] = B[[All, 2]]B[[All, 5]]B[[All, 10]];B[[All, 17]] = B[[All, 2]]B[[All, 5]]B[[All, 10]];

B[[All, 18]] = B[[All, 3]]B[[All, 11]];B[[All, 18]] = B[[All, 3]]B[[All, 11]];B[[All, 18]] = B[[All, 3]]B[[All, 11]];

B[[All, 19]] = B[[All, 5]]B[[All, 11]];B[[All, 19]] = B[[All, 5]]B[[All, 11]];B[[All, 19]] = B[[All, 5]]B[[All, 11]];

B[[All, 20]] = B[[All, 3]]B[[All, 5]]B[[All, 11]];B[[All, 20]] = B[[All, 3]]B[[All, 5]]B[[All, 11]];B[[All, 20]] = B[[All, 3]]B[[All, 5]]B[[All, 11]];

B[[All, 21]] = B[[All, 9]]B[[All, 10]];B[[All, 21]] = B[[All, 9]]B[[All, 10]];B[[All, 21]] = B[[All, 9]]B[[All, 10]];

B[[All, 22]] = B[[All, 10]]B[[All, 11]];B[[All, 22]] = B[[All, 10]]B[[All, 11]];B[[All, 22]] = B[[All, 10]]B[[All, 11]];

B[[All, 23]] = B[[All, 9]]B[[All, 11]];B[[All, 23]] = B[[All, 9]]B[[All, 11]];B[[All, 23]] = B[[All, 9]]B[[All, 11]];

B[[All, 24]] = B[[All, 21]]B[[All, 2]];B[[All, 24]] = B[[All, 21]]B[[All, 2]];B[[All, 24]] = B[[All, 21]]B[[All, 2]];

B[[All, 25]] = B[[All, 22]]B[[All, 5]];B[[All, 25]] = B[[All, 22]]B[[All, 5]];B[[All, 25]] = B[[All, 22]]B[[All, 5]];

B[[All, 26]] = B[[All, 23]]B[[All, 3]];B[[All, 26]] = B[[All, 23]]B[[All, 3]];B[[All, 26]] = B[[All, 23]]B[[All, 3]];

B[[All, 27]] = B[[All, 9]]B[[All, 10]]B[[All, 11]];B[[All, 27]] = B[[All, 9]]B[[All, 10]]B[[All, 11]];B[[All, 27]] = B[[All, 9]]B[[All, 10]]B[[All, 11]];

(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of

1, x, y, z, xy, xz, yz, xyz, x∧2, y∧2, z∧2, x∧2 ∗ y∧2, x∧2 ∗ z∧2, y∧2 ∗ z∧2, x∧2 ∗ y∧2 ∗ z∧2,1, x, y, z, xy, xz, yz, xyz, x∧2, y∧2, z∧2, x∧2 ∗ y∧2, x∧2 ∗ z∧2, y∧2 ∗ z∧2, x∧2 ∗ y∧2 ∗ z∧2,1, x, y, z, xy, xz, yz, xyz, x∧2, y∧2, z∧2, x∧2 ∗ y∧2, x∧2 ∗ z∧2, y∧2 ∗ z∧2, x∧2 ∗ y∧2 ∗ z∧2,

x∧2 ∗ y, x∧2 ∗ z, x∧2 ∗ yz, y∧2 ∗ x, y∧2 ∗ z, y∧2 ∗ xz, z∧2 ∗ x, z∧2 ∗ y, z∧2 ∗ xy,x∧2 ∗ y, x∧2 ∗ z, x∧2 ∗ yz, y∧2 ∗ x, y∧2 ∗ z, y∧2 ∗ xz, z∧2 ∗ x, z∧2 ∗ y, z∧2 ∗ xy,x∧2 ∗ y, x∧2 ∗ z, x∧2 ∗ yz, y∧2 ∗ x, y∧2 ∗ z, y∧2 ∗ xz, z∧2 ∗ x, z∧2 ∗ y, z∧2 ∗ xy,

x∧2 ∗ y∧2 ∗ z, x∧2 ∗ z∧2 ∗ y, y∧2 ∗ z∧2 ∗ xx∧2 ∗ y∧2 ∗ z, x∧2 ∗ z∧2 ∗ y, y∧2 ∗ z∧2 ∗ xx∧2 ∗ y∧2 ∗ z, x∧2 ∗ z∧2 ∗ y, y∧2 ∗ z∧2 ∗ x

))*)

BS = B[[All, {1, 5, 3, 2, 7, 6, 4, 8, 9, 10, 11, 21, 23, 22, 27, 13, 12, 14, 16,BS = B[[All, {1, 5, 3, 2, 7, 6, 4, 8, 9, 10, 11, 21, 23, 22, 27, 13, 12, 14, 16,BS = B[[All, {1, 5, 3, 2, 7, 6, 4, 8, 9, 10, 11, 21, 23, 22, 27, 13, 12, 14, 16,

15, 17, 19, 18, 20, 24, 26, 25}]];15, 17, 19, 18, 20, 24, 26, 25}]];15, 17, 19, 18, 20, 24, 26, 25}]];

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

BTMB = Transpose[BS].M. BS // Simplify;BTMB = Transpose[BS].M. BS // Simplify;BTMB = Transpose[BS].M. BS // Simplify;

BTMB // MatrixFormBTMB // MatrixFormBTMB // MatrixForm

(* Get the awesome formula to put in your code! *)(* Get the awesome formula to put in your code! *)(* Get the awesome formula to put in your code! *)

MB = M. BS // Simplify;MB = M. BS // Simplify;MB = M. BS // Simplify;

115

MB // MatrixForm;MB // MatrixForm;MB // MatrixForm;

BTMBinvBTM = Inverse[BTMB]. Transpose[BS].M ;BTMBinvBTM = Inverse[BTMB]. Transpose[BS].M ;BTMBinvBTM = Inverse[BTMB]. Transpose[BS].M ;

Transpose[BTMBinvBTM] // MatrixForm // Simplify;Transpose[BTMBinvBTM] // MatrixForm // Simplify;Transpose[BTMBinvBTM] // MatrixForm // Simplify;

116

REFERENCES

[1] R. Ando, N. Thuerey, and C. Wojtan. A stream function solver for liquid simulations.
ACM Trans Graph, 34 (2):8, August 2015.

[2] R. Ando, N. Thurey, and R. Tsuruno. Preserving fluid sheets with adaptively sampled
anisotropic particles. IEEE Trans Vis Comp Graph, 18(8):1202–1214, August 2012.

[3] R. Ando, N. Thurey, and C. Wojtan. Highly adaptive liquid simulations on tetrahedral
meshes. ACM Trans Graph, 32(4):103:1–103:10, 2013.

[4] R. Ando and R. Tsuruno. A particle-based method for preserving fluid sheets. In Proc
ACM SIGGRAPH/Eurographics Symp Comp Anim, SCA ’11, pages 7–16, 2011.

[5] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge University Press, 2008.

[6] J. Brackbill. The ringing instability in particle-in-cell calculations of low-speed flow. J
Comp Phys, 75(2):469–492, 1988.

[7] J. Brackbill and H. Ruppel. FLIP: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. J Comp Phys, 65:314–343, 1986.

[8] Edwin Catmull and James Clark. Recursively generated b-spline surfaces on arbitrary
topological meshes. Computer-aided design, 10(6):350–355, 1978.

[9] N. Chentanez and M. Muller. Coupling 3d eulerian, height field and particle methods for
the simulation of large scale liquid phenomena. In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, SCA ’14, 2014.

[10] D. Clyde, J. Teran, and R. Tamstorf. Modeling and data-driven parameter estimation
for woven fabrics. In Proc ACM SIGGRAPH / Eurograp Symp Comp Anim, SCA ’17,
pages 17:1–17:11, New York, NY, USA, 2017. ACM.

[11] M. Desbrun and M. Cani. Smoothed particles: A new paradigm for animating highly
deformable bodies. In R. Boulic and G. Hegron, editors, Eurographics Workshop on
Computer Animation and Simulation (EGCAS), pages 61–76. Springer-Verlag, 1996.

[12] E. Edwards and R. Bridson. A high-order accurate particle-in-cell method. Int J Numer
Meth Eng, 90:1073–1088, 2012.

[13] F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. Narrow band flip for
liquid simulations. Comp Graph For, 35(2):8, May 2016.

[14] C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. Supplementary Technical Document,
2017.

[15] Y. Gao, C. Li, S. Hu, and B. Barsky. Simulating gaseous fluids with low and high
speeds. Comp Graph Forum, 28(28):1845–1852, 2009.

117

[16] O. Gonzalez and A. Stuart. A first course in continuum mechanics. Cambridge Uni-
versity Press, 2008.

[17] C. Gritton and M. Berzins. Improving accuracy in the mpm method using a null space
filter. Comp Part Mech, 4(1):131–142, 2017.

[18] C. Hammerquist and J. Nairn. A new method for material point method particle
updates that reduces noise and enhances stability. Comp Meth App Mech Eng, 318:724
– 738, 2017.

[19] F. Harlow. The particle-in-cell method for numerical solution of problems in fluid
dynamics. Meth Comp Phys, 3:319–343, 1964.

[20] F. Harlow and E. Welch. Numerical calculation of time dependent viscous flow of fluid
with a free surface. Phys Fluid, 8(12):2182–2189, 1965.

[21] W. Hong, D. House, and J. Keyser. Adaptive particles for incompressible fluid simula-
tion. Vis Comp, 24(7):535–543, 2008.

[22] W. Hong, D. House, and J. Keyser. An adaptive sampling approach to incompressible
particle-based fluid. Theory Pract Comp Graph, pages 69–76, 2009.

[23] C. Jiang, T. Gast, and J. Teran. Anisotropic elastoplasticity for cloth, knit and hair
frictional contact. ACM Trans Graph, 36(4), 2017.

[24] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine particle-in-cell
method. ACM Trans Graph, 34(4):51:1–51:10, 2015.

[25] C. Jiang, C. Schroeder, and J. Teran. An angular momentum conserving affine-particle-
in-cell method. J Comp Phys, 338:137 – 164, 2017.

[26] H. Lee, J. Hong, and C. Kim. Interchangeable SPH and level set method in multiphase
fluids. Vis Comp, 25(5):713–718, 2009.

[27] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled SPH and particle
level set fluid simulation. IEEE Trans Vis Comp Graph, 14:797–804, 2008.

[28] C. Mast. Modeling landslide-induced flow interactions with structures using the Material
Point Method. PhD thesis, 2013.

[29] O. Mercier, C. Beauchemin, N. Thuerey, T. Kim, and D. Nowrouzezahrai. Surface
Turbulence for Particle-Based Liquid Simulations. ACM Trans Graph, 34(6):10, Nov
2015.

[30] K. Raveendran, C. Wojtan, and G. Turk. Hybrid SPH. In Proc 2011 ACM SIG-
GRAPH/Eurograp Symp Comp Anim, SCA ’11, pages 33–42, 2011.

[31] J. Simo and G. Meschke. A new class of algorithms for classical plasticity extended to
finite strains. application to geomaterials. Comput Mech, 11(4):253–278, 1993.

118

[32] Jos Stam. Exact evaluation of catmull-clark subdivision surfaces at arbitrary param-
eter values. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, pages 395–404. ACM, 1998.

[33] M. Steffen, R. Kirby, and M. Berzins. Analysis and reduction of quadrature errors in
the material point method (MPM). Int J Numer Meth Eng, 76(6):922–948, 2008.

[34] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. A material point method
for snow simulation. ACM Trans Graph, 32(4):102:1–102:10, 2013.

[35] D. Sulsky, Z. Chen, and H. Schreyer. A particle method for history-dependent materials.
Comp Meth App Mech Eng, 118(1):179–196, 1994.

[36] D. Sulsky, S. Zhou, and H. Schreyer. Application of a particle-in-cell method to solid
mechanics. Comp Phys Comm, 87(1):236–252, 1995.

[37] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: viscolelasticity, plas-
ticity, fracture. SIGGRAPH Comp Graph, 22(4):269–278, 1988.

[38] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.
SIGGRAPH Comput Graph, 21(4):205–214, 1987.

[39] N. Thuerey and T. Pfaff. MantaFlow, 2016. http://mantaflow.com.

[40] K. Um, S. Baek, and J. Han. Advanced hybrid particle-grid method with sub-grid
particle correction. Comp Graph Forum, 33:209–218, 2014.

[41] P. Wallstedt and J. Guilkey. Improved velocity projection for the material point method.
Comp Mod in Eng and Sci, 19(3):223, 2007.

[42] Naoto Yoshioka. A sandpile experiment and its implications for self-organized criticality
and characteristic earthquake. Earth, planets and space, 55(6):283–289, 2003.

[43] B. Zhu, X. Yang, and Y. Fan. Creating and preserving vortical details in sph fluid.
Comp Graph Forum, 29(7):2207–2214, 2010.

119

	Introduction
	Contributions
	Dissertation Overview

	Continuum Mechanics
	Governing equations
	Deformation gradient
	Elastic stress

	The Material Point Method
	Notation
	Method outline
	Grid Transfers: Particle to Grid
	Grid Momentum Update
	Grid Transfers: Grid to Particle
	Update Positions and Trial Elastic State
	Update Plasticity

	Drucker-Prager Elastoplasticity for Sand
	Drucker-Prager yield surface derivation
	Coulomb friction
	Stress admissibility
	Kirchhoff stress

	Plastic flow
	Choosing the direction of the plastic flow

	Derivation of return mapping algorithm from plastic flow
	Results
	Flowing and Piling
	Easy Tuning
	Two-way Coupling
	Drawing and Scooping

	Thin shell with frictional contact
	Mathematical Details and Notation
	Shell Kinematics
	Deformation Gradient
	Plasticity

	Elastic Stress and Plastic Constraints
	Elastic stress
	Bending and Lamina Potential
	Frictional Contact Potential
	Frictional Contact Yield Condition and Return Mapping

	Subdivision and B-spline FEM
	MPM Discretization
	Grid Momentum Update
	Update Positions and Trial Elastic State
	Update Plasticity

	Results
	Effect of Shell Thickness
	Woven Fabrics
	Self Collisions
	Plasticity for Denting
	Two-way Coupling
	Resolution Refinement
	Bending with Jiang et al.

	A Polynomial Particle-In-Cell Method
	Background
	Previous work

	Notation and method outline
	PIC and APIC Revisit
	Velocity Modes
	Method
	Transfer from Particle to Grid
	Update Grid Momentum
	Transfer from Grid to Particle

	MAC grids
	Simulation Results
	Incompressible Flow
	MPM elastoplasticity
	Accuracy and the number of modes
	Momentum conservation

	Drucker-Prager elastoplasticity derivations
	Energy dissipation
	Isotropy
	Kirchhoff stress and hencky strain
	Plastic Dissipation is Nonnegative

	Thin shell derivations
	FEM Force computation
	Grid force computation
	QR and Elastic Potential
	Change of basis tensor
	Differentials

	Elastic potential and stresses
	Frictional Contact Yield Condition
	Denting Yield Condition and Return Mapping

	PolyPIC
	List of Bases
	Linear interpolation
	Quadratic interpolation

	Grid to Particle
	PolyPIC is lossless
	PolyPIC is linear and angular momentum conserving
	Mathematica code
	Linear interpolation in 2d
	Linear interpolation in 3d
	Quadratic interpolation in 2d
	Quadratic interpolation in 3d

	References

