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Mobley1,2

1 Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 
92697, United States

2 Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States

Abstract

Many molecular simulation methods use force fields to help model and simulate molecules and 

their behavior in various environments. Force fields are sets of functions and parameters used to 

calculate the potential energy of a chemical system as a function of the atomic coordinates. 

Despite the widespread use of force fields, their inadequacies are often thought to contribute to 

systematic errors in molecular simulations. Furthermore, different force fields tend to give varying 

results on the same systems with the same simulation settings. Here, we present a pipeline for 

comparing the geometries of small molecule conformers. We aimed to identify molecules or 

chemistries that are particularly informative for future force field development because they 

display inconsistencies between force fields. We applied our pipeline to a subset of the eMolecules 

database, and highlighted molecules that appear to be parameterized inconsistently across different 

force fields. We then identified over-represented functional groups in these molecule sets. The 

molecules and moieties identified by this pipeline may be particularly helpful for future force field 

parameterization.

Keywords

Molecular Mechanics simulations; Force Fields; Geometry Optimization; Molecular Modeling; 
Conformer Comparison

1 Introduction

Molecular simulations are widely used in drug design, materials design, and in the study of 

biophysical processes. Large systems, like biomolecules or even small molecules in solution, 

prove to be computationally difficult to simulate at the quantum mechanical (QM) level of 
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theory. For this reason, classical empirical potential energy functions known as force fields 

are often used in place of quantum mechanics in order to efficiently simulate chemical and 

biological systems. General small molecule force fields, such as the general AMBER force 

fields GAFF and GAFF2 [39–41], OPLS [17, 23], CGenFF [36, 37], and the Merck 

molecular force fields MMFF94 and MMFF94S [10–16], were built to model a wide variety 

of small organic molecules. These force fields are often fit to attempt to reproduce energies 

and geometries observed in QM calculations. However, when applied to new molecules, they 

have been observed to differ from both quantum mechanical calculations and from each 

other in predicted energies and optimized geometries for important areas of chemical space 

[3, 7, 27, 33].

In the present stludy, we aimed to identify regions of chemical space where parameterization 

differences between force fields lead to different optimized geometries for small drug-like 

molecules in the gas phase. Geometric differences between force fields for some molecules 

would indicate that the underlying force fields describe the molecule differently, and thus are 

indicative of force field differences. Here, a subset of molecules from the eMolecules 

database [5] was used as a broad sample of small molecule chemical space. Five energy 

minimizations were performed on each molecule using one of five force fields: GAFF, 

GAFF2, MMFF94, MMFF94S, and the Open Force Field Initiative’s SMIRNOFF99Frosst 

[27]. Two geometric measurements, Torsion Fingerprint Deviation [31] (TFD) and 

TanimotoCombo [18], were used to better identify meaningful geometric differences that 

may suggest parameterization inconsistencies.

One key assumption in our work is that large geometric differences in optimized geometries 

tend, overall, to be indicative of substantial differences in the underlying force fields. In 

other words, we operate with the belief that differences in force fields which are substantial 

enough to result in large differences in optimized geometries are interesting to force field 

developers. This assumption does not mean that such force field differences are necessarily 

large; indeed, small force field differences can result in large differences in optimized 

geometries [6, 27, 33]. This is because many organic molecules have a large number of 

conformational minima often separated by relatively small barriers, so small force field 

differences may cause a molecule to optimize into different minima. Rather, we assume that 

force field differences which are large enough to substantially alter optimized geometries are 

of interest, even if the force field differences themselves are relatively small. All 

minimizations were performed with the same starting structure to ensure that differences 

observed are as attributable as possible to differences in force fields.

In part, our work is motivated by the Open Force Field Initiative (OpenFF), which seeks to 

develop open data sets and infrastructure which can be used to produce new force fields 

which improved accuracy. It recently released an initial prototype force field, 

SMIRNOFF99Frosst [27] and, given our connection with OpenFF, SMIRNOFF99Frosst is 

one focus of our testing in the present study.

By identifying particular functional groups or substructures that lead to drastically different 

geometrically optimized conformers, we will have identified a portion of chemical space that 

is inconsistently parameterized by the gamut of force fields studied, and thus is likely to be 
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inaccurately described by at least some of these force fields. In the future, these molecules 

could be prioritized when training new force fields through inclusion in QM reference 

calculations or searches for new experimental data.

2 Results and Discussion

In this study, we aimed to identify portions of small molecule chemical space which are 

particularly informative for force field development. After filtering eMolecules as described 

in Section 3.3, we were left with 2.7 million molecules. We optimized each of these 

molecules with each of the five force fields considered – GAFF, GAFF2, MMFF94, 

MMFF94S, and SMIRNOFF99Frosst [10–16, 27]. For any given molecule, we performed 

pairwise comparisons of these five minimized conformers, yielding ten comparisons that we 

here call ″molecule pairs″ (though each member of a molecule pair is actually the same 

molecule in different conformations). Each of the molecule pairs was evaluated for 

geometric differences using Torsion Fingerprint Deviation (TFD) [32] and TanimotoCombo 

[18]. We limited our analysis to molecules having 25 or fewer heavy atoms. Furthermore, we 

restricted our analysis to molecule pairs which yielded a TFD value less than 0.60 and a 

TanimotoCombo value between 0.25 and 2.0. These cutoffs were chosen based on visual 

inspection, as explained in detail in Section 3. Last, we sort molecules into different sets, 

which were then characterized using the Checkmol [8, 9] functional group identification 

tool.

Here, we chose TFD and TanimotoCombo, rather than the more common RMSD, as key 

metrics for this analysis. The primary trouble with RMSD is that it is highly dependent on 

molecular size. For example, a value of 1.0 Å might correspond to a very large geometric 

difference for an extremely small molecule (e.g. butane) but a trivial geometric difference 

for a large, drug-like molecule (e.g. lipitor). Both TFD and TanimotoCombo are 

dimensionless numbers covering a well defined scale (TFD from 0 to 1; TanimotoCombo 

from 0 to 2) allowing us to define similarity and difference flags which are independent of 

molecular size. As described above, these metrics also track well with the qualitative 

structural differences we hope to identify in molecule pairs. While RMSD also captured 

some of these differences, its size dependence makes it impractical for surveying a wide 

variety of molecules.

2.1 Molecule pairs were flagged as similar or different based on TFD and 
TanimotoCombo

We used TanimotoCombo and TFD to identify molecules with dissimilar geometries to seek 

molecules with parameter inconsistencies. We assign a “difference flag” to a molecule pair 

(in a “molecule pair”, the comparison is made across force fields) when it yields a TFD 

value over 0.20 and a TanimotoCombo value over 0.50. These pairs visually exhibit different 

minimized geometries that may be indicative of parameterization differences. Out of 

26,984,560 possible molecule pairs involving any pair of force fields, the combination of the 

SMIRNOFF99Frosst and GAFF2 force fields yielded the largest number of difference flags 

(305,582, Table 1). This indicates that these force fields are quite different. In contrast, the 

combination of MMFF94 and MMFF94S yielded the smallest number of difference flags at 
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10,048 difference flags, indicating that these two force fields are the most similar among 

those being compared. These numbers are sensible given the history of these force fields – 

GAFF2 has undergone considerable recent reparameterization [39], and 

SMIRNOFF99Frosst inherits parameters from parm@Frosst [1], a sibling force field of 

GAFF, while reducing the number of parameters with an entirely different form of chemical 

perception [26, 27]. In contrast, MMFF94 and MMFF94S are identical aside from their 

treatment of some nitrogen atoms [15]. Consequently their optimized conformers should be 

rather similar, as reflected in our scores. Thus, these results match what would be expected 

from the parameterization history of these force fields.

We also label molecule pairs with highly similar geometries. To do this, we assign 

“similarity fags” to molecule pairs that yielded TFD values under 0.18, indicative of similar 

geometries (Table 2). In order to visualize the number of molecule pairs with each fag, we 

plotTFD versus TanimotoCombo for all molecule pairs in Figure 1. We highlight regions 

fagged as similar and different along with regions outside the interest of this analysis. Figure 

1 likewise shows that the vast majority of molecule pairs were rated similar by both TFD 

and TanimotoCombo.

2.2 Sets of molecules were created based on their similarity and difference flags

We then sort the molecules into sets of interest by their patterns of difference and similarity 

fags. As molecule pairs were formed from a set of five conformers, each resulting from 

optimization with a different force field, each molecule results in ten different molecule pairs 

which can be assigned either a difference or similarity fag. All molecules that yielded five or 

more difference fags out often were added to the set named “FivePlus.” We also categorized 

molecules of particular interest for each force field. For each force field, we identified 

molecules in which two conditions held: (1) all molecule pairs involving that force field 

were fagged as different, and (2) the molecule pairs not including that force field were 

fagged as similar. Accordingly, molecules in these sets must result in four difference fags 

and six similarity fags; molecules in these sets can not also be in the FivePlus set. This 

allows us to highlight molecules which were treated differently by only one force field, 

potentially indicating problems in the force field’s parameters for the represented 

chemistries of the molecule. We called this set the “Individually Different” set for that force 

field. For example, the molecules identified in this scheme for SMIRNOFF99Frosst were 

added to the “Individually Different SMIRNOFF” (IDSMIRNOFF) set. This latter analysis is 

probably most relevant to the SMIRNOFF force field, as GAFF/GAFF2 and MMFF94/

MMFF94S come in families which would reduce the number of cases meeting these criteria 

if intra-family similarity is high – specifically, if both family members treat a molecule 

consistently, it will not be fagged as “individually different” for that force field.

Our results after categorizing put 111,162 molecules into the FivePlus and 93,859 molecules 

in the IDSMIRNOFF set out of a total of 2,698,456 molecules. The IDSMIRNOFF set was the 

largest of the individually different force field sets, as is displayed in Table 3. As noted, we 

had some expectation SMIRNOFF might be relatively distinct from the other force fields 

considered.
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Here, we focused on identifying molecules with significant geometric differences between 

force fields, and our sets were constructed to help identify these molecules, but other factors 

might also be important to examine in future work. For example, if different force fields lead 

to similar optimized geometries, that does not necessarily mean those force fields are 

similar. To examine whether energetics of the different force fields are similar, we would 

need to study the relative energetics of conformers of different molecules in different force 

fields, which is not something within the scope of this work as it would require multiple 

conformers per molecule. However, relative energetics have been examined in a separate 

study [24]. Here, then, we focus on identifying geometric differences which likely imply 

force field differences, though geometric similarities do not necessarily imply force field 

similarities.

2.3 Certain functional groups are more likely to appear in molecules with geometric 
differences

We characterized molecules with five or more difference flags—Molecules which 

yielded five or more out often possible difference flags were separated into what we call our 

FivePlus set. This set contained 111,162 total molecules, comprising 4.62% of all molecules 

included in this analysis. Visualizations of selected molecule pairs from the FivePlus set 

displaying significant geometric differences are shown in Figure 2.

We observed 150 Checkmol functional group descriptors with at least two occurrences 

within the FivePlus set. For each descriptor, we compared the proportion of FivePlus 

molecules with this descriptor to the proportion of molecules with this descriptor in the total 

set (Eq. 1), to assess whether any particular chemistries/functional groups tend to increase 

the likelihood of force fields treating molecules differently (and thus it ending up in the 

FivePlus set). We then identified the descriptors that are over-represented within the 

FivePlus set. For each of the descriptors we include in this section, we will provide an inline 

SMILES pattern for that descriptor along with the number of molecules with that descriptor 

in the current set of interest and the total set in the form (SMILES, number of molecules 

with the descriptor in the set of interest, number of molecules in total). For example, 

disulfides ([R1]SS[R2], 149, 895) yield an over-representation factor of 4.04 in the FivePlus 

set.

The most over-represented descriptor within the FivePlus set was the thiocarbonic acid 

monoester (OC(O[R])=S, 5, 26), which were over-represented in the FivePlus set by a factor 

of 4.67. Three other descriptors were over-represented in the FivePlus set by a factor greater 

than 4:

1. Thiocarbamic acid halides ([F, Cl, Br, I] C (N([R]) [R]) =S, 3, 17) were over-

represented in the FivePlus set by a factor of 4.28.

2. Phosphoric acid amides ([R]P(N([R]) [R]) ([R])=O, 51, 302) were over-

represented in the FivePlus set by a factor of 4.10.

3. Disulfides ([R]SS[R], 149, 895) were over-represented in the FivePlus set by a 

factor of 4.04.
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The most under-represented descriptor in the FivePlus set was the ketene ([R]C([R]) =C=O, 

9, 2124), with an over-representation factor of 0.11. This suggests that most force fields 

describe geometries of ketenes consistently, possibly due to the ketene functional group’s 

simple linear structure.

We repeated this process with pairs of Checkmol descriptors to see whether particular 

combinations of descriptors are especially indicative of discrepancies. We observed 6,500 

descriptor pairs occurring in at least two cases in the FivePlus set. As with singular 

descriptors, we compared the proportion of molecules displaying a descriptor pair in the 

FivePlus set to the proportion of molecules displaying a descriptor pair in the total set (we 

applied the same expression, Eqn. 1, but for A+B descriptor pairs). The most over-

represented descriptor pair in the FivePlus set were imidoyl halides paired with oxime 

molecules ([R]/C([F, Cl, Br, I])=N\[R] & [R]/C([R])=N \O, 3, 3), which was over-

represented in the FivePlus set by a factor of 24.28, but the number of molecules with this 

particular combination is so low it makes it hard to know how much weight to give this 

observation. We determined by visual inspection that the imidoyl halide and oxime 

functional groups were in close proximity in these molecules, such that they may form a 

conjugated system. The force fields inconsistently predicted planar groups within this larger 

system. Two other descriptor pairs were over-represented in the FivePlus set by a factor 

greater than 19:

1. Quaternary ammonium salts paired with secondary aromatic amine molecules 

([R] [N+] ([R]) ([R]) [R] & [R]N[R], 11, 12) were over-represented in the 

FivePlus set by a factor of 22.25.

2. Secondary aliphatic amines paired with disulfide molecules ([R]N[R] & 

[R]SS[R], 11, 12) were over-represented in the FivePlus set by a factor of 19.90.

Again, these combinations are rare, so conclusions must be tentative at best.

Some pairs of descriptors are more likely to appear in the set of interest together more often 

than they are apart. We quantify this dependence by our pair enrichment factor (PEF) 

measurement (Eq. 2). The descriptor pair that showed the greatest degree of this dependence 

is quaternary ammonium salts paired with secondary aromatic amines ([R][N+]([R])([R])[R] 

& [R]N[R], 11, 12), which yielded a pair enrichment factor of 2,807. Two other descriptor 

pairs yielded pair enrichment factors greater than 1,000:

1. Imines paired with thioxohetarenes ([R]/C([R])=N\[R] & [R]N1C=CC=CC1=S, 

13, 24) yielded a PEF of 1,967.

2. 1,2-amino alcohols paired with carboxylic acid hydrazides ([R]C(N([R])O)=O & 

[R]C(N([R])N)=O, 2, 3) yielded a PEF of 1,188.

These findings display that heteroatoms, especially in delocalized pi-systems, are likely to 

lead to inconsistent optimized geometries. In particular, nitrogen, phosphorus, and sulfur 

atoms were found in all of the most over-represented descriptors and descriptor pairs. This is 

in line with our expectations, as QM treatments of sulfur and phosphorus are 

computationally expensive. Early force field development may have prioritized parameters 

for only the most common functional groups that involve sulfur and phosphorus. Our 
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procedure has identified molecular fragments that yielded inconsistent geometries, and 

therefore can be improved upon in future force fields. Furthermore, nitrogen planarity errors 

are a known issue across force fields [15, 27]. We therefore believe that the descriptors 

identified by this procedure maybe informative for the creation/training of higher accuracy 

small molecule force fields. Molecules containing these fragments should be included in 

future force field training sets in order to create more accurate and general small molecule 

force fields.

We characterized molecules where SMIRNOFF was individually different—The 

OpenFF Initiative seeks to improve force fields via a series of progressive improvements, 

thus we focus on the SMIRNOFF force field in particular in order to help our work with 

OpenFF. Specifically, we identify molecules where parameterization differences in 

SMIRNOFF relative to other force fields lead to geometry differences. Molecules that 

yielded four difference flags from combinations involving the SMIRNOFF-minimized 

conformer, and six similarity flags from combinations not including the SMIRNOFF-

minimized conformer, were likewise grouped into a set of interest. We refer to this set as the 

Individually Different SMIRNOFF (IDSMIRNOFF) set. This set contained 93,859 molecules 

in total, or 3.48% of all molecules included in this analysis. Visualizations of example 

molecule pairs from the IDSMIRNOFF set displaying geometric differences are shown in 

Figure 3.

We observed 139 Checkmol descriptors in at least two molecules in the IDSMIRNOFF set. We 

compared the proportion of molecules exhibiting some descriptor within the IDSMIRNOFF set 

to the proportion of molecules exhibiting the descriptor in the total set (Equation 1). We then 

identified descriptors that are over-represented or under-represented within the IDSMIRNOFF 

set. The most over-represented descriptor within the IDSMIRNOFF set was the azo compound 

descriptor ([R]/N=N/[R], 717, 1500) which was over-represented in the IDSMIRNOFF set by a 

factor of 13.74. Such compounds have been a focus of reparameterization efforts in more 

recent versions of SMIRNOFF-based force fields, in particular in OpenFF 1.1. [21,38], 

consistent with our observation here that these may be poorly treated. We discuss later 

OpenFF releases further below. Four other descriptors were over-represented in the 

IDSMIRNOFF set by a factor greater than 4:

1. Carbodiimides ([R]N=C=N[R], 4, 19) were over-represented by a factor of 6.05.

2. Acylcyanides ([R]C(C#N)=O, 5, 30) were over-represented by a factor of 4.79.

3. Hydrazones ([R]/C([R])=N/N([R])[R], 2962, 20,025) were over-represented by a 

factor of 4.25.

4. Thioaldehydes ([R]C([H])=S, 23, 165) were over-represented by a factor of 4.01.

The most under-represented descriptor in the IDSMIRNOFF set was the 1,2-amino alcohol 

([R]N([R])CCO, 159, 24, 344), with an over-representation factor of 0.19.

We observed 5,805 descriptor pairs in at least two molecules in the IDSMIRNOFF set. As with 

singular descriptors, we compared the proportion of molecules displaying a descriptor pair 

in the IDSMIRNOFF set to the proportion of molecules displaying a descriptor pair in the total 
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set (Equation 1). These descriptor pairs and their over-representation factors are likewise 

included in Table 4. Six different descriptor pairs were tied as most over-represented in the 

IDSMIRNOFF set. For these, all molecules displaying these pairs in the total set were also 

included in the IDSMIRNOFF set. For example, there were five molecules characterized as 

both ketene acetal derivatives and oximes ([R]/C([R])=C([R])\[R] & [R]/C([R])=N \O, 5, 5), 

and all five of these molecules were also present in the IDSMIRNOFF set. We observed two 

other descriptor pairs which occurred in greater than 10 molecules in the IDSMIRNOFF set 

and had an over-representation factor greater than 20:

1. Azo compounds paired with aldehydes ([R]/N=N/[R] & [R]C([H])=O, 41, 49) 

were over-represented by a factor of 24.06.

2. Hydrazones and hydroxamic acids ([R]/C([R])=N/N([R])[R] & 

[R]C(N([R])O)=O, 14, 18) were over-represented by a factor of 22.36.

We also calculated pair enrichment factors (PEFs), as described in Equation 2, for the 

IDSMIRNOFF set of molecules. The descriptor pair that showed the greatest degree of this 

dependence in the IDSMIRNOFF set is the iminohetarene & secondary alcohol pair ([R]/

N=C1C=CC=CN/1[R] & [R]C(O)[R], 3, 10), which yielded a PEF of 2,308, relative to a 

mean PEF of 49.83 for the IDSMIRNOFF set. Two other descriptor pairs yielded PEFs greater 

than 2,000:

1. Iminohetarenes paired with tertiary alcohols ([R]/N=C1C=CC=CN/1[R] & 

[R]C(O)([R])[R], 4, 6) yielded a PEF of 2, 187.

2. Thiocarboxylic acid amides paired with primary aliphatic amines ([R]C(N([R])

[R])=S & [R]N, 2, 3) yielded a PEF of 2155.

Descriptor pairs with high pair enrichment factors may suggest unique chemistries that lead 

to geometric inconsistencies that were not accurately described by single descriptors.

Nitrogen atoms in conjugated systems make up a large portion of molecules that were 

optimized to unique structures by SMIRNOFF. While other force fields have likewise had 

problems with nitrogen planarity, our results display two Checkmol descriptors, azo 

compound and hydrazone, that are especially informative for SMIRNOFF. By visual 

inspection, molecules with one of these descriptors in between two aromatic rings are 

especially prominent, as can be seen in boxes 2, 3, and 4 of Figure 3. QM calculations are 

necessary to determine if SMIRNOFF’s minimized conformers were more or less accurate 

than other force fields (indeed, the data sets from this work are being used by OpenFF to do 

precisely these tests, and to help drive further force field optimizations [2, 21, 24, 29]). Still, 

molecules like these will be useful in training sets of future force fields. In other cases, such 

as those displayed in boxes 5 and 6 of Figure 3, SMIRNOFF disagrees with other force 

fields on the geometry of secondary carbon atoms in certain environments. SMIRNOFF 

assigns parameters to molecules separately by type (i.e. bonds, angles, and torsions are 

treated independently) with explicit treatment for bond order which differs from the atom-

type approach used by the other force fields in this study [26]. It is possible this change in 

chemical perception can help account for the change in treatment of these systems. QM data 

on these molecules will be useful for future iterations of the SMIRNOFF force field, which 

are already in development.[2, 21, 24, 29]
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2.4 This work has been used to improve training datasets for the OpenFF Parsley series

In the present work, discrepancies between optimized geometries from different force fields 

highlight potential issues, but we have no ground truth or point of reference for sorting out 

which geometries are correct and which are not. This data simply helps us select molecules/

chemistries which may be informative, and priloritize them for further study. Particularly, 

one might generate optimized geometries for these same molecules with QM calculations 

and then use these to help assess which force fields produce the best results, or use these in 

force field training sets to improve force field quality.

Indeed, informative molecules from the present study are being used for precisely that 

purpose. Particularly, a subset of the FivePlus set was used as the basis for the “coverage” 

set used for the first OpenFF Parsley release, OpenFF 1.0 [29]. A larger portion was used in 

benchmarking OpenFF 1.0. Then, for OpenFF 1.2, training data was completely redesigned, 

in part drawing from what was called the “eMolecules Discrepancies Set” [22, 25], 

corresponding to the first portion of the FivePlus set generated here. This training data 

redesign resulted in improved performance on a variety of benchmarks [21, 24]. The relevant 

optimized geometries are freely available in QCArchive [34] as part of the OpenFF 1.2 

training and benchmarking datasets.

While subsequent OpenFF work building on the data generated here is not formally part of 

this study, it does appear that molecules identified as potentially informative by this 

approach do serve well as input for QM calculations and force field training, at least when 

coupled with additional data selection and curation steps.

3 Methods

In order to help improve force fields, we sought to to identify where current force fields 

differ from one another. Here, we compared results of force fields (particularly, optimized 

geometries) after energy minimizing a large subset of the eMolecules database to identify 

sets of molecules for use in future force field parameterization.

Multiple force fields were used to minimize conformers

We created input files for multiple force fields from a filtered eMolecules set (filtering 

described in Section 3.3). We generated molecules from the SMILES strings as in 

eMolecules, adding explicit hydrogens and assigning default protonation states using the 

OpenEye toolkits. We did not enumerate protonation states or tautomers, and no significant 

effort was invested in selecting protonation states; we simply took the default states provided 

by the toolkit. We do not see this as a major limitation in a force field comparison since the 

resulting approach tests the force fields thoroughly on the molecules and protonation states 

used, even if that protonation state or tautomer will not be the most populated at neutral pH 

in solution.

Following construction of initial molecules, initial conformers were generated with 

OpenEye’s Omega, then partial charges were assigned to molecules before minimization 

using the OpenEye implementation of AM1-BCC [19, 20]. The input generation process 

yields one Tripos MOL2 file to be minimized directly with SMIRNOFF99frosst, MMFF94, 
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and MMFF94S, as well as individual input coordinate and parameter topography files for 

use by GAFF (1.8) and GAFF2 (2.1). These force fields were chosen because they are 

widely used, easily available, and compatible with our workflow. Other force fields were 

either incompatible with our toolchain without substantial additional work, or were 

commercial and proprietary. For example, comparisons with CGenFF [36, 37], OPLS-AA 

[23], or the Schrödinger OPLS series [17, 30] would be of considerable interest, but these 

require substantially different toolchains, and the most recent Schrödinger force fields are 

also proprietary and require paying for a license.

We minimized each molecule using the parameters from each of the five aforementioned 

force fields, making sure to start all five minimizations from the same conformer. 

Minimizations with force fields other than MMFF were performed with OpenMM 7.0.1 [4] 

using the L-BFGS algorithm [28] with an energy tolerance of 5.0e-9 kJ/mol and a maximum 

of 1500 iterations. MMFF minimizations were performed with OpenEye’s Szybki Toolkit 

[35, 42]. Sample run files can be found in the Supporting Information. Molecules that did 

not successfully result in five minimized structures (one from each force field), were 

removed from analysis. For each molecule with five minimized structures, pairwise 

comparisons yielded a total of ten molecule pairs for geometric evaluation. We call these 

pairs of minimized conformers generated by different force fields “molecule pairs.”

Molecule pairs were assessed using Torsion Fingerprint Deviation and TanimotoCombo

We then assessed each molecule pair for geometric differences. Molecule pairs were 

evaluated using two distinct measurements: Torsion Fingerprint Deviation (TFD) and 

TanimotoCombo.

TFD is a method of measuring geometric differences between two conformers of the same 

molecule based on torsion angles. The TFD score between two structures represents a 

weighted sum of torsional differences as defined by Schulz-Gasch et al. [31]. Torsions 

central to the molecule are given more weight than torsions on the periphery of the 

molecule. Similarly with RMSD, geometric similarity is inversely correlated with TFD 

score. TFD scores range from 0 to 1, with 0 being most similar and 1 being most different. 

The authors of TFD consider scores over 0.2 to represent significantly different geometries. 

In contrast to RMSD, TFD is bounded and less sensitive to molecular size, making it 

particularly helpful here.

TanimotoCombo, from OpenEye Scientific, is a normalized method of measuring geometric 

similarity between molecules. It is the sum of ShapeTanimoto, a measure of overall spatial 

overlap between two molecules, and ColorTanimoto, a measure of spatial overlap of specific 

functional groups between two molecules, both of which are also metrics from OpenEye. 

TanimotoCombo values between two conformers range between 0 and 2 (it is the sum of two 

values each running from 0 to 1), with 2 being the most similar and 0 being the most 

different.

By visual inspection, we determined that TanimotoCombo is useful for recognizing cases 

where geometric differences are caused by particularly flexible moieties, such as single bond 

rotations in an alkyl chain. These differences can often be attributed to minor differences 
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between force fields leading to flexible bond rotations, not to larger differences in force 

fields that result in more substantial geometric differences. Thus, here, we find that 

TanimotoCombo alone does not serve to help us isolate geometry differences that are likely 

due to substantial force field differences; instead, low TanimotoCombo values can result 

from simple bond rotations that result from molecules energy minimizing to different local 

minima that we do not consider particularly interesting by visual inspection. However, 

TanimotoCombo in conjunction with TFD can be used to identify geometric differences that 

suggest underlying inconsistencies in parameterization.

Molecule pairs were flagged as similar or different based on TFD and TanimotoCombo

We identified molecule pairs displaying parameterization differences which led to different 

geometries using TFD and TanimotoCombo. TFD is sensitive to ring deformations, torsional 

differences, and atom planarity changes, which makes it useful for recognizing differences 

in parameterization. TanimotoCombo, with greater sensitivity to coordinate differences 

caused by conformational flexibility in a molecule, is more useful for removing cases that 

are less likely to be caused by parameterization differences, such as different rotameric 

states.

We chose cutoffs to identify molecule pairs displaying parameterization differences (flagged 

“different”) and pairs displaying no parameterization differences (flagged “similar”). TFD 

values below 0.20 are believed to be pharmacologically similar [31], so we chose a TFD 

value greater than 0.20 to label molecule pairs as different. After visual inspection of a 

variety of molecules, we observed that molecule pairs with a TanimotoCombo under 0.5 

typically had changes due to single bond rotations. Because such bond rotations can arise 

from a variety of reasons aside from substantial differences in parameterization, we did not 

wish to focus on such cases. Thus, molecule pairs with a TFD value greater than 0.20 as well 

as a TanimotoCombo value greater than 0.50 were flagged as different – allowing us to focus 

on cases with substantial torsional differences which were not simply due to rotations 

around highly flexible bonds. We used a substantial amount of manual inspection of these 

thresholds to help us make these choices. As a result of these choices, any pair of molecules 

with a TFD value of 0.18 or less was assigned a similarity flag, as it will display 

geometrically similar structures. We left a small buffer region between 0.18 and 0.2 when 

defining similarity flags in order to avoid an extreme sensitivity to small changes around the 

0.20 cutoff.

Molecule pairs that yielded very high TFD or very low TanimotoCombo values were also 

determined to often be uninformative. Tagging these molecule pairs as “different” would be 

unhelpful because the differences are not due to substantial changes in force field 

parameters. Most molecule pairs in this category displayed cases of what might be called 

“conformer chirality” – where an achiral molecule was minimized to two similar but non-

superimposable structures – essentially, collapsing down to two minima which are 

equivalent to the force field but not geometrically identical. A number of molecule pairs, 

most with small flexible ring systems, yielded TFD values greater than 1 (which should not 

be possible). While this behavior was unexpected, we continued to use RDKit’s 
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implementation without modifications. Considering these results, we removed molecule 

pairs with a TFD greater than 0.60 or a TanimotoCombo less than 0.25.

3.1 We created and characterized sets of interest

Molecules can be sorted into sets of interest by considering the combinations of their 

difference and similarity flags. A single molecule in this pipeline is associated with five 

minimized structures. Pairwise combinations of these structures will yield ten molecule pairs 

and thus up to ten flags. Molecules that yielded a large number of difference flags, 

regardless of the force fields of origin, are of particular interest for force field 

parameterization. Specifically, we set aside molecules with five or more difference flags for 

further analysis, we call this our FivePlus set.

The other sets of interest are based on the origin of the difference flags with the goal of 

identifying molecules which behave differently with one force field than all the others. For a 

molecule to be considered different with that one force field, all four molecule pairs 

involving that force field should be flagged as different, and all other molecule pairs need to 

be flagged as similar. We call these Individually Different Sets for each force field, i.e. for 

SMIRNOFF we create the SMIRNOFF Individually Different set labeled by IDSMIRNOFF. A 

molecule in the IDSMIRNOFF set would have 4 difference flags, one for each pair involving 

SMIRNOFF, and six similarity flags for all other force field combinations.

3.2 Sets of interest were analyzed by the frequencies of the functional groups

Identifying functional groups which are more prevalent in our sets of interest could be 

informative for future force field parameterization. To this end, we used Checkmol [9] to 

describe the combination of functional groups in each molecule. When given a molecule, 

Checkmol provides a list of descriptors for the functional groups it contains. For each 

descriptor, we count the number of affiliated molecules in each set of interest as well as in 

the entire molecule set. From there, we can determine the most over-represented descriptors 

in each set of interest. We only considered descriptors and descriptor pairs that appeared at 

least twice in our full molecule set.

We compute the over-representation factor describing how over-represented a particular 

descriptor is in a given set by dividing the frequency of the descriptor in the set by the 

frequency of the descriptor in the full molecule set. Mathematically, we can write

fA = NA, set/Nmols, set
NA, total/Nmols, total

(1)

where NA,set is the number of molecules containing descriptor A in a particular set, Nmols,set 

is the number of molecules in that particular set, NA,total is the number of molecules in total 

with descriptor A, and Nmols,total is the number of molecules in total.

Force field behavior could change with combinations of functional groups, and thus we 

repeated this calculation with pairs of Checkmol descriptors. We can apply Equation 1 to 

analyze pairs of descriptors by replacing A with A + B to represent molecules containing 
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both descriptors. However, with pairs of descriptors, we are more interested in whether the 

combination of the descriptors is important. For example, if both descriptors A and B are 

highly probably in a set of molecules, then finding the combination in that set at a higher 

frequency is not particularly interesting. Thus, we try to determine if the descriptor pair is 

more likely to show up in a set of interest than the individual descriptors separately. To that 

end we calculate an enrichment factor given by

pA + B
pA · pB

(2)

where pA + B denotes the observed frequency (probability) of a molecule with the combined 

A and B descriptors being found in the set of interest, and pA and pB denote the individual 

frequencies for descriptors A and B in the same set of interest. For example, pA is given by

pA = NA, set
NA, total

(3)

A larger enrichment factor indicates that the combination of descriptors A and B is more 

likely to occur in a set of interest than those descriptors individually. Descriptor pairs with a 

larger enrichment factor should be considered as important for future parameterization 

because the combination of functional groups changes a force field’s behavior.

3.3 Molecules were sourced from the eMolecules online database

Approximately 8.1 million molecules were initially sourced from the eMolecules database 

as SDF files (version obtained in September 2016) [5]. Molecules from this set were then 

filtered by several criteria. We removed all molecules that contained any metal or metalloid 

atoms, were over 200 heavy atoms, or had a nonphysical valence (such as a pentavalent 

carbon atom). Molecules which failed at any step of the process were also removed, i.e. 

could not be parameterized by one of the force fields. While we minimized all these 

molecules with each force field, very large molecules are impractical for visual inspection or 

future QM calculations. Thus, we filtered the molecules for analysis here to remove 

molecules with more than 25 heavy atoms.

4 Conclusions

Here, we sought to determine informative molecules for force field parameterization. We 

assume that conformational differences in molecules minimized with different force fields 

indicates those molecules ought to receive additional attention in future force field 

parameterization.

Thus, we energy minimized a large portion of eMolecules with various force fields, and 

cross-compared the resulting optimized geometries based on TFD and TanimotoCombo 

metrics. We chose cutoffs for each of these metrics in order to prioritize conformational 

differences likely due to changes in force field parameters.
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Our analysis flags molecules for further analysis in several ways. First, we single out 

molecules that differ in treatment across many force fields as molecules which are likely to 

be particularly informative in general. Second, we can separate out molecules which are 

treated differently by only one force field as perhaps indicative of problems with that force 

field in particular. We can further break down informative molecules by looking at 

representation of functional groups and pairs of functional groups, to identify those that are 

over-represented among informative molecules, perhaps indicating these functional groups 

require additional attention in force field parameterization.

The descriptors which were over-represented in the FivePlus set could be informative for 

understanding the limitations of current force field parameterization procedures. All general 

small molecule force fields currently available depend on human determined typing rules – 

atom types in most force fields and the SMARTS patterns used in SMIRNOFF-based force 

fields. The differences in geometries around heteroatoms, especially sulfur and phosphorous, 

point to the potential bias of the scientists parameterizing each force field. Most of the time 

new parameter typing rules are added to force fields out of necessity and each group will 

prioritize different chemistry. Including typing rules in automatic force field 

parameterization should help reduce this bias since typing rules would be driven by training 

data rather than human choices.

Finding the more accurate conformation in each molecule pair would require performing a 

quantum mechanical geometry optimization (QM). QM calculations are significantly more 

expensive than simple force field optimizations. Our protocol allowed us to explore a greater 

molecular space, and we analyzed 26,984,560 molecule pairs. Our approach has identified 

regions of chemical space where force field parameterization is currently inconsistent. Our 

approach and results have identified descriptor and descriptor pairs which are different for 

each individual force field. Molecules with these descriptors may be prioritized for future 

parameterization leading to more accurate force fields overall. Some work along these lines 

is already in progress [21, 22, 25, 29].

5 Code and Data Availability

We provide the code used in this project in our GitHub repository (https://github.com/

mobleylab/off-ffcompare and with a DOI at https://dx.doi.org/10.5281/zenodo.3995606). 

Additionally, at https://dx.doi.org/10.5281/zenodo.3995059 we provide a supporting data 

package. This includes a .csv file which has TanimotoCombo and TFD scores, SMILES 

strings, and eMolecules identifiers for all 2,698,456 molecules analyzed. Additionally, we 

provide optimized geometries of 265,847 molecules with four or more difference flags. An 

archived copy of the GitHub repository is provided in the electronic Supporting Information 

associated with this paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

0.2

FF Force field

QM Quantum Mechanical

TFD Torsion Fingerprint Deviation

RMSD Root-Mean-Square Deviation

MMFF Merck Molecular Force Field

GAFF General AMBER Force Field

SMIRNOFF SMIRKS Native Open Force Field; here, also typically used as 

shorthand for the SMIRNOFF99Frosst force field version 1.0.8
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Figure 1. The vast majority of molecule pairs are geometrically similar by TanimotoCombo and 
TFD.
Each point on this graph represents a molecule pair, i.e., a pair of structures of the same 

molecule, geometrically optimized with different force fields. The points are plotted at the 

resulting TFD and TanimotoCombo scores of the molecule pair. If the two minimized 

structures are identical, we would expect a Tanimoto Combo score of 2.0 and a TFD score of 

0.0. For the purposes of this project, we flag molecule pairs yielding a TFD score above 0.2 

and a TanimotoCombo score above 0.5 as being informatively different. This region is 

shaded red on the graph. Pairs judged as similar are shaded blue; the white region is 

included in neither category to avoid extreme sensitivity to choice of cutoff. This graph 

displays a random sample of 38,880 molecule pairs out of the total of 26,984,560 molecule 

pairs analyzed in this project.
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Figure 2. Molecule pairs from the FivePlus set display visual geometric differences.
The six molecules displayed here were identified from the FivePlus set using the over-

represented descriptor and descriptor pair method described in Section 3.1 and thus are 

molecules where geometries differ substantially across force fields. Each panel shows a 

molecule (with the 2D structure shown as inset) and a pair of minimized conformers 

resulting from optimization with different force fields. These highlight geometric differences 

between minimized structures. While many structure pairs yield difference flags for 

molecules in the FivePlus set, only one structure pair is displayed for each molecule here. 
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The lightly colored structure was optimized with GAFF, while the darkly colored structure 

was optimized with SMIRNOFF. (1) While GAFF predicts a planar structure of the ring 

system, SMIRNOFF predicts a buckled ring for this molecule with the disulfide descriptor. 

(2) GAFF predicts the imidoyl halide group to be nonplanar in this molecule with the 

imidoyl halide and oxime descriptors, while SMIRNOFF predicts it to be planar. (3) 

SMIRNOFF predicts a larger bond angle between the amine and non-bridging oxygen than 

does GAFF in this molecule displaying the phosphoric acid amide descriptor. (4) This 

molecule displays both the quaternary ammonium cation and the secondary aromatic amine 

descriptors. While SMIRNOFF predicts a planar thiadiazolium ring, GAFF predicts it to be 

nonplanar. (5) While GAFF predicts the thiocarbamic acid halide fragment to be planar and 

perpendicular to the aromatic ring, SMIRNOFF predicts it to be nonplanar and off-

perpendicular to the aromatic ring. (6) This molecule displays both the thioxohetarene and 

imine descriptors. While GAFF predicts a planar pyrroline ring, SMIRNOFF predicts this 

ring to be buckled.
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Figure 3. Molecule pairs from the Individually Different SMIRNOFF set display visual 
geometric differences.
The displayed molecules were identified from the IDSMIRNOFF set using the descriptor 

method in Section 3.1. For each molecule, shown in a 2D inset, we visualize the minimized 

conformer with SMIRNOFF (darker colors) and GAFF (lighter colors; representative of all 

non-SMIRNOFF force fields). (1) SMIRNOFF predicts the acylcyanide group to be near 

perpendicular to the aromatic ring, while GAFF makes it near planar. (2) The two force 

fields disagree on the appropriate torsion angle for the C-N=N-C bond in the azo group. (3) 

Again, the SMIRNOFF and GAFF force fields disagree on the planarity of the azo group in 
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this molecule with both azo compound and aldehyde descriptors. (4) The substituted 

hydrazone’s change in planarity dominates geometric differences in this molecule pair 

displaying the hydrazone descriptor. (5) In this molecule with a thiocarbonyl, GAFF keeps 

all carbons planar while SMIRNOFF allow the carbon-carbon single bonds to rotate. (6) 

This molecule pairs thiocarboxylic acid amide and primary amine descriptors. GAFF 

predicts the primary amine to bend out of plane, while SMIRNOFF predicts all heavy atoms 

to be planar.
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Figure 4. Molecule pairs with low TanimotoCombo and low TFD scores are often uninformative.
Here, we show an example of a molecule pair that does not seem informative for force field 

parameterization. The lightly colored molecule was minimized with GAFF, while the darker 

molecule was minimized with SMIRNOFF. The two minimized structures display little 

geometric differences outside of the orientation of substituents around the sulfonamide 

group; most of the geometric difference appears due to the rotation of a single torsion. The 

low TFD value of 0.046 implies that these structures are highly similar by TFD, while the 

low TanimotoCombo value of 0.27 implies that these structures are starkly different by 
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TanimotoCombo. By visual inspection of this molecule and others, we determined that 

molecule pairs with low Tanimoto Combo and low TFD scores were often not as 

informative, at least with respect to our goals in this project.
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Table 1.
Number of difference flags in analysis for each FF pair (out of 2,698,456 molecules).

Shown are the number of difference flags obtained when comparing each FF pair, with each difference fag 

representing a molecule with a substantially different geometry after minimization with those two force fields.

FF GAFF GAFF2 MMFF94 MMFF94S SMIRNOFF

GAFF - 87,829 153,244 142,369 268,830

GAFF2 - - 138,716 131,528 305,582

MMFF94 - - - 10,048 267,131

MMFF94S - - - - 246,894

SMIRNOFF - - - - -
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Table 2.
Number of similarity flags in analysis for each FF pair (out of 2,698,456 molecules).

Shown are the number of similarity fags obtained when comparing each FF pair, with each similarity fag 

representing a molecule with a similar geometry after minimization with those two force fields.

FF GAFF GAFF2 MMFF94 MMFF94S SMIRNOFF

GAFF - 2,577,081 2,467,654 2,481,084 2,324,408

GAFF2 - - 2,483,650 2,493,171 2,277,081

MMFF94 - - - 2,678,568 2,294,096

MMFF94S - - - - 2,319,197

SMIRNOFF - - - - -
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Table 3.
Number of molecules in each set of interest.

Shown are the number of molecules in each of six sets of interest (described in Section 2.1); briefly, the 

FivePlus set contains molecules with substantially different geometries across multiple force fields, whereas 

the other sets contain molecules in which only the indicated force field yields a substantially different 

geometry from other force fields. The set with the largest number of molecules, the FivePlus set, contains 

111,162 molecules out of the 2,698,457 molecules analyzed. No molecule can appear in more than one set of 

interest.

Set of Interest Number of Molecules

FivePlus 111,162

Individually Different SMIRNOFF 93,859

Individually Different GAFF2 13,689

Individually Different GAFF 813

Individually Different MMFF94S 718

Individually Different MMFF94 72

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ehrman et al. Page 28

Table 4.
Selected Over-Represented Checkmol Descriptors and Descriptor Pairs in the FivePlus 
Set.

Shown are the over-representation factors corresponding to selected descriptors or descriptor pairs, calculated 

using Equation 1. The four descriptors and three descriptor pairs shown are the most over-represented 

descriptors and descriptor pairs of the FivePlus set.

Descriptor or Descriptor Pair Over-Representation Factor

Thiocarbonic Acid Monoester 4.67

Thiocarbamic Acid Halide 4.28

Phosphoric Acid Amide 4.10

Disulfide 4.04

Imidohalide Oxime 24.28

Quaternary Ammonium Salt Secondary Aromatic Amine 22.25

Secondary Aliphatic Amine Disulfide 19.90
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Table 5.
Selected Pair Enriched Checkmol Descriptor Pairs in the FivePlus Set.

Shown are the pair enrichment factors corresponding to selected descriptor pairs, calculated using Equation 2. 

The three descriptor pairs shown are the three pairs that yielded the highest pair enrichment factor in the 

FivePlus set.

Descriptor Pair Pair Enrichent Factor

Quaternary Ammonium Salt Secondary Aromatic Amine 2,807

Imine Thioxohetarene 1,967

1,2-Amino Alcohol Carboxylic Acid Hydrazide 1,188
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Table 6.
Selected Over-Represented Checkmol Descriptors and Descriptor Pairs in the 
IDSMIRNOFF Set.

Shown are the over-representation factors corresponding to selected descriptors or descriptor pairs, calculated 

using Equation 1. These are some of the most over-represented descriptors and descriptor pairs of the 

IDSMIRNOFF set. Note that the “Ketene Acetal Derivative & Oxime” pair has a very high over-representation 

factor because all 5 molecules displaying this descriptor pair are in the IDSMIRNOFF set.

Descriptor or Descriptor Pair Over-Representation Factor

Azo Compound 13.74

Carbodiimide 6.05

Acylcyanide 4.79

Hydrazone 4.25

Thioaldehyde 4.01

Ketene Acetal Derivative Oxime 287.50

Azo Compound Aldehyde 24.06

Hydrazone Hydroxamic Acid 22.36
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Table 7.
Selected Pair Enriched Checkmol Descriptor Pairs in the IDSMIRNOFF Set.

Shown are the pair enrichment factors corresponding to selected descriptor pairs, calculated using Equation 2. 

The three descriptor pairs shown are the three pairs that yielded the highest pair enrichment factor in the 

IDSMIRNOFF set.

Descriptor Pair Pair Enrichment Factor

Iminohetarene Secondary Alcohol 2,308

Iminohetarene Tertiary Alcohol 2,187

Thiocarboxylic Acid Amide Primary Aliphatic Amine 2,155
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