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Abstract 
 

The Influences of Pollution and Climate on the Trends and Variability of  
Radiation Fog Frequency 

 
by 
 

Ellyn Gray 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Allen H. Goldstein, Chair 
 
Abstract: Fog has broad impacts on transportation safety, agricultural production, drought 
resilience, and climate. The frequency of wintertime radiation fog in valleys throughout the world 
has been changing over the past century. This dissertation focuses on understanding the drivers of 
fog trends observed in California’s Central Valley and Italy’s Po Valley, specifically investigating 
the competing effects of warming climate versus air pollution controls in the twentieth and early 
twenty-first century.  
 
Beginning in the Central Valley, this dissertation finds that dense fog frequency (visibility < 400 
meters) increased 85% from 1930-1970, then declined 76% in the last 36 winters. Throughout 
these changes, fog frequency exhibited a consistent north-south trend, with maxima in southern 
latitudes. I analyzed seven decades of meteorological data and five decades of air pollution data to 
determine the most likely drivers changing fog, including temperature, dew point depression, 
precipitation, wind speed, and NOx (oxides of nitrogen) concentration. Climate variables, most 
critically dew point depression (DPD), strongly influence the short-term (daily to annual) 
variability in fog frequency; however, the frequency of optimal conditions for fog formation show 
no observable long-term trend from 1980 to 2016. NOx concentration, which is a limiting precursor 
to the ammonium nitrate aerosol that dominates wintertime particulate matter in the valley, has an 
increasing north-south concentration gradient, consistent with the gradient in fog frequency. NOx 
declined continuously over this period, also consistent with the long-term temporal and spatial 
trends in fog. As development in the Central Valley increased direct particle and other pollutant 
emissions from 1930-1970, fog frequency increased. Following the Clean Air Act, particle 
emissions quickly declined, and NOx emissions declined steadily, reducing the cloud condensation 
nuclei (CCN) available for fog formation. I conclude that while the short-term fog variability is 
dominantly driven by climate fluctuations, the longer-term temporal and spatial changes in fog 
have been driven by changes in air pollution. For conditions close to the dew point, a decrease in 
fog of 5 days per year per 10 ppb NOx decrease occurred across the Central Valley. 
 
To further understand the multivariate, nonlinear contributors to fog formation, this dissertation 
used generalized additive models to identify the relative significance of climate and air pollution 
variables affecting visibility, an indicator of dense fog, and compare the drivers changing fog in 
the Central Valley to Italy’s Po Valley, which saw a 50% decline in fog frequency since 1980. 
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Effective regulatory strategies in the Po Valley have also resulted in stark reductions in inorganic 
pollution emissions, thus reducing the CCN available for fog formation. Over 56-65% of the 
variance in visibility is consistently explained by variability in DPD, pollution concentration, wind 
speed, and precipitation. Variability in DPD, which incorporates both water availability and 
temperature, has the most pronounced influence on daily time scales, but shows no substantial 
long-term trends in time over the observation period. The variability in NOx concentration explains 
33-70% of the variance in visibility (depending on the site) when investigating days with average 
DPD < 3.5℃. This suggests that fog frequency is specifically sensitive to fluctuations in CCN 
number concentration when meteorological conditions are favorable to fog formation (e.g. when 
DPD is low). While DPD is a primary driver of daily variability, the significant influence of NOx 
concentration on the visibility response suggests that rapid pollution declines in both valleys have 
had an important impact on the diminished fog season since 1980. This demonstrates that the 
regulatory measures that mitigate pollution concentration have valuable benefits, not only on the 
health outcomes of those potentially exposed, but also in reducing the dangerous dense fog 
frequency that was anthropogenically enhanced with industrialization.  
 
To further understand the safety implications of reductions in air pollution and fog events, I 
analyzed a 20-year record of fog-related accidents in the Central Valley (1996-2016). Decades of 
multicar pile-ups along its highways made the region widely-known for the frequency and severity 
of its fog-related accidents. Yet, the Central Valley saw a 65% decline in fog-related accidents 
over 20 winters, the variance of which is best explained by the sharply declining trend in seasonal 
fog hours over the same period. Annual frequency of fog hours as summarized for each fog season 
explain an average of ~80% of the annual variability in fog-related accidents in the counties of 
highest roadway volume, showing that the declining trend in fog is a strong determinant in the 
declining trend in accidents. The subsequent improvement in visibility results in annual fog-related 
injuries falling by 72%, with the valley seeing an average of 550 fewer injuries from fog accidents 
in 2015-2016 than in 1996-1997.  
 
The human safety and commercial benefits to a reduction in fog-accidents and the resulting 
roadway delays is well documented. The declining trend in dense fog in this region has had a 
pronounced impact on the declining frequency of fog-related accidents. This dissertation 
implicates regional air pollution concentration as a critical driver in the long-term trend of fog 
frequency. The strong link between the historical number of Central Valley fog events and trends 
in pollution concentration provides a measure of how regulations that led to decreases in aerosol 
concentration, and thereby wintertime fog frequency, also influenced the declining trend in fog-
related accidents.   
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Chapter 1:  
 
Introduction 
 
 
1. Motivation for radiation fog research 
 
Fog occurs in multiples seasons in regions throughout the world. The most common types of fog 
impacting humans and land ecology are radiation, advection, and orographic fog. While these have 
differing formation mechanisms and seasonal maxima, all occur when atmospheric water vapor 
cools and condenses on hygroscopic, micron-size particles at low elevation (Gultepe, 2007).  
 
Under high relative humidity (RH), radiation fog forms after sunset when the thermal emission of 
the surface is not balanced by incoming solar radiation, causing surface conditions to radiative 
cool (Sierbert et al., 1992). Radiation fog formation is most common on long winter nights with 
clear skies, which maximizes surface heat loss, and strong inversion layers, which minimizes 
turbulence (Roach & Brown, 1976). Radiation fog often exhibits high spatial heterogeneity since 
it is very sensitive to fluxes in temperature and moisture (Gultepe, 2007). Evaporation commonly 
begins at the edges due to dry entrainment or at the center of an urban region, yet even events at 
the same site can display vastly different patterns of dissipation (Underwood et al., 2004). 
Significant effort has been made to develop numerical models for fog prediction, which reveal the 
complexity of parameterizing the surface-atmosphere exchanges (Bergot & Guedalia, 1994; 
Sierbert et al., 1992). Variations in surface roughness, soil moisture, and vegetative coverage 
influence surface turbulence, radiative cooling, and fog liquid water content, allowing for a 
profound impact on fog development.  
 
Researchers have identified many regions globally in which the frequency and intensity of fog 
events have changed over time (Klemm & Lin, 2015). This dissertation focuses on trends in 
radiation fog frequency, though there exist notable changes in advection and advection-radiation 
fog, as well. Two of the most heavily researched valley fogs in the world – California’s Central 
Valley and Italy’s Po Valley – saw a significant change in the frequency of events during the 
twentieth century. Episodes of dense fog in the Central Valley increased from 1930-1970 followed 
by a 46-50% decline since 1980 (Baldocchi & Waller, 2014; Herckes et al., 2015), during which 
time rural and urban stations in the Po Valley observed a 47% reduction in hours of dense fog 
(Giulianelli et al., 2014; Mariani, 2009). Similar reductions in dense fog (visibility < 200 m) were 
also recorded in research throughout Northern and Eastern Europe, with most stations reporting 
half the number of low visibility days when compared to the mid-1970s (van Oldenborg et al., 
2009). Declining trends continue to be identified, such as those in South Korea over a 25-year 
period (Belorid et al., 2014).  
 
Conversely, many developing regions with conditions for radiation fog are experiencing an 
increase in fog frequency in recent decades. For instance, in New Delhi, fog episodes (visibility < 
200 m and 500 m) increased from just 6.4% of the season in the early 1950s to 58% in the late 
1990s (Tiwari et al., 2011). These results were confirmed by Syed et al., 2012 which found that 
fog was three times as frequent post-1998 as pre-1988 in India, Pakistan, and Bangladesh. Rapidly 
developing regions throughout East-Central China also report increasing numbers of fog events at 
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many sites, as well as notable increases in fog duration, over recent decades (Fu et al., 2014; Niu 
et al., 2010; Quan et al., 2011; Shi et al., 2008); while the period of steepest increase differs by 
province, most saw the largest increases in the 1980s.  
 
As fluctuating trends in radiation fog frequency continue to be identified, this dissertation presents 
an explanation for those observed in California’s Central Valley and Italy’s Po Valley in order to 
develop a conceptual framework for the trends seen in other regions. These valleys are of great 
interest not only for their unusual trends, but also their long history of observations. The length 
and spatial coverage of the Central Valley’s meteorological and air quality record is ideal for robust 
trend analysis, and the temporal resolution of the Po Valley’s pollution observations allows for a 
deeper understanding of the high frequency variability in the study. Comparing and contrasting 
the results creates more confidence in the conclusions drawn.  
 
While many studies have identified trends in radiation fog frequency, most have only postulated, 
but not tested, possible causes. Past works have suggested the following drivers for decreases in 
fog frequency:  

1. Greenhouse gas-induced climate change causing an increase in minimum temperatures and 
reduced diurnal temperature range (Dai et al., 1999), thus hindering condensation. 

2. Expanding coverage of concrete and asphalt surfaces from rapid urbanization increases the 
thermal conductivity of the ground relative to natural vegetation, thus increasing nighttime 
temperatures and reducing RH (Oke, 1973), limiting fog formation. 

3. Agricultural expansion enlarging the coverage of irrigated land, which increases surface 
albedo, and thereby increases thermal conductivity, decreases radiative cooling, and 
decreases the diurnal temperature range (LaDochy et al., 2007; Christy et al., 2004; Christy 
et al., 2006; Bonfils et al., 2007), thus limiting fog formation.  

4. A change in abundance of hygroscopic aerosols that serve as cloud condensation nuclei 
causing supersaturation to occur at less favorable conditions (RH ³ 100), (Gultepe, 2007; 
Hudson et al., 1980; Frank et al., 1998; Laaksonen et al., 1998; Roach and Brown, 1976), 
thereby reducing fog formation. 

I approach hypotheses 1-3 with skepticism, most notably because they only address drivers for the 
decreasing trend, yet increases in fog frequency have clearly been observed in recent years in South 
Asia and East-Central China, as well as historically in California. Specifically for the Central 
Valley, trends in hypotheses 1-3 were largely positive over the twentieth century, which conflicts 
with the observed upward (1930 to 1970) then downward (1980 to present) trends in fog frequency. 
In California, Cordero et al., 2011 reports an increase in minimum temperature from 1918-2006, 
which presumably would have a diminishing impact on fog frequency contrary to the increasing 
trend mid-century; further, evidence of the warming signal is least prominent during the winter 
season, making climate change-induced fog changes even less likely in this region (Bonfils et al., 
2007; Christy et al., 2004; LaDochy et al., 2007). Instead, the Central Valley shows increased 
warming during seasons of artificial irrigation, of which there is almost none in the winter (Christy 
et al., 2006; Bonfils et al., 2007; Salas et al., 2006). Land use changes such as increasing 
urbanization and agricultural expansion, while offering potential explanations for the recent 
declining trend, also conflict with the upward trend from 1930 to 1970, because rates of both 
population and farm coverage grew positively (CRS, 2005). Additionally, the fog decline is 
apparent in both urban and rural locations when investigated from satellite imagery (Baldocchi & 
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Waller, 2014), suggesting a common driver throughout the valley, rather than just the urban sites.  
 
Instead, changes in radiation fog frequency in the Central Valley have been most temporally 
consistent with hypothesis 4, which would suggest that unregulated increases in anthropogenic 
aerosols enhanced fog formation, only to weaken with recent pollution mitigation strategies. A 
dependence on air pollution aligns with the fog patterns of the majority of radiation fog 
observations seen globally, with many more regulated, developed regions seeing a decrease in fog 
frequency and developing regions with less regulated pollution seeing a rapid increase. 
 
Significant research has investigated how the number concentration and composition of particles 
impact fog frequency, density, and duration (Gultepe, 2007; Roach and Brown, 1976). In order for 
a cloud droplet to form, two effects are in competition: the Raoult effect, in which vapor pressure 
decreases based on the dissolved substance, and the Kelvin effect, in which vapor pressure 
increases with decreasing radius due to droplet curvature. There exists a critical size, as described 
by Köhler Theory, where the Raoult effect is in balance with the Kelvin effect, and anything above 
this size is considered an activated droplet, which then grows exponentially under supersaturated 
conditions (Köhler, 1936). Exceeding this critical value is only achievable through heterogeneous 
nucleation where a soluble aerosol, known as cloud condensation nuclei (CCN), lowers the 
equilibrium water vapor pressure, thus allowing activation at lower supersaturation than a pure 
water droplet. It is now understood that the presence of soluble gases, such as nitric acid (HNO3), 
or surfactants, which reduce surface tension, also lower the vapor pressure, enhancing the 
likelihood of activation. While aerosol size has a dominating effect on CCN efficiency, 
composition plays a more significant role in lowering vapor pressure at very low supersaturations 
(S < 0.25%), which are nearly always found in fog, as opposed to clouds (Hudson et al., 1980; 
Dusek et al., 2006) 
 
Fog CCN sources vary based on the type of fog. In contrast to advection fog, which forms over 
the ocean on naturally occurring sodium chloride aerosols, radiation fog forms over land and is 
typically more polluted (Gultepe, 2007). Local pollution can have a critical impact on the 
formation and number concentration of both activated and unactivated droplets (Eldridge, 1966; 
Neirburger & Wurtele, 1948; Hudson et al., 1980). Research on radiation fog microstructure 
suggests that unlike clouds, fog is mainly composed of unactivated droplets, which, by way of 
soluble gas dissolution, can theoretically swell up to 10 microns and are primarily responsible for 
fog vision impairment (Hudson et al., 1980; Frank et al., 1998; Laaksonen et al., 1998). In 
conditions where supersaturation is below one, the addition of hygroscopic (HNO3) and ammonia 
(NH3) gases to the water droplet can yield the impression of an activated cloud droplet, such that 
it is impossible to distinguish unactivated haze aerosols from truly activated droplets without 
sophisticated methods (Kulmala et al., 1997). Thus, pollution enhances the formation of low-
visibility unactivated fog and was likely a catalyst for historical instances of dangerous urban fogs, 
such as during the deadly London Smog of 1952 and the ‘pea-soupers’ of the nineteenth century 
(Kokkola et al., 2002; Roach and Brown, 1976; Wilkins, 1954). Regulation enacted with London’s 
Clean Air Act of 1956 was then credited for a subsequent reduction in dense fog episodes 
(Brimblecombe, 1977). Hence, our focus on air pollution as a primary driver of radiation fog trends 
is rooted in the reductions driven by historically successful emission regulations. 
 
Twentieth century industrialization throughout Western countries caused air pollution to rapidly 
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increase with intensifying urbanization, spurred by unregulated fuel consumption and inefficient 
home heating. Severe pollution episodes were recorded in California as early as 1903 due to dense 
photochemical smog, even though its formation chemistry was unknown at the time (Senn, 1948). 
Both the Po and Central Valley are characterized as highly polluted regions (American Lung 
Association, 2016; European Environment Agency, 2014), owing to emissions from their large 
populations and intensive agricultural, livestock, and industrial activities, combined with regularly 
occurring episodes of stagnant valley air. Reactions of primary pollutants sulfur dioxide (SO2), 
oxides of nitrogen (NOx = NO + NO2), and ammonia (NH3) result in the formation of ammonium 
nitrate (NH4NO3) and ammonium sulfates ((NH4)2SO4 and NH4HSO4) which are important 
contributors to fine wintertime particulate matter, causing frequent regulatory exceedances. 
Historically, the Central Valley has had low SO2 emissions relative to both the Po Valley and other 
Western sites due its limited coal production and use of alternative fossil fuel sources (Kirchstetter 
et al., 2017). Both valleys also executed effective SO2 control measures prior to those of NOx, 
causing NOx to be an increasingly large percentage of the inorganic pollution burden (Chow et al., 
2008). Since the mid-1990s, emissions of SO2 from anthropogenic sources have been negligible 
in the Central Valley, making NH4NO3 the dominant component of aerosols during the winter 
(Chow et al., 2006). As such, this dissertation primarily focuses on the role of NOx – as an indicator 
of air pollution leading to fog CCN – for comparability, length of record, and modern relevancy 
to the pollution mix.  
 
In the Central Valley, wintertime NOx processing to form NH4NO3 – which is a product of NH3 
and HNO3 – has been well characterized by modeling and field studies. While emissions of NH3 
from animal agriculture and vehicles peak during the summer, the abundance of valley sources, as 
well as the uniquely low wintertime planetary boundary layer, make NH4NO3 formation HNO3-
limited (Battye et al., 2003; Schiferl et al., 2014). HNO3 is formed through both daytime and 
nighttime mechanisms involving nitrogen dioxide (NO2). Combustion provides the dominant 
source of NOx which undergoes daytime oxidation by the hydroxyl radical (OH) to form HNO3 
(equation 1).  

NO2 + OH à HNO3      (eq. 1) 
 
Nighttime formation is the result of heterogeneous chemistry where NO2 titrates ozone, forming a 
nitrate radical (NO3). NO3 then reacts with NO2 to produce dinitrogen pentoxide (N2O5). Finally, 
N2O5 reacts with water, forming HNO3 (equations 2-4).  
 

NO2 + O3 à NO3 + O2    (eq. 2) 
NO3 + NO2 à N2O5      (eq. 3) 
N2O5 + H2O à 2HNO3     (eq. 4) 

 
The HNO3, whether produced through daytime photochemistry or nighttime heterogeneous 
chemistry, reacts with the available ammonia, making NH4NO3 (equation 5).  
 

NH3 + HNO3 ⇋ NH4NO3       (eq. 5) 
 

Model simulations suggest that 80% of the HNO3 produced under Central Valley wintertime 
conditions can be converted to particulate nitrate (NO-3) (Stockwell, 1999). NO-3 production is 
then very sensitive to changes in NOx concentration, with trends that scale proportionally (Pusede 
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et al., 2016). Additionally, NH4NO3 is very hygroscopic, making it an ideal CCN for potential 
cloud and fog formation at low supersaturation (Petters and Kreidenweis, 2007).  
 
HNO3 and NH3, the precursors to NH4NO3 formation, also have an impact on vapor pressure when 
dissolved in liquid droplets. In gas phase, HNO3 and NH3 can condense onto aqueous particles, 
dramatically increasing hygroscopicity and, in turn, the number of activated CCN (Kulmala et. al., 
1998; Andreae et al., 2008). Also, a reduced vapor pressure allows activation to take place at 
smaller sizes; thus, polluted cloud and fog consist of a higher number concentration of small cloud 
droplets (Kulmala et al., 1995). This is known to increase cloudiness and prolong the lifetime of 
the clouds, both of which would have a significant impact on surface radiation fog.  
 
Air pollution in the Central Valley and Po Valley has declined at a similar rate and over a similar 
period as fog frequency due to regulatory intervention. In the Po Valley, substantial reductions in 
primary pollutant emissions since the 1980s contributed to declining trends in particulate matter 
with aerodynamic diameter 2.5 micrometers or less (PM2.5), most significantly in the winter 
(Cusack et al., 2012; Putaud et al., 2014). Bigi & Ghermandi, 2016 determined this trend was 
largely attributable to a regulatory-initiated renewal of vehicles with more advanced emission 
controls and efficient engines – an impact which is also seen in decreasing fuel sales. Additionally, 
a decline in emissions from industrial combustion due to technological improvements influenced 
the trend (Bigi & Ghermandi, 2016).  
 
Similarly, the Central Valley has experienced concurrent reductions in primary emissions and 
secondary inorganic aerosols (Pusede et al., 2016) due mainly to transportation emission controls. 
These have made rapid advancements by focusing on fuel reformulation, improved combustion 
control, and increased automotive inspection. Most noteworthy was the implementation of the 
three-way catalytic converter in the early 1980s which began a stark trend of emission 
improvements, as seen in a 50% reduction in gasoline-NOx emission from 1990-2010 in the San 
Joaquin Valley despite pronounced population growth (McDonald et. al., 2012). Progress in 
emission reductions from diesel trucks has lagged behind gasoline-powered vehicles, making 
diesel trucks the largest current on-road source of NOx in the San Joaquin Valley (McDonald et. 
al., 2012). However, significant progress in NOx emission factors is being reached with the 
enforced implementation of selective catalytic reduction (SCR), decreasing NOx emissions by 76% 
on average (Preble et al., 2015). NH4NO3 concentration has fallen proportionally with 
measurements of NO2 over the last 12 years, with Central Valley PM2.5 declining at a rate of 2% a 
year (Pusede, 2016). This suggests that changes in NOx concentration directly impact the 
availability of NH4NO3 as potential wintertime CCN. As such, this tremendous success in air 
quality regulation has possible unexpected outcomes on the fate of atmospheric moisture. 
 
Understanding the drivers of radiation fog trends has important health, safety, and ecological 
implications on both regions. The hazards of radiation fog, particularly in urban environments, are 
often underestimated. Past works have identified dense radiation fog as the leading cause of 
weather-related traffic accidents in California, within which the Central Valley is a national 
hotspot for fatalities from vision-obscured accidents (Ashley et al., 2015; United States 
Department of Transportation, 2017). Further, the economic costs associated with fog episodes are 
estimated to be comparable to those of tornadoes, and in some instances, even hurricanes and 
winter storms (Gultepe et al., 2007). Much of the economic losses come from unpredicted delays 
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in aviation, as well as the halting of ground transportation. This postpones the delivery of goods, 
as well as causes the temporary closure of schools and businesses. Thus, a regional decrease in fog 
events has considerable safety and economic advantages.  
 
Radiation fog also has important impacts on the boundary level radiation budget by reducing 
radiative cooling, moderating surface temperatures, and blocking incoming solar radiation. In the 
Central Valley, the rapid agricultural development throughout the twentieth century relied on the 
increased occurrence of wintertime radiation fog. Prolonged periods of dense fog are ideal for 
meeting the required dormancy period of fruit and nut trees in an otherwise warm and arid climate. 
This dormancy period, known as “winter chill,” consists of the accumulated cold-season hours 
below 7℃ that each plant is required to meet in order to avoid poor fruit set (Baldocchi et al., 2006; 
Baldocchi and Wong, 2008). As fog events continue to decrease, amplified surface energy on clear 
days increases bud temperatures by 4℃, thereby reducing the number of crops that meet the 
dormancy threshold. In addition to growing concern for California’s water availability, the 
agricultural region currently experiences an estimated 400 fewer hours of winter chill per year 
(Baldocchi and Waller, 2014). As such, understanding the future of radiation fog trends holds 
agricultural value.  
 
Here I present an investigation of the response of radiation fog frequency to trends in meteorology 
and air pollution in order to better understand the mechanistic drivers of fog formation and the 
relevancy of pollution mitigation on its long-term trends in California’s Central Valley and Italy’s 
Po Valley. I then investigate the roadway safety implications of this decline for the Central Valley. 
 
2. Description of Chapters  
 
2.1. Summary of Chapter 2  
Impact of air pollution controls on radiation fog frequency in the Central Valley of California 
 
In Chapter 2, I present a Central Valley fog climatology of 15 sites throughout the region spanning 
75 winters. I use the climatology to investigate historical trends of both fog and key drivers of its 
formation in order to determine a cause for the increase in fog frequency from 1930-1970, followed 
by the rapidly declining trend since 1980. The investigation includes historical trends (1963-2014) 
in NOx concentration, which are used as a proxy for nitrate aerosol loading to estimate the role of 
CCN on fog formation. I use the fog climatology to analyze the spatial, temporal, and interannual 
correlation between meteorology, air pollution, and fog frequency. Central Valley meteorology 
shows no trend in the occurrence of favorable conditions for fog formation since 1980, yet the fog 
continues to decline. Instead, the historical observations of the climate variables show rapid 
interannual variability. As such, the short-term variance in dew point depression and wind speed 
demonstrate much better correlation with the high frequency trend of annual fog events.  
 
When investigating the driver of the historical upward-then-downward trend, I conclude that the 
coherence of both the temporal trend and spatial gradient of fog events is unique to fog frequency 
and air pollution. As inorganic aerosol number concentration fell, so did the hygroscopicity of 
CCN sources and the amount of soluble gases dissolved into the water droplets – both of which 
previously aided fog formation occurring at nontraditional activation conditions (RH < 100%). 
Without the effect of pollution, Central Valley fog frequency has become more sensitive to 



 

   7 

temperature and water availability, with nearly all fog days occurring during the most favorable 
meteorological conditions, unlike 35-years ago. I estimate that for conditions close to the dew 
point, a decrease in fog of 5 days per year per 10 ppb NOx decrease occurred across the Central 
Valley over the past four decades. 
 
2.2. Summary of Chapter 3  
Unraveling the influence of pollution and climate variability on radiation fog frequency in 
California’s Central Valley and Italy’s Po Valley 
 
In Chapter 3, I investigate daily wintertime visibility observations in the Po Valley and Central 
Valley as an indicator of dense fog. The goal of the study is to analyze known and suspected drivers 
of fog formation with a multivariate model to identify each predictor variable’s relative 
contribution to daily visibility with the ultimate goal of elucidating causes to the diminishing 
radiation fog season. I find that a 50% decline in Po Valley fog and 76% decline in Central Valley 
fog occurred since 1980, concurrent with reductions in NOx, SO2, and particulate concentration. 
Meanwhile, changing climate and continued urbanization present possible obstacles to fog 
formation. Using generalized additive models, I find that low visibility conditions are most 
strongly impacted by DPD < 4℃, high NOx concentration, low wind speed, and days with 
precipitation. 
 
Chapter 3 then compares each predictor variable’s relative impact on the visibility response to 
further elucidate which has a controlling influence on the trend in visibility. I analyze pollution in 
conditions of high dew point depression and low dew point depression, as Chapter 2 clarifies that 
pollution correlations are highest when looking at the response segmented by conditions with the 
moisture and temperature profile to possibly support fog formation. While DPD is a primary driver 
of daily variability, trends show no substantial change in the 1980s and 1990s, when fog frequency 
began rapidly declining. Instead, the large impact of air pollution on the visibility response 
suggests that the declines in NOx concentration in the Central and Po Valley (61-65%) has had a 
critical impact on the diminished fog season since 1980.  
 
2.3. Summary of Chapter 4  
Trends in frequency, rate, and severity of Central Valley fog-related traffic accidents  
 
In Chapter 4, I focused on the impact of declining Central Valley fog events on the annual 
frequency, rate, and severity of resulting fog-related accidents. This chapter analyzes descriptive 
statistics and trends in fog-related accidents from 1996-1997 to 2015-2016 fog seasons, finding a 
65% decline in fog-related accidents over 20 winters. I present summary statistics and trends for 
the counties of highest population and frequency of accidents. This study finds that the annual 
number of dense fog events, identified by visibility at local airports, is the strongest determinant 
in the declining trend in fog-related accidents, describing a majority of the interannual variability. 
Since there has also been significant increases in total roadway volume over the study period, I 
also investigate this trend by normalizing by total distance driven in each county investigated, 
which is available for 2002-2015. This results in up to a 16% increase in the declining trend in 
fog-related accidents over the period. The subsequent improvement in visibility results in annual 
fog-related injuries falling by 72%, with the valley seeing an average of 550 fewer injuries from 
fog accidents in 2015-2016 than in 1996-1997. The strong link between the historical number of 
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Central Valley fog events and trends in pollution concentration suggest that regulatory measures 
that led to decreases in aerosol concentration, and thereby wintertime fog frequency, also 
influenced the declining trend in fog-related accidents.   
 
I also investigate the rate of fog-related accidents per fog hour identified at local airports. At least 
two counties indicate there have been statistically significant declining trends in the rate of fog 
accidents during fog events, which suggests that improvements to vehicle safety, roadway 
notifications, and traffic diversion may make notable impacts. Additionally, there is evidence that 
fog-related accidents grew less severe over the 20-year study when investigating the frequency of 
accidents in five collision severity categories relative to the total fog accidents each season. In 
most counties, trends in less serious accidents are increasing at the expense of more dangerous 
collisions, which are decreasing. However, the number of collisions per fog-related accident and 
the frequency of fatal accidents show no trend, suggesting there continue to be important 
opportunities for roadway and vehicle safety improvements. 
 
2.4. Conclusion 
 
In Chapter 5, I summarize the conclusions contained herein and recommend possible directions 
for future work. 
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Chapter 2: 
 
Impact of air pollution controls on radiation fog frequency in the Central Valley 
of California 
 
Adapted from:  
 
Gray, E., Gilardoni, S., Baldocchi, D., McDonald, B.C., Facchini, M.C., & Goldstein, A.H. (2019). 
Impact of air pollution controls on radiation fog frequency in the Central Valley of 
California. Journal of Geophysical Research: Atmospheres, 124(11), 5889-
5905. https://doi.org/10.1029/2018JD029419 
 
 
Abstract: In California’s Central Valley, tule fog frequency increased 85% from 1930-1970, then 
declined 76% in the last 36 winters. Throughout these changes, fog frequency exhibited a 
consistent north-south trend, with maxima in southern latitudes. Chapter 1 analyzes seven decades 
of meteorological data and five decades of air pollution data to determine the most likely drivers 
changing fog, including temperature, dew point depression, precipitation, wind speed, and NOx 
(oxides of nitrogen) concentration. Climate variables, most critically dew point depression, 
strongly influence the short-term (annual) variability in fog frequency; however, the frequency of 
optimal conditions for fog formation show no observable trend from 1980 to 2016. NOx 
concentration, which has a decreasing north-south concentration gradient, declined continuously 
over this period, consistent with the long-term temporal and spatial trends in fog. As development 
in the Central Valley increased direct particle and other pollutant emissions from 1930-1970, fog 
frequency increased. Following the Clean Air Act, particle emissions quickly declined, and NOx 
emissions declined steadily, reducing the cloud condensation nuclei (CCN) available for fog 
formation. As a precursor of ammonium nitrate aerosols, which are efficient CCN, this chapter 
uses NOx measurements and emission trends as a proxy for the CCN trend. I conclude that while 
the short-term fog variability is dominantly driven by climate fluctuations, the longer-term 
temporal and spatial changes in fog have been driven by changes in air pollution. For conditions 
close to the dew point, a decrease in fog of 5 days per year per 10 ppb NOx decrease occurred 
across the Central Valley. 
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1. Introduction 
 
Understanding the drivers of dense radiation fog, known as tule fog, in California’s Central Valley 
is important for the safety, economic development, and agricultural viability of the region. Central 
Valley fog events are the primary cause of California’s weather-related accidents, making this 
region a national leader in vision-impaired vehicle collisions (Ashley et al., 2015). Radiation fog 
also inflicts an economic toll due to delayed aviation and temporary closure of businesses and 
schools. Thus, a regional decrease in fog events has considerable safety and economic advantages 
for the valley’s 6.5 million residents.  
 
However, the rapid agricultural development in the valley throughout the twentieth-century relied 
on the increased occurrence of wintertime radiation fog. Prolonged periods of dense fog were ideal 
for meeting the required cold season dormancy period of fruit and nut trees, known as “winter 
chill,” to avoid poor fruit set (Baldocchi & Wong, 2008; Luedeling et al., 2009). The region 
experienced up to 400 fewer hours of winter chill per year in 2012 when compared to 1982 due to 
a reduction in dense fog (Baldocchi & Waller, 2014). Fog also influences surface conditions by 
nearly eliminating the vapor pressure deficit that drives evapotranspiration; hence, declining fog 
can enhance evaporation in an already drought stressed region (Fischer et al., 2009; Williams et 
al., 2018). As such, understanding the drivers of the tule fog trend holds agricultural value for the 
valley, which exceeded $47 billion in revenue in 2015 (CFDA, 2016). 
 
Throughout the twentieth-century, trends in tule fog frequency have changed dramatically. While 
fog frequency increased steadily from 1930-1970, with cities such as Fresno seeing an 85% 
increase in dense fog episodes, analysis from both ground and remote sensing measurements found 
a 46-50% reduction in fog beginning in 1980 (Baldocchi & Waller, 2014; Herckes et al., 2015). 
Despite significant research on the thermodynamic contributors to tule fog (Bergot & Guedala, 
1994; Roach et al, 1976), no explanation consistent with the upward-then-downward trend in its 
frequency over the last century has been identified. This study seeks to elucidate both the long-
term contributors to fog enhancement and decline, as well as better understand what influences the 
large interannual variability.  
 
Central Valley meteorological trends may be important, as there are a number of anthropogenic 
changes that could inhibit maximum radiative cooling, making it more difficult to reach dew point 
and for condensation to form fog. Notable changes include rising temperatures associated with 
climate change and/or the urban heat island effect. However, temperature alone as the dominant 
variable driving the tule fog trend cannot explain the observations, as the rising temperatures 
associated with both climate change and urban expansion would be largely positive over the past 
century, unlike the upward-then-downward signal seen in fog frequency. The role of urbanization 
has also been investigated due to the occurrence of urban clear islands in highly populated Central 
Valley cities (Lee, 1987; Suckling & Mitchel, 1988), such as in Fresno where dense fog episodes 
detected via satellite imagery begin dissipating from the center of the urban footprint (Underwood 
& Hansen, 2008). However, fog decline is apparent in both urban and rural locations when 
investigated from satellite imagery (Baldocchi & Waller, 2014), suggesting a common driver 
throughout the valley, rather than just the urban sites. Changes in water availability due to 
agricultural expansion may also have notable climate effects; however, wintertime irrigation is 
much less common during California’s rainy season, making it a less likely driver (Salas et al., 
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2006).  
 
The upward-then-downward trend may be better correlated with Central Valley air pollution 
trends. The number concentration and composition of aerosols can play a significant role in fog’s 
frequency, density, and persistence, with fog being more likely to occur in regions with high 
aerosol concentration and low supersaturation (Gultepe et al., 2007). Increased air pollution has 
been identified as a catalyst for enhanced radiation fog in the past, such as during the deadly 
London Smog of 1952 (Wilkins, 1954). Subsequent reductions in dense fog episodes in London 
have been attributed to regulation of emissions through the Clean Air Act of 1956 (Brimblecombe, 
1977). Hence, our interest in air pollution as an important variable changing fog frequency and 
persistence is rooted in the observed effect from past regulation.  
 
The Central Valley is consistently out of compliance with air quality standards for particulate 
matter, with air quality assessments ranking it among the worst areas in the nation (American Lung 
Association, 2016). 
During the cool, winter months, conditions are ideal for the formation of ammonium nitrate 
(NH4NO3), which is the dominant (30-80%) inorganic particulate matter with aerodynamic 
diameter 2.5 micrometers or less (PM2.5); the remaining PM is dominated by organic species 
(Chow et al., 2006). While NH4NO3 is a product of ammonia (NH3) and nitric acid (HNO3), the 
high abundance of primary NH3 from agricultural sources make Central Valley NH4NO3 formation 
HNO3-limited (Battye et al., 2003; Schiferl et al., 2014). HNO3 is formed from oxides of nitrogen 
(NOx = NO + NO2) through both daytime oxidation by the hydroxyl radical and nighttime 
oxidation by ozone. Central Valley NH4NO3 production is thus very sensitive to changes in NOx 
concentration, and reductions in NOx have been shown to cause corresponding reductions in 
NH4NO3 in PM2.5 (Pusede et al., 2016).  
 
NH4NO3 is very hygroscopic, making it an ideal cloud condensation nuclei (CCN) for cloud and 
fog formation at low supersaturation (Petters & Kreidenweis, 2007). Scavenging measurements 
indicate that ammonium nitrate is effectively removed by fog for nucleation scavenging, 
confirming its ability to act as CCN at low supersaturation typical of fog (Gilardoni et al., 2014). 
Additionally, HNO3 and NH3, the precursors to NH4NO3 formation, reduce vapor pressure, 
increasing hygroscopicity and allowing activation at smaller sizes (Kulmala et. al., 1998; Andreae 
et al., 2008). Polluted fog consists of a higher number concentration of small droplets, which in 
turn increases cloudiness and prolongs the lifetime of clouds and fog (Kulmala et al., 1995).  
Klemm et al. (2016) modeled fog formation in regimes with relative humidity (RH) < 100% 
finding equivalent reductions in fog with increases in temperature and reductions in aerosol 
concentration, likely tied to changes in hygroscopic gases such as SO2 and NOx. 
 
Further, the presence of HNO3 and NH3 in water droplets can also alter the hygroscopicity and size 
of unactivated droplets – droplets that do not reach the supersaturated conditions critical for growth 
– but can nonetheless yield the impression of dense fog (Kulmala et al., 1997; Laaksonen et al., 
1998; Charlson et al., 2001; Kokkola et al., 2002). The hygroscopicity of the NH3 and HNO3 allow 
cloud-droplet-sized particles to form in RH of less than 100%, causing low-visibility, fog-like 
conditions.  
 
As the primary precursor to ammonium nitrate PM in the Central Valley, this chapter focuses on 
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trends in NOx as an indicator of the impact of changing air pollution on fog frequency. 
 
Here I developed and compare historical records of temporal and spatial patterns for fog events, 
climatic variables, and air pollution to investigate the dominant drivers for fog frequency and 
persistence.  
 
2. Study region 
 
The Sierra Nevada to the east and Coastal Range to the west create ideal valley geography for 
persistent radiation fog episodes. Tule fog season spans November to March, during which weather 
conditions are characteristically binary: dry, cloudless days permeated by occasional wet winter 
storms. Clear conditions favor rapid radiative surface cooling following sunset, and if relative 
humidity is high and temperature and wind speeds are low, atmospheric moisture can condense to 
form ground fog.  The wintertime inversion causes fog to linger close to the surface, typically 
below 300 meters, constrained horizontally by the perimeter mountain ranges (Underwood et al., 
2004; Bianco et al., 2011). The stagnant conditions and low wind speed usually associated with 
the Great Basin High cause fog events with visibility often below 200 meters to persist for as long 
as 12 to 18 hours, usually dissipating mid-morning (Herckes et al., 2015).  
 
The Central Valley has distinct differences in a variety of attributes as a function of latitude 
including fog occurrence, climate variables, urbanization, and air pollution. For the purposes of 
analyses in this paper, I divide the study region by latitude and aggregate data for specific 
representative areas, as shown in Figure 1. To emphasize the spatial gradients of different 
variables, each degree of descending latitude, beginning at 40°N, is represented by a different color 
in the spectral color scheme, with cooler colors representing the northernmost locations and 
warmer colors representing the southernmost.   
 
3. Methods 
 
The longest record of fog frequency available was obtained from the National Oceanic and 
Atmospheric Administration (NOAA) archive for Fresno dense fog days beginning in 1909. This 
record wholly encapsulates the upward-then-downward trend in fog frequency observed in the 20th 
century that cannot be fully observed in modern records from the National Climatic Data Center 
(NCDC) which are shorter (1940-2016), but more temporally and spatially complete. However, 
when compared, both data sets show excellent agreement, thus providing greater confidence for 
the NOAA data, as analysis will show. 
 
I developed a detailed fog climatology using up to 75 years of visibility measurements from the 
NCDC spanning 15 sites typically located at airports  
(https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd). Dense fog was defined as visibility below 400 
meters (one quarter-mile). The climatology is derived from hourly data wherever possible, rather 
than daily, to account for the highly episodic nature of dense fog. Any day with at least one hour 
of dense fog is considered a fog day, all of which are summed over each fog season (November-
March), representing annual fog days per year. In order to calculate annual fog days, each month 
needed > 90% hourly coverage. If all five months of the fog season had > 90% (with most years 
included having > 98% coverage), annual fog days were summarized. Average duration was 
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determined by dividing the total number of dense fog hours in a winter season by the total fog 
days.  
 
Visibility was initially measured by the Surface Aviation Observation (SAO) guidelines prior to 
1996, whereby visibility was manually recorded by meteorologists using visible markers. Post-
1996, the Automated Surface Observation System (ASOS) was standardized, where visibility was 
automatically recorded using a forward scatter visibility sensor that measures the attenuation of 
light at 20 second intervals. There are differences in the maximum visibility recorded between the 
SAO and ASOS guidelines, thus I limited all visibility measurements to 16 kilometers for 
consistency. No other inconsistencies as a result of the instrumentation change were found in the 
record.  
 
Historical records of temperature, dew point, and wind speed from airports throughout the valley 
were accessed through the NCDC. Daily averages were calculated by extracting measurements 
taken every three hours, (eight measurements per day) with a minimum of seven measurements 
per day to calculate a daily average with even temporal coverage. Data for maximum/minimum 
temperature and precipitation were pulled from daily measurements calculated by the NCDC at 
the same airports (https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). I set a 65% minimum 
reporting threshold to calculate monthly averages from daily values for the fog season months of 
November-March; however, most months had either very low reporting or above 95%. I 
determined 65% as the necessary threshold through random sampling t-tests of large iterations and 
requiring deviation from the mean be less than 5%. Annual wintertime (Nov-March) averages were 
then calculated by averaging over the fog season, with all five months required per season to ensure 
comparability year over year. Records were inspected for station location continuity whenever 
possible and reviewed for instrument malfunction.     
 
Trends in particulate matter (PM10) and NOx emissions were first obtained through the 
Environmental Protection Agency (EPA) NOx Emission Inventory from 1940-1998 (EPA, 2000). 
More modern trends for NOx emissions from 1970-2017 were obtained from the EPA’s website 
(https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data). A localized 
fuel-based emission inventory of NOx for the San Joaquin Valley and the Central Valley (San 
Joaquin + Sacramento Valley) was developed using the methods described in McDonald, B.C. et 
al., 2012. Briefly, mobile source emissions are estimated using a fuel-based approach, including 
on-road engines (e.g., passenger vehicles, heavy-duty trucks), off-road diesel engines (e.g., 
tractors, construction equipment), and small two- and four-stroke off-road gasoline engines. 
Mobile source engine activity is estimated using state-level fuel sales reports for on-road and off-
road engines and allocated to the San Joaquin and Sacramento Valley air basins using California’s 
2009 Emissions Almanac (CARB, 2009). Long-term trends in mobile source NOx emission factors 
have been characterized from the 1960s to the present day by Hassler et al., 2016. All other 
anthropogenic sources of emissions are from California’s Emissions Almanac, which reports 
emissions from 1975 to the present day for stationary and area sources of emissions. Prior to 1975, 
I extrapolate stationary and area sources of NOx emissions to 1960 based on annual fuel activity 
data from the State Energy Database System (EIA, 2017). 
 
I also obtained historical trends in NOx concentration using data from the California Air Resources 
Board (ARB) archive (https://www.arb.ca.gov/adam/). Each city has multiple monitoring stations 



 

   14 

where NOx is measured by chemiluminescence and averaged over 24-hours. The length of data 
recorded at each monitoring station can vary significantly, ranging from a few years to multiple 
decades. In order to develop a historical record with a similar latitude distribution as the 
meteorological variables, I selected stations within the urban plume of the local airport 
meteorological stations, with the largest distribution perimeter being those of Fresno and 
Bakersfield (14.5 x 13 kilometers). I compared the monitoring stations within each urban plume 
to confirm consistency of station reporting. After removing severe station outliers, I calculated 
monthly averages for November – March of all stations in the city over the course of the record, 
requiring 65% of daily measurements per month, followed by calculating an annual winter 
average. The representativeness of ground-based measurements for the valley has been confirmed 
by NO2 retrievals using the earth-observing satellite Ozone Monitoring Instrument (OMI) in past 
studies (Russell et. al., 2010). I acknowledge that some NOx data for this study are averaged for a 
city plume originating as much as 8-15 kilometers from the visibility measurements, which are 
typically observed at airports. While NOx does exhibit distinct urban plumes when observed by 
OMI, past work characterized Central Valley boundary layer pollution as well-mixed within 
latitude bands, especially during frequent multiday pollution episodes and wintertime stagnation 
(Pusede & Cohen, 2012). Further, Chow et al., 2006 found San Joaquin Valley wintertime 
NH4NO3 PM2.5 much more uniformly distributed outside urban plumes than carbonaceous PM, 
with the zone of representativeness for monitoring sites being between 10-20 kilometers, 
increasing even further when observations were annually averaged. This suggests that the urban 
monitoring sites are sufficiently representative for this study.    
 
Trends in predictor variables were analyzed using the non-parametric two-tailed Mann-Kendall 
trend test and the Theil-Sen estimator  
(http://www.mathworks.com/matlabcentral/fileexchange/authors/23983). The Mann-Kendall 
trend test assesses the null hypothesis (H0), which assumes there is no trend in the data, against the 
alternative (H1) without requiring linearity (Mann, 1945; Kendall, 1955). The Mann-Kendall test 
outputs H = 0 when the null hypothesis passes and H = 1 when it fails, meaning that there is a 
statistically significant trend at the µ = 0.01 significance level.  The Theil-Sen estimator is a non-
parametric technique for robustly fitting data to a line while minimizing the influence of outliers 
(Theil, 1950; Sen, 1968). The Sen’s slope (Qi) is determined by finding the median of all the slopes 
between pairs of points over the designated period:  
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where xj and xk are data at times j and k, and n is the number of data points. The average of these 
n values for Qi is Sen’s slope. A best fit line is calculated using the slope and y-intercept. The 
Theil-Sen estimator was used to determine the average change in each variable per year over the 
course of the period of inquiry.  
 
In order to separate the high frequency, shorter-term signal from the long-term trend, I first ran a 
Lomb-Scargle periodogram on daily averages to identify significant periods in the data, despite its 
uneven sampling (Lomb, 1976; Scargle, 1982). Dew point depression, temperature, NOx 
concentration, wind speed, precipitation, and visibility (as a continuous variable highly correlated 
with fog days) were analyzed. The input data was processed by normalizing by its 1-norm and 
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detrending before analyzing the output frequencies of highest spectral significance (p < 0.01). The 
frequencies were compared between variables to identify common periods of variability. These 
periods were used as windows for a low pass filter, calculated by a moving mean, in order to isolate 
the long-term trend from the high frequency variability, calculated as the residuals of the moving 
mean. The decomposed trends for dew point depression, wind speed, and NOx were then tested for 
correlation with daily visibility.  
 
Correlation between annual fog days and predictor variables was found using orthogonal linear 
regression, in which errors in both the dependent and independent variables were determined for 
the linear fit (https://www.mathworks.com/matlabcentral/fileexchange/16800-orthogonal-linear-
regression). The linear correlation was calculated using the Pearson correlation coefficient and was 
then squared to find the coefficient of determination, which estimates the fraction of variance in 
fog days explained by the predictor variable. When analyzing the correlation between fog days 
and air pollution, meteorology of sufficient time resolution for calculating Sen’s slopes was not 
available for Chico, Yuba City, or Modesto. In these instances, data from adjacent meteorological 
stations were substituted with reporting from Red Bluff, Beale Air Force Base, and Castle Air 
Force Base, respectively. Meteorology data at the paired sites were highly correlated, with R2 
ranging from 0.81-0.88 (Table 1). Air pollution data were available for a smaller window of 1980-
2014. An exception was made for Chico – where observations concluded in 2008 – because it is 
the northernmost site with available NOx measurements, making these data of great interest.  
 
Table 2 provides a description of the observational sites, including location, length of high-
resolution operation, and completeness of record from 1963-2016 for meteorology and 1963-2014 
for NOx concentration. 
 
4. Results and discussion 
 
4.1. Radiation fog trend 
 
4.1.1. Temporal variability  
 
The number of dense fog days in Fresno, the longest record available, increased 2% per year on 
average from 1930 to 1970, demonstrating a statistically significant 85% growth (p < 0.01). A 
distinct decrease in fog days began for all locations around 1980, with sites in the north exhibiting 
the most rapid decline at 2.5% fewer fog days per year (Table 3). Fog decline is most apparent 
when the trend is averaged over all sites using the hourly NCDC record, demonstrating a valley-
wide decrease in both occurrence and duration of fog (black lines in Figure 2). From 1980 to 2016, 
fog days have declined on average by 76% (p < 0.01), with average fog episode per day declining 
by 56% from a valley-wide average of 6.2 hours per day to 2.7.  
Historically, dense fog episodes were characterized by late night low visibility events – particularly 
in the foggiest locations such as Fresno (Figure 3c) – when the surface radiatively cools. As the 
cooler conditions continue to favor condensation throughout the night, denser fog develops into 
the early morning hours, reaching its peak after 5 am. However, the diurnal pattern of wintertime 
visibility has gradually transitioned since ~1980, with low visibility events now forming in the 
early morning (fewer blue colors from 20-24 hours) and dissipating more quickly the following 
day (Figure 3). The reduction in dense fog events demonstrated in Figure 2 has a substantial 
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impact on conditions later in the day, with average afternoon visibility increasing since 1990 at all 
locations. The impact is seen most strongly in Red Bluff (Figure 3a) where the fog season has 
nearly ceased to occur.  
 
4.1.2. Spatial variability 
 
Central Valley fog frequency exhibits a pronounced north-south gradient, with fog consistently 
more frequent in southern latitudes than northern over the course of the NCDC record (Figure 4). 
This pattern is represented throughout the analysis by the spectral color scheme, in which cooler 
colors represent northern latitudes and warmer colors represent southern latitudes. Sites throughout 
the 700-kilometer-long region have strong year-to-year variability that is coincident, suggesting 
that large scale mechanisms control this variability. A deviation from the observed north-south fog 
gradient is seen in the southernmost city, Bakersfield, which I will explore further in the 
meteorological analysis.  
 
The chapter uses the spatial gradient, in conjunction with the long-term upward-then-downward 
temporal trend in Figure 2a, to identify drivers of changing fog formation by their correspondence 
to the unique spatiotemporal features of the fog record.  
 
4.2. Climate trends 
 
Here this chapter presents available trends of the key climatic drivers likely to be associated with 
fog formation: minimum temperature, dew point depression, precipitation, and wind speed. Each 
variable is considered, when possible, for its relationship to the spatial (distinct north-south 
gradient) and temporal (upward-then-downward signal), and regression statistics were calculated 
to compare their explanatory significance. Figures are included for all statistically significant 
findings.  
 
4.2.1. Minimum temperature  
 
This study focuses on minimum temperature (Tmin), because radiation fog most commonly forms 
after sunset (Figure 3) due to rapid surface radiative cooling. I would expect colder temperatures 
to be associated with frequent fog and low visibility, as it is easier for atmospheric moisture to 
reach saturation and condense. However, if the fog formation trend was heavily dependent on 
temperature, fog frequency would instead be highest in the northern valley where it is colder on 
average, rather than the southern where it is warmer on average. When comparing the spatial 
gradient of fog days (Figure 4) and Tmin (Figure 5a), temperature demonstrates significantly less 
N-S latitude consistency, with regions in the north, such as Redding and Red Bluff, occasionally 
reaching yearly-averaged Tmin higher than locations hundreds of kilometers south, such as between 
1950-70, only to return to being the colder cities. However, more recent fog seasons – particularly 
in the last decade – show increased latitudinal consistency, with wintertime Tmin throughout the 
valley both rising and becoming more homogenous.  
With respect to historical trends, the valley experienced much less wintertime Tmin warming than 
in other seasons. The Tmin trend from 1980-2016 is not statistically significant (Figure 6a) and thus 
its direction cannot be determined (Table 3). A distinct warming signal is not evident until the last 
decade, suggesting that Tmin did not influence the initial decline in fog days. These results then 
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imply that Tmin alone is not a dominate variable in fog frequency.  
 
4.2.2. Dew point depression 
 
When the temperature is at or near the dew point, condensation of atmospheric moisture into fog 
droplets can occur, thus the variable dew point depression (DPD), calculated by subtracting dew 
point from ambient temperature, is expected to be related to fog formation. DPD must be at or near 
zero for fog droplet formation, so substantially foggy periods have low average DPD. A time series 
of DPD trends (Figure 7a) reveals that the northernmost sites Red Bluff and Redding have the 
highest DPD, and thus largest average temperature decline needed during nighttime radiative 
cooling to reach condensation and fog formation. Meanwhile, Bakersfield, the most southern site, 
also has a relatively high seasonal DPD. This explains why its fog trend does not as consistently 
adhere to the north-south gradient of fog frequency (Figure 4) – the location is much dryer than 
sites at a proportional latitude, creating a larger threshold of DPD that must be surmounted in order 
to form fog. However, DPD alone cannot explain fog formation, because Bakersfield is one of the 
more frequently foggy sites. Thus, DPD can be an explanatory predictor, but clearly works in 
concert with other variables. This is further demonstrated by the lack of latitude consistency shown 
in Figure 7a, in which sites with the lowest DPD (shown in the yellow and green colors of Travis, 
Sacramento, and Beale) occur in central and northern locations of the valley that do not have the 
most fog.  
 
Temporal trends of DPD reveal a valley-wide average increase of 39.5% from 1980-2016 (p < 
0.01), suggesting that a decrease in fog days could be the result of concurrent changes in water 
availability and temperature (Table 3). However, when comparing Mann-Kendall trend test results 
for each decade from 1980-2016, results indicate that DPD began increasing at least 10 years after 
the decline in fog frequency; further, DPD decreased from 1990-2000, suggesting that it would 
enhance fog, but fog days continued declining. The high confidence intervals for the slope of DPD 
from 1980-2016 reflect the uncertainty in the strength and consistency of the trend (Table 3). Thus, 
while the overarching positive trend from 1980-2016 is statistically significant and likely 
impacting fog by inhibiting condensation, its initial increase does not agree with fog trends 
suggesting DPD alone is not responsible for the loss in fog days. 
 
However, years of low DPD are well correlated with years of high fog frequency, with explanatory 
value for 24% of the annual variability (Figure5b). This suggests that much can be understood 
about the stark interannual variability in fog events by looking at trends of water availability and 
temperature concurrently. 
 
4.2.3. Precipitation   
 
In contrast to temperature and DPD, precipitation displays a pronounced north-south gradient, with 
regions in the north consistently receiving more rain than those in the south (Figure 5b). While 
yearly precipitation exhibits strong interannual variability, the majority of the precipitation trend, 
aside from the droughts experienced from 2006-2010 and, most severely, 2012-2017, remains 
neutral with studies showing Northern and Central California getting wetter over the 20th century 
and winter precipitation stable for the entire state (Killam, 2014). Only trends in Red Bluff were 
statistically significant (p < 0.01), demonstrating a 36.4% decline in precipitation, though with 



 

   18 

very wide confidence intervals (Table 3). The remaining sites exhibited no significant trend from 
1980-2016.  
 
Fog’s sensitivity to precipitation remains an ongoing research question. While years of high 
rainfall are associated with an increase in fog events, many heavy fog years appear inversely 
correlated with precipitation when historical trends are compared (Figure 9). Additionally, I found 
that fog frequency has no correlation with the El Nino Southern Oscillation index, similar to the 
results of Herckes et al., 2015. The data suggests that there is some ideal precipitation amount for 
enhancing fog, and beyond that level fog is suppressed. This threshold likely exists because intense 
winter storms are associated with turbulent conditions unfavorable to fog formation. Similarly, 
frequent radiation fog can occur in years of low precipitation, because a significant rain event 
followed by high pressure and clear conditions is ideal for formation. Additionally, annual winter 
time precipitation demonstrates no statistically significant correlation with annual fog days, further 
highlighting the ambiguity (Figure 6b). Here the results show that when holding a given annual 
precipitation constant, such as 300 mm, a site could predictively expect a large range of potential 
fog days, from as low as 0 to as high as 50.   
 
4.2.4. Wind speed 
 
Wind speed can play a significant role in radiation fog formation, with fog typically occurring in 
periods of atmospheric stability and wind speeds below < 1 m/s (Herckes et al., 2015). Higher 
wind speeds increase surface mixing and inhibit radiative cooling after sunset. Thus, I would 
spatially expect northern regions with less frequent fog to have higher wind speeds than southern 
regions of more frequent fog, as well as historically expect wind trends to be increasing since 
~1980. However, the analyzed record from 1940-2016 demonstrates little latitude consistency, 
with no clear pattern from north to south regarding magnitude of wind speed (Figure 7c).  
While the valley-wide ~27% decrease in wind (p < 0.01) correlates well with decreased fog events, 
it should have the opposite result (Table 3). Instead, I would expect this trend to enhance fog 
formation through more stable atmospheric conditions and more rapid radiative cooling at night. 
This puzzling trend is consistent with recent evidence for a 5-15% midlatitude atmospheric stilling 
(Vautard et al., 2010), and suggests that had average wind speed not declined during this period, 
fog events would have been further diminished.  
Wind speed demonstrated a low, but statistically significant predictive impact on fog frequency, 
explaining 9% of the variance (Figure 7d). Here the results show that lower wind speeds are 
associated with higher fog frequency – a relationship likely made more complicated by trends in 
atmospheric stilling. 
 
4.2.5. Segmenting trends with meteorologically favorable fog conditions 
 
This chapter further investigates the tule fog trend by segmenting by times when conditions were 
optimal for fog formation, defined as average daily dew point depression < 4.2 °C and wind speed 
< 2 meters per second (m/s). The goal was to determine whether tule fog is more sensitive to the 
frequency of these meteorological conditions or some other potential driver when looking at daily 
data, rather than seasonal. The thresholds were determined by comparing the summary statistics 
for meteorology on foggy versus clear days. The frequency of optimal fog condition occurrence 
has no statistically significant trend during the period from 1980-2016, with a Mann-Kendall result 
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of H=0 at a 99% confidence interval (Figure 10). The frequency of favorable fog formation 
conditions remained consistent during this period despite increases in average dew point 
depression since 2000.  
While there is no trend in the number of days with optimal fog conditions, the fraction of days 
where radiation fog actually occurred under these conditions declined significantly over this period 
(p < 0.01). In 1980, dense radiation fog occurred ~55% of the time when optimal fog conditions 
were met, but since 2010 fog only occurred ~35% of the time under these same conditions (Figure 
8a). The observations suggest a mechanism unrelated to these meteorological variables is 
necessary to explain the observed decline in fog days. 
This is further confirmed by analyzing the meteorology on the days when dense radiation fog 
forms (Figure 8b). The frequency of fog occurring under optimal conditions, relative to the total 
annual fog days, has increased significantly (p < 0.01), from ~50% (50% occurred outside optimal 
meteorological conditions) in the early 1980s, to ~80% since 2010 (20% occurred outside optimal 
meteorological conditions). This suggests that radiation fog occurred much more frequently at 
higher dew point depressions and higher wind speeds in the 1980s than in later years, which would 
be consistent with a reduction in the number of hygroscopic particles available for water to 
condense on. This effect is well documented in modeling studies which show that an increase in 
air pollutant concentration can allow for fog droplet growth under untraditional activation 
conditions where relative humidity is below 100% (Charlson et al., 2001).  
 
4.3. Air pollution trend 
 
Air pollution throughout the United States rapidly increased with intensifying urbanization in the 
twentieth century, spurred by unregulated fuel consumption and inefficient home heating. Severe 
pollution episodes were recorded in California as early as 1903 due to dense photochemical smog, 
which formation chemistry at the time was unknown (Senn, 1948). Valley population grew rapidly 
beginning in the early 20th century, with cities such as Fresno seeing a 103% growth from 1920-
1950 and the Central Valley population growing by 52% from 1940-1950 alone (U.S. Census; 
Gregor, 1963). This population growth was associated with industrial and agricultural 
development, resulting in significant air pollution increases. Expansive oil fields and refineries, 
rail freights, and increased vehicle use contributed to early pollution challenges. Similarly, the 
increasing use of agricultural burning and off-road equipment were unregulated.  
 
While there are few observations of Central Valley NOx prior to the mid-1960s, national EPA 
emission inventories for NOx and PM10 give a picture of historical pollution trends (Figure 11), 
thus providing an estimate for increasing emissions in the mid-20th century and the potential CCN 
availability. The magnitude of the national PM10 trend is consistent with California archival 
records from 1960-2005 for coefficient of haze, a retired measurement of particulate matter, found 
in Kirchstetter et al., 2017. Earlier PM10 inventory data are estimated based on total suspended 
particle (TSP) measurements and are less reliable. Nationally, derived PM10 emissions were 
greater than NOx by mass prior to 1960 (Figure 11), but saw initial declines due to the effective 
mitigation of industrial sources (EPA, 2000). Sulfur dioxide (SO2) in the San Joaquin Valley was 
likely an important contributor to CCN in the earlier record, because the southern valley had 
considerable sulfate concentrations from local oil extraction (Jacob & Shair, 1986). However, due 
to its greater dominance as an air pollutant in much of the country, using a national inventory 
would not be representative of local trends in California where the use of coal for in-state electricity 
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generation is less prevalent. Local San Joaquin Valley SO2 archives beginning in 1975 demonstrate 
that concentrations had already greatly increased by the 1970s and began rapidly falling decades 
prior to effective NOx controls (Figure 11).  
 
Instead, since the 1970s, NOx has been the predominant inorganic pollutant – and most likely 
limiting wintertime CCN precursor – in the Central Valley. National NOx emission inventories for 
1940-1998 and 1970-2017 demonstrate the rise in NOx sources with increasing fossil fuel use, 
followed by its subsequent decline beginning in the early 1980s, which is consistent with the 
locally developed fuel-based inventory for San Joaquin Valley. Implementation of California’s 
vehicle tailpipe standards for hydrocarbons and carbon monoxide (1966), oxides of nitrogen 
(1971), and particulate matter from diesel-fueled vehicles (1982) began a substantial reduction in 
valley air pollution (California Air Resources Board, 2012). Transportation emission controls have 
made rapid advancements through engine modifications and exhaust after-treatment devices. Most 
noteworthy was the implementation of the three-way catalytic converter on passenger vehicles in 
the early 1980s which began a stark trend of emission improvements, as seen in a 50% reduction 
in gasoline-NOx emission from 1990-2010 in the San Joaquin Valley despite a 43% population 
growth (McDonald et al., 2012). Power plant emissions of NOx also decreased from 
implementation of stack controls (Frost et al., 2006). Our SJV inventory suggests that in 1960, 
around half of the NOx emissions are from stationary sources and the other half from mobile 
sources. By 2014, I estimate that mobile sources dominate (> 80% of the NOx total) in the San 
Joaquin Valley.  
 
NH4NO3 concentration fell proportionally with measurements of NOx, the limiting precursor, from 
2000-2015, as Central Valley PM2.5 declined at a rate of 2% a year (Pusede et al., 2016). This 
suggests that reductions in NOx concentration directly reduced the availability of NH4NO3 as 
potential wintertime CCN. Trends in Fresno fog frequency and trends in San Joaquin Valley NOx 
emissions have declined in concert (Figure 11), though fog frequency has significantly more 
variability. While the length of local records limits our understanding of California pollutants prior 
to 1960s, I can infer from the slope of the local SO2 (1975-2015) and national PM (1940-2017) 
inventories that other sources dominated and influenced the number of CCN available for fog 
formation.  
 
These emissions trends are confirmed by local annual NOx concentration measurements for seven 
cities throughout the valley (Figure 12). The trend shows an initial rapid increase, followed by a 
~50% decline from 1980-2014 (p < 0.01), though the completeness of each record varies. Air 
pollution is the only fog contributor analyzed that began declining in the same decade as fog 
frequency and consistently continued declining from 1980-2016. Additionally, NOx concentration 
exhibits a similar north-south gradient as seen with fog frequency, with concentration consistently 
highest in the south which is more populated and polluted (Figure 12). The north-south gradient 
remains persistent throughout the 50-year record despite the declining trend and interannual 
variability. Thus, NOx decline has both a temporal and spatial signature consistent with that of fog 
frequency.  
 
Annual fog days and NOx concentration are significantly correlated (p < 0.01) with NOx explaining 
an estimated 24% of the variance in fog frequency when examining all sites across all years (Figure 
13a). This influence is further demonstrated when segmenting by the most impactful climate 
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variable, DPD, in three quantiles by high, average, and low (Figure 13b). When DPD is high, 
representing high temperature and low water availability, fog frequency is less sensitive to 
additional CCN, explaining 29% of fog variance, because meteorological conditions are less 
sufficient for condensation. In this high DPD scenario, the regression slope is only 0.2, suggesting 
2 additional fog days for every 10 parts per billion (ppb) increase of NOx concentration. However, 
as DPD decreases and physical conditions get closer to causing condensation, the slope increases, 
representing fog frequency’s increasing sensitivity to changes in air pollution. The coefficient of 
determination also increases, as NOx has more explanatory significance. At low DPD conditions, 
with an average of 3.6°C, NOx concentration explains an estimated 46% of annual fog frequency. 
Thus, when average DPD is above 5°C, sites are much less impacted by trends in NOx, but given 
sufficiently low dew point depression, air pollution trends have a pronounced influence, with an 
estimated 5 additional fog days for every 10 ppb increase. 
 
4.4. Separating drivers of short-term and long-term variability  
 
Despite the strong influence of NOx found in the fog frequency record, there remains considerable 
high frequency (short-term) variability in the record that is not observed in NOx concentration. By 
decomposing the fog trends into high frequency and low frequency (long-term) components, this 
chapter quantifies the impact of meteorology on high frequency variability.  
 
Analysis using a Lomb-Scargle periodogram identified the full 151 days included to represent each 
annual fog season (p < 0.001) as having the highest and most consistent spectral significance of 
any period in the data set, meaning that annual seasonal changes dominate the periodicity. The 
trend was therefore decomposed by applying a low pass filter with a period of 151 days on daily 
averages of fog season visibility, dew point depression, NOx concentration, and wind speed for 
1973-2014, the most complete time window for all variables. The high frequency data, determined 
as the residuals of the low pass filter, show that meteorology explains much more of the short-term 
variance than NOx concentration. When testing the correlation of predictor variables with the daily 
visibility residuals and then calculating a coefficient of determination, dew point depression 
explains 29% and wind speed explains 22% of the variance in day-to-day average visibility (Table 
4). By contrast, NOx concentration captures only 10% of the variance. This indicates short-term 
variability in wintertime visibility is driven more by water availability, temperature, and wind 
speed than by processes associated with NOx concentrations.  
 
The low pass filter reveals long-term trends with the high frequency (short-term) variability 
removed. The trend component of each predictor variable was tested for correlation with the 
visibility trend, revealing that the NOx concentration trend has the highest correlation with 
visibility, explaining 38% of the trend (Table 4), far more than the dew point depression, which 
explains 16%, or the wind speed, which explains 11%. The separation of long-term and short-term 
components clarifies that the NOx trend better accounts for reductions in fog formation from 1980-
2016, while meteorology better explains the short-term variability throughout the record.  
 
5. Summary and conclusions 
 
The short-term variability in meteorology correlates with the strong variability of fog events, but 
cannot explain the observed longer-term trends in fog frequency. Dew point depression has the 
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strongest explanatory robustness of the meteorological variables, as potential to form fog is clearly 
a function of both water availability and sufficiently low temperature to allow condensation. 
Additionally, until recently, low wind speed had a strong correlation with years of frequent fog 
events. The recent “atmospheric stilling” observed in the wind speed record favors fog frequency, 
thus masking the even more complete collapse of the fog season that would have likely occurred 
otherwise.  
 
The coherence of both the spatial (north-south) gradient and historical (upward-then-downward) 
trend is unique to fog frequency and air pollution. Despite some changes to climate in recent 
decades, the frequency of optimal fog conditions remains stable, yet fog continues to decline 
relative to the number of low dew point depression and low wind speed days occurring each year. 
Additionally, nearly all tule fog events in recent years occur during the most favorable fog 
conditions, whereas 35 years ago fog occurred on warmer days with higher wind speeds and less 
water availability much more frequently. This is consistent with the impact of higher air pollution 
historically causing a higher number concentration of hygroscopic particles for condensation, as 
well as pollution causing nontraditional activation of droplets when RH < 100%. 
 
Controlling for the large interannual variability in DPD further elucidates the statistically robust 
relationship between fog frequency and air pollution, particularly under conditions of low DPD. 
When annual average conditions have sufficient atmospheric moisture and low temperatures 
necessary to support condensation, fog frequency is significantly more sensitive to the resulting 
increases in condensation nuclei from high pollution concentrations. This relationship is weakest 
in fog seasons where DPD is high, but it is still significant. Our findings demonstrate that in low 
DPD conditions, a decrease of 5 fog days per year occurred for every 10 ppb NOx decrease over 
the past 36 years. The upward trend in fog frequency from 1930-1970 was likely driven by 
increases in emissions of other air pollutants including primary particles and possibly SO2, but no 
observational data are available to further constrain the specific pollutants involved prior to the 
initiation of the long-term air pollution measurement network in California. 
 
Changes in fog frequency have broad impacts on transportation safety, agricultural production, 
drought resilience, and climate. While the interannual influence of meteorology is key to 
understanding its year-to-year signal, our analysis demonstrates that changes in air pollution 
emissions are the main driver of the observed long-term trend of radiation fog frequency, and that 
reducing air pollution has had the added benefit of reducing tule fog in California’s Central Valley. 
The impacts of reductions in air pollution emissions on fog frequency, and resulting changes for 
the agricultural economy, transportation safety, and climate, should be analyzed in future 
assessments of the co-benefits of air pollution controls.  



 

  

6. Figures and tables 
 

 
 
Figure 1. Map of Central Valley sites color coded by latitude from Terra MODIS. Color coding represents change in 1° of latitude, 
beginning at 40° N. Sacramento contains two sites: Sacramento Executive Airport and Mather Field Airport in Rancho Cordova. 
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Location Distance (km) Meteorology R2 

Red Bluff 
Chico 

Beale Air Force Base
Yuba City

Castle Air Force Base
Modesto 

Table S1. Stations where air pollution from an adjacent observation 
station was used by substitution.

50

30

45

0.81

0.85

0.88

Table 1. 



 

  

 
 

Table S2. Meteorological and NO x stations with high resolution data

Location Met Years NOx Years Lat (◦) Lon (◦) Population Elevation 
(m)

Met %a       

(1963-2016)
NOx %b    

(1963-2014)

Redding Municipal Airport 24257 1986-2016 1986-1989 40.52 -122.30 91,794 153 56 6
Red Bluff Municipal Airport 24216 1948-2016 - 40.15 -122.25 14,158 107.6 73 4
Chico Municipal Airport 93203 2009-2014 1965-2008 39.80 -121.85 91,567 82.9 10 80
Beale Air Force Base 93216 1959-2016 - 39.13 -121.43 1,319 34.4 77 -
Yuba City/Country Airport 93205 1973-2016 1971-2014 39.10 -121.57 66,845 18.9 46 52
Sacramento Executive Airport 23232 1947-2016 1964-2014 38.51 -121.50 495,234 4.6 81 86
Sacramento International Airport 93225 1972-2016 1964-2014 38.70 -121.59 495,234 7 61 86
Sacramento McClellan AFB 23208 1942-2016 1964-2014 38.67 -121.40 495,234 23.5 67 86
Travis Air Force Base 23202 1943-2016 - 38.27 -121.93 15,280 18.9 83 -
Stockton Metropolitan Airport 23237 1941-2016 - 37.89 -121.23 310,496 7.9 75 -
Modesto City Co Airport 23258 1998-2016 1964-2014 37.62 -120.95 212,175 22.3 33 92
Castle Air Force Base 23203 1942-2016 - 37.38 -120.57 - 58.2 64 -
Fresno International Airport 93193 1942-2016 1963-2014 36.78 -119.72 522,053 101.5 85 100
Visalia Municipal Airport 93144 1992-2014 1970-2014 36.32 -119.40 133,010 89.9 31 84
Porterville Municipal Airport 99999 1992-2014 - 36.03 -119.07 59,145 132 35 -
Bakersfield Meadows Field Airport 23155 1941-2016 1968-2014 35.43 -119.05 376,380 150 83 84

a – percent of winters with >90% hourly data Abbrievations. Meteorology (Met), Oxides of Nitrogen Concentration (NOx), 
b – percent of winters with >65% daily data Latitude (Lat), Longitude (Lon).

Table 2. 
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Table 1. Trends in Wintertime Meteorology (1980-2016) and NOx  Concentration (1980-2014) 

Location Latitude

° H p H p H p H p H p H p

Redding 40°3' - - 0 1.2E-01 1 3.0E-02 - - - - - -
Red Bluff 40°9' 1 1.8E-04 0 2.4E-01 0 1.0E-01 1 1.2E-02 1 4.8E-02 - -
Chicoa 39°5' - - - - - - - - - - 1 1.5E-05
Sacramento 38°3' 1 9.1E-06 0 4.4E-01 0 6.9E-01 1 7.0E-03 1 6.7E-07 1 7.1E-07
Stockton 37°5' 1 7.3E-05 0 6.3E-01 0 3.3E-01 1 3.9E-02 1 1.5E-04 - -
Modesto 37°4' - - - - - - - - - - 1 2.4E-06
Fresno 36°5' 1 1.3E-06 0 8.3E-02 0 1.3E-01 1 3.0E-03 1 8.2E-07 1 3.2E-12
Visalia 36°2' - - - - - - - - - - 1 4.6E-07
Bakersfield 35°3' 1 6.0E-05 0 4.6E-01 0 2.6E-01 1 3.0E-03 1 4.3E-07 1 1.3E-08

° days yr-1 % Δ °C yr-1 % Δ mm yr-1 % Δ °C yr-1 % Δ m s-1 yr-1 % Δ ppb yr-1 % Δ

Redding 40°3' - - - - -8.4 ± 9.14 -36 - - - - - -
Red Bluff 40°9' -0.43 ± 0.21 -90 - - - - 0.048 ± 0.045 33 -0.011 ± 0.010 -10 - -
Chicoa 39°5' - - - - - - - - - - -0.64 ± 0.22 -61
Sacramento 38°3' -0.80 ± 0.23 -80 - - - - 0.042 ± 0.029 42 -0.033 ± 0.010 -37 -1.2 ± 0.54 -58
Stockton 37°5' -0.77 ± 0.33 -62 - - - - 0.035 ± 0.034 35 -0.022 ± 0.013 -23 - -
Modesto 37°4' - - - - - - - - - - -1.0 ± 0.44 -50
Visalia 36°5' - - - - - - - - - - -0.85 ± 0.28 -51
Fresno 36°2' -0.87 ± 0.25 -70 - - - - 0.049 ± 0.031 45 -0.024 ± 0.007 -33 -1.4 ± 0.23 -63
Bakersfield 35°3' -0.61 ± 0.25 -76 - - - - 0.064 ± 0.046 42 -0.027 ± 0.009 -33 -1.4 ± 0.32 -57

a – record limited from 1980-2008
b – record limited from 1980-2014 
c – only significant trends reported Dew Point Depression (DPD), Oxides of Nitrogen Concentration (NOx), p-value (p).

Mann-Kendall Results for Fog Predictor Variables 

Sen Slopes and Percent Change for Fog Predictor Variables c 

Note . H-test results of 1 demonstrate failure of the null hypothesis at 0.01 significance level. Results
of H = 0 verify the null hypothesis, indicating no trend. Abbrievations.  Minimum Temperature (Min Temp),

Fog Days Min Temp Precipitation DPD Wind Speed NOx
b

Table 3. 
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Figure 2. a) NOAA record of fog days for Fresno (1909-2014) plotted with mean Central Valley 
fog days derived from hourly NCDC records (1940-2016) and b) average duration of fog episodes 
per fog day (1940-2016). 
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Figure 3. Time series of diurnal trend in wintertime visibility (km) for a) Red Bluff (40°N), b) 
Sacramento (38°N), and c) Fresno (36°N), from 1970-2015. Y-axis is hour of day from 0-24 in 
local standard time. Cool colors represent periods of low visibility, typically dominated by heavy 
wintertime fog.  



 

 

 

 
 
Figure 4. Plot of annual wintertime (November-March) fog days from 1940-2016 using NCDC hourly meteorological database, with 
color gradient as defined in Figure 1. Rainbow color code represents latitude in 1° bins of sites from 35° N (red) to 40° N (blue). Dense 
fog defined as a day with visibility < 400 meters for any length of time. Years with < 90% reporting are excluded. 
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Figure 5. Time series of annual average fog season (Nov-Mar) meteorology from 1940-2016 from 
NCDC records for a) minimum temperature and b) precipitation. Rainbow color code represents 
latitude in 1° bins of sites from 35° N (red) to 40° N (blue). 
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Figure 6. Annual Fog Days plotted against climate variables for a) minimum temperature and b) 
precipitation. No significant correlation found for either variable. Color coding represents change 
in 1° of latitude, beginning at 40° N with cool colors representing northern cities and warm colors 
representing southern. 
 



 

 

 
 
Figure 7. Time series of average a) dew point depression and c) wind speed for the annual fog season (November-March) from 1940-
2016. Annual fog days plotted against b) dew point depression and d) wind speed. Rainbow color code represents latitude in 1° bins of 
sites from 35° N (red) to 40° N (blue). 
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Figure 8. Historical trend for a) the fraction of days with optimal meteorological conditions where 
fog actually occurs (sum of fog days during optimal conditions divided by number of days with 
optimal conditions), and b) the fraction of total dense radiation fog days that occurred under the 
optimal fog meteorological conditions (sum of fog days under optimal conditions divided by total 
number of fog days). Optimal meteorological conditions defined as dew point depression < 4.2 °C 
and wind speed < 2 m/s. Solid lines represents Sen slope fits, with dashed lines showing upper and 
lower confidence intervals. Year 2014 was excluded because too few fog days occurred to make 
the statistics robust (less than 5). 
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Figure 9. Time series of precipitation (pink) for Fresno plotted with annual fog days (dotted grey 
line) (1940-2016).  
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Figure 10. Historical trend of the frequency of days, as a percentage of the total, where dew point 
depression was < 4.2 °C and wind speed was < 2 m/s, which are optimal conditions for dense 
radiation fog formation.  



 

 

 

 
 
Figure 11. Times series of smoothed Fresno fog days from NOAA records (grey dotted line) plotted with national (square) and local 
(circle) emission inventories in tons/day. NOx inventories represented by shades of blue points: two national NOx inventories, ranging 
from 1940-1998 and 1970-2017 and one local San Joaquin Valley NOx inventory from 1960-2014. National PM10 estimates from 1940-
2017 represented by green squares. Local SO2 estimates from 1975-2015 represented by yellow circles. 
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Figure 12. Time series of wintertime (Nov-Mar) NOx concentration from 1962-2014 from the CARB archive. Color coding represents 
change in 1° of latitude, beginning at 40° N with cool colors representing northern cities and warm colors representing southern. 
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Figure 13. a) Annual Fog Days plotted against NOx concentration (ppb), with the color coding 
representing 1° latitude and a fog day defined as any day where visibility < 400 m. b) Correlation 
between fog days and NOx segmented by three DPD quantiles, where blue represents the lowest 
quantile of DPD (1.6° – 4.2°), green represents medium DPD (4.3° – 5.6°), and orange represents 
high DPD (5.7° – 9.0°). Fog day error bars demonstrated by the overlaid box plots for 3 quantiles 
of NOx (low, medium, and high) per DPD bin. Total regression line displayed in both figures, 
where the coefficient of determination (R2) is calculated by squaring Pearson’s r to represent the 
explanatory robustness of the predictor variable.
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Visibility
High Frequency R 2

DPD 0.29 (+)
[NOx] 0.10 (-)

Wind Speed 0.22 (+)

Low Frequency R 2

DPD 0.16 (+)
[NOx] 0.38 (-)

Wind Speed 0.11 (-)

Table 2. Separating high and low frequency coefficients of determination for visibility 
versus dew point depression, wind speed, and NOx. +/- indicates positive and negative 
correlations, respectively.

Table 4. 
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Chapter 3: 
 
Unraveling the influence of pollution and climate variability on radiation fog 
frequency in California’s Central Valley and Italy’s Po Valley 
 
 
 
 
Abstract: Temporal trends in dense fog frequency remain a puzzling global phenomenon. Italy’s 
Po Valley and California’s Central Valley have experienced an average 76% and 50% decline in 
fog events since 1980, respectively. There is insufficient explanatory robustness in climate as the 
sole driver of this trend, thus research into contributions from additional likely drivers is needed, 
such as air pollution. Air pollution emissions contribute to the cloud condensation (CCN) 
formation necessary to create clouds and fog. Effective regulatory strategies in both regions have 
resulted in sulfur dioxide emissions being drastically reduced and nearly eliminated, as well as 60-
65% decline in oxides of nitrogen (NOx), thus reducing the CCN available for fog formation 
steadily over the past 3-4 decades. I used generalized additive models to identify the most 
significant climate and air pollution variables affecting day to day changes in visibility, an 
indicator of dense fog, and compare the trends over time in these two analogous regions. Over 56-
65% of the variance in visibility was consistently explained by variability in dew point depression, 
pollution concentration, wind speed, and precipitation. Variability in dew point depression (DPD), 
which incorporates both water availability and temperature, has the most pronounced influence on 
daily time scales. The explanatory value of NOx concentration has 33-70% of the explanatory 
robustness of DPD (depending on the site) when investigating days close to the dewpoint (DPD < 
3.5℃). This suggests that fog frequency is specifically sensitive to fluctuations in CCN number 
concentration when meteorological conditions are favorable to fog formation (e.g. when DPD is 
low). While DPD is a primary driver of daily variability, the significant influence of NOx 
concentration on the visibility response suggests that rapid pollution declines in both valleys are 
primarily responsible for the diminishing fog frequency since 1980
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1. Introduction 
 
Italy’s Po Valley and California’s Central Valley both have histories of extremely low visibility 
caused by wintertime radiation fog. This valley fog, which commonly forms during the coldest 
part of the day from November – March, plays an important role in local climatic conditions by 
reducing radiative cooling, moderating surface temperatures, and blocking incoming solar 
radiation. In the Central Valley, the valley fog is associated with some positive impacts for farming 
by ensuring sufficient winter chill for many fruit crops contributing to the agricultural economy 
(Baldocchi and Waller, 2014; Luedeling et al., 2009). However, fog episodes can limit horizontal 
visibility to only a few meters, with serious consequences to ground and aviation transportation 
(Ashley, 2015; Bendix, 1993). Polluted fogs also have damaging impacts on human health, 
infrastructure, and vegetation (Mariani, 2009).  
 
In recent decades, both regions have concurrently experienced rapid declines in the frequency of 
fog events. In the Po Valley, rural and urban stations in Bologna observed a 47% reduction in 
hours of dense fog since the mid-1980s (Giulianelli et al., 2014). Similarly, Central Valley sites 
observed a 46 – 90% decline in fog events over the same period (Baldocchi & Waller, 2014; Gray 
et al., 2019; Herckes et al., 2015). While many studies have identified trends in radiation fog 
frequency, most have only postulated, but not tested, possible causes. Possible contributors to this 
decrease include: a) increasing temperatures due to urban heat island (Lee, 1987; Suckling & 
Mitchel, 1988) or climate change (Cordero et al., 2010), b) changes in the number of stagnation 
events (Caserini et al., 2016), and c) reduction in the availability of hygroscopic cloud 
condensation nuclei (CCN) due to effective air pollution regulation (Charlson et al., 2001). 
Investigating the relative contributions of changing climate and air pollution variables on declining 
fog episodes is important for providing insights into the causes of continued trends.  
 
Both the Po and Central Valley are characterized as highly polluted regions (American Lung 
Association, 2016; European Environment Agency, 2014), owing to emissions from their large 
populations, vehicular transportation, intensive agricultural, livestock, and industrial activities, 
combined with regularly occurring episodes of stagnant valley air. The orography and 
meteorological conditions that support fog formation – high pressure systems, strong temperature 
inversions, and anomalously low wind speeds (Agenzia Regionale per la Protezione Ambientale, 
Emilia-Romagna, 2013; Bianco et al., 2011; Caserini et al., 2016; Herckes et al., 2015; Underwood 
et al., 2004) – also present challenges for controlling concentrations of primary air pollutants such 
as sulfur dioxide (SO2), nitrogen oxides (NOx), and ammonia (NH3), and the secondary particulate 
matter they produce. Reactions of SO2, NOx, and NH3 directly contribute to the formation of 
ammonium nitrate (NH4NO3) and ammonium sulfates ((NH4)2SO4 and NH4HSO4) which are 
important contributors to fine particulate matter, causing frequent regulatory exceedances. 
Particulate nitrate and sulfate are also very hygroscopic and of the ideal size range for cloud 
condensation nuclei at low supersaturation (Petters & Kreidenweis, 2007). Cloud and fog-droplet 
literature indicate high availability of nitrate and sulfate and their gas-phase precursors can impact 
the formation, composition, persistence, and density of radiation fog (Andreae et al., 2008; Gultepe 
et al., 2007; Kulmala et al., 1995; Kulmala et. al., 1998).  
 
Air pollution in both these regions has declined at a similar rate and over a similar period as fog 
frequency due to regulatory intervention. In the Po Valley, substantial reductions in primary 
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emissions since the 1980s contributed to declining trends in particulate matter with aerodynamic 
diameter 2.5 micrometers or less (PM2.5), most significantly in the winter (Cusack et al., 2012; 
Putaud et al., 2014). Bigi and Ghermandi (2016) determined this trend was largely attributable to 
a regulatory forced renewal of vehicles with more advanced emission controls and efficient 
engines – an impact which is also seen in decreasing fuel sales. Additionally, a decline in emissions 
from industrial combustion due to technological improvements influenced the trend (Bigi and 
Ghermandi, 2016). Similarly, the Central Valley has experienced concurrent reductions in primary 
emissions and secondary inorganic aerosols (Pusede et al., 2015) due to engine modifications, such 
as the implementation of the three-way catalytic converter in the 1980s, along with state-mandated 
checks on engine performance and buy-backs of high polluting vehicles. Improvements in diesel-
fueled trucks, industrial stack controls, and home heating have also contributed to cleaner air (Frost 
et al., 2006; McDonald et al., 2012).  
 
With such rapid environmental changes occurring concurrent to increasing population and 
changing climate, applying multivariate analysis to determine and quantify the drivers of this 
change provides a way to evaluate the most important factors changing dense fog frequency in the 
Po and Central Valley. Recent studies have also investigated the competing effects of temperature 
and aerosol loading. For instance, Central Valley meteorology analysis shows no trend in the 
occurrence of favorable conditions for fog formation since 1980, yet the fog continues to decline 
(Gray et al., 2019). Instead, the study indicates that long-term trends in fog better correlate both 
spatially and temporally with seasonally-averaged air pollution concentration than with climate 
variables (Gray et al., 2019). As inorganic aerosol number concentration fell, so did the 
hygroscopicity of CCN sources and the amount of soluble gases dissolved into the water droplets 
– both of which previously aided fog formation occurring at nontraditional activation conditions 
(RH < 100%). With reductions of pollution, Central Valley fog has become less frequent and more 
sensitive to temperature and water availability, with nearly all fog days occurring during the most 
favorable meteorological conditions, unlike 35-years ago (Gray et al., 2019). This is similar to 
studies in New Delhi, which found that when pollution load increased rapidly, fog formation 
occurred at unexpectedly high dew point depression (DPD > 1°C) suggesting a synergistic effect 
between pollution and meteorology (Tiwari et al., 2011). When considering declining fog globally, 
Klemm (2016) modeled the compounding effects of climate change and air pollution in five air 
basins, finding that a 10% reduction in emissions is equivalent to 0.1°C increase in temperature.  
 
Here, I apply Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1990) to meteorology 
and pollution observations from the Central Valley and Po Valley to better quantify the relative 
explanatory value of potential predictor variables on visibility and develop a more robust 
understanding of the nonlinear relationships contributing to fog formation with the ultimate goal 
of elucidating causes of its declining trend.  
` 
2. Methods 
 
2.1. Study region and data  
 
To provide input for the GAM models described below, predictor variables for each site were 
selected based on known and suspected contributors of fog and processed using flags for data 
quality control. Hourly meteorological data was downloaded from the National Climatic Data 
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Center (NCDC) for airports adjacent to Milan in the Po Valley (Figure 1) and Sacramento, Fresno, 
and Bakersfield (Figure 2) in the Central Valley 
(https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd).  
 
Hourly-averaged temperature, dew point, wind speed, and sea level pressure were downloaded 
from the NCDC. Dew point depression (DPD), which is calculated by subtracting dew point from 
ambient temperature, was also derived from hourly data. For the Central Valley, corresponding 
airport measurements of daily maximum/minimum temperature and precipitation sums were 
downloaded, from which 1 and 2-day lagged precipitation was also derived 
(https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). Seasonal impacts were accounted for in the 
model using day of year (winter season) and length of night (length of radiative cooling time) 
calculated using the Herbert Glarner formula based on day of year and latitude 
(https://www.mathworks.com/matlabcentral/fileexchange/20390-day-length). Year and Julian day 
were also tested inputs to capture potential time trends from processes not represented in weather 
and pollution covariates.   
 
The Po Valley model used daily data downloaded from Lombardia Regional Environmental 
Protection Agency (Agenzia Regionale per la Protezione Ambientale, ARPA) for the primary 
pollutants NOx and SO2, as well as total suspended particles (TSP), a now-retired measurement for 
particles with historically long records. By contrast, California models only included daily NOx 
concentration from the California Air Resources Board (ARB) (https://www.arb.ca.gov/adam/). I 
selected monitoring stations within the urban plume of each local airport which had long enough 
historical data records, compared each station for consistency, and removed severe outliers. The 
wintertime mean pollution concentration for each city was calculated by averaging over multiple 
monitoring stations within the city limits (15, 8, 11, and 9 for Milan, Sacramento, Fresno, and 
Bakersfield, respectively), each of which were operational for varying lengths of time. For the 
Central Valley, daily measurements of TSP or PM10 were unavailable from a comparable source 
due to the use in California of multiday, rather than daily, filter sampling for aerosols. Central 
Valley SO2 could not be included in modeled daily visibility because it was nearly always below 
detection limit during the period of inquiry due to effective regulatory measures and limited coal 
utilization. Fog sampling studies confirm that Central Valley droplets are associated with nitrate-
dominated CCN (Collett et al., 2002). I considered the potential importance of formation periods 
from gas precursors to secondary aerosol by introducing 1 and 2-day lags in pollution in the model.   
 
Predictor variables were analyzed for the response of visibility. Airport visibility observations 
were initially measured using the Surface Aviation Observation guidelines, in which 
meteorologists used field markers to manually determine visibility. After 1996, the Automated 
Surface Observation System was implemented at airports internationally and visibility is now 
automatically recorded using a forward scatter visibility sensor which measures the attenuation of 
light at 20-second intervals. With the new guidelines, sites have an either 11.3 kilometer (km) or 
16 km detection ceiling on observations; thus, all measurements over the period of inquiry are 
limited to 11.3 km maximum visibility to remain consistent. The visibility of greatest interest in 
dense radiation fog measurements are days where the visibility falls below 400 meters (m) (~ 0.25 
miles). The correlation between number of wintertime fog events and seasonally-averaged 
visibility is high (r2 = 0.92 and r2 = 0.54 for Milan and Sacramento, respectively) (Figure 3 and 
4), indicating that visibility is strongly influenced by fog events in these regions.  
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Data quality flags identified multiple instrumentation artifacts in the Milan meteorology 
observations from the Linate airport. Wind speed measurements were disproportionately low prior 
to 1992, during which > 2000 hours of wind speed equal to 0 m/s were observed at airports 
throughout the Po Valley, while wind speed was almost never (< 5 hours) equal 0 m/s after 1992. 
Such a steep drop in occurrence is unrealistic and suggests instrumentation or observational 
method changes. Additionally, DPD observations demonstrated varying instrumentation ceiling 
effects and detection limits from 1998-2009 that were not consistent throughout the data set. 
Lastly, precipitation had a low observation rate with many NaNs in the dataset. Thus, observations 
for wind speed, RH, temperature, and precipitation were acquired from local ARPA stations. 
Multiple Milan ARPA sites (Brera, Cassano, Marche, Juvara, Turbigo) were tested for consistency 
with the reliable years of Linate Airport data. Site similarity was determined using the tau test, 
where the Kendall rank correlation coefficient was calculated to measure the association between 
data sets. The highest tau coefficient was found for Juvara, at only 3 km from Linate airport, with 
a t = 0.73 for DPD observations (Figure 5) and t = 0.72 for wind speed (Figure 6). At Juvara, 
wind speed was slightly lower on average and DPD slightly higher, likely owing to its more urban 
surroundings. Precipitation had a t = 0.62, which was deemed acceptable due to the challenges in 
recording precise volumes in rain gauges. Based on these data quality challenges, as well as 
limitations on the distribution and length of air quality sites, Milan is the only site representing the 
Po Valley usable in our model. 

Daily meteorology and air pollution variables were calculated by averaging over hourly 
observations taken every three hours (eight measurements per day). Data were included only when 
seven of eight measurements per day were available to calculate a daily average. Records were 
analyzed for data quality, particularly prior to station decommissioning when unrealistic outliers 
were most common. Instrumentation malfunction was primarily addressed by removing outliers 
using the Interquartile Range Rule, with which the interquartile range is first calculated and an 
outlier is defined as any value falling outside of 1.5 times the first and third quartile. This removed 
< 5% of any variable and did not appreciably change any mean. 

2.2. Trend analysis  
 
Trends in fog days and air pollution are reported for Central Valley (consistent with Gray et al., 
2019), and for the Po Valley, where a fog record of this length and distribution has not previously 
been described in the literature. Annual days of dense fog are summed for each fog season 
(November-March) for any day where visibility falls below 400 m for an hour or longer. Due to 
the episodic nature of fog, I required each month to have > 90% of hourly reporting in order to 
sum over the month. Availability of sufficient data for all five months was required to create a 
seasonal sum. Visibility and pollution averages had comparatively less strict reporting thresholds 
since they are continuous observations. Monthly averages were calculated if > 65% of daily 
averages (derived from hourly observations) were available. This threshold was determined by 
random sampling t-tests of large iterations and requiring deviation from the mean be < 5%.   

Trends were calculated using the non-parametric two-tailed Mann-Kendall trend test and the Theil-
Sen estimator (http://www.mathworks.com/matlabcentral/fileexchange/authors/23983). The 
Mann-Kendall trend test compares the null hypothesis (H0), which would indicate no trend in the 
data, against the alternative hypothesis (H1), which would imply a significant trend (Mann, 1945; 
Kendall, 1955). An output of H = 1 suggests that the null hypothesis failed and there is a 
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statistically significant trend at the µ = 0.01 significance level. Once a trend was detected, I used 
the Theil-Sen estimator, which is a non-parametric technique for fitting a line while minimizing 
the impact of outliers (Theil, 1950; Sen, 1968). I found the trend using Sen’s slope (Qi) which is 
determined by calculating the median of all the slopes between pairs of points over the period:  

#$ =
('( − '*)
(+ − ,) 	./0	1 = 1, …5 

 
where xj and xk are data at times j and k, and n is the number of points. The mean of Qi over all n 
values is Sen’s slope, which, along with a y-intercept, allows a best fit to be calculated.  
 
The Theil-Sen estimator was used to determine the average change in visibility and air pollution 
over the available record. In particular, regionally-specific fog trends are reported for the Po Valley 
for annual fog days and visibility. Regions were distinguished using cluster analysis classifications 
to group cities based on their visibility trends (Figure 1). Cluster analysis was performed using the 
R package TSclust and based on temporal correlation as a measure of time series proximity 
(Chouakria and Nagabhushan 2007), applying a temporal correlation threshold of 0.25. 
 
Table 1 provides summary statistics for the available observational data inputted into the GAM 
model for Milan, Sacramento, Fresno, and Bakersfield. Because of the episodic nature of 
precipitation, it was input into the model as a categorical variable, with 1 indicating a day in which 
rain occurred and 0 indicating a day in which rain did not occur. All other predictor variables were 
input as continuous variables.  

2.3. Model description  
 
GAM is a nonparametric regression technique which determines a smoothed fit between each 
response and predictor (without requiring a prori information about the fit) using thin plate 
regression splines (Wood, 2006). The flexibility inherent in GAMs allows the relationship between 
the predictor and response to be determined fully by the data, possibly limited by smoothing terms 
and link functions. Since the model is additive, the interpretation of each individual graph does not 
depend on the values of the other variables, thus allowing independent conclusions to be drawn 
from the graphical responses, holding all other inputs constant. The technique can also capture 
nonlinear patterns that better describe data that might typically be missed. The general formula for 
our visibility models is:  
 

ln(visibility) = a + s1(x1) + … + sn(xn) + e 
 
where a is the intercept, s1-n are the smooth functions of the continuous predictor variables x1-n, 
and e is the residual error. The model was run using the mgcv package in R (https://cran.r-
project.org/web/packages/mgcv/mgcv.pdf) and using a logarithmic link function. 
 
2.4. Predictor variable selection 
 
To select predictor variables for input to the model, used an iterative six step process inspired by 
Barmpadimos et al., 2011, Jackson et al., 2009, and Sartini et al., 2013. 
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Step 1: A univariable model was created for each covariate, along with an Akaike Information 
Criterion (AIC) (Akaike, 1974) estimator. The univariable models are ranked in order of lowest 
AIC. Each model is also tested to determine the basis dimension, k, which is the number of knots 
included in the smoothed spline. Beginning with k-1 (the degrees of freedom in the model), the 
number of knots is iteratively decreased with the goal of having the maximum number of knots 
included in the spline while also maintaining the lowest AIC score. AIC is estimated using the 
following equation:  
 
 AIC = - 2 * log L + k * edf  
 
where L is the maximized value of the likelihood function for the estimated model, k is the penalty 
parameter, and edf is the effective degrees of freedom of the model. AIC is a term estimated for 
model quality and selection by evaluating the compromise between goodness of fit of a model 
versus model simplicity. A model that is over fit has higher effective degrees of freedom in the 
regression spline, and is thus more wiggly, though possibly without physical meaning. AIC 
prioritizes both fit and simplicity. As in Barmpadimos et al., 2011, I ranked based on AIC over 
deviance explained to ensure that the models had meaningful results. The model with the lowest 
AIC score after determining smoothing terms is selected. 
 
Step 2: The remaining covariates are iteratively added to the univariable model following the 
procedure in step 1, one at a time. The model with the lowest AIC is selected.  
 
Step 3: To confirm the value of the original variable added, the covariate selected in Step 1 is 
removed and each of the remaining are individually tested in the model. If this new combination 
results in a lower AIC than the model in Step 2, the current combination is selected.  

Step 4: The current predictor inputs are tested for collinearity using the Variance Inflation Factor 
(VIF) (Freund and Wilson, 1998). Collinearity occurs when two model inputs have a linear 
relationship, which results in redundancy and makes it challenging to correctly identify each 
variable’s input. For example, average temperature and maximum temperature have a VIF > 1000, 
because these variables vary linearly. I used a VIF cut off of 5, in accordance with Montgomery 
and Peck, 1992. VIF was calculated with the ‘car’ package in R (https://cran.r-
project.org/web/packages/car/car.pdf). 
 
Step 5: The above steps are repeated for the mutually adjusted models with the addition of one 
covariate at a time. The steps are continued until the AIC does not lower with additional inputs, 
while also being aware of how each additional input impacts the r2 of the model.  
 
Step 6: The robustness of the model is verified by ensuring each covariate has a p-value significant 
at the 1% significance level, as well as by analyzing the model residuals using gam.check (Figures 
7-10). Model residuals were plotted against variables not included in the model to investigate any 
remaining relationships.  
 
An alternative method outlined in Jackson et al., 2009 that selects variables based on deviance 
explained, rather than AIC, was also tested. This method selected the same variables in slightly 
different order.  
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2.5. Predictive modeling for likely conditions 
 
The most useful output for traditional GAM models is an r2 value and individual plots of the 
smoothed fits for each of the covariates, as well as p-values denoting the fit significance. These 
plots represent the response of the dependent variable (visibility) over the range of inputted values 
of the predictor variable. Typically, the y-axis response units are represented as a ratio relative to 
the mean value of visibility over the course of the record. It is more meaningful for the y-axis to 
be transformed into kilometers, as represented by the original dependent variable. This requires 
reconstructing each covariate plot using the predict function in the mgcv package 
(https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/predict.gam.html). 
 
The predictive fit is constructed for each individual covariate by holding the remaining covariates 
in the model at a set of likely conditions (e.g. the median value). The predictive function allows us 
to then recreate the model fit on the response scale, as well as transform the original output to 
calculate the confidence intervals.  
 
2.6. Interaction terms  
 
Past studies on Central Valley fog sensitivity indicate there is greater explanatory value in 
investigating pollution and DPD in concert (Gray et al., 2019). This analysis suggested that the 
most definitive effect of aerosol concentration can be seen when analyzing pollution at low DPD 
conditions, because only when the temperature reaches dew point can CCN be activated, therefore 
impacting fog. Instead, additional primary pollutants, and thereby aerosols, at high DPD conditions 
might increase haziness or have no effect on visibility at all. In addition, air pollution might affect 
visibility by scattering solar radiation (Manara et al., 2019), an impact independent from its 
contribution to CCN number concentration. Thus, isolating the effect of predictive variables under 
low DPD conditions allowed a better description of air quality impact on fog formation. 
 
As such, DPD as an interaction term was tested with all pollution covariates in the model. 
Interaction terms in GAM models can be introduced by including a by term in the spline, which 
indicates that the spline will be fit for the covariate in question by each level specified, thus 
showing how the response changes over certain categories. In this case, two levels of DPD were 
selected: DPD < 3.5℃ and DPD > 3.5℃. This threshold was determined by varying over multiple 
quantiles at all sites and investigating the maximum and minimum responses. A daily averaged 
DPD of 3.5℃ is high enough to represent the low DPD in warmer, drier sites, while also being low 
enough to maximize the dependent variable response.     
 
3. Results  
 
3.1. Trends in fog and pollution  
 
The Po Valley fog trend, averaged over 9 airport stations (Table 2), shows a statistically significant 
50% decline in fog days (visibility < 400 m) since 1980 (Figure 15a). This decline is consistent at 
locations throughout the valley (Table 3), which were subdivided into the regions North, East, and 
South based on a cluster analysis of their meteorological characteristics (Figure 11). The regional 
fog day decline is largest in the North, which is the foggiest region where 5 of the 9 airport stations 
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report from. The North saw a 54% decline, compared with a 42% decline in the South and 28% 
decline in the East, the least foggy region (Figure 16a). Fog hours have declined at a faster rate 
than fog days (- 65% decline in total hours), because the duration of fog episodes is also declining, 
from an average of 7.8 hours per fog day in 1980 to 5.7 hours in 2016 (Figures 12 and 13). The 
fog decline was persistent even when investigating less dense fog by applying visibility thresholds 
of 650 and 1150 meters (.4 and .7 statute miles) rather than the normal definition of 400 meters 
(0.25 statute miles).   
 
Wintertime fog decline is concurrent with consistent increases in average visibility. The most 
pronounced improvement was also seen in the North (74%) where average fog season visibility 
increased from 4.2 km in 1980 to 7.3 km in 2016. The South and East saw a statistically significant 
56% and 29% increase in visibility, respectively (Figure 16b). Table 4 shows the changes by site 
based on the Theil-Sen estimator.  
 
The Po Valley observed similar rates of decline in pollution concentration, beginning with SO2. 
Wintertime average SO2 concentration decreased from 175 ppb in the late 1970s to < 5 ppb by 
2010 (Figure 4c). From 1980-2010, TSP declined by 81% and NOx concentration, the dominant 
inorganic pollutant contributing to wintertime PM in recent decades (Chow et al., 2006; Pusede et 
al., 2016), has declined by 61%. 
 
While the Po Valley has nearly double the average fog days of the Central Valley, the patterns of 
fog and pollution decline are very similar. Fog season peaks in January at both locations, but begins 
earlier in the Po Valley than Central Valley. The Central Valley observed 76% fewer fog days 
from 1980 to 2016 (Gray et al., 2019). The Central Valley has also seen similar concurrent 
decreases in primary pollutants. Average NOx concentration declined 65% since 1980 (Figure 
15d), with Sacramento, Fresno, and Bakersfield seeing a 64%, 70%, and 66% decrease, 
respectively. Since 1980, SO2 concentration declined at an exponential rate, rather than linear, with 
emission inventory estimates in 1995 an order of magnitude lower than that in 1975 (298 tons per 
day vs. 32 tons per day. As such, using the linear Theil-Sen approach from 1980-2016 is 
inappropriate. From 1980-1995, the southern valley saw an 89% decline in SO2 emissions, since 
which it has been near constant, falling an additional 6 tons per day by 2015 

These trends are most meaningful when investigated with regional aggregates, because temporal 
availability for each site can be uneven, particularly given our strict requirements for data 
averaging. For instance, in the Central Valley annual NOx concentration is not available at every 
site for each year; thus, some yearly-averages are more weighted to one location over another. See 
Figure 14 for specific location availability. Additionally, the spatial distribution of sites is typically 
limited to airports that are adjacent to urban regions. However, the fog decline has also been 
identified in rural areas in other studies (Baldocchi and Waller, 2014; Giulianelli et al., 2014). 

3.2. GAM model results  
 
Figures 5 – 8 show the GAM model fit results for Milan, Sacramento, Fresno, and Bakersfield, 
locations for which are described in Table 5. Table 6 reports the covariates selected for each model 
in the typical order of deviance explained, all of which were highly statistically significant. In 
addition to reporting total r2, I analyze the explanatory value of each variable by calculating the 
modeled visibility response over 90% of all covariates. A day of data is only evaluated in the model 
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if all covariates are reported that day, which limits the temporal length of the model depending on 
data availability. The r2 results range from 0.65 (Milan) to 0.56 (Bakersfield), which is consistent 
with other studies investigating long-term trends in meteorology and pollution (Barmpadimos et 
al., 2011). The common covariates selected for all sites were DPD, NOx, wind speed, and 
precipitation. Average temperature and dew point were both tested in the models, but had a much 
lower deviance explained than DPD, even when added concurrently. Only in Sacramento was the 
addition of the variable length of night, which represents the hours from sunset to sunrise during 
which radiative cooling from the surface would occur, important to the model. In the Milan model, 
where daily observations of SO2 and TSP were available, both pollutants were selected in addition 
to NOx. All three pollutants passed the VIF test for collinearity.  

3.2.1. Dew point depression 
 
DPD has the most pronounced impact on visibility for all sites. As expected, days with DPD close 
to zero are associated with low visibility with very narrow confidence intervals (Figure 17–20). In 
the Central Valley, the slope from 0 – 4℃ shows a steep rise in visibility response, only to gradually 
flatten and have little impact at warmer, dryer temperatures. The slope of Milan DPD is less severe, 
but the response shape is similar. Sites exhibit a 7.6 – 8.9 km increase in visibility response over 
90% of the DPD range. Interestingly, the site with the lowest median DPD (3.5℃), Milan (Table 
1), has the highest r2, and the site with the highest (5.2℃), Bakersfield, has the lowest r2. 

3.2.2. Pollution  
 
NOx concentration has the next most relevant explanatory value at all sites, for which the visibility 
response declines near-linearly with declining concentration. This relationship is emphasized by 
investigating the relationship between visibility and NOx concentration in two bins: one in which 
DPD < 3.5℃ and another where DPD > 3.5℃. The interaction term provides some delineation 
between the influence of increasing NOx in fog-supportive conditions versus haze-supportive 
conditions. The first output, NOxDPD < 3.5℃, shows the response of visibility to the total range of 
NOx (in the context of the mutually adjusted model) should all that NOx react as it does when DPD 
< 3.5℃. The second output, NOxDPD > 3.5℃, fits the range of NOx as it does when DPD > 3.5℃. 
Thus, the interaction term allows us to separate the response by two sets of conditions. In all four 
GAMs, daily DPD falls below 3.5℃ for 26 -51% of the time, allowing the model sufficient data 
for fitting both terms. Additionally, I tested the explanatory value of NOx using 1-and-2 day lag 
values to consider aerosol formation time, as well as modeled NOx as a factor using ranges of 
quantiles; however, the interaction term yielded the best results.  

The fitted response of visibility for NOxDPD < 3.5℃ exhibits a much steeper slope (Figure 17-20) and 
more pronounced decline in visibility with increasing concentration (-5.6 to -3.0 km) versus DPD 
> 3.5℃ (-2.8 to -0.55 km). The fit is very similar for Sacramento, Fresno, and Bakersfield. Sites 
with higher NOx concentration, such as Milan with a median 110 ppb and Bakersfield with a 
median 63 ppb (in comparison with 41 and 43 ppb) (Figure 3), demonstrate a more pronounced 
impact on modeled visibility, suggesting the magnitude of its impact grows linearly with additional 
pollution. Milan’s NOxDPD < 3.5℃ has 70% of the explanatory value of DPD (+ 7.9 km vs. - 5.6 km) 
and Bakersfield has 53% of the explanatory value of DPD (+ 8.0 km vs. - 4.2 km) in comparison 
to 40% and 33% for Sacramento and Fresno.  
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When investigating the NOxDPD > 3.5℃ fit, there is an apparent gradient in which the more polluted 
the site, the larger the visibility impact of NOx during dry conditions. For instance, the most 
polluted site, Milan, has a 2.8 km decreasing impact on visibility for NOx on days where DPD > 
3.5℃, followed by Bakersfield (-2.4 km), Fresno (-1.7 km), and Sacramento (-0.55), in descending 
order of median concentration. I can infer that this is capturing much of the impact of NOx 
concentration on haze.  

In Milan, SO2 was selected for the model, but with tempered results due to the timespan of the 
model. While SO2 observations date back to 1971, the Milan model begins in 1989 based on the 
data availability of other critical covariates. In the 1970s, concentrations above 200 ppb were not 
uncommon, but by the early 1990s it had nearly halved. By 1995, SO2 concentration was typically 
below 20 ppb, and by 2005, below 5 ppb. This exponential rate of decline, particularly in the 
presence of other potential CCN sources, yields a counterbalancing result, as seen in Figure 17. 
For 90% of the range of SO2 values, SO2 causes a modest -1.2 km decline. Pronounced low 
visibility impact is only seen at the maximum, anomalous values of SO2 observed during the 20 
years of the model.   

Prior to 1990, the contribution of SO2 to sulfate aerosols had much more explanatory value for 
visibility. Figure 21 compares the visibility response by decade for 4 univariable SO2 models. 
While these models lack the influence of other covariates, the diminishing impact of SO2 as 
concentration declines is evident. Thus, it is estimated that SO2 concentration had a larger role 
historically not evident in the mutually adjusted Milan model.  

In fact, SO2 can only be accurately modeled for Milan when the covariate year is included (Figure 
17). Without this addition, SO2 exhibits an inexplicable response where visibility is slightly 
increasing with higher SO2 concentration, which does not make physical sense. However, when 
year is added, it modifies the trend signature from the SO2 fit and improves the overall deviance 
explained by 3%. The response of visibility in the year fit does not have direct interpretable 
meaning, but instead captures visibility variations in the model not explicitly accounted for with 
fine resolution meteorology and pollution data. For instance, these could include variations in 
micrometeorology that impact radiative cooling, such as historical changes in surface roughness 
and turbulence, frequency of inversion layers, or porosity of surrounding surfaces.  

Total suspended particle is a now-retired measurement technique with a somewhat variable size-
selectivity of 20 – 50 µm., depending on the sampling head design. This large size range  is not 
ideal for investigating fine particles such as CCN, with a typical size range of 0.2 µm, since it 
represents a mass dominated by coarser particles. However, measurements for TSP began in 1977, 
when concentration was 6-to-10 fold higher than the typical range in 2010, allowing for a more 
robust investigation of its impact on visibility over a long time period. Numerous studies have 
investigated an equivalent ratio between PM2.5, PM10, and TSP, most often finding that ratios 
varied considerably by sites and seasons based on pollutant source (Brook et al., 1997; Eeftens et 
al., 2012). However, these studies also found that despite site differences in ratio, PM2.5-to-PM10 
was highly correlated (Brook et al., 1997; Eeftens et al., 2012; Harrison et al., 1997), with Milan 
comparisons finding a wintertime correlation of 0.97 (Marcazzan et al., 2001). As such, I use TSP 
as a proxy for CCN, but with acknowledgement of the limitations. 

The TSP fit shows a largely-linear declining response of visibility as particulate concentrations 
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increase, with the most pronounced impact on visibility when TSP < 50 µm/m3 and then tapering 
off at higher concentrations. A decline in visibility of 4.1 km is estimated over 90% of the range 
of TSP values.  

The more robust daily pollution record in Milan allowed further testing of DPD interaction terms 
on SO2 and TSP. Figure 22 compares the responses of NOx, SO2, and TSP varied by the two levels 
of DPD responses. Table 7 compares the visibility response of the original variable to visibility 
when varied by the DPD interaction term (all within the mutually-adjusted model). For each 
variable, the explanatory robustness of visibility increases when investigating the response for 
DPD < 3.5℃. NOx and TSP exhibit similar patterns with concentration on days with DPD > 3.5℃ 
having only ~1/3rd of the impact of concentrations on days with DPD < 3.5℃. SO2 on low DPD 
days doubles the negative visibility response, though it is still less than half that of NOx and TSP 
under the same conditions. Increasing SO2 concentration on warmer, dryer days does not 
negatively influence the visibility response at all, and in fact shows a 1.1 km increase in visibility 
over 90% of the SO2 data, but with larger confidence intervals.  

These results suggest that gaseous precursors to aerosol formation (NOx and SO2) have a more 
pronounced impact on visibility when conditions are closer to the dew point, likely in part because 
of their contribution to hygroscopic, submicron aerosol formation or dissolution in droplets 
encouraging activation at RH close to 100% (Kulmala et al., 1995; Laaksonen et al., 1998). Despite 
the negligible role of coarse particles in fog formation, low DPD also enhanced TSP results, likely 
because it correlates with that of fine particles. Past research has found that fine particles better 
described trends in mass variability and was a significant portion of PM10 mass and approximately 
1/3rd of TSP mass (Brook et al., 1997). In Milan specifically, research found that fine particle mass, 
which has the highest correlation with SO42-, NO3-, and NH4+, was two times that of coarse (2.5 – 
10 µm) in PM10 measurements (Marcazzan et al., 2001), which suggests that the visibility response 
to TSPDPD < 3.5℃ could be indicative of changes in CCN. 

However, I ultimately chose to vary NOx by DPD over SO2 and TSP for several reasons. The 
severe decline in SO2 makes the model response unreliable, particularly with recent measurements 
near detection limit, and the visibility response is minor with regards to 90% of the SO2 
measurements. The TSP fit and response to the interaction term are similar to NOx, but the 
measurement technique is less reliable and contains an uncertain number of coarse particles. 
Lastly, the Po Valley is now nitrate dominated in the winter and varying NOx by DPD yields more 
comparable results with the Central Valley. 

3.2.3. Wind speed 
 
Wind speed has a less pronounced, but statistically significant impact on visibility response at all 
sites. When daily averaged wind speeds are low, visibility is lower. The increase in visibility 
response is most evident in wind speed from 0 – 2 m/s at all sites, then neutralizes at higher speeds. 
Such a low wind speed range is relevant to the formation of radiation fog, because the rate of 
radiative cooling is very sensitive to turbulence. Wind speed is also important for the dilution of 
urban emissions. Hence higher wind speeds increase visibility by 1.1 – 2.7 km in the four models. 
Milan wind speed is noticeably lower than the Central Valley, in which 95% of the days modeled 
had wind speed < 2 m/s. Meanwhile, Milan wind speed has the lowest explanatory value, perhaps 
because the variance is so low. In the Central Valley, the visibility response for wind speed in 
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Bakersfield and Fresno is double that of Sacramento. While all Central Valley sites have a median 
wind speed near 2 m/s, Sacramento has a larger variance and maximum, owing to higher 
prevalence of wintertime storms.  

3.2.4. Length of night 
 
Length of night was tested in all sites, but only had significant explanatory value in Sacramento, 
suggesting that a longer period of radiative cooling after sunset is necessary for fog to form. In 
past work, I have shown a diurnal trend in which fog forms later into the early morning in recent 
years than when fog frequency was at its maximum (Gray et al., 2019). Given that Sacramento is 
the least polluted location, there are fewer hygroscopic gases dissolved in atmospheric moisture 
forcing activation to occur under nontraditional conditions (RH< 100%). Thus, temperatures need 
to cool further in order to reach activation, possibly making the length of radiative cooling a more 
relevant covariate.  

3.2.5. Precipitation 
 
Due the episodic nature of precipitation, it is included in the model as a binary categorical variable, 
simply indicating whether it rained on a given day or not. To account for the role of winter storms, 
particularly as a moisture source prior to high pressure systems in the wintertime which is known 
to promote fog formation, I also modeled 1-and-2 day lag times, but without significant results. 
Sacramento has the most frequent rain events at 31% of the winter season, similar to Milan, 
whereas Bakersfield has rain on only 19% of the days. The modeled response indicates that days 
with precipitation improve visibility at all sites, ranging from a 1.3 – 2.4 km. Bakersfield and 
Fresno have a 1 km greater improvement in visibility than Milan and Sacramento on days with 
rain events. Improved visibility may be due to wet deposition of pollution or increased turbulence 
decreasing the likelihood of radiation fog forming on the same day. A larger impact on visibility 
is seen in the less rainy locations, possibly because there is a longer duration for particles to 
accumulate and be rapidly deposited.  

4. Summary and conclusions 
This investigation of wintertime visibility in the Po and Central Valley analyzes known and 
suspected drivers of fog formation for their relative contribution to daily visibility with the ultimate 
goal of elucidating causes of the diminishing radiation fog season. Investigating the competing 
effects of changing temperature versus aerosol loading was of important interest, particularly given 
the 60-95% reduction in wintertime inorganic pollution concentration seen in both regions. 
Concurrent with these reductions in NOx, SO2, and particulate concentration, a 50% decline in Po 
Valley fog and 76% decline in Central Valley fog occurred since 1980. Meanwhile, changing 
climate and continued urbanization present possible obstacles to fog formation.  

Site-specific generalized additive models explain 56-65% of the daily visibility variance with a 
combination of meteorology and pollution covariates for Milan (1989-2010) and Sacramento, 
Fresno, and Bakersfield (1973-2016). DPD has the largest explanatory value at all sites, which is 
physically intuitive since DPD must fall to near-zero for fog formation, and fog is a significant 
presence during the winter. NOx concentration, the now-dominant inorganic pollutant in both 
regions, was investigated for its role as a precursor to hygroscopic aerosols. Explanatory value of 
NOx was enhanced by investigating the fit under daily conditions with temperature close to dew 
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point (DPD < 3.5℃) and significantly higher than dew point (DPD > 3.5℃). Our primary interest 
was the visibility response for NOx when DPD is low, as this is more likely to be impacting fog 
formation, rather than contributing to further haze. More polluted sites reported a stronger visibility 
response than less polluted sites, which is in agreement with other investigations of high pollution 
regimes that found spikes in pollution loadings clearly aided CCN activation under nontraditional 
conditions (DPD > 1°C) (Tiwari et al., 2011). In Milan, NOx impact on visibility is approximately 
2/3rds that of DPD, and in Bakersfield, it is ½. Meanwhile, for Sacramento and Fresno, NOx has 
~ 1/3 the impact of DPD. Meanwhile, wind speed and precipitation have minimally positive 
impacts on daily visibility and are likely much smaller drivers in the overall trend. While DPD is 
a primary driver of daily variability, the large impact of NOx concentration on the visibility 
response suggests that rapid declines in both valleys (61-65%) has had an important impact on the 
diminished fog season since 1980. 

There remains significant reduction potential for precursor pollutants, particularly for NOx in the 
Po Valley. Continued mitigation strategies will likely contribute to an improvement in fog, which 
would support transportation safety and have broad commercial and productivity benefits. In 
addition, the Po Valley is estimated to warm by 2.4 – 4.4K, depending on emission scenario, by 
the end of the 21st century (Caserini et al., 2016), which will likely increase DPD and impact fog 
formation further.  
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5. Figures and tables  
 

 
 
Figure 1. Map of eight Po Valley sites color coded using cluster analysis. Clusters defined 
geographically by north (Turin, Milan (Linate Airport and Malpensa Airport), Bergamo, Brescia), 
east (Treviso, Venice), and south (Bologna, Rimini). Star indicates Milan site used in GAM model.  
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Figure 2. Map of three Central Valley sites investigated in GAM models. Stars indicates all three 
sites used in GAM model. 
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Figure 3. Linate annual fog days (days where visibility < 400 meter for 1 hour) versus daily 
average visibility.
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Figure 4. Sacramento annual fog days (days where visibility < 400 meter for 1 hour) versus daily 
average visibility. 
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Figure 5.  Plot of wind speed (m/s) at Juvara versus Linate demonstrating correlation between 
sites (t = 0.72). 
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Figure 6. Plot of dew point depression (℃) at Juvara versus Linate demonstrating correlation 
between sites (t = 0.73). 
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Figure 7: Gam.check output for Milan model.
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Figure 8: Gam.check output Sacramento model. 



 

 62 

 
 
Figure 9: Gam.check output for Fresno model. 
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Figure 10: Gam.check output for Bakersfield model. 



 

 

Table 1. Data Summary Statistics                   

Location Visibility 
(km) 

DPD       
(○C) 

Dew Point 
(○C) 

Avg Temp 
(○C) 

Max Temp 
(○C) 

Min Temp 
(○C) 

SLP        
(mb) 

Wind Speed 
(m/s) 

NOx     
(ppb) 

SO2        
(ppb) 

TSP          
(µg/m3) 

Milan            

Minimum 0.0 0.19 -11 -3.8 - - 992 0.1 18 0.0 8.8 
Median 4.5 3.5 2.3 6.9 - - 1019 1.3 110 8.1 68 
Maximum 11 15 14 18 - - 1043 2.6 300 110 270 
             

Sacramento            

Minimum 0.10 0 -5.1 -0.36 3.3 -6.1 1005 0.0 0.0 - - 
Median 10 3.4 5.9 9.8 15 5.0 1020 2.3 41 - - 
Maximum 11 11 16 20 27 16 1034 7.1 190 - - 
             

Fresno            

Minimum 0.12 0 -4.2 -0.56 3.3 -6.1 1007 0.0 3.2 - - 
Median 9.5 4.1 5.7 10 16 5.0 1020 2.0 43 - - 
Maximum 11 12 16 21 29 16 1033 5.1 260 - - 
             

Bakersfield            

Minimum 0.12 0 -4.6 0.97 3.9 -5.0 1006 0.0 3.3 - - 
Median 10 5.2 5.5 11 17 5.6 1020 2.2 63 - - 
Maximum 11 15 15 22 31 16 1032 4.6 230 - - 

Abbreviations. Dew Point Depression (DPD), Oxides of Nitrogen Concentration (NOx), Sulfur Dioxide (SO2), Total Suspended Particles (TSP), SLP (sea 
level pressure) 
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Table 2. Po Valley Fog Day Sites       

Location Start Year End Year Lat (◦) Lon 
(◦) 

Elevation 
(m) 

Bergamo  1966-09-08 2017-01-01 45.7 N 9.70 E 238 
Bologna 1964-08-11 2017-01-01 44.5 N 11.3 E 37.5 
Brescia  1966-09-04 2017-01-01 45.4 N 10.3 E 102 
Milan - Linate 1931-01-04 2017-01-01 45.5 N 9.28 E 108 
Milan - Malpensa 1965-02-04 2017-01-01 45.6 N 8.73 E 234 
Rimini 1945-04-08 2017-01-01 44.0 N 12.6 E 12.5 
Turin 1964-08-11 2017-01-01 45.2 N 7.65 E 301 
Treviso 1966-09-01 2017-01-01 45.7 N 12.2 E 18.0 
Venice 1961-03-01 2017-01-01 45.5 N 12.4 E 2.10 
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Table 3. Po Valley Fog Day Trend (1980-2016) 
Location Slope 1980 2016 % Change Mean 

Torino -0.50 33.0 15.5 -53 25.3 
Linate -0.88 56.9 26.1 -54 38.6 
Malpensa -1.6 69.0 11.5 -83 43.9 
Treviso -0.18 39.7 33.4 -16 36.8 
Venezia -0.50 43.5 26.0 -40 36.0 
Rimini -0.36 36.8 24.3 -34 30.0 
Bologna -0.59 46.7 26.0 -44 38.0 
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Table 4. Po Valley Visibility Trend (1980-2016) 
Location Slope 1980 2016 % Change Mean 

Torino 0.08 4.89 7.59 55 6.24 
Linate 0.08 4.08 6.83 68 5.83 
Malpensa 0.13 3.15 7.66 140 5.53 
Treviso 0.05 5.03 6.64 32 5.82 
Venezia 0.04 5.91 7.13 21 6.49 
Rimini 0.06 5.02 7.03 40 6.08 
Bologna 0.08 4.06 6.96 72 5.53 
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Table 5. GAM Model Inputs       

Location Years Lat    
(◦) 

Lon    
(◦) 

Elevation 
(m) n 

Po Valley           
Milan 1989-2010 45.45 9.28 108 1764 

            
Central Valley         

Sacramento 1963-2014 38.51 -121.50 4.6 6346 
Fresno 1963-2014 36.78 -119.72 102 6075 
Bakersfield 1973-2014 35.43 -119.05 150 5277 
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Figure 11. Results of cluster analysis for prominent sites in the Po Valley. 
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Figure 12. Plot of trend in average number of fog hours (visibility < 400 meters) for all sites in 
the Po Valley. Grey shading represents standard deviation of sites.  
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Figure 13. Plot of trend in average duration of fog episode per day for all sites in the Po Valley. 
Calculated by dividing number of fog hours per season by number of fog days. Grey shading 
represents standard deviation of sites. 
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Figure 14. Plot of trend in NOx concentration (ppb) for Sacramento (blue), Fresno (orange), and 
Bakersfield (grey) from 1963-2015. Points represent years with >65% days reported per month. 
Plot shows how averaging can be weighted toward some locations over others.  
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Figure 15. Trends in annual fog days (sum of days with 1 hour of visibility < 400 m) and pollution 
from 1965-2015. Panel a and b show the trend in annual fog days for nine Po Valley observation 
sites (Turin, Milan - Linate, Milan – Malpensa, Bergamo, Brescia, Bologna, Rimini, Treviso, and 
Venice) and nine Central Valley observation sites (Redding, Red Bluff, Beale, Sacramento, Travis, 
Stockton, Castle Air Force Base, Fresno, Bakersfield). Panel c shows the Po Valley (Milan) trend 
in oxides of nitrogen (NOx) (blue) and sulfur dioxide (SO2) (orange) concentration (ppb), as well 
as the concentration (µg/m3) of total suspended particles (TSP) (red). Panel d shows trend in NOx 
concentration for Central Valley (averaged for Sacramento, Fresno, Bakersfield), as well as an 
SO2 emission inventory (tons/day) from the California Air Resources Board.  
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Figure 16. Panel shows Po Valley trend in annual fog days (top) and visibility (bottom) for clusters 
defined geographically by North (Turin, Milan (Linate Airport and Malpensa Airport), Bergamo, 
Brescia), East (Treviso, Venice), and South (Bologna, Rimini). Shading represents standard 
deviation of sites. 



 

 

 

Table 6. GAM Model Results                 

  Continuous Variables Categorical 
Variable 

Location DPD NOxDPD < 3.5℃ NOxDPD > 3.5℃ SO2 TSP Wind Speed Year Night Length Precipitation 

 Milana                   
r2 = 0.65                   
90% Range 0.58 - 11℃ 43 - 250 ppb 43 - 250 ppb 1.4 - 41 ppb 27 - 160 µg/m3 0.6 - 2.0 m/s 1991-2009 - * 28% 
Visibility Impact (+) 7.9 km (-) 5.6 km (-) 2.8 km (-) 1.2 km (-) 4.1 km (+) 1.1 km (-) 3 km - (+) 1.3 km 
           

 Sacramentob          

r2 = 0.62          
90% Range 0.81 - 8.3℃ 10 - 109 ppb 10 - 109 ppb - - 0.53 - 5.6 

m/s - 12.3 - 14.3 hr * 31% 

Visibility Impact (+) 7.6 km (-) 3.0 km (-) 0.55 km - - (+) 0.86 km - (-) 1.3 km (+) 1.3 
           

 Fresnob          

r2 = 0.61          

90% Range 1.0 - 9.3℃ 13 - 130 ppb 13 - 130 ppb - - 0.62 - 4.2 
m/s - - * 23% 

Visibility Impact (+) 8.9 km (-) 3.0 km (-) 1.7 km - - (+) 2.7 km - - (+) 2.4 km 
           

 Bakersfieldb          

r2 = 0.56          

90% Range 1.3 - 12℃ 19 - 160 ppb 19 - 160 ppb - - 1.1 - 3.8 m/s - - * 19% 
Visibility Impact (+) 8.0 km (-) 4.2 km (-) 2.4 km - - (+) 2.4 km - - (+) 2.4 km 

           

a – 1989 - 2010 
b – 1973 - 2014 

 
Abbreviations. Dew Point Depression (DPD), Oxides of Nitrogen 
Concentration (NOx), Sulfur Dioxide (SO2), Total Suspended Particles (TSP).    * – % of winter days with 

rain events 
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Figure 17. GAM model results for Milan from 1989 – 2010 where each plot represents the partial 
response on visibility (km), all of which additively contribute to the total regression. Y-axis labeled 
from 0-14 kilometers with the exception of precipitation, which has a narrower y-axis and is 
modeled as a categorical variable comparing days with and without precipitation. Grey shading 
represents confidence intervals two times the standard error. NOx response is separated by 
interaction terms, with the first plot indicating the response of [NOx] should all inputs have 
occurred with DPD < 3.5℃ and the response of the second indicating response should all values 
occur when DPD > 3.5℃.  
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Figure 18. GAM model results for Sacramento from 1973-2016 where each plot represents the 
partial response on visibility (km), all of which additively contribute to the total regression. Y-axis 
labeled from 0-13 kilometers with the exception of precipitation, which has a narrower y-axis and 
is modeled as a categorical variable comparing days with and without precipitation. Grey shading 
represents confidence intervals two times the standard error. NOx response is separated by 
interaction terms, with the first plot indicating the response of [NOx] should all inputs have 
occurred with DPD < 3.5℃ and the response of the second indicating response should all values 
occur when DPD > 3.5℃.
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Figure 19. GAM model results for Fresno from 1973-2016 where each plot represents the partial 
response on visibility (km), all of which additively contribute to the total regression. Y-axis labeled 
from 0-13 kilometers with the exception of precipitation, which has a narrower y-axis and is 
modeled as a categorical variable comparing days with and without precipitation. Grey shading 
represents confidence intervals two times the standard error. NOx response is separated by 
interaction terms, with the first plot indicating the response of [NOx] should all inputs have 
occurred with DPD < 3.5℃ and the response of the second indicating response should all values 
occur when DPD > 3.5℃
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Figure 20. GAM model results for Bakersfield from 1973-2016 where each plot represents the 
partial response on visibility (km), all of which additively contribute to the total regression. Y-axis 
labeled from 0-12 kilometers with the exception of precipitation, which has a narrower y-axis and 
is modeled as a categorical variable comparing days with and without precipitation. Grey shading 
represents confidence intervals two times the standard error. NOx response is separated by 
interaction terms, with the first plot indicating the response of [NOx] should all inputs have 
occurred with DPD < 3.5℃ and the response of the second indicating response should all values 
occur when DPD > 3.5℃.
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Figure 21. Plot of univariable visibility response to sulfur dioxide (SO2) separated by each decade 
of observation



 

 

 

Figure 22. Plots of the visibility response to air pollution (oxides of nitrogen (NOx), sulfur dioxide (SO2), and total suspended particle (TSP)) varied 
over two levels of dew point depression (DPD). Blue lines represent pollutant response when DPD < 3.5℃ and orange represents pollutant response 
when DPD > 3.5℃.  

Table 7. Milan Air Pollution Interaction Term Comparison             

Location NOx NOxDPD < 3.5℃ NOxDPD > 3.5℃ SO2 SO2DPD < 3.5℃ SO2DPD > 3.5℃ TSP TSP DPD < 3.5℃ TSP DPD > 3.5℃ 

Milan                   

90% Range 43-250 
ppb 43-250 ppb 43-250 ppb 1.4 - 41 ppb 1.4 - 41 ppb 1.4 - 41 ppb 27 - 160 µg/m3 27 - 160 µg/m3 27 - 160 µg/m3 

Visibility 
Range 

7.4-3.5 
km 8.6-3.0 km 5.6 - 3.5 km 6.4 - 5.2 km 6.4 - 3.9 km 5.3 - 6.4 km 8.0 - 3.8 km 7.8 - 2.7 km 6.1 - 4.4 km 

Net Impact (-) 3.9 km (-) 5.6 km (-) 2.1 km (-) 1.2 km (-) 2.5 km (+) 1.1 km (-) 4.1 km (-) 5.0 km (-) 1.7 km 
Abbreviations. Oxides of Nitrogen Concentration (NOx), Sulfur Dioxide (SO2), Total Suspended Particles (TSP) 
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Chapter 4: 
 
Trends in frequency, rate, and severity of Central Valley fog-related traffic 
accidents 
 
 
Abstract: Decades of multicar pile ups along California’s Central Valley highways made the 
region widely-known for the frequency and severity of its fog-related accidents. Despite 
prevention measures dating back to 1973, no long-term evaluation of the trend in accidents has 
been conducted. This chapter analyzes descriptive statistics and trends in fog-related accidents 
from 1996-1997 to 2015-2016 fog seasons, primarily focusing on the four largest counties: 
Sacramento, San Joaquin, Fresno, and Kern. The Central Valley saw a 65% decline in fog-related 
accidents over 20 winters, the variance of which is best explained by the sharply declining trend 
in seasonal fog hours over the same period. Annual frequency of fog hours (visibility < 650 
meters), as summarized each fog season (November-March) explain an average of ~80% of the 
annual variability in fog-related accidents for the counties studied, suggesting that the declining 
trend in fog is a strong determinant in the declining trend in accidents. The decline in fog-related 
accidents occurred despite a 6-15% increase in vehicle-kilometers driven from 2002-2016 in the 
four counties. The subsequent improvement in visibility results in annual fog-related injuries 
falling by 72%, with the valley seeing an average of 550 fewer injuries from fog accidents in 2015-
2016 than in 1996-1997.  
 
Further, at least two counties, Sacramento and San Joaquin, also show declines in the rate of 
accidents per fog hour, suggesting that improvements to vehicle safety, roadway notifications, and 
traffic diversion may make detectable impacts. Additionally, there is evidence that fog-related 
accidents grew less severe over the 20-year study when investigating the frequency of accidents 
in five collision severity categories relative to the total fog accidents each season. In Sacramento, 
Fresno, and Kern County, trends in less serious accidents are increasing at the expense of more 
dangerous collisions, which are decreasing.  
  
The study found no trend in the number of collisions per fog-related accident, relative to the 
number of accidents each year, suggesting that when accidents occur, the probability of multicar 
pile ups remains the same. Additionally, the frequency of fatal accidents shows no trend, 
suggesting there continue to be important opportunities for roadway and vehicle safety 
improvements.  
 
The human safety and commercial benefits to a reduction in fog-accidents and the resulting 
roadway delays is well documented. The declining trend in dense fog in this region has had the 
most pronounced impact on the declining frequency of fog-related accidents. Past chapters 
implicated changing regional air pollution concentrations as a critical driver in the long-term trend 
of fog frequency. The strong link between the historical number of Central Valley fog events and 
trends in pollution concentration provides a measure of how regulations of emissions that led to 
decreases in aerosol concentration, and thereby wintertime fog frequency, also led to the declining 
trend in fog-related accidents.   
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1. Introduction  
 
In the United States, 21% of accidents and 23% of fatal crashes are due to the presence of adverse 
weather conditions, which cost a minimum of $22 billion USD annually from the resulting 
emergency services, property damage, medical costs, productivity loss, and delayed traffic (Ashley 
et al., 2015; Blincoe et al., 2002; Pisano et al., 2008; USDOT, 2018). The cumulative annual travel 
delay for snow, ice, and fog alone is estimated at 544 million vehicle-hours (United States 
Department of Transportation (USDOT), 2018).  
 
While rain is responsible for the largest proportion of weather-related accidents, fog-related 
accidents are responsible for many of the most severe crashes (Abedel Aty et al., 2011). Studies 
of Florida collisions found that fog was implicated in one-in-five accidents involving 10 or more 
vehicles and, when present, resulted in accidents with more serious injuries than during clear 
conditions (Abedel Aty et al., 2011, Hamilton et al., 2014). Adverse fog conditions are responsible 
for 9% of weather-related accident fatalities in passenger vehicles and 12% in commercial 
vehicles, resulting in 464 peopled killed per year, on average (2007-2016) (Pisano et al., 2008; 
USDOT, 2018). For perspective, that is comparable to the annual number of fatalities from 
hurricanes, tornadoes, floods, heat, cold, and lightning combined (averaged from 2009-2018) 
(National Weather Service (NWS), 2019). While extreme weather hazards may anomalously result 
in more fatalities in a given year, the consistent year-over-year danger fog poses deserves attention.  
 
Fog events are less common than other driving hazards; the complex variables and episodic nature 
of fog results in it being underreported by weather advisories, further exacerbating the risk it poses 
to drivers. In a five-year study (2007-2011), Ashley et al., 2015 found that 72% of national vision-
obscured fatalities occurred when no visibility-related weather advisory had been issued. This 
effect was most pronounced in warmer months, but even at its least, in February, fog advisories 
were not issued prior to ~50% of fatal fog-related accidents, which is a much higher percentage of 
unwarned fatalities than other accident types (Ashley et al., 2015; Black and Ashley, 2010).  
 
The presence of fog reduces visual contrast and obscures details of the road, making it difficult for 
drivers to perceive depth and speed. This is made more challenging given that traditional high 
beams reflect off the suspended water droplets, only further obscuring vision. Studies indicate that 
driver response to fog can be hazardous and unpredictable. Drivers perceive the lead car to be 60% 
farther away in foggy conditions than clear; coupled with overconfidence based on roadway 
conditions, such as retroreflective lanes, they may fail to sufficiently reduce travel speed to avoid 
unexpected events (Carvallo et al, 2001; Buchner et al., 2006; Brooks et al., 2011). Abdel-Aty et 
al., 2011 found fog-related accidents most commonly occurred on high-speed roads, undivided 
roads, roads with no sidewalk, and two lane rural roads. Simulated studies also found that road 
type impacts driver’s response to decreasing visibility (Rosey, 2017). On average, low visibility 
causes a 10-12% speed reduction and 12% reduced road capacity (Agarwal et al., 2005; Pisano 
and Goodwin, 2002), the effects of which are further amplified in dense radiation fog where 
visibility is reduced to only a few meters.  
 
Radiation fog complicates driving due its patchy, heterogenous density patterns, causing visibility 
to rapidly drop without warning. Such was the case in Fresno in November 2007 when a fog-
related accident resulted in a mile-long, 108-vehicle pile-up, including 18 semi-trailer commercial 
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trucks. The accident caused 63 injuries, resulted in at least two deaths, and closed the highway for 
over 12 hours. Notably, the last vehicle collided ten minutes after the initial crash, highlighting 
how obscured potential collisions can be to oncoming drivers before reaching the hazard. Fog 
covered only ~10% of the valley that morning, so commuters and commercial drivers were 
unsuspecting (Lin and Weiss, 2007). Commercial vehicles are particularly vulnerable to more 
severe accidents, since they require more stopping distance, respond poorly to unpredictable speed 
variance, and impose a more dangerous collision upon impact (Pisano et al., 2008; Ashley et al., 
2015).  
 
Past works have identified dense radiation fog as the leading cause of weather-related traffic 
accidents in California, within which the Central Valley is a national hotspot for fatalities from 
vision-obscured accidents (Ashley et al., 2015; USDOT, 2017). The Central Valley has a high 
volume of roadway traffic due to both commercial transportation and residential commuting. Low 
population density throughout a majority of the valley increases commuting distance. Wintertime 
visibility conditions are historically dangerous enough that many school districts have wintertime 
guidelines in place to implement a “fog day,” delaying school until roads are safe enough for bus 
transportation. Depending on the district, visibility below 60-90 meters (m) at 0500 LT results in 
a delay of school (Appleton, 2018). Rural school districts, such as those in southwest Fresno, have 
had up to 15 fog days in a single school year (Appleton, 2018).   
 
The persistence of fog in the Central Valley, known regionally as tule fog, is aided by two primary 
attributes: wet winters with intense but infrequent storms, permeated by persistent anticyclonic 
periods of dry, sunny conditions and very stable winds (Herckes et al., 2015). After increases in 
soil moisture from early winter rainfall, radiative cooling on long, cloudless nights allows 
atmospheric moisture close to the surface to cool to dew point and condense, forming fog droplets 
(Underwood et al., 2004). The bowl-like topography of the 720-kilometer (km) long valley, 
flanked on either side by two north-south oriented mountain ranges, keeps surface winds low and 
supports strong inversion layer development into the morning (Bianco et al., 2011; Holets & 
Swanson, 1981).  
 
The Central Valley, though characterized by its agricultural economy and largely rural roadway 
network, is a region in transition. The urban population of the valley is growing at a rate 
significantly greater than the state or national population. Analyzing a sample of 10 counties in the 
Central Valley, Congressional Research Service (CRS) maps indicate that from 1980-2003, 
population density in the valley increased from 75 person per square mile to 131, and valley-wide 
population grew by 75% (CRS, 2005). For comparison, during this period, the United States 
increased by only 28% and the state of California by 50%. Projections suggest that the Central 
Valley population will continue to expand rapidly, with an expected tripling of 2003 population 
by 2040 (Struglia et al., 2003). Total vehicle-kilometers traveled in this region reflect this growing 
population.  
 
In the midst of increasing roadway traffic, the Central Valley has also experienced a significant 
decline in the frequency of wintertime fog, with sites throughout observing a 46-90% decline in 
fog events since 1980 (Baldocchi & Waller, 2014; Gray et al., 2019; Herckes et al., 2015). Previous 
chapters have linked the decline in fog frequency with concurrent regulation-induced declines in 
air pollution experienced throughout the valley (Gray et al., 2019). A reduction in primary air 
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pollutants lead to a reduction in secondary inorganic aerosols, most commonly ammonium nitrate 
(Pusede et al., 2016), which is of the correct size and chemical composition to make efficient cloud 
condensation nuclei for atmospheric moisture to condense on (Petters & Kreidenweis, 2007). Thus, 
previous work found that a reduction of 10 parts per billion (ppb) in oxides of nitrogen (NOx), the 
limiting precursor to aerosol nitrate formation, results in a reduction of approximately five fog 
days per year (Gray et al., 2019). Decreasing trends in fog and air pollution are reflected throughout 
the valley, such as in Fresno where a decline of 49 ± 8 ppb in NOx since 1980 occurred concurrent 
to a loss of 31 ± 9 fog days per season (Gray et al., 2019). This driver in fog decline, along with 
increases in dew point depression and urban expansion, is expected to continue decreasing fog 
frequency in the future.  
 
During the 20-years of this study, the California Department of Transportation (Caltrans) also 
implemented new strategies for warning drivers about the presence of fog. In 2009, a pilot program 
for a fog warning system installed sensors in approximately one kilometer increments along a 21-
kilometer stretch of California Highway 99, which carries 100,000 vehicles per day (USDOT, 
2017). The declining tule fog trend makes the efficacy of the sensors challenging for Caltrans to 
assess (Lavelle, 2014); this coupled with infrastructure and budgetary constraints postponed any 
expansion of the system. However, commuter’s increased access to weather alerts through smart 
phones and experimental forecasting websites, such as the NWS Experimental Fog Severity Index, 
has further empowered drivers to take precautionary measures (Morss et al., 2008; NWS, 2019).  
 
Lastly, fleet turnover during the study period implies that a higher percentage of vehicles with 
sophisticated crash-avoidant technology now share the road. Features such as lane departure 
warnings and forward collision warnings have theoretical safety benefits, but studies have failed 
to objectively demonstrate their real world benefit – which would prove even more challenging in 
foggy conditions with obscured vehicle sensors (Hamilton et al., 2014; Mehler et al., 2014). 
Additionally, vehicle safety during accidents has gradually improved year-over-year since 1996. 
A study by the National Highway Traffic Safety Administration (NHTSA) found that owning an 
18-year or older vehicle increased the risk of accident fatality by 71%. Further, as a result of 
improved safety features, owning an older vehicle was more dangerous in the past than today: an 
eight-year old car increased the risk of fatality by 37% in 2005, but only 33% for an eight-year old 
car in 2010 (NHTSA, 2013).  
 
The unique conditions of the Central Valley, in which the number of fog events has declined, yet 
the population and traffic volume continue to increase, make it an important venue to explore 
trends in fog-related accidents. This study analyzed fog-related accidents in the Central Valley for 
the period 1996-2016. The purpose of this chapter is to provide an exploratory and descriptive 
analysis of the fog-related accident database and identify relationships and questions that might 
steer future roadway-weather studies and support legislative measures. 
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2. Methods  
 
2.1. Data acquisition  
 
Data for this investigation consist of roadway accident descriptions, daily roadway mileage 
estimates, and visibility observations. The data originate from three sources:  
 
The roadway accident data set was downloaded from the California Highway Patrol Accident 
Investigation Unit through their Statewide Integrated Traffic Records System (SWITRS) 
(https://www.chp.ca.gov/programs-services/services-information/switrs-internet-statewide-
integrated-traffic-records-system). Using the collision data set, accidents were limited to three 
districts (3, 10, and 6) that encompass a majority of the Central Valley and filtered by accidents 
where fog was a primary contributing factor for 1996 -2016. The SWITRS collision data provide 
information on date, hour, day of week, number of vehicles per accident, collision severity, and 
number of injuries and fatalities. Data were temporally scaled to the hour of accident occurrence 
to match the scale of meteorological observations. Annual summaries of data were compiled for 
the fog season from November – March (NDJFM), meaning a small percentage of fog-related 
accidents outside the typical season ( < 4%) were not included.  
 
Estimates for daily roadway mileage were obtained from the Caltrans Highway Performance 
Monitoring System (https://dot.ca.gov/programs/research-innovation-system-
information/highway-performance-monitoring-system) and converted to kilometers. In order to 
determine an estimate for the fog season, the daily vehicle-kilometers driven was multiplied by 
the length of the fog season (151 or 152 days, depending on leap year). Since Caltrans estimates 
daily roadway mileage annually, any analysis with roadway mileage was computed with Jan-Dec 
(JFMND) fog accident summaries, rather than seasonal summaries (NDJFM).  
 
Visibility observations were downloaded from the National Climatic Data Center 
(https://www.ncdc.noaa.gov/cdo-web/datatools/lcd) for airport stations throughout the Central 
Valley and temporally scaled to one-hour intervals. Seasonal summaries of fog days, fog hours, 
and fog duration were derived by investigating instances when visibility fell below 400, 650, and 
1150 meters (0.25, 0.4, and 0.7 miles). Traditionally, dense radiation fog is defined as visibility < 
400 meters (0.25 miles) (National Oceanographic and Atmospheric Administration, 2005), but less 
dense fog can still be dangerous to motorists, as well as useful for estimating patchy fog conditions 
away from the point-source visibility measurements. Seasonal fog days and hours were determined 
by summing the instances visibility fell below those markers. Annual fog duration was derived by 
dividing the number of fog hours by number of days of fog. I required each season (NDJFM) to 
report all five months, in which each month reports > 90% of hourly observations. Visibility was 
measured according to the Automated Surface Observation System, whereby visibility was 
automatically recorded using a forward scatter visibility sensor, measuring the attenuation of light 
at 20 second intervals (National Oceanographic and Atmospheric Administration, 2005). Data was 
processed with flags for quality control to remove noticeable instrumentation artifacts.  
 
The episodic nature of radiation fog requires frequent and complete reporting to fully capture the 
trend, and thus, only a few stations met these requirements over the 20-year period. I matched 
these stations with the corresponding counties in the collision data set, focusing most of the site-
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specific research on the counties of Sacramento (District 3), San Joaquin (District 10), Fresno 
(District 6), and Kern (District 6) (Table 1).  
 
2.2. Trend analysis 
 
Trends were found using the non-parametric two-tailed Mann-Kendall trend test and the Theil-Sen 
estimator (http://www.mathworks.com/matlabcentral/fileexchange/authors/23983) (Burkey, 
2006; Sen, 1968; Theil, 1992), which tests the null hypothesis (H0), which would indicate no trend 
in the data, against the alternative (H1), which indicates a significant trend (Mann, 1945; Kendall, 
1955). I investigated trends at the 95% confidence interval, where an output of H=1 implies that 
the null hypothesis failed and there is a significant trend at µ = 0.05. The Theil-Sen estimator then 
determines a best fit line by calculating the median of all slopes between pairs of points over the 
period. One advantage of this technique is that it minimizes the impact of outliers. The mean of all 
slopes over n values is Sen’s slope (Qi):  
 

!" =
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where xj and xk are data at times j and k, and n is the number of points.  
 
Similarly, Kendall’s Tau was used to determine correlation between two variables by measuring 
the strength of the dependence between two columns of ranked data (Sen, 1968). The best fit line 
was calculated using orthogonal least squares regression, which minimizes the orthogonal distance 
from the observed data points to the regression line and is ideal for analysis with randomness in 
both the dependent and independent variables 
(https://www.mathworks.com/matlabcentral/fileexchange/16800-orthogonal-linear-regression).  
 
2.3. Analysis description and assumptions 
 
I first describe the spatial and temporal distribution of selected fog-related accident parameters. In 
3.3.1, histograms, frequency tables, and trend analysis are presented to describe and classify fog-
related accidents for the entire valley.  
 
Section 3.3.2 presents investigation of site-specific fog-related accidents, pairing counties with 
adjacent airport meteorological stations. Fog-related accident trends are determined for each 
county, including the trend in these accidents in relation to annual vehicle-kilometers traveled. The 
study then investigates how the trend in fog frequency impacts fog-related accidents annually to 
determine the trend variability associated with fog rates versus other safety improvements. In 
doing so, the trend in fog-related accident per hour is calculated to explore whether roads become 
safer for drivers during fog episodes over time. Lastly, this section explores how the density of 
fog, as found by hourly visibility measurements at local airports, effects accident frequency.  
 
Section 3.3.3 presents the distribution of accident severity and its site-specific trends over time. 
The relationship between visibility and accident severity, as well as number of collisions per 
accident is investigated. Trends in annual injuries and fatalities also provide additional insight into 
changes in accident severity. 
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This analysis requires a number of assumptions inherent in large data sets that are subject to human 
recording errors. Trends in statistics and severity distribution assume that all fog-related accidents 
in the Central Valley were reported to the police; however, it is estimated that 57% of crashes go 
unreported (Pisano et al., 2008). I assume here that this ratio is stable throughout the dataset. Police 
accident reports may involve errors, such as misclassifying the cause of accident or presence of a 
visibility hazard. Incorrectly recording the hour of accident would result in this analysis associating 
the wrong hour of visibility from a local airport with it, possibly misrepresenting the visibility 
conditions in averages. Notably, the SWITRS contains unresolvable errors in the categorizing of 
accident severity, as well as misreporting of injuries, from the fog season of 2001-2002 to 2005-
2006. Thus, these years were left out of descriptive analysis for severity and injuries.   
 
Lastly, the identifier of fog events, visibility, is observed at one point source for each county, which 
ultimately may be >100 km away from the location of the accident. Airports are typically adjacent 
to urban centers, where the urban-clear island effect likely begins evaporating radiation fog first 
(Underwood et al., 2004). Therefore, our visibility estimates may be higher than what was 
experienced at the sites of collision, particularly in the larger counties, such as Fresno and Kern.  
 
3. Results and discussion  
 
3.1. Spatiotemporal analysis  
 
From October 1996 to April 2016, 19,850 fog-related accidents occurred in districts 3, 10, and 6, 
which span the majority of the Central Valley (Figure 1), of which ~38% resulted in injury. The 
majority of fog collisions over the 20-year period incurred property damage only, as classified by 
police reports, but 33% resulted in minor or visible injuries and 5% in severe or fatal injuries 
(Figure 2). In total, 844 deaths were reported and at least 9,471 injuries, which is likely an 
underestimate due to misreporting in the SWITRS record system from 2001-06. Relative to its 
population, District 3 has the lowest total of fog-related accidents during the study (Table 1). 
Comparatively, District 10 (central) and 6 (south) have 2.5 and 2.6 times as many fog-related 
accidents per person, respectively.  
 
Notably, counties within the study region at high median elevation experience far fewer fog-related 
accidents than those at comparatively low elevation. Nearly all counties with less than 1% of the 
total fog-related accidents are found in regions with a median elevation greater than 300 m (Table 
1, bolded). Rare exceptions to the impact of elevation are seen in counties with low populations, 
such as Glenn and Colusa County. These counties account for less than 1% of the fog-related 
accidents but have high rates of fog accidents per person (2 and 3 times that of Sacramento County, 
respectively). An additional exception, Placer County, has a median elevation of 806 m, yet 
accounts for 2% of fog collisions because it spans horizontally from the western low elevation 
valley into the eastern mountain ranges. 
 
Unlike typical motor vehicle accidents, which peak during the summer months when roadway 
volume peaks, fog-related accidents peak from September to February (Ashley et al., 2015). In the 
Central Valley, where precipitation is primarily limited to frontal storms between December and 
March (Killam et al., 2014), fog events and the resulting accidents are almost exclusively in the 



 

   89 

winter months (Figure 3a). ~70% of all fog-related accidents occur in December (31%) and 
January (38%) during the height of the tule fog season when long nights allow for maximum 
radiative cooling. This mid-winter maximum in fog accidents is much more concentrated than the 
national distribution, which found that 28% of fog-related fatalities occurred in December and 
January (Ashley et al., 2015). November and February are the next most common months for fog-
related accidents, at 17% and 10%, respectively (Table 2). Diurnally, fog-related accidents peak 
during morning rush hour and before solar radiation can evaporate the fog layer between 0600 – 
0800 local time (LT), with a clear maximum (21%) at 0700 LT (Figure 3b). This differs from the 
majority of accidents, which peak during evening rush hour (Ashley et al., 2015). Contrary to 
national results for fog-related accidents (Hamilton et al., 2014), Central Valley fog collisions are 
not more common on weekdays than weekends (Figure 3c). Instead, there is a maximum on Friday, 
followed by Saturday, with a minimum on Sunday, likely influenced by low commercial and 
commuter traffic.   
 
In total, the districts of the Central Valley saw a statistically significant 65% decline in fog-related 
accidents between the 1996-1997 and 2015-2016 fog seasons (Figure 4).  
 
3.2. County-specific analysis with fog data 
 
The county-specific investigation focused primarily on counties with high-resolution visibility 
data at a local airport (Sacramento, San Joaquin, Fresno, and Kern County) (Figure 5, white stars), 
with supplementary analysis for counties closely-adjacent to a high-reporting airport (Stanislaus 
and Tulare County) (Figure 5, grey stars). Of the 23 counties in districts 3,10, and 6, the six 
investigated make up 72% of the fog-related accidents from 1996-2016, as well as 72% of the total 
population (Table 2).  
 
Table 3 describes the primary counties and airports analyzed, representing regions of high 
population and vehicle-travel. On average, each county travels 5.8 billion vehicle-kilometers each 
year, with the highest being nearly 8 billion annually in Sacramento County, which also has the 
highest population and population density (Table 3). Sacramento, San Joaquin, Fresno, and Kern 
County experience an annual wintertime average of 120 fog-related accidents per county from 
1996-2016. Dense fog is a frequent phenomenon in these regions (Figure 6b). The median airport 
visibility during fog-related accidents is only 600 m, with 1-in-15 fog-related accidents occurring 
when local airport visibility was zero meters.  
 
The primary counties investigated in this study – Sacramento, San Joaquin, Fresno, and Kern – 
observed a statistically significant decline in fog-related accidents from 1996-2016, from a 65% 
decline in Sacramento to a 72% decline in Kern (Table 4). Figure 6a demonstrates that the high 
variability in fog-related accidents each year covaries from county to county.  
 
3.2.1. Fog-related accidents scaled to kilometers-traveled 
 
The decline in fog-related accidents occurred despite a ~ 6-15% increase in vehicle-kilometers 
driven from 2002-2016 in three of the four primary counties analyzed (Table 5). When summed 
for all four counties, this represents a 0.5% increase in roadway volume per year, except for a 
notable decline after the 2007-2008 financial crisis (Figure 7).  
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Using these estimates, I can determine the number of fog-related accidents per kilometer per year 
from 2002-2015. This calculation not only scales counties of differing areas relative to their 
population and commercial function, but also more accurately reflects the improved trend in fog-
related accidents relative to the increased amount of travel. Table 6 shows the recalculated trend 
in fog-related accidents per calendar year (JFMND) for comparability with the roadway volume 
data (limited to 2015). Although the southern counties of Fresno and Kern have an area 6 and 8 
times larger, respectively, than that of Sacramento County, they have ~10% the population density; 
thus, vehicle-kilometers traveled in each county are comparable (Table 3).  
 
Roadway volume per person is also much higher in Fresno and Kern County. For instance, Kern 
has 59% the population of Sacramento County, but drives 68% of the kilometers per fog season. 
Thus, relative to population of Sacramento, Kern roads see 780 million more kilometers, or ~870 
kilometers more per person. The increased roadway traffic relative to their population seen in Kern 
and Fresno (273 million extra miles) may be attributed to longer commuting distances due to low 
population density or a higher volume of commercial transport, which is common along its 
highways.  Sacramento County also has the lowest annual rate of fog-related accidents per 
kilometer, when averaged from 2002-2015. Fresno has the highest rate of accidents per kilometer 
(2.3 times higher than Sacramento), followed by Stockton (2.1 times higher), and Bakersfield (1.3 
times higher) (Figure 8).  
 
When summed for all four counties from 2002-2015, the rate of fog-related accidents per kilometer 
declined by 80% (Figure 8). The largest change in fog accidents per kilometer was in Sacramento 
(Table 6). From 2002-2015, fog-accidents per vehicle-kilometer decreased by 73%, a 10% larger 
decline than the fog decrease over that same period (Table 6). While other sites did not see as 
significant of an enhancement in the declining trend when considering the 2 billion additional 
kilometers driven in 2015 relative to 2002, all declining trends in rate of fog-related accidents 
remained the same or strengthened the declining trend.  
 
3.2.2. Impact of fog frequency on fog-related accidents 
 
A significant decline in the frequency of fog during this period has greatly contributed to the 
reduction in accidents. When investigating fog seasons from 1996-2016, fog hours declined 
significantly at Sacramento, Stockton, Fresno, and Bakersfield airport. The four airports saw a 
91% decline from 1996-2016 in the frequency of dense fog hours (Figure 6b), traditionally defined 
as visibility < 0.25 miles (400m). Less dense fog events, defined as visibility < .4 miles (650 m) 
and < .7 miles (1150 m) also declined by~ 50% over the twenty-year period (Figure 6b). 
Examining multiple visibility thresholds is critical for this study due to the large footprint of each 
county, particularly Fresno and Kern. The heterogenous density patterns common to radiation fog 
make it likely that visibility may differ at a local airport despite being dense enough on county 
roadways to cause accidents. This is evident in Table 7, which examines the visibility during fog-
related accidents at adjacent airports. When summarizing the frequency of accidents occurring at 
the three distance thresholds (400, 650, and 1150 meters), 55 and 59% of accidents in Sacramento 
and San Joaquin County occur when local airport visibility is < 650 m, compared with 48 and 39% 
for the much larger counties of Fresno and Kern (Table 7). This is further demonstrated in Figure 
9 which shows the annual frequency of accidents occurring compared to the adjacent airport 
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visibility. Sacramento, San Joaquin, and Fresno accidents most commonly occur when visibility 
is < 1 km (61, 65, 53%, respectively), whereas Bakersfield’s (Kern County’s) visibility distribution 
is notably higher, with a majority occurring when airport visibility is < 2 km (53%) (Table 8). 
While this could indicate more dangerous roadway conditions, it is more likely that visibility is 
higher at the airport than the collision site at the time of the accident and that this impact is most 
prominently seen in the larger counties, such as Kern County, which is nearly ten times larger than 
Sacramento.  
 
The discrepancy between airport visibility and visibility at accident sites has grown more 
pronounced over the course of the study, suggesting that patchiness in radiation fog throughout 
the valley has increased since 1996. Figure 10 shows the trend in airport visibility from 1996-2016 
for Sacramento, San Joaquin, Fresno, and Kern County. Average visibility during fog-related 
accidents increased from 1996-2016, most notably in Sacramento and Fresno County, which saw 
a 78 and 130% increase in visibility respectively. In recent years, it is common for the airport 
visibility to reach 5-7 km during an accident elsewhere in the county, suggesting that the valley 
fog is becoming patchier and the local airport less representative of conditions throughout (Figure 
10). Chapter 1 showed that diurnal trend in fog events changed over time, with dense fog 
evaporating sooner in the morning than in past decades (Gray et al., 2019), which would likely 
begin at the urban centers and dissipate outward. Underwood et al. 2008 studied the formation of 
urban clear islands in cities throughout the valley, finding that lower relative humidity due to urban 
surfaces resulted in earlier evaporation of fog. However, the dissipation pattern varied with each 
event, suggesting it would be challenging to determine a visibility correction factor based on 
distance from the airport.  
 
Despite this, fog hours and fog-related accidents are highly correlated, and total annual fog hours 
in all counties are an excellent predictor of incidence of fog-related accidents. Figure 11 shows 
annual fog hours plotted against the annual total for fog-related accidents (NDJM) for the primary 
counties (Sacramento, San Joaquin, Fresno, and Kern), as well as for the counties adjacent to high-
reporting airports (Stanislaus and Tulare). Notably, correlating with annual fog hours rather than 
number of fog days or average duration of fog episodes captures more of the variance. When 
restricting comparison to the strictest definition of dense radiation fog (visibility < 400 m), annual 
fog hours explain 72-88% of the variance in fog-related accidents (Figure 11a). However, 
increasing the threshold to visibility < 650 m captures more of the variability, increasing to 71-
91% (Figure 11b). Figure 11c tests the correlation with visibility < 1150 m, which only marginally 
improves the r-squared, suggesting that the 650 m threshold is ideal. The 250 m increase in the 
definition adjusts for the differences in fog density throughout the valley and aligns with the 
median visibility during fog-related accidents throughout the record (600 m). Stanislaus and Tulare 
County correlate well with fog observations from neighboring San Joaquin and Fresno County for 
all thresholds tested (Figure 11). The strength of the relationship between fog-related accidents 
and annual fog hours – even despite the distance accidents occur from the local airport – suggests 
that a majority of the improvement in fog-related accidents in recent years has been precipitated 
by decreasing rates of fog.  
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3.2.3. Trend in rate of fog-related accidents per fog hour 
 
In order to quantify alternative sources of improvement, such as safer roadway conditions, warning 
systems, and improved vehicle technology, the annual fog-related accidents were normalized by 
annual fog hours to investigate a change in the frequency of accidents during fog events. Fresno 
and Kern County, with their much larger footprints, have an average of 1.7 and 1.5 accidents per 
fog hour, compared with San Joaquin and Sacramento with 0.8 and 1.0 accidents per hour (Table 
9).  
 
Some of this difference may be accounted for by differences in area, which is better represented 
by vehicle-kilometers traveled per county. When scaled by average vehicle-kilometers traveled, 
Sacramento County has the lowest number of fog-related accidents per kilometer during each fog 
hour. Comparatively, during a fog hour, San Joaquin County has 1.4 times the accidents per 
kilometer as seen in Sacramento, followed by Kern with 1.8 and Fresno with 1.9. However, since 
there remains uncertainty about how area affects the rate of dissipation and total annual fog hours 
in the larger southern counties, conclusions cannot be made about whether these spatial differences 
in the southern counties are attributed to less safe roadway conditions.  
 
Figure 12 shows the trend in the rate of fog-related accidents per fog hour per county. From 1996-
2016, Sacramento and San Joaquin County demonstrate a statistically significant 46 and 49% 
decrease, respectively, in the rate of accidents per fog hour, suggesting that improvements to traffic 
safety may have an important impact (Table 4). It is most notable that this decline occurred in 
Sacramento County despite a 15% increase in roadway volume since 2002. No trend was found in 
Fresno and Kern County, where the rate throughout the study showed much more variability. 
Particularly in Kern, peaks in the trend seem most influenced by years where fog hours were 
proportionally much lower than the number of accidents, thus causing the ratio to spike (Table 9).  
 
The 49% decline in rate of fog-related accidents per fog hour in San Joaquin County may be 
indicative of the Caltrans Automated Warning System (CAWS) implemented in District 10 
beginning in 1996, in which 36 traffic monitoring sites, 9 meteorological stations, and 9 alert signs 
were first implemented in high traffic areas, creating one of the most advanced warning systems 
of its kind in the world (MacCarley, 1999). However, Sacramento County had the lowest rate of 
accidents when scaled for both drivers and fog events.  
 
3.3. Trend in accident severity  
 
Caltrans subdivides accident severity into five categories: property-only damage, minor injuries, 
visible injuries, severe injuries, and fatal. By percentages, the severity of accidents in the four 
counties is similar, despite differences in average visibility during fog-related accidents (Table 
10). Median visibility calculated for the five categories of fog-related accidents demonstrates that 
accident severity is largely decoupled from density of fog. In all counties except Bakersfield, the 
median for property-only damage, as well as minor, visible, and severe injuries is nearly identical, 
fluctuating by less than 200 m. Figure 13 shows the cumulative distribution for all four counties 
with a box whisker plot for the visibility during each accident category. The infrequency of fatal 
collisions skews the descriptive statistics for visibility, making it anomalously high at all locations 



 

   93 

relative to the other four categories (Figure 13). Median visibility for Bakersfield investigated for 
the five categories is ~1- 2 km higher than the other sites.  
 
Unsurprisingly, due to the declining rate of fog hours and fog-related accidents, there is a 61% 
decline in property damage collisions and 83 and 70% decline in visible and severe injury accidents 
from 1996-2016 when totaled for the four counties (Figure 14). Figure 15 shows the trend in fog-
related accident severity for the four primary counties. Fresno County, where annual injuries were 
double that of other counties studied, exhibited the most consistent decline in all severity categories 
(- 64 – 84%), except fatalities (Table 11). Declines in accident severity are reflected in trends of 
annual injuries (Figure 16), which was statistically significant in all counties with an average 72% 
decline valley-wide (Table 4). Notably, the frequency of fatal collisions throughout the study 
remains consistent despite such high declining rates in fog-related accidents, similar to the results 
of Ashley et al., 2015. However, the smaller sample size of fatal accidents limits the statistical 
robustness of this trend and should be evaluated over time with more data.  
 
Changes in severity were analyzed relative to the number of accidents per year to investigate 
whether fog-related accidents are becoming less dangerous. Normalizing by the number of fog-
related accidents per year showed trends in visible injuries from accidents declined in Sacramento 
(32%), Fresno (57%), and Bakersfield (62%) since the winter of 1996-1997 while trends in less 
severe accidents increased. Fresno County saw a 25% increase in property damage only accidents 
and Sacramento and Kern County saw a 43 and 60% increase in minor injury accidents, relative 
to the annual total. These three collision categories make up ~ 95% of all fog-related accidents, 
and thus reflect of a transition to less dangerous accidents. There is no trend for the severe and 
fatal categories (which account for only ~ 3 and ~ 2% of accidents, respectively), which may be 
the result of cumulative, less predictable factors in driver performance and road conditions. 
 
Approximately 56% of accidents involve two collisions, whereas 35% involve one collision and 
7% involve three collisions (Table 12). Multicar events with 7-10 collisions occur nearly every 
winter (Table 12), with collision number being as high as 108 over the 20-year study. Past 
assessments also identified Central Valley fog-related accidents as involving more vehicles than 
standard accidents (MacCarley, 1999), likely owing to low visibility conditions limiting driver’s 
perception of distance between vehicles and distance needed for abrupt stopping (Carvallo et al, 
2001; Buchner et al., 2006; Brooks et al., 2011). Notably, there is no distinguishable trend since 
1996 in the number of collisions per accident, when normalized by the number of accidents in a 
year (Table 12). The lack of trend in fatalities and number of collisions per accident, relative to 
the number of accidents per year, suggests there remain important areas for improvement in 
roadway and vehicle safety.   
 
4. Conclusion 
 
Central Valley fog-related accidents have detrimental impacts on human safety, commerce, and 
productivity. Accident prevention measures began as early as 1973 with Operation Fogbound 
(MacCarley, 1999), but no long-term evaluation of the decline in accidents has been conducted. 
The annual frequency of these accidents has seen a pronounced 65% decline over the 20 winters 
between 1996-2016, the variance of which is best explained by the sharply declining trend in 
seasonal fog hours. In the six counties analyzed, the variance in fog hours, as measured by visibility 
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< 650 m at local airports, explained over 80% of the annual total in fog-related accidents per 
county. The decline in fog-related accidents occurred despite a 6-15% increase in vehicle-
kilometers driven from 2002-2016 in the four counties. The subsequent improvement in visibility 
resulted in annual fog-related injuries falling by 72%, with the valley seeing an average of 550 
fewer injuries from fog accidents in 2015-2016 than in 1996-1997.  
 
The rate of fog-related accidents per fog episode is also decreasing for at least two of the counties: 
Sacramento and San Joaquin. The large areas of Fresno and Kern County make it more difficult to 
determine. Sacramento County has the lowest rate of fog-related accidents when both kilometers-
traveled and frequency of fog hours are accounted for. There is evidence that fog-related accidents 
grew less severe over the course of the 20-year record in Sacramento, Fresno, and Kern County. 
Relative to the annual number of fog-related accidents, trends in less serious accidents are 
increasing at the expense of more dangerous collisions, which are decreasing. This indicates that 
when accidents are occurring, over time, they are less severe, suggesting that improvements to 
vehicle safety, roadway notifications, and traffic diversion may be making notable impacts. Yet, 
incidents with at least 7-10 collisions continue to occur nearly every year, leaving room for 
continued improvement in weather advisories.  
 
The variability in fog is a strong determinant in the total annual number of accidents; therefore, 
understanding drivers of fog frequency has critical implications for the safety and economic well-
being of valley residents. The strong link between the historical number of Central Valley fog 
events and trends in pollution concentration shows that regulatory measures that led to decreases 
in aerosol concentration, and thereby wintertime fog frequency, also led to significant reductions 
in resulting fog-related accidents. The significant reduction in accidents and injuries attributable 
to reductions in fog should be accounted for when considering the economic and societal benefits 
of air pollution mitigation.   
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5. Figures and tables 

 
Figure 1. Terra MODIS retrieval of radiation fog event in Central Valley (left); District (numbers) 
and county boundaries from California Department of Transportation (right). Study focuses on 
counties in districts 3, 10, and 6.  
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Table 1. Central Valley fog-related accidents by county, 1996-2016 
Data: California Highway Patrol Accident Investigation Unit Statewide Integrated    
Traffic Records System. 

  

  Total 
Fog-    

Related     
Accidents   

Percent 
of Central 

Valley       
(%) 

Elevation  
(meters) 

Area                
(km2) 

Populationa 
(103) 

District 3 (North)      

Butte 284 1.4 398 4,248 229 
Colusa 92 .5 25 2,990 22 
El Dorado  110 .6 638 4,434 189 
Glenn 78 .4 51 3,406 28 
Nevada  84 .4 883 2,481 100 
Placer 383 1.9 806 3,644 386 
Sacramento  2133 11 17 2,502 1,531 
Sierra 7 0 1509 2,468 3 
Sutter 284 1.4 15 1,562 97 
Yolo 481 2.4 21 2,621 219 
Yuba 153 .8 106 1,632 77 

Total 4089 21  31,988 2,881 
District 10 (Central)      

Alpine  2 0 1852 1,914 1 
Amador  55 0.3 379 1,570 39 
Calaveras 78 0.4 655 2,642 46 
Mariposa 21 0.1 735 3,758 18 
Merced 1395 7.0 46 4,996 273 
San Joaquin 2396 12 16 3,623 745 
Stanislaus  1924 9.7 30 3,872 548 

Total 5915 29  22,375 1,670 
District 6 (South)      

Fresno 3367 17 95 15,444 989 
Kern 1859 9.4 137 21,088 893 
Kings 1222 6.2 76 3,600 150 
Madera 800 4.0 283 5,537 157 
Tulare 2598 13 125 12,494 465 

Total 9846 50  58,163 2,654 
a2017 population estimate           
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Figure 2. Bar plot of annually-averaged totals for wintertime, Nov-Mar (NDJFM), fog-related 
accident severity, as classified in police accident report. Data from California Highway Patrol 
Accident Investigation Unit Statewide Integrated Traffic Records System. Fog seasons of 2001-02 
to 2005-06 not included due to erroneous reporting in data set.  
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Figure 3. Panel of average fog-related accidents (1996-2016) by a) month of year, b) hour of day, 
and c) day of week for districts 3, 10, and 6 during Central Valley radiation fog season (NDJFM).  
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Table 2. Districts 3, 10, and 6 fog-related accidents per month, 1996-2016 

        

Month Fog-Related Accidents % 
  

        
January 7,582 38.2%   
February 1,936 9.8%   
March 413 2.1%   
April 56 0.3%   
May 21 0.1%   
June 14 0.1%   
July 12 0.1%   

August 8 0.0%   
September 41 0.2%   

October 207 1.0%   
November 3,318 16.7%   
December 6,242 31.4%   

Total 19,850     
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Figure 4. Sum of wintertime (NDJFM) fog-related accidents by year in districts 3, 10, and 6 from 
1996-2016. 
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Figure 5. Annual average wintertime (NDJFM) fog-related accidents by county located in districts 
3, 10, and 6 from 1996-2016. Counties with stars are focus of study: white stars indicate sites with 
corresponding visibility data from airport within boundaries; grey stars indicate sites included in 
some analysis, but lacking complete visibility records.  
 

 



 

    

Table 3. Description of counties in primary study region             
                    
                    

District 
Number County County 

Number Local Airport Lat (°) Lon (°) Populationa Size 
(km2) 

Population 
Density 
(pp/km2) 

  VKT b   
Fog Season-1 

(106) 

                    
                    

3 Sacramento 34 Sacramento 38.51 -121.5 1,531,000 2,502 612 7,960 
10 San Joaquin 39 Stockton 37.90 -121.3 752,000 3,623 206 4,318 
6 Fresno 10 Fresno 36.78 -119.7 994,000 15,444 64 5,441 
6 Kern 15 Bakersfield 35.43 -119.1 897,000 21,088 42 5,445 

                    
                    
a – 2018 estimate                  
b – 1996-2016 average for Jan, Feb, Mar, Nov, Dec             
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Table 4. Fog season (NDJFM) trends in fog-related accidents, accidents per 
hour, and injuries, 1996-2016  
        

County / Airport Fog Accidents 
(%) 

Accidents     
Fog Hour -1   

(%)a 

Injuries              
(%) 

Sacramento / Sacramento -65 -46 -55 
San Joaquin / Stockton -68 -49 -60 
Fresno / Fresno -71 - -78 
Kern / Bakersfield -72 - -79 

Total -65b - -72b 

only significant trends (p < 0.05) reported     
afog hour defined as visibility < 650 m     
btotals reported for district 3, 10, 6     
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Figure 6. Temporal trends in a) Annual fog-related accidents in four counties – Sacramento (navy), 
San Joaquin (blue), Fresno (teal), and Kern (green) – summed for each winter season beginning 
in 1996-7 and ending in 2015-6. b) Corresponding annual sums of fog hours, averaged from 
airports within each county. Fog hour defined in three visibility categories as any hour where 
visibility falls below 400, 650, or 1150 meters, respectively, at airport.    
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Table 5. Description and trends of vehicle-kilometers traveled per fog season, 
averaged annually, Jan-Dec (JFMND), 2002-2016 

County 

2002              
Fog Season 

Vehicle-
Kilometers  

(109) 

2016            
Fog Season 

Vehicle-
Kilometers  

(109) 

Trend in 
Vehicle-Miles       
Fog Season-1 

(%) 

Average   
Vehicle-

Kilometers     
Fog Season-1 

(109) 

Sacramento 7.2 8.7 15 7.9 
Stockton 4.3 4.5 - 4.3 
Fresno 5.2 5.9 7.5 5.4 
Bakersfield 5.4 6.3 5.7 5.4 

Total 22 25 7.9 23 
only significant trends (p < 0.05) reported     
atotals reported for Sacramento, San Joaquin, Fresno, and Kern County only   
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Figure 7. a) Temporal trend (2002-2016) in total vehicle-kilometers traveled in four counties – 
Sacramento (navy), San Joaquin (blue), Fresno (teal), and Kern (green) – during fog season 
months (JFMND). b) Annual Fog season vehicle-kilometers traveled by county.  
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Table 6. Fog season trends (JFMND) in fog-related accidents, vehicle-
kilometers, and rate of accident/kilometer, 2002-2015  
        

County Fog Accidents 
(%) 

Vehicle-
Kilometers 

Season-1 (%) 

Accidents 
Vehicle-

Kilometers-1 
Season-1 (%) 

Sacramento -63 12 -73 
San Joaquin -79 - -79 
Fresno -82 5.4 -84 
Kern -87 2.4 -87 

Total -78a 5.4a -80a 

only significant trends (p < 0.05) reported     
atotals reported for Sacramento, San Joaquin, Fresno, and Kern County only 
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Figure 8. Temporal trend (2002-2015) in fog-related accidents per kilometer of vehicle travel for 
Sacramento (navy), San Joaquin (blue), Fresno (teal), and Kern (green) County. Calculated by 
dividing the number of accidents (totaled by calendar year rather than fog season) by the total 
vehicle-kilometer traveled for those months.  
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Table 7. Percentage of fog-related accident occurring when visibility below thresholds, 
1996-2016 
        

County / Airport Visibility ≤ 400 m 
(%) 

Visibility ≤ 650 m 
(%) 

Visibility ≤ 1150 m 
(%) 

Sacramento / Sacramento 38 55 62 
San Joaquin / Stockton 47 59 65 
Fresno / Fresno 44 48 54 
Kern / Bakersfield 29 39 44 
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Figure 9. Annual average frequency of a fog-related accident occurring during each visibility 
range over the 20-year study by county. NCDC data for Sacramento Executive Airport, Stockton 
Metropolitan Airport, Fresno Yosemite International Airport, and Bakersfield Municipal Airport 
were used to determine visibility.  

 
 



 

   

Table 8. Total fog-related accidents by visibility at adjacent airport, 1996-2016 

  Sacramento / 
Sacramento San Joaquin / Stockton Fresno / Fresno Kern / Bakersfield 

Visibility (km) Accidents %  Accidents %  Accidents %  Accidents %  

0-1 1262 61 1533 65 1723 53 777 43 
1-2  216 10 198 8.4 374 11 183 10 
2-3 87 4.2 137 5.8 222 6.8 191 11 
3-4 103 5.0 99 4.2 238 7.3 142 7.8 
4-5 148 7.1 170 7.2 286 8.8 173 10 
5-6 26 1.3 4 0.2 19 0.6 8 0.4 
6-7 47 2.3 51 2.2 109 3.3 93 5.1 
7-8 16 0.8 11 0.5 13 0.4 22 1.2 
8-9 31 1.5 36 1.5 54 1.7 46 2.5 

9-10 16 0.8 18 0.8 40 1.2 35 1.9 
10-11 8 0.4 0 0.0 9 0.3 4 0.2 
11-12 15 0.7 19 0.8 33 1.0 15 0.8 
12-13 6 0.3 9 0.4 23 0.7 16 0.9 
13-14 8 0.4 0 0.0 7 0.2 2 0.1 
14-15 14 0.7 8 0.3 16 0.5 21 1.2 
15-16 18 0.9 6 0.3 11 0.3 9 0.5 
16-17 57 2.7 51 2.2 89 2.7 74 4.1 
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Figure 10. Temporal trends in average fog season (NDJFM) visibility during hour of fog-related 
accidents at adjacent airports. NCDC data for Sacramento Executive Airport (navy), Stockton 
Metropolitan Airport (blue), Fresno Yosemite International Airport (teal), and Bakersfield 
Municipal Airport (green) were used to determine visibility.  
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Figure 11. Correlation between annual (NDJFM) fog-related accidents per county and total fog 
hours at nearby airports. Sacramento Executive Airport (navy), Stockton Metropolitan Airport 
(cobalt), Fresno Yosemite International Airport (teal), and Bakersfield Municipal Airport (green) 
were used to determine the number of fog hours in Sacramento, San Joaquin, Fresno, and Kern 
Counties, respectively. Nearby counties of Tulare (grey) and Stanislaus (black) were correlated 
with adjoining county airports (Stockton and Fresno, respectively). Three visibility distances were 
investigated to identify fog: a) 400 m, b) 650 m, and c) 1150 m.  
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Figure 12. Wintertime temporal trend (1996-2016) in visibility at adjacent airports in four 
counties investigated. Each point found by averaging the visibility during a fog-related accident. 
NCDC data for Sacramento Executive Airport (navy), Stockton Metropolitan Airport (blue), 
Fresno Yosemite International Airport (teal), and Bakersfield Municipal Airport (green) were used 
to determine visibility. 
 
 



 

   

Table 9. Total fog-related accidents, fog hours (visibility ≤ 650 m), rate of accidents per fog hour per fog season (NDJFM), 1996-2016 

  
Sacramento  Stockton Fresno Bakersfield 

Year Accidents Fog 
Hours Rate Accidents Fog 

Hours Rate Accidents Fog 
Hours Rate Accidents Fog 

Hours Rate 

1996-97 107 55 1.95 110 95 1.16 190 155 1.23 103 105 0.98 

1997-98 111 97 1.14 133 193 0.69 233 219 1.06 117 107 1.09 

1998-99 174 140 1.24 181 196 0.92 293 224 1.31 143 112 1.28 

1999-00 54 51 1.06 86 132 0.65 74 33 2.24 42 8 5.25 

2000-01 184 202 0.91 223 272 0.82 250 160 1.56 89 58 1.53 

2001-02 104 94 1.11 176 176 1.00 229 145 1.58 149 101 1.48 

2002-03 195 169 1.15 210 250 0.84 279 232 1.20 239 193 1.24 

2003-04 84 93 0.90 106 154 0.69 153 60 2.55 76 53 1.43 

2004-05 308 211 1.46 248 220 1.13 263 204 1.29 174 154 1.13 

2005-06 73 87 0.84 112 123 0.91 233 164 1.42 95 68 1.40 

2006-07 68 65 1.05 50 59 0.85 94 67 1.40 52 25 2.08 

2007-08 39 58 0.67 69 58 1.19 158 74 2.14 66 19 3.47 

2008-09 124 150 0.83 148 221 0.67 199 131 1.52 104 78 1.33 

2009-10 82 116 0.71 73 113 0.65 92 119 0.77 83 91 0.91 

2010-11 105 112 0.94 125 203 0.62 151 157 0.96 86 88 0.98 

2011-12 80 105 0.76 100 148 0.68 85 79 1.08 39 29 1.34 

2012-13 38 52 0.73 37 83 0.45 74 68 1.09 25 11 2.27 

2013-14 4 16 0.25 7 32 0.22 14 4 3.50 4 2 2.00 

2014-15 123 147 0.84 112 217 0.52 204 181 1.13 110 97 1.13 

2015-16 47 41 1.15 52 71 0.73 61 49 1.24 33 23 1.43 

sum 2104 2061 - 2358 3016 - 3329 2525 - 1829 1422 - 

mean 105 103 1.0 118 151 0.8 166 126 1.5 91 71 1.7 
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Table 10. Percentage of fog-related accident categorized by five severity levels, 1996-2016a 
            

County 
Property 

Damage Only 
(%) 

Minor Injury 
(%) 

Visible Injury 
(%) 

Severe Injury 
(%)  

Fatal              
(%) 

Sacramento 57.1 25.1 13.1 3.4 1.3 
San Joaquin 63.5 20.4 11.4 2.5 2.3 
Fresno 58.2 23.3 13.2 3.3 2.0 
Kern 63.6 18.7 14.1 2.1 1.6 

Total 62.1 20.2 13.1 2.9 1.7 
afog seasons of 2001-02 to 2005-6 not included       
btotals reported for district 3, 10, 6         
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Figure 13. Hourly visibility during all fog-related accidents in Sacramento, San Joaquin, Fresno, 
and Kern County, distributed by the severity of the accident as defined by the police accident 
reports. Red line indicates the median. Bottom and top edges of box indicate the 25th and 75th 
percentiles. Black dotted line (whiskers) extend to the most extreme data points not considered 
outliers. Red + symbol indicates outliers if they are greater than q3 + w × (q3 – q1) or less 
than q1 – w × (q3 – q1), where w is the maximum whisker length, and q1 and q3 are the 25th and 
75th percentiles of the sample data, respectively. NCDC data for Sacramento Executive Airport, 
Stockton Metropolitan Airport, Fresno Yosemite International Airport, and Bakersfield Municipal 
Airport were used to determine visibility. 
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Figure 14. Temporal trends (1996-2016) in fog-related accident of different severities per fog 
season (NDJFM), as defined by police accident reports from the four primary counties: 
Sacramento, San Joaquin, Fresno, and Kern. 
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Figure 15. Temporal trend (1996-2016) in fog-related accident of different severities per fog 
season (NDJFM), as defined by police accident reports from the four primary counties: 
Sacramento, San Joaquin, Fresno, and Kern. 
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Table 11. Trends in county accident severity, 1996-2016        
              

County Sacramento 
(%) 

San 
Joaquin 

(%) 

Fresno      
(%) 

Kern            
(%) 

  

All 
Districts 

(%) 

Property Only  - -66 -64 -63   -61 
Minor - - -78 -   - 
Visible Injury  -73 -65 -84 -93   -83 
Severe - - -78 -   -70 

Fatal  - - - -   - 
              

only significant trends (p < 0.05) reported         
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Figure 16. Temporal trend (1996-2016) in annual number of injuries from fog-related accidents, 
summed for the fog season of NDJFM, for the districts of 3, 10, 6. Fog seasons of 2001-2002 to 
2005-2006 not included due to questionable reporting in police accident reports.  
 
 



 

   

Table 12. Percent frequency of number of collisions per accident, 1996-2016         
  

1 collision 
(%) 

2 collisions 
(%) 

3 collisions 
(%) 

4-6 
collisions 

(%) 

7-10 
collisions 

(%) 

11-15 
collisions 

(%) 

16-20 
collisions 

(%) 

21-30 
collisions 

(%) 

> 31 
collisions 

(%) 
  
1996 32.4 57.4 7.6 2.5 0.1 0.0 0.0 0.0 0.0 
1997 35.3 56.1 6.6 1.5 0.4 0.2 0.0 0.0 0.0 
1998 29.8 61.4 6.6 1.7 0.1 0.3 0.0 0.0 0.0 
1999 30.2 59.2 8.1 2.3 0.2 0.0 0.0 0.0 0.0 
2000 31.2 59.8 7.1 1.8 0.1 0.0 0.0 0.0 0.0 
2001 - - - - - - - - - 
2002 - - - - - - - - - 
2003 - - - - - - - - - 
2004 - - - - - - - - - 
2005 - - - - - - - - - 
2006 39.2 54.8 5.5 0.6 0.0 0.0 0.0 0.0 0.0 
2007 31.1 59.5 6.7 2.3 0.0 0.1 0.0 0.0 0.1 
2008 34.3 57.6 5.9 1.7 0.3 0.1 0.0 0.0 0.0 
2009 38.1 55.1 5.4 1.1 0.2 0.2 0.0 0.0 0.0 
2010 41.8 50.9 6.1 1.0 0.2 0.0 0.0 0.0 0.0 
2011 35.8 56.4 6.4 1.2 0.2 0.0 0.0 0.0 0.0 
2012 39.2 49.8 8.4 2.7 0.0 0.0 0.0 0.0 0.0 
2013 40.0 48.0 7.0 4.0 1.0 0.0 0.0 0.0 0.0 
2014 39.2 52.2 6.6 1.8 0.1 0.0 0.0 0.0 0.0 
2015 32.8 57.7 8.1 1.4 0.0 0.0 0.0 0.0 0.0 
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Chapter 5 
 
Conclusion 
 
1. Summary  
 
Fog frequency has been changing substantially in many places around the world over the past 
century. Understanding the drivers of changing fog trends has important health, safety, and 
ecological implications. In this dissertation, I presented a rigorous investigation of the drivers 
causing trends in Central Valley wintertime radiation fog frequency and duration. I compiled a 75-
year fog climatology spanning 15 sites which includes data on visibility, fog frequency, fog 
duration, climate variables, and air pollution variables. Using linear regression to categorize trends 
and Fourier transformation to investigate the periodicity, I identified the drivers of short-term and 
long-term variability to elucidate the cause of increasing fog frequency from 1930-1970, followed 
by rapid decline after 1980. The spatial and temporal trends in NOx concentration, as a proxy for 
ammonium nitrate aerosol, best explains the spatial and temporal trends in annual fog events, 
whereas meteorological variability correlate better with the interannual signals in the fog record. 
The novel conclusion that reductions in Central Valley fog frequency were mainly driven by 
legislated reductions in air pollution since the Clean Air Act of 1970 took effect was of tremendous 
scientific and public interest.  
 
To further understand the climatic and pollution variables contributing to fog formation and their 
relative impact on daily timescales, I continued on a more detailed analysis of the Central Valley 
and contrasted the results with the Po Valley, which experienced a similar decline in fog frequency 
and air pollution since 1980. I found that a majority of the variance in low visibility, as an indicator 
of dense fog, is explained by low dew point depression, high NOx concentration, low wind speed, 
and precipitation. While dew point depression is the strongest driver of daily variability, the large 
impact of NOx concentration on the visibility response shows that rapid declines in both valleys 
(61-65%) has had a critical impact on the diminished fog season since 1980. This demonstrates an 
unexpected way that regulatory measures to mitigate pollution emissions had important impacts, 
not only on the health outcomes of those potentially exposed, but also through co-benefits in 
reducing fog frequency that was anthropogenically enhanced by air pollution.  
 
To further understand the safety implications of reductions in air pollution and fog frequency, I 
analyzed a 20-year record of fog-related accidents in the Central Valley. The results show that over 
80% of the variance in the fog-related accident record was determined by annual number of fog 
events. As fog frequency decreased, the valley experienced a 72% reduction in fog-related accident 
injuries, annually seeing an average of 550 fewer injuries in 2015-2016 than 1996-1997. The 
strong link between the historical number of Central Valley fog events and trends in pollution 
concentration provide a direct measure of how regulations that led to decreases in aerosol 
concentration, and thereby wintertime fog frequency, also resulted in a declining trend in fog-
related accidents.   
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2. Future directions 
 
2.1. Extend radiation fog analysis to regions of increasing air pollution 
 
Valley radiation fog occurs throughout the world and varied trends in frequency have been 
observed depending on the location, with trends generally following changes in air pollution. 
Future analyses should focus on determining a more fundamental relationship between 
anthropogenic emissions and dense radiation fog trends by extending this work to regions of 
increasing pollution. For instance, regions with concurrent increases in pollution and fog frequency 
have been identified in India, Pakistan, Bangladesh, and throughout East-Central China (Fu et al., 
2014; Mohan & Payra, 2009; Niu et al., 2010; Quan et al., 2011; Shi et al., 2008; Tiwari et al., 
2011). Many studies focus on observations made over a limited period of time (weeks to months), 
making it challenging to determine long-term causes. Using the National Climate Data Center 
repository for hourly airport observations (http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd), 
future analyses can access meteorological data from airports in countries throughout the globe. 
Global guidelines for measuring visibility, which is the standard indicator of dense fog events, 
allow for standardized trends in regional fog frequency to be determined. Accessing local air 
pollution data poses a greater challenge, since many countries do not have publicly available data 
sources or have only recently begun implementing air quality monitoring programs. Instead, future 
analyses could use satellite retrievals to determine remotely sensed trends in air pollution 
observations. Hilboll (2013) presents a methodology for estimating the NO2 column trend of a 
region by combining retrievals from GOME (Global Ozone Monitoring Experiment) and 
SCHIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY), 
despite their differing spatial resolution, viewing geometry, and time of measurement. Together 
with climatology data from the National Climate Data Center, future analyses should investigate 
the temporal and spatial correlations of each region’s fog trend to the possible predictor variables 
discussed in this dissertation. Relationships between predictor variables can then be contrasted 
with the results here, as well as compared with a pristine environment with little pollution trend 
and known radiation fog occurrence. The challenge will be finding a pristine location that also has 
sufficiently long-term airport visibility measurements. Another important requirement is to limit 
this work to radiation fog. Past reviews of fog trends frequently consider declining trends in 
radiation, advection, and radiation-advection fog altogether, without considering how differing 
mechanisms, such as advection fog’s dependency on sea surface temperatures and synoptic-scale 
systems, impact the driving components of the trend. 
 
2.2. Investigate the competing impact of urbanization and air pollution 
 
While there exist regions of both increasing fog formation and increasing air pollution, there are 
also many examples of urbanization limiting fog by way of the urban heat island (UHI) effect 
(Sachweh and Koepke, 1995; Sachweh and Koepke, 1996; Underwood et al., 2008; Shi et al., 
2008). Current literature regards the aerosol enhancement and UHI effect as contradictory 
hypotheses; however, future analyses should investigate an alternative approach whereby these 
effects instead coexist in competition. I hypothesize that there is some threshold whereby the 
increase in temperature due to urban heat storage overshadows the impact of a rapid growth in 
hygroscopic CCN for fog formation. The competition between temperature and composition has 
received recent attention in model analysis (Klemm et al., 2016), but would benefit from a robust 
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study of surface measurements. One place to begin would be to investigate this varied response by 
identifying rapidly developing regions, such as in the North China Plain, within which some cities 
experience the dominating UHI effect (decreasing fog), while others demonstrate a dominating 
aerosol effect (increasing fog). Comparing the temporal trends in meteorology and aerosol 
concentration may reveal key characteristics responsible for the UHI-dominating versus aerosol-
dominating response.  
 
Preliminary analysis of UHI in the Central Valley demonstrates that the response to urban 
temperatures is not well understood. While Underwood (2008) identified urban clear islands (UCI) 
in radiation fog from satellite observations, suggesting that dissipation rates in cities are markedly 
faster than rural environments, my own analysis in Sacramento shows urban airports had higher 
fog frequency than adjacent, more rural regions. This ongoing investigation requires more 
attention to the back-trajectory of pollution plumes, as the rural regions may have unforeseen 
higher concentrations of precursor emissions than estimated by its proximity to the city center. 
Additionally, information on changes in surface roughness, surface porosity, distance to water 
sources such as rivers, and microclimates within urban and suburban regions could be useful.  
 
Shi (2008) investigated this sensitivity in the Anhui Province of China and proposed that the fog 
frequency declined in older cities due to the UHI effect, while the fog frequency increased in newer 
cities as a result of increasing aerosol concentration. New cities were defined as those with smaller, 
but growing populations whereas old cities were ones that once developed rapidly both in area and 
population, but have leveled out. This would support the idea that after a certain threshold of 
expansion, the temperature rise from UHI makes the atmospheric environment inhospitable to 
condensation despite increasing aerosol concentration.  
 
Studies for other regions of China show conflicting rates of increase and decrease for fog frequency 
than that of Anhui Province, suggesting that its results may not be true of all areas. For instance, 
Fu (2010) found that in some sites, rapidly increasing urban expansion decreased wind speed 
within the urban footprint, thus promoting fog frequency. Ideally, a multivariate model that 
accounts for aerosol loading, climate, urban density, and land use is necessary to fully understand 
the sensitivity of this potential threshold. Understanding the competing role of UHI and aerosol 
concentration on fog formation would provide important insights into future fog trends, 
particularly in developing countries, many of which have experienced significant productivity and 
economic consequences from the frequency of dense fog in recent decades. 
 
2.3. Expand understanding of water availability: role of precipitation, soil moisture, and 
boundary layer height 
 
Future analyses could also examine conflicting literature for how moisture sources 
thermodynamically impact fog formation.  

In this dissertation, the role of wintertime precipitation in the Central Valley – where the majority 
of annual rain events come in 9-10 large systems, between which conditions are calm and sunny – 
remains somewhat uncertain. In Chapter 2, annual sums in precipitation, as well as the signal of 
the El Nino Southern Oscillation index, were investigated for their correlation to fog trends. 
Chapter 3 also analyzed precipitation by investigating the impact that daily precipitation, as well 
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as 1- and 2-day lags after rain events, had on low visibility. Unexpectedly, the impact was minor, 
despite the known reliance of fog formation on supersaturated conditions from some local water 
source. Thus, additional exploration of the role that duration, intensity, and periodicity California’s 
wintertime storm systems have on fog formation would likely yield interesting results. This would 
involve categorizing winters by number and severity of storms to investigate the correlation with 
annual number of fog days. 

Precipitation ultimately impacts soil moisture, and yet the significance of soil moisture to radiation 
fog formation remains debated. Some suggest that it increases the nighttime heat conductivity of 
the soil, thus decreasing radiative cooling and decreasing diurnal temperature range (Bergot et al., 
1994). Others argue that fog frequency is sharply enhanced by soil moisture, causing formation to 
begin directly from the surface due to the abundance of water (Sierbert et al. 1992). This 
relationship can be further explored by isolating the conditions most frequent for fog events, and 
then analyzing how changes in soil moisture impacted the rate of formation, similar to the analysis 
done in Chapter 2. Data for soil moisture can be found dating back to 1982 using the California 
Irrigation Management Information System (CIMIS).  

Boundary layer height is also sensitive to changes in soil moisture, in which high soil moisture is 
associated with a lower PBL because greater energy flux is in latent rather than sensible heat, and 
thus not driving upward convection (Bianco et al., 2011). Changes in boundary layer height could 
have a significant impact on not only fog formation, but also CCN number concentration. 
Reanalysis tools, such as NASA’s Modern Era-Retrospective Analysis for Research and 
Applications (MERRA), now offer the opportunity to determine mixing height through historical 
reprocessing of conventional data and satellite retrievals (Rienecker et al., 2011). Trends in mixing 
height can then be compared to the spatial and temporal signature of Central Valley fog frequency 
to identify its influence on formation. Reanalysis tools can also be used to further elucidate the 
impact of the Great Basin High, which is often cited as having controlling influence on inversion 
layer depth in the valley, though the literature provides little numerical support for this assertion.  

2.4. Investigating impact of trends in aerosol speciation on the water activity coefficient 
 
This dissertation focused primarily on the precursors to aerosol formation due the longer length of 
record. However, since the mid-2000s, the California Air Resource Board has data on the chemical 
speciation of aerosols. Future analyses could look at how changes in aerosol speciation impact fog 
formation using the  Extended Aerosol Thermodynamics Model (E-AIM) 
http://www.aim.env.uea.ac.uk/aim/aim.php). This simple, publicly-available model, when 
inputted with the humidity and temperature of a known Central Valley winter event, determines 
aerosol water uptake. Adjustments can then be made to NO3-, NH4+, and organic species over 
varying concentrations as seen in the record to model changes in the water activity coefficient. 
Model results would allow researchers to determine the response of Central Valley conditions to 
aerosol hygroscopicity, temperature, and relative humidity trends. Another important outcome 
would be to further investigate how trends in biomass burning impacted fog formation, as there 
remains uncertainty in the literature about how this mix of inorganic and organic emissions would 
impact fog CCN and aerosol activation. For example, wintertime rice burning was a common 
occurrence until state legislation in 1990 and 2000 forced a change in methods, resulting in 
significant decreases in NOx, volatile organic compounds, and particulate matter (Blank et al., 
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1993). The results of these changes on fog formation have yet to be addressed in the literature and 
could be used to support air quality legislation.  
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