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Abstract: Each year, millions of Americans experience energy insecurity, or the inability to afford 
enough energy to meet their basic needs. This study evaluates whether residential rooftop solar can 
serve as a preventative solution to energy insecurity among low-to-moderate income households. Using 
a national, matched sample of solar and non-solar households, based on detailed and address-specific 
data, we find that solar leads to large, robust, and salient reductions in five indicators of energy 
insecurity. Moreover, the benefits of solar “spill over” to improve a household’s ability to pay other 
energy bills. The results suggest that rooftop solar may be an effective tool for policymakers who seek 
to reduce energy insecurity. 

Introduction 
Energy insecurity–or the inability to secure sufficient energy for one’s needs–impacts millions of U.S. 
households each year. Researchers often measure energy insecurity by households that report being 
unable to pay their bills, maintain comfortable temperatures, or avoid utility disconnection; according 
to the Energy Information Administration’s (EIA) most recent Residential Energy Consumption Survey 
(RECS), around 33 million households experience energy insecurity in the United States.1 Households 
facing energy insecurity often resort to coping strategies to limit their energy expenditures to avoid 
forgoing other household necessities and reduce the threat of utility disconnection.2 These strategies 
include keeping homes at uncomfortable and potentially dangerous temperatures3,4 and choosing 
between adequately heating homes or purchasing enough food for adequate nutrition, referred to in 
the literature as the “heat or eat” dilemma.5 

Scholars have identified several leading predictors of energy insecurity, including inefficient housing 
conditions, household race and ethnicity, income, and having vulnerable populations in the home, such 
as young children or medically compromised individuals.6–8 Furthermore, research finds that energy 
insecurity is a chronic condition for many. Households that experienced energy insecurity once—such as 
struggling to pay their bills or facing utility disconnection—are more likely to face these situations on a 
recurring basis, even after controlling for other observable predictors of energy insecurity.9 In other 
words, past energy insecurity can lead to future energy insecurity, and these conditions may yield a 

perpetual cycle that is difficult to break. 

Despite the cyclical nature of energy insecurity, most strategies identified in the literature that relieve 
energy hardship primarily provide short-term relief to individuals and households, rather than seek to 
prevent insecurity from reoccurring in the future. For example, existing policy mechanisms to address 
energy insecurity include bill assistance from the government, such as that provided by the Low Income 
Home Energy Assistance Program (LIHEAP),10 bill payment plans offered by utilities,11 and protections 
from disconnections.12–14 To date, the main preventative solution that has been studied is 
weatherization assistance, in which income-qualified households receive energy efficient upgrades and 
home sealing and insulation.15 Because weatherization improves the quality of the home, it can act as a 
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long-term reduction in the household’s energy use and utility bills, thereby increasing the likelihood the 
household is able to meet their energy needs in the future. 

An additional preventative solution that has not been well-studied in the energy insecurity literature is 
rooftop solar. Like weatherization, solar panels reduce the amount of electricity a household purchases 
from the utility, creating a long-term decrease in their utility bills.16–18 In addition, because a solar array 
is typically sized to generate around 80-100% of a household’s annual electricity use, the decrease can 
be quite large. As policy solutions, both weatherization and rooftop solar create split incentive problems 
for renters and may require supporting policy measures to effectively reach low-income individuals who 
do not own their home.19 While the potential impact of rooftop solar on energy insecurity has been 
broadly theorized in the literature,7 empirical analysis that demonstrates its efficacy is lacking. To our 
knowledge, the only study that directly analyzes the impact of solar on energy insecurity is Riley et al.,20 
which explores changes in service disconnections among a small group of solar adopters in rural 
Australia. The study finds that voluntary service disconnections—an energy insecurity coping strategy—
were common in the population before solar adoption but completely absent post-adoption.  

In a parallel literature, we note that recent research has established that rooftop solar can reduce 
energy burden, defined as the percentage of income dedicated to energy expenses, and that larger 
percent reductions are observed among households with low-to-moderate incomes even while taking 
the cost of adoption into account.21 Our study on the effect of rooftop solar on energy insecurity directly 
complements this work in three ways. First, energy insecurity questionnaires are able to identify 
households that employ behavioral responses to afford their bills, such as rationing energy use, which 
can mechanically lead to a lower and misleading estimate of energy burden. Second, energy insecurity 
measures qualitative dimensions of hardship, such as health and physical comfort in the home. Finally, 
because we obtain data on energy insecurity via survey, we are able to obtain self-reported socio-
economic information from households, in contrast to the estimated demographic variables used in 
prior research such as Forrester et al.21 Understanding the effect of rooftop solar on both metrics thus 
provides complementary evidence for policymakers who seek to alleviate hardship.22  

In this paper, we evaluate whether installing solar affects energy insecurity in the US. We do so in a 
large, national sample of 2,618 households across 35 states, and we collect data on five measures of 
energy insecurity to provide a complete picture of how rooftop solar affects households’ experiences. 
Our sample is comprised of primarily low-to-moderate income (LMI) households, who are more likely to 
experience energy insecurity and the target population of most policy interventions.7 Using data from 
Lawrence Berkeley National Laboratory, CoreLogic, and Experian, we create a matched sample of 
primarily LMI households with and without solar in the United States and compare their self-reported 
experience of energy insecurity through an original survey. The design of our study enables us to 
estimate a plausibly causal effect of solar adoption on the incidence of energy insecurity. We find that 
rooftop solar adoption reduces energy insecurity across all five measures in the analysis. With solar, 
households are better able to pay their energy bills; less likely to receive a disconnection notice, reduce 
their energy consumption or forgo expenses to afford energy bills; and more likely to keep their home at 
a comfortable temperature. The effects are precisely estimated and robust to multiple sensitivity tests. 
Given this evidence, we propose that rooftop solar can be considered an effective, preventative solution 
to energy insecurity—providing an additional tool for policymakers seeking to address the issue. 

Characteristics of survey respondents 
From January to March 2023, we sent surveys on experiences of energy insecurity to a matched, 
national sample of primarily LMI households with and without solar installed on their homes. Central to 
our research design is the similarity of solar and non-solar households: we use a robust series of data 
sets to identify households without solar that can serve as the counterfactual for households with solar. 
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In other words, non-solar households benchmark the levels of energy insecurity that solar households 
would have felt, but for the installation of solar panels. Our design enables us to estimate an unbiased, 
plausibly causal treatment effect if the two arms of the survey are sufficiently similar, on average, across 
characteristics predictive of adopting solar panels and experiencing energy insecurity. 

Among the 2,608 respondents in our main sample, we find no major differences within demographic 
and housing characteristics of solar and non-solar households, as we show in Table 1. We assess balance 
using a standardized mean difference, Cohen’s d (Methods). The units of Cohen’s d are standard 
deviations, such that a value of 0.10 indicates that solar and non-solar mean are 0.10 standard 
deviations apart. We selected this statistic because, unlike a t-test, it is a property only of the sample 
and not a function of sample size.23 In the matching literature, a common rule of thumb is that the 
means of covariates should fall no more than 0.25 standard deviations apart.23–26  

Table 1 shows that solar and non-solar respondents are balanced across mean age, gender, number of 
individuals in the household, race, age of the home, estimated electricity price, and state. For 
characteristics where we observe a small statistical difference among respondents, solar households are 
more likely to earn above $150,000 per year, to have attended graduate school, and to own and live in 
larger houses. However, the standardized mean difference for all covariates falls below 0.25, and only 
one (square footage) is above 0.20. This suggests that any small differences in observed characteristics 
between survey arms, such as income, can be appropriately adjusted for using covariates in a 
regression.25 Finally, while the sample contains respondents from 35 states, most of the sample resides 
in California, Florida and Texas, reflecting the relatively large sizes of the residential solar markets in 
these regions. Within states, nearly all (90%) of the sample is located in counties where there are both 
solar and non-solar respondents, as illustrated in Figure 1.  

The effect of solar on energy insecurity 
We find that solar reduces energy insecurity in LMI households across a range of measures, presented in 
Figure 2 and Table 2. For each outcome, the survey questions prompted respondents to report 
incidence over the prior three months; because households responded between January and March, our 
survey captures household experiences of energy insecurity during the late fall and early winter months. 
The intercept of the model is the average incidence of the outcome among non-solar households. In our 
sample, 13.3% of non-solar households report being unable to pay an electricity bill; 8.0% received a 
disconnection notice due to nonpayment of an electricity bill; 74.1% reduced their consumption to save 
money on an energy bill; 22.6% reduced or forwent expenses for basic household necessities, like food 
or medicine, to pay an energy bill; and 33.1% always or often kept their home at an uncomfortable 
temperature.  

The coefficient on solar represents the absolute change in likelihood that a household experiences a 
given measure of energy insecurity, after installing solar; all outcomes are binary and the regression is 
specified as a linear probability model. Normalizing the coefficient by the incidence in the control arm 
provides the percentage change in how often the outcome occurs with solar. Our results suggest that 
solar leads to a 5.9 percentage point reduction in the likelihood an individual is unable to pay their 
electricity bill (44% less often, relative to the control arm); a 3.7 point reduction in the likelihood they 
receive a disconnection notice (46% less often); an 11.2 point reduction in the likelihood they reduce 
their energy consumption to save money on energy costs (15% less often); a 7.6 point reduction in the 
likelihood they forgo expenses on household necessities to pay an energy bill (34% less often); and a 6.6 
point reduction in the likelihood their home is kept at an uncomfortable temperature (20% less often). 
All coefficients are significant at the 1% level, with standard errors clustered at the state level. 
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The magnitude and precision of these coefficients is unaffected by the inclusion of all available 
demographic and housing characteristics for each household as covariates, shown in Figure 2 (“Main, 
with Covariates”) and Table 3. This suggests that our treatment effects are unlikely to be driven by a 
small difference in observed covariates between solar and non-solar households. However, a limitation 
of this approach is that it implicitly makes a structural assumption about the relationship between the 
covariates and the outcome (i.e., that it is linear). In the Supplementary Table 2, we show that the 
treatment effect estimates are robust when we add flexibility to the model and include the estimated 
propensity score as the covariate. In addition, we find no meaningful difference in the treatment effect 
estimates when re-weighting the control arm, using inverse propensity score weights, to better mirror 
the observed distribution of characteristics among solar respondents (Supplementary Table 3). Details 
regarding both specifications are provided in the Methods section. Finally, we show that the effects are 
not sensitive to unobservables at the county-level by including a county fixed effect in Supplementary 
Table 4. 

The estimated treatment effects of solar on energy insecurity are further robust to several alternate 
sample definitions, presented in Figure 2. First, we add respondents from our pilot survey (“With Pilot 
Respondents”; Supplementary Table 5) and include recategorized households that self-reported having 
or not having the technology (“Recategorize”; Supplementary Table 6). These “miscategorized” 
households are dropped in our main specification (Tables 2 and 3; Methods). Second, we impose a 
stricter requirement for comparability at the sub-state level by limiting respondents to those counties 
where we have replies from both treatment and control households (“Counties with Both”; 
Supplementary Table 7). Finally, we test whether our effects are driven by higher income individuals by 
excluding respondents who self-report income above 110% of AMI (“Drop High Income”; Supplementary 
Table 8). To be conservative, all regressions on the alternate samples include covariates. The magnitude 
of the treatment effects, across alternative samples, remain stable. Some precision is lost in the 
specification without higher income households, which we attribute to the reduction in sample size 
(N=1061), but we note that the estimated effect of solar on two of the outcomes (ability to pay 
electricity bill and to keep a comfortable temperature in the home) is larger for the lower-income 
households in the sub-sample. 

While the direct benefits of solar are limited to electricity bills, we also find evidence that the benefits of 
solar “spill over” to enhance a household’s ability to pay other types of energy bills. For example, among 
those households with both natural gas and electricity service, we find that solar is associated with a 4.3 
percentage point decrease in the likelihood of being unable to pay a natural gas bill, as presented in 
Table 4 without covariates and Supplementary Table 9 with covariates. This is equivalent to a 43% 
reduction over the mean incidence of 10% in the control arm. 

Heterogeneity by how households pay for their solar panels 
We expect that the amount a household saves on electricity expenditures, after installing solar, will 
mediate the magnitude of the effect of rooftop solar on energy insecurity. While we do not observe 
savings for solar households directly—which requires data on a household’s solar production, electricity 
usage, and electric utility tariff, pre- and post-solar—we do ask respondents to recall information on the 
economics of their solar system and how much they typically pay for electricity. These results are 
presented in Supplementary Table 10 and Table 5, respectively. Supplementary Table 10 shows that 
majority of households (54%) claimed the federal investment tax credit (ITC) on their purchase, though 
our questions on the receipt of incentives had a high rate of non-response (38%). Most households 
report paying for their installations over time using a loan (40%) or a lease (16%), and a minority report 
receiving their panels through an incentive program (9.6%). These responses indicate that the LMI 
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households in our sample primarily paid for their solar panels through private investment, similar to the 
overall rooftop solar market.  

Table 5 shows that households with solar report spending about $65 less per month on electricity, which 
is 36% lower than the control mean of $183. On first glance, the magnitude of electric utility bills for 
solar households may appear to be high. Because rooftop solar systems are typically sized to produce or 
offset 80-100% of a household’s annual average electricity use, we anticipate a similar reduction in 
electric utility bills, after going solar. (We note that the actual reduction depends on both the rate 
structure of the utility tariff and state-specific net metering policy, and savings can be reduced by the 
use of fixed fees or demand charges.) Our reported difference (38%) is lower and aligns, instead, with 
the expected monthly savings: households pay less to the utility but add an additional loan or lease 
payment to pay for their installation. As a result, we believe households may have reported their bills 
inclusive of solar lease or loan payments, in response to our survey question (“How much are your 
average monthly bills for electricity?”). 

Finally, in Table 6, we explore if the way in which a household financed their solar panels moderates the 
effect of solar on energy insecurity. We categorize households into three groups: those who report 
paying for their system upfront; those who pay monthly, via a lease or a loan; and an other category, 
such as households who did not respond to the finance questions or reported receiving their installation 
for free. Because financing structure (upfront or monthly) affects how solar impacts household cash 
flows in the near-term and total savings in the long-term, there is strong reason to expect the effect of 
solar on energy insecurity may vary across these groups. Formally, we include F-tests to assess if the 
treatment effects are statistically different between adopters that paid upfront or monthly for their 
panels.  

Interestingly, our results are mixed. We observe no difference in the effect of solar by payment timing in 
three of the five energy insecurity outcomes, but in two–the likelihood a household reduces 
consumption (column 3) and that they forgo expenses (column 4)–we find upfront customers perceive 
significantly different and larger effects of solar. This may run counter to intuition; to pay upfront, a 
household must make a large, one-time investment that can take years to be recouped through bill 
savings. That solar is associated with greater reductions in certain energy insecurity measures for these 
households may suggest that the monthly cash flows, after installing solar, could influence households’ 
felt experience of energy insecurity. For example, households who pay monthly will typically save 
money immediately, with no money down, but they also add a new loan or lease bill, after going solar. 
In contrast, households who pay upfront experience only reductions in their electricity bills, on a 
monthly basis, once the large initial payment has been made. 

One concern about these findings is that households who pay upfront may be, on average, wealthier 
than households who pay monthly, confounding our estimate of the effect of solar. While we do find 
that a larger share of households who report paying for their system upfront also self-report income in 
the highest bracket of more than $150,000 per year (Supplementary Figure 1), we note that the results 
in Table 7 include income as a control and that the results are consistent when we exclude households 
with the highest incomes from the sample (Supplementary Table 11). Both suggest that the choice of 
payment mechanism influences the effect of solar on a household’s likelihood to reduce consumption or 
to forgo expenses. However, because we had a high rate of non-response on the financing questions 
overall, we caution that the results in Table 7 should be viewed as suggestive and preliminary findings.  

Discussion 
Using address-specific data on solar adoption and housing characteristics along with estimated, 
household-level demographics, we created a matched sample of primarily LMI households with and 
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without solar power across 35 US states. Households across our survey arms are similar across a large 
range of characteristics, including geography, income, race, education, family size, gender and 
household type. The strong balance across observable characteristics supports a plausibly-causal 
interpretation and provides empirical evidence on the effect residential solar on U.S. household energy 
insecurity to the literature. 

We find that the installation of solar panels leads to large decreases in households’ experience of energy 
insecurity. Solar households are 44% less likely to report being unable to pay their electricity bills, 46% 
less likely to receive a disconnection notice from their electricity provider, 15% less likely to reduce their 
energy consumption to save money on energy costs, 34% less likely to forgo necessary expenses to pay 
an energy bill, and 20% less likely to keep the home at an uncomfortable temperature. These effects are 
robust to different model and sample specifications. We further find that the effect of solar spills over 
from electricity and improves a household’s ability to pay their natural gas bills. 

Future research can expand our findings in several directions. First, our survey captured household 
energy insecurity during the early winter, with a sample weighted towards warmer climates, such as 
California, Texas and Florida. However, energy insecurity in these regions is likely higher during the 
summer, when air conditioning leads to greater energy expenditures. Similar to energy demand, solar 
generation also varies with the weather and time of year, with generation peaking in the summer 
months. As a result, it is possible that our estimated effects based on a winter survey understate the full 
annual reduction in energy insecurity due to solar in these regions. Future work may seek to quantify 
how the effects of solar on energy insecurity varies over the course of the year or across regions. 

Second, the effects of solar on energy insecurity may also vary the longer a household has the 
technology installed. We effectively measure the near-term impact of solar soon after households 
adopt. Our survey was administered in early 2023, and all solar households installed their panels in 
2021. Long-term effects may vary for several reasons: household energy usage can increase after 
installing solar27,28, solar panel production degrades about 0.5% per year, and up-front installation costs 
for panel owners can affect near-term perceptions of energy insecurity, to name just a few. Further 
research is needed to establish if the effects we measure are indicative of a long-term, persistent 
reduction in energy insecurity among adopting households. 

Third, the treatment effect of solar on energy insecurity may also vary with the dose of savings achieved. 
This directly relates to policy considerations, due to the role of incentives in how much a household pays 
for a solar installation. For example, most households in our sample report financing their system 
privately using a lease, loan or by paying upfront. In contrast, some states and local governments offer 
free or heavily subsidized solar installations to LMI households.29 Interestingly, we do not observe a 
different effect of solar on three out of five energy insecurity outcomes between households who paid 
upfront versus monthly. However, the results are preliminary and mixed. Further research is needed to 
understand the degree to which reductions in energy insecurity are sensitive to the magnitude of 
financial savings with solar, in order to inform policymakers who seek to design cost-effective 
interventions. In addition, policymakers focused on energy insecurity may also be interested in the 
specific effect of rooftop solar among the most economically vulnerable households, relative to the 
distribution of incomes captured in our sample. Due to the small share of the most economically 
vulnerable households among existing solar adopters, future work may seek to use a different research 
design, such as a randomized control trial, to explore the specific treatment effect in this sub-group. 

Finally, we note that our results are specific to the policy and technology context at the time of the 
survey. Several broader trends within the U.S. energy system—such as changes to rate design and net 
metering policy,30 as well as electrification31—can affect both the savings from rooftop solar adoption 
and the incidence of household energy insecurity. Similarly, while solar-only systems compose most of 
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our sample (94%), growing shares of households are adopting solar plus storage systems. (We did not 
include a question about storage on our survey, due to space constraints. Instead, we can infer which 
households have storage using the Tracking the Sun database; we consider the value an estimate 
because the storage variable is not reported by all regions. We find that 100 of our solar respondents, of 
which 64 are in California, had both solar and storage installed. This is equivalent to 6.1% of the solar 
arm in the main sample.) It is likely that solar plus storage systems affect energy insecurity differently 
than solar-only systems, due to the added up-front costs of batteries, the potential for additional bill 
savings for households in certain regions, and the ability of solar-plus-storage systems to provide back-
up power during outages while solar-only systems cannot. The connection between an increase in 
power outages related to extreme weather,32 subsequent changes to energy insecurity, and possible 
technological trends, such as the rise of solar plus storage, is not well-understood and could be fruitful 
to explore. 

Overall, our results reveal that rooftop solar is a potentially effective solution to reducing energy 
insecurity. As an intervention, solar is distinct from measures such as bill assistance and utility 
disconnection protections, which focus on families already experiencing hardship and do not address 
the underlying causes of energy insecurity. Rooftop solar is perhaps most similar to weatherization 
because both reduce net load for the home and thus act as a preventative solution to energy insecurity. 
With solar, households reduce the electricity they purchase from the utility by the amount of solar 
electricity consumed by the home, as well as receiving credits for solar generation exported to the grid, 
resulting in savings on utility bills through the lifetime of the solar system. However, a solar array will 
typically be sized to offset a larger share of a household’s energy usage, on the order of 80-100%. Solar 
panels are also likely to come at a higher cost than weatherization, on the order of $25-29,000 before 
incentives. (We note that wealthier households tend to install larger solar systems33. The estimate here 
assumes a system size of 6.1-6.8 kW, which represent the median system size for individuals earning less 
than $50k and $50-100k per year, respectively, across all states in 202233. The size is then multiplied by 
the median install price for systems that are between 6-7 kW—$4.2/W, in $ 202234—to obtain the 
stated range of $25,620 to $28,560.) In addition, because generation from solar panels depends on the 
weather, the financial savings for a household due to solar fluctuates across months, leading to a 
variable effect on energy insecurity. Establishing the relative efficacy of each policy option, as well as 
possible combinations—such a household installing solar after weatherization improvements—is a 
promising area for future research.  

A challenge in reaching LMI households for weatherization and rooftop solar is that both solutions can 
favor individuals who live in and own single-family homes rather than individuals living in multi-family 
units and renters. Renting creates split incentives where building owners pay the cost of upgrades while 
tenants realize the benefits.19. While experts estimate that a significant share (42%) of the total 
technical potential for rooftop solar generation in the U.S. is located on buildings occupied by LMI 
households, the majority of this LMI potential—nearly 60%—is located on renter-occupied and 
multifamily buildings.35 In other words, rooftop solar may be a possible intervention for millions of LMI 
households, but it is unlikely to serve as a standalone solution for certain LMI communities, especially 
renters and multi-family building occupants. A key question for the literature is how the energy 
insecurity benefits of solar may differ in alternative adoption models such as community solar, which 
expands solar access to renters and those in multi-family housing.36 

Our study further adds to a small but growing literature on the role of rooftop solar in a just energy 
transition. This literature consists of countervailing narratives. First, research has shown that rooftop 
solar has thus far disproportionately benefited wealthy households,37,38 perpetuating existing inequities 
in the energy system. On the other side, research has shown that rooftop solar can provide significant 
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benefits to disadvantaged and vulnerable populations, including economic16,17 and energy security 
benefits,20 and how targeted policies and programs can be designed to accelerate and amplify those 
benefits.36,39 Our research adds to the latter body of literature by showing how rooftop solar can yield a 
further benefit for low-income and other vulnerable populations in the form of reduced household 
energy insecurity, primarily among those who own and occupy their home.  

Energy insecurity is a pernicious and pervasive problem, with demographically inequitable incidence in 
the United States.1 In this paper, we present plausibly causal evidence that residential, rooftop solar 
directly reduces households’ experience of energy insecurity. The effects are significant and robust. 
Policies that support rooftop solar are traditionally justified on their environmental benefits and the 
ability to drive learning-based cost reductions. Our findings in this paper suggest that the technology can 
also be treated as a way to reduce energy insecurity. This introduces one more much-needed tool to 
policymakers’ toolboxes. 

Methods 
Overview of matched survey design 
In this study, we compare the incidence of energy insecurity among primarily LMI households with solar 
to a matched sample of households without solar. The causal interpretation of our approach rests upon 
the degree to which the two groups are similar on important covariates, such that the households 
without solar form an appropriate counterfactual for the households with solar. More formally, this is 
equivalent to asserting that the conditional independence assumption holds.40,41 This assumption is 
violated if there remain unobserved differences between groups, correlated with both the treatment 
and outcome, that lead to omitted variable bias. A strength of our study is the detailed information we 
are able to obtain on both households’ demographics and the physical characteristics of their home 
from a combination of data sources, which substantially lessens the risk of bias. 

Our methodology proceeded in four steps. First, we selected the characteristics on which to assess the 
similarity of households with and without solar. Second, we developed the survey instrument to gather 
information on households’ experience of energy insecurity. Third, we selected an initial matched 
sample of similar households to whom we sent the survey. We sent an initial pilot via email and the final 
survey by paper mail. The final survey was in the field for three months, between January and March 
2023, so that our energy insecurity outcomes are indicative of households’ experiences in the early 
winter. Fourth, we analyzed the final survey responses among the 2,608 households who responded 
(63% solar, 37% non-solar), ensured the balance among arms remained, and estimated the treatment 
effect. Each step is discussed in detail below. 

Before proceeding, one unique aspect of our research design is important to clarify, relative to the large 
literature on matching.41–43 The outcome data we study was obtained using a survey and not observed 
at the beginning of the study. This naturally aligns with experimental best-practices for matching, 
because it ensures our final sample was selected only on the basis of observable characteristics and not 
selectively chosen to obtain a desired treatment effect result.44 However, it also creates the possibility 
that the balance among the respondents could differ from the balance among all the households who 
were sent the survey. Unlike other matching studies, we cannot resample in this case, because doing so 
would require administering a second survey to obtain outcome data. Instead, we will parametrically 
adjust for any small observed differences by including those characteristics as covariates in a 
regression.23,25 
 
Characteristics on which to assess similarity between solar and non-solar households 
In our study, we used three types of data on households: predicted income and demographics, obtained 
from Experian; empirical characteristics of the property and solar adoption, obtained from CoreLogic 
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and Lawrence Berkeley National Laboratory;34 and self-reported data, in response to our survey. The 
predicted and empirical data were used to determine which households were contacted to complete 
the survey. Once households completed the survey, we use their self-reported demographics in our 
analysis. The empirical, physical characteristics of the home—square footage and age—are obtained 
from CoreLogic, based on the respondents’ physical address. 

To create the initial samples of households to whom surveys were sent, we considered a set of variables 
that are predictive of treatment assignment and are correlated with both treatment and likelihood to 
experience energy insecurity. Including predictors of both treatment receipt and the outcome of interest 
helps avoid omitting characteristics that, if systematically different between solar and non-solar 
households, could bias our results. We created our initial samples using six variables: predicted income; 
predicted race; geography; and physical characteristics of the home (age and square footage). We 
predicted the race or ethnicity of each using the wru algorithm from Imai and Khanna,45 which uses 
Bayesian analysis to predict race from public voter registration data. In our setting, a few determinants 
of solar adoption—such as retail electricity rates and incentives—are not measured directly. Rather, we 
initially addressed these factors by the way in which geographic balance is enforced: control households 
are limited to those within the same counties as adopters, where such conditions are likely to be similar. 
As a robustness check, after survey responses were received, we estimated the electricity price for each 
respondent in the final analysis; the process is explained in the final paragraph below. Finally, we limited 
the initial sample to those households who are predicted to be owner occupied, because solar adoption 
is significantly more difficult for renters. 

Within our survey, we asked households to report a larger set of demographic characteristics than we 
used when creating the initial samples. In addition to self-reported race and annual income, we 
collected data on the age, gender, household size, educational attainment, home ownership, and type 
of dwelling for each respondent in our survey. These characteristics are identified as predictive of solar 
adoption and the experience of energy insecurity within the literature, but difficult to obtain precisely 
from third-parties when creating our samples. We use this larger set of self-reported characteristics in 
our analysis. It provides a high degree of precision when comparing the similarity of treatment arms and 
a greater ability to control for confounding factors in robustness tests. A verifiable assumption of our 
methodology is that, if non-response is random among our initial sample, the final, smaller sample of 
survey respondents should remain balanced. 

We also note that we limited characteristics to those that are unlikely to be affected by the treatment 
itself. An example of a control that we do not include is estimated home value, which is directly affected 
when a homeowner installs solar. This is especially important because we do not have pre-treatment 
information for solar adopters. For example, the characteristics we include are either immutable or 
highly stable aspects of an individual (e.g., age, gender, other members in the household, race) or the 
physical dwelling (e.g., state of location, age, square footage), and solar is unlikely to affect those 
variables that can change for an individual over time (e.g., income, education, home ownership). 
Supplementary Table 12 further shows that our results are not sensitive to these last three variables. 

In the final analysis, we also include the estimated electricity price for each respondent. As noted above, 
while this characteristic was not measured when we matched our sample, it can be an important 
determinant of both solar adoption and energy insecurity, and it is crucial to ensure our results are 
robust to it; it is thus included in our balance table and subsequent regressions. To estimate the price 
paid by each respondent, we first identified the specific utility that serves their street address.46 We 
then used the annual residential revenue and sales from that utility, as reported in EIA Form 861,47 to 
calculate the average residential price. The resulting price, while an estimate and not self-reported, is 
highly specific to the location of each respondent. In the event multiple utility territories served a 
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respondent, we selected the utility with the highest customer count, as reported in Form 861; and for 8 
respondents that were served by a utility that did not report sales and revenue in Form 861, we selected 
the utility that served the most customers in their county.  

Design of survey instrument 
In our survey instrument we asked respondents to answer questions regarding the incidence of energy 
insecurity, their demographics, and the economics of their solar system, if installed. The study and 
survey instrument were authorized under Institutional Review Board #15996 by Indiana University on 
September 8, 2022 and January 11, 2023. The survey was administered by the IU Survey Research 
Center. We obtained informed consent from all survey respondents. 

The energy insecurity questions draw on questions typically asked in the Residential Energy 
Consumption Survey and the American Community Housing Survey.1,48 We include six questions about 
household’s experience of energy insecurity; each question began with, “In roughly the past three 
months…”: 

1. “…was there ever a time your household could not pay an [energy type] bill?” 
2. “…did your household receive a disconnection notice, shutoff notice, or non-delivery notice due 

to an unpaid [energy type] bill?” 
3. “…did your household get disconnected or lose service for [energy type]?” 
4. “…how often have you had to reduce your energy consumption to save money on your energy 

bill?” 
5. “…how often were you able to keep a comfortable temperature in your home (not too hot or too 

cold)?” 
6. “…has your household had to reduce or forgo expenses for basic household necessities, such as 

medicine or food, in order to pay an energy bill?” 

For questions 1-3, households answered these outcomes for each energy source used in the home (e.g., 
electricity, natural gas, heating oil). Three concern financial indicators of insecurity (inability to pay a bill, 
given notice of disconnection due to non-payment, or being disconnected), and three center on 
behavioral adaptations households can employ to reduce their energy expenditures. Questions 4-5 are 
worded to specifically to identify energy-limiting behavior,3 rather than environmentally-motivated 
reductions in consumption. All questions ask households to report their experience over the prior three 
months. We selected three months in order to capture a sufficiently long period in which energy 
insecurity events may have occurred, but short enough that households could recall the specifics of their 
energy bills and household expenditures. The full survey instrument is available in the “Supplementary 
Notes” section of the Supplementary Information file. 

After implementing the survey, we realized that the wording of the third question, regarding 
disconnections, may have been confusing to respondents. Based on the survey results, in which 
respondents reported being disconnected or losing service in states with active disconnection 
moratoria, such as California, we believe that the phrase “lose service” may have been confused with 
experiencing a power outage. Thus, we excluded this outcome from our analysis, in order to avoid 
misleading results, and encourage future research to test this variable with more specific phrasing. 

Selection of survey sample 
To select the sample to whom the survey was sent, we identified LMI households who adopted solar in 
2021, assessed their demographic and property characteristics, identified similar households without 
solar, and then sampled from both pools of households until we obtained two groups that were 
balanced, on average. This goal—match non-solar to solar, based on average characteristics—formed 
the basis of our sample selection process, though the practical execution involved multiple steps. In this 
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process, we prioritized the internal validity of our sample over its external validity. That is, we did not 
design our sample to be nationally representative of all 2021 LMI solar adopters, but rather sought two 
groups of households that were equivalent, on the mean, based on best available data. Supplementary 
Table 13 shows the geographic distribution of our sample versus all adopters predicted to be LMI in 
2021. It illustrates that our sample under-represents LMI adopters in California and over-represents 
adopters in other states. 

We define LMI as 110% of area median income (AMI). Income as a percent of AMI measures an 
individual’s relative affluence; because solar adoption is weighted towards areas with higher absolute 
incomes, such as California, the relative threshold allows us to better identify LMI individuals with solar. 
We set the threshold at 110% because we found the sample of individuals meeting a lower cutoff, such 
as 80% AMI, to be too small for our anticipated survey response rate and required statistical power. We 
used the Solar Demographics Database maintained by Lawrence Berkeley National Lab to identify 
105,681 single-family, residential households who adopted solar in 2021 and whose estimated income, 
from Experian, fell at or below 110% of AMI, based on HUD estimates from FY 2021.49 We limited our 
sample to households who adopted in 2021, the last year of available data in Tracking the Sun34 at the 
time of survey implementation, to ensure all households were exposed to solar for a similar amount of 
time and to increase the likelihood a solar household could recall their experience, prior to solar panels, 
which we use as a robustness check for pre-trends across groups. This group formed the pool from 
which we selected solar households. 

We then identified a pool of possible non-solar households. This occurred in two steps, based on data 
availability. First, we identified the counties in which our LMI solar households were located. We used 
data from CoreLogic to predict the race of the title-owner of each single-family, residential address in 
those counties and excluded any with solar installed, based on the Tracking the Sun Database. We 
selected 133,334 non-solar households that matched the solar households in distribution across 
counties and had similar mean predicted race and housing characteristics. Second, we purchased 
predicted income information for these households from Experian. This gave us two pools of solar and 
non-solar households with complete data for characteristics on which we sought to balance.  

We implemented a pilot survey via email in November and December 2022. From our two pools of solar 
and non-solar households, we identified 66,667 solar households and 66,667 non-solar households 
(133,334 total) that were balanced on mean predicted race, predicted income, geography (share in each 
state, limited to counties in which there are adopters), and housing characteristics (home age and 
square footage). We then purchased emails using Melissa. Melissa is a data service that identifies an 
email address for individuals, using physical addresses and other identifiable information. Using the 
quality of the Melissa and Experian data, we further limited the sample to those for whom we had high 
confidence that the household was owner-occupied and that the purchased email and estimated 
income were tied to the individual on title for the property. Finally, we sampled at random within each 
state to identify the 59,959 households to whom the survey was emailed. This represented our pilot 
sample.  

We administered the final survey via mailing in January 2023. We identified a smaller sample of 25,000 
households, randomly selected within-state from the 59,959 to whom the survey was emailed until we 
reached balance across arms. Responses were collected between January and March 2023. In 
Supplementary Figure 2, we show that the timing of responses was evenly distributed by treatment arm 
during these months. Our main results use only mail respondents, though we include sensitivity checks 
to include the pilot sample, finding that our results remain robust. A total of 3,190 individuals responded 
to both the pilot and final survey; of this, 2,860 were obtained through the mailer (90% of respondents, 
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equivalent to a 11.4% response rate) and 330 (10% of respondents, equivalent to 0.01% response rate) 
were obtained through email. 

Among respondents, we dropped households who self-reported that we had categorized them in the 
wrong treatment arm. Specifically, among all our respondents, 207 control households reported having 
installed solar, and 59 solar households reported that they did not have panels installed on their home. 
We kept households who did not self-report solar or non-solar status, respectively. This is a conservative 
choice. Based on those who did self-report, it is more likely that households we thought did not have 
solar adopted the technology, versus mis-identifying solar households. In theory, this type of error in the 
control arm would bias our coefficient estimates downward, such that our estimates understate the true 
effect of solar on energy insecurity. We include sensitivity checks to recategorizing these households 
into their self-reported treatment arm and found our results robust to this alternative coding. Finally, we 
excluded households for whom we only had respondents from one treatment arm within the state. In 
our main sample, this affected 16 households in Hawaii, Iowa, Michigan, Nebraska, and Maine. The 
resulting sample has a total of 2,608 households, with 1,639 in the treatment arm (79%) and 969 in the 
control arm (21%). 

We note that our sample was selected from households whose estimated income was at or below 110% 
of AMI. In our final sample of respondents, some individuals’ actual, self-reported income fell above this 
threshold. The range of self-reported income is 9-384% of AMI for the solar arm and 8-362% for the 
control arm; there are 698 solar and 327 non-solar households whose self-reported income is above 
110% of AMI. Similarly, we selected our sample from addresses that were predicted to be owner-
occupied. As a result, the majority of respondents are homeowners and a minority rent (Table 1). As 
shown in Supplementary Table 1, our results are not sensitive to the inclusion of renters. 

Assessing balance among respondents 
The first step of our analysis is to assess the balance across covariates of the solar and non-solar 
households that responded to the survey. (Recall that we matched the households to whom we mailed 
the survey, using estimated characteristics, but analyze the smaller group of respondents, using their 
self-reported, actual characteristics.) We calculate standardized mean differences using Cohen’s d 
statistic,50 defined as: 

𝑑 =
𝑥�̅� − 𝑥𝑐̅̅̅

𝑠𝑝
(1) 

Here, 𝑥𝑡  is the mean of covariate 𝑥 in the treatment group, 𝑥𝑐  is the mean in the control group, and 𝑠𝑝 is 

the pooled standard deviation. The pooled standard deviation is calculated using the following formula, 
where 𝑛𝑡 and 𝑛𝑐 represent the number of observations in the treatment and control arm, respectively: 

𝑠𝑝 = √
∑(𝑥𝑖 − 𝑥)

𝑛𝑡 + 𝑛𝑐 − 2
(2) 

Cohen’s d can be interpreted simply as a standardized difference of means. The units of the statistic are 
standard deviations of the covariate; for example, a value of 0.5 indicates that the treatment arm is 
located 0.5 standard deviations away from the control arm. Cohen suggested that 0.2 be interpreted as 
a small difference, 0.5 as a medium difference, and 0.8 as a large difference. Within the matching 
literature, a common rule of thumb is that covariates should be no more than 0.25 standard deviations 
apart, in order for the sample to be sufficiently balanced.23–25 While this is only a rule-of-thumb, and the 
assessment of sufficiently balanced remains subjective for a matching study, we include it as context for 
the interpretation of the results. 
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Finally, we note that the choice of Cohen’s d is intentional and meant to align with best practice within 
the matching literature.26 For example, historically, many matching papers assessed balance using a t-
test for the equivalence between means across arms. As pointed out by Imai et al.,25 this test can be 
problematic, in part because the t-statistic is affected by sample size and can be misleading in small 
samples. In contrast, Cohen’s d measures only a property of the sample, not the population, and is not 
sensitive to sample size, thus meeting the criteria laid out by Imai et al.23 for appropriate statistics.  

The majority of covariates are self-reported, and our main balance table (Table 1) reports all data 
available for each variable. However, we find no meaningful difference in balance when limiting the 
sample to those respondents who answered all demographic questions, which we display in 
Supplementary Table 14. The individuals in this table—respondents who did not skip any demographic 
questions in the survey—represent the sample on which the models inclusive of covariates are 
estimated, as described below. 

Balance across mean covariate values helps assess if the conditional independence assumption likely 
holds. Separate but related, the second identifying assumption in our design is that the covariate values 
of treated and control households lie within a common support. This assumption is also referred to as 
the overlap assumption.41 We are able to provide evidence in support of this assumption by collapsing 
the vector of covariates into a single propensity score, across solar and non-solar households, shown in 
Supplementary Figure 3. The estimated propensity score is obtained from a logit model of solar on the 
full vector of demographic and household characteristics captured in the survey. The figure illustrates 
the joint distribution of covariate values across survey arms are similar.  

Estimation of treatment effects 
The next step in our analysis is to estimate the treatment effect of solar on energy insecurity. Each 
energy insecurity outcome we study is coded as a binary variable; as a result, the linear regressions can 
be interpreted as linear probability models. Within the matched sample, assuming the two arms are 
sufficiently balanced on observables, the effect of solar on energy insecurity can be assessed by taking 
the difference in mean outcomes between the treatment and control arms. This is equivalent to 
estimating the linear regression, 

𝑦𝑖 = 𝛽0 + 𝛽1𝑆𝑜𝑙𝑎𝑟𝑖 + 𝜖𝑖(3), 

where y is a binary or categorical energy insecurity outcome of interest, i indexes an individual 
respondent, and Solar is a binary variable equal to 1 if individual i has solar installed on their house and 
0 otherwise. Standard errors are estimated assuming that 𝜖𝑖 is clustered at the state-level. The 
coefficient of interest is 𝛽

1
, interpreted as the effect of solar on households’ experience of energy 

insecurity. Because it is a linear probability model, 𝛽
1

 can be interpreted as the percentage point change 

in absolute likelihood that a solar household experiences the given energy insecurity outcome, relative 
to households without solar. Because we created a matched sample of control households to treatment 
households’ characteristics, 𝛽

1
 is interpreted as an estimate of the average treatment effect on the 

treated. 

The causal interpretation for 𝛽
1

 rests upon the conditional independence assumption, or that, 

conditional on all observable characteristics used to create the matched samples, treatment assignment 
is as-if random. A straightforward way to provide partial evidence that this assumption holds is to 
estimate the same model inclusive of covariates, 

𝑦𝑖 = 𝛽0 + 𝛽1𝑆𝑜𝑙𝑎𝑟𝑖 + 𝑋𝑖
′𝛼 + 𝜖𝑖(4), 

where 𝑋𝑖  represents the full vector of demographic and household characteristics captured in the 
survey. If the estimates of 𝛽

1
 are similar in the models with and without covariates, it provides partial 
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evidence that the coefficient is unbiased. The evidence is partial because we can only control for 
observed covariates; a characteristic excluded from 𝑋𝑖  and correlated with both 𝑦 and 𝑆𝑜𝑙𝑎𝑟 represents 
a possible source of bias for 𝛽

1
. The inclusion of covariates to the model is a way to adjust 

parametrically, after matching, for any remaining differences between covariates, as long as differences 
are sufficiently small such that regression techniques are appropriate.25 

One limitation of the specification above is that it implicitly makes a structural assumption of a linear 
relationship between the covariates and outcome. Given this, we further test the robustness of our 
treatment effect estimates to two alternate specifications that utilize the propensity score. The 
estimated propensity score is obtained from a logit model of solar on the full vector of demographic and 
household characteristics captured in the survey. First, we include the propensity score as a covariate, 
specified as �̂�, to allow for greater model flexibility, relative to the linear specification, 

𝑦𝑖 = 𝛽0 + 𝛽1𝑆𝑜𝑙𝑎𝑟𝑖 + 𝛼𝑒�̂� + 𝜖𝑖(5) 
Second, we run a weighted regression using the inverse of the propensity score. The weights are 
designed to estimate an ATT and re-balance the control arm to better match the empirical distribution 
in the treatment arm.51 We define the weights as follows, such that all treated responds receive a 
weight of 1, 

𝑤𝐴𝑇𝑇 = 𝑆𝑜𝑙𝑎𝑟𝑖 +
𝑒�̂�(1−𝑆𝑜𝑙𝑎𝑟𝑖)

(1−𝑒�̂�)
 (6) 

Threats to Validity 
The key limitation of the research design is that we do not directly observe solar households’ experience 
of energy insecurity, prior to their adoption of the technology. As a result, one concern may be that 
solar households in our sample may have experienced less energy insecurity than control households 
before going solar, even after controlling for all observed covariates, and that this selection drives our 
treatment effect results. To address this concern, we asked survey respondents to recall energy 
insecurity events in the years prior to 2021, which we show in Supplementary Table 15, in lieu of actual 
data from the pre-period. Because all our solar households adopted in 2021, this period represents a 
baseline before which the solar arm was untreated or had not installed panels. The analysis shows no 
statistical difference between solar and non-solar households’ recollection of experiences of energy 
insecurity prior to 2021. This further supports the comparability of the two groups and lessens the risk 
of bias due to lower levels of energy insecurity among treated households, prior to solar adoption. 

Similarly, we might be concerned that solar households will be more likely to respond if they are 
satisfied with their solar installation, leading us to over-state the effect of solar on energy insecurity due 
to selection on high-performing systems. Anticipating this possible source of bias, we first note that our 
recruitment materials did not mention solar energy, and questions specific to households’ installations 
appeared after those on energy insecurity within the survey. Both the survey instrument and 
recruitment documents are available in the Online Appendix. We believe this helps ensure that 
households in the treatment arm were not aware that the survey specifically involved solar until after 
reporting our core outcomes. Second, we examined the characteristics of those households who 
responded to the survey and those who did not, in order to assess if there is any visible evidence of 
selection among respondents. Because we do not observe actual demographics of non-respondents, we 
are limited to comparing the two groups on estimated characteristics. The results are presented in 
Supplementary Table 16. We find that respondents are similar on the whole to non-respondents, among 
the predicted characteristics available. Based on estimated characteristics, respondents were slightly 
more likely to have a higher predicted income, to live in a house with a higher estimated value, and to 
be predicted to be white. 
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Finally, we note that our methodology is only able to control for observed covariates. While we believe 
our set of characteristics considered is comprehensive, an unmeasured variable that affects both solar 
adoption and energy insecurity can be a source of omitted variable bias. This is not unique to our study 
and is a limitation of any matching design using cross-sectional data. 
 
Data Availability 
The data collected by the survey and analyzed in the study are available in the Dataverse repository, 
https://doi.org/10.7910/DVN/4HUD1Q. Any identifiable information has been removed from survey 
responses. 
 
Code Availability 
The code used to analyze the survey data is available in the Dataverse repository, 

https://doi.org/10.7910/DVN/4HUD1Q. 
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Tables 
Table 1: Comparison of mean covariates across survey arms 

Characteristic Solar (n=1,639) Non-Solar (n=969) Difference Cohen’s d 

Demographics:     
Age 55.12 56.78 -1.66 0.10 
Gender (%)     

Male 66.26 62.63 3.64 0.08 
Female 33.04 36.48 -3.44 0.07 
Non-binary/Other 0.70 0.90 -0.20 0.02 

Household Size (#) 66.26 62.63 3.64 0.08 
Annual Income      

<$25 5.87 7.2 -1.33 0.05 
$25-35 8.19 11.66 -3.47 0.12 
$35-50 11.48 13.37 -1.89 0.06 
$50-75 19.99 21.49 -1.5 0.04 
$75-100 18.50 16.69 1.82 0.05 
$100-150 17.41 17.14 0.27 0.01 
>$150 18.57 12.46 6.11 0.17 

Income as % of AMI 111.74 100.92 10.83 0.17 
Education (%)     

Less than HS 1.65 3.39 -1.73 0.12 
HS or equiv. 12.41 12.99 -0.58 0.02 
Some college 22.22 24.07 -1.85 0.04 
Associate 11.46 13.67 -2.21 0.07 
Bachelor 28.07 25.99 2.08 0.05 
Graduate 24.19 19.89 4.30 0.10 

Race (%)     
Hispanic 20.92 22.56 -1.64 0.02 
White 77.28 76.98 0.30 0.01 
Black 10.09 11.16 -1.08 0.04 
Asian 8.51 7.67 0.84 0.02 
American Ind. 3.27 2.44 0.83 0.05 
Pacific Isl. 0.98 0.58 0.40 0.03 
Other 6.29 6.74 -0.46 0.02 

Housing:     
Home ownership (%)     

Own 95.87 92.94 2.93 0.13 
Rent 1.97 4.04 -2.07 0.13 
Other 2.16 3.03 -0.87 0.06 

Type of dwelling (%)     
Trailer or mobile 0.63 0.90 -0.26 0.03 
Apartment 0.70 0.56 0.14 0.02 
Det. single family 83.06 76.97 6.09 0.16 
Att. single family 14.34 18.76 -4.42 0.12 
Condo 1.27 2.81 -1.54 0.12 

Year Built 1975 1974 0.60 0.03 
Square Ft 1,805 1,687 118.33 0.21 
Avg. Elec. Price (¢/kWh) 16.82 16.73 0.09 0.01 
State (%)     

AR 0.12 0.10 0.02 0.01 
AZ 5.86 6.71 -0.85 0.04 
CA 31.67 28.38 3.29 0.07 
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Characteristic Solar (n=1,639) Non-Solar (n=969) Difference Cohen’s d 
CO 5.13 4.44 0.69 0.03 
CT 2.32 2.27 0.05 0.00 
DC 1.28 0.83 0.46 0.04 
FL 11.41 10.84 0.57 0.02 
GA 0.85 1.96 -1.11 0.10 
ID 0.31 0.72 -0.42 0.06 
IL 1.16 1.44 -0.29 0.03 
IN 0.55 0.62 -0.07 0.01 
KS 0.18 0.62 -0.44 0.07 
LA 0.12 0.10 0.02 0.01 
MA 2.38 1.55 0.83 0.06 
MD 1.10 1.14 -0.04 0.00 
MN 1.77 1.44 0.32 0.03 
MO 0.73 0.93 -0.20 0.02 
MT 0.06 0.10 -0.04 0.02 
NC 3.11 3.20 -0.09 0.01 
NJ 2.01 2.06 -0.05 0.00 
NM 0.92 1.55 -0.63 0.06 
NV 3.84 4.64 -0.80 0.04 
NY 2.14 2.58 -0.44 0.03 
OH 0.67 1.14 -0.46 0.05 
OK 0.12 0.31 -0.19 0.04 
OR 1.65 1.24 0.41 0.03 
PA 0.55 0.93 -0.38 0.05 
RI 0.73 1.34 -0.61 0.06 
SC 0.79 0.62 0.17 0.02 
TN 0.12 0.10 0.02 0.01 
TX 10.31 10.11 0.20 0.01 
UT 1.65 1.14 0.51 0.04 
VA 2.26 2.68 -0.43 0.03 
WA 1.89 1.86 0.03 0.00 
WI 0.24 0.31 -0.07 0.01 

Notes: See Methods for the formula used to calculate Cohen’s d. Difference is defined as solar minus non-solar; it 
is negative when there are fewer respondents in the solar arm than non-solar. Year built, square footage, and state 
are obtained from CoreLogic. For the income as a percentage of area mean income (AMI) variable, the midpoint of 
households’ self-reported ranges and self-reported family sizes were used in the numerator; the U.S. Department 
of Housing and Urban Development (HUD) AMI values from FY 2021 were used for the denominator; and 
households who did not report household size or income and those whose family size is larger than the HUD 
maximum of 8, for which no AMI estimate was available, were dropped. The average residential electricity price is 
estimated for each respondent, based on the utility which serves their mailing address and the utility’s total sales 
and revenue in 202247; further details are in Methods. All other information is self-reported by survey 
respondents. 
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Table 2: Estimated effect of solar on energy insecurity outcomes 

 
(1) 

Unable to pay 
bill 

(2) 
Received 

disconnection 
notice 

(3) 
Reduce energy 
consumption to 

afford bill 

(4) 
Forgo 

expenses 

(5) 
Keep 

comfortable 
temperature 

Intercept 0.133 *** 0.080 *** 0.741 *** 0.226 *** 0.331 ***  
(0.014) (0.011) (0.032) (0.015) (0.027) 

Solar -0.059 *** -0.037 *** -0.112 *** -0.076 *** -0.066 ***  
(0.011) (0.010) (0.020) (0.012) (0.012) 

Percentage change -44% -46% -15% -34% -20% 
Num. obs. 2546 2546 2608 2608 2608 
R2 0.010 0.006 0.013 0.009 0.005 

Notes: All coefficients above are estimated using a linear probability model. Models (1) and (2) are specific to 
electricity bills. Standard errors are clustered at the state-level. ‘***’ denotes significance at the 0.1% level, ‘**’ at 
the 1% level, ‘*’ at the 5% level and ‘.’ at the 10% level. “Percentage change” divides the coefficient estimate for 
solar by the control group mean (the intercept). 

Table 3: Estimated effect of solar on energy insecurity outcomes including covariates 
 

(1) 
Unable to pay 

bill 

(2) 
Received 

disconnection 
notice 

(3) 
Reduce energy 
consumption to 

afford bill 

(4) 
Forgo expenses 

(5) 
Keep 

comfortable 
temperature 

Solar -0.054 *** -0.039 ** -0.109 *** -0.062 *** -0.058 ***  
(0.014) (0.012) (0.020) (0.015) (0.013) 

Controls for:      
Demographics ✓ ✓ ✓ ✓ ✓ 
Housing ✓ ✓ ✓ ✓ ✓ 

Num. obs. 1848 1848 1892 1892 1892 
R2 0.163 0.115 0.140 0.161 0.113 

Notes: All coefficients above are estimated using a linear probability model. Models (1) and (2) are specific to 
electricity bills. Standard errors are clustered at the state-level. ‘***’ denotes significance at the 0.1% level, ‘**’ at 
the 1% level, ‘*’ at the 5% level and ‘.’ at the 10% level. Controls include all variables shown Table 1 excluding only 
income as a percentage of area mean income (AMI) and state of residence. The sample size is reduced relative to 
Table 3 due to non-response on self-reported covariates.  

Table 4: Spillover effects of solar on households’ ability to pay other types of energy costs 
 

(1) 
Electricity 

(2) 
Natural Gas 

(3) 
Fuel Oil 

(4) 
Wood 

(5) 
Propane 

(6) 
Other 

Intercept 0.133 *** 0.101 *** 0.093 0.066 * 0.098 ** 0.000 ***  
(0.014) (0.013) (0.047) (0.027) (0.030) (0.000) 

Solar -0.059 *** -0.043 ** -0.057 -0.066 * -0.069 * 0.019  
(0.011) (0.015) (0.060) (0.027) (0.030) (0.013) 

Num. obs. 2546 1708 98 197 258 166 
R2 0.010 0.006 0.014 0.046 0.022 0.001 

Notes: All coefficients above are estimated using a linear probability model. Standard errors are clustered at the 
state-level. ‘***’ denotes significance at the 0.1% level, ‘**’ at the 1% level, ‘*’ at the 5% level and ‘.’ at the 10% 
level. Respondents were asked the question, “In roughly the past three months, was there ever a time your 
household could not pay an [energy type] bill?”; each column represents a different energy type.  

Table 5: Estimated effect of solar on average electricity bill amounts ($/month) 
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(1) 

Bill amount 
 (2) 

With Covariates 

Intercept 183.265 ***  
 

(5.976)  

Solar -65.302 *** -63.313 ***  
(8.202) (7.202) 

Controls for:   
Demographics  ✓ 
Housing  ✓ 

Num. obs. 2335 1812 
R2 0.095 0.213 

Notes: Standard errors are clustered at the state-level. ‘***’ denotes significance at the 0.1% level, ‘**’ at the 1% 
level, ‘*’ at the 5% level and ‘.’ at the 10% level. Controls include all variables shown Table 1 excluding only income 
as a percentage of area mean income (AMI) and state of residence. Survey respondents answered the question, 
“How much are your average monthly bills for electricity?” and answers were provided in increments of $25.  

Table 6: Estimated effect of solar on energy insecurity outcomes across ways in which the household 
pays for their solar panels 

 
(1) 

Unable to pay 
bill 

(2) 
Received 

disconnection 
notice 

(3) 
Reduce energy 
consumption to 

afford bill 

(4) 
Forgo expenses 

(5) 
Keep 

comfortable 
temperature 

Solar – Monthly -0.059 *** -0.044 ** -0.089 *** -0.065 *** -0.072 ***  
(0.016) (0.013) (0.024) (0.015) (0.014) 

Solar – Upfront -0.069 *** -0.042 *** -0.194 *** -0.102 *** -0.061 ** 
 (0.013) (0.009) (0.029) (0.014) (0.018) 
Solar – Unknown  -0.028 -0.021 -0.075 * -0.015 -0.014 
Payment Type  (0.017) (0.018) (0.031) (0.030) (0.023) 
F-test of Monthly = Upfront: 

F value 0.931 0.058 14.936 5.388 0.622 
P(>F) 0.335 0.809 0.000*** 0.020* 0.431 

Controls for:      
Demographics ✓ ✓ ✓ ✓ ✓ 
Housing ✓ ✓ ✓ ✓ ✓ 

Num. obs. 1848 1848 1892 1892 1892 
R2 0.164 0.115 0.145 0.164 0.114 

Notes: All coefficients above are estimated using a linear probability model. Models (1) and (2) are specific to 
electricity bills. Standard errors are clustered at the state-level. ‘***’ denotes significance at the 0.1% level, ‘**’ at 
the 1% level, ‘*’ at the 5% level and ‘.’ at the 10% level. Controls include all variables shown Table 1 excluding only 
income as a percentage of area mean income (AMI) and state of residence. The sample size is reduced relative to 
Table 3 due to non-response on self-reported covariates. Households are categorized into “Unknown”, “Monthly”, 
and “Upfront” on the basis of two questions: (1) “How did you pay for the solar panels on your home?” and (2) 
“Did you take out a loan to help pay for your system?”. Households are categorized as “Monthly” if they answered 
“I lease the solar panels” to (1) or if they answered “I bought the solar panels” to (1) and “Yes” to (2). Households 
are categorized as upfront if they answered “I bought the solar panels” to (1) and “No” to (2). Households are 
categorized as “Unknown” if they did not answer both questions, or if they answered, “I was gifted the solar 
panels”, “I received the panels through an incentive program”, or “When I moved into this house, it already had 
solar panels” in response to question (1), due to evidence households may have misunderstood the incentive 
program answer. The F-statistic has 1800 degrees of freedom for the restricted model, and the hypothesis test is 
one-sided. 
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Figures  
 

 
Figure 1: Geographic distribution of survey respondents in sample by county and treatment arm 
Caption: “Both” indicates that there are both solar and non-solar survey respondents in the county. 
“Control only” indicates only non-solar households replied to the survey in that county, and “Treat only” 
indicates that only solar households responded in the county. 

 

 
Figure 2: Estimated effect of solar on energy insecurity outcomes 
Caption: Data are presented as the coefficient values (circle) +/- the 95% confidence interval (bars). 
Exact results for each specification are reported in Tables 2-3 and Supplementary Tables 5-8. The 
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outcomes “Unable to pay bill” and “Received disconnection notice” are specific to electricity bills. 
Standard errors are clustered at the state-level. All specifications but “Main” include covariates; these 
include all variables shown Table 1 excluding only income as a percentage of area mean income (AMI) 
and state of residence. Sample sizes are as follows. For the “Unable to pay bill” and “Received 
disconnection” outcomes, the “Main” sample contains N=2,546 observations; the “Main, with 
Covariates” sample contains N=1,848 observations; the “With Pilot Responses” sample contains N=2,049 
observations; the “Recategorize” sample contains N=2,023 observations; the “Counties with Both” 
sample contains N=1,880 observations; and the “Drop High Income” contains N=1,027 observations. For 
the “Reduce consumption to afford bill”, “Forgo expenses”, and “Keep comfortable temperature” 
outcomes, the “Main” sample has N=2,608 observations; the “Main, with Covariates” sample has 
N=1,892 observations; the “With Pilot Responses” sample has N=2,097 observations; the “Recategorize” 
sample has N=2,068 observations; the “Counties with Both” sample has N=1,919 observations; and the 
“Drop High Income” has N=1,061 observations. 
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