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ABSTRACT OF THE DISSERTATION 

 
 

An Exploration of Varying Conditions in a Hopfield Neural Network and Applications 
to a DNA Implementation 

 
 

by 
 
 
 

Bradley Steven Hughes 
 
 

Doctor of Philosophy, Graduate Program in Physics 
University of California, Riverside, August 2010 

Dr. Allen P. Mills Jr., Chairperson 
 
 

A Hopfield Neural Network is a content addressable memory with elements consisting of 

the correlations between elements of memory vectors.  Recall of a complete memory 

vector is possible via the introduction of a “corrupted” vector, which is a memory vector 

with some components altered.  It may also be possible to correctly recall memories with 

the use of a partial vector.  It may be possible to create such an information storage and 

retrieval system using DNA as a working substance.  Herein I present some 

computational results for properties of Hopfield Neural Networks, as well as a theoretical 

framework for the operation of such a system, including possible limitations in the 

working substance. 
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Chapter 1 – The Basis of Computation 

 

What is Computation? 

Since the days of old, computation has been performed, both by sentient organisms 

(humans) as well as, possibly, by natural systems.  From the Ishango Bone of Zaire (used 

to count) to the abacus, these systems gave us the requisite components for performing a 

computation.  Naturally, we have advanced significantly since those primitive devices.  

Today, research in computation is focused on the pursuit of both practical considerations 

(making computational devices faster and smaller) as well as more theoretical concerns 

(what are the limits of computation, how does artificial intelligence compare to that found 

in creatures such as ourselves). 

Even before the advent of the first electro-mechanical computer in 1941, researchers 

began to explore more fundamental questions related to computation.  These questions 

included such topics as “What is, strictly speaking, a computation?”, “What different 

ways are there to represent a computation?” etc.   

In this dissertation, I will address issues dealing with the limitation, optimization and 

implementation of a Hopfield Neural Network (HNN) architecture.  However, to 

understand the neural network at its basic level, it should first be recognized that a NN is 

a subset of computation.  That is, while it may appear to be some sort of mystical 

phenomenon to the uninitiated, it is certainly within the domain of physics and computer 

science to explore questions related to these devices.  To that end, I begin with a brief 

discussion of the basis of computation. 
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1a. Logic Gates 

 

The implementation of computation, then, requires the ability to manipulate inputs and 

produce outputs in such a way as to demonstrate meaningful mathematical results.  To 

put it another way, if a computer is to produce output which is “correct” then its physical 

process should give out an output which corresponds to mathematical equations.  For 

example, if I made a computer from a six sided die tumbling inside a drum (similar to a 

dryer), and set the input to be whatever two numbers came up in order, and then the 

output as the third number to be face up when the dryer stopped, this would produce 

arithmetic nonsense.  The first number could be a “1”, the second a “3”, and the third a 

“4”.  Someone might unknowingly conclude initially that this is an “adder”; that is to say 

that it takes the first two numbers and produces an output which is the arithmetic sum of 

those two inputs.  But once the passerby repeated the process, they would find that there 

is a completely different set of inputs and outputs, without an arithmetic connection.  

Eventually (hopefully) the researcher would conclude that there is indeed no relationship 

between the first two rolls of the die and the third.  Therefore, this physical system does 

not perform a meaningful computation. 

However, if I could physically arrange a system so that it produced a meaningful output 

each time I put in a set of inputs, then that would be a form of computation.  With 

computers today, it is possible to enter a set of inputs and receive a dazzling variety of 

output from pictures, sounds, text, equations, etc.  It is truly incredible that such a 
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stunning array of output possibilities can be derived from very simple initial 

computational elements.  Building up computation from these simple “primitives” is the 

objective of the next section. 

 

1b. Building Computers 

To make sense of the architecture of computers, it is imperative to first understand the 

models that will be used to observe the behavior of these components.  The first of these 

is the “truth table”.  This table is an exhaustive list of the possible inputs and outputs for a 

computing element.  For example, if my element was an “identity”, it would take 

whatever was input to it, and produce the same output, in effect “passing on” whatever it 

was given.  If, however, the element was a “NOT” gate, it would take whatever input was 

given to it and give the opposite value in binary.  In this case, an input of “0” would give 

an output of “1” and vice versa.  The truth tables for these two gates, along with their 

symbols, can be seen in Figure 1.1 below: 

 

Identity Gate      Not Gate 

Input Output 

0 0 

1 1 

 

 

Input Output 

0 1 

1 0 
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Fig. 1.1 – Identity and NOT Truth Table and Gate 

 

The next logical question is then to ask what “elementary” elements are there in 

computation?  If I add one more gate – the AND gate – shown below (Fig. 1.2): 

 

AND Gate  

Input 

A 

Input 

B 

Output 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

 

 

 

 

Fig. 1.2 – AND Truth Table and Gate  

Using these two symbols, more complex gates can be obtained.  For example, by 

connecting AND and NOT gates in the following manner: 
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Fig. 1.3 – Construction of OR Gate 

 

I obtain a gate which produces an output of “1” if either A or B is “1”, or if both A and B 

are set to “1”.  This new type of gate can be called an OR gate, meaning that it produces 

an output of “1” if either of the inputs (or both) are set to “1”.  A truth table and new 

symbol representing this gate are shown below in Fig. 1.4. 

 

Input 

A 

Input 

B 

Output 

0 0 0 

1 0 1 

0 1 1 

1 1 1 
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Fig. 1.4 – OR Truth Table and Gate 

In terms of building gates from other gates, one would frequently use a set of operators 

such as AND, NOT, and OR.  While it is possible to construct any logical system from 

some combination of these three, it is interesting to note that some particular binary gates 

are in and of themselves complete.  Both the NAND and NOR gates were proven by 

Sheffer1 to be what is referred to as “functionally complete”.  This means any other set of 

logic gates can be constructed from just one of these two gates, used repeatedly and 

arranged in the appropriate sequence.   One example of gate construction using AND, 

NOT and OR gates is the XOR gate, shown below: 

 

 

 

 

 

 

 

Fig. 1.5 – XOR Truth Table 

 

 

Input 

A 

Input 

B 

Output 

0 0 0 

1 0 1 

0 1 1 

1 1 0 
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This gate can be constructed in the following manner: 

 

 

 

 

 

 

Fig. 1.6 – XOR Construction Diagram 

 

I chose the XOR gate for two purposes: first, to demonstrate an easy example of building 

gates out of the basic set of AND, OR and NOT; and second to point out the difference 

between the OR gate, and the XOR gate.  The XOR gate is identical to the OR gate, with 

the exception of the case where both inputs, A and B, are both set to “1”.  In that case, the 

OR gate will have a value of “1”, but the XOR gate will have a value of “0”.  The OR 

gate will return a value of “1” when either A or B is set to “1”, or when both are set to 

“1”.  However, the XOR gate returns a value of “1” if either A or B is on, but “0” if they 

are both on – consequently this gate is referred to as an “Exclusive OR” gate. 

 

To begin building real computers, which take a given input and produce mathematically 

correct output, it is convenient to start with a mathematical function which is simple, such 
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as addition.  In binary, to add two numbers one needs to sum the farthest column to the 

right, and see what its value is modulo two.  Also, if the values of the inputs are both “1”, 

the sum modulo two would still be zero, but the “adder” would need to carry over a “1” 

into the next column.  For example, to add the numbers below: 

 

  01 

+10 

  11 

 

Fig. 1.7 – Addition Modulo Two 

 

The rightmost column is the addition of 1 + 0 = 1.  If the values had both been “0” in this 

column, the solution would have been 0 + 0 = 0.  Likewise, if both inputs had been “1”, 

the output modulo two would have been 1 + 1 = 0.  But this is identical to the truth table 

for XOR, which was just shown above. 

The output of the XOR gate is then the value given for the rightmost column of the 

output.  Naturally, a way is needed to “carry” over a “1” when both of the inputs are “1”, 

since the XOR does not give that information.  Notice that when both inputs are equal to 

one, the out of the “Carry”, which is an AND gate, will be one.  Otherwise it will be zero.  

This is what is required if something is to be “carried over” in an addition from one 

column to the next.  This configuration of gates is known as a “half adder”. 
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Fig. 1.8 – Half Adder 

 

In order to generalize the set of gates so that they are capable of adding an arbitrary set of 

numbers, it is necessary to use two of these “half adders” connected with an “OR” gate, 
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as shown below: 

 

Fig. 1.9 – Full Adder 

 

The truth table for this begins to become cumbersome, but it is given below: 

A B Carry S Carry 2 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 



 

 11

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

 

Fig. 1.10 – Full Adder Truth Table 

 

The reader should note that if this is an arbitrary column in a set of two binary numbers, 

where “Carry” is the possible value of a carryover from the previous column (which was 

already computed) and “A” and “B” are the values in that column being added, the output 

“S” and “Carry 2” are the correct values one should expect to obtain from this process.  

In this manner, the output of “Carry 2” can be fed into the next adder, to generate the next 

column of numbers.   

 

Once this is completed, I have shown how to perform one arithmetic operation – that is, 

addition.  To perform other arithmetic operations, such as subtraction, multiplication and 

division, different gate configurations are required.  The construction of each of these 

gate configurations is shown below. 

 

Subtraction 
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When subtracting binary numbers, the outputs will now involve the value (S) as well as 

the amount “borrowed” from the next column to the left.  Previously I had a “carry” bit, 

which was added onto the next column to the left.  The truth table, then, for this operation 

(called a “half subtractor”) is given below: 

A B Difference Borrowed 

0 0 0 0 

1 0 1 0 

0 1 1 1 

1 1 0 0 

 

Fig. 1.11 – Subtraction Truth Table 

 

Interestingly, the Difference column is the output for an XOR gate, just like for addition.  

However, in contrast to the AND gate used in the full adder, the BORROWED column is 

the same gate (AND), except the values input are NOT A and B.  Similar to the structure 

of an adder, a half subtractor is shown below: 
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Fig. 1.12 – Subtraction Logic Gates 

 

Multiplication 

Multiplication becomes possible using a device which is, in effect, a combination of 

binary adders.  In order to perform multiplication, first imagine there is an operation in 

the following form:  A0A1A2…AN  x  B0B1B2…BN, where {AN} and {BN} are the binary 

digits in an “N” digit number.  To perform the operation of multiplication: 

 

1) Operate with an AND gate, pairwise, with each of the bits A0..AN on B0.  This 

produces the first row shown under the input numbers in the figure below. 

2)  Operate with AND pairwise on all bits A0..AN on B1.  This will give a set of 

inputs, which is the second row.  Make sure to have this output “shifted” as 

shown in the diagram below. 

3) Repeat this procedure, shifting one entry with each bn. 
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4) These products of the AND gate are then fed into a binary adder.  For example, 

p0= a0b0, while p1=a1b0 + a0b1.  A figure representing this procedure is shown 

here: 

 

a3 a2 a1 a0 

b3 b2 b1 b0 

________________________________ 

      a3b0 a2b0 a1b0 a0b0 

     a3b1 a2b1 a1b1 a0b1 

    a3b2 a2b2 a1b2 a0b2 

   a3b3 a2b3 a1b3 a0b3 

  ______________________________________________________________________ 

  p7 p6 p5 p4 p3 p2 p1 p0 

 

 

Fig 1.13 – Binary Multiplication of Two Digits 

 

With the ability to perform arithmetic operations using a set of logic gates comes the 

ability to solve an enormous set of mathematical problems.  A question of intense interest 

in computer science is the issue of which problems can be solved by a computational 

system and which problems can’t.  This is codified in the notion of an effective 

procedure, which as Feynman2 states is “a set of rules telling you, moment by moment, 
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what to do to achieve a particular end; it is an algorithm”.  Some problems lend 

themselves to algorithmic approaches.  One example of this is differentiation.  Given a 

function to differentiate, a particular set of rules for completing the problem will generate 

the correct derivative.  Other types of problems, however, are more elusive and may 

appear to lack an effective procedure – such as integration.  However, even elementary 

integration can be reduced to an effective procedure, as was demonstrated by Risch3.  

While many problems have now been reduced to effective procedures, it will be 

demonstrated shortly that there are some problems which no computational system can 

solve.  To elaborate on this, it is first necessary to explore different forms of 

computational systems. 

 

1c. Finite State Machines 

With a framework in mind on how the “nuts and bolts” of this computer is to be 

established, it becomes incumbent to describe what some of the real possibilities and 

problems are with this framework.  To accomplish this, I will first demonstrate the 

existence of what is referred to as a “finite state machine”, followed by a generalization 

to the much more powerful “Universal Turing Machine”. 

My discussion of a finite state machine closely follows Minsky4.  I can think of a finite 

state machine (FSM) as being a device which takes inputs and produces outputs in a 

finite number of possible ways.  The number of inputs and outputs need not be equal, and 

the output produced will be dependent on both the stimulus (S) and the state (G) of the 

machine at the time S is received.  Therefore, all of the mathematical operations 
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discussed so far, once implemented, would be an FSM; however they would have only 

one state but multiple inputs and/or outputs.  An FSM would be a machine which could 

change its state as well as produce an output when an input is received.   

 

A discussion of the properties of this machine is in order.  In reality, time occurs along a 

continuum.  However, for my purposes, it will suffice to take the operation of an FSM as 

occurring in discrete temporal units.  Also, the particular working medium (along with 

the inputs and outputs) are irrelevant.  The inputs and outputs can be water in a pipe, or 

voltage on a wire, or light signals in a fiber optic line.  In this discussion, however, I will 

restrict the inputs to binary values; 0 or 1.  It is possible to effect any particular type of 

computation in this basis without a loss of generality, and with only a minimal slowdown 

under certain circumstances.  Likewise, the working medium for the computation is 

irrelevant.  I can imagine the computational medium as being a valve which reacts in a 

certain way for the water input, or a system of mirrors and lenses producing a desired 

output with light, or any other electrical/mechanical system of which I can conceive.  

With this definition, an FSM could be any number of things which takes inputs and 

produces outputs.  For example, a plant could be thought of as a machine which takes in 

sunlight, carbon dioxide, and water, and produces oxygen and a different state (a bigger 

one, presumably) for the plant.  The key, then, is to harness the power of physical 

systems to produce meaningful computational output. 
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This FSM can be thought of as a device with a limited number of states {Q}.  When fed S 

(a stimulus), the machine will generate a response R.  This R will be a function of both S 

and Q.  However, S does not only produce R.  It can also act to change Q to a new state, 

Q’.  This relationship between Q(t) and Q(t+1) is a function of both the stimulus and the 

current state of the machine.  These two rules can be codified as shown below: 

 

R(t+1) = F(Q(t), S(t)) 

Q(t+1) = G(Q(t), S(t)) 

 

This means that both the response and the state of the machine at the next instant are 

functions of the current state of the machine and the stimulus received. 

 

Since both functions, F and G, are discrete, I can exhaustively list their possible values.  

As a trivial example, consider a device that can have a binary stimulus (S=0,1).  Upon 

receipt of S, the machine is in a single state (Q0 or Q1).  In either of these two states, the 

machine’s R is the opposite value from what is input.  So, for example, if someone were 

to input S=0, the machine would output R=1, and vice versa.  This is codified in the first 

table below, where the S0 and S1 represent the possible stimulus input, and the response is 

listed under the appropriate column for which state the machine is in when the stimulus is 

received.  Also, if the machine receives a stimulus with a value equal to its state number, 

it switches to the opposite state – otherwise it stays the same.  This is codified in the 

second table below, again where S0 and S1 are possible stimuli, and the state of the 



 

 18

machine at time=t+1 is given, depending upon which of the two possible states (Q0 or Q1) 

the machine was in at time=t.  A set of two tables for this machine can then be used to list 

out both the state function and the response function for a given machine.  These tables 

are shown below: 

 

R Q0 Q1 

S0 1 1 

S1 0 0 

 

G Q0 Q1 

S0 Q1 Q1 

S1 Q0 Q0 

 

Fig. 1.14 – State Transition Table 

 

The reader might notice immediately that the first table is the truth table for a NOT gate, 

since when a “0” is the stimulus, a “1” is the output in all cases, and vice versa.  Note that 

in this case, the state of the machine (Q) is irrelevant, since the output is the same 

regardless of which state the machine is in when the stimulus is received.  In this way, 

then, this simple finite state machine is exactly a NOT gate.  While this seems trivial, it is 

important to note that more complex designs can be built up depending upon the 

functions involved.  Once the number of states and responses of these FSM’s become 
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large, it will be easier to represent the machine by a “state diagram”, showing an 

exhaustive pattern of what occurs when the machine is in a certain state and fed a certain 

input.  The state diagram for the toy machine I just created is shown below: 

 

 

 

Fig. 1.15 – State Diagram for a NOT FSM 

 

As can be seen, if the machine is in a state (say Q0), and receives an input of “0”, it will 

then transition to state Q1, and produce an output of “1”.  Now I have three possible 

representations for these machines:  A series of logic gates, a truth table, and a state 

diagram.  Which one is chosen to use in any particular case will depend on what is being 

demonstrated.  For the moment, I will use state diagrams to illustrate FSM’s. 

 

Some other examples of FSMs are demonstrated here, again closely following Minsky4. 

 

The Memory Machine 
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The Memory Machine is a device which has the ability to “remember”, by outputting at 

time t+1, what the input was at time t.  In order to accomplish this, it is necessary to have 

a two state machine.  The function tables and state diagrams for this device are shown 

below: 

 

G Q0 Q1 

S0 Q0 Q0 

S1 Q1 Q1 

 

F Q0 Q1 

S0 0 1 

S1 0 1 
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Fig. 1.16 – Truth Table and State Diagram for a Memory Machine 

 

Note that no matter what the input to this machine is (0,1), the output is the same as the 

input, allowing it to function as a memory of the time the input was entered. 

 

The Parity Machine 

Another interesting machine is one which outputs the parity  of the number of “1”s it has 

received.  The key feature of such a machine is that the state and output remain the same 

when a “0” is entered, but change when a “1” is entered.  As a consequence, an even 

number of “1”s will cause the state not to change, but an odd number of “1”s will.  The 

function tables and state diagrams for this device are shown here: 

 

G Q0 Q1 

S0 Q0 Q1 

S1 Q1 Q0 

 

F Q0 Q1 

S0 0 1 

S1 1 0 
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Fig. 1.17 – Truth Table and State Diagram for a Parity Machine 

 

The Binary Adder 

Finally, as a last example, I show the Binary Adder.  This machine takes two binary 

numbers of an arbitrary length and adds them, producing their sum as an output.  In 

reality, since the digits are fed in two at a time, only two states are needed.  One of these 

is for when there isn’t a “carry” to be put into the next column of the addition and the 

other is for when there is such a carry.  The state diagram is again shown below: 
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Fig. 1.18 – State Diagram for a Binary Adder 

 

As can be seen from this last machine, devices which can be represented with circuit 

diagrams and logic tables can also be formulated in terms of state diagrams.  And hence 

this discussion has come full circle, from building machines out of individual 

components to taking the whole machine as a functional unit, which is represented in its 

computational path as a state diagram. 

 

However, as I will now show, there are some problems which an FSM can never hope to 

solve.  In order to address these problems, I will need to invoke a more advanced 

machine – the Universal Turing Machine. 

 

 

 

 

1d. Turing Machines 

In 1936 Alan Turing encapsulated the above ideas into a “Turing Machine” (TM)5.  A 

TM is a machine which takes an input stimulus (S) and produces an output (R).  This is 

just like the FSM shown above.  However, a TM also has the benefit of being able to 

write an answer out and access it again later.  Turing envisioned these machines as being 

like an FSM, with the benefit of having a theoretically unlimited supply of tape upon 
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which to read and write.  As is shown, this unlimited capacity allows a TM to perform 

computations which are beyond the reach of an FSM. 

 

I demonstrated in the last section that some problems, such as addition and subtraction, 

could be solved using an FSM.  Consider what happens when I try to extend this idea to 

the multiplication of two binary numbers of arbitrary length.  (Note that this is not the 

same as multiplication of two numbers of a known length.) 

 

Assume for the sake of discussion that there existed some machine which could multiply 

arbitrarily long strings of binary numbers.  Like the situation with the adder (shown 

previously), numbers are input one digit at a time.  Recall that any binary number of the 

form 2n is a one, followed by all zeros.  For example, 22  =  4 = 100, 23 = 8 = 1000, etc. If 

I ask the machine to multiply a number of the form 2n by itself, I am talking about two 

numbers of the form 1000….  .  This is a “1”, followed by n zeros.  This will give a result 

containing 2n + 1 digits.  Since the inputs have only n+1 digits, the machine will have to 

print “n” more zeros after the input has been entered, and then print the “1”.  However, 

once the input has stopped, the machine must cycle through its states with a constant 

input of zero.  The only way, then, to make the machine print a “1” is to let it have more 

states than there are zeros to be printed remaining (that is, n<Q).  However, since it is 

possible to create an arbitrarily large multiplication, there is never a guarantee that the 

machine will have enough states to cycle through to output the “1”.  This leads to the 

theorem: 
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“No fixed-state machine can multiply arbitrarily large pairs of binary (or decimal) 

numbers.”4 

 

This then proves that there are some problems which are not solvable within the 

framework given thus far.  However, I have dealt with only FSM’s.  In contrast to the 

FSM, the ability to read and write from an external memory gives the Turing machine an 

advantage.  The quintessential prototype of a TM is a device with a read-write head.  This 

device is capable of reading from a tape, and using this input (S) in conjunction with its 

state (Q), produces an output (R), which is then written in place of the material in the 

original input.  From there the TM is capable of shifting one cell to the left or right, 

where it starts the process over again, this time using the contents of the new cell as S.  

While this may appear to be incredibly simple, it is deceptively so, for all modern day 

computers are simply bigger versions of this idea, with memory cells and drives replacing 

paper tape. 

 

The transition functions for a TM involve not only the response function and state 

functions shown for an FSM, but also a function to determine which way the head needs 

to move after completing an operation.  These functions are: 

 

Q(t+1) = G(Q(t),S(t)) 

R(t+1) =F(Q(t),S(t)) 
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D(t+1)=D(Q(t),S(t)) 

 

Types for Problems for a TM 

 

As demonstrated above, there are some problems which cannot be solved by an FSM.  

These problems are in a class which would require a potentially unbounded amount of 

memory.  That being the case, a TM is a likely candidate for these problems, since it has 

an unlimited amount of tape on which to read and write.  Here I show an example of 

problems which can be solved by a TM, but not by an FSM. 

 

Check the Number of Parentheses 

 

A “parenthesis checker” is a machine that checks whether or not a string of parentheses 

has the correct number of left and right parentheses and in the correct order to be 

balanced.  For example, the string of parentheses consisting of: 

(  (  (  (   )  )  )  ) 

is a valid string, since each right facing parenthesis lines up in an appropriate sequence 

with a left facing counterpart.  However, the string, 

(  )  )   

is not valid, since both the number and alignment of parentheses is incorrect. 

It sounds like a trivial matter to imagine a machine which could analyze such a string.  I 

can imagine that a particular machine could be designed which would start at the left side 
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of the string and keep track of the number of parentheses that were “open”  in nature.  

When it got to a “close” parenthesis, it would cancel one of the open parenthesis and 

keep moving to the right.  If there are leftover parentheses at the end of the analysis, then 

the string is not well formed.  Otherwise, it is! 

The difficulty with this problem for an FSM, however, comes in the number of 

parentheses.  Since the number of parentheses can be any number, there is no guarantee 

that the FSM being used to analyze the string will have enough states in it to keep track 

of the number of open parentheses.  Of course, I could design an FSM which could keep 

track of some finite number of open parentheses, but not one which could solve an 

arbitrary long problem of this sort. 

Solving such an arbitrary length problem is certainly within the abilities of a TM.    The 

state diagram for a TM that performs as a parenthesis checker is4: 

 

 

Fig. 1.19 – State Diagram for a Parenthesis Checker 
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This TM can cycle through states, counting parentheses until it gets to the end of an 

arbitrarily long string. 

It may at this point be thought that the most powerful example of a classical computer has 

been found through this simple prototype.  However, there is a specific type of TM which 

is more powerful than any other.  This is a Universal Turing Machine (UTM).  The UTM 

is a machine which can emulate the operation of any other Turing Machine.  The UTM 

accomplishes this by having the program for the machine which it is emulating written on 

the tape.  This tape is then accessed to tell the UTM how to behave under any specific 

circumstances, thereby giving it the ability to emulate other TMs.  A very interesting 

consequence of this will be addressed when I consider whether a UTM can emulate itself, 

leading to what is referred to as the Halting Problem.  This will be dealt with in short 

order. 

 

 

Chapter 2 – More Advanced Issues in Computation 

2a. Proof of the Halting Problem 

In dealing with issues in computability, few issues have received more attention than the 

Halting Problem.  Alan Turing was able to formulate the Halting Problem along with 

Turing Machines in his 1936 paper5.  In its basic formulation, the halting problem states 

that it is impossible, in principle, to determine whether or not a machine will halt for a 

given computation (that is, for a given Turing Machine with an input).   
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To prove this statement, first assume that there exists some machine (M), which will tell 

us whether or not a specific other machine (O) will halt, once it has been given O’s 

description and program to analyze (OT).  Since M is capable of determining if O stops, 

where O is an arbitrary machine, then it should be capable of performing the same 

operation for machine (OT, OT), where now instead of using O as the machine description 

and OT as the program, OT is serving as both the description of the machine AND its 

operating system.  Now add another machine to the set (N), which requires the 

description OT for its operation, but otherwise performs like M.  N should be able to do 

the same things M can, but also be capable of copying a block of symbols.  Machine N 

should have two ending states, one printing a “Yes” if (OT, OT) stops, and one printing 

“No” if (OT, OT) never stops.  Now, by making a small change, create a machine (N’), 

which is identical to N, with the modification that the new machine doesn’t halt if it takes 

the “Yes” path toward termination.  Therefore, N’ now has a property that says that it 

halts if O applied to OT doesn’t halt, and it doesn’t halt if O applied to OT does.  So to 

finish the argument, consider what happens if N’ is applied to NT.  This machine would 

halt if N’ applied to NT did not, and would not halt if N’ applied to NT did.  Since this is a 

contradiction, N’ cannot exist.  Since N’ can’t exist, neither can N, and therefore neither 

can M.  Therefore, there is NO machine which can conclude if another arbitrary machine 

will ever halt. 

The Halting Problem has a connection with another limitation in mathematics known as 

Godel’s Incompleteness Theorem.  One weak form of the Incompleteness Theorem is 

that it is impossible have a complete, consistent and sound axiomatization of all 
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statements about the natural numbers.  The strong form of Godel’s Incompleteness 

Theorem does not require soundness as a property, merely provability. 

 

2b. Godel’s Incompleteness Theorem 

Another demonstration of the limitations of mathematics is given by Godel’s6 

Incompleteness Theorem.  In this theorem, Godel states that it is impossible, in principle, 

to prove every true statement which can be formulated in an axomatic system.  Put 

simply, there are statements which may be recognized as being true, but cannot be proven 

to be true by a step by step process.  Some have hypothesized that statements like the 

Goldbach Conjecture (any even number is the sum of two prime numbers) may, in fact, 

be a statement of this sort. 

Godel’s proof involved the creation of a “Godel number” for each possible statement.  

This creation process consists three main steps: 

1) Set up axioms for predicate calculus, along with rules of inference to get new 

formulas from old ones. 

2) Set up axioms for arithmetic in the designed predicate calculus 

3) Define a unique numbering system for each formula or sequence of formulas in 

the system. 

 

The axioms Godel listed for predicate calculus provided for:  

1) A true formula is implied by any formula 
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2) Implication distributes itself over formulas.  If a formula A implies that if B is 

true then C is true, then if A is true, A implies B and A implies C. 

3) If a formula A implies both something and it’s contradiction, then A cannot be 

true, therefore NOT A must be true. 

4) If a formula A implies B and x has no free occurrence in A, then F implies there 

exists some ‘x’ in G. 

5) If A is true, and A implies B, then B is true. 

 

Note that the last formula above is not a statement about formulas themselves, per se.  

It is actually a metastatement, referring to how to connect formulas in reasoning. 

The second requirement above is to construct “standard arithmetic”.  This is 

accomplished via the Peano7 postulates: 
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In the above formulas, “s” denotes the “successor function”, which means that given a 

natural number (x), “s” acting on x produces (x+1).  So in more comprehensible 

language, the rules above mean: 

http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=4ELO3276jlkAh@jBKn3&page=1&doc=5
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1) There doesn’t exist a natural number (x) for which zero is the successor.  So zero 

is the smallest natural number. 

2) For all possible values of natural numbers, if two numbers have the same 

successor, the two numbers are the same.  So if I have two numbers, “x” and “y”, 

and they both have 4 as the next number up from them, the two numbers are equal 

(and in this case, equal to three).  There is no way to have two different numbers 

have the same successor – thereby ensuring the number line is indeed that, a line. 

3) For all values of “x”, x+0 is equal to itself.  This defines what zero is. 

4) For all values of “x” and “y”, a number “x” plus the successor of “y” is equal to 

the successor of (x+y).  An elementary example of this would be if “x” equals 

three and “y” equals four.  Then (x+sy)=3+5=8.  And s(x+y)=s(7)=8. 

5) For all values of “x” and “y”, “x” times the successor of “y” is equal to “x” times 

“y” plus “x”.  For example, if x=3 and y=4, then (x*sy)=(3*5)=15, and (x*y 

+x)=(3*4 + 3)=15. 

6) For all values of “x”, x times zero equals zero.  This helps define the properties of 

zero. 

7) This rule helps define equality.  It shows that any two defined elements are equal 

if they are identical. 

8) For all x, y, and z, if x is equal to y, then if x is equal to z then y is equal to z.  

This property, known as transitivity, shows that the property of equality carries 

over between different elements. 
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9) For all x and y, if x is equal to y, then A(x,x) is equal to A(x,y), where A is any 

formula having two free variables. 

As a final rule, it is necessary to create a “rule of induction”, which states that if a 

predicate is true with zero substituted in it, and if when that predicate is true for a given 

number it is also true for it’s successor, then that predicate is true for all possible numbers 

x. 

Finally, as mentioned above, it is necessary to construct a way to assign a unique number 

to any possible formula one might construct using the above set of formulas.  This is 

accomplished by first assigning a natural number to all of the basic symbols in an 

arithmetic alphabet.  Then, scan any given formula from left to right, and replace each 

symbol by a prime number raised to the natural number assigned to that symbol.  The 

prime numbers are connected by multiplication. 

For example, if I wished to encode the formula ~x into a Godel number, and “~” had a 

code number of “2”, while “x” had a code number of “3”, then this number would be: 

 

813*2~ 32 ==x  

Since each composite number has only one way to be factored into primes (by the Unique 

Factorization Theorem), each formula then is in correspondence with only one (albeit 

possibly quite large) number.  This means that every integer greater than zero now 

corresponds to a unique set and order of symbols.  Many of these integers will represent 

strings of symbols that are nonsensical.  For example, as before, “~” has a Godel number 
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of “2”, then 22*32*42=29, which is “~ ~ ~”.  Therefore the Godel number 29 doesn’t 

correspond to a meaningful formula – however, many other Godel numbers do. 

To finally put all of this into a final proof of Godel’s Incompleteness Theorem, consider 

the following idea.  Imagine that there is a proof (X) of a formula (Y).  Since both the 

proof and the formula are written in symbolic language, they both have their own Godel 

numbers, (x) and (y).  Each of these strings is over the domain of x, y, and z, as listed in 

the Peano postulates above.  Suppose, then, that the formula (Y) is fed it’s own Godel 

number (y) and that the existence of a proof of the resulting formula is denied.  If x is the 

Godel number of a proof of the formula obtained by substituting y into Y, then it is being 

said that such a proof does not exist, so this Godel number, x, does not exist. 

So to boil this down into a few easier steps: 

1) The statement that there is no proof which uses variables (x,y) is provable, and let 

p be the Godel number of that proof, P. 

2) The proof is then true, since P is a proof of the statement with g substituted as one 

of the free variables. 

3) But the existence of the proof contradicts the statement that there does not exist a 

proof, therefore we are left with the consequence that no proof exists. 

4) Therefore, the formula stating there is no proof is true – since it has been 

established that the statement it makes is true – that there is no proof. 

 

This proof then shows a fundamental limitation in the ability to “bootstrap” mathematics.  

If steps are taken algorithmically along a path, prior to Godel it was assumed that all true 
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statements would be found along that path.  Godel showed conclusively that there could 

exists statements seen “off the path”, which there was no way to directly access by proof, 

and yet are true. 

With the construction of a computational system, and some understanding of its limits, 

the time has come to delve headfirst into one particular such environment – the neural 

network.  Understanding what a neural network is and how it operates is the first step 

toward the eventual implementation of such a system using DNA. 

 

 



 

 36

Chapter 3 – Neural Networks 

3a. What is a Neural Network? 

 

First and foremost, it is important to recognize that a Neural Network is one example of a 

computational system.  The next few chapters may appear to radically diverge from the 

first two, however I wish to emphasize that these are merely new clothes for the same 

creature.  Since neural networks can be algorithmically described, they can be modeled 

by a computational system – and are therefore subject to the rules and limitations 

imposed by the theory of computation elaborated previously. 

 

A neural network is an interconnection of fundamental processing elements (PE), which 

are connected to some or all PEs in a set through weights.  These processing element are 

frequently referred to as ‘neurons’, due to their design similarity to brain structure.  

Connections which allow for a time delay or for no such delay are allowed.  This 

definition, then, allows for a variety of schemes for system of PEs.  As I will show 

shortly, the models of PEs as well as connection architectures have evolved over the 

history of neural networks.  Along with this evolution, rich applications have developed.  

I will begin by explaining the history of neural networks, followed by the two major 

types of neural network systems: Biological Neural Networks (BNN) and Artificial 

Neural Networks (ANN). 
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3b. History of Neural Networks 

The field of neural networks had its genesis in 1943 with the publication of “A logical 

calculus of the ideas immanent in nervous activity” by McCulloch and Pitts8.  In this 

paper, the authors for the first time asserted that “because of the ‘all-or-none’ character 

of nervous activity, neural events and the relations among them can be treated by means 

of propositional logic.” (italics mine).  Further, McCulloch and Pitts stated that “…for 

any logical expression satisfying certain conditions, one can find a net behaving in the 

fashion it describes.”(italics mine).  This means that any logical operation that can be 

found (with certain conditions) can be found using a NN.  Also, the authors asserted that 

nervous activity and neural events could be modeled using these networks.  This opened 

a new field for research into how thinking, memory, and perception could be modeled.  

McCulloch and Pitts had opened up an entirely new field – artificial intelligence. 

 

The next major contribution to the idea of neural networks would not come from 

computer science, but rather from neuroscience.  In 1949, The Organization of Behavior 

was published by Donald Hebb9, which stated for the first time an explicit rule for 

synaptic modification during learning.  Hebb proposed that those neurons which “fire 

together, wire together”, meaning that behavior that caused causes a neuron to fire and 

repeatedly excite another neuron adjacent to it will cause a stronger connection to be 

formed between those two neurons. 
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These factors came together as researchers began serious attempts to model brain 

behavior on computers, with the first attempts at neural simulations10 in 1956 showing 

that inhibition must be added to the simulation for a neural network to be effective.  

Uttley11 was then able to use modifiable synapses to teach a network to classify sets of 

binary patterns.  In the same year work on the associative memory was begun by 

Taylor12.  The associative memory is a system where one memory can be connected to 

another, so that when one memory is activated, the other is recalled. 

 

The field matured until, in 1958, Frank Rosenblatt13 introduced a new type of neural 

network architecture, the Perceptron.  The Perceptron differed from the McCulloch and 

Pitts model in a number of ways, including variable weights and node thresholds, a 

different value range for nodes, the lack of an inhibitory synapse, and perhaps most 

important – the ability of “train” the network using a training rule.  Mathematically, this 

is allowing the network to alter the weights of the connections between nodes.  Globally, 

this allows the network to improve its performance at a task.  How the network decides to 

update the aforementioned weights is dependent on the program.  That is to say, the 

designer of the network can tell the network how to update itself.  Training rules and their 

implementation will be covered later in this section. 

 

Rosenblatt’s model, while being a considerable advancement over McCulloch and Pitts’ 

model, eventually became “oversold”.  In response to this perceived overreach, Minsky 

and Papert14 published Perceptrons in 1969, a book condemning the Perceptron and its 
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claims.  In this book, the authors showed that there was an entire class of problems which 

could not be successfully represented by the Perceptron.  One of the simplest of these was 

the XOR gate, shown in Chapter 1.  This caused research into NNs to wane, as scientists 

moved into attempting to solve problems in Symbolic AI.  For more than ten years, the 

field of neural networks languished. 

 

However, during this period, progress on NN continued, albeit at a much slower pace.  It 

was during this time that the first work on lateral inhibition was introduced.  Lateral 

inhibition is the idea that while a PE in a given population is excited, other PEs in the 

vincinity with automatically receive inhibition signals.15  Grossberg termed this an “on-

center off-surround” gain control for a group of neurons.  Grossberg16 also introduced 

several incarnations of neural networks referred to as the adaptive resonance theory 

(ART) models, which relied on a principle of self-organization which had not been seen 

previously.  In the ART model, a layer of bottom up recognition as well as a layer of top 

down data generation compare results.  If the patterns match, a state occurs where 

amplification of neural activity takes place.  Grossberg named this “adaptive resonance”. 

 

Grossberg pointed out that short-term memories are related to neuron activation values, 

while long-term memories are related to weights in the connection matrix.  This 

realization regarding storage of information for long time spans would become integral to 

Hopfield models of neural networks. 
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During this period, a mathematical problem known as the “credit assignment problem” 

was being researched.  This problem may be defined as the problem of assigning credit or 

blame to the individual decisions that led to some overall result.  In the context of neural 

networks, this is the question of how to assign credit or blame to hidden neurons in a 

multilayer neural network.  Minsky17 was the first to use this terminology in referencing 

the multilayer perceptron, but the question is germane to any neural network with a 

hidden layer.  This problem is ubiquitous in the study of neural networks, since the issue 

of the successful performance for the network has to be assigned in some way to the 

individual PEs which comprise the network.  Shun-Ichi Amari18 was able to demonstrate 

how to solve this problem for adaptive neural networks. 

 

In addition, Amari19 developed concept forming networks (another forerunner to the 

Hopfield network).  In this paper, Amari also develops neuron pools.  In this model, 

fundamental PEs are small groups of connected neurons, rather than individual neurons. 

 

Also during the 1970’s, Teuvo Kohonen advanced the field with his work on adaptive 

networks.  In Kohonen’s original paper (1972), the PE is linear and continuous-valued, 

rather than an all-or-none binary model.  Likewise, input values are continuous in this 

model.  In addition, these networks were constructed to have many input and output PEs 

active at the same time, which is necessary for analysis of complicated input information, 

such as vision. 
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After the field of NN languished for over a decade, a solution was found to Minsky’s 

challenge.  It is the case that adding a third layer (also called a “hidden layer”) of neurons 

to the NN architecture with the appropriate backpropagation learning rules20 makes it 

possible to solve the problems Minsky et al. had pointed out.  It is quite possible that 

Minsky himself knew of this possibility, but could not find a way to use a learning rule to 

update the network as needed in this new configuration.  A diagram of this type of 

network is shown below: 

 

 

 

Fig. 3.1 – Basic Neural Network Structure 

Once interest in the field of NN was revived, significant new advances were possible. 

Shortly before the advent of backpropagation solved the challenges put forth by Minsky, 

J.J. Hopfield21 showed it was possible to use a neural network as a content addressable 

memory (CAM).  This allowed neural networks to serve not only as classifiers, but as 

memories. 
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Linsker22 was able to bring information theory to the fore in neural network research in 

1988, formulating what came to be known as the “Infomax Principle”.  This principle is 

designed to preserve the maximum amount of possible information about input patterns, 

subject to the computational constraints of synapses being used. 

Further, in 1988 the concept of “radial basis functions” (RBF) was developed as an 

alternative to multi-layer perceptrons by Broomhead and Lowe23.  While RBF networks 

still employ three layers in their design, their learning rules are novel, in that the 

functions used for network updates have a diminishing effect on input values farther and 

farther from the neuron being updated. 

With these designs implemented in modern hardware, the field of neural networks is still 

burgeoning today.  Ubiquitous computers combined with new hardware implementations 

(brain on a chip, DNA computation, quantum computation) promise to continue 

advancements in the field of neural networks for decades to come. 
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3c. Biological Neural Networks (BNNs) 

Biological neural networks consist of webs of interconnected neurons.  A diagram of one 

of these neurons is shown below24: 

 

 

 

Fig. 3.2 – Diagram of a Biological Neuron [From Hale (REF 24)] 

The primary components most relevant for my purposes include the dendrites, cell body, 

and axons (each of which is labeled above).  Information is transmitted chemically 

through the terminal buttons of a set of neurons into the dendrites of connected neurons 

via neurotransmitters.  These neurotransmitters then provide a signal to the cell body.  If 

the collective contribution of the dendrites exceeds a certain threshold value, the neuron 

will fire, sending a signal along the axon and into the set of dendrites at the other end of 
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the cell.  Once this occurs, the signal is translated into chemical compounds and sent as 

neurotransmitters again to the next set of neurons. 

 

3d. Artificial Neural Networks 

Neural Networks arose out of attempts in artificial intelligence to model brain-like 

behavior.  While the properties and abilities of a particular model of neural network (NN) 

might differ, an overall definition of a neural network is possible.  A neural network is a 

set of computing elements (each of which can be thought of as an FSM) which 

collectively give rise to nonlinear behavior.  These computing elements can be connected 

in such a way as to store information, perform specific mathematical operations, or find 

patterns.  The particular ability of a NN will depend on how that network’s individual 

elements are configured. 

 

The two components of any NN are nodes and connections.  A node takes inputs and, via 

some predetermined operation, calculates whether or not to produce a signal out.  This 

outbound signal can have a varying strength, depending upon the function defined at the 

node producing it.  This outbound signal is then sent to other nodes (and/or possibly the 

node itself).  These signals are the connections mentioned above.  In this way then, the 

NN is a crude approximation to behavior of actual neurons.  A diagram depicting one 

possible NN configuration is shown below: 
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Fig. 3.3 – Feedforward Network Architecture 

 

In the above diagram, the circles represent nodes, and the lines are connections between 

these nodes.  While the above diagram depicts connections between a given node and 

each of the nodes in the subsequent layer, this is certainly not a prerequisite condition.  

The connectivity strength (if any) between two nodes is a function of the network 

architecture, and can be changed during the training of a network to solve a particular 

problem. 

This system is represented mathematically by a set of vectors and matrices.  Each layer of 

nodes is represented by a vector, with each node corresponding to an entry in that vector.  

The connections between nodes are entries in an m x n matrix, where ‘n’ is the 

dimensionality of the first layer of neurons, and ‘m’ is the dimensionality of the second 

layer of neurons.  So, for example, if the values being output from the first layer of 
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neurons are o1, o2, and o3 (being output by node 1, 2, and 3 respectively), and the matrix 

of weights connecting the first layer to the second layer is given by 
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In this representation, matrix entry represents the connection strength between a node in 

the first layer and a node in the second layer.  So, for example, the T11 entry in the matrix 

above is the connection strength between the first node in the first layer and the first node 

in the second layer.  The T12 matrix entry is the connection strength between the first 

node in the first layer and the second node in the second layer.  As can be seen from the 

diagram above, then, it is possible to have some entries equal to zero, if a node in the first 

layer is not connected to a particular node in the second layer.  To calculate the total input 

to a particular node, one needs to multiply the weight matrix by the layer of nodes 

immediately preceeding the layer of interest.  To find the inputs to the second layer of 

nodes, assuming the values exiting the first layer of nodes are given as above (o1, o2, o3): 
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This output from a layer of neurons is fed in as the input for the subsequent layer of 

neurons.  What an individual processing element (or node) does at this point is matter of 

the characteristics of the nodes being used. 

 



 

 47

 

Processing Elements 

Processing elements (PE) are designed to simulate some of the salient features of actual 

neurons.  In general, a PE (also sometimes referred to as a “neuron”) is an element which 

takes a set of input connections and produces a single output.  In this regard, the PE can 

be thought of as some form of many-to-one mapping.  A diagrammatic representation of 

one of these nodes is shown here 

 

Fig. 3.4 – Diagram of a Neural Network Node 

  In the figure, each of the input lines goes to the node, which then acts on the collective 

inputs and produces a single output.  The functional relationship for summing all of the 

inputs for a given neuron is given by: 
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where ‘d’ is the length of the layer of neurons being used as inputs (in the diagram above 

d=3), wij is a connection strength between a neuron being used as an input and the neuron 

currently under consideration, ‘I’ is any external driving term (which can vary from 
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neuron to neuron) and Θ is a “threshold function” shifting the value required for a neuron 

to fire by a constant. Both “I” and “Θ” can be set to zero without a loss of generality. 

Here I have relabeled ‘x’ as the input vector: 
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‘f’ is a nonlinear function (called the activation function).  Two frequently used examples 

of this type of function are the bipolar continuous and bipolar binary functions: 
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In the above binary bipolar activation function, when ‘net’ = 0, the output of the function 

has been selected to be +1.  However, as Haykin25 points out, when ‘net’ is exactly zero, 

“the action taken here can be quite arbitrary.”  Some architectures at this point force the 
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output to +1 (as I have done), some force it to -1, and some leave the output of the neuron 

in the same state it was in prior to the activation function being applied. 

Graphs of these functions are: 
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Fig. 3.5 Artificial Neuron Activation Functions 

 

The sigmoidal characteristic of the bipolar continuous activation function results in the 

designation of a “soft-limiting” activation function, whereas the discrete output of -1 or 1 

from the bipolar binary function causes the terminology “hard-limiting” activation 

function to be used. 

The “bipolar” designation is to note that either a positive or negative response of a neuron 

can be generated.  Shifting the graph of each of these functions upward, so that only a 

“one” or a “zero” can be produced results in a “unipolar” activation function: 
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Finally, there is another model of neuron firing which is based on probability instead of 

deterministic firing.  Little26 proposed the following form for a stochastic activation 

function 

)/(1
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Tnete
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=  

where ‘T’ is a “temperature parameter” which allows the introduction of noise to the 

system.  Any of these functions operating on an input vector {x1, x2, … xn}, which is a 
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set of ‘d’ inputs to each neuron, will produce an output vector (assuming there are ‘d’ 

neurons in the layer being considered): 
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This output vector can then be fed, depending on the network’s architecture, to more 

neurons in another layer, some form of output device, or even back to themselves.  The 

possible configurations for connection are shown below. 

 

3e. Feedforward Networks 

A feedforward network is one in which input signals are given to a layer of neurons.  The 

neurons are allowed to act, and the outputs from the acting layer can either be read out or 

used as inputs for another layer.  A graphical representation of this is shown below: 
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Fig. 3.6 – Weighted Feedforward Neural Network 

 

As an example, assume that the initial input vector is: 
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From the graph above, the weight matrix connecting the first layer to the second layer is 

given by: 
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This gives the value for Tx shown earlier, which is the input at each neuron.  Each neuron 

then acts on this input with its activation function, also shown earlier.  The product of the 

above input vector and weight matrix yields the “net” input to the activation function: 

 

















=

4

22

25

net  

 

If the activation function was the binary bipolar function shown earlier, the output vector 

after the first layer would be: 
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The values of the output vector in this case are, for all intents and purposes, one.  This is 

because the “net” value is so high.  From the graph shown previously, the value of the 
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output vector is much more sensitive to input “net” values for values of “net” close to 

zero.  Reading from the graph, the weight matrix connecting the second and third layers 

is given by: 
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Allowing the outputs from the second layer to serve as inputs for the third layer, in this 

case the final output for this network is (if lambda equals 2): 
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3f. Equivalence of Linear Multilayer and Single layer Feedforward Networks 

 

It should be noted that multilayer and singlelayer linear feedforward networks are 

equivalent.  No gain in computing power is found by adding extra neuron layers.  The 

reason for this is as follows: 

 

Assume that there exists a three layer network with neuron layers f, g, and h, with 

connectivity matrices A (connecting layers f and g) and B (connecting layers g and h).  If 
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an input vector is presented to layer f, then g=Af.  Allowing B to act on layer g, it is 

evident that h=Bg.  But since this system is linear, h=B(Af)=BAf.  This shows that the 

multilayer system can be replaced by an equivalent single layer system, with weights 

comprised of the products of the original connection matrices – no gain in computation 

power is seen.  However, linear networks have no computing power and I do not discuss 

them further. 

 

3g. Feedback Networks 

 

A feedback network is similar to a feedforward network, with the exception that the 

outputs from the final layer of neurons are looped around and serve as inputs for the 

initial layer of neurons at the next time step.  A simple case of this is shown below: 

 

Fig. 3.7 – Feedback Neural Network 
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In this case then, the output at the next time step is a function of the output at the current 

time step.  This can be written as: 
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In this example, the original input is set at t=0 to initialize the network.  It is then 

removed, and the input at the next time step is the output from the previous time step.  If 

the state of the network is completely dependent on the history of the network starting at 

t=0, the network is referred to as recurrent. 

 

It should be noted, in this case, that time has been quantized.  The delay between states of 

the network makes it a straightforward task to generate state diagrams (which will be 

demonstrated in the section on Properties of Neural Networks shortly).  Networks of this 

type are called discrete time networks.  However, it is not necessary for a time delay to be 

present.  Assuming an infinitesimal delay between input and output, the state of the 

network is a continuous time function, which is created by an architecture called a 

continuous-time network. 
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3h. Differences between Biological Neural Networks (BNNs) and Artificial Neural 

Networks (ANNs)27 

There are several differences between the rules of operation for a BNN vs. an ANN: 

 

1) Eccles’ Law – This is a law in neuroscience which states that a neuron either excites or 

inhibits all neurons to which it is connected.  In an ANN, an excitation could correspond 

to a positive weight, while an inhibition could correspond to a negative weight.  Where 

BNNs can therefore have only a positive or negative weight coming from a particular 

neuron (but not both), ANNs have connections which can have either a positive or 

negative weight on a given connection coming from a particular neuron. 

 

2) AC versus DC – In a BNN, a series of pulses across a synapse carries information.  

Also, a higher value of excitation or inhibition results in higher pulse rates.  This is at 

least partially analogous to an alternating current (but only the forward portion of the 

current cycle).  In ANNs, the opposite is the case.  The signal going from one neuron to 

another is DC only. 

 

3) Types of Processing Elements (PEs) – Where a brain has many types of neuron, an 

ANN typically only has one.  It may be possible to have more types of PEs in the future, 

but that may not be necessary due to evidence indicating that any type of implementation 

can be carried out with only two types of PE.20  
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4) Speed – A BNN operates on a cycle time of approximately 10 to 100 milliseconds.  In 

contrast, a desktop computer operates with a cycle time on the order of nanoseconds.  

With a number of operations required to calculate a new value for a PE (10 – 100), this 

makes the cycle time for a PE in an ANN approximately 100 nanoseconds.  However, 

due to the parallel nature of a BNN, it is capable of performing some tasks much more 

quickly than today’s ANNs. 

 

5) Quantity of PEs – A BNN such as the human brain contains on the order of 1,000 main 

modules, each with approximately 500 million neurons.28  This, in contrast with the 

relatively few numbers of PEs involved in the operation of an ANN makes the brain 

much more complex than present models are capable of simulating.  It is noteworthy that 

perhaps if the number of PEs in an ANN should increase by orders of magnitude, a more 

complex programming scheme than is known today for sensibly adjusting the 

connectivity types and numbers of nodes in the ANN may be required. 

 

3i. Neural Network Learning Rules 

 

The strength of a neural network is in its ability to “learn”, which implies some sort of 

improvement at a given task.  However, even the definition of what constitutes learning 

can vary from researcher to researcher.  A lucid definition of learning in the context of 

neural networks is given by Mendel and McClaren29: 

“Learning is a process by which the free parameters of a neural network are adapted 
through a process of stimulation by the environment in which the network is embedded.  
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The type of learning is determined by the manner in which the parameter changes take 
place.” 
 

When dealing with a neural network, the question naturally arises as to what is the best 

way to readjust the connection weights in the network to allow for settlement into a state 

which allows the network to successfully perform the desired task for which it is being 

trained.  The particular procedure used to determine the adjustment of connection weights 

during the training phase of a network’s operation is called a training rule.  Several 

training rules have been developed since research into NN began, and which rule is 

applicable for a particular network will depend on both network architecture and the task 

to be performed.  Below is a table summarizing learning rules and their application, with 

details on each rule following.  (This discussion closely follows Zurada30.) 

 

Learning 

Rule 

Weight 

Adjustment 

Initial 

Weights 

Learn

Mode 

(S/U) 

Neuron 

Characteristics 

Neuron or 

Layer or 

Neurons 

Hebbian Coixj (j=1,2,..n) 0 U Any Neuron 

Perceptron c[di-sgn(wix)]xj Any S Binary Bipolar, 

Binary Unipolar 

Neuron 

Delta c(di-oi)f’(neti)xj 

(j=1,2,..n) 

Any S Continuous Neuron 

Widrow-

Hoff 

c(di-wix)xj 

j=1,2,..n 

Any S Any Neuron 



 

 60

Correlation cdixj 

j=1,2,..n 

0 S Any Neuron 

Winner 

Takes All 

∆wmj=α(xj-wmj) 

m-winning 

neuron 

Random 

Normalize 

U Continuous Layer of p 

neurons 

Outstar β(di-wij) 

i=1,2,..p 

0 S Continuous Layer of p 

neurons 

 

Fig. 3.8 – Neural Network Learning Rules 

The general rule for training first involves establishing a syntax which denotes the 

contribution of the input, output, a learning signal, and a teacher’s signal.  Following the 

convention of Amari 199030, the “general learning rule” is stated as: The weight vector wi 

= [wi1, wi2, wi3,… win]t increases in proportion to the product of input x and learning 

signal r.  The learning signal is a function of wi, x, and sometimes di (the teacher’s 

signal). 

 

This being the case, then, the equation governing the new weight vector at time t+1, in 

terms of the training which takes place at time t is: 
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where “c” is a positive number called the “learning constant”.  This number determines 

the rate of learning.  The function r changes from learning rule to learning rule. 

 

Hebbian Learning 

 

Hebbian learning involves the following rule9. 

)( xwfr t
i

r
∆  

This means that the learning signal is equal to the neuron’s output.  Then, according to 

my general format for weight adjustment,  
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This adjustment is an implementation of the classic rule “When an axon of cell A is near 

enough to excite a cell B and repeatedly or persistently takes place in firing it, some 

growth process or metabolic change takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased.” 

 

 

Perceptron Learning Rule 

 

This rule was developed for training the perceptron13.  The rule is designed to make the 

learning signal equal to the difference between the desired output and the actual output.   
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This makes: 
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and the corresponding weight adjustment: 
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Delta Learning Rule 

 

The Delta learning rule was introduced by McClelland and Rumelhart31 as one means of 

supervised training.  The learning signal is defined as: 
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where f’(wx) is the derivative of the activation function.  The potential for success using 

this rule is predicated upon the realization that the squared error is defined to be: 
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then the error gradient vector value is: 
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setting the weight changes equal to: 

 

Ewi ∇−=∆ η  

 

and combining these two quantities: 
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This means that the adjustment of the weights is defined to minimize the squared error.  

Combining: 
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and 
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I obtain 
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xnetfodcw iiii )(')( −=∆  

 

This is the same as the above rule listed for weight adjustment. Therefore, this scheme is 

designed to minimize the squared error between the desired output and the output 

obtained for a particular scheme and time step. 

 

Widrow-Hoff Learning Rule 

 

The Widrow-Hoff32 rule is another method of supervised training of a network.  The 

learning signal and weight adjustment for this rule are given by: 
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This is a special case of the Delta learning rule, if the activation function is equal to one. 

 

Correlation Learning Rule 

 

By using the general learning rule: 
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and setting r = di.  This causes the weight adjustments to be: 

 

xcdw ii =∆  

 

The rule sets the weight increase to be equal to the product of the desired response (di) 

due to an input (xj).  This is a special case of Hebbian learning, except that the learning is 

supervised, since the desired output is given. 

 

Winner-Take-All Learning Rule 

 

This rule is one which rewards a particular neuron in a layer by adjusting only the 

weights going to that particular neuron in that time step.  The selection of which neuron 

receives the update is determined by which of the neurons in question receives the 

maximum activation: 
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Once the “winner” neuron is found, it is updated according to the formula: 
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This learning rule corresponds to finding the weight vector that is closest to the input 

vector x. 

 

Outstar Learning Rule 

 

The Outstar rule is similar to the Winner-Take-All rule, except that instead of dealing 

with all weights going to a particular node, the weight adjustments are to all connections 

going out of a given node.  The weight adjustments are: 

 

)( jj wdw −=∆ β  

 

Also, in contrast to the Winner-Take-All rule, the Outstar rule updates all neurons in a 

given layer, rather than just one particular “winner”. 

 

These rules are useful in a single layer network.  But as hinted previously, there is a 

challenge when assigning updates to neurons which are not directly visible to the outside 

world.  This “credit assignment problem”, as it is known, deals with how adjust the 

weights of neurons which are not directly accessible in the network, since they are in one 

or more hidden layers. 
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The solution to this problem is to engage is learning via “back propagation”.  A NN 

engaged in learning through back propagation has two passes through the network instead 

of one.  The first is a computation of results through the network with the initialized 

values of threshold elements.  Once the results have reached the output layer they are 

compared with the desired results.  The difference between the outcomes and desired 

results at each node can be used to compute an “error signal”.  This error signal can be 

used to directly compute the modifications of weights attached to that node by a learning 

rule.  For example, with the “delta rule” mentioned previously, the modifications to the 

output layer of neurons would be  

ijij yT ηδ−=∆  

where “δ” is the gradient of the error function in weight space.  This error function can be 

defined as 

∑
=

=
d

j
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1

2

2
1ε  

where ej is the error calculated earlier for the ‘j’th neuron.  The gradient of this function 

then, in the case of output neurons, is 

'
jjj fe=δ  

where fj is the activation function for the jth neuron.  In the case of hidden nodes, this 

rule becomes modified to  

∑
=

=
d

k
kjkjj Tf

1

' δδ  

This alteration takes into account the weights of neurons attached to the node of interest. 
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The culmination of work on neural networks as classification and approximation systems 

has a rich history, beginning with simple elements to simulate neural signals and 

concluding with specialized hardware and software implementations still under 

development today.  One particular type of network, a Hopfield Neural Network, will be 

of special interest. 
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Chapter 4. Hopfield Neural Networks 

 

4a. Structure of Hopfield Neural Networks 

The networks I have discussed so far focus on the architecture of the connections 

between nodes.  As I have demonstrated shortly, these networks are useful for 

information processing tasks.  However, as J.J. Hopfield21 demonstrated, there is another 

task for which a neural network is suited – memory recall.   

 

In a Hopfield Neural Network (HNN), information is stored in the connections between 

nodes.  The connections in the network are initially established by presenting data 

patterns to be stored one by one to the network.  Once these “memories” are stored, it is 

possible to recall them by the presentation of corrupted piece of information.  While this 

memory model may not in all cases be the most efficient, it is helpful because it is easy to 

program as a “sum of outer products” system, which will be discussed shortly. 

 

There are two main ways of storing data in a HNN; autoassociative memories or 

heteroassociative memories.  An autoassociative memory is one in which when presented 

with the corrupted pattern, the network outputs the original pattern, uncorrupted and in its 

entirety.  However, in a heteroassociative HNN, memories are stored in pairs.  The 

presentation of the corrupted pattern produces the output of the associated object stored 

in memory. 
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For example, suppose I wanted to remember the name of someone, and couldn’t 

remember it exactly – but could remember something similar to it (a common occurrence 

in humans).  If I were to input the “corrupted vector” into my neural network, I should be 

able to recall the complete name of my friend, of which the uncorrupted components of 

the input vector is a portion: 

 

 

 

 

Fig. 4.1 – Memory Illustration for an Autoassociative Neural Network 

In some situations, however, something will remind a person (or computer) of something 

else.  This heteroassociative neural network will recall information that is “paired up”, 

but not equal to, the clue for the original memory.  As an example of this, suppose I see a 

person with blonde hair, and my friend has blonde hair. It is possible that the input 

stimulus (blonde hair) will produce a heteroassociated memory (an image of my friend): 
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Fig. 4.2 – Memory Illustration for a Heteroassociative Neural Network 

The HNN can simulate this behavioral feature.  The construction of the working memory 

of an HNN involves the sum of the outer products of information vectors.  To obtain an 

information vector, it is necessary to convert the data from whatever format it has 

naturally (such as a picture, sound, selection of text).  For example, assume there was a 

set of three pictures, each containing three pixels.  Each of these pixels could be black or 

white.  Presuming I allow for black to be equal to a “1”, and white to be equal to a “-1”, 

then each picture can become an information vector with three entries – each entry being 

a “1” or “-1”.  This information (in this case binary bipolar in nature) is then stored as a 

matrix.  Consider the following set of information vectors: 
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The memory matrix for these vectors would be (assuming I wish to create an 

autoassociative network): 
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Obtaining the original memory is accomplished by an input of the original memory with 

some components’ signs altered (called a “corrupted vector”).  The output of the matrix 

times the corrupted vector is put through a hard limiting function, and the original vector 

is obtained.  If, for example, the corrupt vector: 
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is input into the memory matrix above: 
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the correct vector is recalled.  If a heteroassociative memory is desired, the memory 

matrix is constructed using the outer products of pairs of vectors that are to correspond to 

one another, instead of using the outer product of each memory vector with itself. 

 
Encoding Information 
 
As mentioned in previous sections on the formation of HNNs, memories in an HNN are 

represented by ‘d’ dimensional vectors.  In Hopfield’s original paper memory 

components were unipolar.  However, his subsequent publication33 allowed for bipolar 

data representation, which was later extended to a continuous activation function. 

 

In Hopfield’s model, the memory matrix is a neural network constructed of the sum of 

the outer products of the information vectors.  His original work was designed to assess 

under what conditions a “corrupted vector” is restored to one of the original vectors 

encoded in memory.   

 

In contrast, it has been suggested by Mills, Yurke and Platzmann91 that a duobinary 

representation of information could be possible.  In this representation, information is still 

encoded in a binary bipolar format.  However, a value of zero is used to represent a 

“missing” element of information.  It is an interesting problem to compare these two 

representations of information loss.  Some properties of HNNs with these vectors as 

inputs will be explored in Chapter 6. 
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4a.1. Encoding Input Vectors 
 
Encoding information as an input vector first involves the conversion of information to 

be stored.  Consider the encoding of a set of pictures, each represented by black or white 

pixels on a 10x10 grid.  The following pictures 
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Fig. 4.3 – Binary Valued Pictures for Encoding in Neural Network 

can be encoded as information vectors, counting each black pixel as a +1 and each white 

pixel as a -1.  In the process of translating each two dimensional array into a vector, the 

position of each pixel in the picture is lost, and the process of recall will have to involve a 

translation from the output vector to a two dimensional array. 

 

For example, the first picture (“X”) can be represented in an array as 

{{1,-1,-1,-1,-1,-1,-1,-1,-1,1},{-1,1,-1,-1,-1,-1,-1,-1,1,-1},{-1,-1,1,-1,-1,-1,-1,1,-1,-1},{-1,-

1,-1,1,-1,-1,1,-1,-1,-1},{-1,-1,-1,-1,1,1,-1,-1,-1,-1},{-1,-1,-1,-1,1,1,-1,-1,-1,-1},{-1,-1,-

1,1,-1,-1,1,-1,-1,-1},{-1,-1,1,-1,-1,-1,-1,1,-1,-1},{-1,1,-1,-1,-1,-1,-1,-1,1,-1},{1,-1,-1,-1,-

1,-1,-1,-1,-1,1}} 

 

which when flattened into a vector becomes 



 

 76

{1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-

1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-

1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1} 

This vector, combined with vector representations of each of the other letters shown 

above, can be encoded into a memory matrix by taking the sum of the outer products of 

these memory vectors. 

 

4a.2 Corrupted Vectors 

Once the memory matrix has been constructed, it is possible to create corrupted vectors 

by selecting a number of pixels to be altered.  When samples become large, the 

corruption scheme for the pixels isn’t relevant, as long as the number of pixels corrupted 

is known.  For example, below is a picture of a corrupted version of ‘X’ created by 

setting the independent probability that any individual pixel being corrupted to twenty 

percent 

 

Fig. 4.4 – Corrupted Example Picture 
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Once the corrupted array is generated, it is flattened into a vector and the memory matrix 

acts on it, followed by the saturating function.  The output vector is then reconstructed 

into an array by splitting every ten entries into a new row. 

Attempting this gives the following output 

 

 

Fig. 4.5 – Restored Example Picture 

 

showing that the corrupted picture has been restored to the correct original memory.  A 

more extreme case can be shown by increasing the probability of each pixel being 

corrupted.  An example of this can be shown below, where each pixel has a thirty five 

percent chance of being corrupted 

 

Fig. 4.6 – Second Corrupted Example Picture 
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This image is obviously considerably more corrupted than the first example.  Once the 

array is flattened and allowed to be acted upon by the memory matrix and saturating 

function, the output array is 

 

 

Fig. 4.7 – Second Restored Example Picture 

once again giving the desired output.  However, this may not be convergent on the first 

iteration in all cases.  For example, the same simulation run again gives a corrupted 

picture 

 

 

 

Fig. 4.8 – Third Corrupted Example Picture 

Once put through the memory matrix, the output is 
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Fig. 4.9 – First Iteration of Third Corrupted Picture 

If this output image is flattened into a vector again and acted on for a second time by the 

memory matrix and saturating function, the output is 

 

 

Fig. 4.10 – Second Iteration of Third Corrupted Picture 

This has demonstrated a situation where the corruption in the memory was so great that a 

convergence to the correct memory required multiple iterations with the memory matrix. 

 

Running this trial again with the probability of each pixel being flipped as fifty percent 

gives 
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Fig. 4.11 – Highly Corrupted Picture 
 

which, when put through the memory matrix and saturated gives 
 

 

Fig. 4.12 – Output of Highly Corrupted Vector 

which is obviously not the desired output vector.  Further iterations of the vector acted 

upon by the memory matrix and saturating function produce the same output, implying 

that this is a stable memory, but one that was not originally encoded into the HNN.  

When the number of stored patterns exceeds two, it has been shown not only that new 

stable states may appear but that original memories may not remain indefinitely as stable 

points when new memories are added34.  Further, it has also been demonstrated that it is 

possible to recall not only an original memory, but its complement instead35. 
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4a.3. Incomplete Vectors 

In contrast to Hopfield’s original idea of implementing a memory which could act upon a 

corrupted vector, Mills, Platzman and Yurke91 have envisioned a memory system in 

which the HNN acts upon “incomplete” memories.  In this situation, the implementation 

of information is duobinary, having with entries having values of ± 1 or 0, where zero 

means an absence of information for that entry. 

 

For example, running the simulation in this new format (with a probability for each pixel 

being lost set to twenty percent) gives the following incomplete picture 

 

 

Fig. 4.13 – First Incomplete Picture 

Once acted upon by the memory matrix and saturating function, the output vector (once 

reassembled) becomes 
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Fig. 4.14 – First Incomplete Picture Restored 

which is the desired result.  Notice the differences between this type of “incomplete 

image” and the previously explored “corrupted image”.  The grey pixels in the picture 

correspond to “missing” information, meaning that the entry in question could have a 

desired value of ± 1.  Further, the pixels that are clearly defined retain the values ascribed 

to them in the original entry.  This could mean the possibility of recall fidelity with more 

missing entries than would be possible with corrupted entries.  As a preliminary example 

of this, consider the previous situation, where the probability of a pixel being corrupted 

was fifty percent.  The network was unable to correctly recall one of the memories, 

presumably due to the existence of “spurious memories”.  If, however, I attempt this 

procedure using an incomplete vector with each pixel having a fifty percent chance of 

being incomplete as opposed to corrupted, I obtain the following for the incomplete 

picture 
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Fig. 4.15 – Second Incomplete Picture 

Once acted on by the memory matrix and saturating function, the output is 

 

 

Fig. 4.16 – Second Incomplete Picture Restored 

 

which is confirmed to be the desired output.  A comparison of the properties of network 

recall as functions of these two types of memories is the subject of Chapter 6. 
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4b. Capacity and Fidelity of Hopfield Networks 

Information Content of Vectors and Networks 

The information content of a vector in a HNN can be thought of in terms of the vertices 

of the ‘d’ dimensional hypercube which makes up its state.  Since the determination of 

the state of the output of a network (in binary bipolar representation) is a vertex on the 

hypercube, the decision about which vertex to settle upon can be thought of as a series of 

“yes or no” questions.  This type of content generation is amenable to analysis in terms of 

Shannon Entropy.  Solomon Golomb puts it eloquently when he says36 a Shannon bit “is 

the amount of information gained (or entropy removed) upon learning the answer to a 

question whose two possible answers were equally likely, a priori.”  A more rigorous 

definition of this can be codified as follows, for a set of ‘n’ outcomes with probabilities 

p1, p2,.. pn: 
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where all logarithms are base two.  The minimum amount of information generated could 

be calculated by assuming that, overall, each entry has an equal probability of being 

either plus one or minus one.  In this case, the number of Shannon bits generated with 

each information vector is 
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Memory Capacity of the Hopfield Neural Network 
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Much interest has been taken in the capacity of a HNN.  Hopfield’s original paper21 

showed that Hopfield was able to recall n ≈ .15d (where ‘d’ is the dimensionality of the 

vectors) memories “before error in recall is severe”.  Further, he found that as the number 

of memories increased (with a fixed length of information vectors), vectors could still 

converge – but could frequently converge to stable states with errors in them.  For 

example, in Hopfield’s original publication, he found that when n=5 and d=100, 

convergence to the correct state occurred with a probability of 1.  However, an increase 

in the number of memories to n=10 (d=100) lead to a convergence to the correct memory 

with a probability of ≈.7.  The other 30 percent of entries converged to other stable states 

which were incorrect.  Finally, an increase in number of memories to n=15 produced 

correct convergence with a probability of only .2.  Further, there was a probability of .1 

of converging to a state with between 10 – 19 errors in the stable state, a .15 probability 

of converging to a solution with 30 - 39 errors in the stable state, and a .2 probability of 

converging to a stable state with 20 – 29 errors.  

 

Forshaw37 confirmed this result and extended it to longer memory patterns (O(d/2)), and 

found that it was consistent with Hopfield’s results.  However, Peretto38 contended that 

Hopfield modified this idea to show that the memory storage capacity is given by 

 

M = N/K  
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where N is the number of neurons and K is a constant.  A generalization of this result was 

provide by Keeler39, who found that this relationship held for Hopfield models with 

higher order interactions among neurons, as well as for a three layer network.  Storage 

capacity of binary patterns has been estimated to be O((N/logN)2), each with size 

O(logN)40.  Finally, McEliece41 showed that for a perfect recall from a vector with up to 

half of the entries corrupted, there should be no more than d/(4log(d)) memories in the 

network, while if a small error in recall is tolerable, there can be up to d/(2log(d)) 

memories in the network. 

 

Errors in Recall 

Forshaw37 ran simulations on recall ability of HNNs as a function of corruption. He also 

termed this “incompleteness”, but it differs in design considerably from the idea of Mills, 

Platzman and Yurke91 which involves a duobinary representation of data.  In Forshaw’s 

simulation, data representation was binary bipolar.  However, in order to delete a portion 

of the image, he set the entry to -1.  In effect, this visually would produce a completely 

white page, instead of one with data represented by values of black and white pixels.  

Forshaw’s initial simulations, run on a vector of length d=100, showed that for situations 

where fractions of a pattern were presented to the network, convergence was nearly 

complete for n=10 if the fraction of the pattern (compared to a particular desired pattern) 

was greater than .5.  As n was increased (to n=30), convergence fell considerably to .5 

when the fraction of the pattern shown to the network was also .5.  These results assumed 
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synchronous updates to the network.  Convergence results were considerably worse for 

asynchronous updates to the network. 

 

 While the above references help determine the number of patterns which can be stored 

reliably in an HNN, further progress was made by Bruce42, who demonstrated that for 

α≈.069, where 

 

α=n/d 

 

there was a discontinuous change in the fraction of bits recalled correctly.  Bruce was 

able to determine this by observing that in the phase diagram of the Hopfield network the 

thermodynamic states having overlap with the stored memories disappeared, implying a 

discontinuity in recall at this point. 

 

 Gardner43 generalized this result to show that for α<0.113, there is a gap between the set 

of states close to the input vector and another set of states centered around the normalized 

Hamming Distance = .5 from the input vector (i.e. random vectors or other orthogonal 

memories).  With this, Gardner attempted not only to show that the input vector would 

fall into a stable vector close to itself, but that there is a definite distance between the 

input vector and another set of encoded vectors which is far enough way that it will with 

certainty avoid this set of distant vectors as a result. 
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Improving Pattern Storage and Recall 

Attempts have been made to improve upon the capacity of the HNN since inception.  

Originally, Hopfield proposed44 a model of a HNN which would employ “unlearning” 

memories.  This was accomplished by relaxing random states to stable states (which may 

or may not have originally been encoded in the HNN).  This stable state was then used to 

form a matrix by constructing its outer product.  A matrix proportional to this outer 

product was then subtracted from the original weight matrix to, in effect, “forget” that 

spurious memory.  It was found that this method improved the number of memories that 

could be recalled correctly and that error correction was improved, but that recall fell to 

zero as (n → d).45  Kleinfeld46 was able to further verify an increase in memory capacity 

for an HNN using an “unlearning algorithm”. 

 

So far, the references mentioned have been measuring the capacity of recall in terms of 

the number of input vectors and the number of recalls that were correctly performed.  

However, Abu-Mostafa47 demonstrated that the asymptotic information capacity of a 

HNN of ‘d’ neurons is on the order of d3 bits. He also demonstrated that the number of 

state vectors which can be encoded with stability in the same network is bounded by ‘d’.   

 

Horn48 observed that while orthogonal vectors are desired for faithful memory recall, 

they do not guarantee that a “faithful set” will be formed.  That is, it is possible to still 

generate output vectors that were not members of the original set.  Further, Horn was able 
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to construct “faithful sets” by requiring that “certain subsets be forbidden to have a total 

binary product proportional to the unit vector”. 

 

4c. Altered Constraints and Memory Models for the Hopfield Neural Network 

Relaxation of the Tii=0 Condition 

One of the conditions mentioned by Hopfield for unconditional convergence of the HNN 

is the removal of the diagonal elements (Tii) of the memory matrix21.  Gindi49 modeled 

discrete time HNNs (d=100, n=10) which had a small number of corrupted bits.  The 

small number of bits corrupted was set such that the number of corrupted bits presented a 

corrupted memory whose likelihood of having a greater Hamming Distance from the 

correct memory than another of the stored memories was very small.  Below is shown the 

convergence from Gindi’s data for both an asynchronous and synchronous update scheme 
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Fig. 4.17 – Gindi’s Data for an Asynchronous Update Scheme 

 

(The curve marked with “*” is for cases where Tii is equal to zero, and the curve marked 

with “+” is for the cases where Tii is not equal to zero.)49 

In the above plots, the probability of convergence is plotted on the y-axis by calculating 

the percentage of initial states that converged to the reference memory.  As can be seen 

from the above plots, the case where Tii is not equal to zero actually performed better in 

Gindi’s simulations.  

These results were confirmed and extended to networks which were binary unipolar by 

Gmitro50, as shown below 
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Fig. 4.18 - Gmitro’s Data for Bipolar and Unipolar Networks 
 

Here the probability an individual bit will be correct after update is plotted as a function 

of the number of bits that are corrupted in a memory vector.  As can be seen, not only are 

the cases with nonzero diagonal terms better in terms of performance in both binary 

bipolar and binary unipolar representations, but Gmitro showed that for the standard 

HNN, binary bipolar networks performed better overall than binary unipolar networks.  

DeWilde51 showed that while adding a small positive diagonal term to the memory 

matrix did improve performance in some cases when compared to a zero diagonal matrix 

(although sometimes within the error bars of each others’ results), adding nonzero terms 
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along the diagonal definitely increased the number of spurious states in the network.  

DeWilde explains that this is from states that were not stable for a zero diagonal memory 

becoming stable due to positive self-feedback. 

 

Relaxation of the Symmetry Condition for Memory Matrix Elements 

Hopfield’s original paper21 held that the elements of the memory matrix for a HNN had 

to be symmetric (Tij = Tji).  However, it has been pointed out that biological neurons do 

not obey this property52.  Further, some researchers since Hopfield have had interesting 

results experimenting with the removal of this symmetry condition.  For example, 

Chengxiang53 et al found that when an asymmetric component to the memory matrix was 

introduced, the number of random inputs that converged to memory states was increased.  

However, the size of the attraction basin for a given memory did not show a change in 

size.  Chengxiang concluded that this apparent contradiction is due to the destabilization 

of the spurious memory attractors by the new memory components. 

Chen54 and Amari derived analytical results for HNNs with asymmetric connections and 

found conditions under which the network would be locally and/or globally stable.  Four 

years later, Zhao55 was able to use principles of the stability of basins of attraction to 

design optimal networks by tuning the “degree of stability” of the memory matrix 

elements, also defining a constant of symmetricity equal to 
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where Γ is the number of connections which are symmetric in a given memory matrix.  

Therefore, 0 ≤ Γ ≤ 1, with 0 meaning the matrix is completely antisymmetric and 1 

meaning it is completely symmetric.  Issues in this area are still under consideration, as 

Zheng56  found that HNNs with asymmetric elements and some matrix components equal 

to zero still perform reasonably well compared to fully connected symmetrically 

weighted memory matrices; he pointed out that this could be useful in hardware 

implementations as it can be used to reduce fabrication difficulty. 

 

Altered Memory Models 

While Hopfield’s original memory model was to store memories that were encoded in the 

formation of the memory matrix, progress has been made since the inception of the HNN 

in novel applications and configurations of memory. 

 

For example, Dotsenko57,58 proposed a model of memory which layered multiple 

Hopfield nets in the same working substance.  In his example, Dotsenko proposed using 

an Ising model of spins.  He realized that it was possible to divide the system of spins 

into a hierarchy of clusters, each containing several spins.  Each of the clusters would 

serve as an independent HNN, and presumably function as part of a larger HNN at a 

higher hierarchical level.  Further progress in hierarchical models of HNN was made 

when Cortes59 was able to induce hierarchically ordered memories by using an update 

scheme involving updated weights using a Parisi60 function.  The “Parisi function” is a 

way of simulating the breaking of an order parameter in a matrix which describes the 
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behavior of a spin glass.  This is in contrast to Dotsenko’s implementation, which 

required previous knowledge of all previously input patterns to input new information. 

 

Other memory models may involve novel vectors or memory matrices.  Amit61 

experimented with HNN vectors where the set of patterns input was biased in some 

arbitrary way, by setting the sum of all vector components equal to some small constant. 

 

4d. Measurements of Convergence – Energy Landscapes 
 
It has been mentioned in previous sections that the formation of the memory matrix in an 

HNN produces an “attractor” for each memory, along with a set of “spurious states”, 

which are attractors to which convergence is possible, but were not encoded intentionally 

in the memory.  A quantitative treatment of this issue is now presented. 

 

First, it is useful to address how someone might describe a function for the dynamics of a 

HNN.  A physical system with properties similar to neural networks already exists in spin 

glasses.  A spin glass is a system of atoms (molecules, etc), each with a magnetic 

moment.  These magnetic moments are “frustrated”, in the sense that the structure of the 

system prevents the collapse to a single minimal-energy state.  In the case of a spin-glass, 

this frustration is augmented by stochastic disorder, meaning that ferromagnetic and 

antiferromagnetic configurations of spins are distributed randomly throughout the 

structure of the material.  A model of a spin-glass which could be exactly solved was 



 

 95

introduced by Sherrington62.  In Sherrington’s paper, the Hamiltonian of a spin-glass 

system is given by 

∑
≠

−=
ii

jiij SSJH
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where S=±1.  Hopfield21 recognized that this same type of equation could be applied to 

his form of neural networks, where the magnets of the system are replaced by computing 

nodes, and the interactions between magnets are replaced by connection strengths in the 

weight matrix.  This then allows for a general form of energy for a HNN.  Note that this 

is not “energy” in any physical sense of a neural network.  The term is a carryover from 

the spin-glass model.  However, the dynamics used and mathematical machinery 

employed in this spin-glass analysis can be applied to an analysis of the HNN.  The 

energy of a HNN is a scalar valued function with the equation 

vtvivTvE ttt rrrrrr
+−−=
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2
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Since external inputs (i) and threshold constants (t) for the network can be set to zero 

without a loss of generality, this function is frequently represented as 

 

vTvE t rr ~
2
1

−=  

Notice the similarity with the spin-glass Hamiltonian.  A graph of this function for the 

case where Tii = 0 is shown here 
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Fig. 4.19 – Energy Landscape for a Two Dimensional Memory Matrix 

 

As can be seen from the above plot, energy minima exist when va=vb=-1 and when 

va=vb=1.  If, however, the Tii=0 is not enforced, the energy landscape is altered.  The 

equation for the energy of the network is altered from  

bavvE −=  

to 

22
baba vvvvE ++−=  

However, it was pointed out by Gindi49 that for a binary bipolar valued neural nets, each 

component is ±1.  Therefore, the energy can be reduced to 

ndvvE ba +−=  

where ‘n’ is the number of vectors, and ‘d’ is the dimensionality of each vector (in the 

example here, d=2).  Therefore the values of energy might change, but the number of 

energy minima is not altered. 
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Lyapunov Functions 

The general class of functions which is employed to prove the stability of certain types of 

systems (such as a spin-glass) in the manner mentioned is called a Lyapunov function.  

This is a function based on the system state.  To get an idea of how a Lyapunov function 

is found30, consider a system governed by a set of first order differential equations (either 

linear or nonlinear): 

)(

...

)(

)(

22

11

xfx

xfx

xfx

nn

r
&

r
&

r
&

=

=

=

 

Further, assume that fn(0)=0 for all ‘n’.  A condition for the state vector to migrate 

inevitably toward this minimum can be formulated.  If a positive definite function )(xE
r

 

can be found with the properties that (closely following Zurada30) 

1) E is continuous with respect to all components xi 

2) 
( )

0
)(

<
dt

txdE
r

 

then the result of this function will converge toward a minimum.  This is the definition of 

a Lyapunov function.  It is possible to have more than one Lyapunov function for a given 

system.  Further, there is no known unique and best method for the identification of such 

a function.  Frequently these functions are found by physical insight, similar to what was 

done by Hopfield in comparing the HNN to a spin-glass. 

 

Network Updates 
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The gradient of the Energy function, in general, is 

)
~~

(
2
1

)
~

(
2
1

)( vTvTvTvvE tt rrrrrrr
+−=∇−=∇  

However, if Hopfield’s original prescription is followed for construction of the memory 

matrix, Tij=Tji and this can be simplified to 

vTvTvvE t rrrrrr ~
)

~
(

2
1

)( −=∇−=∇  

It was shown by Petsche63 that this gradient is a linear function of the Hamming Distance 

between the vector in the energy function and each of the memories encoded in the 

memory matrix. 

 
4e. Measurements of Convergence – Hypercubes 
 
A second measure of the convergence of a HNN is the distance from the desired memory 

in a state space.  This space is frequently represented as the volume in ‘d’ dimensions 

bounded by ±1.  For example, for the model shown above, where d=2, the state space can 

be represented as the vertices below 

 1.0  0.5 0.5 1.0

 1.0

 0.5

0.5

1.0

 

 

Fig. 4.20 – State Space for a Two Dimensional Neural Network 
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A few items of note regarding the state space: 

1) Network structures using a hard limiting function will by necessity have states 

constrained to the vertices shown above, since they are saturated to ±1 (if f(0) =1) 

2) Network structures using soft limiting functions are constrained to be within the 

perimeter of the square shown above. 

3) The distance between the given output vector and the desired output vector in the case 

of networks with a hard limiting function is frequently expressed as the “Hamming 

Distance” between the two vectors.  This is defined to be the number of places in which 

their vector entries differ.  In terms of the state diagram, this is equal to the number of 

edges between the two vectors. 

 

 
4f. Measurements of Convergence – Statistical Approaches 
 
Another possible measurement of the effectiveness of a HNN is to determine, statistically 

speaking, what the likelihood is of a vector converging to the correct memory.  In this 

case, I will illustrate using a “clue vector” (a vector with some components missing, so 

they are set to zero).  To assess the efficacy of a Hopfield Neural Network (HNN) at 

memory recall as a function of clue length (q), vector length (d), number of vectors 

encoded (n), and number of iterations to gain statistics (I), it is instructive to first 

demonstrate the recall of a HNN for toy models, since I will be addressing considerably 

more advanced networks in this manner in Chapter 6. 

As a simple example to demonstrate that convergence is indeed possible, consider the 

following set of vectors: 
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v1
 = {-1,1,-1,-1,1,-1,-1,1,1,-1} 

v2 = {1,1,-1,1,1,-1,1,-1,1,-1} 

v3 = {-1,1,1,1,1,-1,-1,-1,1,-1} 

Taking the outer product of these vectors with themselves and summing them, then 

removing diagonal elements results in the memory matrix (T): 







































−−−−

−−−−−−

−−−−−−−

−−−−−

−−−−

−−−

−−−

−−−−−−

−−−−−−

−−−−−

=

0311331131

3011331131

1101113111

1110111113

3311031131

3311301131

1131110111

1111111011

3311331101

1113111110

~
T  

 

To test if an individual clue vector will converge to a desired memory, it is necessary to 

use one of the original memory vectors with components missing (represented as zero 

entries in the input vector).  The Memory Matrix is then multiplied by the input clue 

vector, and a hard limiting function, Sign, is applied to the result, giving a vector O.  

Success is achieved if the result (O) is equal to the original vector encoded in the matrix 

(v).   

Trying this for the above case, setting q=1, gives the following clue vectors (u): 

U1
 = {-1,0,0,0,0,0,0,0,0,0} 

U2
 = {1,0,0,0,0,0,0,0,0,0} 
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U3
 = {-1,0,0,0,0,0,0,0,0,0} 

 

The problematic nature of recall can already been seen here.  Since there are only two 

choices (1, -1) for any individual vector component entry, the clue is quite possibly too 

short to successfully determine which is the desired output vector.  Letting the memory 

matrix act on each of these clues and then following with a hard limiting function gives: 

Sign[T.U1]  = {0,1,1,-1,1,-1,-1,1,1,-1} 

Sign[T.U2]=  {0,-1,-1,1,-1,1,1,-1,-1,1} 

Sign[T.U3]=  {0,1,1,-1,1,-1,-1,1,1,-1} 

 

It can readily be seen here that the length of the clue is inadequate to converge 

completely to memories encoded in the HNN.  The degree of convergence can be 

quantified by using the Hamming Distance. 

As mentioned in the previous section, the Hamming Distance between two vectors is the 

number of entries in which they differ.  So, for example, the vectors: 

















=

1

1

1
1v  

















−

−=

1

1

1
2v  

have a Hamming Distance (HD) of 2, since their entries differ in 2 places.  Comparing 

the produced output vector (On) to the desired output vector (vn) by calculating their HD 
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can be illustrative.  For complete convergence, HD = 0.  For the above scenario, the HDs 

are as follows: 

q=1  

HD(O1,v1) 2 

HD(O2,v2) 6 

HD(O3,v3) 3 

 

Fig. 4.21 – Table of Hamming Distances for Output Vectors and Original Vectors q=1 

A helpful way to view this data is as a plot of HD vs. q.  For the above data, this yields: 

0.0 0.5 1.0 1.5 2.0
q0

2

4

6

8

10
Hamming Distance

 

Fig. 4.22 – Plot of Hamming Distances for Output Vectors and Original Vectors q=1 
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In this case, there are three points, one each for the Hamming Distance between the 

output and the desired vector for a particular input clue of length equal to one. Repeating 

the above procedure, this time with q=2 gives: 

q=2  

HD(O1,v1) 3 

HD(O2,v2) 2 

HD(O3,v3) 3 

 

Fig. 4.23 – Table of Hamming Distances for Output Vectors and Original Vectors q=2 
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Fig. 4.24 – Plot of Hamming Distances for Output Vectors and Original Vectors q=2 

 

Combining this with information on all clue lengths gives the following data table: 
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 q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10 

HD(O1,v1) 2 3 2 0 1 1 1 0 0 0 

HD(O2,v2) 6 2 2 0 1 1 0 0 0 0 

HD(O3,v3) 3 3 2 0 1 1 1 0 1 1 

 

Fig. 4.25 – Table of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, First Iteration 

 

 

A plot of this information is shown: 
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Fig. 4.26 – Plot of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, First Iteration 
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As can be seen here, while the Hamming Distance between the output vector and the 

target vector does decrease with increasing ‘q’, in some cases it remains greater than zero 

– even when the clue is equal to the length of the target vector itself. 

 

A mapping of the functional relationship, then, between: 

Clue length (q) 

Number of vectors (v) 

Dimension of vectors (d) 

Number of iterations (I) 

is the objective of this section.  This will give a foundation for Chapters 6 and 7, where 

this technique is used at length. 

 

Setting the number of iterations to two involves feeding the output from the above 

operation back into the memory matrix and checking for convergence, again after 

allowing the output to be acted upon by the saturating function.   

Performing this operation gives the following results: 

I=2 q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10 

HD(O1,v1) 2 2 2 0 1 1 1 0 0 0 

HD(O2,v2) 8 1 1 0 1 1 0 0 0 0 

HD(O3,v3) 1 1 1 1 1 1 1 0 1 1 

 

Fig. 4.27 – Table of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, Second Iteration 
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Fig. 4.28 – Plot of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, Second Iteration 

 

It is evident that the Hamming Distance, overall, has dropped (especially for low values 

of q).  Since convergence for all values was not achieved, even for perfect input vectors, 

it is possible that no amount of iterations will result in complete convergence for all 

values.   

 

 

 

Repeating this process with I=3 yields: 

I=3 q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10 

HD(O1,v1) 2 2 2 0 1 1 1 0 0 0 
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HD(O2,v2) 8 1 1 0 1 1 0 0 0 0 

HD(O3,v3) 1 1 1 1 1 1 1 1 1 1 

 

Fig. 4.29 – Table of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, Third Iteration 

 

This shows that there is no further convergence.  A few points of interest: 

1) So far, even with n < d, convergence is not assured, even if q=d 

2) There reaches a point at which the system will not improve convergence, even as 

the number of iterations (I) increases 

3) The Tii condition causes some elements to be removed.  It may be useful to repeat 

this procedure, this time with Tii not equal to zero. 

Repeating Convergence Assessment without Tii = 0 Condition 

The convergence rates shown above were established with the condition that the diagonal 

elements of the memory matrix (T) be set to zero.  It may be illustrative to see if 

convergence occurs when Tii is not zero. 

 

 

 

 

 

 



 

 108

I=1 

I=1 (No 

Tii 

Condition) 

q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10 

HD(O1,v1) 1 3 0 0 0 0 0 0 0 0 

HD(O2,v2) 5 0 0 0 0 0 0 0 0 0 

HD(O3,v3) 2 3 0 0 0 0 0 0 0 0 

 

Fig. 4.30 – Table of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, First Iteration, Tii Not Equal to Zero 
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Fig. 4.31 – Plot of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, First Iteration, Tii Not Equal to Zero 
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The above graph clearly shows a faster convergence when the condition that Tii = 0 is 

removed, in the case of I=1, n=3, d=10. 

 

Repeating this for the I=2 case: 

I=2 (No 

Tii = 0 

Condition) 

q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10 

HD(O1,v1) 0 2 0 0 0 0 0 0 0 0 

HD(O2,v2) 6 0 0 0 0 0 0 0 0 0 

HD(O3,v3) 3 1 0 0 0 0 0 0 0 0 

 

Fig. 4.32 – Table of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, Second Iteration, Tii Not Equal to Zero 
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Fig. 4.33 – Plot of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, Second Iteration, Tii Not Equal to Zero 

\ 

Repeating for I=3: 

I=3 (No  

Tii =0 

Condition) 

q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9 q=10 

HD(O1,v1) 0 2 0 0 0 0 0 0 0 0 

HD(O2,v2) 6 0 0 0 0 0 0 0 0 0 

HD(O3,v3) 3 1 0 0 0 0 0 0 0 0 

 

Fig. 4.34 – Table of Hamming Distances for Output Vectors and Original Vectors for all 
Clue Lengths, Third Iteration, Tii Not Equal to Zero 
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Again showing a stability identical to I=2. 

This illustrates an intriguing possibility.  It is possible that convergence is considerably 

more likely in the case where Tii is not equal to zero, instead of where Tii is equal to zero.  

This criterion, and several others, will be tested in Chapter 6. 
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Chapter 5 – DNA based computation 

 

5a. The Hamiltonian Path and SAT Problems 

In 1994 Leonard Adleman introduced the idea of DNA computation64.  As mentioned in 

Chapter 1, computation can be effectively performed with any working substance, so 

long as the inputs and outputs are meaningful.  In Adleman’s original work, the 

Hamiltonian path problem was solved using selective filtration of DNA molecules. 

 

To get an idea of the novelty involved in Adleman’s publication, it is first necessary to 

understand the Hamiltonian path problem (aka the “Travelling Salesman” Problem).  In 

this problem, a salesman needs to visit a number of cities on a map, all connected by 

roads.  The question is “What is the optimal route to take, such that each city is only 

visited once?”.  In terms of the Hamilton Path problem, the cities are represented by 

nodes in a graph, and the highways by edges.  The reformulation then involves 

constructing a directed path which intersects each node in the graph once and only once.  

The graph is said to contain a Hamiltonian path if it meets this condition.65 

 

It is helpful at this juncture for a brief digression into computational complexity.  

Consider the Travelling Salesman problem.  If asked to calculate a route that goes 

through ‘n’ cities, there are (n-1)! possible routes.  For a small set of cities, for example 

10, this is a reasonable number of itineraries to check (9! = 362,880).  However, if the 
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number of cities is increased, the problem quickly gets out of hand.  For example, if there 

are 40 cities to visit, 39! itineraries are possible.  This is approximately 1045, which is 

well out of range for a computer to check even in the lifetime of the Universe.  This 

problem, then, is intractable.  How to determine which problems are tractable and which 

ones aren’t is the subject of computational complexity.  Computer scientists have 

formulated different classes for problems to determine their tractability: 

 

Polynomial (also called Class ‘P’) – These are problems where the number of steps 

required to solve the problem is a polynomial of the length of the input.  For example, if 

it takes twice as many steps to solve a problem every time the input grows by one, the 

complexity of this problem would be y=2x (where ‘x’ is the length of the input).  This is 

clearly a polynomial time problem. 

Nondeterministic Polynomial (also called Class ‘NP’) – This class of problems cannot be 

solved in polynomial time on a deterministic Turing machine.  However, they can 

actually be solved in polynomial time on a nondeterministic Turing machine.   

Nondeterministic Polynomial Complete (also called Class ‘NP Complete’) – This is the 

most difficult class of problems.  An NP Complete problem is one in which no 

polynomial time algorithm is thought to exist, either for deterministic or nondeterministic 

Turing machines. 

It can be shown that the traveling salesman problem is NP complete, meaning that there 

should exist no solution for the problem which can be solved in polynomial time66 
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However, Adleman proposed a method of solution which was easily scalable.  In his 

representation, he first came up with a method of sifting solutions, so that only those 

meeting the criteria to be a Hamiltonian path were left after the algorithm was completed.  

These steps were64: 

 

1) Generate random paths through the graph 

2) Keep only those paths that begin with the desired starting and ending nodes 

3) If the graph has “n” nodes, keep only those solutions which enter only “n” nodes 

4) Keep only those solutions that enter all of the nodes of the graph at least once 

5) If any paths remain, say “Yes”.  Otherwise, say “No”. 

 

To see the elegance of Adleman’s solution, inspect the graph shown below: 

 

Fig. 5.1 – Hamiltonian Path Diagram 
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This graph only has 7 nodes, along with the given allowed paths for this graph.  The 

implementation of these steps in DNA, as described by Adleman, were: 

 

1) Generate random paths through the graph 

 To accomplish this, Adleman first chose to represent each of the nodes in the 

graph by a randomly generated 20mer (Oi).  Nodes 2, 3, and 4 are shown below.  Each 

directed edge (0 → 1, 1 → 2, etc) was represented by a 20mer which had 10 bases from 

the 3’ end of Oi connected to 10 bases from the 5’ of Oj.  In cases where i->j had i=0 or 

j=6, all i, or j respectively, was used.  The paths between node pairs (2,3) and (3,4) are 

shown below.  Combining all of these components together in solution makes it possible 

to encode all possible paths as strings of DNA. 
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Fig. 5.2 – Nodes and Paths in DNA 

Similar encoding is performed for all nodes and paths in the graph that is to be traveled. 

 

Once the oligomers have linked, representing all possible paths through the graph, 

heating the mixture to a suitable temperature results in the denaturing of the “bridge” 

pieces.  The long oligomers left over now give the desired complete set of all possible 

random paths. 

 

2) Keep only those paths that begin with the desired starting and ending nodes 

 This step is rather straightforward.  Since the oligomer sequence for the desired 

start and end nodes is known, to filter out all sequences not having those start and end 

nodes, Adleman performed a polymerase chain reaction on the oligomer set, using the 

complementary oligomers to the start and end nodes as primers.  This amplified 
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everything meeting the criterion of desired start and end nodes, and had no effect on other 

sequences. 

 

3) If the graph has “n” nodes, keep only those solutions which enter only “n” nodes 

 To implement this step, Adleman realized that solutions having “n” nodes would 

be 20*n bases long.  All other oligomers that didn’t meet the “’n’ nodes criterion” would 

be longer or shorter.  Adleman performed agarose gel electrophoresis, which separated 

the oligomers by length.  He then proceeded to extract from the gel the oligomers of the 

appropriate length.  This extracted product now represents solutions which have only the 

correct number of nodes, and still have the desired starting and ending nodes. 

 

4) Keep only those solutions that enter all of the nodes of the graph at least once 

 The penultimate step in Adleman’s recipe required the oligomers to be tagged 

with magnetic beads.  Accomplishing this involved first denaturing the DNA, then 

incubating Oi bar with magnetic beads attached with the oligomers.  Only oligomers with 

Oi in them would be tagged.  This process was then repeated with Oj and Ok.   

 

5) If any paths remain, say “Yes”.  Otherwise, say “No”. 

 The final step, reading out a “Yes” or “No” answer, involved another PCR and gel 

electrophoresis.  Since Adleman’s original work, many different models for DNA 

computing have been devised, along with solutions for previously open problems.  Here I 

delineate relevant properties of DNA computation, some interesting ideas for 
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implementing schemes to make use of these properties, and some practical limitations 

one might find. 

 

The first property to note is that a DNA environment can be used not only to solve the 

Travelling Salesman problem, but any problem which is NP complete.  Lipton67 was able 

to demonstrate this on what is referred to as the SAT (or “satisfaction”) problem.  The 

SAT problem is both simple to understand and NP-complete.  In this problem, consider 

the formula: 

 

)()( yxyxF ∨∧∨=  

 

First, assume that both x and y are Boolean (quite frequently it is convenient to regard 1 

as “true” and 0 as “false”).  In the above equation, “ ∨ ” is the logical operator 

representing “OR’, and “ ∧ ” is the logical operator representing “AND”.  The SAT 

problem then is to find the values for “x” and “y” that make the formula F true.  For the 

above equation, x = 0 and y=1 is a valid solution, as is x=1 and y=0.  The generalized 

form of the above function (F) is C1 AND C2 AND C3 AND.. Cn, where each Ci (i = 1..n) 

is a clause of the form v1 OR v2 OR v3.. OR vn.  In this formula, vi is a variable or its 

negation.  The generalized SAT problem, then, is to find values for x and y which make 

the whole function (F) true.  In terms of current algorithms, the best method essentially 

tries all 2n choices for the n variables in the equation. 
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Lipton began solving this problem in DNA by encoding binary numbers into DNA.  To 

do this, he first represented each number by a graph, and each possible path through the 

graph by an oligomer.  The similarity to Adleman’s original approach is noticed!  In this 

case, however, the graph would proceed from an initial vertex, a1.  It would then diverge 

with edges leading to two nodes, x and x’.  Each of these nodes would then have an edge 

coming together at a node a2.  The process would then repeat, generating the graph shown 

below: 

 

 

Fig. 5.3 – Graph for Representing Numbers 

Representation of a binary number is then accomplished by observing which path is taken 

through the graph.  If the edge between a1 and x is taken, a “1” is inferred.  If the edge 

between a1 and x’ is taken, a “0” is inferred.  So, for example, the number 00 is 

represented by the path a1 -> x’ -> a2 -> y’ -> a3.  To translate this into DNA, Lipton 

assigned each vertex a random sequence of the form ai = piqi, for all a, x, y, etc.  He then 

generated all sequences of the form qi(bar)pj(bar), for all i and j.  Finally, he added two 

more sequences to the tube:  one which is complementary to the first half of the initial 

vertex and one which is complementary to the last half of the final vertex.  Combining all 
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of these pieces in a tube and allowing them to anneal generated an alphabet of all possible 

binary numbers that are ‘n’ digits long. 

 

Once all possible binary numbers were encoded into a tube (to), it was possible to find 

only those pieces which were solutions to the problem through the appropriate 

combination of extraction and recombination of relevant elements between tubes.  For 

example, to find the solution to the SAT problem mentioned above, an experimenter 

would have combinations in the initial tube: 

2 Bit Number Graph Representation Oligomer Representation 

00 a1→x’→a2→y’→a3 p1q1px’qx’p2q2py’qy’p3q3 

01 a1→x’→a2→y→a3 p1q1px’qx’p2q2pyqyp3q3 

10 a1→x→a2→y’→a3 p1q1pxqxp2q2py’qy’p3q3 

11 a1→x→a2→y→a3 p1q1pxqxp2q2pyqyp3q3 

  

Fig. 5.4 – Combinations of DNA for the SAT Problem 

From this tube (to), it would be possible to extract only those sequences which have a “1” 

in the first bit of the sequence (denoted E(t0,1,1)).  Call this tube t1.  The remainder, t1’, is 

then E(t0,1,0).  From t1’, extract those elements having a 1 in the second bit of the 

sequence (E(t1’, 2, 1)) and label it t2.  Combine t2 and t1 into another tube and label it t3 

(which is actually E(t0,1,1) and E(t1’,2,1)).  Next create t4 = E(t3,1,0) and t4’=E(t3,1,1).  

From t4, create t5 = E(t4’,2,0).  Finally, combine t4 and t5 into a tube to create t6, which 

contains the solutions to the problem.  The underlying thinking for this solution can be 



 

 121

recognized by realizing that t3 consists of all those sequences that satisfy the first clause:  

01, 10, 11.  t6 consists of all of the solutions that also satisfy the second clause: 01, 10.  

These are the correct answers to the original problem. 

 

Generalizing this procedure to solve a SAT problem with more clauses is straightforward.  

And with the ability to solve this generalization comes to ability to solve most examples 

of NP problems.  This extension is accomplished by considering problems that 

correspond to any Boolean formula; they can consist of variables along with the operators 

of negation, OR, and AND.  As Lipton concludes “This SAT problem for formulas can 

be solved in a number of DNA experiments that are linear in the size of the formula.” 

 

5b. Computing with DNA Tiles 

 

A model designed and constructed by Winfree et al.68 demonstrates the possibility of 

using a set of specially designed tiles to effect DNA computation.  Winfree points out 

that a specific type of tiles – Wang tiles – can be designed so that they mimic the 

operation of a Turing machine.69 A Wang tile is a type of tile in which the tile has two 

edges with coloration.  One of these tiles can be placed next to another only if their edges 

are identically colored where they touch.  A simple of example of this is shown here: 
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Fig. 5.5 – Wang Tiles 

The tiles ‘A’ and ‘B’ can only be lined up to form an alternating pattern of columns; there 

is no way to set one column of ‘A’ tiles next to another.  In addition, the columns of ‘A’ 

tiles and ‘B’ tiles are “out of phase”, meaning that each ‘B’ is not immediately adjacent 

to an ‘A’, but rather offset from it by half of a tile height.  Given more colors with which 

to work, more complex tile patterns are possible.  Consider, for example, the following: 

 

 

Fig. 5.6 – More Wang Tiles 

In the above set of tiles, adding more colors (and consequently different tile types) has 

resulted in lattice with an increased periodicity. 
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Winfree et al. used the antiparallel DX motif to construct nanocrystals meeting the 

requisite conditions for Wang tiles.  A DX motif is a form of DNA with a double-

crossover68.  This consists to two double-stranded helices, side by side, which are linked 

at two crossover junctions.  Only two DX motifs are stable in small molecules: the DAO 

(double crossover, antiparallel, odd spacing) and DAE (double crossover, antiparallel, 

even spacing).  A diagram of these two structures, along with the other three unstable 

forms (DPE, DPOW, DPON) are shown here70: 

 

Fig 5.7 – Forms of Double Crossover DNA Molecules 

 

 

While both DAO and DAE molecules exist as B-forms of the DNA double helix, there 

are differences between them.  DAO have an odd number of half turns between crossover 
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points.  These molecules have four strands of DNA, all of which participate in both of the 

helices in the crystal.  DAE molecules have an even number of half turns.  They have five 

strands instead of four.  However, only three of these strands participate in both helices, 

and two strands that do not. 

 

All DX units have a single-stranded sticky end.  Since this end is unique, association of 

DX units can be accomplished by designing ends that will hybridize with one another.  

To ensure that mishybridizations between strands is unlikely, Winfree designed 

sequences that had no unnecessary 6-base subsequences complementary to other 6-bases 

subsequences.  Further, the occasional 5-base subsequence with complementarity was 

rare.   

 

5c. The Maximal Clique Problem 

In computational complexity theory, the Maximal Clique Problem71 is the 

question of how to find the largest clique in a given graph.  To illustrate this problem, 

consider the diagram below: 
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Fig. 5.8 – Example of a Clique 

 

In the above figure, the vertices 4, 5, and 6 are connected into a “clique”, meaning a 

subgraph in which each vertex is connected to each other vertex in that group.  The 

Maximal Clique Problem, then, is to find the largest such subgraph in a given set of N 

vertices.  This problem has been proven to be NP-complete72.  However, Ouyang et al73 

have shown a solution to this problem using DNA as a computing material. 

 

Ouyang’s method involves first constructing what he refers to as a “data pool”.  This pool 

consists of all possible combinations of possible vertices and their edges.  Ouyang began 

by first representing every possible clique arrangement for an N digit graph with an N 

digit binary number.  In this scheme, a vertex which is a member of a clique will have a 

value of 1, whereas a vertex which is not a member of a clique will have a value of zero.  

The binary number is read from right to left.  So in the figure above, where vertices 4, 5, 

and 6 are a clique, the binary representation would be 111000.  To translate this set of all 

possible cliques into DNA, Ouyang generated a set of oligomers with Vij representing a 

vertex, with j = 0,1.  The oligomers, however, did not only have value information (V).  
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They also had position information for the strand.  So the complete set of generated 

oligomers had: 

 

PiViPi+1  (for i = even) 

Pi+1ViPi (bar)  (for i=odd) 

 

This gives the ability, then, to generate long oligomers with all possible combinations of 

Vij.  For example, one possible generated strand would be: 

  

P6V5P5V4P4V3P3V2P2V1P1 

 

This oligomer represents 000000, which would be a set of vertices with no connections.  

In contrast, the oligomer: 

P6P5P4P3P2P1 

would represent the binary number 111111, which is a set of six vertices, with every 

vertex connected to all of the others. 

 

Ouyang’s system represented a Vi0 with an oligomer consisting of 10 bases, and 

Vi1 with an oligomer consisting of 0 bases.  Each position segment was 20 bases long.  

This means, then, that a segment like 000000 had 60 bases for the set of Vi, along with 

140 more for position fragments, for a total of 200 bases in the oligomer.  A segment like 
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111111 contained no bases for the set of Vi, and 140 bases serving as position fragments, 

giving an oligomer with a total of 140 bases. 

 

With the set of all possible cliques represented in DNA, it was necessary to filter 

out solutions that were undesirable.  To do this, Ouyang first constructed the 

“complementary graph” to the one in question.  This graph consists of a vertices that do 

not have connections between them.  For the graph presented in Figure 4.7, the 

complementary graph would be: 

 

 

Fig. 5.9 – Complementary Clique Graph 

This graph shows which vertices are not connected to each other, and are therefore not 

both members of a clique.  For example, since there is a connection between vertices 1 

and 4 in the complementary graph above, there can be no clique from the original graph 

which contains both 1 and 4. 
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In order to remove to strands which contained a connection between nodes 1 and 4, the 

solution was first separated into two tubes, denoted “t0” and “t1”.  The DNA in t0 was 

then acted upon with a restriction enzyme set to cut the DNA at a specific site if V1 = 1.  

The DNA in t1 was acted upon similarly, with a cut occurring if V4 = 1.  The remaining 

DNA from these tubes was then recombined, leaving a solution free of the connection 

between nodes 1 and 4. 

 

For the above graph, the same process would be repeated for node connections between 2 

and 6; as well as 3 and 6.  From this point, the tube is free of problem solutions which are 

invalid.  Reading the length of the maximal clique is straightforward, since in this scheme 

the maximal clique corresponds to the minimum length DNA fragment remaining.  

Performing a polyacrylamide gel electrophoresis easily demonstrated that the shortest 

DNA fragment corresponded to a clique length of four vertices. 

 

Ouyang pushed the solution to this problem a step further by showing it was possible to 

not only determine the length of the maximal clique, but to know conclusively which 

nodes were the components of this clique.  He accomplished this by amplifying the DNA 

solution and sequencing it.  Errors in Ouyang’s method could include the production of 

ssDNA during PCR reactions (which cannot be cut by the restriction enzymes used), and 

incomplete cutting by restriction enzymes, which could lead to incorrect answers. 
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The first of these problems was solved by digesting the DNA solution with S1 nuclease 

prior to restriction digestions, thereby eliminating the ssDNA.  With regard to the second 

problem, Ouyang hypothesized that repeating the digestion step followed by the PCR 

step should increase the signal-to-noise ratio, since the PCR step amplifies the number of 

copies that were mistakenly uncut in the prior step.  Cutting the solution again should 

help eliminate the unwanted strands.   

 

The novel approaches above to solving problems, each being interesting in their own 

right, still display some common elements in their implementation.  Each of these 

solutions requires encoding candidate solutions in DNA, then somehow filtering out the 

solutions which are incorrect.  A few potential problems with this methodology have 

been pointed out. 

 

As described by Boneh et al74, there are several different types of molecular computing 

schemes that are possible.  As Boneh notes, most results are of the following form 

“Given enough strands of DNA and certain biological operations, one can simulate some 

classic model of computation efficiently.  Some compare to formulas, some to circuits, 

others to 1-tape nondeterministic Turing machines.”  A lucid summary from Boneh 

detailing both the complexity of the implementation in Big O notation, as well as the 

number of strands required, is shown below: 
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Fig. 5.10 – Table of Problems Solvable in DNA 

However, Boneh also notes in his paper regarding the above methods “…we assume that 

the biological operations are perfect.. we note that several researchers have already begun 

to take steps to make DNA algorithms more noise tolerant.”  It would turn out that this 

noise tolerant condition would be requisite for successful, scalable DNA computation. 

 

5d. Requirements for Implementing DNA Computing Schemes 

 

One potential source of error for a computation performed using DNA is the potential for 

mishybridization.  Deaton et al75 pointed out that hybridization chemistry could be 

relevant, in that prior to his publication, it was assumed that hybridization between 

Watson-Crick pairs was error free.  This was (and is) not necessarily a valid assumption, 
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as hybridization (and mishybridization) can be a function of a number of parameters in a 

given reaction.    Deaton pointed out that the fraction of “G” and “C” bases in a given 

strand are relevant to the melting temperature for that strand, and that at an incorrect 

temperature, hybridization between strands could still occur, even though some of the 

bases in the strand were “mismatched”.  To help overcome this, Deaton suggested that 

the oligomers used in reactions be a certain Hamming Distance from each other, to help 

minimize undesired hybridizations. 

Certain schemes of DNA computation involve solutions represented as individual strands 

of DNA.  In this case, it is frequently possible that solutions will contain errors (due to 

DNA mishybridization).  If the experimental procedure involves the use of polymerase 

chain reaction to amplify DNA, then these errors could be amplified as well, giving 

incorrect output. Taq Polymerase is frequently used in Polymerase Chain Reaction 

(PCR), and has been measured to have an error rate of approximately 1 in 104.76 

Consequently, it is necessary to find solutions for computational problems that are fault 

tolerant.  That is, even in the presence of hybridization errors, the fidelity of computation 

can be ensured. 

 

 

5e. Precursors to the Mills, Yurke & Platzmann (MYP)Model Hopfield Neural 

Network 

 In contrast to the above implementations, the scheme proposed by MYP91 entails 

the construction of a neural network architecture from DNA molecules.  This model 
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retains the property of massive parallelism, while possibly being more fault tolerant than 

earlier proposed models.  Calculations of the convergence of this form of network are 

measured in Chapter 7. 

 

 One of the ideas necessary for the construction of a HNN in DNA is how to store 

memories as oligomers.  An early form of this idea was proposed by Baum77.  His 

proposal entailed the encoding of a word as a set of binary values.  Each site in a DNA 

sequence would consist of two parts – one which held the information about the position 

in question, and the other which held a subsequence representing either one or zero.  

Each word encoded in memory then would be a distinct oligomer. 

Retrieval would be accomplished by the introduction of a clue vector.  This clue would 

consist of complementary sequences to portions of the original word, each attached to a 

magnetic bead.  Today this could be accomplished with a fluorescent tag.  The correct 

word to be recalled, then, would be the one with the most tags attached to it after the 

introduction of the clue vector.  This strand could then be removed from solution and 

sequenced, giving the original word in its entirety.  

 

Another prerequisite for the implementation of the MYP scheme is the ability to 

multiply matrices together in DNA.  A method for performing this operation was 

proposed by Oliver78.  In this paper, Oliver first recalled how two Boolean matrices and 

their product could be represented by a directed graph79,80 .  Observe the two Boolean 

matrices and their product in part A given below: 
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Fig. 5.11 – Boolean Matrix Algebra78 

 

In Part B of the figure, one can see the representation of the matrices and their product as 

a graph.  The first layer of nodes on the graph represents the row numbers of the first 

matrix.  The second layer of nodes represents the column entries of the first matrix 

(which by necessity have the same number of entries as the rows of the second matrix).  

The terminal row of the graph represents both the column numbers of the second matrix 

and the column numbers of the product matrix.  If an entry exists in a particular row and 

column of the first matrix (for example, row 1, column a of matrix X), then a directed 

edge is drawn in the graph between the vertex labeled ‘1’ in the first layer of the graph 

and the vertex labeled ‘a’ in the second layer of the graph.  In the same manner, if there 

exists a nonzero entry in the second matrix (for example, row a, column B of matrix Y), 

there will be a directed edge between vertex ‘b’ from the second layer of the graph to 
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vertex ‘B’ in the third layer of the graph.  This translation allows nonzero entries in the 

product matrix to be read off as complete paths, going from a vertex in the first layer to a 

vertex in the third layer.  If there is not an unbroken path from the first layer in the graph 

to the vertex of interest in the final graph, the entry for that row and column in the 

product matrix is equal to zero. 

 

To implement this idea using DNA, Oliver points out that it is first necessary to: 

1) Design and synthesize DNA representing edges and vertices in the graph 

2) Cause the constructed DNA to represent paths through the graph (via reactions) 

3) Analyze the reaction to identify paths between initial and final vertices by restriction 

enzyme digestions 

 

 According to Oliver’s method, each complete path through the graph is represented by a 

strand of dsDNA.  To perform this operation, each path from an initial node to an 

intermediate vertex is represented by dsDNA with a single strand hanging from the end 

that is specific to the intermediate vertex.  For example, the connection between vertex 1 

and vertex a in the graph in Fig. 5.11 might be represented by a strand of dsDNA with a 

single strand extending 10 bases beyond the double stranded portion.  The edge 

connecting the intermediate layer to the final layer is then represented by a different 

double stranded oligomer, with a piece of ssDNA complementary to the above mentioned 

ssDNA hanging from the end opposite of that mentioned above for the first/intermediate 

layer.  In this way, it is possible for reactants to connect making long strands of dsDNA 
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by allowing them to react in solution with ligase.  These strands are all the same length, 

and each represents a different possible complete path through the graph (and 

consequently a nonzero entry in the product matrix). 

 

In the construction of the original set of oligomers, each piece of DNA representing a 

vertex contained in its structure a restriction site, where an enzyme is capable to cutting 

it.  To find out which of the paths through the graph is complete, one needs to separate 

the mixture, with an aliquot placed in each tube in a set.  The number of tubes is the same 

as the number of entries in the product matrix. 

 

In this case, an oligomer representing a path from a starting vertex to a terminal vertex 

will have two available restriction sites.  Two restriction enzymes corresponding to the 

row and column of the product matrix are placed into one of the tubes of solution.  If 

there is an available path through the graph, both ends of the DNA piece of interest will 

be cut, and therefore be shorter than the original DNA in solution.  This then corresponds 

to an entry of 1 in that row and column of the product matrix.  If no appropriately 

shortened piece of DNA is found, there exists a 0 in the row and column of interest in the 

product matrix. 

 

This method can be extended to matrices involving real numbers, with a few 

modifications.  Representing matrix multiplication with real numbers in a graph is similar 

to what was shown previously, with the exception that now each element encoded as an 
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edge must also have a “transmission factor”81 The transmission factor for a path is 

defined to be the product for the transmission factors for each of the edges in that path.  

Any particular element in the product matrix is then the sum of the transmission factors 

for all possible paths connecting the initial and terminal vertices of interest.  An example 

of this sort of graph is shown below: 

 

 

 

Fig. 5.12 – More Boolean Matrix Algebra 

Representing this graph in DNA involves using concentrations of DNA to represent the 

transmission factors in the original graph.  This way, the elements of the product matrix 

will be proportional to the sum of the concentrations of the associated paths formed.  To 

form a path from two edges requires the annealing of complementary pieces of ssDNA on 
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the end of dsDNA representing edges (as was performed previously for Boolean 

matrices).   

 

With the ability to produce operations such as matrix multiplication, MYP recognized the 

ability to implement mathematical computations which relied on this kind of operation.  

Specifically, MYP proposed to construct a neural network using an extension of the ideas 

presented above.  Their model will be presented in detail in Chapter 7. 
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Chapter 6 – Optimal Conditions for Convergence of a Hopfield Neural Network 

 The function of a HNN can vary.  Hopfield’s original intent, however, was the recall of 

patterns already encoded in the network from a noisy input.  This application has had the 

most research and study as investigators attempt to both assess and improve upon 

Hopfield’s model.  Since one of the main applications of this sort of memory is recall, it 

may be possible to improve upon the process of retrieving a memory from an incomplete 

memory by measuring not only the Hamming Distance from the clue to the correct 

memory, but by measuring the Hamming Distance from the clue to each possible 

memory, and then choosing the memory with the shortest Hamming Distance (similar to 

Baum’s method77). 

 

Here I assess the effect of varying several parameters in both a duobinary HNN and 

corrupted input HNN, including removing the diagonal (Tii=0) condition, varying the 

saturation function used for decision making, varying whether an asynchronous or a 

synchronous update scheme is used in the network, and varying when the hard limiting 

function is applied. 

 

6a. Vectors Used and Measurement of Convergence 

 

In my simulation, I used vectors having a length d=100, with n=10 vectors with random 

±1 entries stored in the memory matrix as prescribed by the sum of outer products rule.  

For all cases of using clues as input vectors, I started with a clue of length q=1, which 
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was the first component of the desired output vector, with the remaining entries set equal 

to zero.  I proceeded to extend the length of the clue vector by one memory entry until the 

length of the clue was equal to the length of the desired output vector.  This approach 

allowed me to observe the response of the system to every possible clue vector.  For 

corrupted vectors, I started with a correctness factor (c) which determined the number of 

entries with correct values (signs not flipped) in a vector.  I began with every vector entry 

except the first half of the vector corrupted.  This simulates a completely “noisy” vector, 

since incorrect entries are equally mixed with correct ones.  To maintain the continuity of 

an increasing amount of correct terms being plotted along the ‘x’ axis, the corrupted 

vector graphs are plotted as c/d along the ‘x’ axis, to show effects as the amount of 

“correct” vector is presented to the network. 

 

The fidelity of HNN convergence was quantified by examining both the number of 

iterations required for complete convergence (if it is achieved at all), and the 

“correctness” of the output when compared to the original input vector.  This comparison 

was accomplished by measuring the Hamming Distance (HD) between the input and 

output vectors.  The Hamming Distance is defined to be the number of places between 

the two compared vectors where their entries differ.  So, for example, a HD of zero 

implies that the input and output vectors are identical in all components, while a HD of 

‘d’ (where ‘d’ is the length of the vector being examined) implies they differ in every 

possible entry.  The HD is normalized in my comparison, so that 0 ≤ HD ≤ 1. 
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6b. Removal of the Tii = 0 Condition 

According to Hopfield21, the diagonal elements of the memory matrix (Tii ) must be set 

equal to zero to insure convergence of the HNN.  As mentioned in Chapter 4, Gindi49 

found that for bipolar nodes and positive diagonal terms, an autoassociative network with 

outer product formed elements performed nearly identically to a memory matrix with 

zero valued diagonal terms.  Gindi’s simulations were performed for d=100 and n=10, 

and involved testing convergence for both synchronous and asynchronous update 

schemes, using corrupted memories as inputs.  Gmitro50 verified this result and attempted 

to extend it using both binary bipolar and binary unipolar models, followed by Marom82, 

who suggested that removal of the Tii condition lead to a modest increase in convergence, 

but a loss of error correction ability.  Here I extend this work to assess not only the 

convergence results when clue vectors are used instead of corrupted vectors, but to 

quantify both the mean and standard deviation of the convergence as a function of clue 

length, to see if there is a difference between when Tii = 0 and when Tii ≠ 0 

 

While convergence may not be guaranteed for Tii ≠ 0, it is interesting to explore how 

much convergence varies for systems where, after the selection of vectors, convergence is 

assessed where Tii =0 in the memory matrix, and again where Tii ≠ 0. 
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For this simulation, vectors (d=100, n=10) were randomly generated and tested for 

convergence, first with Tii =0.  Each vector was tested by creating a clue (q) or 

correctness (c) as prescribed in section 6a then allowing that clue or corrupted vector to 

be acted on by the memory matrix, which was then acted on by the threshold function 

(for this purpose a Heaviside function).  This output was compared to the desired 

memory vector and the difference between them quantified using the Hamming distance.  

This was repeated for all relevant clue and correctness lengths, for every vector, until 

q=d, or c=d.  Then the same vectors were used to create another memory matrix, this time 

with Tii elements from the outer product left intact.  This gives a robust set of results, 

including not just convergence for a few possible vectors in a system, but a more realistic 

measure of the average convergence of a set of vectors, along with the variance in that 

convergence.  To determine if recall fidelity gives a faster convergence result than a 

direct comparison of the clue vector with other possible vectors, Fig 6.1 shows the Mean 

Hamming Distance (HD) between each clue length and the vectors with which the clue 

should not be equal. 
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Fig. 6.1 – Comparison of normalized clue vectors with each incorrect vector 

 

 

The first item to note is that the Mean Hamming Distance should be around .5, which 

would correspond to a clue vector of a reasonable length having half of its entries differ 

in sign from a selected incorrect vector to which it is compared.  Further, as will be 

shown in the following plots, this convergence is well above the convergence for the 

HNN.  Analysis of direct comparison methods may be realized in physical systems, such 

as a biological library.  Such a system involves the cloning of molecular fragments 

through insertion into and subsequent replication of bacteria (BAC) or yeast (YAC).  

Retrieval of a desired genomic fragment is accomplished via the introduction of a “clue” 

fragment to the system, which then can be amplified using rolling circle polymerase 

chain reaction to select the desired result from among many possibilities in solution. 
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The first item tested in the condition that Tii = 0.  Results for convergence, measured as 

normalized Hamming Distance (HD) vs. normalized clue vector length (q/d) and 

normalized corrupted vector (c/d) are shown below 
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Fig. 6.2 – a) Convergence measured as Hamming Distance vs. normalized clue length for 
Tii=0 and Tii ≠0.  The mean Hamming Distance between the Output Vector and undesired 

vectors for clue vector inputs can be seen in Fig. 1a.  b) Convergence measured as 
Hamming Distance vs. normalized correctness length for Tii=0 and Tii≠0. 

 

As can be seen from the above graphs, the mean value of convergence for when the 

diagonal condition is enforced or not enforced is almost identical in all cases.  When the 

diagonal condition is relaxed, convergence is slightly improved (up to a maximum of 

.011 for clue vector inputs and  .014 for corrupted vector inputs) for the first iteration 

(I=1). 

  



 

 145

The simulation was run again for I=3.  No improvement in convergence was seen from 

I=2 to I=3.  However, there is an improvement in results from I=1 to I=2 when Tii is not 

forced to be zero. This is in agreement with the derivation of Gindi49, who found similar 

results and Marom82, who found a small improvement in convergence when the diagonal 

condition was relaxed. 

 

6c. Variation of the Saturation Function for Decision Making 

In Hopfield’s original scheme, the saturating function given for determining the output 

values of a HNN was given by a “hard limiting function” (the Heaviside function), which 

produces an output of -1 for an input less than zero, and 1 for an output greater than zero.  

 

Hopfield33 was able to study the effects of graded decision functions, and found in his 

paper that there were normally fewer states that were stable, but that the memory overall 

functioned the same.  When Macukow83 took up this question briefly, he found that for 

some vectors attempted, a threshold condition which included zero being mapped to 

positive one was more useful for convergence than one in which the input had to be 

greater than zero to be mapped to one.  However, his attempts were for a limited number 

of vectors, and did not address whether this rule was applicable globally. 

 

In many neural network implementations, the decision function is not constrained to be a 

Heaviside function, but may be something which still produces an output in a nonlinear 
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fashion (such as a hyperbolic tangent function).  In this section, I assess the convergence 

of a HNN as a function of the variance of this decision mapping. 

 

To assess the efficacy of using different possible values for a limiting function, the 

general form 

 








=
2

).(
tanh).(

uMem
uMemf

λ
 

 

was used.  It can be seen that the overall “steepness” of the decision function is given by 

the parameter λ, with the function’s steepness increasing as λ→∞. 

 

Below are two plots, each showing the convergence for λ=2 and λ=1000.  The first plot 

uses clue vectors as inputs to the memory matrix, and the second plot uses corrupted 

vectors as inputs to the memory matrix. 
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Fig 6.3 a) Mean Hamming Distance vs. Normalized Clue Length for I=1 and I=2.  The 
difference in convergence between λ=2 and λ=1000 is also plotted for I=1 and I=2. b) 

Mean Hamming Distance vs. Corruption for I=1 and I=2.  The difference in convergence 
between λ=2 and λ=1000 is also plotted for I=1 and I=2. 

 

As the above plots demonstrate, the changes in the value of λ have no statistically 

significant influence on convergence rate, both when clue vectors and corrupted vectors 

are presented to the memory matrix.  Further, while convergence is marginally improved 

from I=1 to I=2, and not from I=2 to I=3, (for both clue and corrupted vectors) this is 

expected and agrees with previous results. 
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6d. Synchronous vs. Asynchronous Update Schemes for a HNN 

Many NNs allow for the possibility of a synchronous update scheme.  However, in 

Hopfield’s original paper21, the update scheme was asynchronous – only one neuron 

(randomly selected) updated at a time.  However, much work has been done on 

application of updates synchronously84,85,86.  Grondin87 found that asynchronous update 

schemes had restrictions on the length of limit cycles not seen in synchronous networks, 

and that synchronous updates did not, in fact, change the nature of stable states of the 

system. 

 

Here I investigate the implications of varying the update scheme on the convergence of a 

HNN.  Cheung88 contrasted the performance of synchronous vs. asynchronous HNNs, 

and found it was possible in synchronous update schemes (but not in asynchronous 

update schemes) to have updates resulting in positive energy changes as well as 

oscillations between two different energy states.   

 

Below are plots for the normalized mean Hamming distance versus the normalized clue 

length and normalized corruption length for d=100, n=10 for both synchronous and 

asynchronous update schemes for both sets of vectors. 
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Fig. 6.4 a) Convergence for Synchronous vs. Asynchronous Update Schemes.  Plots for 
Synchronous Update and Asynchronous Update Schemes are plotted for two iterations 
(I=1, I=2) for Clue Vector inputs.  b) Results of both a Synchronous and Asynchronous 

Update Scheme for I=1 and I=2 using Corrupted Vector inputs.  
 

In the case of clue vector inputs, complete convergence is seen in both modes of update 

for q/d ≈ .7.  For a given clue length, a synchronous update scheme has better 

convergence.  The deviation of values from the mean is also smaller for a system using 

synchronous update mode.  This shows that the actual range of Hamming distances 
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encountered for a set of vectors at a given clue length is less when the update scheme is 

applied synchronously. 

 

Further, the difference between convergence values for synchronous vs. asynchronous 

schemes using clue vectors is most significant for values of q< .4.  Apparently the 

synchronous update scheme converges faster at this range of clue lengths. 

 

For corrupted vectors, complete convergence is not seen in either case until c/d = .9.  As 

with the clue vector case, using synchronous updates instead of asynchronous ones 

causes an improvement in convergence. 

 

6e. Variation of when the saturating function is applied 

In Hopfield’s implementation, the saturating function is applied after each step.  Here I 

alter this parameter, allowing for an update to occur at any particular step in the iterated 

process. 

 

Given three iterations, several combinations of when the saturation function is applied are 

possible.  Here I first apply the saturation function after each iteration, followed by 

applying the function on the second and third iterations but not the first.  I conclude with 

a simulation applying the saturation function only after the third iteration, and not on the 

first or second. 
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6e.1 Application of Saturation Function 

 

Below are the graphs with the saturation function applied after every iteration (V=1), 

with the results compared to when the saturation function is applied after the second 

iteration (V=2). 
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Fig. 6.5 a) Convergence dependence on when Saturation Function is applied for clue 
vector inputs.  The Convergence when the Saturation Function is applied every iteration 
(V) is measured.  Also plotted is the difference in convergence on the second iteration 
when the saturation function was applied after both iterations and after only the second 
iteration.  Finally, the convergence for the third iteration is plotted when saturation is 
applied after every iteration and when it is applied only after the second iteration. b) 
Same information as 5a, with the exception that corrupted vectors are used as inputs. 

 

 

From the above plot it is demonstrated that the convergence is slightly altered by the 

choice of when the saturation function is applied.  The difference between V=1, I=2 and 

V=2, I=2 is at most -.04 for clue vectors and -.06 for corrupted vectors, which is a small 

effect. 
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The test was repeated with the choice to apply the saturation function after the third 

iteration.  No statistically significant change in convergence was observed. 

 

 

6f. Analytical Assessment of Convergence 

 

In this section I compare my simulation of convergence with an analytical calculation by 

Mills89.   

For reference I record his unpublished calculations, which are a slightly improved version 

of a similar calculation performed by Mills, Yurke and Platzmann91 previously, as 

follows: “The elements of memory in a duobinary Hopfield network are represented as 

m-component vectors ∑
=

=
d

i
ii eVV

1

ˆ
r

 in a space with basis vectors ei (i=1, 2, …, d). The 

items of memory, a set of vectors )(aV
r

 (with a = 1,2, …, m and each component having a 

value equal to  1± ) representing different experiences, are stored in memory by summing 

the outer product matrices of the memory vectors: 
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I assume that the Vi
(a) are part of a nearly orthogonal set, so that the components of two 

different vectors are nearly uncorrelated. A particular experience )(b
iV , imperfectly 

represented by a truncated “clue” vector )()( b
i

b
i VU =  for qi ≤  and 0)( =b

iU  for qi > , is 

recalled by iteration of the nonlinear equations  
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where the square root represents the assertion that the individual components of  )(b
iV  are 

being perturbed by the addition of uncorrelated contributions having a Gaussian 

distribution with standard deviation equal to qm /)1( −=σ . The probability that one of 

the components changes sign is  
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The Hamming distance between )1(
i

b X  and the correct memory is thus 
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After the next iteration I have 
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and so forth. Here the function S(x) is a hard saturating function such as tanh(λx) with 

λ>>1 acting separately on each component of its vector argument. If the Vi
(a) are 

sufficiently different, i.e. are part of a nearly orthogonal set, the system will settle into a 

state closely resembling Vi
(b).” 

 

A plot of these results for convergence as a function of normalized clue length is shown 

here 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

 

 

C
on

ve
rg

en
ce

q/d

Convergence=0.5*erfc(sqrt(q/18))

d=100, n=10, I=1

 

Fig. 6.6 An analytical estimate of convergence of a HNN as a function of normalized clue 
length (q/d) 
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This plot of analytical results can be compared to Fig. 6.2a to demonstrate the excellent 

agreement with computational results for the first iteration of a HNN with Tii = 0. 

 

6g. Conclusion 

 

I have tested five possible variables which could have impacted the performance of a 

HNN: the diagonal condition (setting Tii = 0 vs. Tii ≠ 0), the steepness of the saturating 

function (hard limiting or more relaxed), the update mode (synchronous vs. 

asynchronous), when the decision function is applied (every iteration vs. after some 

number of iterations), and the use of clue vs. corrupted vectors as inputs to the network. 

 

The diagonal condition (Tii = 0) was first proposed by Hopfield as a condition for 

guaranteed stability in the recall algorithm when dealing with corrupted vectors as inputs.  

I found that convergence with the relaxation of this condition (Tii ≠ 0) is actually slightly 

better (.02 change in mean Hamming Distance) than with the rule enforced (Tii = 0), both 

for corrupted and clue vectors as inputs. 

 

When the saturation function is varied, no statistically significant effect on convergence 

is found.  This is the case whether clue vectors or corrupted vectors are presented to the 

network.  There is a slight improvement in convergence between I=1 and I=2, and no 

significant improvement in convergence from I=2 to I=3, as seen in other sections. 
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I found that for the synchronous vs. asynchronous update mode, the synchronous update 

mode displayed better convergence as a function of normalized clue length in the regime 

where (q/d) < .4 (only for clue vectors).  This result also occurred with (c/d) < .9 for 

corrupted vectors.  Further, the variance in convergence is less in synchronous update 

mode for both clue and corrupt vector implementations, implying that for a given clue (or 

correctness) length, the range of convergences is less when the update scheme is applied 

synchronously. 

 

Finally, when the saturation function is applied on different iterations for clue vectors, it 

was found that application of the saturation function after every iteration shows a slight 

(at most .05 when q=.17) improvement over application on other possible iterations.  For 

values of (c/d), saturation after every iteration starts to improve convergence as (c/d) 

increases from (c/d)=.55, up to a limit of (c/d) = .7.  From (c/d) = .7 to (c/d) = 1, 

saturating after every iteration continues performing slightly better than saturation after 

every second or third iteration, with the effect asymptotically going zero as (c/d) goes to 

1. 

 

All of this information combined leads to the conclusion that for a HNN using either clue 

vectors or corrupted vectors as inputs, the optimum network configuration is one which 

uses a synchronous update scheme, with Tii ≠ 0, having a saturation function which is 

applied after every iteration.  Further, systems using clue vectors as inputs have an 

overall better performance (≈ .05 - .1) at short clue/correctness lengths. 
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Chapter 7 – Differences Between Conventional Hopfield Neural Networks and DNA 

Based Hopfield Neural Networks 

As discussed in Chapter 5, Hopfield neural networks offer an intriguing example of a 

content-addressable memory.  However, research to date has involved implementations 

of these networks in silicon.  Here I delineate and explore some of the differences 

between models of HNNs in silicon and DNA. 

 

MYP90,91 proposed to implement a Hopfield neural network in DNA.  As discussed 

previously, a Hopfield network is one which has the ability to store memories in the 

connections between nodes.  Once stored, the memories can be recalled by the 

introduction of a “clue vector”.  A clue vector is a vector with some of the entries 

missing.  In this way, the network functions as a content addressable memory. 

 

 

7a. Corruption and Completeness Limitations in HNNs 

In a set of memory matrices which are not summed to give the usual result for a memory 

matrix in a HNN, it is interesting to note properties of convergence when a clue or 

corrupt vector is applied.  Consider the following vector and the memory matrix derived 

from it 
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Now assume that a corrupted vector is to be acted upon by the memory matrix.  The first 

entry of the output vector (O) is: 

)( 11
1

1
1 ∑=

j
jjUMSignO  

If the original encoded vector had been presented to the network, an entry in the output 

vector would be equal to Sign(d), where ‘d’ is the length of the vector.  However, given a 

number of entries which are corrupted (cor), the output now becomes 

)*2(1
1 cordSignO −=  

since each corrupted entry reduces the positive nature of the argument of the Sign 

function by two (cancelling out the value it took over, and the need for one other entry to 

cancel its effect).  Therefore, if cor > d/2 , the sign will be reversed from the desired 

value, and one incorrect entry will be output in the vector. 

 

If clues (vectors with ‘0’ entries for missing information) are presented to the network 

instead of corrupted vectors, any arbitrary clue length will give a correct answer, since 

each entry the row of the matrix under consideration helps to “pull” the output entry 

toward the positive if the desired output is ‘1’ and toward the negative if the desired 

output is ‘-1’.  Therefore, any positive clue length will reproduce the correct vector. 
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7b. MYP Model of a Hopfield Neural Network 

Construction of MYP’s proposed network involves creating both vectors and matrices in 

DNA. 

7b.1 Construction of Input Vectors 

 To create input vectors, it is necessary to find a means of converting digital and 

analog data to a meaningful representation in DNA.  MYP’s original idea for this was to 

use a chip design, with each cell containing dsDNA.  Each of the dsDNA oligomers is 

random and distinct.  Once two of these chips are prepared, the image that the user 

wishes to encode in DNA is positioned over one of the assemblies.  Each cell in the 

image has a corresponding cell on the chip.  In this implementation, the image to be 

recorded into the DNA is a black and white picture.  The white cells are set up to allow 

light through, while the black ones block it.  MYP proposed then placing an ultraviolet 

light source above the input picture.  This would allow cells on the chip corresponding to 

white cells to receive ultraviolet light, while cells on the input picture which are black 

would be protecting the underlying DNA.  If left on for a period of time, this ultraviolet 

exposure would cause the DNA on the chip corresponding to the white cells to denature.  

Once denatured, the ssDNA could be siphoned off and placed into a tube.  This would 

then be a representation of the input picture. Each of the strands in solution has a primer 

on each end (P,Q) which facilitates reactions such as ligation and PCR. 
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7b.2 Formation of the Memory Matrix 

Creating the matrix of connections that would exist in a Hopfield network (aka – memory 

matrix) is now a straightforward matter.  Since the matrix for the Hopfield network is 

given by: 

 

∑
=

=
m

a

a
j

a
iij VVT

1
 

(where “a” is the number of memories, a “V” is a memory vector) it is possible to form 

an outer product matrix using oligomers from each of the input vectors.  This equation 

can be realized in DNA, since each component of each vector is a distinct DNA sequence 

with some unit presence in the solution.  Since an entry in an outer product matrix is the 

result of multiplication of two vector components, this operation can be represented by 

the ligation of two relevant pieces of DNA.  Creating the entire memory matrix requires 

the ligation of all vector components to all other vector components (for a given vector) 

in solution.  This is accomplished by creating a “linker” strand, consisting of the 

complement to primer P and the complement to primer Q.  This linker is allowed to 

hybridize in solution with the oligomers, giving strands connected in pairs.  Once this has 

been accomplished, ligase acts on the strands, connecting them permanently.  Finally, the 

solution is heated so that the original linker falls off, leaving the newly created matrix 

strands.  The memory matrix is constructed using the complements of each memory 

vector component ligated to another “output vector space”, which has oligomers 

representing the equivalent of each input space vector oligomer. 



 

 164

 

7b.3 Memory Recall Operation 

To effect the recall operation of the network, a “clue vector” is presented in solution. This 

representation is distinct from a “corrupted vector” recall since this scheme is designed to 

represent a “lack” of information by a zero, and the presence of information by the 

appropriately signed binary bipolar entry. Since the vector is a set of oligomers with unit 

concentrations, a clue vector is a set of oligomers with some of the entries missing.  To 

represent this effectively, the missing elements in the input vector are represented by 

zeros.  If I wanted to recall v1, the clue vector might be something like this: 
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where I have shown both the mathematical form and constituent DNA strand form.  Once 

put into solution, the memory matrix is allowed to act on these input oligomers.  Since 

the input oligomers are complementary to the oligomers on the 5’ end of the DNA strand, 

they will anneal in solution to the matrix strands at this end.  Once this has been 

achieved, polymerase is added to the solution, which will grow the strand toward the 3’ 

end, resulting in dsDNA.   

 

It now becomes necessary isolate and denature the output strand from the matrix 

strand/input strand combination.  Nickase is introduced to the solution, and set to 

recognize the point at the junction between Pbar and Qbar.  The nickase will cut at this 
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point, and create an opening for polymerase to act again, growing along the matrix strand 

toward the 3’ end.  This growing will force the existing strand to denature.  These cut off 

strands are the desired output.  This output process can be repeated if necessary using 

Strand Displacement Amplification92 (SDA) to obtain increased quantities of output 

product. 

 

7b.4 Reading the output strand 

The output strands can be read using the second chip.  This chip is identical to the 

original chip, with the exception that the output chip has all ssDNA.  In effect, this chip is 

the equivalent of the first chip, except all possible strands have been denatured.  What 

remains on the chip is a set of ssDNA, each strand of which is complementary to one of 

the possible output strands from the memory matrix.  To make visible readout possible, 

the output strands from the memory are “tagged” with a fluorescent molecule which will 

output in the visible portion of the spectrum when excited with ultraviolet light.  The 

output strands, once introduced to the chip, will bind to their single stranded components 

on the chip.  The cells with dsDNA oligomers will fluoresce, indicating the original white 

cells on the image.  The cells without dsDNA oligomers will not fluoresce when stuck 

with the ultraviolet light, thereby showing the cells which are intended to represent black 

in the original image. 
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7c. Directions for Future Research 

7c.1 DNA Oligomer Length as a Basis Vector in Hopfield Neural Networks 

In previously discussed models of neural networks in DNA, the vectors were represented 

by sets of oligomers, with each oligomer serving as a basis vector.  This had the 

advantage of a large number of possible basis vectors being readily generated by the 

selection of a sample of randomly generated oligomers.  However, it was necessary to 

attach each oligomer to a chip, which could serve both to provide the initial data for 

information vectors, as well as the output working substance for recalling information.  

This system suffered statistical limitations provided by the possible lack of amplification 

of a particular oligomer, leading to the potential loss of a basis vector.   

 

Another potential model involves representing basis vectors by unit concentrations of 

oligomers, with different length oligomers representing different basis vectors.  A 

possible implementation of this system is shown here. 

 

Input for this method of information processing would first involve reading in the desired 

vectors for later recall.  This would be accomplished by having a program map each piece 

of information to be recalled to a number on a scale.  For example, if the data was a set of 

grayscale pictures, a scale of one to twenty four might be used.  If the data were a set of 

letters comprising a text, a scale of twenty seven possible values could be used, each 

value corresponding to different letters of the alphabet.  Once each piece of information 

is mapped to the scale, this is translated to an amount of an oligomer to be used for that 
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basis vector, with different basis vectors corresponding to different length oligomers.  For 

example, suppose the picture below was read into memory: 

 

 

 

 

 

Fig. 7.1 – Possible Grayscale Input Picture 

 

The above picture has the following sequence: 

white cell, black cell, white cell, dark grey cell, light grey cell 

 

On a scale of one to twenty four, black might correspond to zero, which would make 

white correspond to twenty four.  The values of grey would be in between, giving a 

representation in this scale as: 

24, 0, 24, 10, 19 

 

Each of these values is then forwarded to a program operating a device, such as a 

robopippettor, which is able to extract appropriate amounts of oligomers from tubes of 

random DNA, with each tube containing oligomers of differing lengths.  So the above 

scale might then correspond to: 

24 nL of 20 bases ssDNA 
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0 nL of 30 bases ssDNA 

24 nL of 40 bases ssDNA 

10 nL of 50 bases ssDNA 

19 nL of 60 bases ssDNA 

 

Construction of the memory matrix for one of these vectors involves ligation of the same 

amounts of each input vector component with other components in that vector.  As shown 

previously, this outer product matrix: 
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will allow memories to be encoded in DNA concentrations.  It should, however, be noted 

that the implementation of this scheme does not allow for scalability, since the number of 

possible oligomers increases as n, whereas in MYP’s proposal, the number increased as 

4n.  However, this implementation might be more useful for smaller scale 

implementations, as results can be read out using polyacrylamide gel electrophoresis 

rather than a readout chip93, which might be more cost prohibitive. 

 

7c.2 Models of Feedforward Networks using DNA as a Computing Substance 

Previous suggested implementations of neural networks in DNA, such as that proposed 

by MYP, are predicated on the encoding of connection strengths ligated oligomers as a 

working substance.  It is a straightforward matter to envision extending this idea to other 

neural network models. 
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For example, a feed forward network, such as a classifier, involves taking an input vector 

and determining to which class the input vector belongs. 

If it were the case that a neural network had already taken the time to train itself on a 

silicon system, these matrix values could then be input into solution as concentrations of 

matrix oligomers connecting layers in the feed forward architecture.  This being the case, 

the DNA system could then sort very large patterns much more quickly than could be 

accomplished with a conventional computational system. 

With an idea in mind of how to implement an HNN in DNA, it is of interest to examine 

limitations on an MYP HNN computationally, such as relaxing constraints on the 

network, quantifying the clue length required for recall, etc.  A simulation exploring these 

constraints is the subject of the next section. 

 

7d. Convergence of Clues in Separated Matrices Using DNA 

In a conventional HNN, the memory matrix is constructed by using the sum of the outer 

product matrices generated from the memory vectors.  However, it is possible to effect 

reactions in DNA for the formation of a HNN which do not rely upon this process.  If this 

implementation is used, different rules or conditions for convergence apply compared to 

a conventional HNN. 
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7d.1 Minimum Constraints on Amount of Reactants 

The first step to the successful realization of a HNN in DNA is the presence of an 

adequate amount of reactant sample to ensure fidelity at the output step.  It is possible to 

produce increased product amounts using ILA.  However, if this step is to be eliminated, 

a minimum quantity of input reactant is required to ensure successful recall.  Suppose 

there only exists one memory in DNA to be encoded, given by the vector: 
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then the memory matrix encoding this vector is given by 
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(where ‘b’ in the subscript denotes the strand which is complementary to the original 

strand.  For example, I1b is the complement of I1). 

Assume that a minimum amount (a) of output material is required to display the output 

component successfully.  Further, assume that a clue vector is given to the system: 
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The first question, then, is how much of this input needs to be presented to the network to 

ensure recall of the whole output vector?  If I1 is presented to the memory matrix shown 

above, the output would be: 
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since each of components in the first column of the memory matrix interact with the clue.  

So if a given output vector is ‘d’ components long, and ‘a’ is the minimum amount of 

each component required for successful  readout, it is imperative to have, in this case,  

 

daInput *min =  

However, the minimum aliquot of each entry is reduced if the clue is longer.  For 

example, for a clue of  
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interacting with the memory matrix would produce the same output as before, but this 

time through interaction with the first two columns of the memory matrix instead of only 



 

 172

the first column.  This reduces the amount of material required for each input entry by 

‘q’, where ‘q’ is the length of the clue vector.  This leads to a minimum input aliquot for 

each clue entry of 

q
da

Input
*

min =  

assuming there is only one vector in the system.  If there is more than one vector, the 

amount of input reactant must be multiplied by the number of vectors in the system (n) to 

ensure each memory matrix is allowed to react with the input oligomers. 

 

7d.2 Lack of Equivalence Between Standard Matrices and DNA Matrices 

At first it may be easy to assume that representing DNA vectors by their numerical 

counterparts would be the most straightforward way to proceed.  However, it can easily 

be demonstrated that valuable information is lost in the transition.  Consider the 

following set of vectors and their memory matrices 
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Note the lack of equivalence between these two scenarios.  In the case of ordinary 

matrices, the negative values in the vector cancel each other out in the formation of the 

memory matrix.  However, since the type of data is different for DNA vectors, this does 

not occur.  As a demonstration, consider the presentation of a clue vector in the form 
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Allowing the numerical vector to be acted upon by the memory matrices and saturating 

with a Sign function gives: 
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but with the DNA representation, the output becomes 
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This is because the DNA doesn’t interact with the matrix oligomers in the second 

memory, only the first.  However, the numerical model does allow for a successful 

operation with the second memory matrix. 
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7e. Mathematical Representation of DNA Based Hopfield Neural Networks 

Since it is now evident that the typical mathematical operations represented in matrix 

algebra do not correspond exactly with the outputs from a DNA based neural network, it 

is a natural extension to explore which mathematics, in fact, do accurately represent the 

operations of these systems. 

 

The mathematics of the oligomer interactions in these networks can be realized by 

thinking of each matrix oligomer as a function.  The inputs to an individual matrix 

oligomer can be represented by either a “positive” oligomer (In = 1) or by a “negative” 

oligomer (its complement in input space: Inb = -1).  This oligomer can then produce an 

output which is an equivalent positive oligomer in output space or a negative oligomer in 

output space (On = ± 1).  This is a function which takes ±1 as input and produces ±1 as 

output. 

 

However, the situation is more complicated by the fact that each matrix oligomer will 

bind selectively with only complements on the right hand side of itself.  For example, in 

the matrix given by: 

 

 

 

The entries in the first column will bind only with the first entry in a clue vector.  

Likewise, the matrix entries in the second column will bind only with the second entry in 
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a clue vector, etc.  This leads to a condition δ(r,c) (a Kronecker Delta function) on each 

oligomer, meaning that the output will be zero unless the row number in the clue vector 

(r) is equal to the column number of a given memory matrix (c). 

 

The output will be determined by the left side of the matrix oligomer under consideration.  

For example, if a particular oligomer has Onb as the left side, it will produce On in 

reactions, which means the output will be +1.  If, however, the oligomer has On as the left 

side, it will produce -1 as the output. 

 

These two rules in conjunction allow for an exhaustive list of functions, each of which 

describes one possible matrix oligomer.  A table listing these values is 

DNA Oligomer Mapping Kronecker Delta 

Function Representation 

OnIn -1 → -1 -δ(rn,cn) δ(xn,-1) 

OnInb 1 → -1 - δ(rn,cn)  δ(xn,1) 

OnbIn -1 → 1 δ(rn,cn) δ(xn,-1) 

OnbInb 1 → 1 δ(rn,cn) δ(xn,1) 

 

Fig. 7.2 – Representation of DNA Interactions as a Function 
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Using these functions, it is possible to map, for a given input, the mathematical output.  

Consider the matrix shown above and its function equivalent: 

 

 

 

 

 

 

Presenting a “DNA clue” in the form (1,0,0) as before, to this set of functions, gives: 

 

 

 

 

 

 

 

 

As can be seen here, this representation faithfully recalls information in encoded in the 

DNA neural network. 

Extension of this idea into a general function is straightforward.  Any matrix of this 

nature can be broken down into elements consisting of ±1.  As such, when it acts upon a 
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vector entry, the only constraint is that the row number of the vector input be the same as 

the column number of the matrix.  A comparison of the DNA function representation 

with the usual numerical matrix representation is given here, where each function is for a 

single entry in one memory matrix 

 

DNA 

Oligomer 

Numerical  

Representation 

Numerical Function  

Representation 

DNA Function Representation 

OnIn 1 δ(rn,cn) -δ(rn,cn) δ(xn,-1) 

OnInb -1 -δ(rn,cn) - δ(rn,cn)  δ(xn,1) 

OnbIn -1 -δ(rn,cn) δ(rn,cn) δ(xn,-1) 

OnbInb 1 δ(rn,cn) δ(rn,cn) δ(xn,1) 

 

Fig. 7.3 – Comparison of DNA and Numerical Matrix Entries 

 

The above chart shows that there is more information in the DNA network, since 

oligomers can retain function information properties that numbers cannot (such as when 

there are two different ways to create a DNA matrix oligomer which would have a value 

of ‘-1’).  As Golomb36 has said, a Shannon bit “is the amount of information gained (or 

entropy removed) upon learning the answer to a question whose two possible answers 
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were equally likely, a priori.”  If one examines the numerical function representation 

above and compare it to the DNA function representation, a difference in the amount of 

possible questions to ask to reach an answer is seen.  In the numerical representation 

case, if a “±1” is presented to the network and the memory matrix entry is “1”, the only 

question to determine the output is something akin to “Is there a negative sign in front of 

the Kronecker Delta function representing this entry?”   This is suggestive of there being 

one “Shannon Bit” of information in that matrix element.  However, if the matrix entry is 

a DNA oligomer, and a “±1” is present to the network in the form of an input oligomer, 

two questions must be asked to determine the output of a particular matrix entry.  These 

would include something such as “Is there a negative sign in front of the Kronecker Delta 

function representing this entry?”.  This would be followed by another question, such as 

“Does the second Kronecker function in the matrix entry function include ‘-1’ as one of 

its arguments?”.  From these two “Yes/No” questions, it is possible to exhaustively list 

the outputs from the memory matrix element.  Therefore, each entry has not one, but two 

Shannon bits of information in it.  This means that the memory matrix capacity, instead 

of being some number of memory vectors ‘n’ as in the case of a conventional HNN, 

should instead be ‘2n’.   
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Chapter 8 – Results of MYP Neural Network Simulation 
 
8a. Experiment Convergence 
 

Karabay et al94 have attempted to implement a small scale model of an MYP neural 

network.  In this model, the authors attempted to form a content addressable memory by 

the ligation of four input vectors (d=4, n=2) to form a set of outer product matrices.  In 

this implementation, as described in other sections, vector entries were represented by 

oligomers of DNA, and matrix entries were represented by ligated vector entries.  This 

resulted in a set of four matrices which were allowed to interact with a clue vector, which 

consisted of one of the components of the first memory encoded in the neural network.  

The experimental results were confirmed by me using a simulation. 

 

Since the oligomers used in this experiment are designed to effect computation akin to a 

Hopfield Neural Network (HNN), it might at first appear that simulation of this 

experiment in silico involves the construction of a memory matrix like that prescribed by 

Hopfield – the sum of the outer product matrices formed by each vector with itself.  

However, this is not accurate (as mentioned in Chapter 7), since in this representation 

DNA does not add like a scalar.  For example, consider the formation of a memory 

matrix for the following vectors 
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The two outer product matrices would appear as in Fig. 9.1 below 
 

 

 
 

Fig. 8.1 – Ligated Structures in an MYP Neural Network 
 

Unlike for the usual model for a HNN, the two outer product DNA memory 

matrices must not be simply added together due to the likelihood of cross hybridization, 

and any attempt to model the DNA network without taking this into account will give 

incorrect predictions. Instead, the memory matrix is preserved as four components (OiIj, 

OiIjbar, OibarIj OibarIjbar) which will act separately on the query before adding the 

results together, at which point strands representing opposite polarities can hybridize and 

thus cancel in whole or in part.  

For example, in this experiment, the clue vector consisting of  was 

input to the network. 

To determine the output of the HNN on this clue vector in DNA: 

1) Search for the complement to each clue entry by examining the “right hand side” 

of each memory oligomer for the complement to the clue entry.  In this case, the 

first column of the first matrix is the only set of entries that have the complement 

(“i1bar”). 
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2) Determine the complement to the “left hand side” of those oligomers which 

match.  In this situation, the left hand sides of the matching oligomers are o1bar, 

o2, o3bar, and o4.  Therefore the complements are o1, o2bar, o3, and o4bar. 

 

These are the outputs from the HNN implemented in DNA.  In order to do this 

more efficiently, I wrote a Mathematica code which allows the entry of arbitrary vectors, 

constructs the appropriate set of memory matrices, then considers an input clue and 

generates the appropriate output. 

For each of the experiments above, I (and others) obtained outputs for both 

simulations and experiments indicated in Fig. 8.2.  Experimental data is not shown for 

presaturation values, since different vector components represented by ssDNA cannot be 

distinguished from each other in gel electrophoresis. 

 
a) Output Values Before Saturation b) Output Values After Saturation 
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Fig. 8.2 – Comparison of Experimental and Simulated Values of Output from 

MYP Neural Network 
 
 
8b. Simulation Convergence 
 
It is my intent here to explore the difference in convergence between an ideal HNN and a 

MYP model HNN.  To see the difference in difference in convergence for these two 

systems on a small scale, a plot is shown below where the average convergence as a 

function of clue length is plotted on the same graph with the same experiment performed 

using a MYP network. 

 



 

 183

0.0 0.5 1.0

0.0

0.2

0.4

 

 

N
or

m
al

iz
ed

 H
am

m
in

g 
D

is
ta

nc
e

q/d

d=20, n=3, T
ii
 ≠ 0

 
Fig. 8.3 – Comparison of MYP Neural Network with Standard HNN 

 

In the above plot, a simulation was run for a vector length of twenty (d=20) with three 

vectors encoded in the memory matrix (n=3).  Each of the lines above represents the 

Hamming Distance of the output from one of the DNA vectors used as a clue to the 

system, while the set of points with error bars represents the average Hamming Distance 

found from the output of an idealized HNN with the same length idealized clues used as 

inputs.  In this small simulation, the idealized HNN performed better overall. 

 

A table showing the exhaustive output from the DNA vectors is shown here 

 
q/d Output Desired Output Hammin

g 
Distance 

.05 {1,1,-1,0,0,0,1,-
1,1,1,0,0,1,1,-1,0,0,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-

.45 
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1,1,1}   
.1 {1,1,-1,0,0,0,1,-

1,1,1,0,0,1,1,-1,0,0,1,1,1} 
{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.45 

.15 {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.2 {1,1,-1,0,0,0,1,-
1,1,1,0,0,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.25 {1,1,-1,0,0,0,1,-
1,1,1,0,0,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.3 {1,1,-1,0,0,0,1,-
1,1,1,0,0,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.35 {1,1,-1,0,0,0,1,-
1,1,1,0,0,1,1,-1,1,1,1,1,1}   

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.4 {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.45 {1,1,-1,-1,1,-1,1,-
1,1,1,-1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.5   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.55 {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.6 {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.65   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.7 {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 
  

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.75   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.8 {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1}   

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.85   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.9   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

.95   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

1   {1,1,-1,-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,1,1,1} 

{-1,1,-1,1,-1,1,1,-
1,1,1,1,-1,1,1,-1,1,1,-
1,1,1}   

.35 

Fig. 8.4 – Results of Output from MYP Neural Network 
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From these results it is apparent that, in some cases, the idealized HNN converges more 

effectively than an MYP network.  The reason for this, and its dependence on vector 

length (d) and number of encoded vectors (n) is unclear and requires further 

investigation.
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Chapter 9 – Determination of the Spurious Energy States of a Hopfield Neural 
Network 
 

As mentioned previously, Hopfield21 noted that in the construction of the memory matrix, 

it was possible to encoded states which were stable endstates and yet not original 

memories encoded in the neural network.  It is the undertaking of this section to offer a 

quantification of the states, in terms of their number and distance from encoded 

memories.  For the purposes of this section, a spurious state is defined as a stable output 

which is not exactly the same as a stored memory.  In fact, in many cases these states are 

very close in Hamming Distance to the stored memories in problems examined (ie: 

d=100, n=10) The properties of the Hamming Distance dependence on vector length (d) 

and number of vectors encoded in memory (n) will be demonstrated in Section 8e. 

 

9a. Vectors Used and Measurement of Convergence 

In this section I ran a simulation to determine both the number of spurious states as a 

function of vector length (d) and number of vectors encoded in the memory matrix (n).  

The simulation was set up by generating a random set of vectors (n), each with the same 

length (d).  These vectors were then used to construct a memory matrix, using the sum of 

outer products rule.  A separate set of vectors (r) (each with length ‘d’) were then 

generated randomly and acted upon by the memory matrix in a synchronous update 

scheme.  Once acted upon by the memory matrix, the vectors were saturated using a 

Heaviside function.  This output was then compared to the vectors encoded in the 
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memory matrix, to check for convergence.  If the output vector matched one of the 

vectors used to construct the memory matrix, a “hit” for convergence on the first iteration 

was recorded.  If the vector did not converge, it was acted upon by the memory matrix 

again and saturated, then compared with both the original vectors used to construct the 

memory and the last iteration of itself.  If it matched one of the original vectors, a “hit” 

for convergence on the second iteration was recorded.  If this output vector did not match 

one of the original vectors used to construct the memory matrix, but did match the prior 

iteration of itself, it was counted as a spurious memory, since the vector converged to a 

stability point but did not converge to one of the desired memories.   

 

If neither of these conditions were met, the process of acting on the memory vector by the 

memory matrix and saturating was repeated, followed by the comparison with both 

encoding vectors and prior iterations of output vectors.  This process was repeated for up 

to ten iterations, recording when the vector converged to either a spurious state or one of 

the desired vectors that was used to construct the memory matrix. 

The output from each iteration was also compared to the outputs from other iterations.  In 

doing so, it was possible to check for “limit cycles”.  These are output results where the 

output oscillates between 2 (or more) output vectors in a nonterminal sequence. 

 

9b. Comparison with Exhaustive Search Results 

As a baseline to assess how well statistical methods compared to exhaustive searches, an 

exhaustive construction was made for vectors with reasonably short values (2 ≤ d ≤ 9).  
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In this system, a simulation was run to set up every possible combination of vectors of d-

tuples.  For example, for d=3, my simulation constructed all eight possible vectors with a 

length of 3.  It then used these vectors, for n=2, to generate a set of all 28 possible 

matrices which could be constructed from 2 vectors.  Each matrix was then allowed to act 

on each of the 8 possible vectors as inputs, in a manner similar to the simulation listed in  

section 8a above.  This exhaustive manner of searching the possible vector space is 

fruitful for being conclusive regarding results.  Unfortunately, as the size of the vector 

grows, so does the computational time required for a solution.  Therefore, for large values 

of “d”, it is not practical to have such a system to calculate spurious states, and one is left 

with a statistical sampling model. 

 

Below is a comparison of the results for an exhaustive search for 2 ≤ d ≤ 9 along with the 

simulation run with statistical sampling. 
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Fig. 9.1 Comparison of the number of Spurious States as a fraction of the total number of 
system states for short vector lengths (2 ≤ d ≤ 9).  Points are plotted both for an 

exhaustive search and a statistical search.  The statistical search entailed a number of 
matrices tried (M=10) as well as a number of different possible trial runs with different 

input vectors (r=100) 
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9c. Monte Carlo Simulation Procedure 

 

The simulation was run for a wide range of vector lengths (10 ≤ d ≤ 500) in increments of 

10.  The simulation was tested with numbers of vectors encoded in the memory matrix (2 

≤ n ≤ 30). The procedure for this simulation is given here: 

 

1) A set of vectors (n), each with length ‘d’ was chosen at random.  The sum of the 

outer products of these vectors was taken to construct a memory matrix. 

2) A set of input vectors (r) (each with length ‘d’) was selected at random.  These 

input vectors were each acted on by the memory matrix, and then saturated using 

a Heaviside function. 

3) This process of iterating the output vector by feeding it through the memory 

matrix and allowing the saturating function to act was repeated ten times, so ten 

iterations for each input vector were recorded. 

4) These ten iterations were examined to determine when the output vector 

converged to one of the original vectors used to construct the memory matrix.  If 

the vectors did not converge to one of the original vectors, it was examined across 

all iterations to determine when it stabilized into a spurious state or a limit cycle. 

5) After all vectors in ‘r’ were examined, a new matrix (M) was constructed out of a 

new set of ‘n’ random vectors, and the process was repeated. 
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This method of randomly generating vectors and matrices allows for a reasonable 

statistical ensemble to be constructed, showing a representative set of states which are 

spurious and convergent for a given vector length (d) and number of vectors in the 

memory matrix (n).  After this process was complete, the simulation was run again, this 

time with the condition that the diagonal elements of the memory matrix not set to zero, 

but rather be permitted to retain their values assigned in the sum of outer products 

construction procedure. 

 

9d. Distribution of Spurious States as a Function of Vector Length and Number of 

Vectors Encoded 

Here are plots of the fraction of spurious states as a function of vector length (d) for a 

given number of vectors encoded in the memory matrix (n), with the number of different 

matrices used (M) equal to ten.  There were 100 different random vectors (r) tried against 

each memory matrix. 
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Fig. 9.2 a) Plots of the fraction of total states that are spurious as a function of vector 
length (d), number of vectors in the memory matrix (n), number of random vectors tried 

(r), and number of total memory matrices attempted (M).  These plots all have the 
diagonal condition enforced (Tii = 0).  b) Same, but with Tii ≠ 0 
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From these graphs (and others not included), I am able to conclude that the number of 

spurious states for a given vector length first starts to settle down to a minimum as the 

number of vectors in the matrix is increased.  Past a certain point, however, the number 

of spurious states climbs quickly until almost all states in the network are spurious. 

 

9e. Distances of Spurious States to Closest Input Vector as a Function of Vector 

Length and Number of Vectors Encoded in the HNN 

 

A further quantification of the nature of spurious states can be accomplished by 

determining the distribution of Hamming Distances to the closest encoded memory as a 

function of vector length (d), number of memories encoded in the memory matrix (n), 

number of matrices tried (M), and number of random vectors attempted against each 

matrix (r).  Below are plots showing this average Hamming Distance for several different 

numbers of vectors encoded in the memory matrix (n) 
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Fig. 9.3  Average Normalized Hamming Distance to the Closest Encoded Vector as a 
Function of Vector Length (d) and Number of Vectors Encoded in the Memory Matrix 

(n) for Tii = 0 
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The general shape of the above graph, once established, continues as higher numbers of 

memories are encoded in the matrix (at least n=60), with a peak average HD to the 

closest encoded vector of between .035 and .040, and then tapering off as ‘d’ increases. 

 

From the above plots it is demonstrated that as the number of vectors encoded in the 

memory matrix increases, the average Hamming Distance to the closest vector starts to 

follow a (k/d) dependence, decreasing in value as the length of the vector increases.  

Below are shown plots for the same situation, this time with Tii ≠ 0: 
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Fig. 9.4  Average Hamming Distance to the Closest Encoded Vector as a Function of 
Vector Length (d) and Number of Vectors Encoded in the Memory Matrix (n) for Tii ≠ 0 
 

These plot demonstrate that when Tii ≠ 0, the distribution of Hamming Distances to the 

closest encoded vector as a function of ‘n’ is considerably different.  Instead of trending 

toward a “k/d” behavior, the function approaches a constant value for large ‘d’. 

 

9f. Distribution of Converged and Spurious States 

While the plots in the previous sections indicate the total fraction of states that were 

spurious for a given vector length and the Hamming Distance to the closest encoded 

vector, they do not indicate the distribution of spurious states as a function of iteration.  

To see the state into which each vector is likely to fall, a bar graph is plotted below, 
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showing the portion of the total number of spurious states into which each iteration fell, 

for d=10, d=500 for n=2: 
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Fig. 9.5  Distribution of Spurious and Converged States for n=2, d=10 and n=2, d=500 

 

For both the spurious states and the converged states, the fraction of input vectors 

converged changed in distribution.  This distribution of converged vectors increased 

toward the first iteration as ‘d’ increased.  This is suggestive of a possible trend and 

requires further investigation. 
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9g. Number of Vectors Converged 

As the number of vectors in the system increased, or as the dimensionality of the vectors 

encoded increased, it began to become apparent that fewer vectors were being recalled 

within ten iterations.  As a sample run, a set of vectors (n=10) were randomly generated, 

with each vector having a length of 500 (d=500).  These vectors were used to construct a 

memory matrix by the usual sum of outer products rule, and the Tii entries were left to 

their original values.  A corrupted vector was created by giving each entry in one of the 

original encoded vectors a fifty percent chance of becoming corrupted.  This vector was 

then acted upon by the memory matrix and saturated.  This process was repeated, each 

time examining the Hamming Distance between the output number in question and its 

immediate predecessor to determine if the vector had settled into a stable state (either one 

of the original encoded vectors or a spurious memory).  Results for twenty nine iterations 

are shown here 
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Fig. 9.6 – Hamming Distance difference between iterations for an input corrupted vector 
(c/d ≈ .5) as a function of iteration number. 

 

As can be seen from the above plot, even at the twenty ninth iteration, the vector is still 

updating slowly, changing an entry or two at a time.  It is possible this is due to the large 

number of updates to possible entries which will cause a further convergence.  When a 

vector has very few entries, it has few ways to come closer to convergence.  However, as 

‘d’ increases, it may take more iterations to cause convergence of the vector to a stable 

state.   

As a test to determine the likelihood of convergence by the tenth iteration, simulations 

were run for up to ten iterations (I=10) to ensure capturing the most data possible 

regarding final states and/or limit cycles (outputs which oscillated between multiple 
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repeating output vector values).  However, as the number of vectors in the matrix ‘n’ 

increased, I found that fewer and fewer vectors had converged either to a stable state or a 

spurious state by I=10.  Below is a plot of the total number of vectors converged as a 

function of ‘n’ and ‘d’ 
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Fig. 9.7 – Fraction of Memories Recalled to Either a Spurious or Converged State within 
10 Iterations as a Function of Vector Length (d) and Number of Memories Encoded in 

Network (n) 
 

From these examples, it becomes clear that the fraction of states that converge to either a 

single correct or incorrect memory decreases as the number of memories encoded in the 

memory matrix increases. 

 

9h. Distribution of Limit Cycles 

It is interesting to consider the case of “limit cycles” in the evolution of a random corrupt 

vector used as an input to a HNN.  Grondin87 investigated limit cycles in synchronous 

and asynchronous update schemes, and found that there were limits on the length of limit 
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cycles presented by the irreversible nature of the asynchronous update scheme.  In 

synchronous update systems (which are used here), Grondin remarked that the 

nonlinearity of the Heaviside function in decision making “makes it difficult to establish 

necessary or sufficient conditions for the existence of the solution vector.” 

In these simulations, all vectors were able to converge to either a correct state or a 

spurious state when Tii ≠ 0.  However, in the case where Tii = 0, a number of limit cycles 

were found.  These were found by tracking cases where an output vector was equal to a 

prior value of itself, but not the value immediately preceding the iteration under 

consideration.  For example, if an output vector after several matrix and saturation 

operations creates a set of output vectors, one after each operation sets (O1, O2, O3, O4… 

On), a cycle can be determined by examining each Oi for equality.  If output O1 was not 

equal to O2, but was equal to O3, then this output has stabilized with cycle that alternates 

between output vectors O1 and O3 if O5=O1=O3.  With each set of iterations, the output 

vector was recorded and compared to previous iterations to determine if limit cycles 

existed.  Interestingly, I found that limit cycles existed, all of length 1 (and all starting at 

the first output iteration).  Below are plots of these cycles for each number of vectors 

tested (n=5,10,15,20): 
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Fig. 9.8 Limit Cycles Found as a Function of Vector Length (d) for n=5, 10, 15,20,25 

 

In each case, I note that the limit cycles all had a length of one; that is, they skipped only 

one iteration value.  This leads to a theorem: 

• No cycles with lengths longer than one are found in the output of an HNN with 

synchronous updating.  Cycles are found only if Tii ≠ 0. 

 

9i. Conclusion 

As the number of memories stored in a HNN increases, the number of stable states (either 

correct memories or spurious ones) that are reached within a given number of iterations 

decreases.  However, the number of states that are reached which are spurious first 



 

 212

decreases as the number of vectors encoded in the HNN increases, then increases for both 

Tii = 0 and Tii ≠ 0.  The average Hamming Distance from the spurious state to the closest 

encoded vector increases as ‘n’ increases, then falls into a stable distribution (k/d if Tii = 

0 and approaching a constant value as ‘d’ increases if Tii ≠ 0).  These spurious states 

appear to cluster closer to the first iteration as the vector length (d) increases. 

 

Limit cycles exist in HNNs with Tii ≠ 0. I found that they all had a length of one 

(meaning there were two output vector values oscillating between each other).  Whether 

there is a more quantifiable distribution of these cycles as a function of ‘d’ and ‘n’ is 

open to further research. 
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Chapter 10 – Closing Thoughts 

 

This dissertation explored the properties of ideal Hopfield Neural Networks, as well as 

the possibilities of implementing a HNN in DNA, as suggested by MYP91.   

While most assessments of neural networks have been performed using corrupted vectors 

(vectors with some components missing), my analysis of varying properties of an ideal 

HNN involved assessments involving both corrupted vectors and clue vectors (vectors 

with some components missing).  In these ideal HNNs, I found that using a synchronous 

update scheme is preferred over asynchronous schemes, both for their improved overall 

convergence, as well as smaller spread in output values.  Further, relaxing the Tii = 0 

condition improves convergence slightly.  While Hopfield specified that Tii = 0 for 

unconditional convergence (presumably meaning convergence to one fixed endstate), 

relaxing this condition results in net improvement in convergence, despite the 

development of “limit cycles” in output results. 

In contrast to these improvements, I found that varying the steepness of the saturation 

function did not change convergence at all, and that varying when the saturation is 

applied showed a very slight convergence in both clue and corrupted vector systems. 

All of this information combined leads to the conclusion that for a HNN using either clue 

vectors or corrupted vectors as inputs, the optimum network configuration is one which 

uses a synchronous update scheme, with Tii ≠ 0, having a saturation function which is 

applied after every iteration.  Further, systems using clue vectors as inputs have an 

overall better performance (≈ .05 - .1) at short clue/correctness lengths. 
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When examining the quantification and distribution of spurious states in a HNN, it was 

found that the number of spurious states found in a given network first decreases then 

increases as the number of vectors encoded in the network is increased.  The average 

Hamming Distance from the spurious state to the closest encoded vector increases as ‘n’ 

increases, then falls into a stable distribution (k/d if Tii = 0 and approaching an asymptote 

if Tii ≠ 0).  These spurious states appear to cluster closer to the first iteration as the vector 

length (d) increases. 

Further, there are limit cycles in HNNs when the memory matrix is not constrained to 

have zero diagonal elements.  This result agrees with Hopfield’s assessment that Tii 

should be equal to zero to insure unconditional convergence.  However, the nature of 

these cycles has not been explored to date.  All cycles in my simulation are all started on 

the first output iteration and have a length equal to one. 

 
When attempting to implement a HNN in DNA, the ordinary rules of matrix 

multiplication are inadequate to describe the system output.  Instead, the usual matrix and 

vector multiplications must be replaced by a set of Kronecker Delta functions, describing 

the interaction and subsequent output from DNA operations.  From my analysis, I was 

able to determine that the information content in each memory matrix oligomer 

implemented in DNA is twice that of a memory matrix oligomer in an ideal HNN. 

A HNN is only one possible model of a neural network, albeit an interesting one.  As the 

first method to use a content addressable memory in a neural network, it offers new 

opportunities for research in both artificial intelligence and neuroscience.  Many open 

questions remain regarding the comparability of these networks to biological structures, 
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as well as physical design of HNN systems.  By offering a small contribution to the most 

efficient implementation of HNNs in both ideal and DNA models, it is hoped that this 

dissertation has been helpful in this endeavor. 
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