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ABSTRACT OF THE DISSERTATION

Development, validation, and translation of a respiratory motion model-based 4DCT

technique for use as a clinical protocol for radiation therapy treatment planning

by

Dylan Patrick O’Connell

Doctor of Philosophy in Biomedical Physics

University of California, Los Angeles, 2018

Professor Daniel Abraham Low, Chair

Breathing motion in radiotherapy is commonly managed with four-dimensional computed

tomography (4DCT). 4DCT datasets consist of multiple breathing-gated images that display

motion of the subject’s anatomy over a breathing period. Commercial 4DCT protocols are

susceptible to image artifacts when the subject breathes irregularly. Unlike commercial

protocols, model-based 4DCT techniques describe a correspondence between tissue motion

and an external signal used as a surrogate for respiratory phase. One such technique, termed

’5DCT,’ uses free-breathing fast helical acquisition and characterizes lung tissue motion as

function of five degrees of freedom: x,y, and z position in a reference geometry, breathing

amplitude, and breathing rate. The overarching goal of this dissertation is to develop the

5DCT technique for clinical use.

A validation study was conducted involving comparing 5DCT images to commercial

4DCT using an animal model. Reproducible and periodic breathing patterns were achieved

through mechanical ventilation and image similarity was quantified using landmark displace-

ment.

Differences in measured tumor motion between 5DCT and commercial 4DCT were ex-

amined in a cohort of 20 lung cancer patients. Solutions for the unique challenges of using

model model-based techniques clinically, such as appropriate amplitude interval selection

and presentation of a quantitative error map, were developed.
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A quality management program was developed to ensure the safety of the protocol using

risk analysis methods such as process mapping and failure modes and effects analysis. In

addition, safety of the in-house software required to implement the technique was managed

through use cases and quantitative, testable safety requirements.

The physiological significance of the 5D model parameters was investigated, particularly

their dependence on breathing rate during acquisition. It was shown that the model param-

eter relating tissue motion to breathing amplitude was largely invariant with breathing rate

during acquisition.

A prospective scanning method was developed to reduce the number of fast helical scans,

and associated imaging dose, necessary to perform 5DCT while maintaining motion modeling

accuracy. A simulation study was conducted using patient breathing traces, and the results

demonstrated that adequate sampling of the respiratory cycle could be achieved using six

scans, compared to the previously-published protocol that employs twenty-five.
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CHAPTER 1

Introduction

Accurate characterization and management of respiratory motion is essential to delivering

prescription radiation dose to lung tumors while sparing surrounding healthy tissues [1].

Stereotactic body radiation therapy (SBRT), a treatment paradigm involving higher radi-

ation doses in fewer fractions than conventional radiotherapy, is used in many early stage

primary lung cancer cases due to its superior local control rates [2][3]. Due to the confor-

mality and steep gradients in planned dose distributions, SBRT requires a highly precise

definition of the target volume. Underestimation of breathing motion can result in system-

atic underdosing and reduced tumor control probability (TCP) [4]. Excessively irradiating

adjacent tissues, especially for centrally located lesions, can lead to pulmonary toxicity [5].

Increasing prevalence of SBRT as the primary treatment for early stage lung cancer high-

lights the need for continued refinement of techniques to minimize uncertainty in respiratory

motion estimation.

1.1 Commercial 4DCT and its shortcomings

One widely used strategy to manage breathing motion is to define the internal target volume

(ITV) using four dimensional computed tomography (4DCT), a set of images at different res-

piratory phases. The ITV is commonly defined on the maximum intensity projection (MIP)

of the 4DCT dataset[6][7]. Commercial 4DCT relies on sorting acquired data according to

breathing phase or amplitude to produce gated images. Commercial techniques produce

accurate images when breathing rate and depth are consistent during acquisition, but the

sorting process can introduce image artifacts in the presence of irregular breathing [8] and
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misrepresent tumor motion [9]. Lung cancer patients tend to breathe irregularly, therefore

the compromised performance of commercial 4DCT in such situations warrants concern.

Underestimation of tumor motion magnitude by 4DCT is well reported in both phantom

and patient studies. [10] measured the ranges of target motions captured by 4DCT MIPs

using a programmable lung phantom. Movement patterns with varying amplitudes and

periods resulted in systematic underestimation of motion magnitude, in some cases by 1 cm

or more. A similar phantom study by [11] also reported ITV underestimations for targets

with large and varied motion amplitudes. [12] used implanted fiducials to measure lung

tumor motion and simulated multiple ciné 4DCT acquisitions for each patient with different

start times, then defined an ITV for each simulated acquisition on its MIP. Variations of

greater than 100% volume were observed for the ITVs of 10 mm diameter tumors, and none

of the ITVs completely covered the entire range of tumor motion for any of the eight patients

in the study. [13] subsequently evaluated the dosimetric consequences of such errors in target

volume definition with digital phantoms. In one case, over 25% of the tumor was underdosed.

Similarly, [14] found that 4DCT MIPs underestimated target volumes up to 40% for

patients with irregular breathing patterns when compared to high temporal resolution dy-

namic MRI (dMRI). Further dMRI studies by the group consistently reported target volume

underestimations by 4DCT and that the magnitude of the underestimations depended on

tumor size and breathing variation [15] [16]. Again, the largest discrepancies were observed

in patients with small tumors who breathed irregularly.

1.2 Model-based 4DCT

Respiratory motion model-based techniques were developed as an alternative approach to

overcome the weaknesses associated with sorting-based methods. Model-based techniques

correlate the externally measurable breathing surrogate signal, typically an abdominal belt or

fiducial markers, to internal organ motion rather than only the surrogate signal for binning.

[17]. ’5DCT,’ proposed by [18] is one such model-based technique. The method uses fast

helical scanning to sample the breathing cycle and deformable image registration to measure
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tissue displacement. [19] demonstrated 5DCT’s improved image quality over commercial

methods on a cohort of 10 lung cancer patients. Fast helical image acquisition affords 5DCT

superior temporal resolution and the technique is robust in the presence of irregular breathing

due to its parametrization of the respiratory cycle as a function of amplitude and rate rather

than an explicit function of time.

1.3 Specific aims and overview

The goal of this dissertation is to develop the 5DCT protocol for use in a clinical setting, in-

cluding validation, software safety and quality assurance, and to address practical challenges

relating to the model parameter reproducibility and imaging dose in order to facilitate use

of 5DCT for applications other than radiation therapy.

1. Independently validate 5DCT through comparison to commercial 4DCT under con-

trolled conditions.

2. Develop a clinical workflow that manages the unique aspects of motion model-based

breathing-gated imaging techniques.

3. Design and implement a quality management program to ensure the safety of the

protocol and the in-house software used to generate 5DCT images.

4. Establish a foundation for application of 5DCT to areas outside of radiotherapy, namely

biomechanical modeling and chronic obstructive pulmonary disease (COPD) staging,

by addressing the physiological significance of the ’5D’ model parameters and lowering

the imaging dose associated with the protocol.

Chapter 1 addresses specific aim (SA)1, an independent validation of 5DCT. Chapters

2 and 3 treat SA2, developing a clinical workflow for a motion model-based technique.

Chapter 4 deals with the software safety and quality management aspects of the project, as

outlined in SA3. Chapters 5-7 involve SA4, applying 5DCT and fast helical free-breathing

CT acquisition to biomechanical modeling and COPD staging.

3



CHAPTER 2

Comparison of breathing gated CT images generated

using a 5DCT technique and a commercial clinical

protocol in a porcine model

Chapter 2 deals with a validation of the 5DCT against commercial 4DCT under controlled

conditions designed to allow the commercial protocol to produce high-quality, artifact-free

images. Validation was challenging because in order for a fair comparison, the respiratory

motion needed to be the same across acquisitions with the two different protocols. This

requirement precluded use of patients, where exactly reproducible breathing is impossible.

Additionally, multiple pairs of datasets had to be acquired for a meaningful analysis, which

introduced dose constraints. While a phantom study was possible, it would be of limited

utility due to the deformable image registration used in 5DCT – any phantom would need

to realistically model the human lung and its motion.

To accomplish the validation, we performed an animal study using an anesthetized and

mechanically ventilated swine in order to achieve reproducible and perfectly regular breath-

ing. Porcine models have been used extensively in pre-clinical imaging studies due to simi-

larities in lung anatomy with humans. Commercial 4DCT was performed, along with 5DCT,

at various respiratory rates and tidal volumes. 5DCT images were generated at the same

breathing phases as the commercial reconstructions. Corresponding images were compared

using automatically generated landmarks. Mean landmark displacement was found to be

less than 2 millimeters.

A version of this chapter has been published in Medical Physics: O’Connell, D., Thomas,

D. H., Dou, T. H., Lamb, J. M., Feingold, F., Low, D. A., ... and Hofmann, C. (2015). Com-
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parison of breathing gated CT images generated using a 5DCT technique and a commercial

clinical protocol in a porcine model. Medical physics, 42(7), 4033-4042
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2.1 Abstract

2.1.1 Purpose

To demonstrate that a ’5DCT’ technique which utilizes fast helical acquisition yields the

same respiratory gated images as a commercial technique for regular, mechanically produced

breathing cycles.

2.1.2 Methods

Respiratory-gated images of an anesthetized, mechanically ventilated pig were generated

using a Siemens low-pitch helical protocol and 5DCT for a range of breathing rates and

amplitudes and with standard and low dose imaging protocols. 5DCT reconstructions were

evaluated independently for precision by measuring the distance between tissue positions

predicted by a 5D motion model and those given by deformable registration, as well as for

accuracy by reconstructing the originally acquired scans. Discrepancies between the 5DCT

and commercial reconstructions were measured using landmark correspondences.

2.1.3 Results

Mean distance between model predicted tissue positions and deformably registered tissue

positions over the nine datasets was 0.65 ± 0.28 millimeters. Reconstructions of the original

scans were accurate to 0.78 ± 0.57 mm on average. Mean landmark displacement between

the commercial and 5D images was 1.76 ± 1.25 mm while the maximum lung tissue motion

over the breathing cycle had a mean value of 27.2 ± 4.6 mm. Use of an averaged image for

scans acquired with a low dose protocol resulted in single standard deviation image noise of

6 HU in the heart versus 31 HU for the commercial images.

2.1.4 Conclusions

A gold standard evaluation of the 5DCT technique was conducted through landmark based

comparison to breathing gated images acquired with a commercial protocol under highly
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regular ventilation. The techniques were found to agree to within 2 mm for most respiratory

phases and most points in the lung.

2.2 Introduction

Breathing-induced motion can cause errors in the delivery of therapeutic radiation to lung

tumors [20]. Currently, respiratory motion is managed in radiation therapy treatment plan-

ning through the acquisition of four-dimensional computed tomography (4DCT), a series of

volumetric images at different breathing phases [1]. Commercial 4D-CT image datasets are

typically acquired using low-pitch helical [21] or ciné [22] sequences. The acquired projec-

tions or images are retrospectively grouped according to breathing phase or amplitude using

simultaneously acquired breathing surrogate measurements. Sorting-based 4DCT techniques

produce artifact-free and clinically useful images when the breathing rate and depth remain

consistent throughout acquisition; however, breathing irregularities cause sorting artifacts

with the potential to introduce errors in breathing amplitude estimations or tumor volume

segmentation [23].

The 5DCT data acquisition and analysis technique that utilizes fast helical CT scans

presented by Low et al. [18] and described in detail by Thomas et al. [19] has been shown to

provide quantitative 4DCT images free of sorting artifacts. In brief, 5DCT samples multiple

breathing cycles with several scans and uses a voxel-based 5D respiratory motion model [24]

to describe lung tissue displacement as a function of tidal volume and airflow, equivalent to

breathing depth and rate, which are measured during image acquisition using an abdominal

bellows.

In addition to offering artifact-free breathing gated images, 5DCT potentially allows the

entirety of the imaging dose to contribute to image quality and can be used with common

clinical equipment. The aim of this study is a gold standard validation of the 5D technique

by demonstrating that it yields the same images as a commercial 4DCT protocol currently

employed clinically for highly regular breathing cycles. This paper presents comparison of

the images produced by the 5DCT technique and a Siemens 4DCT protocol on a mechan-
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ically ventilated anesthetized pig. Controlled ventilation provided ideal conditions for the

commercial protocol to produce high quality, motion sorting artifact free images that served

as a reference against which the 5DCT reconstructions could be compared.

2.3 Methods

2.3.1 Animal Model

Procedures were conducted with approval from the Institutional Animal Care and Use Com-

mittee of University of Iowa. One farm-bred, wild-type pig (42.7 kg; male) was sedated with

a pre-anesthetic mixture of Telazol, Ketamine, and Xylazine and anesthetized with 3-5%

delivery of Isoflurane via nose cone inhalation. The pig was mechanically ventilated with

100% oxygen using a volume-controlled ventilator (Model 613; Harvard Apparatus Bioscience

Company, Holliston, MA). A tracheostomy was performed, and the animal was intubated

with a 7.5-mm diameter cuffed endotracheal tube.

2.3.2 Image Acquisition

A multidetector row CT scanner (Somatom Definition Flash; Siemens Healthcare, Forschheim,

Germany) was used to acquire nine 4DCT sequences, with both the 5D technique and a

Siemens amplitude-gated clinical protocol, of the anesthetized and mechanically ventilated

pig. In order to gauge the relative performance of the two techniques over a range of periodic

breathing conditions, sequences were acquired using 12.4 bpm, 17.1 bpm, and 24.1 bpm, ap-

proximately 450 mL and 650 mL tidal volumes. Experiments were done with typical clinical

and low dose image acquisition protocols using 40 mAs and 10 mAs per scan, respectively.

The same medium smoothing kernel was used to reconstruct all scans.

Acquisition using the 5DCT technique consisted of 30 repeated fast helical scans, per-

formed in succession with alternating directions, and simultaneous monitoring of the breath-

ing cycle using a surrogate. The scan speed was much greater than the rate of respiratory

motion; therefore each axial slice was treated as a collection of instantaneous voxel positions
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at a single point in the breathing cycle, given by the surrogate measurement at the slice

acquisition time. Each scan was approximately 2.5 seconds in duration, with a 2 second

system-imposed delay between scans. Images were acquired with a total collimation width

of 3.84 cm, a pitch of 1.2 and a scanner rotation period of 0.285 seconds which resulted in in

a table movement of 46.08 mm per rotation. The scans used 120 kVp and were reconstructed

using the Siemens B30f medium smoothing kernel.

A pneumatic bellows device (Lafayette Instrument, Lafayette IN) consisting of an elastic

hollow belt placed at the abdomen, was used as the breathing surrogate for the 5DCT

protocol. The bellows expanded and contracted during inhalation and exhalation, reducing

and increasing the relative air pressure in the bellows respectively A pressure transducer was

used to generate a voltage signal, which has been previously demonstrated to be proportional

to tidal volume in humans [25]. The derivative of the voltage signal with time [V/s] was used

as the surrogate measurement of breathing rate. The bellows signal was synchronized to CT

acquisition by simultaneously acquiring the CT-on signal from the scanner and correlating

the signal to CT slice.

2.3.3 5D Motion Model

For each 5DCT acquisition sequence, the first scan was arbitrarily selected as the reference

scan and was deformably registered to the following 29 scans. Registration was done using

a multi-resolution B-spline transform [26] and with a similarity metric based on local self-

similarity proposed by Heinrich et al. [27]. The deformable registration provided the position

of each lung voxel from the reference image in each of the other 29 images. Deformation

vectors and their corresponding breathing amplitude and rate measurements were used to

independently calculate the per-voxel parameters for the 5D breathing motion model. The

position of a voxel in the reference image was described by

X(v, f,X0) = X0 + α(X0)v + β(X0)f (2.1)

where X was the displacement of the voxel, X0 its position at zero breathing amplitude.
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Figure 2.1: Flowchart describing 5DCT image generation. Several scans were acquired

with breathing surrogate measurements. One scan was chosen as the reference image and

deformably registered to the others. A motion model was used to generate a deformation

vector field, R, which gave each voxel’s displacement from the reference breathing phase (v0,

f0) to a user selected phase (v1,f1) as a function of breathing amplitude v, rate f, and position

x0,y0,z0. R was then used to deform the reference, creating a new image at breathing phase

(v1,f1).

defined as the bellows pressure transducer voltage, selected to be the 5th percentile inhalation

breathing amplitude, and zero breathing rate, v was the breathing amplitude and f was the

breathing rate. α and β were vector fields that related tissue motion to v and f respectively.

The 30 measured positions for each voxel along with 30 related breathing amplitude and
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rate measurements formed an over-determined system for the vector parameters α and β. α

and β were solved independently for each voxel. The least squares solutions were found with

QR factorization on a graphics processing unit (Tesla K40; Nvidia, Santa Clara, CA) using

a cuBLAS routine. The motion model parameters were used to compute the displacement

of each lung voxel, R, from the zero amplitude and rate reference phase, v 0 =0 and f 0 = 0,

to any user selected breathing phase v 1 and f 1.

R = αv1 + βf1 (2.2)

Images were then generated using the displacement field R to deform the reference image

to the selected breathing phase. Each displacement vector was the sum of two independent

functions of breathing amplitude and rate. Therefore, the trajector of each voxel over the

breathing cycle lay in a plane. Figure 2.1 shows a flowchart describing the image gener-

ation process. A low noise image in the reference geometry was created by averaging the

deformably registered scans. For the acquisitions that employed the low dose CT protocol,

the averaged image was used in place of the reference image for subsequent deformations

and analysis against the Siemens commercial protocol. The 5D motion model precision was

evaluated by measuring the distance between the tissue locations in the deformably regis-

tered 30 acquired images and the corresponding breathing motion model predicted tissue

locations. Model accuracy was assessed by generating images at the breathing phase of each

of the 30 originally acquired scans. Similarity between the model generated and original

images was quantified by deformably registering the original images to their corresponding

reconstructions and measuring deformation vector lengths.

2.3.4 Commercial Clinical Protocol

Images generated using the 5DCT motion model were compared to reconstructions produced

by a Siemens amplitude-gated 4DCT protocol. The Siemens protocol employed a single, low-

pitch helical scan with simultaneous monitoring of intratracheal pressure, which was used

as a breathing surrogate. Table feed per rotation was 3.40 mm and the total collimation
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width was 38.4 mm, resulting in a spiral pitch factor of 0.09. The scanner rotation time

was 0.5 seconds and total scanning time was 42 seconds. CT data was reconstructed into 10

respiratory phases according to pressure amplitude at the time of acquisition.

2.3.5 Image Generation

Figure 2.2: Relationship between abdominal cross-sectional area and (a) bellows signal, and

(b) intratracheal pressure signal.

For each dataset, a direct comparison between the 5DCT technique and the Siemens

4DCT protocol was performed by using the 5D motion model to deform the reference image

to the same breathing phases as the ten images comprising the clinical Siemens 4DCT. Each

pair of in-phase images was then compared.

The intratracheal pressure and bellows-measured breathing amplitude were not measured

at the same time, so a method was developed to synchronize the two different measurements

of the breathing cycle. The complex relationship between intratracheal pressure, used as a

breathing surrogate for the Siemens protocol, and the v and f definition of phase used by the

5D model was made evident by the lack of a one to one correspondence between the surrogate

measurements. This was likely due to the interplay between intratracheal pressure and

airflow into and out of the lungs. In order to relate the two breathing surrogate measurements
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to lung volume, the cross-sectional abdominal area at the level of the L2 vertebra was used

as a common feature that, in humans, had been shown to correlate to breathing amplitude

v [25]. Figure 2.2 shows the relationship between the cross-sectional abdominal area and

the bellows voltage (Figure 2.2a) and the intratracheal pressure (Figure 2.2b). The bellows

voltage exhibited the expected linear relationship to cross-sectional abdominal area, while

intratracheal pressure had a cyclic relationship to abdomen cross-section with a dependence

on airflow direction.

The v and f phases corresponding to the commercial reconstruction points were deter-

mined by generating images using the first 5DCT acquisition at relative breathing amplitudes

of 0% to 100% in increments of 1%, for both inhalation and exhalation, and comparing to

the commercial images. For each Siemens reconstruction in the first dataset, the v and f

phase of the image which minimized the sum of squared intensity differences within the lung

region was selected and used for all subsequent experiments.

2.3.6 Landmark Analysis

The discrepancy between images produced by the commercial and 5DCT techniques was de-

termined by measuring the displacement of landmarks between image pairs. 100 landmark

points in the each of the commercial phase images (1000 landmarks per 4D-CT) were auto-

matically identified using an algorithm published by Murphy et al. [28] based on intensity

gradient magnitude. The landmark points were uniformly distributed throughout the lungs

and were reliably identified in the corresponding image. A semi-automatic software system,

developed by Murphy et al. [28], was used to establish the correspondence of landmarks

between commercial and 5DCT images. For each image pair, a subset of landmarks (30 or

more) with the steepest intensity gradients was manually matched. The annotation software

presented landmarks one at a time by displaying a coronal, sagittal and axial slice view of

the landmark in the commercial image as well as three orthogonal views of the 5D image.

Landmark correspondence was determined by matching the the three orthogonal slices or

by clicking the appropriate point in any one slice. Based on the manually selected corre-
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spondences, a thin-plate-spline model [29] of the deformation between the two images was

created which was then used to automatically match the remaining points. The thin-plate-

spline warping of the reference image was interpolated to estimate locations of the landmarks

in the second image. For each estimated location, a block-matching search was conducted

to select a final point which minimized the local sum of squared intensity differences. All

landmark correspondences were visually inspected for accuracy. The mean, standard devia-

tion and 95th percentile distance between landmark positions across images were calculated

for each 4D-CT dataset.

2.4 Results

Table 2.1: Scan mAs, breathing rate, and maximum lung tissue motion for each experiment.

Two approximate tidal volumes were used. The maximum respiratory motion was calculated

using the motion model by taking the 99th percentile tissue displacement from zero amplitude

to the 99th percentile breathing amplitude for each experiment.

Experiment mAs Breathing Rate (bpm) Maximum Respiratory Motion (mm)

1 40 12.4 20.3

2 40 12.4 21.9

3 40 17.1 24.7

4 40 24.1 23.1

5 10 24.1 32.7

6 40 24.1 32.7

7 40 17.1 34.2

8 40 12.4 29.9

9 10 12.4 28.3

Mean ± SD 27.2 ± 4.6
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Figure 2.3: Box plots displaying model precision (a) and error in reconstruction of the original

scans (b). For each experiment, interquartile range is shown by the box, median by the line

and mean by the plus sign. Whiskers mark the 5th and 95th percentiles.

2.4.1 5DCT Error Evaluation

The 5D motion model precision, given by the difference between the model predicted and

deformably registered positions of all lung voxels, had a mean value of 0.65 mm ± 0.28

mm across the nine datasets. The mean value of the 95th percentile differences was 1.22

mm ± 0.14 mm. The mean 5DCT reconstruction error, defined by the length of deforma-

tion vectors from the originally acquired scans to images generated at the same breathing

phase using the motion model after registration, was 0.78 mm ± 0.57 mm. The mean 95th

percentile deformation magnitude value for all nine datasets was 1.79 mm ± 0.67 mm. De-

scriptions of the imaging protocol and breathing conditions for each experiment are given

in Table 2.1. Figure 2.3 shows box plots of the model residuals which describe precision

(a), and reconstruction error of the originally acquired scans (b). The medians, means and

interquartile ranges of both quantities were predominantly uniform. Neither model precision

nor reconstruction error exhibited a significant dependence on respiratory rate, amplitude

or scan mAs.

Calculation of voxel specific motion model parameters in parallel, using software written
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in MATLAB (version R2013a; Mathworks, Natick, MA) and CUDA, took approximately 2.7

seconds per dataset. Each individual deformable registration took approximately 12 minutes.

Image volumes were 270 x 270 x 314 voxels with isotropic 1 mm3 resolution.

2.4.2 Comparison with Commercial Protocol

Figure 2.4: Breathing amplitude points at which the Siemens images were reconstructed (a)

and their corresponding bellows voltages (b).

Figure 2.4a shows the time points where the intratracheal pressure based amplitudes were

selected for reconstruction with the commercial protocol. The four inhalation phases were

approximately evenly spaced on the pressure and bellows waveforms; but there were three

exhalation phases within a short period of time due to the rapid falloff of the intratracheal

pressure. The corresponding bellows voltages at those points are shown in Figure 2.4b.

Because there were three time points in rapid succession and with little change in lung

volume, only one of these (the middle point) was used in the analysis to avoid biasing the

statistics to that bellows-defined phase.

A side-by-side comparison, difference images, and overlays of the commercial protocol

and 5DCT images for experiment 3 are shown in Figure 2.5. Images at maximum expiration

and inspiration were selected for display. Although the same reconstruction kernel was used,
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the 5DCT images appear sharper because of the increased temporal resolution and reduced

motion blurring afforded by fast helical acquisition. During experiment 3 the animal was

ventilated at a rate of 17.1 breaths per minute, which falls within the typical rate for adult

humans [30]. Additionally, the difference between scanner rotation times, and consequently

the temporal resolution of the two protocols, was minimized.

Mean landmark displacement, across the eight analyzed phases of all nine experiments,

was 1.76 ± 1.25 mm. Figure 2.6 shows the distribution of landmark locations throughout the

lung for experiment 1 and an example match. The results of the landmark analysis are sum-

marized in Figure 2.7. No significant trends were observed between landmark displacement

and respiratory rate, amplitude or scan mAs. Experiments 3 and 5 had the lowest mean

and median displacements due to a large number of 1 mm displacements, which indicated

a single voxel difference in landmark positions between image pairs. Experiment 7, where

respiratory motion was the largest, had the fewest displacements of 1 mm or less, though

the mean and median values remained similar to other experiments.

The relationship between landmark displacement and maximum tissue motion during the

breathing cycle at the landmark position for experiment 4 is shown in Figure 2.8. The Max-

imum expiration was chosen to minimize the influence of discrepancy between the Siemens

and v and f definitions of breathing phase. Landmark displacement was predominantly

uniform with respect to tissue motion, though the largest displacements occurred in high

motion regions.

Experiments 5 and 9 were acquired using a low dose (10 mAs) imaging protocol. For

these cases, the 5D motion model was used to deform an averaged image. Figure 2.9a and

2.9b show the commercial maximum inspiration image for experiment 5 and the averaged

image deformed to the corresponding phase. Pixel-to-pixel noise in the heart was 31 HU in

commercial image and 6 in the 5D reconstruction.
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Figure 2.5: Images generated using the commercial and 5D protocols for experiment 3.

Columns, from left to right: commercial image, corresponding 5D image, the pair overlaid,

and a difference image. The two upper rows show full exhalation and the two lower rows

show maximum inspiration. With the exception of the difference images, window and level

are 1700 and -300 HU, respectively.

2.5 Discussion

The results presented here demonstrate that the 5DCT technique was able to generate res-

piratory gated images at arbitrary breathing phases accurate to 0.78 ± 0.57 mm on average

for the periodic breathing of a ventilated pig during nine experiments with varied respiratory
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Figure 2.6: Orthogonal views of one of the 100 points selected in the commercial image (a)

and the manually identified location of the landmark in the corresponding 5D image (b).

Maximum intensity projection of the maximum inspiration image from experiment 1 and its

lung segmentation with projected landmark locations marked (c).

Figure 2.7: Box plot showing the displacement of landmark points between the commercial

images and corresponding 5D images. Whiskers mark the 5th and 95th percentiles.

rate, amplitude and scan mAs. Images produced using the 5D technique agree with images

generated by a commercial, amplitude sorting based protocol used clinically to within 1.76

± 1.25 mm on average. Error in the 5D images and discrepancy between them and the

commercial reconstructed was independent of respiratory rate, amplitude and acquisition
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Figure 2.8: Displacement of landmarks between images versus their voxel’s maximum motion

during the breathing cycle for the maximum expiration phase of experiment 4.

mAs.

While previous work [18] has demonstrated advantages of 5DCT, such as its robustness

to breathing irregularites and ability to generate images at arbitrary phases, this paper is

the first to assess 5DCT results in terms of scan reconstruction accuracy and landmark

based comparison to commercial 4DCT. Agreement between images generated by 5DCT

and a commercial protocol, under conditions which allowed the commercial amplitude-based

sorting technique to yield accurate and artifact free results, is important for the acceptance

of 5DCT as clinically useful.

Two measures of model error were reported, difference in predicted and registered tissue
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Figure 2.9: Commercial (a) and 5D reconstruction (b), created by deforming an averaged

image in the reference geometry, maximum inspiration images for experiment 5. Images are

shown with a window and level of 1700 and -300 HU, respectively.

locations (model residual) and deformation vector magnitude between the originally acquired

scans and model-based reconstructions. The former provided a metric of the motion mod-

els precision. The original scans provided a ground truth and a comparison against their

recreation using the motion model was the strongest descriptor of reconstruction accuracy.

Deformation vector length was used to quantify reconstruction error in place of landmark

correspondence due to the large number of image reconstructions involved and the small

magnitude of differences (less than 1 mm on average) between image pairs.

An initial clinical study of the 5DCT technique, described by Thomas et al. [19] achieved a

mean model error of 1.19 ± 0.37 mm across 10 patients. The quanity reported as model error

by Thomas et al. [19] is referred to as model residual in this study because similarity between

the original scans and corresponding 5DCT reconstructions was subsequently adopted as the

primary error metric. The mean model residual of 0.65 ± 0.2 was significantly lower (two

sample t-test, p <0.01) in this study, likely due to the use of mechanical ventilation.

Motion model errors were nonnuniform throughout the lung region. Voxels with the

largest magnitude errors were in the basal regions near the ribs. The breathing motion

model was based on the assumption that tissue motion was linear with tidal volume and
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flow, which did not fully account for the nonlinear motion around the ribs. Additionally, the

trajectory of each voxel was approximated as being planar, which was based on the analysis

of lung tumor motion presented by Seppenwoolde et al. [31]. Whether the inclusion of a

third model parameter to allow for nonplanar trajectories would afford increased accuracy

is a topic of future research.

Discrepancies between the 5D and Siemens reconstructions were smallest at the maximum

and minimum inspiration phases which, as demonstrated in Figure 2.4, occurred at stable

regions of the pressure waveform. The commercial sorting method reconstructed individual

phase images based on projections occurring within a window of pressure amplitudes while

the 5D reconstructions were based on single time points at what were determined to be the

mean of these windows. Discrepancy between the images, therefore, was influenced by the

range of the pressure values which were included in the reconstruction of each phase image.

Disagreement between image pairs in Figure 2.5 is most prominent in the region sur-

rounding the heart, due to uncompensated cardiac motion, and at the lower lung, which

underwent the largest displacement during the breathing cycle. Landmark displacement

based error measurements and maximal tissue motion were largely uncorrelated, as shown in

Figure 2.9, but the greatest landmark displacements occurred in the basal regions of the lung.

The instantaneous positions of these tissues, upon which the analysis was based, were the

most sensitive to differences in the specification of respiratory phase. Larger discrepancies

occurring at their locations suggest that the inherent difference in the v, f phase and corre-

sponding pressure window definition used by the commercial protocol, which would be most

exaggerated in the regions of highest motion, contribute substantially to the discrepancies

between image pairs.

2.6 Conclusion

This study demonstrated agreement between a commercial 4DCT acquisition technique

which is used clinically and a fast helical-based 5DCT technique in a porcine model. The

porcine model provided reproducible breathing conditions that allowed for direct comparison
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of images. Images produced by the techniques were found to agree within 2 mm for most

points in the lungs and most phases and the agreement was independent of respiratory rate,

breathing amplitude, and scan mAs.
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CHAPTER 3

Comparison of lung tumor motion measured using a

model-based 4DCT technique and a commercial

protocol

Chapter 3 involves comparing lung tumor measured using commercial 4DCT and 5DCT on

a cohort of 20 patients, interpreting and managing the difference and designing a workflow

to support the clinical use of a model-based technique such as 5DCT. Specifically, one of

the major challenges associated with model-based 4DCT techniques is that images can be

generated at any breathing amplitude. A crucial step unique to such techniques is determin-

ing the appropriate amplitude interval to represent when producing a dataset of images for

treatment planning. The amplitude selection is critical because it can directly affect target

volume definition, and it is the primary focus of this chapter.

A version of this chapter has been published in Practical Radiation Oncology: O’Connell,

D., Shaverdian, N., Kishan, A. U., Thomas, D. H., Dou, T. H., Lewis, J. H., ... & Low, D. A.

(2017). Comparison of lung tumor motion measured using a model-based 4DCT technique

and a commercial protocol. Practical Radiation Oncology.
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3.1 Abstract

3.1.1 Purpose

To compare lung tumor motion measured with a model-based technique to commercial 4DCT

and describe a workflow for using model-based 4DCT as a clinical simulation protocol.

3.1.2 Methods

20 patients were imaged using a model-based technique and commercial 4DCT. Tumor mo-

tion was measured on each commercial 4DCT dataset, and was calculated on model-based

datasets for three breathing amplitude percentile intervals: 5th to 85th, 5th to 95th and 0th

to 100th. Internal target volumes (ITV) were defined on the 4DCT and 5th to 85th interval

datasets and compared using Dice similarity. Images were evaluated for noise and rated by

two radiation oncologists for artifacts.

3.1.3 Results

Mean differences in tumor motion magnitude between commercial and model-based images

were 0.47 3.0 mm, 1.63 3.17 mm, and 5.16 4.90 mm for the 5th to 85th, 5th to 95th,

and 0th to 100th amplitude intervals, respectively. Dice coefficients between ITVs defined

on commercial and 5th to 85th model-based images had a mean value of 0.77 .09. Single

standard deviation image noise was 11.6 9.6 HU in the liver and 6.8 4.7 HU in the aorta

for the model-based images compared to 57.7 30 and 33.7 15.4 for commercial 4DCT.

Mean model error within the ITV regions was 1.71 0.81 mm. Model-based images exhibited

reduced presence of artifacts at the tumor compared to commercial.

3.1.4 Conclusion

Tumor motion measured with the model-based technique using the 5th to 85th percentile

breathing amplitude interval corresponded more closely to commercial 4DCT than the 5th

to 95th or 0th to 100th intervals, which showed greater motion on average. The model-based
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technique tended to display increased tumor motion when breathing amplitude intervals

wider than 5th 85th were used due to the influence of unusually deep inhalations. These

results suggest that care must be taken in selecting the appropriate interval during image

generation when using model-based 4DCT methods.

3.2 Introduction

Four dimensional computed tomography (4DCT) is widely used to provide treatment plan-

ning guidance for mobile tumors [32], [1]. In general, commercial 4DCT acquisition involves

acquiring multiple images or projections of the same tissues while simultaneously moni-

toring breathing using a surrogate device and retrospectively sorting to reconstruct gated

images[33].

Sorting-based process assume that breathing periods are similar enough to ignore inter-

cycle variations. However, when period and/or amplitude vary markedly the sorting process

introduces artifacts [8] [9] [34] that can cause errors in target volume delineation and dose

calculation [10][14][13].

Various methods have been proposed to mitigate sorting artifacts. Langer and Keall

[35] demonstrated that using both displacement and velocity of external markers reduced

artifact severity. Gianoli et al. [36] used multiple infrared markers distributed on the thorax

and abdomen to increase robustness. Recent work by Werner et al [37] defined amplitude

bins by analyzing the entire trace rather than defining bins each period. Castillo et al. [38]

determined that oversampling led to fewer artifacts.

Respiratory motion model-based techniques, an alternative approach, correlate the surro-

gate to internal organ motion rather than only using it for sorting [17]. The ’5D’ respiratory

motion model, introduced by Low et al [24] [18], termed for its description of tissue displace-

ment as a function of five degrees of freedom, was shown to produce artifact-free images

[19]. The model-based technique in this paper utilizes the 5D motion model and will be

referred to as ’5DCT.’ Briefly, 5DCT uses fast-helical acquisition to sample the respiratory

cycle, and deformable image registration to a common reference geometry to measure tissue
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displacement.

Although there is a great deal of literature describing the methodology and advantages of

model-based techniques, including 5DCT, little work has been done in regards to developing

these approaches into viable clinical simulation protocols. Importantly, Model-based tech-

niques are capable of generating images at user-selected breathing phases. A task unique to

model-based 4DCT workflows is determining the appropriate amplitude range that images

used for target volume delineation should represent. A natural approach would be to use the

entire range, but inclusion of unusually deep inhalations can misrepresent the overall breath-

ing pattern. Amplitude interval selection directly affects target delineation and is a critical

step, and developing a suitable selection method is one of the first challenges faced when

employing model-based 4DCT techniques clinically. In this paper, we describe a method

to select an appropriate amplitude interval, and investigate the relationship between the

selected amplitude interval and differences in measured tumor motion between 5DCT and

commercial 4DCT, and detail the approach we used to manage the differences in order to

develop the technique for clinical use at our institution.

3.3 Methods

3.3.1 Patient Population

Twenty patients were enrolled under an institutional review board-approved study to be

scanned using the 5DCT protocol following their simulation with standard 4DCT.

Nine patients were male, and eleven female. Ages ranged from 26 to 87, with a median

age of 70. Two patients had two lesions. 4 lesions were located in the left upper lobe, 9 in

the right upper lobe, 4 in the left lower lobe and 5 in the right lower lobe.

3.3.2 Commercial 4DCT

Commercial 4DCT images were acquired using slow-helical (spiral pitch of 0.1), 800 mAs on

a 16-slice scanner (Siemens Sensation Open) with respiratory monitoring using a pressure
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belt (AZ-733V; Anzai Medical Corp, Tokyo, Japan). Retrospective sorting was performed by

the scanner software using the standard clinical protocol to reconstruct eight breathing-gated

images from each acquisition.

3.3.3 5DCT

3.3.3.1 Image acquisition

Patients were imaged using 64-slice CT scanners (Biograph TruePoint, Definition AS; Siemens

Healthcare, Forchhiemm, Germany). Each patient was scanned 25 times while breathing

freely using a low mAs (40), fast rotation (0.33 s) and a pitch of 1.5. 25 scans are used to

ensure a high probability of observing all tissues at multiple points in the breathing cycle.

The low mAs of each individual scan results in a total CTDIvol comparable to commercial

4DCT.

Breathing signals were generated using an abdominal bellows (Model 76513NM12G;

Lafayette Instrument, Lafayette, IN), a pressure-to-voltage transducer and LabVIEW (Na-

tional Instruments, Austin, TX). Traces were smoothed and derivatives were calculated using

Savitzy-Golay filtering [39] [40]. Analysis was performed using in-house MATLAB (version

R2016b; MathWorks, Natick, MA) and C++ software.

Respiratory surrogate measurements, the signals from the bellows, were synchronized to

the CT data using the scanner x-ray on signal. Using the fast helical acquisition protocol, the

scan was rapid enough that the tissues at a single slice location were imaged for a sufficiently

short time (0.23s) to treat individual slices of the free-breathing scans as static images. Slices

were assigned a breathing phase based on the surrogate signal at acquisition.

3.3.3.2 Image registration and motion modeling

Tissue motion was measured by deformably registering the first scan, the reference image, to

the remaining 24 scans using the ’deeds’ DIR algorithm [26] [41] [42]. The resulting deforma-

tion vectors for each voxel were related to breathing amplitude, v, and rate, f, measurements
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using the 5D motion model:

X(v, f,X0) = X0 + α(X0)v + β(X0)f (3.1)

where X was the voxel displacement, X0 its position in the reference geometry, defined

as zero amplitude and zero rate, the parameter α related breathing depth to respiratory

surrogate amplitude, and the parameter β related hysteresis motion to surrogate rate. Pa-

rameters were solved on a graphics processing unit (Tesla K40; NVIDIA, Santa Clara, CA)

using a cuBLAS batched QR factorization routine. The motion model described tissue dis-

placement as a function of five degrees of freedom: x,y,z position in the reference geometry,

v and f. The model allowed for the generation of images by providing a means to calculate

a deformation vector field (DVF) to deform the reference image.

3.3.3.3 Model error metric

5DCT image accuracy was assessed by comparing originally acquired scans, taken as ground

truth, to simulated scans at the same breathing phases generated with the model [43]. Image

similarity was quantified by registering each pair and computing the magnitude of deforma-

tion vectors. This process yielded 25 error values for every voxel, one for each scan. The

approximate 75th percentile error was chosen to be representative of the error distribution

and was presented as an error map. The co-registered error map was imported into MIM

(version 6.27; MIM Software, Cleveland, OH) to facilitate the viewing. The error metric

describes how well the motion model, given only breathing surrogate measurements, can

reproduce the tissue positions observed in each of the originally acquired scans. It does is

does not describe similarity between 5DCT and commercial 4DCT images.

3.3.3.4 Representative breath generation

A representative breath [44] was constructed to describe the patient’s average breathing

dynamics over the acquisition period. Slow variation in amplitude caused by physiological

drift was characterized using a technique for mean respiratory position tracking [45][46]. A
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non-interpolant smoothing spline was fit to the signal [47].

3.3.3.5 Amplitude interval selection and image generation

For each patient, the representative breath was scaled to three amplitude intervals: (1) tak-

ing the 5th percentile breathing amplitude as end exhalation, intended to reject abnormal

exhalations, and the 85th percentile as maximum inspiration, similarly to mitigate the ef-

fect of abnormally deep inhalations, (2) using the 5th to 95th percentiles and (3) the true

minimum and maximum. Patient-specific breathing dynamics were quantitatively described

with a histogram of the time spent at each amplitude as a percentage of the total acquisition

time, shown in Figure 3.1.

3.3.4 Tumor motion comparison

Tumor motion was measured on the 4DCT datasets by deformably registering the end-

exhalation phase image to the maximum inspiration image and determining the center-of-

mass displacement of the gross tumor volume (GTV), which was contoured on the end-

exhalation phase. Tumor motion on the 5DCT datasets was found using the model to

compute center-of-mass GTV displacement for each amplitude interval.

3.3.5 ITV comparison

ITVs were delineated on 5DCT and commercial 4DCT datasets. Target volumes were de-

fined using the maximum intensity projection (MIP) as well as a free-breathing scan [48].

5DCT MIPs were generated using the 5th to 85th percentile breathing amplitude interval.

ITVs were compared using Dice similarity coefficient [49], [50] after a rigid center-of-mass

alignment.

30



3.3.6 Image quality evaluation

Image quality differences were quantified to determine their contribution, if any, to discrep-

ancies in tumor motion or target volumes. For each patient, both datasets were evaluated

by two radiation oncologists in a blinded manner for presence and severity of artifacts at

the tumor location(s). The observer was instructed to view both datasets and assign each a

score from 1 to 4. Scoring was according to the following rubric: (1) no apparent artifacts;

(2) minimal, target volume delineation is not compromised; (3) moderate, contouring would

be more difficult due to the presence of artifacts; (4) severe, target volume could not be

reliably delineated due to artifacts.

Irregular breathing during 5DCT acquisition was quantified by calculating the coefficients

of variation, defined as the ratios of the standard deviation to the mean, of amplitude and

period. Irregularity was correlated to artifact severity. Single standard deviation image noise

within a 20-mm diameter region of interest (ROI) at the liver and aorta were measured on

the mid-exhalation phase image of both datasets.

3.4 Results
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Figure 3.1: Example patient breathing trace (A) and histogram (B) displaying percent of

total image acquisition time measured at breathing amplitudes for patient 16. The 5th

to 85th percentile amplitude range included 82.2% of all measurements. Blue, amplitudes

included in the 5th to 85th percentile interval; red, amplitudes between the 86th and 95th

percentiles; gray, amplitudes less than the 5th and greater than the 95th.
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Table 3.1: Tumor location, volume, artifact score on 4DCT and 5DCT datasets, and mean

5DCT model error within the GTV region.

Patient

number

Lesion

location

Tumor

Volume (mL)
4DCT score 5DCT sore Mean error (mm)

1 LUL 9.15 2.5 1.0 0.9

2 RUL 13.30 2.0 1.5 0.9

3 RUL 9.15 2.5 1.0 2.2

4 RUL 28.16 3.5 1.5 2.7

5 RUL 2.36 1.5 1.5 2.7

6 LUL 3.91 3.5 1.5 2.7

7a LLL 1.28 2.0 1.0 1.8

7b RUL 2.65 2.0 1.0 2.0

8 RUL 2.81 2.0 1.5 0.6

9 RUL 8.97 2.0 1.5 0.8

10 RLL 10.23 3.0 2.0 2.1

11 RLL 1.93 3.0 1.0 2.0

12 RUL 5.10 3.0 1.0 2.3

13 RLL 2.40 2.0 1.0 1.4

14a RLL 54.75 1.5 1.0 3.0

14b LLL 5.22 2.0 1.0 1.8

15 LLL 2.20 2.5 1.0 1.4

16 LUL 1.29 1.0 1.0 1.0

17 RLL 17.36 2.0 1.0 0.9

18 LLL 23.74 2.5 1.0 0.9

19 LUL 11.83 2.0 1.0 3.0

20 LUL 5.12 2.5 1.5 0.6
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A summary of tumor measurements and statistics is shown in Table 2. Mean model, as

displayed in the error map for each patient and defined as the mean of the 75th percentile

error values, error within the GTV was 1.71 ± 0.81 mm. No significant correlation was

found between model error within the GTV region and tumor displacement or tumor volume

(Spearman correlation).

Mean differences in tumor motion magnitude between the 4DCT and 5DCT were 0.47

± 3.0 mm, 3.17 ± 3.17 mm, and 5.16 ± 4.90 mm for the 5th to 85th, 5th to 95th, and

0th to 100th breathing amplitude intervals, respectively. As demonstrated in Table 3.2

and Figure 3.2a, taking the true maximum and minimum as full inspiration and exhalation

results in greater tumor center-of-mass displacement than was observed on the 4DCT in

20/22 tumors. During 5DCT acquisition, images and surrogate signals are recorded over 23

minutes. Consequently, it is more likely that unusually deep breaths will be measured using

the technique and a deep breath occuring at any point in the acquisition will contribute to

the measured tumor motion if the 0th to 100th interval is used. Conversely, with commercial

4DCT acquisition, abnormally deep breaths need to occur as the tumor is imaged to affect

measured motion.

Excluding surrogate measurements in the upper and lower 5 percentiles, on average,

markedly reduced the motion magnitude difference with 4DCT. With the 5th to 95th per-

centile amplitude interval, greater motion was observed in 15/22 tumors. Figure 3.2b shows

absolute differences in superior/inferior tumor motion between the 5th to 85th 5DCT and

4DCT plotted against 4DCT artifact score. For differences greater than 1 mm, the discrep-

ancy correlates well with artifact severity score (Spearman’s R = .79).

Average Dice similarity coefficient between ITV as defined on commercial and 5DCT

datasets was 0.77 ± 0.09. Figure 3.3b shows a bar chart with Dice scores for each tumor.

Mean single standard deviation image noise was 11.6 ± 9.6 HU in the liver and 6.8 ± 4.7

HU in the aorta for the 5D images. The commercial images had mean values of 57.7 ± 30.0

and 33.8 ± 15.4 for the liver and aorta, respectively. Box plots of image noise measurements

are shown in Figure 3.3a. CTDIvol for the 5DCT acquisitions was 42 mGy on average and
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Figure 3.2: (A) Tumor center-of-mass displacement magnitude as measured on 4DCT (circle)

and 5DCT datasets for 3 amplitude intervals: 5th to 85th (square), 5th to 95th (diamond),

and 0th to 100th (triangle). (B) Absolute difference in superoinferior tumor motion between

the 4DCT and 5th to 85th 5DCT plotted against 4DCT artifact score. 4DCT, 4-dimensional

computed tomography; 5D, 5 degrees of freedom computed tomography model.

69 mGy for the commercial acquisitions.

Mean artifact severity rating for was 1.2 for 5DCT and 2.2 for commercial 4DCT. No sig-

nificant correlation between breathing amplitude or period irregularity and artifact severity

of the 5DCT images was found (Spearman correlation).

3.5 Discussion

5DCT allows for the generation of images at any breathing phase, introducing a choice as

to which amplitude interval to represent. Amplitude interval selection can directly influence

target volume definition. This study described the differences in measured tumor motion
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Figure 3.3: (A) Box plot shows image noise measured using a 20 mm ROI on the mid-ex-

halation images of both datasets. ROIs were taken on axial slices in homogeneous liver and

the ascending aorta. (B) Dice similarity coefficient between ITV contours defined on com-

mercial and 5DCT datasets. ITV, internal target volume; ROI, region of interest. Other

abbreviation as in Fig 3.2.

Table 3.2: Difference (5DCT 4DCT) in measured tumor centroid motion on each axis from

maximum inspiration to maximum exhalation between 4DCT and three 5DCT breathing

amplitude intervals.

Motion axis
Anterior/posterior

(mm)

Left / right

(mm)

Superior/inferior

(mm)

5th - 85th 0.64 0.05 0.20

5th - 95th 1.03 0.28 1.15

0th - 100th 2.41 1.03 4.05

between 5DCT images generated with three different amplitude intervals and commercial

4DCT. It was also observed that 5DCT overall yielded images with fewer artifacts and

reduced noise, along with quantitative descriptions of image accuracy and the range of

amplitudes represented by the resulting 4D dataset.
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The large increase in tumor motion measured using the 0th to 100th amplitude inter-

val 5DCT images compared to commercial 4DCT in almost all patients (4 mm in the SI

direction on average) suggests that this interval is not indicative of ordinary breathing and

therefore not appropriate to use clinically. Furthermore, the 5D motion model was designed

to describe quiet respiration and approximates the relationship of tissue motion to breathing

amplitude and rate as linear. The accuracy of this approximation decreases as tissue motion

becomes nonlinear in amplitude during deep inspiration. Figure 3.4b-d shows 5DCT images

reconstructed at the 85th and 95th percentile and the maximum breathing amplitude ob-

served for one patient. Some distortion is visible at the boundary of the diaphragm and the

liver in 3.4d, but not in 3.4b or 3.4c.

Out of the three 5DCT amplitude intervals used in this study, the 5th 85th most closely

agreed with commercial 4DCT. Using the 5th- 85th amplitude interval to generate images is a

heuristic solution that can be used to implement 5DCT clinically, but the results of this study

demonstrate the impact of choosing the 5th-85th as opposed to the 0th to 100th interval

on tumor motion magnitude is substantial and therefore the specific amplitude interval of

any 5DCT images should be made apparent to clinicians. To this end, we have developed

an automated tool to report the patient breathing trace with relevant amplitude percentiles

overlaid, as well as a histogram of the amount of time each amplitude measurement was

observed as a percentage of the total image acquisition time. Example plots for patient 16 are

shown in Figure 3.1a and 3.1b. The report is provided to clinicians in PDF format to provide

context for the corresponding 5DCT image dataset. Exclusion of the upper 15 amplitude

percentiles by definition results in a reduction tumor motion in reconstructed images. The

primary utility of the automatically generated reports lies in the visualization of how the

upper 15% of amplitudes are distributed. The included plots depict whether these datapoints

are evenly distributed over all breaths and remain close to the upper limit of the selected

interval, as would be the case in a regularly breathing patient, or if they are concentrated

in a few deep inhalations, as in Figure 3.1a. For such cases, where the deep inhalations are

repeated and potentially a characteristic of that patients breathing pattern, rather than an

aberration, it may be more beneficial to reconstruct images over a wider amplitude interval
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Figure 3.4: (A) Maximum inspiration 4DCT image for patient 6. Gross tumor volume

centroid marked with crosshair. (B-D) Corresponding 5DCT images for the 85th, 95th and

100th percentile breathing amplitudes. (E) The 85th percentile maximum inspiration 5DCT

image for patient 20. (F) Corresponding error map. (G) Maximum intensity projection of the

25 original fast helical scans. Arrow marks extended appearance of the humerus compared

with (E), indicating that the arm was moved during acquisition, resulting in the high local

error.

in order to capture these deep breaths in planning. This would be particularly important

for free-breathing lung SBRT treatments where there are fewer fractions to average out

motion-induced differences between the planned and delivered dose distributions. A major

advantage of model-based 4DCT techniques is that once the correspondence model is fit,

images can be generated with minimal computational burden, therefore it would be feasible

for a physician to view the report and request images representing a different amplitude
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interval with little disruption to the fast-paced clinical workflow. Decision metrics have

been developed to categorize patient breathing patterns by their level of irregularity, as

demonstrated by Blanco Kiely et al in [51]. Such a classifier could potentially be used to

determine a suitable initial reconstruction interval on a patient-specific basis, but further

study is needed.

The mean Dice similarity coefficient of 0.77 indicated reasonable agreement, on average,

between ITV contours defined on commercial 4DCT and 5DCT images generated using the

5th to 85th amplitude. In the absence of a ground-truth, there was no straightforward

interpretation of the differences between the two sets of contours. Furthermore, the images

were acquired at different times, ranging from several minutes to hours apart, and breathing

patterns can vary with time. In order to truly assess the accuracy of the motion measured

using both techniques, an additional time-resolved imaging modality such as fluoroscopy or

dynamic MRI would be necessary to provide a benchmark against which both 4DCT and

5DCT could be compared. Inter-observer variation could potentially contribute to target

volume discrepancies. For example, a study on a contour propagation tool by van Dam et.

al [52] described an inter-observer variance across three clinicians in lung tumor definition

which resulted in a mean Dice coefficient of 0.88 for a 6 patient study.

Additionally, one of the limitations of this study is that only the tumor motion range was

examined, not the absolute positions of the ITV in the 4DCT and 5DCT images. The first

ten patients in the cohort were scanned while the 5DCT protocol was still under development

and not were immobilized consistently with their 4DCT simulation positions. Furthermore,

because different scanners were used for the two protocols, a comparison of absolute ITV

position would be influenced by error in reproducing the patient set-up. An earlier animal

study performed by our group to validate the technique has shown, using a landmark-based

analysis, that 5DCT images correspond to 4DCT images under controlled breathing condi-

tions to within 2 mm [53], suggesting that offsets induced by systematic error are unlikely.

Moreover, the error map generated along with 5DCT datasets provides a measure of the

techniques spatial accuracy by presenting a voxel-by-voxel comparison of model-generated

images at the breathing phases of the 25 originally acquired helical scans with the actual
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scans themselves.

The error map described in section 3.2.C.3 is a unique advantage of model-based 4DCT

. It offers a quantitative description of uncertainty in the image. The error map is provided

to clinicians along with the 5DCT images and amplitude interval report. It is a volumetric

image in the same geometry of a MIP of the 5DCT images and is intended to convey regional

modeling uncertainty. In Figure 3.4f, a high regional error (greater than 9mm) is apparent

at the upper left arm. A maximum intensity projection of the originally acquired free-

breathing scans, shown in 3.4g, reveals that the patient’s arm moved during acquisition,

explaining the discrepancy. While this motion did not affect the lung model accuracy, it

is an excellent example of the feedback provided to the clinician in case discrepancies did

exist within the relevant lung regions. In this case, it can be concluded that the images are

still useful for target volume definition because the issue was localized to the arm region.

The main function of the error map is to provide a visual indicator of whether or not 5DCT

images are sufficiently accurate for planning purposes. While sorting artifacts in commercial

4DCT images are easily identifiable, a large amount of error in the motion model does not

necessarily cause obvious artifacts in reconstructed 5DCT images, as shown in Figure 3.4e

where there is no visual indication of the poor modeling. Importantly, the error map is not

intended to influence decisions on margin sizes when contouring, only to serve as a warning

mechanism to alert clinicians if major errors in the imaging or modeling process occur, much

as a severe sorting artifact in a commercial 4DCT would signal that corrective action needs

to be taken. Given the lack of data on the accuracy of 4DCT, it is difficult to provide context

for the error values and further study needs to be done to establish thresholds for acceptable

modeling error.

The mean artifact evaluation score for the 5DCT images of 1.1 was close to the scale’s

minimum and the most severe artifact was localized blurring. A minor loss of sharpness is

introduced when the 25 co-registered scans are fused to create the single low-noise reference

image.

Our institutions initial clinical implementation of the 5DCT protocol was designed to

mimic commercial 4DCT in order to minimize disruption to the existing workflow: eight im-
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age phases were generated to match the existing protocol, but with improved image quality

and no sorting artifacts. However, the motion model provides tools for alternate workflows

that could reduce clinical workload, such as rapid propagation of contours to all phases,

and also has the potential to provide increased quantitation in plan quality and delivery

assessment through 4D dose calculation and retrospective dose accumulation. Despite their

promise, model-based 4DCT techniques have seen little adoption in the clinic. The focus of

this work was to overcome one of the earliest implementation challenges, appropriate am-

plitude interval selection. Future projects will explore the utility and validation of alternate

workflows using the motion model.

3.6 Conclusion

We have shown that 5DCT reconstructions using the 5th and 85th percentile breathing

amplitudes as minimum and maximum inspiration result in tumor motion magnitude mea-

surements which more closely correspond with commercial 4DCT than using the 5th to 95th

or true minimum and maximum. Appropriate breathing amplitude selection is a crucial step

in using a model-based technique such as 5DCT clinically. A tool was developed to provide

clinicians with a report describing the breathing amplitude interval used to generate 5DCT

images as a percentage of time to provide context and determine if it is appropriate on a

case-by-case basis.
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CHAPTER 4

Adaptive weighted median filtering for reduced

blurring when fusing co-registered fast helical CT

images

Chapter 4 addresses a practical challenge of 5DCT: during free-breathing acquisition, multi-

ple low dose scans are performed. The reconstructed images are then registered to a common

reference frame. Due to the low effective mAs technique, each image is relatively noisy. Given

a set of co-registered CT images, how should the images be combined to produce a fused

image with improved noise characteristics without compromising image sharpness? Typi-

cally, one would take the mean or median intensity at each voxel location. Although using

the mean or median results in good noise reduction, blurriness is introduced into the fused

image due to residual misalignment after deformable registration. This chapter describes a

method, adaptive weighted median filtering (AWM), which results in sharper fused images

with similar noise reduction as using the mean or median. AWM modulates the amount of

smoothing according to local contrast in order to preserve sharpness at image boundaries,

such as edges of blood vessels and other small structures in the lung.

A version of this chapter has been published in Biomedical Physics and Engineering

Express: O’Connell, D., Thomas, D. H., Dou, T. H., Aliotta, E., Lewis, J. H., Lamb, J.

M., ... & Low, D. A. (2017). Adaptive weighted median filtering for reduced blurring when

fusing co-registered fast helical CT images. Biomedical Physics & Engineering Express.
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4.1 Abstract

4.1.1 Purpsose

Four dimensional computed tomography (4DCT) images can be deformably registered to

a common geometry and combined through mean or median averaging to create a single

low-noise fusion. Registration error causes blurring in the resulting image. In this study,

we present a method to combine multiple 4DCT images using adaptive weighted median

filtering (AWM) which achieves a similar noise reduction but induces less blurring.

4.1.2 Methods

Ten lung cancer patients were imaged 25 times using a low mA, fast helical protocol. For each

patient, the first scan was selected as a reference and deformably registered to the following

25 scans. The co-registered images were combined using mean and median averaging and

the proposed technique. Image noise and sharpness were assessed for the three techniques.

4.1.3 Results

Mean pixel-to-pixel image noise in the liver was 7.6 HU for mean averaging, 9.3 HU for

median averaging and 9.8 HU for AWM. AWM images were found to be significantly sharper

than both mean and median averaged images (p = .002) using the Wilcoxon signed rank

test.

4.1.4 Conclusion

AWM filtering is capable of producing sharper fused images with similar noise reduction

to mean and median averaging. The proposed technique also allows for a user-adjustable

balance between smoothing and sharpness preservation.
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4.2 Introduction

In radiation therapy treatment planning for lung cancer, four dimensional computed to-

mography (4DCT) is commonly employed to determine the extent of respiratory-driven

tumor motion so patient-specific planning margins can be used which minimize irradiation

of healthy tissue while achieving target coverage [32] [1]. A 4DCT dataset is made up of

a sequence of breathing-gated CT images at points distributed throughout the respiratory

cycle. Together, the images depict patient respiratory motion over one breath.

Delineation of target volumes and normal structures on each phase of the 4DCT dataset,

typically 8 or 10 images, is labor intensive. Several approaches have been adopted to produce

single derived images which represent the motion information of the 4DCT and can be

used for contouring, such as the maximum intensity projection (MIP) [6], average intensity

projection [33], [54], and mid-ventilation [55], [56]. The mid-ventilation technique involves

reconstruction of an image in which the tumor and anatomy occupy their time-weighted

average positions. Due to hysteresis [31], lung tissue motion differs between inhalation and

exhalation and consequently the mean position may not lie on the tumor trajectory. The

mid-position concept was developed by Wolthaus et al [57] to cope with hysteresis motion and

improve image quality. To generate the mid-position image, deformable image registration

is performed between each image of a 4DCT and a common reference, such as the maximum

exhalation image, and the resulting deformation vector fields (DVF) are averaged. The mean

DVF is then numerically inverted and subtracted from each DVF to yield a set of DVFs which

transform each phase of the 4DCT to the mean position. The final mid-position image is then

generated by combining the set of transformed images using mean or median averaging. The

resulting mid-position image benefits from reduced noise compared to the original images.

Noise reduction is advantageous because the individual breathing-gated image of a 4DCT

are noisier than a conventional CT image due to the reduced exposure per frame.

Another application in which multiple co-registered thoracic CT images must be fused

to create a single low-noise image arises in 5DCT, a motion model-based technique for

generating breathing-gated images using fast helical scanning [18]. 25 low mA scans are
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acquired under free-breathing conditions. A reference scan is deformably registered to the

remaining 24 scans and the resulting DVFs are used to solve for voxel-specific parameters in

a breathing motion model [24]. Each individual low mA scan is noisier than a conventional

4DCT image, but a high quality image in the reference geometry is obtained by mean

averaging of the 25 co-registered scans. The motion model is then used to deform the fused

image to any user-selected breathing phase, resulting in a low-noise and artifact free 4DCT

[19].

In both mid-position 4DCT and 5DCT, mean or median averaging of co-registered scans is

performed. In both studies cases, mean averaging results in slight blurring of small structures

due to registration error. The blurring is more pronounced in 5DCT due to the increased

number of image pairs. In this work, we propose a method that uses adaptive weighted

median filtering (AWM) to combine multiple co-registered thoracic CT images rather than

mean or median averaging to achieve similar noise reduction in homogeneous regions while

reducing blurring of edges.

4.3 Methods

4.3.1 CT image data

Ten patients were imaged using one of two 64-slice scanners (Biograph TruePoint, Definition

AS; Siemens Healthcare, Forchhiemm, Germany). Each patient was scanned 25 times in

alternating craniocaudaul and caudocranial directions with a low mAs (40) technique, fast

rotation time (0.33 s) and a pitch of 1.2 or 1.5. Patients were breathing freely during image

acquisition.

4.3.2 Image registration

Tissue motion was measured by deformably registering the first scan, chosen as the reference

image, to the remaining 24 scans. The ’deeds’ DIR algorithm [26] [27] [42], which used a

multilevel B-spline transform, a discrete optimization framework and an image similarity
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metric based on self-similarity context.

4.3.3 Adaptive weighted median filter

For a set of N co-registered CT images, there are N intensity values at all voxel locations.

In our method of creating a single low-noise fused image, 1-D weighted median filtering is

performed over the N intensity values for every voxel and the weights are independently

determined based on local registration error and image gradient.

Conceptually, the weighted median of a sequence {Si} and associated positive integer

weights {wi} is found by forming a new sequence {S′j} where each element Si is repeated

wi times. The median of {S′j} is equal to the weighted median of {Si} and {wi}. Formally,

the weighted median of n ordered elements s1, ..., sn with weights w1, ..., wn is defined as

the smallest element sk which satisfies:

k−1∑
i=0

wi ≤
(
∑

wi)

2
(4.1)

Adjustment of the weights allows for tuning of the balance between noise reduction and

edge preservation. In homogeneous regions such as the liver where the N intensity values for a

given voxel are likely to differ only due to image noise, it is beneficial to assign approximately

uniform weights for maximum noise suppression. Conversely, for regions where the N values

may differ prominently due to registration error, such as at the boundary between a blood

vessel and parenchymal tissue, it is desirable to weight the central values more strongly in

order to increase edge preservation.

We use a modified version of the method proposed by Loupas et al. [58] to determine the

set of weights {wi} for a given voxel ~x.

wi = wcentral − cri|∇(~x)| if wcentral − cri|∇(~x)| > 0

wi = 0 if wcentral − cri|∇(~x)| ≤ 0
(4.2)

wi is the weight corresponding to the intensity value of image i. wcentral is a fixed central
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Figure 4.1: (a) Axial slice of image obtained after averaging 25 co-registered scans. (b) AWM

filtered image. Two points are marked, the first in a homogeneous region of a pulmonary

vessel and the second at the boundary of a blood vessel and parenchymal tissue in the

lung. (c) and (d) show the weights for the aorta and vessel, respectively, for each of the 25

intensities at their voxel locations. Intensities are ranked according to local sum of squared

differences. A window and level of 1700 and -600 are shown.

weight which is the same for all voxels, c is a tuning constant, ri is the rank of the image

i according to the local difference with the reference image. The ri term is intended to

capture the local registration error and is computed by taking the sum of squared differences

over all immediately adjacent voxels to the given voxel, referred to as the 27-neighborhood,

between each image and the reference and then ranking the images accordingly. |∇(~x)| is the

gradient magnitude at location ~x in the reference image. The gradient term allows the filter’s

smoothing to vary with image content; weights decline more rapidly at boundaries than in

homogenous regions. wcentral and c are set empirically. Figure 4.1 displays the distribution

of weights for two such voxels.

4.3.4 AWM algorithm

For each voxel ~x:
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1. Read the 27-neighborhood in the reference image i = 1.

2. Compute the gradient magnitude at ~x.

3. For each image i = 2, ..., N :

(a) Read the 27-neighborhood in image i

(b) Compute the sum of squared differences (SSD) with the reference 27-neighborhood.

4. Rank images i = 2, ..., N in ascending order according to their local SSD with the

reference image.

5. Determine a weight for each of the N intensity values using equation 4.2.

6. Find the weighted median intensity value and write it at ~x in the output image.

4.3.5 Parallel implementation

Filtering is performed independently for each voxel therefore the algorithm is straightforward

to parallelize. The filter was implemented in CUDA using a Telsa K40 graphics processing

unit (NVIDIA, Santa Clara, CA). A MATLAB (MathWorks, Natick, MA) wrapper was

written using the MEX functionality.

4.3.6 Image quality assessment

Pixel-to-pixel noise of images generated using AWM filtering, median filtering, and averaging

was measured by taking the standard deviation of a 20-mm radius circular region of interest

(ROI) within a homogenous region of the liver on a single axial slice. Image bluriness was

assessed using a technique based on comparing intensity variations between neighboring

pixels before and after low-pass filtering [59]. The blur metric described in [59] relies on the

assumption that low-pass filtering will degrade edges more in a sharp image than a blurry

image. A normalized blur metric value was computed for all axial slices of AWM filtered,

median filtered and averaged images. The mean value of all slices was taken to obtain a

48



Figure 4.2: Blur metric values after combining 25 co-registered images using mean (circle),

median (square) and AWM (diamond) for each patient.

single score per technique per patient. The metric ranged from [0, 1], where 0 indicated the

least blur.

4.4 Results

Computation time to filter a typical dataset on the GPU, 25 co-registered images with

isotropic 1 mm3 voxels and dimensions of 500 x 500 x 425, was 8.4 seconds. Values of

1000 and 0.1 for wcentral and c, respectively, were found to produce a desirable compromise

between smoothing and edge preservation in all cases.

Image blurriness was quantified using a technique based on different degrees of blurring

perceptible on the single image which was demonstrated in [59] to agree with subjective

assessments by human observers. Blur metric values for AWM filtered images were found

to be significantly less than both the average (p = .002) and median (p = .002) images
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Figure 4.3: Box plot showing the distribution of pixel-to-pixel noise measured in the liver

using a 20 mm ROI after image fusion with the three techniques.
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Figure 4.4: Comparison of median averaging and AWM on subsection of a coronal lung

slice. (a) shows the median averaged image, (b) the image obtained using AWM and (c) the

difference image. In (a) and (b) the window is 1700 and the level is -600.

using the Wilcoxon signed rank test. Values for all patients are given in Figure 4.2. Mean

pixel-to-pixel noise in the homogeneous liver was 7.6 HU for the averaged images, 9.3 HU

for the median and 9.9 HU for the AWM filtered images. A summary of the image noise

measurements is shown in Figure 4.3. For all 10 patients, AWM filtering was able to produce

sharper images than mean and median averaging with mean pixel-to-pixel noise in the liver

within 3 HU and 1 HU, respectively.

Mean pixel-to-pixel noise in the homogeneous liver was 7.6 HU for the averaged images,

9.3 HU for the median and 9.9 HU for the AWM filtered images. Blur metric values for

AWM filtered images were found to be significantly less than both the average (p = .002)

and median (p = .002) images using the Wilcoxon signed rank test.
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4.5 Discussion and conclusions

We have described a method that uses adaptive weighted median filtering to combine multiple

co-registered thoracic CT scans to produce a single low-noise fused image which results

in the introduction of less blur than taking the average or median. Our method can be

applied to the generation of mid-position images for lung cancer treatment planning and the

5DCT technique. Computation time using the GPU to process 25 images is approximately

8 seconds, which is sufficiently short to employ the method clinically.

AWM filtering allows for a user-selectable compromise between noise reduction and sharp-

ness in the resulting fused image through adjustment of the wcentral and c parameters. The

parameters are sufficiently robust to variance in HU that the same values of wcentral and c

resulted in desirable fused images for the ten patients in this study. Although the AWM

filter uses the local image gradient and registration error to determine weights, filtering is

only performed over the set of intensities at a given voxel location in each image. Extending

the filter over the spatial dimensions of the co-registered images may allow for greater noise

reduction, but at higher computational cost and with the potential of introducing image

artifacts that are more clinically detrimental than the noise.

Blurriness for images produced by mean and median averaging and AWM filtering was

evaluated on individual axial slices, as that is how they would most commonly be viewed

while delineating targets and normal structures, and a final score was obtained by averaging

the score for each slice. Using AWM, a modest but statistically significant reduction in

blurring metric values was observed (7.3% less than using the mean and 2.6% less than the

median). The actual metric values were sensitive to the choice of low-pass filter but the

relative performance of the techniques was not. Consequently, the blur metric was primarily

treated in this study as an indication of which image was blurrier rather than by what degree.

Ordering according to blur metric values agreed qualitatively with image data, as shown in

the comparisons between AWM and mean averaging in Figure 4.1 and median averaging in

Figure 4.4.

The results presented here demonstrate the favorable performance of AWM filtering in
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generating a fused image compared to mean or median averaging in terms of blur reduction.

One potential issue with AWM filtering is that the non-uniform noise in the resulting fused

image could lead to the appearance of spurious edges. While the effect was not observed in

this study, it warrants further investigation. Additionally, residual misalignment in poorly

registered image regions could lead to the introduction of doubling artifacts at structure

boundaries. The ri term in the weight calculation, which ranks images according to local

SSD with the reference image is intended to mitigate this effect. Further study is needed to

quantify the impact of the improvement in edge preservation afforded by AWM on target

volume and normal structure delineation and to determine the extent, if any, that artifacts

which could have a deleterious effect on contouring accuracy arise in the fused image.

AWM filtering offers a straightforward approach to creating a single low-noise fused

image dataset from multiple co-registered FHCT images. Similar levels of noise-reduction to

mean and median averaging can be obtained with better edge preservation. The amount of

smoothing can be controlled on a case-by-case basis, and processing as many as 25 images can

be performed sufficiently quickly to be integrated into clinical treatment planning workflows.
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CHAPTER 5

Improving quality and safety of in-house software for

translating techniques from research to clinical

practice: a case study on a novel model-based 4DCT

protocol

Chapter 5 details the safety and quality management aspect of using 5DCT clinically. The

chapter focuses on two main areas: software safety and process-oriented quality interventions.

The chapter is intended to serve as a case study on how to promote safety in in-house clinical

software, and to develop quality management programs for new techniques using established

risk analysis methods. Two software engineering techniques are introduced for the software

aspect of the project: use cases, and the easy approach to requirements syntax (EARS). The

process level quality management is addressed using techniques promoted in the American

Association of Physicists in Medicine (AAPM) task group (TG) 100 report, specifically

process mapping and failure modes and effects analysis (FMEA).

This chapter is currently being prepared for submission.

54



5.1 Abstract

5.1.1 Purpose

In-house software is commonly employed to implement new imaging and therapy techniques

before commercial solutions are available. Risk analysis methods, as detailed in the TG-100

report of the AAPM, provide a framework for quality management of processes but offer

little guidance on software design. In this work, we examine a novel model-based 4DCT

protocol using the TG-100 approach and describe two additional methods for promoting

safety of the associated in-house software.

5.1.2 Methods

To implement a previously published model-based 4DCT protocol, in-house software was

necessary for tasks such as synchronizing a respiratory signal to CT images, deformable

image registration (DIR), model parameter fitting, and interfacing with a treatment planning

system. A process map was generated detailing the workflow. Failure modes and effects

analysis (FMEA) and fault tree analysis (FTA) were performed to identify critical steps

and guide quality interventions. Software system safety was addressed through writing use

cases, narratives that characterize the behavior of the software, for all major operations to

elicit safety requirements. Safety requirements were codified using the easy approach to

requirements syntax (EARS) to ensure testability and eliminate ambiguity.

5.1.3 Results

61 failure modes were identified and assigned risk priority numbers using FMEA. Resulting

quality management interventions include integration a comprehensive reporting and log-

ging system into the software, mandating daily and monthly equipment quality assurance

procedures, and a checklist to be completed at image acquisition. Use cases and resulting

safety requirements informed the design of needed in-house software as well as a suite of

tests performed during the image generation process.
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5.1.4 Conclusions

TG-100 methods were used to construct a process-level quality management program for a

4DCT imaging protocol. Two supplemental tools from the field of requirements engineering

facilitated elicitation and codification of safety requirements that informed the design and

testing of inhouse software necessary to implement the protocol. These general tools can be

applied to promote safety when in-house software is needed to bring new techniques to the

clinic.

5.2 Introduction

In-house software is commonly employed at academic cancer centers to implement new imag-

ing and radiation therapy techniques before commercial solutions become available. Unlike

the software embedded in medical devices, which must adhere to standards such as Inter-

national Electrotechnical Commission (IEC) 62304 [60], applicable regulation and formal,

professional society-driven guidelines for in-house software remain open questions [61] [62].

Medical physics specific literature on clinical software quality and safety is sparse. Rosen,

in [63], provided one of the earliest contributions by presenting several general programming

and design guidelines. In particular, Rosen described the importance of determining and

adequately documenting specifications to reduce the likelihood of accidents due to unin-

tended behavior, and conducting a hazard analysis during the design phase of development

to identify and mitigate potential errors. Similarly, Gersten and Langer [64] published a

set of recommendations aimed at the solo developer, or small team with limited resources,

typical of in-house software written for radiation oncology clinics. The authors presented a

simplified example of a linear accelerator data capture system as a case study.

Salomons and Kelly wrote about the state of software safety standards and practices in

the field in [65], pointing out the lack of a dedicated American Association of Physicists

in Medicine (AAPM) task group (TG) report on the topic. The authors called for the

development of a common set of guidelines, arguing that the safety goals and priorities
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inherent to clinical medical physics are different enough from other safety-critical industries

to prevent the unconditional adoption of practices from other safety-critical fields such as

aviation from being an effective solution.

In [66], Salomons and Kelly detail responses to a survey about in-house software usage

and quality assurance practices sent to medical physicists at various Canadian cancer centers.

78% of respondents reported using in-house software for dose calculation quality assurance,

and 18% for treatment planning or delivery. All 46 respondents stated that in-house soft-

ware at their institutions was used by people other than just the developer, illustrating the

importance of communicating how the system will behave, particularly in edge cases that

may be encountered by other users. Additionally, when asked about the relative importance

of software quality assurance activities, testing methodology was found to be of the greatest

concern, suggesting that additional tools to guide the testing process would be of interest to

the medical physics community.

The recent AAPM TG-100 report [67] presented a comprehensive framework for using risk

analysis methodology, namely process mapping, failure modes and effects analysis (FMEA),

and fault tree analysis (FTA) for quality management in a general radiotherapy context.

These three techniques have been mainstays of safety-critical industries for decades, and

multiple studies have detailed the application of TG-100 methods to radiotherapy processes

as high dose-rate brachytherapy [68], stereotactic body radiation therapy [69], and linear

accelerator quality assurance [70]. A major benefit of the TG-100 paradigm is that it can be

used to proactively develop quality management programs for new planning, delivery, and

imaging techniques.

In this work, we applied TG-100 methods to a novel model-based 4DCT protocol that

was previously used in research studies at our institution as we developed it into a clinical

simulation protocol. Similar to many other advances that derive from research, extensive

in-house software was necessary to perform our 4DCT technique. TG-100 generally focuses

on processes and does not contain specific provisions for software design. To address this

shortcoming, we employed two methods used in the software engineering field [71]: use cases

[72] and the Easy Approach to Requirements Syntax (EARS) [73]. Use cases are a narrative
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formalism for describing how a piece of software should behave at a greater level of detail than

commonly found in other forms of documentation such as method summaries or user guides,

but are much more acceessible than a line-by-line examination of code. Use cases were ben-

eficial for communicating implementation details between the physicist writing the software

and other physicists involved in development in order to reach a consensus on how various

conditions, including faults, should be handled, rather than leaving the decision solely up to

person writing that section of the software. EARS consists of a ruleset for writing software

requirements that is designed to enforce testability and minimize ambiguity, overcomplexity

and vagueness. Once elicited through FMEA or use cases, all of our projects safety require-

ments were specified using EARS templates and formed the basis for test design. The intent

of this work is not to prescribe a formula for in-house software development, or to claim

that our chosen methods are more effective than alternatives. Rather, we aim to share our

institutions experience applying TG-100 methodology to the clinical implementation a novel

imaging protocol and in particular how we managed the in-house software quality aspect of

the project in the hopes of working towards establishing community-driven standards and

best practices.

5.3 Methods

5.3.1 Case study: 5DCT

In order to avoid the sorting artifacts associated with commercial 4DCT reconstruction

[9], [38] and their potential deleterious effects [74] [75] [76] on target volume delineation,

our group previously proposed a novel model-based 4DCT protocol, termed 5DCT for its

parameterization of lung tissue motion as a function of 5 degrees of freedom: x,y,z position in

a reference geometry, breathing amplitude, and breathing rate [24]. The technique has been

detailed in previous publications [19], [43]. In brief, multiple free-breathing CT scans with

simultaneous breathing surrogate monitoring using an abdominal bellows are acquired to

sample the respiratory cycle. Images are registered to a common geometry using deformable

image registration (DIR). The deformation vector fields (DVF), along with synchronized
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Figure 5.1: Simplified process map showing the primary steps involved in 5DCT image

generation.

breathing amplitude and rate measurements, are used to fit patient-specific model parameters

that relate amplitude and rate to tissue motion. After parameters are fit, images can be

generated at any user-defined breathing state by using the model to calculate a DVF from

the reference geometry to the desired state, and applying it to the reference image. Figure

5.1 shows an overview of the workflow necessary to generate a set of breathing gated images

using the 5DCT technique for treatment planning. In-house software is employed in some

capacity at all stages, from respiratory surrogate monitoring to exporting the images to the

treatment planning system (TPS.)

Accuracy of the 5DCT technique was validated against commercial 4DCT in an animal

model under controlled breathing conditions [53]. Twenty-two patients were enrolled under

an institutional review board-approved study to be scanned using the 5DCT protocol follow-

ing their simulation with commercial 4DCT. Data from the initial research patient cohort

allowed for comparison of tumor motion measured using 5DCT against commercial 4DCT

[77], and to refine the workflow and necessary in-house software before clinical use.

5.3.2 Process mapping

Firstly, a process map [78], a graphical depiction of the steps required to perform 5DCT, was

created in order to summarize the workflow. The process map serves two primary purposes:

to concisely describe the process to team members who are not familiar with it, and to clearly

define the scope of the project and the quality management program that will be developed.
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A simplified version of our process map is shown in figure 5.1. The process is divided

into ten major steps, shown as rounded rectangles. The steps proceed in sequence from the

left, where free-breathing scans are acquired, to right, where the dataset of gated images

are ready for contouring. The map was constructed using LaTeX (LaTeX Project) with

the TikZ package. Similar diagrams can be created using PowerPoint (Microsoft, Redmond,

WA) or the free and open-source LibreOffice Impress (The Document Foundation, Berlin,

Germany).

5.3.3 Failure modes and effects analysis

Failure modes and effects analysis (FMEA) is a technique to evaluate the likelihood of

failures in a process and their impact on the outcome of that process. For each potential

failure mode, numerical values are estimated for the following three parameters: occurrence

(O), the likelihood that the failure will happen; severity (S), the degree to which the failure

will affect the outcome; lack of detectability (D), the likelihood that the failure will not be

detected prior to it having a deleterious impact [67]. Typically, these values range from 1 to

10, with 10 being the most severe. The three parameters are multiplied together to produce

a risk priority number (RPN) for each failure mode. Resources can be directed to prevent

failure modes according to their rank order of RPN, as well as for the most severe failure

modes. The primary benefit of FMEA is as a means of allocating limited resources in the

most effective manner.

Our group began by writing a standardized list of effects to categorize the outcomes

of all discovered failure modes. The list served as a reference when assigning S values,

and reinforced the scope of the analysis. Effects and their associated S values are given in

table 5.1. For our case, the scope began at image acquisition and ended after exporting

a 4DCT dataset. No distinction in effect was made between errors that would likely be

caught in the treatment planning phase and which were more likely to impact delivery;

both were treated with the same severity. The rationale behind this decision was to avoid

unnecessary assumptions about treatment planning practices and other separate process
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in the radiotherapy workflow which may change after the analysis. The reference values

suggested for O and D in TG-100 were used, which also ranged from 1-10.

Table 5.1: List of effects and associated severity values used in the FMEA for 5DCT.

Effect S value range Description

Inaccurate images 5-8 Images do not accurately represent patients

anatomy, positioning, or respiratory motion. e.g.

a 1 mm shift from correct position; breathing am-

plitude over or under-represented

Very inaccurate im-

ages

9-10 Relevant anatomy not imaged; position very wrong

(1 cm shift); anatomy distorted by artifacts; non-

physical respiratory motion

Non-radiation related

physical injury

5-10 Patient injured; e.g. fall from CT couch

Unnecessary imaging

dose

3-5 CT scan(s) performed but no viable images pro-

duced.

Patient inconvenience 2-3 Delay or annoyance which impacts patient, e.g.

rescheduled scan

Staff inconvenience or

increased cost

1-2 Delay or annoyance/cost increase. e.g. operator

must repeat manual portion(s) of running recon-

struction software

5.3.4 Use cases

Three basic concepts are essential to the notion of use cases: systems, stakeholders, and

actors. Systems are pieces of software at various granularity. Depending on the scope of the

use case, the system under discussion can be an entire program, a class, or a subroutine.

Stakeholders are individuals or other systems that are directly affected by the behavior of

the system under discussion. For example, some stakeholders of a treatment planning system
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would be the planner, the patient, and the delivery system. Actors are stakeholders that

interact with the system to achieve a goal.

A use case is a collection of actions and events that define an interaction between an actor

and a system to achieve a goal. The use case details how the system responds to requests

from an actor under various conditions. It characterizes the systems behavior with respect

to the interests of the stakeholders. Use cases can be expressed in a text format with natural

language, typically using a structured template. The primary purposes of use cases are to

provide a framework for discussion about how a system should be designed, and to aid in

deciding and documenting what that system must do.

Use cases were initially proposed in [79] and have since seen widespread adoption in the

software engineering industry as a tool for the requirements specification process. The basic

series of actions that a software system goes through to accomplish a goal is described in the

main success scenario section, and alternative flows due to erroneous or uncommon conditions

are described in the extensions section. An excerpt from one of our projects use cases is shown

in table 5.5. One of the major benefits of use cases is that their simple narrative structure

makes them easily understandable to unfamiliar readers and they can be incorporated into

team discussions without the need for prior training. Despite their simplicity, use cases are a

powerful tool for eliciting safety-related software requirements because writing the extensions

encourages what if style thinking about potentially uncommon failure scenarios, which if left

unplanned for can combine with hazards to create unsafe conditions [80]. After establishing

the extension scenarios and failure handling, the necessary functionality of the system to

reduce the likelihood or mitigate the severity of these failures can be codified into a set of

safety requirements.

5.3.5 Easy approach to requirements syntax (EARS)

Software requirements describe the needs of stakeholders that the system should address,

and how the system should generally behave. Frequently, software-related accidents stem

from incorrect, or incompletely defined behavior under uncommon conditions rather than
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programming errors [81] [82] [83] [84]. Requirements engineering is a broad discipline, and

there is extensive literature on how requirements specification relates to system safety [85].

In this work, we are limiting our focus to the projects safety requirements, defined in [86] as

the subset of requirements that specify a minimum amount of safety regarding an aspect of

the system and a minimum level of an associated metric. Verifiability is key to this definition

any safety requirement must be testable in order to demonstrate that the software complies

with it.

The easy approach to requirements syntax (EARS) was proposed to address limitations

associated with natural language without the training burden of formal methods [73]. The

EARS rule set consists of a few simple sentence structures that provide a practical and

efficient means to state requirements. Five types of requirements are described: ubiquitous;

event-driven; unwanted behavior; state-driven, and optional. Example requirements using

these templates are given in table 5.2.

Table 5.2: EARS templates for various requirement types.

Requirement type Syntax

Ubiquitous The system shall [response]

Event-driven When [precondition (optional)] [trigger] the system shall [response]

Unwanted behavior If [precondition (optional)] [trigger], then the system shall [response]

State-driven While [specific state] the system shall [response]

Optional Where [feature] the system shall [response]

The EARS syntax allows for accurate, concise presentation of safety requirements. The

requirements are less ambiguous than unstructured language, and most importantly can be

verified through testing.

5.3.6 Testing safety requirements

In order to demonstrate that the software is safe, tests need to be designed that prove

the system will operate correctly in its intended context. The safety requirements elicited
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through use cases and codified using EARS form the foundation for testing. The suite of

tests should show that the software appropriately detects and handles abnormal operating

conditions, and failures [87]. Software testing is a broad topic and an adequate treatment

of the discipline is beyond the scope of this manuscript. The interested reader is referred to

the seminal text in [88]. In our project, we found it useful to design tests around each safety

requirement.

5.3.7 Traceability

Traceability refers to the degree to which system requirements can be related to the hazards

and faults they are designed to mitigate [89]. Standards for traceability are called for in

documents governing standards for multiple industries, such as the Federal Aviation Ad-

ministrations DO-178C [90], the automotive industry’s safety standard ISO 26262:2011 [91].

The degree of complexity necessary to provide adequate traceability varies with the scale of

the project, and any relevant certification processes. Tools such as IBMs Rational Dynamic

Object Oriented Requirements System, or DOORS (IBM, Armonk, NY) or JAMA (Jama

Software, Portland, OR) offer industrial grade solutions for larger projects. In our case,

a simple traceability information model was sufficient: all failure modes, use cases, safety

requirements, and software tests were assigned unique identifiers. In the safety requirements

document, all use cases, failure modes and tests associated with a given requirement were

listed so that its rationale and test coverage could quickly and clearly be determined. An

example is shown in Table 5.3.

5.4 Results

A full process map detailing the 5DCT technique, complete with sub-steps, was constructed.

The workflow was divided into primary 10 steps, each consisting of about 5 sub-steps on

average.

A total of 61 failure modes were identified through FMEA. Out of the 10 process steps,

image acquisition involved the largest number of failure modes at 24. This step is detailed
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Table 5.3: Excerpt from requirements specification document. Unique identifiers for require-

ments, failure modes, use cases and safety tests establish basic traceability. Requirements

are given the prefix R followed by the process step they are associated with (R02 for a re-

quirement involving the 2nd step), then enumerated sequentially (e.g. -4). Failure modes,

use cases and tests are similarly denoted by the prefixes FM, UC, and T respectively. For

all requirements, their motivations and associated tests can be determined at a glance.

Requirement ID Failure

mode(s)

Use case(s) Tested by

When importing scans, the

study object shall only tol-

erate a maximum shift of

+/- 5 mm from the refer-

ence geometry

R02-4 FM02-8: Er-

ror induced

by incorrectly

managed

shift

UC02: Syn-

chronize CT

and surrogate

data

T02-4:

study.validate

scan

alignment

in figure 5.2. The FMEA was conducted after the cohort of 22 research patients had been

imaged using the technique and associated research software. At this point, the clinical

version of the in-house software was in the design phase. Although the FMEA informed the

design of the software, the majority of interventions resulting from it involved modifications

to the workflow or insertion of quality assurance steps.

Example failure modes, and the quality management interventions devised to mitigate

them are given in table 5.4. FM01-09, FM01-11, and FM01-14 relate to image acquisition.

Two interventions designed to mitigate these and similar failure modes were the establish-

ment of daily and monthly quality assurance for the 5DCT-specific equipment in addition to

the CT simulator itself, and a check-list to be completed at each acquisition. FM02-4, error

due to associating the wrong surrogate data with a set of images, is mitigated by a safety

requirement dictating a minimum level of agreement between abdominal height measured in

images and surrogate signal (figure 5.3). FM03-5 involves deformable image registration, and

resulted in a software design change: a document displaying the quality of all registrations
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Figure 5.2: Sub-steps involved in image acquisition and breathing surrogate monitoring.
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performed is automatically generated and sent out for physicist approval.

Table 5.4: Example failure modes and corrective actions.

ID Description Effect Corrective action

FM01-09 No CT on signal due to

malfunction in scanner

or data acquisition sys-

tem.

Unnecessary imag-

ing dose

Verify that scanner outputs correct sig-

nal and acquisition system is function-

ing properly in monthly QA. For all

patients, verify that CT on signal is

recorded when performing initial to-

pogram and mark on acquisition check-

list.

FM01-11 Erroneous bellows signal

due to leak in vacuum

tubing or malfunction in

pressure transducer.

Very inaccurate im-

ages

Check the transducer response and in-

tegrity of tubing using a vacuum gauge

during daily QA.

FM01-14 Incorrect patient name

or MRN entered on scan-

ner console

Very inaccurate im-

ages

Checklist completed at acquisition must

require a check of patient name and

MRN against CT sim request form.

FM02-4 Mismatch between sur-

rogate data and CT im-

ages (i.e. wrong patient

error)

Very inaccurate im-

ages

Safety requirement R02-3: The study

object shall measure a Pearson correla-

tion coefficient of at least 0.85 between

measured abdominal height and bellows

amplitude.

FM03-5 DIR produces non-

physical motion due to

incorrect parameters

or excessively large

displacement between

images.

Very inaccurate im-

ages

For each registration, capture coronal

and sagittal views of an overlay showing

the fixed and deformed moving images

and compile to a PDF. Physicist must

approve document before 5DCT images

are used for treatment planning.
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Table 5.5: Main success scenario and list of extensions

for the use case describing how the software synchronizes

the signal from the abdominal bellows to the CT image

data.

Main success scenario

1. Study object imports the signal data, plots it and prompts user to identify which

channels correspond to the bellows, x-ray on and ekg signals. Input is validated.

Study object plots the x-ray on signal and prompts user to select a data valid range

beginning before the first scans beam on and last scans beam off.

2. Study object detects rising and falling edges of x-ray on signal to identify the

start and stop times of each scan. The total number of scans detected is validated

against the number of scans input by the user.

3. Study imports DICOM header data and parses it, then validates the number of

scans found using the SeriesInstanceUID tag against the number of scans entered

by the user.

4. Study object verifies that all slices are contiguous and any scans with miss-

ing slices are discarded. The slice locations of each scan are plotted over an AP

projection image of the reference scan. Scan range, and whether or not the slice

positions are coincident with the reference scan are indicated. The user is prompted

to exclude any scans with insufficient coverage. For all remaining scans, a breath-

ing amplitude and rate measurement are assigned to each slice using the DICOM

AcquisitionTime tag.

5. Study object prompts user to select a slice location in the abdominal area, then

draw a line profile on that axial slice across the edge of the upper abdomen. The

abdomen height is detected in all scans by fitting a sigmoid to the intensity values

along the line profile and computing the midpoints. The height measurements are

correlated to breathing amplitude measurements taken when that slice was scanned.

The heights and amplitudes are plotted and the correlation coefficient is displayed.
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6. A Nelder-Mead simplex search is performed to identify a linear drift that when

subtracted from the breathing trace yields a maximal correlation coefficient between

breathing amplitude and abdominal height. Amplitude and rate measurements

associated with each slice are updated using the drift correction.

7. Study object updates its state to synchronized and saves results.

Extensions

1a. Missing or incorrectly formatted bellows file (file I/O error, not enough chan-

nels).

1a1. Request new file.

1b. Wrong channels selected.

1b1. Correlation coefficient between abdominal height and breathing ampli-

tude will be low; incorrect number of scan start/stop times will be found.

2a. Number of detected scans does not match number entered by user.

2a1. Synchronization terminates.

3a. Part or all of the DlICOM headers for one or more scans cannot be imported

because they are missing or corrupted.

3a1. Flag scans with corrupted files for exclusion from all future process

steps. If the minimum number of scans specified in R04-2 is not met, abort syn-

chronization.

3b. Number of detected scans does not match the number entered by user.

3a1. Synchronization terminates.

4a. One or more scans with missing slices are detected.

4a1. Flag scans with missing slices for exclusion from all future process steps.

If the minimum number of scans specified in R04-2 is not met, abort synchroniza-

tion.

4b. Maximum shared scan range does not include all anatomy necessary for treat-

ment planning (ie one or more scans do not have sufficient sup/inf coverage and

restrict the maximum shared range)
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4b1. User can exclude short scans. If minimum number of remaining scans

is below that specified in R04-2, abort.

5a. User selects an undesirable axial slice bellows, immobilization devices, or other

objects prevent accurate measurement of abdominal height.

5a1. User is prompted to confirm their slice selection and may opt to choose

a different slice after viewing it.

5b. Abdominal height not accurately determined using sigmoid fitting method.

5b1. Maximum residual for all sigmoid fits must be lower than the value

specified in R02-6. If any sigmoid fit exceeds that value, user is prompted to choose

a new line profile.

6a. Calculated drift results in a lower correlation coefficient.

6a1. Per R02-7, the drift correction must improve the correlation coefficient

to be valid. User must select a new line profile.

6b. Magnitude of drift correction is unrealistically large.

6b1. Calculated drift correction is invalid if its magnitude exceeds the value

specified in R02- 8. User must select a new line profile.

6c. Drift correction does not have the expected sign.

6c1. Calculated drift correction is invalid if it does not have the sign specified

in R02-9. User must select a new line profile.

5c. Calculated correlation coefficient between the measured abdominal heights and

breathing amplitudes is low.

5c1. Correlation coefficient must exceed the value specified in R02-3. User

is prompted to select a new line profile and/or axial slice. Synchronization will not

proceed until satisfactory correlation is achieved.

7a. Unable to save study object due to I/O error.

7a1. Study object returned to its original state. Synchronization aborted.
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Table 5.6: Sample safety requirements for synchronization elicited through use cases.

ID Requirement

R02-1 When measuring abdominal height in images, the study object shall use slices

at the same couch position as the reference scan. If any scans are shifted, the

study object shall correct for shifts up to 5 mm using interpolation.

R02-3 The study object shall measure a Pearson correlation coefficient of at least 0.85

between measured abdominal height and bellows amplitude.

R02-7 When calculating a drift correction, the study object shall not allow the drift-

adjusted correlation to be lower than the initial correlation.

R02-8 When calculating a drift correction, the study object shall only allow a maxi-

mum magnitude of 5e-3 V/s or less.

5.5 Discussion

In this work, we have applied two risk analysis techniques from AAPMs TG-100, process

mapping and FMEA, in order to develop a quality management program for the clinical

implementation of a novel model-based 4DCT image acquisition and analysis technique.

Extensive in-house was necessary to perform the technique. To promote safety of the required

in-house software before putting the technique into our clinic, two methods from the software

engineering field were employed: use cases to document and reach consensus about how the

software should behave under normal and abnormal conditions, and EARS to specify a set

of safety requirements in a way that enforces testability and unambiguity. Failure modes,

use cases, safety requirements and software tests were assigned unique identifiers in order to

facilitate requirements traceability.

It should be noted that we opted not to employ fault tree analysis (FTA) for this project,

an additional risk management method described in TG-100. FTA is commonly used in many

safety-critical industries and can provide valuable insight by illustrating how component

failures lead to system failures in order to reveal the dependability of a system [92]. Two of

the main shortcomings of working with fault trees is that they require extensive manual effort
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Figure 5.3: Example quality intervention. Abdominal height is measured in each free-breath-

ing scan by taking a profile, fitting a sigmoid to the Hounsfield unit (HU) values and com-

puting the midpoint. A safety requirement dictates that a minimum correlation be measured

between the bellows signal and abdominal height to ensure the surrogate measurements are

sufficiently accurate for motion modeling.

to generate and maintain, and using graphical models is not necessary preferable to working

with text for all team members [93], [94]. Furthermore, it is difficult to create complex fault

trees using commonly available office software such as Power Point so it becomes necessary to

find and utilize dedicated software. Several open source software packages are freely available

[95], but all require a non-trivial amount of initial time to install and use. In contrast, all of

the tools used in our analysis aside from the process map were text-based. This facilitated

easy collaboration among team members by storing copies on a commonly accessible network

drive. Cloud-based services such as Google Docs and Sheets (Google LLC, Mountain View,

CA) could also be used for more convenient access. Use cases and EARS were selected for

their effectiveness as well as their low barrier to entry.

Assigning unique identifiers to all components of the analysis was straightforward, but

updating them as design changes occurred was manual. An extension application to au-

tomatically manage the associations between various components either stored locally as

Microsoft Word documents or remotely as Google Docs would be valuable. Developing such

an extension is a subject of future work.

A weakness of our approach is the neglect of software requirements other than those per-
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taining to safety, such as functional requirements that clearly document what the software

must do. Our approach is not intended to serve as a replacement for established require-

ments specifications methodology but rather as a safety-focused supplement to small-scale

software projects, likely developed by physicists with no software engineering training, for

which formal requirements would otherwise not be written. Similarly, although EARS forces

requirements to be written such that they can be tested, the resulting suite of tests should

be supplementary and not replace other forms of testing.

There was considerable overlap between the type of thinking encouraged by the FMEA

and extension conditions of use cases. However, we found that the FMEA was well suited to

handle process-level safety, such as interactions between the user and the software while use

cases were most valuable when dealing with workflows within the software, or interactions

between subsystems. Employing the two tools together allow for exploiting the unique

situation of writing clinical software as a physicist unlike in the development of commercial

software, the physicist can take a holistic view of the workflow surrounding the software and

make changes as necessary to promote safety rather than only modifying the design of the

software itself.

5.6 Conclusion

Two risk analysis methods described in TG-100, process mapping and FMEA, were used

to construct a process-level quality management program for the clinical implementation of

a novel model-based 4DCT image acquisition and analysis technique. In order to promote

safety in the in-house software required to perform the technique, two supplemental tools

from the field of requirements engineering, use cases and EARS, were employed to elicit and

codify a set of safety requirements that informed the design and testing. These general tools

can be applied to promote safety when in-house software is needed to bring new techniques

to the clinic.
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CHAPTER 6

Dependence of subject-specific parameters for a fast

helical CT respiratory motion model on breathing

rate: an animal study

Chapter 6 explores the dependence of 5D model parameters on breathing rate during acqui-

sition in a porcine model. The 5D model is physiologically motivated – it was formulated

based on the hypothesis that lung tissue motion during quiet respiration can be decomposed

into two independent functions of breathing amplitude and rate. In contrast to data-driven

motion models without physiological underpinnings, where it is only important whether or

not the model is accurate given a new set of surrogate measurements, understanding the

behavior of parameters in the 5D model with respect to specific changes in the breathing

pattern is crucial for developing methods to update model parameters determined at CT sim-

ulation for use with surrogate measurements collected at treatment. Specifically, we sought

to determine: how stable are parameters in this model from one acquisition to the next?

How well can model parameters determined from data acquired at one respiratory rate de-

scribe the tissue motion measured at a different rate? We found that the model parameters

are largely invariant with respect to changes in the breathing rate. Furthermore, our results

support the fundamental hypothesis of the 5D model that tissue motion due to amplitude

and rate can be treated independently.

A version of this chapter has been published in Physics in Medicine and Biology: O’Connell,

D., et al. Dependence of subject-specific parameters for a fast helical CT respiratory motion

model on breathing rate: an animal study. Physics in Medicine and Biology.
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6.1 Abstract

6.1.1 Purpose

To determine if the parameters relating lung tissue displacement to a breathing surrogate

signal in a previously published respiratory motion model vary with the rate of breathing

during image acquisition.

6.1.2 Methods

An anesthetized pig was imaged using multiple fast helical scans to sample the breathing cy-

cle with simultaneous surrogate monitoring. Three datasets were collected while the animal

was mechanically ventilated with different respiratory rates: 12 bpm (breaths per minute),

17 bpm, and 24 bpm. Three sets of motion model parameters describing the correspondences

between surrogate signals and tissue displacements were determined. Model error was cal-

culated individually for each dataset, as well as for pairs of parameters and surrogate signals

from different experiments. The values of one model parameter, a vector field denoted which

related tissue displacement to surrogate amplitude, determined for each experiment were

compared.

6.1.3 Results

The mean model error of the three datasets was 1.00 ± 0.36 mm with a 95th percentile

value of 1.69 mm. Mean error computed from all combinations of parameters and surrogate

signals from different datasets was 1.14 ± 0.42 mm with a 95th percentile of 1.95 mm. Mean

difference in over all pairs of experiments was 4.7% ± 5.4%, and the 95th percentile was

16.8%. Mean angle between pairs of was 5.0 ± 4.0 degrees, with a 95th percentile of 13.2

mm.
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6.1.4 Conclusions

Motion model parameters were largely unaffected by changes in the breathing rate during

image acquisition. The mean error associated with mismatched sets of parameters and

surrogate signals was 0.14 mm greater than the error achieved when using parameters and

surrogate signals acquired with the same breathing rate, while maximum respiratory motion

was 23.23 mm on average.

6.2 Introduction

If left uncompensated, respiratory motion can cause discrepancies between the planned and

delivered dose in radiotherapy of lung and abdominal tumors [32] [20]. In order to better

ensure that the prescription dose is delivered to the target, breathing motion is commonly

managed using four dimensional computed tomography (4DCT) [1]. Commercial 4DCT

protocols generally operate by acquiring multiple projections of the same tissues at different

points in the breathing cycle and binning the projections according to the amplitude or phase

of a simultaneously monitored breathing surrogate signal. Abdominal pressure belts, fiducial

markers placed on the skin, and pneumatic bellows are commonly used respiratory surrogate

devices [33]. Breathing-gated images are then reconstructed separately from the projections

in each bin. While sorting-based methods function well when breathing is reproducible,

irregularity in amplitude or period can result in image artifacts [9] [38].

Model-based 4DCT techniques present an alternative approach to generating breathing-

gated images by modeling the correspondence between the measure surrogate signal and

internal tissue motion [17]. Typically, internal tissue motions are observed using repeated

imaging throughout the breathing cycle and deformable image registration to a reference

image. Once the parameters describing the underlying correspondence are solved for, images

at any breathing phase, specified by a surrogate value, can be generated by calculating the

appropriate deformation vector field and using it to warp a reference image. Resulting images

are free of the sorting artifacts commonly found in commercial reconstructions.
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Accuracy of the correspondence depends on the specific motion model used. Furthermore

if the model is to be used for purposes other than target volume delineation, such as track-

ing or dose accumulation using a surrogate signal measured at treatment, it is important to

determine if the parameters accurately reflect the correspondence between external and in-

ternal motion if and when the breathing pattern deviates from that during image acquisition

[96]. One approach is to continually assess and update the correspondence model during

treatment, such as the Synchrony Respiratory Tracking System on the CyberKnife (Accu-

ray Inc., SunnyVale CA) does using implanted markers and orthogonal kV imagers [97].

The correlation model employed by Synchrony is based on data analysis different types of

functions, such as linear and quadratic, are used to relate the marker positions to surrogate

signals and the best fit is selected. Similarly, the principal component analysis (PCA) model

proposed by Zhang and Li et al [98] [99] uses a set of principal components derived from

deformation vector fields to the relate lung tissue motion to the diaphragm position. In both

the Synchrony and PCA correspondence models, the parameters (polynomials or principal

components, respectively) lack a straightforward physical interpretation. In contrast, the 5D

motion model previously published by Low et al [18] is physiological tissue motion is de-

scribed a function of position the reference geometry and breathing amplitude and rate. For

each voxel, the two free parameters are intended to independently characterize the amplitude

and hysteresis components of motion.

It was hypothesized that treating tissue motion due to respiratory amplitude and rate

independently is physiologically sound, and the accuracy of the 5D model in patient studies

suggests that it effectively models quiet respiration [43] to within 2 mm. However, it order

to verify that hypothesis, and to determine if, and to what extent, model parameters need

to be updated to reflect specific changes in the breathing pattern, such as a different rate,

a series of experiments with carefully controlled breathing dynamics was needed. To that

end, we present an examination of the relationship between breathing rate and the 5D model

parameters in a ventilated porcine model.
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6.3 Methods

An overview of the workflow of this study is shown in Figure 6.1. An anesthetized, mechan-

ically ventilated pig was imaged multiple times using the 5DCT acquisition protocol while

the animals respiratory rate was systematically varied. Each 5DCT acquisition consisted of

30 consecutive fast helical scans with simultaneous respiratory monitoring using an abdom-

inal bellows to provide a breathing surrogate signal. For clarity, each set of 30 scans will be

referred to as an experiment. A different respiratory rate was used for each experiment.

After image reconstruction using the scanner software, all scans were deformably reg-

istered to an end-exhalation breath-hold image, which will be referred to as the reference

image. The resulting deformation vector fields (DVF) described tissue displacement from

the reference image geometry to all scans. Resulting DVFs and breathing surrogate mea-

surements were used to fit 3 distinct sets of motion model parameters one set for each

experiment. The model parameters related tissue displacement to the breathing surrogate

signal. Given a respiratory phase, specified by a breathing surrogate signal amplitude and

rate, a set of model parameters could be used to calculate the voxel-specific displacements

to warp the reference image to that phase.

Model error was evaluated for each set of parameters by comparing model-predicted tis-

sue positions to positions given by deformable image registration (DIR). Variation in the

parameters between experiments was investigated, as well as the accuracy of using param-

eters fit from one experiment to predict the tissue positions observed in a different experi-

ment. For each experiment, three error values were computed: an intra-model error, and two

inter-model error values. The intra-model error for a given experiment was found through

comparison to to that experiments DIR results. The inter-model error values were calcu-

lated by using each set of parameters to predict the tissue displacements of the two other

independent experiments given only the breathing surrogate signal measurements.
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Acquire image datasetswith surrogatemonitoring; vary breath-ing rate (3 experiments)

Calibrate surrogate Si i = 1...3

Register all to commonend-exhalation image DVFi

Fit model parametersrelating Si to DVFi
Pi

Evaluate error usingPi to predict DVFjfrom Sj , j = 1...3 Ei,j

Figure 6.1: Flowchart describing the steps performed in the data acquisition and analysis

for this study and the quantities computed. Si: the calibrated surrogate signal data for

experiment i. DVFi: the deformation fields obtained by registering the helical scans acquired

in experiment i to the reference image. Pi: Model parameters fit to relate tissue displacement

observed in DVFi to Si. Ei,j: Model error, the difference in tissue displacements predicted

by Pi and Sj and the displacements observed in DVFj.

6.3.1 Animal model

This work involves a retrospective analysis of data acquired during a previous animal study,

described in full in [53]. All imaging experiments described in this study were conducted

using a single wild-type pig (42.7 kg; male). The animal was sedated using a mixture of

telazol, ketamine, and xylazine before anesthetization with 3% - 5% delivery of isoflurane
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through nose cone inhalation. A tracheostomy was done in order to intubate the animal with

a 7.5-mm diameter cuffed endotracheal tube. A volume-controlled ventilator (Model 613;

Harvard Apparatus Bioscience Company, Holliston, MA) was used to mechanically ventilate

the animal with 100% oxygen. All procedures were conducted with prior approval from the

Institutional Animal Care and Use Committee of University of Iowa.

6.3.2 Image acquisition

Three experiments, each consisting of 30 consecutive fast helical acquisitions (0.285 s rotation

time, 1.2 spiral pitch factor) on a multidetector row CT scanner (Siemens Definition Flash;

Siemens Healthcare, Forschhiem, Germany) were performed as the animal was ventilated

with respiratory rates of: 12, 17 and 24 breaths per minute. An approximate tidal volume

of 450 mL was used for all experiments. Additionally, a single end-exhalation breath-hold

image was acquired. Images were reconstructed using the Siemens B30f medium smoothing

kernel with a slice thickness of 1.0 mm, and an in-plane resolution of 0.53 mm.

6.3.3 Surrogate calibration

A pneumatic abdominal bellows (Lafayette Instrument, Lafayette, IN) and a pressure-to-

voltage transducer were used to monitor the breathing cycle during all scans. The surrogate

signal was synchronized to the image data using the x-ray on signal from the CT scanner, and

each axial image slice was assigned a breathing amplitude and a breathing rate measurement.

It has previously been shown that the bellows was linearly proportional to tidal vol-

ume [100], and that this linear relationship remained constant over the course of a single

acquisition [53] [101]. However, a time-dependent drift [100] of the bellows signal along

with differences in belt tension and positioning between experiments necessitated that a

calibration be performed in order to obtain consistent of surrogate values.

For each scan, an image slice at a fixed couch position was used to measure the abdomen

height radiographically. The animal was not moved between experiments, therefore abdom-

inal height at a fixed position provided a common quantity to calibrate the bellows signals
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Figure 6.2: Abdominal height measurement and fitting. (a) An axial slice located approx-

imately 1 cm superior to the bellows. Line along which HU values were sampled is shown.

(b) Plot of HU values as a function of image row. Sampled values are marked by ’x,’ with

sigmoid fit. Triangle marks the midpoint of the sigmoid, taken as the location of the bound-

ary. (c) The measured bellows values corresponding to the couch position shown in (a) for

each of the 30 scans comprising this experiment plotted against measured abdominal heights

with least-squares linear fit.

against. Figure 6.2 demonstrates the procedure used to determine the abdominal height

to sub-pixel precision: a vertical line profile was taken at the abdomen/air boundary and a

sigmoidal error function was fit to the Hounsfield unit values along the profile. The midpoint

of the sigmoid was calculated. The fitting process was performed four additional times at

adjacent image locations. The median midpoint was taken as the abdominal height.

Because each experiment consisted of 30 scans, the relevant slice location was imaged 30

times, and each image had a corresponding bellows measurement. Separate linear regressions

were performed for each experiment to correlate the bellows data to abdominal height. Using

the resulting fits, all bellows values were converted to abdominal height to yield a consistent

surrogate.

6.3.4 Model fitting

The deeds (Heinrich et al. 2013) DIR algorithm was used to register all images to the end-

exhalation breath-hold reference image, and resulting DVFs provided measurements of the
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tissue displacement from the reference geometry to each scan. The previously published 5D

motion model (Low et al. 2013) was used to describe the correspondence between tissue

displacement and breathing amplitude and rate:

X(v, f,X0) = X0 + α(X0)v + β(X0)f (6.1)

Displaced tissue location,X, is modeled as a function of position in the reference im-

age,X0, breathing amplitude v and rate f . α and β and are voxel-specific parameters which

relate the displacement of each voxel location to amplitude and rate, respectively. Collec-

tively, the vector fields α and β will be referred to as model parameters. The 30 amplitude

and rate measurements and corresponding displacement vectors formed an over-determined

system for α and β, and model parameters were solved for on a graphics processing unit

(Tesla K40; NVIDIA, Santa Clara, CA) using a batched cuBLAS QR decomposition routine.

Three sets of model parameters were computed, one set for each experiment.

6.3.5 Intra-model error

Individual model error for each experiment was computed by comparing the tissue displace-

ments predicted by each set of parameters and breathing surrogate measurements to the

displacements given by DIR. The mean Euclidean difference in displacement was computed

for all voxels. A single figure-of-merit was obtained by averaging the mean error values of

all lung voxels displaced by 5 mm or more between end-exhalation and full inspiration. The

error values corresponding to less mobile tissues such as regions of the upper lung, which

would intuitively be very small, were not included to avoid biasing the error evaluation.

6.3.6 Paramter similarity and inter-model error

Out of the three experiments, each pair of model parameters was compared: αi to αj and

βi to βj , where i, j = 1...3 and i 6= j. The differences in magnitudes, as well as the angles

between corresponding vectors were found.
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Model error was computed using parameters from one experiment and surrogate mea-

surements from another to predict tissue displacements and the results compared to DIR

given surrogate signal, how well can parameters αi and βi predict the tissue displacements

observed in DV Fj?

6.4 Results

Table 6.1: Error, defined as the difference between model-predicted tissue displacements and

displacements measured using DIR, for combinations of parameters and surrogate measure-

ments. Bold denotes error using the parameters and surrogate from the same experiment.

Experiments are labeled by their approximate respiratory rate in breaths per minute (bpm).

Surrogate measurements

Model parameters 12 bpm 17 bpm 24 bpm

12 bpm
Mean ± std

95th

1.00 ± 0.32

1.59

1.04 ± 0.31

1.59

1.01 ± 0.34

1.72

17 bpm
Mean ± std

95th

1.13 ± 0.41

1.88

1.00 ± 0.37

1.69

1.03 ± 0.39

1.76

24 bpm
Mean ± std

95th

1.36 ± 0.52

2.43

1.17 ± 0.42

2.05

1.00 ± 0.39

1.79

A summary of statistics on the modeling error for all combinations of parameters and

surrogate measurements is given in Table 6.1. Figure 6.3a displays the distribution of all

intra- and inter-model error values. Mean intra-model error was 1.00 ± 0.36 mm with a

95th percentile value of 1.69 mm, while inter-model error had a mean value of 1.14 ± 0.42

mm with a 95th percentile of 1.95 mm. The distribution of intra-model error on a coronal

slice for experiment 2, which used a respiratory rate of 17.1 breaths per minute, is shown

in Figure 6.4a. Figure 6.4b shows the error when using parameters fit from the experiment

2 data to predict tissue positions in experiment 3, acquired at 24.1 bpm, using only the

surrogate measurements. The relative distribution of error is similar in both cases, with the
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highest error at the lower lung, where motion is greatest, and near the heart, but the average

magnitude is slightly larger in 6.4b.

Figure 6.3: (a) Box plots showing the distribution of error for all lung voxels (with motion >

5 mm) for all experiments when using parameter sets i = 1..3, and surrogate measurements

j = 1..3, to predict tissue displacements. Left box plot shows distribution when i = j, where

parameters and surrogate measurements were from the same experiment. Right box plot

shows distribution when i 6= j. (b) Histogram of the difference in magnitude, expressed in

percent, between values of α calculated for different experiments. (c) Histogram of the angle

between pairs of α values for different experiments.

6.5 Discussion

The results presented here indicate that the parameters of the 5D motion model are largely

unaffected by changes in respiratory rate during image acquisition. For the three exper-
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Table 6.2: First row: difference in magnitude, expressed in percent, between the values of α

obtained during model fitting for each pair of experiments. Second row: the smallest angle

between α values from pairs of experiments, expressed in degrees.

Respriatory rates (bpm)

12 & 17 12 & 24 17 & 24

Magnitude

difference (%)

Mean ± std

95th

5.1 ± 5.9

18.1

6.3 ± 6.2

19.7

2.7 ± 2.6

8.4

Angle (°)
Mean ± std

95th

4.8 ± 3.3

12.2

6.5 ± 5.0

17.9

3.6 ± 2.6

8.7

iments performed, using model parameters determined from data acquired at a different

breathing rate resulted in an increase in mean error of 0.14 mm in predicting tissue motion.

Figure 6.4c illustrates the effect of using two different sets of model parameters to generate

a breathing-gated image at the same phase. Parameters from experiments 2 and 3 were

both used to compute the deformation from the end-exhalation reference geometry to full

inspiration. The resulting DVFs were applied to the reference image, and both images are

shown overlaid. Minor disagreement is present at blood vessels in the right lung and around

the heart, potentially due to uncompensated cardiac motion. The diaphragm position is

closely matched in both images.

The model parameter α, a vector field that relates breathing amplitude to tissue displace-

ment, is largely invariant, to within 5% magnitude and 5 degrees on average, with respect to

changes in respiratory rate during image acquisition. That α does not depend on breathing

rate is a fundamental hypothesis of the 5D motion model [24], but it has never before been

experimentally verified.

Another fundamental hypothesis of the 5D model is that hysteresis motion, behavior

causing lung tissues to move along different paths during inhaling and exhaling [102] [103],

is caused by the pressure imbalances throughout the lungs. In the case of quiet respiration,

these imbalances are hypothesized to be proportional to breathing rate. Therefore, the β
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Figure 6.4: (a) Model error (in mm) for experiment 2, which used a respiratory rate of 17

breaths per minute. (b) Error (in mm) using the parameters from experiment 2 to predict

the tissue positions observed in experiment 3, given the breathing surrogate measurements

for experiment 3. (c) Overlay showing two full inspiration images, created by using the

parameters from experiments 2 and 3 to compute the deformation from the end-exhalation

reference image to the 95th percentile abdominal height and applying the deformation to

the reference image. Green and purple indicate regions of disagreement.

parameter, which relates respiratory rate to tissue displacement, was devised to characterize

hysteresis motion. In this study, the small magnitudes of β that were computed in all

experiments suggest that hysteresis motion was negligible. Remmert et al [104] observed

substantial hysteresis using 4D magnetic resonance imaging motion with a dynamic porcine

lung phantom. However, the phantom the investigators used, described in [105], employed

a water pump and an inflatable balloon to mimic the action of the diaphragm. A possible

explanation for the lack of hysteresis motion observed in this study is due to the use of positive

pressure mechanical ventilation to drive airflow rather than contraction of the diaphragm

or some analogue. Hysteresis is due to the collapse of small airways and surface tension

at the alveoli gas-liquid interface that require additional energy to re-inflate the lungs after

exhalation to functional residual capacity [106]. With mechanical ventilation, the positive

end expiratory pressure prevents mitigates the influence of these factors. The low model
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errors in all cases suggest that the measured tissue motion can be almost entirely described

by amplitude, and that the small magnitudes of β accurately reflect a lack of hysteresis

motion rather than a systematic insensitivity of the 5D model. A limitation of the study

is that the absence of hysteresis motion in the data precludes meaningful comparison of β

values between experiments.

A porcine model was necessary in this study because of the radiation dose associated

with repeated imaging, as well as the need for closely controlled respiratory rates. While

porcine models have been used extensively in the literature in conjunction with CT imaging

as approximations of human lung physiology [107] [108] [109], further study is needed to

verify that the rate independence of α extends to free-breathing humans.

Periodic breathing patterns were used all experiments in order to ensure that the respi-

ratory rate was consistent within each experiment, and the same maximum amplitude was

used in all experiments. The maximum amplitude selected was sufficiently large to encom-

pass tidal volumes typical of quiet respiration. Respiratory waveforms in this study were not

intended to mimic those of real patients, where variations in amplitude from one breath to

the next are typical. Because of the sampling method 5DCT employs, artificially introducing

irregularity into the respiratory waveforms through amplitude modulation used would not

have had any effect on the model parameters; the parameter α for each voxel is determined

by multiple observations of that voxels position at different amplitudes. Breath-to-breath

variation in maximum amplitude do not change the relationship between the surrogate signal

and tissue position, which α represents, therefore periodic breathing patterns were sufficient

for examining the variation in α with breathing rate.

The 5D model was physiologically motivated; it was formulated based on the hypothesis

that lung tissue motion during quiet respiration can be decomposed into two independent

functions of breathing amplitude and breathing rate. The results presented here support

that hypothesis, but further investigation is needed. In particular, future work will focus on

examining the relationship between the parameter and changes in hysteresis motion. Un-

derstanding the behavior of parameters in the 5D model with respect to specific changes in

the breathing pattern is crucial for developing methods to update the patient-specific model
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parameters determined at CT simulation for use with surrogate measurements collected at

treatment, and for determining if model parameters are representative of underlying biome-

chanical tissue properties.

6.6 Conclusions

We have demonstrated that in a porcine model the relationship between tissue motion and

breathing amplitude, described by the vector field α in the 5D motion model, does not

depend on the breathing rate. Model parameters fit using data acquired at one breathing

rate can be used to predict tissue positions observed at a different rate from surrogate signal

values to within 1.14 mm on average, compared to the 1.00 mm average achieved using

parameters determined from the same acquisition.
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CHAPTER 7

A prospective gating method to acquire a diverse set

of free-breathing CT images for model-based 4DCT

In Chapter 7, we introduce a method to trigger the acquisition of free-breathing helical CT

scans based on a respiratory surrogate signal in such a way as to collect a set of images

at substantially different breathing phases. The motivation behind the proposed technique

is to reduce the number of scans, and consequently the imaging dose, required for accurate

respiratory motion characterization for model-based 4DCT. We performed a simulation study

to validate our method, and demonstrated that adequate sampling of the respiratory cycle

could be achieved in 6 scans, while the current non-prospective protocol uses 25. The

achieved reduction in required number of scans, in combination with low-dose free-breathing

CT protocols could allow for application of model-based 4DCT to areas other than radiation

therapy.

A version of this chapter has been published in Physics in Medicine and Biology: O’Connell,

D., Ruan, D., Thomas, D.H., Dou, T.H., Lewis, J.H., Santhanam, A.P., Lee, P.P. and Low,

D.A., 2018. A prospective gating method to acquire a diverse set of free-breathing CT images

for model-based 4DCT. Physics in Medicine and Biology.

89



7.1 Abstract

Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory

states for proper 4D characterization. This work proposes a method to improve sampling of

the breathing cycle with limited imaging dose. We designed and tested a prospective free-

breathing acquisition protocol with a simulation using datasets from 5 patients imaged with a

model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans

with simultaneous breathing surrogate measurements. Tissue displacements were measured

using deformable image registration. A correspondence model related tissue displacement

to the surrogate. Model residual was computed by comparing predicted displacements to

image registration results. To determine a stopping criteria for the prospective protocol,

i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5

≤ N ≤ 9 were used to fit reduced models for each patient. A previously published metric

was employed to describe the phase coverage, or ’spread,’ of the respiratory trajectories of

each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5

mm of the full 25-scan model was determined and used as the stopping criteria. Using the

patient breathing traces, a prospective acquisition protocol was simulated. In all patients,

phase coverage greater than the threshold necessary for model accuracy within 0.5mm of

the 25 scan model was achieved in 6 or fewer scans. The prospectively selected respiratory

trajectories ranked in the (97.5 ± 4.2)th percentile among subsets of the originally sampled

scans on average. Simulation results suggestthat the proposed prospective method provides

an effective means to sample the breathing cycle with limited free-breathing scans. One

application of the method is to reduce the imaging dose of a previously published model-

based 4DCT protocol to 25% of its original value while achieving mean model residual within

0.5 mm.
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7.2 Introduction

Four dimensional computed tomography (4DCT), also referred to as respiratory- correlated

CT, utilizes multiple projections of the same tissues acquired at different points in the

breathing cycle to reconstruct a series of breathing-gated volumetric images [33]. 4DCT was

developed to improve the accuracy of therapeutic radiation delivery to tumors in the lung

and abdomen, which can be displaced by as much as 3 centimeters during treatment due to

breathing motion [110] [1].

4DCT has seen widespread adoption in the field of radiation oncology as a tool to manage

breathing motion in treatment planning; implementations are offered by the major scanner

manufacturers and 4DCT datasets are recognized by many treatment planning systems. It

has also shown promise as a functional imaging technique for measuring pulmonary ventila-

tion [111] [112] [113], and more recently as a means to estimate the elastic properties of lung

tissue for bio-mechanical modeling [114]. Much of the literature on ventilation imaging and

lung elastography relates to the context ofradiation therapy both techniques are generally

proposed as a means to identify healthy lung tissue for preferential sparing in treatment

planning. Outside of radiation therapy, 4DCT could potentially be employed to characterize

lung function for the phenotyping and response monitoring of chronic obstructive pulmonary

disease (COPD) [115] [116], a progressive lung disease which is the third leading cause of

death in the United States [117]. COPD is typically diagnosed by measuring the ratio of

forced expiratory volume in one second to the full vital capacity (FEV1/FVC). FEV1/FVC

is unable to provide information about the physiology causing impaired respiratory dynamics

[118]. Single photon emission computed tomography (SPECT) ventilation perfusion scintig-

raphy (V/Q) is the current gold standard for lung functional imaging, but 4DCT is less

expensive, more widely available, and has superior spatial resolution. In most cases, 4DCT

effectively characterizes respiratory induced motion, however, commercial implementations

suffer from two major limitations: susceptibility to image artifacts if the patient breathes

irregularly during acquisition [8], and a high imaging dose up to four times higher than stan-

dard thoracic CT [119]. Multiple strategies have been proposed to reduce 4DCT artifacts
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and imaging dose. Castillo et al demonstrated that oversampling led to the fewer artifacts in

cine 4DCT, but imaging dose increased [38]. In [120], the authors developed a temporal non-

local means approach to reconstruct gated images using fewer projections and acquired with

low mAs, howevertheir method does not treat inter-cycle respiratory variability. Pan et al

developed a prospective technique to mitigate artifacts in cine 4DCT by stopping irradiation

when irregular breathing occurs and selectively re-acquiring images only at the necessary

couch positions [121]. Although their method achieved reduced imaging dose compared to

repeating an entire scan if severe artifacts occur, the current standard clinical practice, it

does not provide a means to lower imaging dose below that of a typical 4DCT.

Respiratory motion model-based 4DCT techniques have been developed that mitigate or

avoid the artifacts commonly seen in commercial 4DCT protocols [17]. In contrast to com-

mercial protocols, which generally function by retrospectively sorting projections into bins

for independent reconstructions, model- based methods aim to describe the correspondence

between internal tissue displacements, typically found using deformable image registration,

and an externally measurable breathing surrogate signal using a motion model. Examples of

previously published models include polynomial functions of one or more surrogate signals

[24], B-splines [122], and principal components of deformation vector fields [99] [123]. More

recent developments in respiratory motion modeling include work by McClelland et al., [124],

where the authors present a unified framework for image registration and model parameter

estimation, and the kernel ridge regression approach proposed by Geimer et al., [125] that

used abdominal surface motion as a multidimensional breathing surrogate signal.Our group

previously introduced a model-based technique, termed 5DCT, which accurately character-

izes tumor motion in the presence of irregular breathing [18] [19]. Our technique has been

demonstrated to be accurate to within 2 mm using a landmark analysis [53], and to pro-

duce sorting artifact-free images which accurately describe tissue motion to within 2 mm on

average in a 16 patient cohort [43].

Model-based 4DCT techniques require images that capture different respiratory states.

Unlike other techniques described in [17] that use commercial 4DCT or cine protocols to

obtain image data, 5DCT uses repeated fast helical scanning as the patient breathes freely
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to sample the respiratory cycle. Although the free breathing images do not correspond to a

single respiratory phase as a commercial 4DCT reconstruction would, each individual axial

slice can be assigned a breathing amplitude and rate measurement, given by the bellows

signal and its derivative at that slices acquisition time. Blurring and doubling artifacts

are mitigated by using a fast helical protocol. Repeated scans are performed to collect

observations throughout the breathing cycle.

The previously published research protocol acquires 25 scans in succession. Each scan

uses a low mA and fast rotation time technique such that the total dose of all 25 scans is

similar to that of a commercial 4DCT scan. Although the current protocol ensures a high

probability that the breathing cycle will be adequately sampled, redundant image data is

acquired because the scans are not selected prospectively. In earlier work, we determined

that using unsynchronized scanning required at least 10 scans to guarantee acquisition of

images with sufficient variation in the breathing phase to reliably generate accurate motion

models [101]. Lowering the number of free-breathing scans would allow for a reduction in

imaging dose beyond what is currently achievable with commercial 4DCT. While Thomas et

al demonstrated that the number of scans could be reduced without substantially increasing

the model residual if the scans were acquired at sufficiently diverse respiratory phases, no

method was proposed to select such a set of scans. Ruan et al introduced an objective func-

tion to quantify the phase coverage of a set of breathing surrogate signals measured during

each scan, which will subsequently be referred to as respiratory trajectories [126]. In this

work, we present a novel adaptive method to prospectively select a desirable set of 5 to 10

trajectories by triggering image acquisition based on real-time analysis of the breathing sur-

rogate signal using that objective function. We hypothesize that using the proposed method,

the number of scans can be reliably reduced while maintaining acceptable model accuracy.

The method was tested by simulating image acquisition using the measured breathing traces

of five patients and evaluating the phase coverage of the sampled respiratory trajectories.

Although the analysis in this work focuses on 5DCT, the proposed technique could be used

in conjunction with any respiratory motion model that can utilize free-breathing CT image

data.
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Figure 7.1: (a) Selected voxel in reference geometry marked by ’+.’ (b) Measured breathing

waveforms for 25 scans (dotted), with a subset of 5 ’well spread’ scans denoted by solid

lines. Slice number corresponding to the selected voxel in (a) denoted by vertical line. (c)

Superior/inferior voxel displacement given by deformable image registration as a function

of breathing amplitude and rate, denoted by ’x.’ Plane representing full 25 scan model is

lightly shaded. Plane representing reduced 5-scan model is darkly shaded. Displacements

which determined reduced model fit are shown as circles.

7.3 Methods

We previously found that the phase coverage of a set of respiratory trajectories correlated

with model accuracy only for 5 or more scans, and that 10 scans yielded adequate sampling

of the breathing cycle. Therefore, the goal of a prospective scanning approach would be to

select between 5 and 9 scans with a desirable spread of respiratory trajectories. We had two

primary objectives for this study: firstly, to determine the minimum phase coverage for sets

of N scans, where 5 ≤ N ≤ 9, necessary to achieve mean model accuracy within 0.5 mm of

the corresponding 25 scan model; and secondly, to test a prospective protocol and determine

the number of scans necessary to reach the previously determined minimum phase coverage.

Sections 7.3A-C describe the patient datasets and the process of finding the phasecoverage

thresholds. 7.2D and 7.2E describe the prospective method and the simulation used to

validate it.
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7.3.1 Image acquisition and motion modeling

5 lung cancer patients were imaged under the published 5DCT protocol, described in detail

in [19], using 64-slice CT scanners (Biograph TruePoint, Definition AS; Siemens Healthcare,

Forchhiem, Germany). A low dose technique (40 effective mAs), short rotation time (0.33

or 0.285 s) and a pitch of 1.5 or 1.2 were used to scan each patient 25 times while breathing

was simultaneously monitored with an abdominal bellows (Model 76513NM12G; Lafayette

Instrument, Lafayette, IN), and a pressure to voltage transducer sampled with LabVIEW

(National Instruments, Austin, TX) software. The acquisition protocol was designed such

that tissues were imaged for a sufficiently short amount of time (approximately one third of a

second) to treat the axial slices of the free-breathing images as measurements of instantaneous

tissue positions. Each axial slice was assigned a breathing amplitude and rate according to

the bellows signal at the time of acquisition. Importantly, because scans were acquired

during free-breathing, the respiratory phase of the images varied by slice rather than an

image depicting a single point in the breathing cycle, as in a gated 4DCT reconstruction,

the respiratory phase of each scan was described by a curve as shown in Figure 7.1b.

The first scan, selected as the reference geometry, was deformably registered to the re-

maining 24 scans using the ’deeds’ algorithm, proposed in [26] and demonstrated to achieve

an average registration error of 1.43 mm over 10 cases using expert selected landmarks. The

algorithm recovers large tissue displacements well, and models the sliding motion between

the lungs and the rib cage. Additionally, it does not require a lung segmentation. The

deformation vector fields (DVF) output by the DIR provided measurements of tissue dis-

placement from the reference geometry to the remaining 24 observed breathing states. The

DVFs and corresponding amplitude and rate values were used to solve for the voxel-specific

parameters relating tissue motion to breathing amplitude, v, and rate, f, in the 5D motion

model [24]:

X(v, f,X0) = X0 + α(X0)v + β(X0)f (7.1)

Here, X denotes the displaced tissue location, X0 its original position in the reference
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geometry, α relates inhalation depth to surrogate amplitude, and the parameter β relates

hysteresis motion to the derivative of the surrogate signal.

For each patient, model parameters were solved for using all 25 DVFs to build a ’full’

motion model. A cuBLAS batched QR factorization routine was used to find least- squares

solutions for model parameters on a graphics processing unit (Tesla K40; NVIDIA, Santa

Clara, CA). After fitting α and β, equation 7.1 allows for the computation of a DVF to

transform the reference image to arbitrary amplitude v and rate f , producing a breathing-

gated image at any user-selected breathing phase without sorting artifacts; no binning of

projections is performed because the model parameters are fit using free-breathing fast helical

images.

Model residual was calculated by comparing the tissue displacements computed using

equation 1 to the 25 displacements given by DIR, and taking the root mean square of the

difference in displacements for each voxel. An overall figure of merit was calculated by

averaging the residual values for lung voxels where the measured motion was ≥ 5 mm. The

motion criteria was included to prevent voxels which underwent little to no motion, such as

regions of the upper lung, from biasing the accuracy measure. Importantly, the residual is

representative of how well the motion model agrees with the DIR and does not account for

uncertainty in the registration, ie differences between the measured displacements and the

actual physical motion.

7.3.2 Quantifying the phase coverage of sampled respiratory trajectories

To faithfully characterize tissue motion with a reduced number of scans it is necessary to

image each slice location’s tissues at breathing states that are well-distributed throughout

the respiratory cycle. We adopt the previously published phase coverage metric described in

[126]:

M =
∑
z

N−1∑
i=1

(ṽi+1,z − ṽi,z)
0.5 (7.2)

where ṽ is the vector of the N measured breathing amplitudes for a slice location z,

shown as values lying on the dashed line in Figure 7.1b, sorted in ascending order.
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7.3.3 Relationship between phase coverage and model accuracy

In order to determine a stopping criteria for a prospective scanning protocol, it was necessary

to relate the phase coverage metric M to model accuracy given a set of Nscans, what value

of M would suggest that sufficient modeling accuracy could be achieved? Thomas et al

investigated the correlation between M and accuracy by selecting subsets of N scans, where

2 ¡ N ¡ 15, and solving for the motion parameters α and β to fit ’reduced’ models. The

residual of the reduced models was computed and compared to the ’full’ 25 scan model. The

authors demonstrated good correlation between M and accuracy for N > 4, and additionally

that when N ≤ 10 model accuracy comparable to using 25 scans could be achieved regardless

of the M value of the subset. In this study, we fit reduced models for each patient, where

5 ≤ N ≤ 9. In order to limit the number of possible combinations of scans, we reduced

the candidate pool from 25 to 13 by selecting every other scan. By using every other scan

rather than selecting a group from the start or end of the acquisition, temporal biasing was

avoided. To further reduce computation, voxel-specific model parameters were only solved

for a single coronal slice in the center of the lung.

For each subset, the model residual and M value was computed. Although the reduced

models were fit from a limited candidate pool, the residual values were computed by compar-

ing model predictions to measured tissue positions from all 25 scans. Breathing surrogate

signals were normalized such that the 5 th percentile inhalation and the 85 th percentile

inhalation amplitude mapped to 0 and 1, respectively, in order to facilitate inter-patient

comparison. Furthermore, the M value was normalized by the total number of surrogate

samples acquired (length of scan multiplied by number of scans).

To determine an acceptable threshold of the normalized M value that was suitable for

all patients, we found the maximum M value of a subset of scans which had unacceptable

residual (defined as more than 0.5mm increase in mean residual than the full model) for each

patient and each number of scans. These maximum values were used as general stopping

criteria for the prospective gating approach; in other words the minimum M value which

would be acceptable for a given number of scans for any patient.
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7.3.4 Prospective gating method

The proposed method consisted of three elements: an overall triggering scheme, real- time

breathing phase estimation, and a decision on whether or not the patient is currently breath-

ing in a reproducible manner. From previous work, it was observed that sets of trajectories

exhibiting a high M value generally resembled a pattern of phase-shifted waveforms and

therefore it was hypothesized that adequate phase coverage could be achieved by stagger-

ing the phase at which scans are started. A respiratory profiling method [46] was used to

estimate the breathing phase at each timepoint. A ’representative breath’ [44] was formed

based on training data and subsequently updated each new period.

In order to quantify the reproducibility of the breathing pattern, the normalized cross-

correlation between the representative breath and the most recent respiratory surrogate

measurements was continually computed. An overview of the method is shown in Figure

7.2.

7.3.4.1 Breathing phase estimation

A detailed description of the technique used for real-time breathing phase estimation is given

in [46]. In brief, in order to characterize hysteresis motion, an augmented state vector for

each time-point ti was formed by taking the current breathing amplitude, v(ti) and a previous

observation v(ti − kds)), where k is the lag expressed in number of samples and ds is the

sampling interval. An ellipse was continually fit to points in the augmented state space within

a sliding window encompassing (v(ti), v(ti− kds)) and approximately one period of previous

observations. Transition events marking the end of a period were detected using Poincar

sectioning. An estimated phase was assigned to each time-point by linearly extrapolating

from the most recent marker event.
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Figure 7.2: Flow chart describing the prospective gating method. The method takes a

continuous respiratory surrogate signal as input, and outputs a series of triggers that mark

times when helical scans should begin in order to acquire a dissimilar set of images.
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7.3.4.2 Reproducibility evaluation

For each patient, the first 30 seconds of the measured breathing trace was used as training

data. The trace was segmented into individual breaths and the mean period was taken as the

period of the representative breath. The amplitude was found by linearly interpolating the

amplitude values at each time-point in the segmenting breaths and computing the weighted

average, where the weights emphasized the most recently observed breaths. The resulting

waveform was smoothed using Savitzky-Golay filtering [39] to produce the representative

breath. After each marker event, the representative breath was updated to include the most

recent period. In order to avoid bias due to outliers or incorrectly detected periods, breaths

which exceeded 2 standard deviations in amplitude or period from the mean were not used

to update the representative breath.

The normalized cross-correlation [127] between the representative breath and the most

recent respiratory surrogate signal values, used as the template, was computed. The length

of the template was set to half of the breathing period. The correlation coefficient provided

an indicator of breathing reproducibility at the current time point. If the coefficient exceeded

a preset threshold a scan was eligible to be triggered if the breathing phase criterion was

satisfied.

7.3.4.3 Triggering scheme

Sets of respiratory traces with high phase coverage were observed to generally resemble

phase-shifted waveforms. A triggering scheme was designed to stagger the starting phase

of each free-breathing scan with the aim of collecting a desirable set. The breathing cycle

was divided uniformly into ten contiguous phase intervals, with each interval i representing

10% of the breathing period. Initially, all ten phase intervals are marked as ’unsampled.’

No restrictions are placed on the phase of the first scan acquisition is triggered as soon as

the breathing reproducibility criterion is met. The interval containing the phase point at

which the first scan was triggered is marked as ’sampled’ and removed from consideration for

triggering subsequent scans. Of the remaining nine intervals, a subset of candidate intervals
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is chosen to maximize the minimum distance (defined as the number of intervals), allowing

for wrap-around because the representative breath is periodic. There can be more than one

candidate interval if there are multiple unsampled regions with the same minimum distance

to a sampled region, then scan k can be triggered in any of them. An example case is shown

in Figure 7.3, where the four candidate intervals for the next acquisition are darkly shaded,

the sampled intervals are unshaded, and the ineligible intervals are lightly shaded.

Once the set of candidate intervals is determined, acquisition is triggered only when the

reproducibility criterion is satisfied and the current phase is within a candidate interval.

After five scans are acquired, the phase coverage metric M is computed. If M is satisfactory,

acquisition is ended. Otherwise, scanning continues until a satisfactory M is obtained or ten

scans acquired.

7.3.5 Simulation study

For each of the 5 patients that underwent 5DCT imaging, approximately 3 minutes of breath-

ing surrogate data was measured. The recorded respiratory waveforms were used to test the

proposed method in a MATLAB-based simulation. The simulated scan duration was set to

match the imaging time of the actual scans. For each patient, breathing trace was sampled

at intervals selected using the proposed method. After 5 scans, the M value of the sampled

respiratory trajectories was computed. If M was above the threshold acquisition terminated,

otherwise acquisition continued until the threshold was reached. In order to model the lim-

itations of an actual hardware implementation, the simulation was performed with a fixed

delay between triggering and data collection of 2.0 seconds.

7.4 Results

7.4.1 Phase coverage and model accuracy

The average full model residual over the 5 patients in this study was 1.06 ± 0.2 mm. The

mean minimum M values for subsets of N scans which achieved a model residual within
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Figure 7.3: Simulated acquisition with the proposed prospective gating method using the

breathing trace from Patient 1. (a) Shows two respiratory trajectories which were selected.

The representative breath is shown in (b), with the triggering regions corresponding to

the two sampled trajectories unshaded. Unsampled regions are shaded lightly, and regions

eligible for the next acquisition are shaded darkly. Triangle and square represent the phase

estimates using linear extrapolation between detected period transitions and the location of

the maximum cross-correlation, retrospectively. Respiratory signal is plotted in (c). Detected

period transitions are marked with x, and the most recently acquired respiratory trajectory

is shown in bold.
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Figure 7.4: Box plots showing the distribution of mean residual for models fit using only

subsets of N out of the 25 scans acquired with the previous non-prospective protocol, where

5 ≤ N ≤ 9, for Patient 5. Solid black line denotes the minimum residual, achieved when all

25 scans are used in model fitting. Dashed gray line indicates minimum residual plus 0.5

mm, the target residual for the proposed scan selection method.

tolerance were 0.368 ± 0.020, 0.339 ± 0.020, 0.310 ± 0.020, 0.290 ± 0.020, 0.268 ± 0.022 for

N = 5, 6, 7, 8, and 9, respectively. These M values corresponded to the 91st, 65th, 39th, 8th,

and 1st percentiles on average among the M values of sets of N non-prospectively acquired

scans.

Figure 7.4 displays the distribution of residual for reduced models for one patient. Note

that for N = 5 scans, few of the subsets are able to achieve a residual within tolerance. The

proportion of subsets that would yield an acceptable model residual increases as the number

of scans increases. When N = 9, almost all subsets result in tissue motion being acceptably

modeled.
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Figure 7.5: Histograms showing the distribution of M values for subsets of N out of the 25

acquired scans for Patient 2. Dashed line indicates the minimum M required for mean model

residual within 0.5 mm of the residual when N = 25. Solid line indicates the M value of N

scans selected from the patients measured breathing trace using the proposed prospective

method.

7.4.2 Simulation study

The average minimum M values for N = 5, 6, 7, 8 and 9 were used as stopping criteria in

the simulation study. For 4 out of the 5 patients, the prospective method was able to select

a set of respiratory trajectories with an acceptable M value in 5 scans. For the remaining

patient, acceptable phase coverage was achieved after 6 scans. Percentile scores describing

the relative M value with respect to subsets of actually acquired scans for the 5 patients

were 90.1, 100.0, 100.0, 99.1, and 98.6.

Figure 7.5 shows the M values for different numbers of prospectively selected scans for

one patient, along with M values of subsets of the non-prospectively selected scans, and the

minimum M value necessary for sufficient accuracy to provide context. When N = 5,6,7,

very few subsets of the non-prospective scans have an M value greater than the threshold.

For these cases, the difference in phase coverage achieved by the prospectively selected scans

compared to non-prospectively selected is most apparent.
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7.5 Discussion

We have described a prospective method to acquire a set of free-breathing CT scans such that

their associated respiratory surrogate signals are well-spread throughout the breathing cycle

in order to facilitate the fitting of a correspondence model between the respiratory surrogate

signal and tissue displacement for model-based 4DCT. The results presented here suggest

that using the proposed approach, the number of scans required for accurately describing

tissue motion with 5DCT can be reduced from the previously published 25 to as few as 6

with less than a 0.5 mm increase in mean residual. The proposed method can be employed

to select free-breathing scans for any respiratory motion model.

The primary motivation behind the proposed method is to reduce the imaging dose

associated with our model-based 4DCT technique, 5DCT, by eliminating acquisition of re-

dundant data which does not improve modeling accuracy. In this study modeling accuracy

was assessed by computing the residual, defined as the root mean square difference in tissue

positions given by the model and image registration. While theresidual is indicative of model

performance, it does not translate directly to a measurement of error. A thorough assess-

ment of error, including the effects of uncertainty in image registration and the relationship

between the respiratory surrogate signal and tissue motion, would require a evaluation such

as a landmark analysis.

Uncertainty in the correlation between the respiratory surrogate signal and internal tissue

motion could potentially reduce the effectiveness of the prospective scan selection method

and degrade the accuracy of the resulting motion model. A major complicating factor in esti-

mating this correlation is respiratory hysteresis. In the real- time phase estimation technique

employed in the proposed method, hysteresis is treated by increasing the dimensionality of

the surrogate signal and defining each surrogate measurement by its current amplitude as

well as the amplitude observed some fixed amount of time ago [45]. Similarly, the 5D model

accounts for hysteresis by describing tissue motion as a function of surrogate amplitude as

well as its derivative.

In Figure 7.1, the set of 5 scans with the highest M value for patient 5 are shown. The
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5D model, Equation 7.1, constrains each voxels motion to lie within a plane with respect

to amplitude and rate. The two planes in Figure 1c demonstrate the difference in the full

model parameters, fit using all 25, vs. the reduced model, fit using the high M subset of 5.

Although overall agreement is good, note that the inclusion of deeper breaths, which drive

the M value to be higher, biases the reduced model toward estimating greater displacement.

The redundant data incorporated into the full model fitting damps this effect.

We incorporated a delay of two seconds between a trigger signal and the beginning of data

acquisition into our simulation. With the current scanner software at our institution (Syngo,

Siemens Healthcare; Forchheim, Germany), there is a time lag of 2 seconds between the

operator initiating a scan and acquisition. Future work will be centered upon implementing

the method in real-time on a workstation separate from the CT console, and triggering will

be accomplished by visually signaling to the operator when to manually initialize a scan.

Ideally the proposed method could be incorporated into the scanner software to eliminate

the delay, similar to commercially available cardiac gating schemes, but we chose to model

a more feasible implementation in this study.

The reproducibility evaluation described in section 7.3.4.2 aims to avoid the effects of

irregular breathing by preventing imaging under such conditions, but it has obvious limita-

tions. An abrupt change in respiration after triggering but during or shortly before image

acquisition could not be protected against. Such variance is unpredictable even for human

operators. Although the model-based 4DCT technique used in this work is not susceptible

to image artifacts due to irregular breathing, the proposed prospective selection method may

require additional scans before the stopping criteria is met compared to a more regularly

breathing case, and consequently the potential imaging dose savings would be limited.

Typically, binning-based 4DCT reconstruction methods require an irradiation period

equal to or longer than the breathing period in order to reconstruct gated images. In contrast,

model-based techniques construct a continuous description of tissue motion from a limited

set of observations acquired at different respiratory states. For 5DCT, the model-based

approach employed in this work, fast helical free-breathing scans are used as observations.

An approximate CTDI vol value for a single free-breathing scan for 5DCT is 2.7 mGy [128].
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Simply reducing the number of scans from 25 to 6 allows for the acquisition of 5DCT with

less than 25% of the current dose. Further reduction could be achieved by combining the

proposed technique with low- dose iterative CT reconstruction [129]. The substantial savings

afforded by the proposed technique have the potential to reduce the total imaging dose of

model-based 4DCT into the range where it is clinically acceptable to use as a tool for non-

radiation therapy applications.

7.6 Conclusions

A method to prospectively select a set of free-breathing fast helical CT scans which are

well-spread throughout the respiratory cycle has been described and tested in a 5 patient

simulation study. Using the proposed technique, respiratory phase coverage which suggests

model accuracy within 0.5 mm on average of a 25-scan model could be achieved in 6 or fewer

scans.
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[37] René Werner, Christian Hofmann, and Tobias Gauer. Optimized projection binning

for improved helical amplitude-and phase-based 4dct reconstruction in the presence of

breathing irregularity. In Medical Imaging 2016: Physics of Medical Imaging, volume

9783, page 978313. International Society for Optics and Photonics, 2016.

[38] Sarah J Castillo, Richard Castillo, Edward Castillo, Tinsu Pan, Geoffrey Ibbott, Peter

Balter, Brian Hobbs, and Thomas Guerrero. Evaluation of 4d ct acquisition methods

designed to reduce artifacts. Journal of applied clinical medical physics, 16(2):23–32,

2015.

[39] Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by

simplified least squares procedures. Analytical chemistry, 36(8):1627–1639, 1964.

[40] Jianwen Luo, Kui Ying, and Jing Bai. Savitzky–golay smoothing and differentiation

filter for even number data. Signal Processing, 85(7):1429–1434, 2005.

[41] Mattias Paul Heinrich, Mark Jenkinson, Bartlomiej W Papież, Michael Brady, and
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