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Statistical Estimation in Varying-Coefficient Models

Jianqing Fan* Wenyang Zhang
Department of Statistics Department of Statistics
University of North Carolina The Chinese University of Hong Kong
Chapel Hill, NC 27599-3260 Shatin, Hong Kong
Abstract

Varying-coefficient models are a useful extension of the classical linear models. The appeal of
these models is that the coefficient functions can easily be estimated via a simple local regression.
This yields a simple one-step estimation procedure. We show that such a one-step method can
not be optimal when different coefficient functions admit different degrees of smoothness. This
drawback can be repaired by using our proposed two-step estimation procedure. The asymptotic
mean-squared errors for the two-step procedure is obtained and is shown to achieve the optimal
rate of convergence. A few simulation studies show that the gain by the two-step procedure
can be quite substantial. The methodology is illustrated by an application to an environmental
dataset.

KEY WORDS: Varying-coefficient models, local linear fit, optimal rate of convergence,
mean squared errors.

SHORT TITLE: Varying Coefficients Models.

1 Introduction

1.1 background

Driven by many sophisticated applications and fueled by modern computing power, many useful
data-analytic modeling techniques have been proposed to relax traditional parametric models and to
exploit possible hidden structure. For an introduction to these techniques, see the books by Hastie
and Tibshirani (1990), Green and Silverman (1994), Wand and Jones (1995) and Fan and Gijbels
(1996), among others. In dealing with high-dimensional data, many powerful approaches have been
incorporated to avoid so-called “curse of dimensionality”. Examples includes additive modeling
(Breiman and Friedman, 1995; Hastie and Tibshirani 1990), low-dimensional interaction modeling
(Friedman 1991, Gu and Wahba, 1992, Stone et l.1997), multiple-index models (Hérdle and Stoker
1990, Li 1991), and partially linear models (Wahba 1984; Green and Silverman 1994), and their
hybrids (Carroll et al.1997, Fan et al.1997, Heckman et al.(1997)), among others. Different models

explore different aspects of high-dimensional data and incorporate different prior knowledge into
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modeling and approximation. They together form useful tool kits for processing high-dimensional
data.

A useful extension of the classical linear model is the varying-coefficient models. This idea is
scattered around text books. See for example page 245 of Shumway (1988). However, the potential
of such a modeling techniques did not get fully explored until the seminal work of Cleveland
et al.(1991) and Hastie and Tibshirani (1993). The varying-coefficient models assume that the

following conditional linear model:

Y=Y aj(U)X;+e (1.1)
i=1
for given covariates (U, Xq,---, X,) and response variable Y with

E(e|U, Xy, -+, X,) = 0

and

var(e|U, X1, -+, X,) = a*(U).

By regarding X; = 1, (1.1) allows varying intercept term in the model. The appeal of this model
is that via allowing coefficients aq,---,a, to depend on U, the modeling bias can significantly be
reduced and “curse of dimensionality” can be avoided. Another advantage of this model is its inter-
pretability. This is particularly the case in the longitudinal study where it is reasonable to assume
that the coefficients change over time ¢. See Hoover et al (1997) for details on novel applications
of varying-coefficient models to longitudinal data. For nonlinear time series applications, see Chen

and Tsay (1993) where functional-coefficient AR models are proposed and studied.

1.2 Estimation Methods

Suppose that we have a random sample {(U;, X;1,..., X, ¥;)}ieq from model (1.1). One simple
approach to estimate the functions a;(-)(j = 1,---,p) is to use local linear modeling. For each

given point ug, approximate the function locally as
a;(u) =~ a; + bj(u — up). (1.2)

for u in a neighborhood of ug. This leads to the following local least-squares problem: Minimize

2
n P

2| Yi= D Aa; + (Ui — wo)}Xij | Kn(Ui = uo) (1.3)

=1



for a given kernel function K with bandwidth h, where Kp(-) = K(-/h)/h. The idea is due to
Cleveland et al.(1991). While this idea is very simple and useful, it is implicitly assumed that
functions a;(-) possess about the same degrees of smoothness. If the functions process different
degrees of smoothness, suboptimal estimators are obtained via using method (1.3).

To formulate the above intuition in mathematical framework, let us assume that a,(-) is
smoother than the rest functions. For concreteness, we assume that a, possesses a bounded fourth

derivative so that locally the function can be approximated by a cubic function:
ap(u) = ap + bp(u — ug) + cp(u — u0)2 + dp(u — U0)37 (1.4)

for w in a neighborhood of ug. This naturally leads to the following weighted least-squares problem:

p—1 2

D Y= D a4+ 0;(Ui — u0)}Xij — {ap + bp(Ui = uo) + ep(Us — u0)* + dp(Us — w0)*} Xip | Kny (Ui—o).
=1 =1

j=
(1.5)
Let &j,lyi)j,l (j =1,---,p—1) and dp71,i)p71,ép71,(2p71 minimize (1.5). The resulting estimator
ap,05(o) = @yp,1 is called an one-step estimator. We will show that the bias of the one-step estimator
is of order O(h?) and the variance of the one-step estimator is order O((nhy)~1). Therefore, using
one-step estimator @, os(uo), the optimal rate of order O(n~8/?) can not be achieved.
To achieve the optimal rate, the two-step procedure has to be used. The first step involves to
get an initial estimate of a1(-), -+, a,—1(-). Such an initial estimate is usually undersmoothed so
that the bias is small. Then, in the second step, a local least-squares regression is fitted again via

using the initial estimate. More precisely, we use the local linear regression to obtain a preliminary

estimate, namely minimize

2
n p
Z Y. — Z{a]‘ + bj(Uk — uo)}ij I(}LO(U]C — uo) (1.6)
k=1 7=1
for a given initial bandwidth hg and kernel K. Let @ o(ug), - - -, @po(uo) denote the initial estimate of
ai(ug), - - -, ap(ug). In the second step, we substitute the preliminary estimates @1 (+),- -+, @p—1,0(-)

and use a local cubic fit to estimate a,(ug), namely minimize

2
n

p—1
Do Y= D ai0(U)Xij = {ap + bp(Us = uo) + ¢p(Ui = uo)* + dp(Us — o)’} Xy | Ky (Ui = o)
: =~

=1

(1.7)
with respect to ay, b,, ¢, d,, where hy is the bandwidth in second step. In this way, we obtain a

two-step estimator of @, rs(ug) of ap(up). We will show that the bias of the two-step estimator is



of O(h%) and the variance of O{(nh2)™1}, provided that

ho = o(h%), nho/loghg — o0,

1/9 is used, and the prelimi-

and nh3 — oo. This means that when the optimal bandwidth Ay ~ n~
nary bandwidth hg is between the rates O(n='/%) and O(n=%/?), the optimal rates of convergence
O(n=%/?) for estimating ay can be achieved.

Note that the condition nh3 — oo is only a convenient technical condition based on the as-
sumption of the sixth bounded moment of covariates. It plays little role in our understanding of
the two-step estimation procedure. If X; is assumed to have higher moments, the condition can
be relaxed as weak as nh'*t® — oo for some small § > 0. See Condition (7) in Section 4 for de-
tails. Therefore, the requirement on hg is very minimal. The practical implications of this is that

the two-step estimation method is not sensitive to the initial bandwidth hg. This makes practical

implementation much easier.

Example 1 : A typical result Example 2 : A typical result Example 3 : A typical result
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Figure 1: Comparisons the performance between the one-step and two-step estimator. Solid curve
— true function; short-dashed curve — estimate based on the one-step procedure; long-dashed curve
— estimate based on the two-step procedure.

Another possible way to conduct variable smoothing for coefficient functions is to use the

following smoothing spline approach proposed by Hastie and Tibshirani (1993):

n p

> {Ye= Y aiwxs |+ [Hajw)au,

=1 71=1



for some smoothing parameters Aq,---,A,. While this idea is powerful, there are a number of
potential problems. First of all, there are p-smoothing parameters to choose simultaneously. This
is quite a task in practice. Secondly, the computation can be quite a challenge. An iterative scheme
was proposed in Hastie and Tibshirani (1993). Thirdly, the sampling properties are somewhat
difficult to obtain. It is not clear if the resulting method can achieve the same optimal rate of
convergence as the one-step procedure.

The above theoretical work is not purely academic. It has important practical implications.
To validate our asymptotic claims, we use three simulated examples to illustrate our methodology.
The sample size n = 500 and p = 2. Figure 1 depicts a typical estimate of the one-step and two-step
method both using the optimal bandwidth for estimating as(-) (For the two-step estimator, we do
not optimize simultaneously the bandwidths hg and hg; rather, we only optimize the bandwidth
hy for a given small bandwidth hg). Details of simulations can be found in Section 5. In the first
example, the bias of the one-step estimate is too large since the optimal bandwidth hy for ay is so
large that @y can no longer be approximated well by a linear function in such a large neighborhood.
While in the second example the estimated curve is clearly undersmoothed by using the one-step
estimate, since the optimal bandwidth for a5 has to be very small in order to compromise for the bias
arising from approximating a;. The one-step estimator works reasonably well in the third example,
though the two-step estimator still improves somewhat the quality of the one-step estimate.

In real applications, we don’t know in advance if a, is really smoother than the rest of functions.
The above discussion reveals the the two-step procedure can lead to significant gain when a, is
smoother than the rest of the functions. When a, has the same degrees of the smoothness as the
rest of the functions, we will demonstrate that the two-step estimation procedure achieves the same
convergent rate as the one-step approach. Therefore, the two-step strategy is always more reliable

than the one-step one. Details of implementing the two-step strategy will be outlined in Section 2.

1.3 Outline of the paper

Section 2 gives strategies for implementing the two-step estimators. The explicit formulas for our
proposed estimator is given in Section 3. Section 4 studies the asymptotic properties of the one-step
and two-step estimators. In Section 5, we study the finite sample properties of the one-step and the
two-step estimators via some simulated examples. The two-step techniques are further illustrated

by an application to an environment data set. Technical proofs are given in Section 6.



2 Practical implementation of two-step estimators

As discussed in the introduction, one-step procedure is not optimal when coefficient functions admit
different degrees of smoothness. However, we don’t know in advance which function is not smooth.
To implement the two-step strategy, one minimizes (1.6) with a small bandwidth hy to obtain
preliminary estimates a; o(U;),- -+, apo(U;) for i = 1,-- -, n. With these preliminary estimates, one
can now estimate the coefficient functions a;(ug) by using an equation that is similar to (1.7).

In practical implementation, it usually suffices to use local linear fits instead of local cubic fits
in the second step. This would result in a lot of computation savings. Our experiences with local
polynomial fits show that for practical purposes the local linear fit with optimally chosen bandwidth
performs comparably with the local cubic fit with optimal bandwidth.

As we discussed in the introduction, the choice of initial bandwidth is not very sensitive to
the two-step estimation as long as it is small enough so that the bias in the first step is not too
large. This suggests the following simple automatic rule. Use the cross-validation or Generalized
cross-validation (see e.g. Hoover et al 1997) to select the bandwidth & for the one-step fit. Then,
use hg = 0.5h (say) as the initial bandwidth.

An advantage of the two-step procedure is that in the second step, the problem is really a
univariate smoothing problem. Therefore, one can apply the univariate bandwidth selection proce-
dures such as cross-validation (Stone, 1974), pre-asymptotic substitution method (Fan and Gijbels,
1995), plug-in bandwidth selector (Ruppert, Sheather and Wand 1995) and empirical bias method
(Ruppert 1997) to select the smoothing parameter in the second step. As we discussed before,
the preliminary bandwidth hq is not very crucial to our final estimates, since for a wide range of
bandwidth hg the two-step method will achieve the optimal rate. This is another benefit for the

two-step procedure: Bandwidth selection problems become relatively easy.

3 Formulae for the proposed estimators

The solutions to the least squares problems (1.5) — (1.7) can easily be obtained. We take this
opportunity to introduce necessary notation. In the notation below, we use subscript “0”, “1” and

“2” respectively to indicate the variables related to the initial, one-step and two-step estimators.



Let
X1 X11(U1—U0) le X1p(U1—U0)

Xo =
an an((’rn - UO) e an an(lfn - uO)

Y =V, V)T, and Wo = diag (K (U1 — o), -+, Ky (Un — u0)).

Then, the solution to the least-squares problem (1.6) can be expressed as

&jvo(luo) = e%}—l,Zp(XgWOXO)_IXgWOY7 ] = 17 P

(3.1)

Here and hereafter, we always use notation ey, to denote the unit vector of length m with 1 at

position k.

The solution to problem (1.5) can be expressed as follows. Let

le le(Ul — ‘Uo) le((,fl — ’U0)2 le((/rl — ’U0)3

Xy =
Xup Xnp(Un = 10)  Xnp(Un — 0)?  Xp(Un — o)’
and
X1 X11(U1 - Uo) T X1(p—1) X1(p—1)(U1 - Uo)
X = . . . .
Xt Xopt(Un —wo) 0 Xpp—1) Xpp-1)(Un — o)

X = (X37X2) Wi = dlag (I(}u(Ul - u0)7 v '7](h1(Un - UO)) :

Then, the solution to the least-squares problem (1.5) is given by

ip1(u0) = €3, 5ppa(XT W1 Xy) I XTWLY.

Using the notation introduced above, we can express the two-step estimator as

ap (o) = (1,0,0,0)(X] WoXy) ' XTWy(Y — V),
where
Wy = dlag (ﬁrh2(Ul - ‘Uo), A I(h2(Un - UO))
and V = (Vq,---, V)T with

p—1
Vi=Y"ajo(Us)Xi;.
j=1

(3.2)



Note that the two-step estimator @, 7 is a linear estimator for given bandwidths g and Ay, since it
is a weighted average of observations Y7, ---,Y,. The weights are somewhat complicated. To obtain

these weights, let X(i) be the matrix Xy with ug = U; and VV(Z') be the matrix Wy with ug = U,.

Then )
.
T T - T
V;, = EXij€2j—1,2p(X(i)W(i)X(i)) IX(Z)W(Z)Y
7=1
Set
[ Kriedioa (X W X)) X W
By=1I,-)Y :
7=1
T — T
Xonj€di—12p(X oy Wiy X)) T Xy Wiy
Then,
apa(ug) = (1,0,0,0)(XTW,Xo) ' XTI W, B, Y. (3.4)

4 Main results

We impose the following technical conditions:
(1) EXJZS < oo, forsome s >2,5j=1,---,p.

(2) af(-) is continuous in a neighborhood of ug, for j =1, .-, p. Further, assume a7/ (uo) # 0, for

j =1,---,p.
(3) The function @, has a continuous fourth derivative in a neighborhood of ug.

(4) ri%(+) is continuous in a neighborhood of ug and 77(ug) # 0, for 4,5 = 1,-- -, p, where r;;(u) =

E(X:X;|U = u).

(5) The marginal density of U has a continuous second derivative in some neighborhood of ug

and f(ug) # 0.
(6) The function K(t) is a symmetric density function with a compact support.

(7) ho/hy — 0 and hy — 0, nh]/loghg — oo, for any v > s/(s — 2) with s given in Condition
(1)

Throughout this paper, we will use the following notation. Let

M = /tlfxr(t)dt and v, = /tiI(Z(t)dt7



and D be the observed covariates vector, namely
D= (Uly"',Un,Xn,"'7X1n,'"7Xp17"',Xpn)T-
Set r;; = rij(uo) = E(X;X;|U = ug), for 4,5 =1,---,p. Put
¥ = diag (eX(U1), -+, 0% (Un)) ,

a;(u) = (r1;(u),-- -,r(p_l)j(u))T, a; = a;(ug) for j=1,---,p

and
Qi(u) = B{(X1,- -, X)T( Xy, X)|U =u}  Q=Qug) for i=1,---,p.
For the one step-estimator, we have the following asymptotic bias and variance.

Theorem 1 Under conditions (1)-(6), if hy — 0 in such a way that nhy — oo, then the asymptotic

conditional bias of a, 0s(ug) is given by

. R h2 p—1
bias(a, 0s(uo)|D) = — 21TH2 E ija;-’(uo) + op(h?),
rp j=1

and the asymptotic conditional variance of a,o0s(uo) s

o2(ug)(NaTp, + A3a T Q7L
nhi f(uo) AMrpp(Tpp — &gﬂp—lap)

where Ay = (ftq — p3)?, Ny = vopi — 2apopy + pivy, and A3 = 2uaovapig — 2V iy — pive + vops.

The proof of Theorem 1 and other theorems are given in Section 6. It is clear that the conditional
MSE of the one-step estimator a, 0s(uo) is only of order Op{h{+ (nh1)~1} which achieves the rate
Op(n~*3) when the bandwidth h; = O(n~'/%) is used. The bias expression above indicates clearly
that the approximation errors of functions a;,- - -, a,_; are transmitted to the bias of estimating a,,.
Thus, the one-step estimator for a, inherits non-negligible approximation errors and is not optimal.

We now consider the asymptotic MSE for the two-step estimator.

Theorem 2 [f Conditions (1)-(6) and (7) hold, then the asymptotic conditional bias of a, 1s(uo)

can be expressed as

bias(a, T5(uo)|D)

-1

1 pf — etz (4) 4 h2hg — 4 2

= —=2 T Za(ug)h, — a’(ug)ry; +op(hy + R
4 pg —p3 P (o) QTPPZ; i (o)1 (h2 + hg)



and the asymptotic conditional variance of a,1s(ug) is given by

(H3vo — 2papiavy + p3va)o*(uo)
nha f(uo)ri,(pa — p3)?

var(a, r5(uo)|D)

T o— T - P
Tpp T T;pep,pﬂp lemv - (ap 7Tpp)9p ! {14 0p(1)}
Tpp

By Theorem 2, the asymptotic variance of the two-step estimator is independent of the initial
bandwidth as long as nh} — oo, where 7 is given in Condition (7). Thus, the initial bandwidth hg
should be chosen as small as possible subject to the constraint that nhj — co. In particular, when
ho = o(h3), the bias from the initial estimator becomes negligible and the bias expression for the

two-step estimator becomes

1 pij — pepiz (4) 4 4
W O or ()

Hence, via taking the optimal bandwidth hs of order n~'/?, the conditional MSE of the two-step

estimator achieves the optimal rate of convergence Op(n=%/?).

Remark 1 Consider the ideal situation where a1,---,a,_1 are known. Then, one can simply run
a local cubic estimator to estimate a,. The resulting estimator has the asymptotic bias

1 3 —N6H2a(4)(u Y4 + op(h)

AU g —pg T I
and asymptotic variance

2 — 2
Palvo — 2papiaVs + pPiva o .

o°(uo) + op{(nh .
nhzf(UO)Tpp(,lM ,u%)2 (0) {( 2) }

This ideal estimator has the same asymptotic bias as the two-step estimator. Further, this ideal
estimator has the same order of variance as the two-step estimator. In other words, the two-step

estimator enjoys the same optimal rate of convergence as the ideal estimator.

We now consider the case that a, is as smooth as the rest of functions. In technical terms, we
assume that a, has only continuous second derivative. For this case, a local linear approximation is
used for the function a, in both the one-step and two-step procedure. With some abuse of notation,
we still denote the resulting one-step and two-step estimator as @, 05 and a, 1s respectively.

Our technical results are to establish that the two-step estimator does not lose its statistical
efficiency. Since it gains the efficiency when a, is smoother, we conclude that the two-step estimator
is preferable. These results give theoretical endorsement of the proposed two-step method in Section

2.

10



Theorem 3 Under Conditions (1)-(2) and (4)—(6), if by — 0 and nhy — oo, then the asymptotic

conditional bias of the one-step estimator is given by

bias(ip,05(uo)|D) = h%a;’(uo)u + op(1))

and the asymptotic conditional variance of a,o0s(uo) is given by

) o2 (ug)v B
var(aos(u)|P) = UL 01, (1 + on(1)

We now consider the asymptotic behavior for the two-step estimator.

Theorem 4 Suppose that Conditions (1)-(2), (4)-(6) and (7) hold. Then, we have the asymptotic

conditional bias

bias(a, rs(uo)|D) = (%a;’(uo)ugh% - ’;iﬁf ga;{(uo)w) (14 0p(1))
j=
and the asymptotic variance
var(é, 75(uo)|D) = %
Tpp + szeinglepm - (ag, rpp) 0! o {1+op(1)}.

Tpp

Remark 2 Consider the specific case where we have only two covariates p = 2. The asymptotic

bias of the one-step estimator is simplified as
1
(o b1+ op(1))

and the asymptotic variance is given by

o?(uo)vor1y
nhy f(uo)(r11m22 — 1%5)

(1+ 0p(1)).

For the two-step estimator, by taking initial bandwidth hg = o(hy), we obtain the same bias as the
one-step estimator. Moreover, it has the same asymptotic variance as that of the one-step estimator.

In other words, the performance of the one-step and two-step estimator is asymptotically identical.

Remark 3 When ay(t),---,a,-1(t) are known, we can use the local linear fit to find an estimate

of a,. Such an ideal estimator possesses the bias

1
5“?(“0)@}@%{1 +op(1)}

11



and variance
o (uo)ro

nhy f(uo)rpp

So, both one-step and two-step estimators have the same order of MSE as the ideal estimator.

{14 op(1)}.

Indeed, the two-step estimator shares the same asymptotic bias as that of the ideal estimator.
However, the variance of the ideal estimator is typically small. This can easily be seen for the case
p = 2. Unless 112 = 0, namely X1 and X5 is uncorrelated given U = wq, the asymplotic variance

of the ideal estimator is always smaller.

5 Simulations and Applications

Example 1: true functions Example 2: true functions Example 3: true functions
<
©
o
<
o
o
2
e |
‘l_ T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Varying-coefficient functions. Solid curve is a;(-) and dashed curve is as(-).

We use the following three examples to illustrate the performance of our method:

Example 1: Y =sin(60U)X; +4U(1-U) +¢
Example 2: Y =sin(67U)X; + sin(27U) X3+ ¢
Example 3: Y =sin(87(U — 0.5))X; + (3.5[exp{—(4U —1)%} 4+ exp{—(4U — 3)*}] - 1.5)X2 + ¢,

where U follows a uniform distribution on [0, 1] and X; and X3 are normally distributed with

correlation coefficient 2-1/2. Further, the marginal distribution of X; and X3 is the standard normal

and ¢, U and (X1, X3) are independent. The random variable ¢ follows a normal distribution with

12



mean zero and variance o2, The o2 is chosen so that the signal to noise ratio is about 5:1, namely
o? = 0.2var{m(U, X1, X3)}, with m(U, X1, X,) = E(Y|U, X1, X3)

Figure 2 gives the varying-coefficient functions a; and as.

For each of the above examples, we conducted 100 simulations with sample size n = 250, 500, 1000.
The kernel function is taken to be K(¢) = (1 — ¢?)4. The mean integrated squared errors for esti-
mating ao are recorded. For the one-step procedure, we plot the MISE against h; and hence the
optimal bandwidth can be chosen. For the two-step procedure, we choose some small initial band-
width hg and then compute the MISE for the two-step estimator as a function of hy. Specifically,
we chose hg = 0.03,0.04 and 0.05 respectively for Examples 1, 2, and 3. The optimal bandwidths
h1 and hy were used to compute the resulting estimators presented in Figure 1. Among 100 sam-
ples, we select the sample such that the two-step estimator has the median performance. Once the
sample is selected, the one-step estimate and the two-step estimate are computed. Figure 1 depicts
the resulting estimate based on n = 500.

Figure 3 depicts the MISE as a function of bandwidth. The MISE curve for the two-step method
is always below that for the one-step approach for the three examples that we tested. This is in
line with our asymptotic theory that the two-step approach outperforms the one-step procedure
if the initial bandwidth is correctly chosen. The improvement of the two-step estimator is quite
substantial if the optimal bandwidth is used (in comparison with the one-step approach using the
optimal bandwidth) Further, for the two-step estimator, the MISE curve is flatter than that for
the one-step method. This in turn suggests that the bandwidth for the two-step estimator is less
crucial than that for the one-step procedure. This is an extra benefit of the two-step procedure.

We now illustrate the methodology via an application to an environmental data set. The data
set used here consist of a collection of daily measurements of pollutants and other environmental
factors in Hong Kong between January 1, 1994 and December 31, 1995 (Courtesy of Professor
T.S. Lau). Of interest is to study the association between levels of pollutants and number of daily
total hospital admissions for circulation and respiration and to examine the extent to which the
association varies time. We consider the relation among the number of daily hospital admission
(Y) and level of pollutant Sulphur Dioxide X, (in pg/m?), level of pollutant Nitrogen Dioxide X3
(in pug/m?), level of dust X3 (in ug/m?>). We took X; = 1 — the intercept term, and U = ¢ = time.
The model

Y =a1(t) + ax(t)Xo + as(t) Xz + as(t) Xs + ¢

13



Example 1:n= 250 Example 2 :n= 250 Example 3 :n= 250
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Figure 3: MISE as a function of bandwidth. Solid curve — one-step procedure; dashed curve —
two-step procedure

is used to fit the given data. The two-step method is used to estimate the coefficient function
a;(-). An initial bandwidth hy = 0.06 x 729 (six percents of the whole interval) was chosen. An
anticipated, the results do not alters much with different choices of bandwidths. The second stage
bandwidths hy are chosen respectively 20%, 20%, 25% and 25% of the interval length for functions
ai,---,a4. Figure 4 depicts the estimated coefficient functions. It describes the extent to which the
coefficients vary with time. The two dashes curves indicate the pointwise 95% confidence intervals
with bias ignored. The standard errors are computed from the second stage local cubic regression.

See Section 4.3 of Fan and Gijbels (1996) on how to compute the estimated standard errors from
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the local polynomial regression. The figure indicates that there is some strong time effect. It is

quite surprising to see that the time trend a1(?) is increasing instead of seasonal.
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3 o g °©
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g 8 S 2
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X X
Coefficient Functions a3(t) Coefficient Functions a4(t)
<
o
N
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o | o
c ‘_ c
S S
s 2] 5 2
5 o s
S S 5
% % S A
8 = | 8
o
<
S A o
e ]
i T T T T T T T T
0 200 400 600 0 200 400 600
X X
Figure 4: The estimated coefficient functions.
6 Proofs

The proof of Theorem 3 (and Theorem 4) is similar to that of Theorem 1 (and Theorem 2). Thus,
we only prove Theorems 1 and 2. When the asymptotic conditional bias and variance are calculated

for the two-step procedure @, 75(ug), the following lemma on the uniform convergence will be need.

Lemma 1 Let (X1,Y1),...,(X,, Ys) be i.i.d random vectors, where the Y;’s are scalar random vari-

ables. Assume further that E|y|®* < oo and sup [ |y|°f(z,y)dy < oo, where f denotes the joint
xr
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density of (X,Y). Let K be a bounded positive function with a bounded support, satisfying a Lips-

chitz condition. Then

sup 71 D _AKW(Xi = 2)Yi = E[Ky(X; - 2)Yi]} = Op[{nh/log(1/h)}~'/?]

provided that n**~1h — oo for some e < 1 — 571,

Proof : This follows immediately from the result obtained by Mack and Silverman(1982).

The following notation will be used in the proof of the theorems. Let

6 St Sz
51T2 S99
with
fo 0 po 0 pe O
Su = Qp—l ® s S19 = a, @
0 o 0 w2 0 pa
and
o 0 pz 0
0 w2 0 pg
522 = Tpp )
p2 0 pg 0O
0 wps 0 pe

where @ denotes the Kronecker product. Let S be the matrix similar to S except replacing y; by

v;. Set
* - Ho 0 " y 1 0
S5 = WU @ s Sy =Stz @=90 :
0 pa 0 0
and
P
By = Y d(Unpz(a] (Ui), rpi(Un)) @ (1,0),  a*" = (ay,75) ® (1,0).
7=1
Put
1 0 1 0
AIIp_1® 5 G:Ip®
0 hl 0 ho
and
1 0 0 0 1 0 0 0
0 Ay 0 O 0 hy 0 0
D= ) DQI
0 0 Af 0 00 A2 0
00 0 K 00 0 K
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We are now ready to prove our results.

Proof of Theorem 1. First of all, let us calculate the asymptotic conditional bias of @, 1(uo).

Note that by Taylor’s expansion, we have

Y = Xy(ai(uo), ay(uo), -, ap-1(to), aj_1(t0), ay(uo), aj(uo), 3 (uo), g0 (uo))”
1 aj(&1;)(Ur = uo)? X1 al!) ()(Ur = up)* X1,
p—
+3 2 : + 4 : +&
i=1
@ (€0)(Ur = 102X o af (1) (U = 10)* Xy
where &= (eq,-- -,5n)T, &;; and n; are between U; and ug for e =1,---,n,5=1,---,p— 1. Thus,

a;'/(flj)(Ul - ‘Uo)zle
ap1(ug) = ap(ug) + 3 ‘21 err—1.2pp2( XT W1 Xy) Ty,
]:
a;‘/(gnj)(Un - Uo)Zan
al (n)(Ur = uo)* X1,
+%egp—172p+2(X?W1X1)_IX?Wl :
4 T
az(? )(nn)( /n — u0)4an
‘|'62Tp—1,2p+2(X1TW1X1)_1X1TW15.
Obviously
XIWiXs XIWiX,
X?Wlxl = ;: ;
X2 W1X3 X2 W1X2

By calculating the mean and variance, one can easily get
Xg;W1X3 = nf(uo)ASHA(l + OP(l))

and

Xg:WlXQ = TLf(UO)AslgD(l + OP(l))
XgW1X2 = TLf(uO)DSQQD(l + OP(l))
Combination of the last three asymptotic expressions leads to
XTW1i X, = nf(ug)diag(A, D)Sdiag(A, D)(1+ op(1)).

Similarly, we have

(&) (U — ug)* Xy

XTw, : = nf(uo)hia(uo)A (a; @ (1,0)) pa(1 + 0p(1))

@f(€n)(Un — 10)* X

17



and

Tpj2

a(1;)(Ur = uo)* X
XTw, : = nf(uo)hia(ug)D (1+ op(1)).
16 (U — 00 X -
Thus,
a(61;)(Ur = uo)* X
XTw, :
@ (£nj)(Un = 10)* X,
= nf(uo)hia](uo)diag(A, D)(a] @ (1,0)pz,1pjf2,0, 7pifta,0)" (1 + 0p(1)).
So the asymptotic conditional bias of @, 1(ug) is given by
bias(dp1 (10)| D)

p—
= Ih? E (uo)egp_LQpHS_l(a;F @ (1,0) 9, 7pift2, 0, mpipta, 0) T (1 + 0op(1)).

7=1

Using the properties of the Kronecker product we have

bias(a,1(uo)|D)

_ h3 o =l po-1 TO-1 .\,
= 2(rpp—aT§2;11ap)rpp ]le(Tp]a Q, 10p — rppay, Qp—la])a;/(u'o)(l +op(1))

G Z_: Tpj ](UO)+OP(h2)

2Tpp

We now calculate the asymptotic variance. Using a similar asymptotic argument as above, it is

easy to calculate that the asymptotic conditional variance of @, 1(ug) is given by

var(ayp 1(uo)|D)
= esz—1,2p+2(Xﬁ’V1X1) IXTW, W, X (XTW X0 ) " Legpot 2p42

o (uo)

= nhlf(uo)eépp—l,zpﬂs_ SS— €2p—172p+2(1 + OP(l))-

By using the properties of the Kronecker product, it follows that

UZ(UO)(/\QTW + ’\BO‘Tﬂgllap)

o D) =
Val’(ap,l(uo)l ) nhlf(’uo)Alrpp(lrpp a Qpll p)

(1+ op(1).

where Ay = (g — p13)%, Ao = vopui — 2vapiopia + v , A3 = 2pavapiy — 200p3 404 — 1304 + Vo3

This establishes the result in Theorem 1.
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Proof of Theorem 2. We first compute the asymptotic conditional bias. Note that by Taylor’s

expansion, one obtains
(&) (Ur — U;)* Xy

Y = Xulaa(Ui),ay(Ui), - -,ap(Ui),a;(Ui))T + % 3 : +Z
@ (6nj)(Un — Ui)* X
a(U;)(Ur — U)Xy

= X (U:), a5 (Us), -+, ap(U2), ap(U:))T + 5 32 :

a(U)(Uy — Us)2 X
) (a(&15) = a/(U:))(Ur — U)? X
HE s e

(a(&nj) — a(U))(Up = Ui)* X

where {; is between U; and Uy. Thus, for/=1,---,p—1

M|>—l

a;’(Ui)(Ul - U;)* Xy
&[@(UH = al(Ui) + %6%}_172p(X£)W0)X( )) 1XT Z :

AU (Un = Ui)? X 5

(af(&1;) — a(U)) (U1 = Us)* X
Y4
+3e1 1,2 (XE Wi X)) T X W, OpY) :

- (@(60s) — A UUs - VP X
+eq 10X Wiy X (i) T X Wiy
By Lemma 1, we have
Xy Wiy Xy = nf(Ui)GSGyG(1 + op(1)) (6.2)
and
| @ - v,
INUEDY : = nf(U;)h§GBu(1 + op(1)). (6.3)

J=1

a (U )(Un — Ui X,
Note that in our applications below, we only consider those U;’s which are in a neighborhood of
ug. By the continuity assumption, the term op(1) holds uniformly in ¢ such that U; falls in the

neighborhood of ug. Combining (6.2) and (6.3), we have
. » CL;’(UZ')(Ul — UZ')QXU
565—1,2p(X6)W(i)X IXT Z : h0€21 1 QpS*Jlﬁ(i)(l + 0P(1))-
7=1
a!(UNUp — Ui)* X

J
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Note that K has a bounded support. From the last expression and the uniform continuity of

functions a@’(-) in a neighborhood of o, it follows that

~ 7 7 1 *—
E(aio(Ui) — a(U;)|D) = §h3€sz_1,2p5(i) "B (1 + op(1)).

Since

p—1 p—1
Y, — a;o(U1) X7 . (U — s el U N X
1 ]; ajo(Ur) X1, a,(U1) X1, j;(%(ll) ajo(U1))X1;

= +

p—1 p—1
Yo — 2 j0(Un) X0 ap(Up) Xy > (aj(Un) = 5,0(Un)) X

7=1 71=1

it follows from (3.3) we get

ot (m) (U — uo)* X1,

. 1 _ .

apa(ug) = ap(ug) + E(l’ 0,0,0)(XEW,X,) ' XTw,
(1) (Un — 10)* Xy

p—1

> (a;(Ur) = ajo(Ur)) Xy

+(1,0,0,0) (X3 W2Xo) ™' X W,

+(1,0,0,0)(XIW,X,) 1 XTWye
1 - - -
= ap(uo) + 7/ + 2+ (1,0,0,0)(XI W,y X,) 1 XTw,e.
By simple calculation we have
Tpph4

E(LID) = hta) 571 0
(/1|D) 2ap (u0)(1,0,0,0)55; (1+o0p(1))

Tpphe
0
Ha
= hdal (ug)(—,0, ——£2 0) 0 (1+o0p(1))
207 \RON =2 T a2 P
He
0

=t ) (ug)(1 4 op(1)).
Ha — 5
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By (6.4), we have
P
>

-1
J=1

E((a;(Ur) = a;,0(U1))|D) X1
E(JJD) = (1,0,0,0)(XITW,X,) ' XTw,
p—1
5 B((a(Un) = a0(U2) D)X
]:
rd T *—1
,Zl €2i-1,2p9(1) P)X1j
]:
= —1h2(1,0,0,0)(XIW,X,)"1XT W, : (14 0p(1))
p—1
Z_: e%}—l,?ps(*n_)lﬁ(n)X
-1
E 62] 12pS* lﬁ VTps
= e m g, ’ (1+o0p(1))
T 2rpp s —p20 T pa—u2’ p—1 T .t P
];1 e2j—1,2p5(0) Boyrpitia

0

Rz Pl

P
= 5 £ FmraSia Bl + or(1)
]:

27pp

Therefore, by (6.5) we obtain
bias(&p 2(u0)|D)

= ( 2rpp E €95 12pS* 15 )Tpi 4%‘(1;::2:5)0;4)@0)}@%) (1+o0p(1)).

By using the properties of the Kronecker product, we have

bias(a, 2(uo)|D)

2 —pe 2 2h3 & - @
Lttt o) (o) — 2l xa a!(uo)(al, 0021 | 7 | | (14 0p(1))

Ha— 15

_ 14— #65202()4)(?“))}1% n2hg 0 3P 1 a(ug)ry; + op(hd + h2).

T Al - Frpp 2i=1 Y
This proves the bias expression in Theorem 2.
We now calculate the asymptotic variance. Recall B, defined at the end of Section 3. Denote

by H =1—- B,. By (3.4), we have
var(éyp 2(uo)|D)
= (1,0,0,0)(XIWoXy) I XTI WU W, X o (XITW,X,)71(1,0,0,0)T
—2(1,0,0,0)(XI W, X)) 1 XT W, HOW, X o (XTW,X5)71(1,0,0,0)7

+(1,0,0,0)(XIWoX o) ' XTWo HO HTW, X o (XEW,X5)71(1,0,0,0)7. (6.6)
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Using similar arguments as before, we can show that

(1,0,0,0)(XT W X)) P XT W W, Xy (XTW,X,)71(1,0,0,0)

2 2
Wavo — 2papiov + U5V4 o
= c“(ug)(1+ op(1 6.7
nha f(uo)rpp(pa — 13)? (o) r1) (6.7

Since
- Xujeq;1 05Xy Wy X)) 7' X W) ¥ W2 X,
HYW,X, =Y :
7=1

T -1y T
Xnj€51,2( Xy Wiy X n)) ™ Xy Winy ¥ W2 X

by Lemma 1, we have
X%;)W(Z)\IJWQXQ = nf((]i)a'z(Ui)](h2(l]i - UO)GTpr4,(i)D2(1 + Op(l))

where

Topxaiy = (ﬂk,z,(i))m4 1<k<2p, 0<I1<3

fork=1,---,p

Ui — UQ

ﬂZk—l,O,(i) = Tkp(Ui)a ﬂ'Zk—l,l,(i) = Tkp(Ui) ( hy ) + OP(l)a

- - UZ' — U 2 Ui — U
k1) = PnU) (Z0) o 0p() (F2) + om (D)
2

_ Ui —uo\® Ui—u ,
Uzk—l,s,(i)z’“kp(Ui)< s 0) +0P(1)( hs 0) +0P(1)( hs )+0P(1)’

ﬂZk,O,(i) = op(1), T12k,1,(i) =op(1) < 'hQ ) +op(1),

. Ui —uo\? Ui -
sy = or(1) (F2) +op(1) (F2) +or(1),

and

_ Ui —uo\® Ui —ug? Ui —
ok ) = or(1) (Z5 ) +op(1) (F0) 4 op(1) (F2) 4 on(1)

Thus, we obtain

0 1) 0 V4
Dsy(1 + op(1)).

T nf(uo) - T w—1 % 2
Xy WoHY WX, = ; 262]‘—1,2;95(0) a’rpio”(ug) Dy
=1

h 1) 0 V4 0

0 V4 0 Vg
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This and (6.1) together yield

(1,0,0,0)(XTWoXy) P XTI Wy HOW, X o (XTW,X5)71(1,0,0,0)

- S et ) o)
Let
Xigy = (X1, Xpn (U = U2), -+, Xpy Xip(Us — Ui))T
and

T _
Then, we have
XIW, HUHTW,X, = (vp5)axa  0<7,5< 3

where

Ups

= é é {Xip X1p(Us — uo)" (U) — w0)* Ky (Us — o) K, (Us — o)
pf Xijegj_mp(X%;)W(i)X(i))_1XE‘C)W(Z»)\IJ(:;Z_::11 Xim€h 1 ap(X Wiy X )" XF W) T}

= Z Z 2 {Z XipXij(Us = o) €51 0, (X{oy Wiy X i)™ Xi(ay Ko (Ui = w0) Ko (Uy — Ui)o*(Uk )}
03 XipXun (U1 — w0)* X [y (XEy Wiy X))~ e2mmn 20 Ky (Ur = w0) Ko (U = U1)}.

Using Lemma 1 and tedious calculation, we obtain

XTw,Hv HTW,X,
v9 0 vy O
7'Lf ’Ul() 0' uQ L ! Pz ! *x—1 0 l/2 0 V4
)EDY ""pyrpm%] 1 QpS QS €2m—1,2pD2 Dy(1+ op(1)).
j=1m=1 v 0 vy 0

0 Uy 0 Vg

Combination of this and (6.1) gives

1,0,0,0)(XIWo X)) ' XTI W, HU HT W, X o(XTW,X,) 71 (1,0,0,0)T
2 2 2
2 2 p—1 p—1
HaVo — 2ptafiovs + 31y T *—1, o*—1 2
g TpiTpm€s: 12,90y @50y €2m—1,2p0"(uo)(1 + op(1)).(6.9
nhZf(uo)Tgp(H‘l - M%)Z 7=1m=1 e -l (0) (0) : e ( 0)( ( )) ( )
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Substituting (6.7) — (6.9) into (6.6), we have

2 2
A _ pyvo—2papovatpsve
Var(apﬁ(uo)lp)— nh2f(uo)7’§p(u4—u§)2
p-lrd T *—1 *—1
Tpp + .El 21 ijlrpmer—l,QpS(o) QS(O) €2m—1,2p
=1 m=

rl T *—1 % 2
—9 Zl ij€2j—1,2ps(0) a* | o(up)(1 + op(1)).

]:
Using the properties of the Kronecker product we get

var(éyp 2(uo)|D)

(#il/o —2pq pav2 -Htg v4)o? (ug)
nhy f(uo)r, (na—p3)?

1

Tpp + rgpe]:gpQ; €pp — (agy Tpp)QZ?l (1+o0p(1)).
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