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Abstract

Quantifying the effects of land use change on hydrology in Brazil

by

Morgan Campbell Levy

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Sally E. Thompson, Chair

Quantifying the effect of changes in the Earths surface on regional water cycles is es-
sential for water security. Hydrologists have traditionally used manipulative experiments in
individual or paired river basins, or model-based analyses, to identify water cycle responses
to land use or land cover change. Limitations in these approaches leave important gaps in
understanding: (i) existing studies are not representative of biomes worldwide, and there is
a deficit especially for tropical regions; (ii) individual site-specific experiments generally do
not provide a representative sample of regional river systems in a way that can inform policy;
and (iii) regional-scale analyses are largely based on simulation models, and are therefore
limited by parameterizing assumptions and calibration uncertainty.

Larger-sample, empirical analyses are needed for more accurate modeling and policy-
relevant understanding and these analyses must be supported by regional data. The
Amazon-Cerrado (tropical savanna) transition region in Brazil is a global agricultural and
biodiversity center, where regional climate and hydrology are projected to have strong sen-
sitivities to land cover change. Dramatic land cover change has and continues to occur in
this region, and its effects on streamflow (as an overall indicator of water cycle function) are
not empirically understood at regional scales in part due to data uncertainties. Therefore,
analyses of hydroclimate in the Amazon-Cerrado region of Brazil exhibit many of the chal-
lenges of interest to evaluation of regional hydrological change, as well as a suite of important
applications.

This thesis explores data uncertainties implicit in the study of hydrological systems,
and the hydrological effects of anthropogenic land use change. Specifically, this thesis: de-
scribes a novel data collection effort supporting empirical analysis at multiple-basin scales
in Amazon-Cerrado Brazil; evaluates rainfall data uncertainty embedded in the study of
the hydroclimate; and measures the effect of agricultural-driven deforestation on regional
streamflow. This work required the harmonization of multiple in-situ and remotely-sensed
(e.g. satellite-derived land use and climate) data products, and novel application of empiri-
cal statistical analysis methods developed in other fields (i.e. public health and economics)
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to establish causality in complex observational data settings. At the time of writing, this
research is the first application of these methods to a geoscience inquiry.

Firstly, this research contributes a novel hydrological dataset, including processing and
quality control of more than 1,000 rain gauges, over 300 streamflow gauges, and associated
GIS data (rain and streamflow gauge locations, river basin delineations, and large reservoir
locations and drainage area delineations) across eight states in Brazil. Secondly, the research
demonstrates that the magnitude of uncertainty from rainfall “data selection uncertainty”,
or uncertainty across multiple in-situ and remotely-sensed (satellite) rainfall data products,
is comparable to estimated bias in global climate model projections, and provides practical
recommendations for addressing this problem. Third, the research provides a series of re-
gression analysis-based quantifications of the causal effects of deforestation on stream flow,
which show that (a) streamflow, and especially ecologically-important dry-season low flow,
has significantly increased across Amazon-Cerrado Brazil, and (b) that annual average in-
creases in streamflow due to land cover change (agricultural development and corresponding
forest loss) accounts for nearly half of total streamflow increases in the region over the past
half century.



i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Curated rain and flow data for the Brazilian rainforest-savanna transition
zone 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Data Formatting and QA/QC . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Addressing rainfall data selection uncertainty using connections between
rainfall and streamflow 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Land use change increases streamflow across the arc of deforestation in
Brazil 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 54
5.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



ii

Bibliography 57

A Supplementary Information (SI): Chapter 3 71
A.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.3 Supplementary discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Supplementary Information (SI): Chapter 4 85
B.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



iii

List of Figures

2.1 Study region of Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Rain site locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Flow site locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Drainage basins corresponding to flow gauge locations . . . . . . . . . . . . . . . 21

3.1 Study region and locations of in-situ (IS) rainfall and streamflow gauges . . . . 24
3.2 Spatial variation in the representation of descriptive statistics by different rainfall

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Daily rainfall statistics in river basins according to different rainfall datasets . . 30
3.4 River basin monthly total rainfall trend slope variation across rainfall datasets . 32
3.5 Distribution of river basin hydroclimate index differences and variance across

rainfall datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Differences in rainfall data quality as indicated by performance statistics measur-

ing correspondence with streamflow . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Land use change in river basins across Amazon-Cerrado Brazil . . . . . . . . . . 43
4.2 Causal diagram, or directed acyclic graph (DAG) for the process governing de-

forestation effects on streamflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 The estimated effects of deforestation on low to high rates of streamflow . . . . 47
4.4 The estimated effects of deforestation and agricultural land development on an-

nual flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1 Rain gauge counts and densities in study region . . . . . . . . . . . . . . . . . . 71
A.2 Median and wet-day median rainfall . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3 Extremes and variability of rainfall . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.4 Mean annual total rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.5 Occurrence of rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.6 Supplemental daily rainfall statistics in river basins according to different rainfall

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.7 Daily rainfall distributions by rain gauge density . . . . . . . . . . . . . . . . . . 77
A.8 Differences in rainfall data quality as indicated by performance statistics, by

latitude and river basin area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



iv

A.9 Differences in rainfall data quality as indicated by performance statistics, by season 79
A.10 Schematic of rainfall and streamflow peak correspondence methodology . . . . . 80

B.1 Change in cumulative agricultural land cover over time . . . . . . . . . . . . . . 92
B.2 River basin losses in forest cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.3 Forest cover losses and corresponding agricultural land cover gain . . . . . . . . 93
B.4 Relationships between flow and land cover . . . . . . . . . . . . . . . . . . . . . 94
B.5 Histograms of mean-normalized flow percentiles across periods and groups . . . 95
B.6 Trends in pre-treatment (< 1990) flow by treatment and control group . . . . . 96
B.7 Between-period flow change corresponding to pre-treatment agricultural land de-

velopment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.8 Visualization of DID regression coefficient estimates . . . . . . . . . . . . . . . . 97
B.9 The estimated effects of agricultural land development on annual flow . . . . . . 98
B.10 The estimated effects of all environmental change, including agricultural land

cover gain, on annual flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.11 The estimated effects of all environmental change, including forest loss, on annual

flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



v

List of Tables

2.1 QA/QC notes for rain data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 QA/QC notes for flow data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Daily rainfall datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.1 Two-sample Kolmogorov-Smirnov tests for differences in distributions of perfor-
mance statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.1 Data types, temporal resolution and duration, spatial resolution, and sources . . 101
B.2 Data summary of Amazon-Cerrado river basin features . . . . . . . . . . . . . . 102
B.3 DID regression model estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4 DID regression model estimates, alternative specification . . . . . . . . . . . . . 103
B.5 Fixed effects estimates from fitted mixed effects model . . . . . . . . . . . . . . 104



1

Chapter 1

Introduction

Background

Across Brazil’s arc of deforestation, the northward-moving agricultural frontier located along
the edges of the Amazon and Cerrado (tropical savanna) biomes, large-scale deforestation
for pastureland and cropland began as early as the 1960s, peaked in the 1980s and 1990s,
continued but slowed in the 2000s, and intensified yet again after 2012 [1]. Replacement
of natural vegetation, including forest and tropical savanna woodlands, with pasture and
cropland reduces evapotranspiration (ET) [2, 3], which has the primary, near-term effect
of increasing streamflow [4, 5, 6, 7, 8, 9]. Transition of deep-rooted forest to shallower-
rooted grassland and (rainfed) agricultural vegetation can alter not only the magnitude of
ET, but also its seasonal pattern; deeper-rooted plants can continue to access soil water
during dry periods whereas shallower-rooted plants cannot [10, 11, 12]. Thus, deforestation
has the capacity to increase flow during dryer (low flow) periods in particular. Additional
effects of land use change on streamflow include changes to soil hydraulic properties, such
as reduced infiltration in pastureland or increased infiltration in cropland [6, 13]; increased
sediment flux, particularly in large river basins [14]; and climate feedbacks - when reduced
ET is coupled with climate change, rainfall may either increase or decrease, and it’s seasonal
pattern may change [15, 16, 17, 18, 19, 20, 21].

The effects of deforestation on streamflow are known to vary across basins and are scale-
dependent [4, 14, 16], and existing studies hypothesize or suggest regional-scale effects based
on individual basin findings. There remains limited empirical understanding of the direct
effects of large-scale deforestation on streamflow at regional, multiple-basin scales in Brazil.
Yet, environmental, agricultural, and energy policy efforts require understanding. River
runoff volumes and timing affect hydroelectric power generation, navigation, the availability
of freshwater for human consumption and agricultural production, and stream temperature
and water quality that are critical to the health of uniquely biodiverse aquatic and terrestrial
ecosystems [22, 23].

Brazil ranks third in the world in renewable electricity production, and is the world’s
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second largest hydropower producer [24]. Small hydropower capacity is slated for growth
in developing rural areas [24], and the majority of the region’s 243 planned large reservoir
facilities will be located in the high-deforestation region of the southern Amazon [25]. Cli-
mate change and indirect climate feedbacks threaten to reduce streamflow and hydroelectric
production - especially for drought-sensitive small hydropower facilities - thereby threatening
energy security [26, 27]. Changes in streamflow could also potentially affect navigability of
the 13,000 km of inland waterways currently transporting 45 million tons/year in agricul-
tural and industrial goods [28]. Deforestation can increase sediment transport, particularly
in large river basins [14], and resulting infrastructure and ecosystems effects are unknown.
In this region, aquatic and terrestrial life is sensitive to water quality, quantity, and veloc-
ity, all of which are governed by streamflow volumes and timing. The Amazon is home to
2,320 known fish species, 64% of which are endemic [29]. Fish, aquatic invertebrates, and
migratory birds rely on seasonal flood cycles; and large migratory fish are sensitive to con-
nectivity of headwater breeding grounds [25]. Changes to the seasonal connectivity of rivers
and floodplains due to streamflow change could disrupt highly specialized ecosystems [30].
Lastly, Brazil’s economic future depends on continued production and export of soybean,
maize, and beef - all of which are reliant on the seasonal climate of the southern Amazon
and Cerrado, and continued agricultural growth and intensification will likely involve irriga-
tion development [1]. Long-term reduction in rainfall and surface water availability due to
indirect effects of deforestation would challenge Brazil’s agricultural productivity [18].

Chapters

Curated Rain and Flow Data for the Brazilian Rainforest-Savanna
Transition Zone

Description of data acquisition and processing are a necessary ‘data-scientific’ component of
empirical research on hydroclimate and land use changes in Amazon-Cerrado Brazil. Thus,
Chapter 2 describes a custom data package entitled “Curated rain and flow data for the
Brazilian rainforest-savanna transition zone”, which provides a novel, curated set of long-
term, historical daily rainfall and streamflow data from a large region spanning the southern
Amazonian rainforest to Cerrado (tropical savanna) biomes of Brazil. The curated data set
was derived from rainfall, streamflow, and associated geographic information systems (GIS)
data obtained primarily from the Brazilian government water management agency, and also
from the government electricity regulatory agency: Agência Nacional de Águas (ANA) and
Agência Nacional de Energia Elétrica (ANEEL), respectively. The data package has been
made available online via Figshare [31], and an analysis-ready subset of the full data are
made discoverable through the Consortium of Universities for the Advancement of Hydro-
logic Science (CUAHSI) Hydroshare platform [32]. Curation of quality-controlled climate
and hydrological data is an important but often overlooked ‘data scientific’ contribution to
environmental research [33]. Because data scientific work can be a chief area of effort in

https://figshare.com
https://www.cuahsi.org/HydroShare
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research on environmental change, explicit presentation of data acquisition and processing
methods acknowledges the challenges posed by the structure, size, messiness, and complexity
of data [34, 35], and the unique knowledge set required to address data challenges - especially
with respect to data from rural developing regions of the world.

Addressing rainfall data selection uncertainty using connections
between rainfall and streamflow

Studies of the hydroclimate at regional scales rely on spatial rainfall data products, derived
from remotely sensed (RS) and in-situ (IS, rain gauge) observations. Because regional rain-
fall fields cannot be directly measured, these data products contain artifacts, which cause
biases in their representation of the rainfall process. These biases pose a potential source
of uncertainty in environmental analyses, attributable to the choices made by data-users
in selecting a regional representation of rainfall. Chapter 3 uses the rainforest-savanna
transition region in Brazil as a case study and show differences in the statistics describing
rainfall across nine remotely-sensed (RS) and interpolated in-situ (IS) daily rainfall datasets
covering the period of 1998-2013. These differences propagated into illustrative analyses ex-
ploring temporal trends in monthly rainfall, and the computation of descriptive hydroclimate
indices. The magnitude of the differences was large enough to potentially bias interpreta-
tion of environmental behavior. For instance, differences between rainfall datasets were
comparable to estimated bias in global climate model projections, and rainfall trends from
different datasets were inconsistent at the scale of river basins. To address this uncertainty,
we evaluated the correspondence of different rainfall datasets with streamflow from 89 river
basins to guide rainfall data selection. We demonstrate that direct empirical comparisons
between rainfall and streamflow provide a scalable alternative to modeling for evaluating
rainfall dataset performance across multiple areal (river basin) units. These results highlight
the need for users of rainfall datasets to quantify this “data selection uncertainty” problem,
and either justify data choices for hydroclimatological analyses, or report the uncertainty in
derived results.

Land use change increases streamflow across the arc of
deforestation in Brazil

Nearly half of recent decades’ global forest loss occurred in the Amazon and Cerrado (tropical
savanna) biomes of Brazil. Despite individual basin experimental and model-based analyses,
a regional and empirical understanding of the direct effect of deforestation on streamflow
is lacking. Streamflow is a key indicator of water cycle function, and streamflow regimes
support globally-important ecosystems and industry. Chapter 4 frames the case of land
use change in Brazil as a natural experiment, and produces an estimate of the direct causal
effect of deforestation on sreamflow within an observational data setting. Using a difference-
in-differences (DID) regression modeling approach, we find that deforestation is responsible
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for significant increases in streamflow across the Amazon-Cerrado region, specifically during
periods of low flow. 2000-2013 flow increases in basins with high levels of deforestation were
between 5 and 11 percentage points higher than in minimally deforested basins. A mixed
effects regression model that estimates the relationship between annual rates of flow and
different levels of agricultural development and forest cover indicates that between 1950-2012,
the Amazon-Cerrado region experienced an increase of 0.93 mm/year, or 2.94 km3/year, due
to land cover change, which accounts for 44% of total regional flow rate increases (6.72
km3/year), with remaining increases due to climate.
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Chapter 2

Curated rain and flow data for the
Brazilian rainforest-savanna transition
zone

2.1 Introduction

The “Curated rain and flow data for the Brazilian rainforest-savanna transition zone” package
(hereafter ‘data package’) provides a curated set of long-term, historical (intermittent, 1926
- 2013) daily rainfall and streamflow data from a large region spanning the southern Ama-
zonian rainforest to the Cerrado (tropical savanna) biomes of Brazil (see Figure 2.1). The
curated data set was derived from free, publicly-available rainfall, streamflow, and associated
geographic information systems (GIS) data obtained primarily from the Brazilian govern-
ment water management agency, and also from the government electricity regulatory agency:
Agência Nacional de Águas (ANA) and Agência Nacional de Energia Elétrica (ANEEL), re-
spectively. Details of data formatting and quality assurance/quality control (QA/QC) are
provided here. Programmatic scripts and data files referenced in this document are included
in the associated data package, which has been made publicly available online via Figshare
[31]; an analysis-ready subset of the full data are made discoverable through the Consortium
of Universities for the Advancement of Hydrologic Science (CUAHSI) Hydroshare platform
[32].

This manuscript makes reference to files contained within the data package, and complete
information on data package files and data structures are included in a“ReadMe” file located
at the Figshare instance of the data package. This manuscript is intended to fully document
the data acquisition and processing effort as a transparent ‘data-scientific’ component [33]
of the larger research on hydroclimate and land use changes in Amazon-Cerrado Brazil.

https://figshare.com
https://www.cuahsi.org/HydroShare
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2.2 Data Acquisition

Time Series Data

I downloaded in-situ daily rainfall intensities or depths [mm/day] (hereafter ‘rain’) and daily
average streamflow rates [m3/sec] (hereafter ‘flow’) from the ANA historical data web portal
[36] (CSV). I also downloaded corresponding geographic information system (GIS) data
including rain and flow gauge site locations (KML) from this same source (see Section 2.2).
Data were selected and downloaded by state, for the following states: Acre (AC), Amazonas
(AM), Gois (GO), Mato Grosso (MT), Mato Grosso do Sul (MS), Para (PA), Rondnia
(RO), and Tocantins (TO). I obtained active as well as historical (inactive) rain and flow
data. Selected rain sites include all sites in these states; selected flow sites include only
sites located within a custom study region. The custom study region cuts the northern
states (AM and PA) at the Amazon River, and cuts the southern-most state MS along a
line defined by the bounding-box of an original four-state (MT, RO, GO, TO) region of
interest. GIS data used to delineate the custom study region include Brazilian river courses
and political boundaries, which I downloaded from the ANA Geospatial Metadata Portal
[37]. The custom study region is shown in Figure 2.1. Data for the states of MT, RO,
GO, and TO were downloaded on 12/5/2014; data for the states of PA, AM, and MS were
downloaded on 3/25/2015; data for AC was downloaded on 3/27/2015.

http://www.ana.gov.br/PortalSuporte/frmSelecaoEstacao.aspx
http://metadados.ana.gov.br/geonetwork/srv/pt/main.home
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Figure 2.1: Study region of Brazil

Outline of the custom study region (black line) in Brazil, overlapping the eight states (white lines, brown
fill) within which rain and flow data were downloaded. Cleaned (analysis-ready) rain data is available in
the full eight-state (brown) study region. Cleaned (analysis-ready) flow data is available in the subest
(black line) study region. Data source: ANA Geospatial Metadata Portal [37].

I downloaded time series CSVs by state using a custom python script, which downloads
a separate CSV file for each site in a selected group (e.g. in a selected state) and for an
individual selected data type (e.g. rain or flow). Each site CSV covers a unique date range
determined by data availability at each site. The earliest dates of record are in the 1920s,
however most sites began reporting in the 1980s and some start as late as the early 2000s; at
the time data were downloaded, the most recent data available were reported in late 2014.
Records included in the package date no later than 12/31/2013.

Source Data Details

The information in this section describes data collection and pre-processing carried out by
The Agência Nacional de Águas (ANA).

The Agência Nacional de Águas (ANA) measures total accumulated rainfall daily in
conventional bucket-type gauges, and checks raw data for observer errors and consistency [38,
39, 40]. Consistency analysis of rainfall data starts with the determination of homogenous
rainfall regions [41, 42, 43]. Within each homogeneous region, primary rainfall gauges are
defined based on their location, length of time series, length of period of interruption, and
record of changes in location or measurement equipment. Secondary gauges are used to

http://metadados.ana.gov.br/geonetwork/srv/pt/main.home
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verify observation errors in data from the major gauges, and are defined based on correlation
(higher than 0.8) and distance (less than 200 km) with respect to the major gauges. Primary
and secondary gauges must have coincident periods of observation and be located at similar
altitudes. Four methods are used to compare and verify inconstancies in monthly and annual
rainfall among gauges: regional weighting [44], linear regression [44], double mass curves [45],
and regional vector [46, 47]. When inconsistencies in monthly and annual rainfall are clearly
identified, daily values are corrected accordingly; otherwise, values are flagged as missing for
the entire inconsistent period.

To obtain streamflow data, the ANA measures river water stage twice daily, and checks
raw data for observer errors. Field teams take river flow measurements once in every four-
month period, and those raw data are checked for consistency between cross section profiles,
water level depths, wetted areas, and measured river velocities. Streamflow raw data is
checked for consistency [48, 49, 50]. Procedures consist of visual assessment of consistency
of river flows, specific river flows, relationships between specific river flows and drainage area,
and flow duration curves - at daily, monthly and annual time scales, and river stage-flow
curves. Consistency of the relationship between raw river stage and flow measurements is
checked using dispersion plots. Using only consistency-checked data, river stage curves are
constructed [50] and validated by inspection of differences between observed and calculated
river flows plotted against river levels and time (must be below 20%). Extrapolation of river
stage curves uses six different methods, according to the characteristics of river channels [51]:
logarithmic, area versus water velocity, Stevens (using Chezys equation), Stevens (using
Mannings equation), Manning, and river slope-conveyance. River flows computed using
validated river stage curves are finally submitted to visual inspections, focused on checking
the consistency of hydrographs of streamflow gauges located on the same river. Such visual
checks include comparisons of daily and monthly streamflow and specific flow time series
for different gauges, relationships between specific flows and drainage areas, verification of
monthly incremental river flows (differences between downstream and upstream monthly
flows should be positive), and daily and monthly flow duration curves for different gauges.

Raw and consistency-checked daily rainfall and streamflow are flagged in the publicly
available data from the ANA historical data web portal [36]. The curated data described in
the data package that accompanies this dissertation includes raw rainfall data, and a com-
bination of raw (constituting 10% of final quality-controlled data) and consistency-checked
(constituting 90% of final quality controlled data) streamflow data in order to obtain date
ranges beyond those available for consistency-checked data alone (2006). Therefore, the
author of this dissertation performed additional custom QA/QC - see Section 2.3.

Spatial Data

All spatial data in the data package are in geographic coordinates (latitude/longitude) on
the World Geodetic System of 1984 (WGS84) datum. Note that as one move towards the
Amazon, gauged locations for both rainfall and streamflow thin, and there is an association

http://www.ana.gov.br/PortalSuporte/frmSelecaoEstacao.aspx
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of the location of gauge sites with road and/or river networks, due presumably to access
issues.

Rain and Flow Site Locations

The ANA web portal also provides GIS location data for all rain and flow site data. These
are available as KML files that can be downloaded along with time series data CSVs. I
downloaded rain and flow site locations by state, along with the time series data (on the
same dates). GIS files of all rain and flow gauge locations are included in the data package.
Rain and flow location metadata attributes include site number (corresponding to the rain
and flow site numbers in the time series data - see Section 2.3), state, and elevation in meters
above sea level extracted from the NASA Shuttle Radar Topography Mission (SRTM) v.4
digital elevation model (DEM) [52].

Reservoir Locations

The locations of operational and under-construction hydroelectric sites (and therefore dam
and/or reservoir facilities that could alter natural streamflow regimes) are available through
ANEEL; the data I used are current as of 2013. These data were compiled and made
easily-accessible at dams-info.org, and an original source version of these data were provided
to us directly by Zachary Hurwitz at International Rivers, the organization that maintains
the dams-info website. I attempted to download hydroelectric facility location and metadata
directly from ANEEL’s Sistema de Informações Georreferenciadas do Setor Elétrico (SIGEL)
website [53] - the same source used by International Rivers, however the website’s data export
functions were non-functional in 2014 when these data were being collected. Hydroelectric
facility location data alone is available from the SIGEL KMZ download website [54], however
the metadata that is used to distinguish active and under-construction vs. planned sites, for
example, was not.

I selected large hydroelectric facilities (“Usinas Hidreltricas” - UHE, which are categorized
by ANEEL as facilities with a > 30MW capacity) located in the study region of interest that
were reported as under-construction or operational as of 2013. This means that the facility
had the potential to impact natural streamflow, either through construction or operation,
at some point prior to or during 2013 (additional research would be required to identify the
actual start date of potential impacts to flow by individual hydroelectric facilities). Small
hydroelectric facilities (“Pequenas Centrais Hidreltricas” - PCH, which are categorized by
ANEEL as facilities with a < 30MW capacity) were excluded from data processing and
subsequent analyses, as they were assumed unlikely to substantially impact flow regimes (i.e.
they were assumed to be small and/or run-of-river hydroelectric facilities). The data package
includes a GIS file of active or under-construction large hydroelectric facility (reservoir) sites
located in the custom study region. Reservoir location metadata attributes include a custom
ID, state in which the site is located, two ID categories assigned by ANEEL (retained for

http://dams-info.org/
http://sigel.aneel.gov.br/sigel.html
http://sigel.aneel.gov.br/kmz.html
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record-keeping purposes only), and elevation in meters above sea level extracted from the
NASA Shuttle Radar Topography Mission (SRTM) v.4 digital elevation model (DEM) [52].

Watershed Boundaries

I downloaded GIS watershed boundary data, which I used to delineate flow site and reservoir
site drainage areas, from the ANA Geospatial Metadata Portal [37]. Specifically, these
data are a collection of high-level (detailed) river drainage areas (watersheds, basins or
catchments) coded according to the Otto Pfafstetter stream/basin coding system. At any
point along a river (such as at the location of a flow site or reservoir), these coded basins can
be aggregated according to the Otto Pfafstetter codes to construct a complete drainage area
for the selected point. This coding system, and the ANA’s process for constructing the Otto
Pfafstetter-coded basin GIS using a DEM, is documented in an agency manual (“Manual de
Construo da Base Hidrogrfica Ottocodificada da ANA”) available at the ANA Geospatial
Metadata Portal [37].

I aggregated these coded basins according to a custom algorithm, and constructed drainage
areas for both the flow sites and reservoir locations. This is described in more detail in Sec-
tion 2.3. These data were downloaded on June 23, 2014. (The format in which these data
are provided online has since changed and/or been updated by the ANA; the script used
to import and format those data for our analysis is specific to the version I downloaded in
2014. Therefore, this script is not provided along with the data package, but the data I used
and the script is available upon request.) The raw data are not included in the data pack-
age because they can be obtained directly from the ANA. However, the custom-delineated
drainage area (basin) boundaries for the flow and reservoir sites are included in the data
package - see Section 2.3.

2.3 Data Formatting and QA/QC

Rain and Flow Time Series Formatting

Using the Comprehensive R Archive Network (CRAN) [55] programming environment (Ver-
sion 3) on both Apple and Windows operating systems, I reformatted and date-regularized
CSV time series data using custom functions (code is included in the data package). These
custom functions make use of quality codes (qc) assigned by the ANA. Raw ANA data is
assigned one of two qc values: 1 for raw data and 2 for processed data. These qc codes are
treated differently for rain and flow in the custom functions named above due to differences
in how data from each quality code is made available on the ANA website. For rain data,
both qc code values 1 and 2 span similar date ranges. However, for flow, qc=1 tends to con-
tain latest/recent years (only), and qc=2 the historical record, sometimes including recent
years, but sometimes not. Thus, the quality codes are handled differently.

For rain, I compared a selection of sites for which qc date ranges overlapped. Results
showed that qc=2 data are nearly identical to qc=1, except for cases where qc=2 is missing

http://metadados.ana.gov.br/geonetwork/srv/pt/metadata.show?id=47&currTab=distribution
http://metadados.ana.gov.br/geonetwork/srv/pt/main.home
http://metadados.ana.gov.br/geonetwork/srv/pt/main.home
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dates that qc=1 contains; qc=2 data occur over a much narrower date range (e.g. start later,
and end earlier; qc=2 only goes up to 2006). Following this check, I use qc=1 data, and
complete further manual quality checks. For flow, a mix of qc=1 and qc=2 are used; qc=2
is prioritized (used as the main data source); qc=1 data is used if no qc=2 data is available;
where qc=1 data can fill in gaps in qc=2, qc=1 data is merged with qc=2 data.

This combination of data with different qc codes was justified using visual inspection of
individual site data by quality code type, as well as by checking summary statistics across
all data. Summary statistics (min, max, mean, median) were computed for state-level qc=2
data, and compared to state-level qc=1 data, and were shown to be consistent. Summary
statistics for state-level data matched rain and flow statistics reported in the literature for
the study region [56, 57].

reformatted, date-regularized rain and flow data are included in the data package; these
data remain ‘raw’ as the only processing that has been done is merging of data with different
qc codes as described above, reformatting of the original CSVs to date-regularized, long
format, and aggregation of all sites into a single data object for each type (rain and flow). A
separate ‘ReadMe’ file included in the data package provides information on data structure.
There are a total of 1,364 rain sites and 744 flow sites.

Rain and Flow Time Series Data QA/QC

Rain and flow data are cleaned using different approaches. For each data set, I created
quality control (QC) notes to record data quality information, and to subsequently guide
data cleaning. (The abbreviation ‘QC’ used here for custom quality control information is
different from the ‘qc’ codes used by the ANA to indicate raw vs. consistency-checked rain
and flow data.) Notes are included in the data package. In the QC notes, files are flagged if
they should ultimately not be used in any analysis due to quality concerns. Entries in the
QC notes also describe characteristics of the data noted during both automated and manual
checks of the data, and upon which filtering of the data can be done. A more detailed
discussion of the QA/QC process for each data type is provided below.

I took a conservative or minimal-intervention approach to cleaning these data. This
means that if there was no clear reason to suspect poor quality data, site data were not
altered. Where there was clear reason to suspect poor quality data, the only modification
made to those data was the setting of poor quality data values to “NA”. I made no other
value adjustments or interpolations. To identify poor quality data, I looked at time series
visualization of the data, histograms, QQplots and Kolmogorov-Smirnov tests (comparisons
between distributions of nearby site data and/or between two time periods in the same site’s
data). Other than automated tests run to identify sites with outlier/extreme values, the
identification of poor-quality sites was visually-based. Suspect data included data that had
time-series inconsistencies (e.g. noticeably different patterns over different periods of time, or
relative to nearby sites), extreme (high) values, and blocks or duplicated patterns indicating
manually-altered entries or bad gauges. A double mass curve (DMC) analysis [45] was used
to confirm consistency of rain and flow sites relative to neighboring sties, and to identify
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sites that may be excluded from future analyses depending on the context in which they are
to be used - see Sections 2.3 and 2.3 below.

Rain

This section describes the QA/QC process for rain data, which results in the creation of the
quality controlled time series data. I checked the raw rain data for outliers along several
dimensions: high and low values, means, medians, and missingness. Sites with outlier values
were noted as requiring subsequent cleaning. Where outlier values indicated a more system-
atic problem with the site (e.g. all values were outside a reasonable range, or the site showed
highly irregular seasonal patterns), the site was flagged so as to be excluded from any analy-
sis. I found no values less than zero, and the only universal adjustment I carried out during
the cleaning process was to assign all values higher than 250mm a “NA” value because in all
cases, values greater than 250mm appeared to be measurement and/or reporting error, not
extreme events. This was evident by observing rainfall events over a site’s full time series,
and especially the values adjacent to the extremes: extreme values assumed to be errors
tended to have adjacent missing values, very low or zero values instead of preceding storm
events, and/or occurred in the dry season with no preceding or subsequent rainfall. Thus,
the classification of an erroneous extreme is somewhat qualitative, however it is justified by
context knowledge of regional rainfall cycles and extremes.

I visually inspected the time series of all sites, even those that did not have outstanding
values according to the statistical summaries. Where a (subjective, visually-determined)
baseline signature of rainfall at a given site (or from nearby sites) was evident - usually
requiring ≥ 3 years at a site, and segments of a site’s time series were inconsistent relative
to that baseline, then inconsistent entries were set to “NA”. In the case of an entire site’s
time series being inconsistent, the site was flagged, and an accompanying descriptive note
was included in the rain QC notes.

The only other cleaning, besides replacement of bad values with “NA” and flagging of
bad sites, was removal and/or combination of sites with duplicate coordinates: sites at the
same location. For sites with duplicate coordinates that had non-overlapping date ranges,
I kept both sites as-is. For co-located sites with overlapping date ranges, I inspected time
series for consistency, selected a primary site (the site with the longest duration or highest
quality data), and I filled in missing entries from that site with data from the other duplicate
site. I then set the duplicate sites’ complimentary data to “NA” and/or flagged the entire
site for removal if there was complete overlap. If a duplicate site showed inconsistent or poor
quality data compared to its primary co-located site, then I flagged the duplicate site. Thus,
no duplicate sites have overlapping time ranges in the final cleaned data set. When entire
years of data were set to “NA”, generally the period was set between July 1st of each year
(a dry season date occurring well before the onset of wet season transitional rainfall), unless
existing breaks in data could be used, or other time ranges were appropriate to the data.
Sites with durations less than a year or sites containing too many gaps to provide a baseline
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signature were flagged. All sites that were manually cleaned are noted in the QC notes, and
I also trim missing values at the start or end of a time series in the quality controlled data..

After data cleaning, I used a double mass curve (DMC) analysis to confirm general con-
sistency of rain site data relative to neighboring site data. For each good quality (unflagged)
site, I identified other rain sites within a 100 km radius to use as a reference comparison
group. The 100 km radius was used based on an analysis of rain correlation distances across
the entire study region: I fit a variogram model to a random sample of 1,500 individual days
between 1980 - 2013 for all rain sites active on each day, and estimated the mean variogram
range (maximum correlation distance) to be 100km. Not all sites had other sites within this
range and with adequate data due to missingness. Thus, it was not possible to perform a
DMC on all sites. Site data in years with > 10 consecutive days of missing values were ex-
cluded from the analysis, for both the site and its reference group. In years with acceptable
missingness (< 10 consecutive days of missing values), missing values that remained were
filled using a 5-day moving average value (for the DMC analysis only, not in the quality
controlled data). The number of reference group sites varied by year for each site due to
missingness. Out of a total of 1,171 good quality sites, it was possible to do a DMC analysis
on 1,058 sites (meaning there was at least one other site within 100km that had at least one
year of data with < 10 consecutive days of missing values). Sites for which a DMC analysis
was performed are noted in the QC notes.

DMCs were created by individual years due to uneven reporting (missingness) across
sites. To evaluate the consistency of a site over all years relative to its reference group, I fit
a linear regression (with an intercept forced to the origin) of the cumulative sum of the site’s
daily rainfall on the mean cumulative sum of the reference group’s daily rainfall. This was
done separately for each year available. Not all years in a site’s record could be evaluated
due to missingness in either the site itself, or its reference group sites. I calculated summary
statistics of a site’s DMC fit across all years for which I was able to construct a DMC.
These statistics included the mean and median of residuals, the mean standard deviation of
residuals, and the mean R2 fit of the linear regression across all individual-year DMC fits
combined.

The R2 interquartile range (IQR) for all sites was between .993 and .996, meaning that
outliers with respect to this statistic were not especially meaningful; anything with an R2 less
than 0.987 was an outlier, and the lowest R2 was 0.84. The most meaningful statistic is the
mean of residuals across all years’ DMCs for a site, which is centered at zero for most sites.
Sites with mean residuals that qualify as outliers may have systematic bias in their rainfall
data relative to their reference groups. There were 92 outlier sites - those with residual mean
values exceeding a value equal to 1.5 times the IQR upper and lower limit. I found that
outlier sites were sites for which the number of years for which DMCs were calculated was low
relative to the average across all sites (the distribution of the count of years used to calculate
DMCs for the outlier sites was shifted to the left of the distribution for all sites). Thus, the
outlier nature of these sites may be attributable to limited data, and not necessarily to a
real lack of consistency. 67% of the sites identified as outliers according to their residual
standard deviation were also identified as outliers according to their residual mean. Sites
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that were identified as outliers according to either the mean or standard deviation of the
residuals were noted in the QCnotes. A total of 103 sites were noted as outliers according
to the DMC analysis (99 sites according to the residual mean, and an additional 11 unique
sites according to the standard deviation of the residuals).

Despite being statistical outliers, these sites may not necessarily need to be removed from
analysis due to the fact that their outlier status may be a result of limited data, rather than
the quality of the data. The DMC analysis in general confirms site consistency more than
it does indicate poor quality sites. Outlier site flags remain set to zero (indicating good
quality). It is up to the user to decide whether or not to exclude sites based on the DMC
results.

Traditionally, DMC analyses are used for identification of inconsistent gauge data where
local, context information is often available for individual sites, and where detailed adjust-
ments can be made to individual sites using results from a DMC analysis. In the context
of this relatively large data set, the use of a detailed DMC analysis was not feasible, and
therefore the summary statistical approach was appropriate. The testing of significance of
DMC residuals generally relies on identification of change-point years (based on visual in-
spection of DMCs and context knowledge); this was not carried out. Therefore results were
used to summarize DMC fits to confirm that on average, these sites are consistent with their
neighboring sites. Additionally, the sites were compared to other reference sites in a large
(100 km radius) region; correction would not necessarily be desired due to uncertainty in the
reasons for site inconsistency across this great of a distance.

Lastly, I checked for inconsistencies in daily rainfall values by weekday, and specifically
for systematically different reporting on weekend days (Saturday and Sunday). I checked the
proportion of missing values on each day of the week; standard deviation of daily rainfall (as
a fraction of mean daily rainfall) on each day of the week; and proportion of zero values on
each day of the week for all un-flagged sites. There were no apparent inconsistencies for the
standard deviations or proportion of zero values on weekend days as compared to weekdays
(or on any individual day compared to other days of the week). There were, however, six
sites with a significantly greater number of missing values on weekends. These sites are
noted in the QC notes, but not flagged because their weekday data is still usable. A greater
number of missing values on weekends should not affect summary statistics of rainfall, or
by-day interpolations, other than to reduce the number of observations available.

Final, quality-controlled daily rainfall data (for un-flagged sites only) is provided in the
data package separate from the raw data, and are the data made discoverable through the
CUAHSI platform. All notes on cleaning remain in rain QC notes, which can be used to
filter rain data for analysis (based on flag values, at a minimum). Any unflagged rain site has
been determined by the above-described QA/QC process to be ready for use in analysis. Of
the original 1,364 (raw) rain sites, 1,171 are determined to be adequate quality for analysis,
however use of other filters (e.g. duration of reporting, being an outlier according to the
DMC analysis) may further limit the number of sites available for analysis. These sites have
extremely varied reporting periods and missingness. Figure 2.2 shows all rain site locations
in the study region.
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Figure 2.2: Rain site locations

Blue indicates good quality sites (unflagged) and red indicates poor quality sites (flagged). Data source:
ANA historical data web portal [36].

Table 2.1 summarizes the information provided in the rain QC notes. These notes were
created in the process of QA/QC, and many refer to issues that were identified in the original,
raw data, and do not remain in the final, cleaned data (but are retained for record-keeping).
All issues identified in the notes were addressed in the cleaning process and/or sites were
flagged as poor quality when issues could not be addressed; only flagged sites have remaining
problems. These notes are intended to be used alongside the final cleaned data for filtering
of data for specific analyses.

http://www.ana.gov.br/PortalSuporte/frmSelecaoEstacao.aspx
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Table 2.1: QA/QC notes for rain data

Note Description
<X year Sites with data over a period less than X number of years, e.g. ‘<1 year’.
>X% values over Y A site with a percentage X of values exceeding some threshold value Y; this note

was used as an indicator for further inspection and potential cleaning of a site.
cut/clean Sites that required detailed checking (some notes contain specific date ranges or

refer to specific ANA quality codes over which to check data), cleaning (setting
of some data to ‘NA’), and potential flagging; sites that also have ‘clean manual’
= 1 were cleaned; sites that also have ‘flag’ = 1 were flagged.

DMC A double-mass curve (DMC) analysis was performed on this site.
DMC outlier A double-mass curve (DMC) analysis determined this site to be an outlier ac-

cording to summary statistics across all sites.
duplicate of X Sites that are located in the same location as other sites (at the same or different

time periods), where X is the site ID number of the co-located site; modifications
of this note might include information on how duplicate sites were handled, e.g.
‘moved overlap to duplicate X’, or ‘NAs replaced with duplicates from X’.

max value >300 or
max value >= 250

Sites with original (not-cleaned) data values >250 or >300 [mm/day]; all values
>250 were set to ‘NA’ during cleaning based on summary statistical analyses and
context knowledge (regional climate); if issues remain with the site, it will be
flagged (flag = 1).

mean >= X, or mean
(median) on rain days
>= X

Sites with a mean or median value (over the full data record, or only for days
in which there was non-zero rainfall) determined to be greater than or equal to
a value X considered to be an outlier according to summary statistics; this note
was used as an indicator for further inspection and potential cleaning of a site.

more NAs on week-
ends

Sites that report a greater number of missing values on weekend days (Saturday,
Sunday) than on other days of the week.

NA values >X% of
data

A site with a quantity of missing values that exceed a threshold percentage X of
the data; this note was used as an indicator for further inspection and potential
cleaning of a site.

potentially inconsis-
tent or inconsistent

A site with data that appeared inconsistent due to real (climate) variation or
measurement error - it was not possible to distinguish.

abnormal A site deemed to be poor quality upon visual inspection; an indicator that the site
was checked, was not able to be cleaned so as to be categorized as good quality,
and was therefore flagged (flag = 1).

zero values >X% of
data

A site with the percentage of values = 0 exceeding some threshold X; this note
was used as an indicator for further inspection and potential cleaning of a site.

(other) Other custom notes may be appended to the above common notes, or may be
entered independently; e.g. ‘drought 1990s’, which is information relevant to the
site and provided for context.

Flow

This section describes the QA/QC process for flow data. For flow data, quality controlled
sites were limited to those within the custom study region area; this eliminated sites located
in the northern parts of AM and PA (above the Amazon river) and MS to the south (below
the latitude of other included state areas). The total number of sites contained in the study
region is 626, however not all of these were investigated due to the presence of reservoirs,
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described in more detail below. A total of 611 sites have QA/QC information provided in
the flow QC notes (see data package).

I first identified which flow sites were located in or immediately downstream of a large
reservoir facility. This was done initially in order to exclude sites that are directly impacted
by reservoirs: flow measurements made in or just downstream of a reservoir do not provide
a natural flow record. To identify sites located at reservoirs, I looked at satellite images and
maps of flow gauge and reservoir locations on the ANA historical web portal from which
the original data were obtained; the ANA web portal visualizations sources Google satellite
imagery dated 2014. I also looked at the locations of operational and under-construction
dam sites listed by ANEEL as of 2013 using the dam location data available from ANEEL
directly, and also courtesy of International Rivers (see Section 2.2). Flow sites that are
located immediately downstream of a reservoir or appear to be located in a reservoir area
are noted in the flow QC notes. In combination with this analysis, drainage basins for each
flow site and reservoir facility were identified using the watershed GIS data obtained from
the ANA Geospatial Metadata Portal [37] (see Section 2.3). The areas draining to each
flow site (its catchment area in square km), as well the percentages of those areas that are
composed of any reservoir’s drainage area, are noted in the flow QC notes.

For flow data, I made no universal adjustments; all adjustments were based on visual
inspections of the time series data of each site. I also checked flow data for outliers along
several dimensions similar to rain: high and low values, means, medians, and missingness.
I used these criteria to find individual sites that required cleaning, or that needed to be
flagged as poor quality (and not used in analysis). I looked at hydrographs (flow time series)
at each flow site and noted where non-stationarities, uncharacteristic trends, or missingness
were evident. I flagged data that appeared inconsistent or otherwise poor quality, and that
could not be adequately trimmed or adjusted.

Adjustments made to data include replacement of bad values with “NA’”, and removal
and/or combination of duplicate sites, similar to the rain data. Duplicate flow sites were
identified by checking site coordinates as well as overlap in drainage basins. For flow sites
with non-overlapping date ranges, I kept both sites as-is. For sites with overlapping date
ranges, I inspected time series for consistency, selected a primary site (the site with the
longest duration or highest quality data), and I filled in missing entries from that site with
data from the other duplicate site. I then set the duplicate sites’ complimentary data to
“NA” and/or flagged the entire site for removal if there was complete overlap. If a duplicate
site showed inconsistent or poor quality data compared to its primary co-located site, then I
flagged the duplicate site. Thus, no duplicate sites have overlapping time ranges in the final
cleaned data set. Missing values at the start or end of a time series were trimmed.

After data cleaning, I used a double mass curve (DMC) analysis to confirm general
consistency of flow site data relative to neighboring site data. I used the same process as
described for the rain data (see Section 2.3), with some modifications to the process specific
to flow data. Analysis-ready flow sites are those with good quality (unflagged) data, no
reservoir onsite, with less than 10% of their total drainage area affected by a reservoir, and
sites for which basin areas were available (meaning the basin had been delineated - see Section

http://metadados.ana.gov.br/geonetwork/srv/pt/main.home
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2.3). Additionally, volumetric flows were converted to area-normalized depths (mm/day) for
the DMC analysis.

For each of these selected sites, I identified other flow sites within a 100 km radius (again,
based on rain correlation distances across the entire study region). It was not possible to
perform a DMC on all sites. Site data in years with > 10 consecutive days of missing
values were excluded from the analysis, for both the site and its reference group. In years
with acceptable missingness (< 10 consecutive days of missing values), missing values that
remained were filled using a 3-day moving average value (slightly smaller than the window
used for rain due to increased missingness in the flow data). The number of reference group
sites varied by year for each site due to missingness. It was possible to do a DMC analysis
on 279 sites (meaning there was at least one other site within 100km that had at least one
year of data with < 10 consecutive days of missing values). Sites for which a DMC analysis
was performed are noted in the flow QC notes.

The R2 interquartile range (IQR) for all flow site DMC fits was even tighter than for
rainfall. An outlier site was any site with a mean R2 less than 0.988, again meaning that
outliers with respect to this statistic were not especially meaningful. As in the rain DMC
analysis, the most meaningful statistic appeared to be the mean of residuals across all years’
DMCs for a site, which is centered at zero for most sites. Sites with mean residuals that
qualify as outliers may have systematic bias in their streamflow data relative to their reference
groups. There were 85 outlier sites according to this statistic - those with residual mean
values exceeding a value equal to 1.5 times the IQR upper and lower limit. 98% (all but
one) of the sites identified as outliers according to their residual standard deviation were also
identified as outliers according to their residual mean. Sites that were identified as outliers
according to either the mean or standard deviation of the residuals were noted in the flow
QC notes. A total of 86 sites were noted as outliers according to the DMC analysis (85 sites
according to the residual mean, and an additional 1 unique site according to the standard
deviation of the residuals).

Unlike with rainfall, outlier flow sites appeared no different than all sites in terms of
the number of years over which DMC residuals were calculated. Nor did basin size appear
correlated with categorization as an outlier site. Therefore, the qualification of flow sites as
outliers may potentially have more meaning than for the rain sites (where it was determined
outlier status was correlated with limited years over which to calculate a DMC.) Again, the
DMC fits for flow were very good, meaning also that outliers are potentially an artifact of
the large number of sites available for this analysis, rather than something with a physical
interpretation. Furthermore, the inconsistency of some basins relative to others might in fact
be a signature of interest. Outlier flow sites should be excluded based on the analysis at hand.
If flow is used as a reference case (e.g. for establishing relationships between rain and flow
over time), it may be more desirable to remove the outliers from the analysis. If, however,
inconsistency in a flow record in response to basin disturbance (e.g. land use change) is a
signature of interest, it may be more desirable to retain the outliers in an analysis because
no other significant problems were identified for these sites.

Final, quality controlled daily flow data (for un-flagged sites only) is provided in the
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data package separate from the raw data, and are the data made discoverable through the
CUAHSI platform. All notes on cleaning remain in flow QC notes, which can be used to
filter flow data for analysis (based on flags, at a minimum). Any unflagged flow site has been
determined by the above-described QA/QC process to be ready for use in analysis. Figure
2.3 shows all flow site locations in the study region.
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Figure 2.3: Flow site locations

Blue indicates good quality sites (unflagged) whose upstream drainage areas (basins) have been delineated;
red indicates poor quality sites (flagged) or sites excluded due to other factors: presence of a reservoir,
upstream impact of a reservoir, or a site located outside the custom study region. Data source: ANA
historical data web portal [36].

Table 2.2 summarizes the information provided in the flow QC notes. These notes were
created in the process of QA/QC, and many refer to issues that were identified in the original,
raw data, and do not remain in the final, cleaned data (but are retained for record-keeping).
All issues identified in the notes were addressed in the cleaning process and/or sites were
flagged as poor quality when issues could not be addressed; only flagged sites have remaining
problems. These notes are intended to be used alongside the final cleaned data for filtering
of data for specific analyses.

http://www.ana.gov.br/PortalSuporte/frmSelecaoEstacao.aspx
http://www.ana.gov.br/PortalSuporte/frmSelecaoEstacao.aspx
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Table 2.2: QA/QC notes for flow data

Note Description
Bolivian or Pe-
ruvian basin

The site is located in a basin that extends into Bolivia or Peru.

cut/clean Sites that required detailed checking, cleaning (setting of some data to ‘NA’), and
potential flagging; sites that also have ‘clean manual’ = 1 were cleaned; sites that also
have ‘flag’ = 1 were flagged.

decreasing A site with data that has a decreasing or downward trend over time.
DMC A double-mass curve (DMC) analysis was performed on this site.
DMC outlier A double-mass curve (DMC) analysis determined this site to be an outlier according

to summary statistics across all sites.
downstream
from/of, or in,
a reservoir or
ROR

A site located downstream of or in the immediate vicinity of a reservoir or run-of-river
(ROR) hydropower facility; modifications of this note include ‘(far) downstream of a
reservoir’, meaning assumed non-direct impact of the reservoir which is captured by
‘reservoir impact p’; several sites’ data precede construction of the co-located reservoir
facility, and are noted e.g. ‘data prior to reservoir construction’.

duplicate of X Sites that are located in the same location as other sites (at the same or different time
periods), where X is the site ID number of the co-located site; modifications of this
note might include information on how duplicate sites were handled.

errors Errors were noted in a site’s data (that were likely addressed through cleaning in the
final data set; if not, then the site will have flag = 1), e.g. ‘min value errors’ or ‘max
value errors’.

gap(s) Indicates the presence of gaps (missing values) at any point in the time series; modifi-
cations of this note include ‘small gaps’, ‘large gaps’, and ‘gap at X’ where X is a year
or date range.

good example
site

Sites that had a consistent long-term record, and/or were located in specific region of
interest, and were noted as potentially being useful in the capacity of a case study or
example.

increasing A site with data that has an increasing or upward trend over time.
low flow Sites with relatively low flow volumes (small, potentially-headwater streams).
ok A site deemed to be good quality upon visual inspection; an indicator that the site was

checked, and was not flagged for further detailed inspection; this note is sometimes
accompanied by specific reference to elements of a site’s data, e.g. ‘max values ok’.

potentially
filtered

Sites that appeared upon visual inspection to potentially contain synthetic or modified
data; sites that also have ‘clean manual’ = 1 were cleaned; sites that also have ‘flag’ =
1 were flagged.

(potentially) in-
consistent

A site with data that appeared inconsistent due to real (natural or basin-changed
induced) variation or measurement error - it was not possible to distinguish.

small date range A site with data over a relatively small date range; usually accompanied by a note on
the number of years (e.g. ‘<10 years’, ‘<5 years’, or ‘<2 years’).

abnormal A site deemed to be poor quality upon visual (hydrograph) inspection; an indicator
that the site was checked, was not able to be cleaned so as to be categorized as good
quality, and was therefore flagged (flag = 1).

(other) Other custom notes may be appended to the above common notes, or may be entered
independently; these are mostly self-explanatory.

Drainage Area Formatting

I aggregate the ANA Otto Pfafstetter-coded basins (see Section 2.2) into flow- and reservoir-
site specific basins. I used the ANA coded data instead of performing our own delineation
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using a DEM because first, this is what the ANA has already done, and second the study
region of interest is relatively flat, which can make a straightforward DEM-based basin
classification difficult without local knowledge, especially with relatively coarse DEM data.

River Basin Delineation

I aggregated the ANA-coded basins to a point of interest along a river (a process hereafter
referred to as ‘basin delineation’) for flow gauge sites that met certain criteria: i) the flow
site was located in the custom study region, ii) the flow site was unflagged, iii) the flow site
was not at or immediately downstream of a reservoir, and iv) the flow site had at least one
year of data between 2000 - 2012 (which may or may not include missing values - the criteria
was based on start and end date alone). (The requirement for one year of data between
2000-2012 was specific to research that motivated the creation of the data package. If the
date range is excluded from selection criteria, the basins of an additional 100 sites can be
delineated.) The number of flow sites that met this criteria out of the original 744 is 377.
When the basins are subset further to those with no flag, no onsite reservoir, and with <10%
basin area impacted by a reservoir, then the number of basins is 332. These are the basins
shown in Figure 2.4, however all 377 are included in basin boundary GIS files. Figure 2.4
shows selected flow site drainage basin locations entirely within the study region.

Figure 2.4: Drainage basins corresponding to flow gauge locations

Basins are shown as light blue polygons in and around the custom study region (black line), and
transparency is used to indicate overlapping basins. Data source: ANA Geospatial Metadata Portal [37].

http://metadados.ana.gov.br/geonetwork/srv/pt/metadata.show?id=47&currTab=distribution
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The basin delineation algorithm aggregates basin units from the ANA-coded data into
complete basin areas that drain into the selected flow gauge sites according to the numbering
system assigned by the ANA; I aggregate all basins identified as being upstream of a ‘root’
basin that overlaps with the flow gauge site. Each delineated basin was visually inspected
for accuracy (plot of basin boundary, root basin, flow gauge site location, and rivers within
basin boundaries), and modifications to the basin aggregation algorithm were made where
needed; many basins required customized sub-basin additions within the algorithm. The
script used to carry out basin delineations is not included with this data package (due to
the fact that the format of the ANA-coded data has changed since our acquisition of those
data - see Section 2.2), however the ANA data that I used (downloaded in 2014), as well
as the script, is available upon request. The flow basin delineations allows for calculation
of flow site drainage areas (enabling area-normalization of flow time series, for example).
Additionally, nested basin groups were identified using basin area overlap, and were assigned
a numeric indicator value in the flow QC notes.

Reservoir Basin Delineation

Reservoir delineations were completed using the same method used to delineate flow basins
(described above), except that basins were aggregated to the area upstream of the reservoir
locations (see Section 2.2) instead of flow site locations. The reservoir basin delineations
allowed us to calculate the percentage of a flow gauge site’s upstream area that drains into
(is impacted by) a reservoir. Ultimately, basins with a threshold percentage (e.g. 10%) of
their upstream area impacted by a reservoir may be excluded from analysis.

2.4 Conclusion

Documentation of these data acquisition and processing steps was required in order to justify
use of a novel curated dataset for analysis, and is intended to provide detailed information to
other future users of data acquired from ANA and ANEEL. Raw through quality controlled
data and associated records, including code, GIS and time series CSV data files, and QC
notes for custom data filtering are included in the Figshare [31] instance of “Curated rain
and flow data for the Brazilian rainforest-savanna transition zone”, and an analysis-ready
version is discoverable through the CUAHSI Hydroshare platform [32]. Code used to carry
out the analyses described (other than code already provided in the data package - see the
“ReadMe” file located at the Figshare instance of the data package) is available upon request.

https://figshare.com
https://www.cuahsi.org/HydroShare
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Chapter 3

Addressing rainfall data selection
uncertainty using connections
between rainfall and streamflow

3.1 Introduction

Quantifying precipitation patterns at regional scales is essential for water security [58, 59],
but is compromised by discrepancies in rainfall datasets [60, 61, 62]. Spatial rainfall data
products have proliferated, drawing on differing information sources, using different tech-
niques to impute that information through space, and varying in their spatial extent and
spatio-temporal resolution [63]. The proliferation of such rainfall datasets facilitates applied
research at regional spatial scales, but raises the risk that näıve use of an individual rainfall
product may introduce bias into subsequent analyses, relative to the full range of repre-
sentations of the rainfall field available [64]. Addressing this risk requires quantifying the
differences between available rainfall data products, and, if possible, identifying and working
with only those datasets that are most suitable for the intended analysis. Here we firstly
show that the differences across daily rainfall datasets, for a test case in Northern Brazil,
are large enough to require such uncertainty characterization. Next we demonstrate that
comparison of datasets with a mechanistically related, but independently observed environ-
mental variable, in this case streamflow, can provide a basis for selecting among available
rainfall products. Although our proximate goal is to identify and reduce the uncertainties as-
sociated with näıve selection of a rainfall data product for hydrologic purposes, the approach
is generalizable to other climatic products and applications.

Regional rainfall data are collected through remote sensing (RS) and in-situ (IS) rain
gauge observations. At regional scales, and in remote, rural or developing regions, the rain-
fall data products generally available and most applicable for hydroclimatological analyses
[61] are based on RS data, IS data, or both. IS data provide precision and accuracy at a
point, but are often distributed sparsely and heterogeneously in space, and discontinuously
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in time [65, 66], and may pose quality control challenges [67, 68]. RS data have consistent
coverage and represent spatial heterogeneity, but are often biased, with uncertainties that
are dependent on topography, climate, and the level of spatial and temporal aggregation
[60, 69, 62]. Differences between rainfall datasets emerge, especially at daily or sub-daily
temporal resolutions [64], mostly due to artifacts introduced during data processing. For
RS data, such artifacts can include a combination of satellite data retrieval technologies and
associated processing algorithms, as well as IS calibration sources and methods [61]. For IS
data, artifacts may derive from gauge measurement quality, availability, and the imputation
and/or interpolation methods used [70]. While RS data may be a preferred alternative to IS
data in settings with sparse rain gauge networks [71], at regional scales, both data types, and
their spatial imputations, are expected to differ from ‘true’ (and unknown) rainfall fields.

Consequently, the challenge of data selection given the uncertainty associated with datasets
is not to determine the ‘most accurate’ dataset, for which there is no universal assessment
[61, 72], but instead to quantify the uncertainty in any given analysis that derives from the
different representations of reality by the available ensemble of data products. If possible,
data selection should also identify the most ‘fit-for-purpose’ dataset, based on its fidelity to
the features of rainfall (e.g. mean, extremes, trends, or correspondence with an indepen-
dently measured and mechanistically related environmental variable) most pertinent to a
given study topic.

Figure 3.1: Study region and locations of in-situ (IS) rainfall and streamflow gauges

Panel (a) shows the Amazon-Cerrado transition states of Brazil. Panels (b) and (c) show the location of 942
rain gauges and 89 streamflow gauges and associated catchment areas (river basins) used in the analysis.
The majority of the river basins in (c) drain to the north, and are headwater basins of the Amazon and
Araguaia-Tocantins River Basins; basins located in the south are headwater basins of the Paraguay and
Paraná River basins. These maps were generated in R, Version 3 (https://cran.r-project.org/) [73] using
data from the curated data package accompanying this manuscript [32] and biome boundary data[74].
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Our case study region, the rainforest-savanna (Amazon-Cerrado) transition zone in Brazil
(Figure 4.1 (a)) has experienced dramatic changes in land-cover, with anticipated feedbacks
to regional climate [75, 76], and thus to the wide variety of rainfall-dependent ecosystem
services provided in the region, including agricultural industries, the hydropower sector [18,
77], and extensive regional forest. Variability and change in the Amazon and surrounding
region’s precipitation therefore affect Brazilian economic, food, and energy security, and
potentially also the health of the Amazon rainforest and the global climate system [1, 78,
79]. Rainfall in center-west and northern Brazil is monitored through a relatively sparse rain
gauge data network (15 or fewer rain gauges per 104 km2), comparable to inland regions of
South America; sub-Saharan Africa; and central, east, and southeast-Asia [80]. These low
densities are likely to result in non-trivial differences between regional rainfall data products
(in Switzerland, rain gauge densities of > 24 rain gauges per 1,000 km 2 were required to
avoid density-dependent biases [66]).

Rainfall data in center-west and northern Brazil are therefore likely to be inaccurate at
regional scales, yet remain highly relevant to a wide range of policy and planning efforts. For
the purposes of this paper, we focus on the quantification of regional daily rainfall statistics
needed for hydrologic analyses. Daily rainfall data, or statistical representations thereof,
are needed as input to a broad range of hydrological models and empirical analyses that
assess spatial or regional trends or drivers of flow variability [81, 82]. We analyze a suite
of statistical descriptors of daily rainfall, including the daily mean rainfall depth, wet-day
mean rainfall depth, and percent occurrence of wet days. These all influence streamflow
response [83], and are referred to as “rainfall characteristics” in the remainder of this paper
(results for a more expansive range of rainfall statistics are also presented as Supplementary
Information).

The rainfall datasets used in this analysis (Table 3.1) include four global and quasi-global
gridded (RS and IS) products, and five custom interpolations of the Amazon-Cerrado rain
gauge network, containing 942 gauges (Figure 4.1 (b)) and managed by the the Brazilian
government water management agency (Agência Nacional de Águas - ANA). The curated IS
rainfall and streamflow data used in this analysis are provided in a data package: “Curated
rain and flow data for the Brazilian rainforest-savanna transition zone” [32]. We interpolated
each day’s set of reporting rain gauges over a 16 year period, from January 1, 1998 to
December 31, 2013, using five interpolation methods ranging from a näıve nearest-neighbor
to more sophisticated geostatistical approaches (see Methods).

Intercomparison of these products is not straightforward. Point (IS) estimates of rain-
fall are not directly comparable with gridded (RS) estimates [84, 85]. Because streamflow
responses arise at river-basin scales, we focus here on an intercomparison at spatially aver-
aged river-basin domains, calculating the rainfall characteristics over 89 river basins in the
study region (Figure 4.1 (c)), as well as on a 0.25◦ resolution grid. Given this focus, and
the characteristics of the region and its rainfall, we might expect gridded RS products to
be preferred. RS products are often preferred over IS products in regions where low gauge
density prohibits high quality interpolation [66], and the flat, low-altitude, and moderately
wet conditions in central and northern Brazil are considered optimal for RS rainfall retrieval
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[86, 60, 87, 62].
Our approach to data selection and quantification of uncertainty involves an initial in-

tercomparison of the rainfall characteristics, at grid and basin scales, across the nine rainfall
datasets. In the absence of an independent set of empirical measurements against which
to compare the datasets, the resulting range in the rainfall characteristics across datasets
provides an ensemble measure of the uncertainty associated with these characteristics, which
we measure using the maximum absolute deviation (MAD) and standard deviation across
datasets for each statistical measure in each basin. To illustrate how such dataset differences
may propagate into subsequent analyses, we compute several hydroclimatic indices or analyt-
ical results - the runoff ratio (ratio of annual runoff to rainfall), the evaporation ratio (ratio
of annual evapotranspiration to rainfall), the Horton index [88] (ratio of evapotranspiration
to available soil water), and long-term (inter-annual) trends in daily rainfall, evaluated on
monthly timescales for each basin, and again compute MAD and the standard deviation for
each basin. The range in these computed indices and trends provides an ensemble descrip-
tion of hydroclimatic uncertainty due to the propagation of data selection uncertainty into
these simple analytical outputs.

Having demonstrated that the differences in rainfall characteristics and their propaga-
tion into simple analyses are large enough to cause concern, we next attempt to select a
rainfall dataset for use in hydrologic studies, by the approach of comparing rainfall datasets
to an independently measured, but mechanistically related, environmental variable. In this
case, we use streamflow records across 89 river basins to provide such an independent met-
ric. Given the mechanistic connection between streamflow and rainfall, whereby preceding
rainfall events drive subsequent streamflow increases, we use measures of time series cor-
respondence or similarity between daily rainfall (at river basin scales) and streamflow for
this intercomparison. Specifically, we treat datasets that maximize the correlation between
rainfall and streamflow timeseries, and the correspondence of rainfall with streamflow peaks
(see Methods), as being the most informative for hydrologic studies.

3.2 Results

Rainfall characteristics

Figure 3.2 (a) shows mean daily rainfall over the study period (1998-2013) at individual grid
cells for all nine rainfall datasets, demonstrating relative consistency in large-scale spatial
patterns and magnitudes of rainfall, although the mean at individual locations can differ
substantially. Figure 3.2 (b), however, demonstrates dramatic differences in the representa-
tion of wet-day (≥ 1mm/day) rainfall, illustrating, for example, that rainfall detection (to
which RS data errors are principally attributed [60]) and representation of extremes differ-
entiate datasets. Differences across datasets - in spatial patterns and magnitudes - persist
across a suite of other statistics (see Supplementary Figures 2-5, which depict grid-cell-level
median and wet-day median rainfall depths, maximum and standard deviation of rainfall
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Table 3.1: Daily rainfall datasets

Category Name Description Type Resolution

Gridded

GPCP
Global Precipitation Climatology Project
(GPCP), Version 1.2

RS, IS 1◦

CPC
Climate Prediction Center (CPC) Unified
Gauge-Based Analysis of Global Daily Precip-
itation, Version 1 and RT

IS 0.5◦

TRMM
Tropical Rainfall Measuring Mission (TRMM)
3B42, Version 7

RS, IS 0.25◦

PERSIANN

Precipitation Estimation from Remotely
Sensed Information using Artificial Neu-
ral Networks - Climate Data Record
(PERSIANN-CDR), Version 1.1

RS, IS 0.25◦

Custom

UKP
Universal Kriging with PERSIANN (pre-
dictors: elevation, latitude, longitude, and
PERSIANN-CDR)

IS, RS 0.25◦

UK
Universal Kriging (predictors: elevation, lati-
tude, longitude)

IS 0.25◦

OK Ordinary Kriging IS 0.25◦

IDW Inverse Distance Weighting IS 0.25◦

VP Voronoi (or Thiessen) Polygons IS 0.25◦

Gridded data are global and quasi-global products; custom data are regional (local) interpolations of IS
rainfall data obtained from Brazil’s Agência Nacional de Águas (ANA). See Methods for sources and
additional details.

depths, mean annual total rainfall, and wet-day occurrence of rainfall). Figure 3.2 shows
point-estimates of rainfall properties at individual grid cells. However, we are primarily
concerned with observations of area-integrated rainfall, and the remaining results pertain to
areal spatial units (either sample areas or river basin units, as noted).

Figure 3.3 shows variation in the same statistics as presented in Figure 3.2 - the mean and
wet-day mean, as well as the occurrence of wet days, over river basin units of analysis (Sup-
plementary Figure 6 shows basin-level percentiles, mean annual total, standard deviation,
and maximum). Again, there is overlap in the mean daily rainfall estimates, but significant
variation in wet-day mean values across rainfall datasets. These results suggest that the
rainfall datasets can be divided into two groups: the first (I) includes the gridded datasets
GPCP (RS), CPC (IS), and TRMM (RS), and the nearest-neighbor interpolation VP (IS);
and the second group (II) includes the remaining interpolations UKP (IS, RS), UK (IS), OK
(IS), and IDW (IS), and the gridded PERSIANN (RS) dataset. Figure 3.3 shows that group
II datasets report a greater number of wet days, but lower mean rainfall on those wet days,
relative to group I. The lower mean wet-day rainfall of group II stems from the fact that
group I data report more wet-day extremes (see Supplementary Figures 3 and 6), which up-
wardly bias the mean wet-day rainfall of group I, despite those data showing fewer wet days.
While group I wet-day medians are also greater than group II in accordance with wet-day
means, group I all-day medians are less than those of group II (see Supplementary Figures 2
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and 6). This is due to the combination of greater wet-day occurrence and medium-intensity
rainfall (1-10 mm/day) in group II (see Supplementary Figure 7). These differences persist
across the range of rain gauge densities in the study region (see Supplementary Figure 7).

Greater wet-day occurrence in group II custom interpolations (UKP, UK, OK, and IDW)
likely results from greater rates of local detection of medium intensity rainfall by rain gauges
relative to satellite sources, combined with spatial smoothing of those rainfall events. In the
case of PERSIANN, elevated wet-day occurrence can be attributed to a combination of the
rainfall estimation algorithm and/or incorporation of multiple RS and IS rainfall products
that are unique to this RS dataset compared to earlier RS products (GPCP, CPC, TRMM)
[89]. In summary, divergent features of the group I datasets (lower wet-day occurrence and
medium intensity rainfall depths, greater extremes), and group II datasets (greater wet-
day occurrence and medium intensity rainfall depths, lower extremes) may result in similar
mean daily average values across large regions as shown in Figure 3.2 (a). Thus, there may
be consistency across rainfall datasets in analyses relying upon regional mean daily rainfall
values (only). However, different datasets will propagate significant uncertainty into analyses
relying on estimation of wet-day rainfall occurrence or depths, quantiles, and extremes.
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Figure 3.2: Spatial variation in the representation of descriptive statistics by different rainfall
datasets

Panel (a) shows mean daily rainfall (depths in mm/day), and panel (b) shows mean wet-day rainfall
(depths in mm/day for days with ≥ 1 mm/day). Both statistics were calculated at each 0.25◦ resolution
grid cell in the study region using all daily data between 1998-2013. See Table 3.1 and Methods for dataset
details. GPCP, TRMM, and PERSIANN are gridded datasets comprised of RS and IS data sources; CPC
is a gridded dataset comprised of IS data; UKP is a custom interpolation of IS and RS (PERSIANN) data
sources; UK, OK, IDW, and VP are custom interpolations of IS data. These maps were generated in R,
Version 3 (https://cran.r-project.org/) [73].
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Figure 3.3: Daily rainfall statistics in river basins according to different rainfall datasets

From left to right, respectively, the panels show the simple daily mean, wet-day (≥ 1 mm/day) mean, and
wet day occurrence (percent of days with ≥ 1 mm/day) of rainfall for 89 river basins. Each boxplot is
generated with n=89 (river basin) statistic results, calculated using basin area-average rainfall from the
given rainfall dataset (colors) from all days between 1998-2013. Outliers are not shown. The vertical
dashed line separates gridded from custom datasets (see Table 3.1).
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Calculation of the maximum absolute deviation (MAD) between any two datasets’ area-
average rainfall (averages over areas of the 0.25◦ grid) provides a simple quantification of
dataset divergence and thus the range of the data ensemble. We calculated 1998-2013 MAD
at daily, monthly, and annual time scales at 100 regularly-sampled locations, for areas ranging
from large to small (circles with radii of 200 km and 10 km, centered at the same 100
locations). This sample design accounts for the fact that different regions, and differently-
sized sample units, have different rain gauge densities. At a daily resolution, the mean
(median) MAD between any two datasets’ area-average rainfall is 7-12 mm (5-8 mm); at
a monthly resolution, it is 56-97 mm (46 - 82 mm); at an annual resolution, it is 372-576
mm (310-497 mm). The ranges are from statistics calculated for the large to small sample
units, respectively. These differences are comparable to global climate model (GCM) biases:
projections from the Coupled Model Intercomparison Projects Phase 5 (CMIP5) have annual
biases relative to a single rainfall data product of -25% (approximately -250 to -550 mm/year)
in northern Brazil [90], indicating that selection of a different rainfall dataset for reference
has the capacity (at an extreme) to either eliminate or double estimated model bias.

Trends and Hydroclimate Indices

Evaluation of hydroclimatic indices and temporal rainfall trends demonstrates the propaga-
tion of rainfall data selection uncertainty into a standard analysis. Although temporal trend
analysis is not especially meaningful over a 16-year time period, it demonstrates the poten-
tial for trend detection and attribution to be amplified or eliminated by data uncertainty.
We calculated monotonic trend slopes (corrected for monthly correlation) and associated p-
values for total rainfall by month for all 89 river basin in the study region between 1998-2013
(see Methods). Variation in the estimated trend slopes for basins where at least one rainfall
dataset had a statistically significant trend are shown in Figure 3.4. Trend slopes, particu-
larly for basins in the north of the study region where rain gauges are especially sparse, do
not agree across rainfall datasets. Rainfall datasets agree on the sign of the slope in only
eight of the 24 basins (four basins with all positive slopes, and four basins with all negative
slopes).
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Figure 3.4: River basin monthly total rainfall trend slope variation across rainfall datasets

Each boxplot shows the distribution of individual basin trend slope coefficients (excluding outliers)
estimated using nine rainfall datasets; the 24 basins shown are those for which at least one rainfall dataset
has a significant (p ¡ 0.05) trend; not all trend slopes are significant. Basin boxplots are ordered left to
right according to the latitude of the basin centroid.
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Figure 3.5: Distribution of river basin hydroclimate index differences and variance across
rainfall datasets

Panel (a) displays histograms of maximum absolute deviations between individual river basin hydroclimate
indices calculated using each of the nine rainfall datasets. Panel (b) displays histograms of the standard
deviation of individual river basin hydroclimate indices across the nine rainfall datasets. The runoff ratio is
the runoff fraction of rainfall; the evaporation ratio is the evapotranspiration fraction of rainfall; and the
Horton index is the evapotranspiration fraction of available soil water (see Methods for details). All index
values range between zero and one.
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The propagation of rainfall data selection uncertainty is further illustrated by hydrocli-
matic index measurements made using the different rainfall datasets. Hydroclimatic indices
provide information on the relationships between climate, land use, and hydrology, which
are critical to the examination of land use and climate change [91, 88]. They are estimated
using both rainfall and streamflow at river basin scales (see Methods). The runoff ratio is
the fraction of rainfall discharged from a river basin as streamflow (as opposed to evapo-
rated or transpired at the land surface, or percolated to deep groundwater); the evaporation
ratio complements the runoff ratio - it is the fraction of rainfall evapotranspired (as opposed
to discharged or percolated); the Horton index compares evapotranspiration to soil water
stores (as opposed to total rainfall). The mean (median) maximum absolute deviation be-
tween basin-level index values generated using any of the nine rainfall datasets (see Figure
3.5 (a)) is 0.05 (0.04) for the evaporation ratio and Horton index, and 0.06 (0.04) for the
runoff ratio; the difference exceeds 0.25 - a quarter of the entire index range - for some basins.
Similarly, the mean (median) standard deviation of basin-level index values (see Figure 3.5
(b)) is 0.02 (0.01) for all three indices; and can exceed 0.05 in some basins. Streamflow data
is the same for all calculations within each basin, so these results demonstrate the sensitivity
of basin-scale analyses to rainfall input data alone.

In the absence of information on a ‘best’ rainfall data source, and knowing that data
selection uncertainty will propagate into analyses as demonstrated in Figures 3.4 and 3.5,
distributions of index values obtained from multiple rainfall datasets can be used to quantify
data selection uncertainty. For example, the mean of the standard deviations across all
basins for a given index (e.g. mean of values shown in each panel of Figure 3.5 (b)) may be
treated as an index- and region-specific standard deviation (s) attributable to rainfall data
selection uncertainty. According to our analysis, in rainforest-savanna transitional Brazil,
s is approximately 0.02 for all three indices. A straightforward confidence interval for the
mean of index values obtained using the nine rainfall datasets over an individual basin (x̄)
in our study region is: CI = x̄ ± z∗SEx̄, where SEx̄ = s/

√
89 = 0.002 (see Supplementary

Discussion for further details).

Rainfall and Streamflow Correspondence

Figures 3.2-3.5 demonstrate the need for a procedure to guide rainfall data choice prior to
conducting analyses. We build on the precedent for evaluating rainfall data quality using
the correspondence between rainfall and river flow [86, 92, 71] by measuring the empirical
correspondence between rainfall and streamflow records using two performance statistics:
non-parametric Spearman’s rank correlation, and peak correspondence - the rate at which
distinct rainfall peaks correspond to distinct flow peaks within a basin-specific response
time window (see Methods). Streamflow rises and peaks in unregulated, rain-fed rivers are
caused by preceding rainfall events in the rivers’ catchment, so the correspondence between
appropriately-lagged and basin-integrated rainfall, and basin streamflow, measures a rainfall
dataset’s ability to capture area-integrated rainfall patterns.
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In validation tests, rainfall data from seven Australian river basins was randomly per-
turbed using additive noise, and true and perturbed rainfall datasets were evaluated relative
to streamflow using the performance statistics. Both performance statistics identify the cor-
rect rainfall dataset 100% of the time when the random noise is equivalent to or greater than
basin rainfall standard deviation. In cases where random noise is less than or equal to half the
basin rainfall standard deviation (when differences between datasets are small), correlation
still identifies the correct rainfall dataset 100% of the time, however peak correspondence
identifies the correct dataset on average (across the seven test basins) 79% of the time or
less (see Supplementary Discussion for details). Specifically, peak correspondence performs
perfectly (100% correct identification) in some basins, but not others, when the signal to
noise ratio is low. This is likely due to peak correspondence’s reliance on quick (storm) runoff
response signatures (see Methods), which may vary in quality across different basins. In the
study region, the 1998-2013 average maximum absolute deviation (MAD) between any two
rainfall datasets on a daily time scale is 7-12 mm; the range of grid cell-level (temporal)
standard deviations averaged across the study region for each individual rainfall datasets is
between 7-13 mm. Thus, in the study region, individual rainfall dataset variation is on the
order of variation between datasets, indicating that peak correspondence will perform as well
or nearly as well as correlation in identifying datasets with greatest correspondence to flow.
This is confirmed by the similarity in results from both statistics for the Brazilian data.
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Figure 3.6: Differences in rainfall data quality as indicated by performance statistics mea-
suring correspondence with streamflow

Panel (a) shows kernel-smoothed empirical probability distributions of performance statistics (correlation
and peak correspondence) by rainfall dataset. Panel (b) shows the same performance statistics plotted as
local regression-smoothed curves across the range of rain gauge densities in the study region, with 95%
uncertainty intervals (shaded). In (b), solid lines and shaded regions indicate the best-performing gridded
(PERSIANN) and custom-interpolated (IDW) datasets and their 95% uncertainty intervals, respectively;
non-overlapping uncertainty intervals indicate distinguishable performance between datasets; dashed-lines
indicate all other datasets with uncertainty intervals that are not displayed, but are of similar width; gray
tick-marks at the bottom illustrate the spread of rain gauge densities in the 89 river basins.

Figure 3.6 presents distributions of the performance statistics in 89 river basins (panel a),
and illustrates the sensitivity of the performance statistics to rain gauge density within the
river basin (panel b). The better the performance of the dataset, the farther to the right are
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the masses of the distributions in (a), and the higher the curves are in (b). We found that
custom interpolations of IS data using IDW and kriging (UKP, UK, and OK) out-performed
the gridded datasets for both performance statistics, with IDW performing best overall. In
agreement with these results, equivalent or superior performance of the IDW method rel-
ative to other interpolations including kriging and VP, specifically for hydroclimatological
applications, has been observed in other regions as well [66, 93]. The best performing grid-
ded dataset is PERSIANN, whose statistics in the study region more closely resemble those
of custom interpolated datasets than other gridded products. The differences between per-
formance statistic distributions are statistically significant (as evaluated by non-parametric
two-sample Kolmogorov-Smirnov tests, see Supplementary Table 1), consistent across gauge
densities (as illustrated in Figure 3.6 (b)), as well as consistent across location (as indicated
by latitude) and basin size (see Supplementary Figure 8), and season (see Supplementary
Figure 9). The rain gauge densities in (b) are 1998-2013 averages of basin-area daily den-
sities according to the IS data; they do not directly pertain to gridded datasets, but they
are indicative of gridded dataset input gauge densities because gridded product source data
(used directly, or for calibration) also comes from Brazilian government agency sources.

3.3 Discussion

The ‘data selection uncertainty’ problem identified here is similar to the ‘gigo’ (garbage in,
garbage out) problem in modeling, but applied to regional data analysis. Although the need
to base analyses and interpretation on high quality data appears self-evident, the inability
to directly observe the true spatial process of interested at regional scales, and thus to a pri-
ori discriminate between a wide array of available or self-generated regional data products,
means that regional data selection is not trivial. Instead, it should motivate environmen-
tal scientists to consider the state of practice in the field, with respect to the use of, and
confidence placed in, the use of regional climatic data products. For example, in North-
ern Brazil, where we have identified significant and meaningful differences between rainfall
datasets, a wide range of studies draw inference about historical climate patterns and trends
[57], drought [78], the effects of land use change on hydrology [2, 9], and relationships be-
tween hydroclimate and agriculture [94, 95], without confronting data selection uncertainty.
Our analyses suggest that the conclusions of these studies must be treated with caution,
as the magnitudes of difference or trends within data products may be comparable to the
magnitudes of difference between data products. Several studies in the region do explicitly
addressed data selection uncertainty: by correlating rainfall and streamflow datasets and
selecting the rainfall product with the greatest correspondence [4], and by demonstrating
that multiple rainfall products would generate similar results [96]. Overall, however, data
selection uncertainty remains inconsistently acknowledged and unaccounted for by practi-
tioners.

The empirical time series and signal-processing methodology used here (i.e. performance
statistics) offers an approach to evaluate rainfall data quality for hydrological purposes across
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multiple river basins and at large spatial scales and is arguably an improvement on the state
of practice for regional hydrology. Traditional rainfall data error estimation frameworks
infer rainfall data quality at points using cross-validation methods, or over river basin areas
based on runoff predictions made via a model [86, 92]. Point-scale evaluations do not address
areal-scale data quality, and at regional scales - i.e. the 89 basin region in this study - a model-
based approach would require 89 separate runoff model calibration/validation procedures,
and would not generate results that are comparable between basins because the calibration
error would be unique for each basin [67, 71]. Furthermore, the attribution of prediction
error to calibration would be confounded with rainfall data input uncertainty. Lastly, the
quality and reliability of rainfall-runoff model prediction relies on input stationary [97, 98],
which is not guaranteed in the study region due to climate and land use change. Thus,
model-free approaches are desirable. Our empirical approach capitalizes on the relationships
between variables (rainfall, streamflow) rather than on their exact values to evaluate rainfall
dataset quality at basin scales. This method complements standard model-based evaluation,
but is scalable and generalizable over large regions that challenge the use of models.

While it was possible to identify a best performing rainfall dataset based on streamflow
correlation in this region, the results are likely to be site specific and specific to applica-
tions in which comparing rainfall signals to streamflow signals offers an appropriate test of
quality. Evaluations should be made separately for new study areas, and potentially by
comparison to reference datasets other than streamflow for different study purposes. For ex-
ample, streamflow intercomparisons would not necessarily inform the suitability of a rainfall
dataset for surface soil moisture estimation purposes, as would microwave remote sensing
data. Similarly, interpolation methods such as UK (which can control for elevation) would
likely improve upon IDW in mountainous areas. The differences between the datasets’ perfor-
mance statistics were reduced when data were aggregated or smoothed over time, consistent
with previous studies that have shown RS data to correspond well to IS data with greater
temporal aggregation [99, 100]. Thus, at coarser temporal resolutions (monthly, annual),
convenient gridded products remain attractive.

Critical climate change adaptation decisions are likely to derive from the understand-
ing of emerging trends and variability in regional rainfall estimates. These results highlight
the often-unacknowledged problem of ‘data-selection uncertainty’ in the detection and at-
tribution of environmental change [101, 102], and demonstrate a need for increased effort
in quantifying this uncertainty and justifying data choice because analysts may reach diver-
gent understandings due to data selection alone [103]. Identifying the often weak signals of
change in noisy datasets is challenging, but analysts can reduce the uncertainty derived from
data choice by (i) justifying dataset choices using selection methods such as the performance
statistics demonstrated here, and/or (ii) including estimates of data-selection uncertainty
(e.g. confidence intervals) in their findings. Evaluation of rainfall data prior to hydrocli-
matological analysis is both feasible (if streamflow records are available) and necessary. In
contrast to the use of climate model outputs in analyses - where characterization of an en-
semble of equally uncertain projections is best practice - if an individual dataset corresponds
more closely with a reference of choice (e.g. streamflow) than other datasets, that dataset
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should be used for analysis.

3.4 Methods

Data

Gridded datasets include: Global Precipitation Climatology Project (GPCP) Version 1.2
[104]; Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global Daily Pre-
cipitation Version 1 and RT data [105, 106]; Tropical Rainfall Measuring Mission (TRMM)
3B42 Version 7 [107]; and Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks - Climate Data Record (PERSIANN-CDR) Version 1.1 [108, 89].
GPCP, TRMM, and PERSIANN were acquired from public repositories via the IRI/LDEO
Climate Data Library [109] and CPC from the raincpc R package [110]. IS rainfall, stream-
flow, and geographic information systems (GIS) data were acquired from the Agência Na-
cional de Águas (ANA), and reservoir locations (used to select only unregulated river basins
for analysis) from the Agência Nacional de Energia Elétrica (ANEEL). Of a total of 1,171
usable rain gauges in the study region, 942 were active (for varying durations) during the
study period, and were used for analysis. Daily streamflow data was obtained for basins
fully contained in the study region, gauged for at least a year, and with < 10% of their
area impacted by reservoirs. Analysis was based on 89 basins that met data quality criteria
and overlapped with the interpolated rainfall region. All IS rainfall, streamflow, GIS data,
and comprehensive documentation on data acquisition and quality assurance/quality control
are provided in the ”Curated rain and flow data for the Brazilian rainforest-savanna tran-
sition zone” data package [32]. Interpolated rainfall data are available upon request from
the corresponding author. (See the Supplementary Discussion for more discussion of rainfall
data.)

We did not manipulate the spatial resolution of the daily rainfall datasets (all are obtained
or generated at 0.25◦, except for two sources at 0.5◦ and 1◦ resolution - see Table 3.1), nor
did we compare the representation of rainfall based on spatial resolution. We did however
briefly explore areal rainfall differences across rain gauge densities with respect to the known
gauge densities of interpolated IS data - see Supplementary Figure 7). Typically, to compare
rainfall datasets, one would aggregate (or disaggregate) rainfall datasets to a common grid
using a method that conserves the total amount of rainfall in an area. Effectively, this study
aggregates total daily rainfall to river basin units, without modifying original input data; this
is done using a grid cell area-weighted mean of all cells located within a basin area, providing
an unmodified representation of each datasets’ area-integrated rainfall over multiple basin
scales, that is both conservative and representative of the practical needs of hydrologists and
hydroclimatologists.
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Interpolation

We used four common and well-documented interpolation techniques [65, 92, 70, 93]: Voronoi
(or Thiessen) Polygons (VP) [111]; Inverse-Distance Weighting (IDW) [112], and Ordinary
and Universal Kriging (OK, UK) [113, 114]. All interpolations were done on a 0.25◦ resolu-
tion grid. IDW and OK are local interpolations, for which we set the maximum interpolation
distance (radius) to 300 km, an upper bound on estimated mean rainfall correlation distances
in this region, which ranged between 100-300 km for IS and RS data, respectively. Rain-
fall correlation distances were estimated by fitting a semivariogram model [114] to data on
a random sample of 1,500 individual days (approximately 1/4 of the days in the full date
range), and extracting semivariogram range estimates for each day. UK and UKP are ‘uni-
versal’ interpolations for the study region; their predictions rely on relationships established
between predictor variables across the entire study region. Kriging methods can produce
negative values, which were set to zero. To avoid edge effects in interpolations, the grid
at which rainfall was interpolated is inset from the study region boundary by 100 km (the
minimum mean correlation distance). For additional details on interpolation methods, see
Supplementary Discussion.

Trends and Hydroclimate Indices

For trend analyses, we used the non-parametric Seasonal Kendall test for monotonic trends in
monthly total rainfall with correction for correlation between monthly blocks, and estimated
the slope of the trend using the SK slope estimator [115, 116]; these are seasonally-adjusted
modifications of the widely-used Mann-Kendall test [117] and Theil-Sen’s slope estimator
[118, 119] that are targeted to hydrological time series.

Index values were calculated for each water year (October-September) in each basin, us-
ing river basin area average daily rainfall depths (mm/day) from all nine rainfall datasets,
and streamflow depths (mm/day, which are basin-area normalized volumetric flow rates) at
river basin scales. The index values recorded for an individual basin and rainfall dataset
combination is the average of annual index values for that basin-dataset combination (there
are 15 complete water years between 1998-2013). The runoff ratio (RR) is the simple ra-
tio of total annual (water year) streamflow (Q) to total annual rainfall (P ): RR = Q/P .
Similarly, the evaporation ratio (ER) is the simple ratio of total annual (water year) evap-
otranspiration (ET = P − Q) to total annual rainfall (P ): ER = ET/P . (Note that in
these computations we assumed no deep percolation.) Lastly, the Horton index (HI) is the
ratio of evapotranspiration (ET ) to available soil water (W ): HI = ET/W , where soil water
W = P − Qq, and Qq is the direct runoff component of total flow (Q); W is equivalent to
the sum of baseflow and ET - the total amount of water accessible to vegetation. Total flow
was separated into baseflow and quickflow using a Lynne-Hollick recursive digital baseflow
filter (three-pass, default parameter of 0.975) [120]. The Horton index is intended to be
calculated over a growing season [88], however, growing seasons vary across the river basins
in this analysis, and many are year-round, thus the use of annual data.
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Performance statistics

Volumetric streamflow records were area-normalized and separated into baseflow and quick-
flow (direct runoff) using a Lynne-Hollick recursive digital baseflow filter (three-pass, default
parameter of 0.975) [120]; the quickflow component can be more directly compared to rainfall.
Both rainfall and quickflow time series were normalized to between 0 and 1. We identified
the lag timescale (τ) that maximized the cross-correlation of rainfall and quickflow (the basin
response timescale in units of days) for each basin, and lagged rainfall by τ for analysis of
correlation and peak correspondence.

With respect to peak correspondence: we classified peaks in the normalized and lag-
aligned rainfall and quickflow data by determining the position of peak extrema (observations
that are preceded and followed by lower observations), as well as probabilities associated with
peaks [121]. The probability associated with a peak quantifies the distinctness of the peak:
more significant peaks are those surrounded by several lower observations. Peaks with lower
probabilities are those that contain more information according to Kendall’s information
theory [121, 122]. We call peaks with probabilities < 0.05 ‘distinct’ (due to autocorrelation
in the rainfall and flow time series, this is not a measure of statistical significance, but may
nevertheless be used to distinguish more and less distinct peaks). ‘Peak correspondence’ is
the rate at which distinct peaks in lagged rainfall match those in streamflow over a basin-
specific response time window equivalent to 1/4× τ (minimum = 1 day) (see Supplementary
Figure 10). Correlation between the lagged rainfall and quickflow was assessed using non-
parametric Spearman’s rank correlation [123, 124]. For more details, see the Supplementary
Discussion.

Code availability and computational tools

Code is available upon request from the corresponding author. We carried out all analyses
and generated all figures within the Comprehensive R Archive Network (CRAN) [73] pro-
gramming environment (Version 3) on both Apple and Windows operating systems. See the
Supplementary Discussion for a list of utilized software packages.
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Chapter 4

Land use change increases streamflow
across the arc of deforestation in
Brazil

4.1 Introduction

Global river discharge increased at a rate of 0.08 mm/year from 1900 to 2000 due to anthro-
pogenic land use change, accounting for 50-55% of the total increase from all environmental
change, while rates increased even faster in South America (0.23 mm/year) [125]. The major-
ity of anthropogenic land use change in South America has occurred in Brazil’s agricultural
frontier or arc of deforestation, located along the transition from Amazon to Cerrado (trop-
ical Savanna) biomes [1] (Figure 4.1). Forest loss in this region accounted for 41% of global
forest loss (53 out of 129 million hectares - Mha) from 1990 to 2015 [126], 70% of which was
in the legal Amazon (36 Mha) [127]. Replacement of natural vegetation, including forest
and Cerrado woodlands, with pasture and cropland reduces evapotranspiration (ET) [2, 3],
which has the primary, direct effect of increasing streamflow [128]. A mix of empirical and
model-based studies carried out in select Brazilian river basins demonstrate location- and
deforestation scenario-specific increases in stream discharge at daily, monthly, and annual
time scales for small to large (10 - 105 km2) basins [129, 4, 130, 5, 7, 16, 8, 9, 27]. Yet,
the contribution of historical deforestation to long-term trends in river discharge across the
full Amazon-Cerrado regions remain empirically unquantified. Here we provide, for the first
time, a large-scale, empirical quantification of the effects of deforestation on long-term trends
in river discharge for the Amazon-Cerrado region.

Quantifying land use change effects on flow in the Amazon-Cerrado region is necessary in
order to separate the potentially long-lived consequences of forest loss from short-term cli-
matic fluctuations on river flow and the ecosystem services it provides. In center-west Brazil,
services include hydropower production, including planned expansions of hydropower gener-
ation facilities [24, 25]; navigability of 13,000 km of inland waterways, which transport 45
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Figure 4.1: Land use change in river basins across Amazon-Cerrado Brazil

Circles indicate the location of 326 river basin centroids [32]; circle colors indicate percentage point change
in agricultural land cover [131] between 1950-2012 (calculated from the basin area mean of 1km pixels - see
inset); circle sizes indicate the size of the river basin; background shading shows the percentage of land (at
30m pixel-resolution) covered by forest canopy greater than 5m in height in 2013 [132].

million tons/year of agricultural and industrial goods and offer a pathway towards low-carbon
regional transport [28]; highly biodiverse aquatic and terrestrial ecosystems, with complex
relationships between species’ life cycles, flow regime, and river network connectivity [22,
30, 29]; and the potential for agricultural intensification to develop irrigation systems reliant
on surface water supplies [1]. The extent to which the hydrologic landscape, including river
flow and accompanying nutrient and sediment transport [14, 8], is altered by historical and
ongoing deforestation has implications for all such flow dependent processes, as well as un-
derstanding of regional and global climate variability and change. Because transport of water
vapor to the atmosphere through forest evapotranspiration (ET) drives global atmospheric
circulation [133], large-scale deforestation affects local to continental water cycles [134, 135,
136] for which identification of change relies on understanding of streamflow response.

The majority of deforestation in this region between 2000-2013 occurred in medium to
high density forests, and the most extreme losses were from dense forests (see SI Text). This
implies that river basins in the region (Table B.2) should see significant flow alterations due to
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the nature of the vegetation loss, which is primarily from intact forests. There is a discernible
relationship between forest cover and streamflow (Figure B.4); however understanding of
direct effects of deforestation on streamflow across multiple basins and at regional scales has
been limited by system complexity and non-stationarity. Effects are known to vary across
basins and are scale-dependent [4, 14, 16]; thus existing studies only hypothesize or suggest
regional-scale effects based on individual basin findings. Manipulative experimental studies
are limited in scope, scale, and extensibility, and tend to represent extreme or complete
short-term vegetation change rather than realistic spatially-heterogeneous, incremental, long-
term change relevant to policy and planning efforts [137, 138]. While simulation modeling
addresses reliance on the quality of the experimental setting [139], model analyses - by way
of data, parameterization and calibration constraints - remain focused on individual basins
and deforestation scenarios, and are limited by assumptions and parameter uncertainty [140,
129].

The use of statistical causal inference methods for observational data avoid the shortcom-
ings of previous studies, take advantage of increasingly abundant and accessible environmen-
tal data (see Methods, SI Text, and Table B.1), and make it possible to answer a difficult
and important scientific question: what is the direct effect of deforestation on streamflow?
Unprecedented historical land use change across the Brazilian Amazon-Cerrado transition
region presents a unique natural experiment - a setting wherein widespread river basin defor-
estation is observed rather than assigned by a researcher. An observational study, common
in quantitative public health and social science research, is an empirical assessment of the
effect of a treatment (i.e. deforestation) when a randomized experiment is not possible, and
where complicating factors (i.e. basin physical and climate features) can bias the estimation
and attribution of effects [141] (see Figure 4.2). Statistical methods for causal analysis of
observational data have a rich theoretical foundation and application history [142], and are
beginning to be explored in the environmental sciences [143, 144, 145, 146] due to their
suitability in addressing the problem of data-based inference amidst complexity and data
(sample) limitations.

Here, we first identify and estimate the relationship between long-term deforestation and
average seasonal (monthly) rates of flow using a standard causal difference-in-differences
(DID) regression analysis technique, then use a mixed effects statistical model to estimate
average annual changes in total streamflow due to deforestation and associated agricultural
development. Our approach responds to calls for a ”large catchment sample” approach
for understanding of hydroclimatological processes at multiple spatiotemporal scales and
amidst environmental change [147], and growing awareness within the geoscience community
that confirmation of mechanistic model-based understandings in this context, especially for
prediction, require causal empirical assessments [148].
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Figure 4.2: Causal diagram, or directed acyclic graph (DAG) for the process governing
deforestation effects on streamflow

The diagram shows key variables and relationships between those variables (arrows), and represents a
forward-moving process at a single time step. Deforestation is considered a ”treatment” variable;
streamflow is the outcome variable of interest; elevation, soil, rainfall, and temperature are variables that
must be adjusted for (conditioned on) in order to estimate the direct effect of deforestation on streamflow;
the variables in gray circles are unobserved (latent) variables. The green arrow indicates a causal path: the
direct effect of deforestation on streamflow may be estimated provided the statistical relationship between
deforestation and streamflow is adjusted for soil, elevation, rainfall, and temperature.

4.2 Results and Discussion

DIfference-in-differences (DID) analysis

The difference-in-differences (DID) regression modeling approach is an empirical statisti-
cal technique that estimates the differential effect of a treatment (i.e. deforestation) on a
treatment group versus a control group using observational data in a natural experimental
setting [149]. This approach compares flow change outcomes across two periods (before 1990
and after 2000) and two groups of basins (low and high deforestation), and accounts for
confounding factors (basin physical and climate features).

The DID model takes the form of a fixed effects log-linear regression (see Methods and
SI Text) of normalized flow percentiles (a range between 0-100) on indicators of treatment
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(high- or low-deforestation), time period (prior to 1990 and 2000-2013), and relevant co-
variates (rainfall, temperature). Individual basin indicators or ”fixed effects” account for
time-invariant basin physical characteristics such as elevation and soil features. Because
data are aggregated to period-month units, month fixed effects account for seasonally vari-
able flow responses. Low flow percentiles represent flow that occurs in dry season months (∼
July - September), middle-range flow percentiles represent flow that occurs in transition sea-
sons (∼ May - July and October - January), and high flow percentiles represent wet season
flow (∼ February - April). Based on data quality and results from a statistical ”matching”
analysis [150, 142] (see Methods and SI Text), which we used to evaluate the comparability
of treatment and control basins, we evaluated the DID model on data from 46 river basins:
a control group of 23 basins that experienced low levels of deforestation in the 2000-2013
period (< 5% of basin area deforested), and a treatment group of 23 basins that experienced
relatively high levels of deforestation in the same period (> 10% of basin area deforested).
All basins had less than 20% mean agricultural land cover prior to 1990, providing relative
comparability with respect to baseline levels of deforestation.

The primary measure or regression coefficient of interest, which is called the “treatment
effect” but is more formally known as the average treatment effect on the treated (ATT) [151],
provides an estimate of average change in the flow of treated basins relative to control basins
over the same time period. Results (Figure 4.3 and Table B.3) show that river basins with
high-levels of deforestation between 2000-2013 had significantly greater change (increases)
in low to mid-range rates of flow, relative to basins with low-levels of deforestation over
the same period of time. For example, on average and holding all else (climate) constant,
basins experiencing high-levels of deforestation experienced an increase in 5th percentile (dry
season) flow that was 11 percentage points greater than change experienced by basins with
low levels of deforestation.

We compliment the DID model with a similarly-specified linear mixed effects regression
model [152], which is nearly identical to the DID model, but includes random intercepts for
”nested” basin groups, and sites within nested groups, instead of basin fixed effects (see SI
Text). Nested basin groups are collections of basins located along the same river network
with overlapping drainage areas. The linear mixed effects model achieves results nearly
equivalent to the DID model, albeit with different confidence intervals, across the entire
range of mean-normalized flow percentiles (0-100th), showing a decline in the intensity of
the effect with increasing rates of flow (Figure 4.3). Within the range of significant effects
(0th-50th percentile of normalized flow), the treatment effect was between 0.05 and 0.11,
meaning that increases in (mean-normalized) river flow in basins with > 10% of their area
deforested were between 5 and 11 percentage points higher than in minimally deforested
basins.

DID results agree with previous studies in individual basins in Brazil that identified the
effect of transitions from natural to agricultural vegetation (pasture and soy) on low flow
(baseflow) only [7, 8], a finding attributed to minimal soil infiltration effects (which would, if
present, affect peak runoff or stormflow [6]) relative to significant evapotranspiration effects
(which affect baseflow, particularly in dry periods). Consistency between these larger-sample
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Figure 4.3: The estimated effects of deforestation on low to high rates of streamflow

The figure shows values of the average treatment effect (vertical axis) of high levels of deforestation (> 10%
basin area deforested, 2000-2013) relative to low levels of deforestation (< 5% basin area deforested,
2000-2013) for 0-100th percentile mean-normalized flow (horizontal axis). The treatment effect was
calculated using a fixed-effects (”Linear Model”) and complimentary mixed effects (”Linear Mixed Effects
Model”) regressions, and outfit with data from 46 river basins over two periods: before 1990 and after
2000. The Linear Model represents a difference-in-differences (DID) approach; the mixed-effects model is
nearly identical, but accounts for correlation between nested basins. The dotted vertical line marks the
approximate flow percentile (50th) over which the average treatment effect is not significantly different
than zero (according to a 95% confidence interval).
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statistical findings and previous fieldwork suggest that site-specific findings of the dominance
of evapotranspiration effects of deforestation are generalizable to the larger Amazon-Cerrado
region. Nevertheless, significant stormflow effects may be present in intensively-grazed pas-
ture and urbanized areas not well-represented in this study. Additionally, due to pre-existing
agricultural land cover in some basins, the treatment effect is likely an under-estimate rel-
ative to what would be observed in only untouched basins undergoing deforestation (see SI
Text).

Changes in annual streamflow

The previous analysis discretized deforestation in order to carry out a formal causal anal-
ysis, which provided information on the causal effects of deforestation relative to baseline
observations across a range of flow rates. Alternately, continuous measurements allow a
”dose-response” type quantification of streamflow rate responses to different levels of land
use change. We use a linear mixed effect modeling approach [152] (see Methods and SI
Text) to estimate the relationship between land cover (forest or agricultural, as a percent
of basin area) and annual (water year, October - September) streamflow totals (percent of
basin mean annual flow). This analysis uses two mixed effects regression models: the first,
the ”forest model”, includes annual basin forest cover between 2000-2012 as a predictor; the
second, the ”agriculture model”, includes annual agricultural land cover between 1950-2012
as a predictor. Both include basin physical and climate variables, and random effects for
nested basin groups and sites within those groups.

Assuming our process understanding is correct (i.e. Figure 4.2), and holding all else
constant (e.g. rainfall, streamflow, etc.), these empirical statistical models provide estimates
of the effect of contemporary forest loss, and long-term agricultural land development - a
proxy for historical deforestation, on conditional mean flow. The fitted models demonstrate
that flow increases with forest cover loss and agricultural land cover gain (Table B.5 and
Figure 4.4). If basin climate and physical features are fixed, then for each decrease of
one percentage point in basin forest cover, annual streamflow (as a percent of basin mean
annual flow) increase on average by 0.64 (0.80, 0.47) percentage points. Similarly, for each
increase of one percentage point in basin agricultural land cover, conditional mean annual
streamflow increases by 1.11 (0.44, 1.69) percentage points. According to the two models,
an annual increase of 1cm of rainfall would generate a roughly similar magnitude of annual
streamflow change, and corresponds on average to between a 0.57 (0.54, 0.60) to 0.75 (0.69,
0.80) percentage point increase in mean-normalized streamflow, according to agriculture and
forest models, respectively. (Brackets indicate 95% confidence intervals.)

We estimate historical average flow change volumes (mm/year) using the fitted models
and observed data, which allows for approximation of mean annual change for all basins and
years in the time periods corresponding to forest cover (2000-2012) and agricultural land use
(1950-2012), even though actual flow observations may be inconsistently distributed across
years. This analysis did not require a continuous long-term record in any one basin, and
is effectively a space-for-time substitution approach. We estimate average flow change - in
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Figure 4.4: The estimated effects of deforestation and agricultural land development on
annual flow

Panel (a) shows a map of (326) river basin centroids [32]; colors indicate annual flow increases (mean
mm/year, 2000-2012) due to forest cover loss [132]; circle sizes indicate the size of the river basin. Panel (b)
shows annual flow increases (mean mm/year, 2000-2012) due to forest cover loss plotted against mean
annual forest cover loss by basin (corresponding to (a)). Similarly, panel (c) shows annual flow increases
(mean mm/year, 1950-2012) due to agricultural land cover gain [131]. In (a) and (b) points are basin mean
estimates, and error bars are 95% confidence intervals. Estimates are mean predicted values of change
calculated from mixed effects model coefficient estimates (see Methods).

full and due to land cover change - in all basins using the fitted model (estimated regression
coefficients) and continuous records of land cover, rainfall, temperature, as well as basin
physical features (see Methods).

According to model estimates, forest loss between 2000-2012 (Figure 4.4 (a,b)) corre-
sponds to a median flow increase across all 326 basins of 0.51 (0.37, 0.65) mm/year, which
represents approximately 12% of the median of total estimated flow change (from all environ-
mental drivers) of 4.18 mm/year (-2.04, 11.10). Agricultural cover gain between 1950-2012
(Figure 4.4 (c)) corresponds to a median flow increase across all 326 basins of 0.93 (0.37,1.57)
mm/year, which represents approximately 44% of median total estimated flow change of
2.12 (-5.12,10.10) mm/year. (Numbers in brackets are bootstrap confidence intervals for
flow change estimates, and bootstrap prediction intervals for flow change totals, the latter
of which show substantial uncertainty).

Long term total flow change as estimated by the agricultural model is preferable due to
its reliance on a longer record period. Nevertheless, the forest change model more directly
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estimates the relationship between forest cover and flow, includes more recent and therefore
higher quality hydroclimate data only, and is suggestive of a primary role of climate in gener-
ating flow change in recent years. The majority of flow change according to our estimates is
due to rainfall variability, which includes any land cover change feedbacks to climate, which
may be significant and may either reduce or amplify streamflow change [15, 16, 17, 20, 21].
In the agricultural model, the extent of agricultural frontier basins with substantial flow
increases includes more southern basins (Figure B.9), which are those that were developed
prior to the 2000-2012 period. Total flow change does not necessarily follow the same spatial
pattern of land cover change-induced flow change, and can be found to decrease or increase
in areas with even high rates of deforestation-altered flow (Figures B.11 and B.10)).

Näıve estimates of total flow change made directly from basin data are lower. According
to a simple difference between average flow in 1965-1985 and 1992-2012 in 37 of the largest
non-nested basins, the median rate of total flow change is 0.69 mm/year; according to simple
linear regression of annual trends in 30 non-nested basins with more than 30 years of flow
records, the median trend is 0.24 mm/year. These are similar to our mixed effects model
estimates of flow change from land cover change only, but are nevertheless within the pre-
diction interval provided for total flow change from the mixed effects model. Either sample
limitations of actual basin flow records downwardly bias these näıve estimates of actual total
flow change, or these results demonstrate a limitation of the empirical modeling method: it
does not account for physical process limitations, i.e. annual basin water budgets, and there-
fore over-estimates change. In the latter case, results remain indicative of overall trends, and
relative proportions of land cover-induced flow change to total flow change (as both would
be similarly over-estimated), but total volume changes should be interpreted with caution.

Previous studies provide some insight on this matter. Our näıve estimates of total flow
change correspond to data-based estimates of total flow change across South America be-
tween 1900-2000 (0.43 mm/year) [125]. Given the concentration of South America’s land
cover change in the Amazon-Cerrado region and in the last half century in particular, it is
reasonable to expect rates of flow change to be higher on average in the region and time pe-
riod of this study, supporting the higher rate estimates made using the mixed effects models.
A land surface modeling exercise for the period of 1950-2000 estimated a change of 3,869
km3/year in global runoff due to anthropogenic land cover change, relative to simulated po-
tential natural vegetation coverage [153]. According to our agricultural model result applied
over the total (non-overlapping basin) area of analysis (3.16 million km2), we estimate a to-
tal volumetric rate of increase of 2.94 km3/year between 1950-2012 in the Amazon-Cerrado
region due to agricultural land cover gain (synonymous with forest and savanna woodland
loss), which is 7.6% of the modeled total global rate of increase between 1950-2000 due to an-
thropogenic land cover change [153]. This is not unreasonable given the extent of land cover
change in the region. Our estimated total volumetric rate of change, due to all environmental
change - including land cover change, is 6.72 km3/year between 1950-2012.
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4.3 Conclusion

This study demonstrates that agricultural-driven deforestation in the Amazon-Cerrado re-
gion of Brazil is extensive in its impact to streamflow, particularly low, dry season flow. These
findings are consistent with previous fieldwork- and model-based analysis in the region. A
causal connection between forest loss and streamflow increase was demonstrated formally
with a difference-in-differences (DID) analysis, showing that increases in (mean-normalized)
river flow in basins with high levels of deforestation were between 5 and 11 percentage points
higher than in minimally deforested basins, and providing a proof of concept for the use of
observational (non-experimental) causal identification methods in the water sciences. No-
tably, larger-sample empirical methods allow for the estimation of gradual, less extreme land
use change effects on streamflow where traditional methods are limited to analysis in more
extreme land cover transition cases. An empirical mixed effects modeling exercise further
quantified flow change due to land cover change and other environmental drivers, demon-
strating significant annual rates of flow change across the arc of deforestation, and suggesting
that on average between 1950-2012, the Amazon-Cerrado region experienced an increase of
0.93 mm/year (2.94 km3/year) due to land cover change, accounting for 44% of total flow
rate increases (6.72 km3/year).

While elevated flow, and low flow in particular, may be seen as a desirable outcome
of deforestation with respect to small, run-of-river hydropower generation and irrigation
development in rural regions, tradeoffs between short-term benefits and long-term costs of
(perceived) flow increases, including the masking of what would otherwise be decreases, are
unclear. Deforestation has and will continue to slow in the region. Deforestation-driven
flow increases may be sustained in the long term (such as in cultivated cropland), or flow
may eventually decline due to regrowth (such as in partially-deforested natural pasture)
[128]. What will happen in this region is unknown, but is likely a combination of the two
outcomes. If this region experiences reduced rainfall and increased temperature, due to
vegetation removal (reduced ET) or climate change [16, 9, 27], and flow increases taper with
slowed deforestation, then compounded effects could result in a substantial and rapid decline
in baseflow across the region in coming decades.

4.4 Methods

Data

We derived in-situ hydrological and climate data from the Brazilian Agência Nacional de
Águas (ANA) and Agência Nacional de Energia Elétrica (ANEEL), which are provided in
the custom ”Curated Rain and Flow Data for the Brazilian Rainforest-Savanna Transition
Zone” data package [32]. Land cover data include annual agricultural land use (including
natural pasture, planted pasture, and annual and perennial cropland) [131] and forest cover
and loss data [132]. In-situ rainfall data in Brazil [32], supplemented with samples from the
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gridded global remotely-sensed rainfall product PERSIANN-CDR v.1 [89], was was inverse-
distance weighting (IDW) interpolated at a 0.25 degree spatial resolution and daily temporal
resolution between 1983-2013, and summarized to monthly and/or yearly resolution for anal-
ysis; rainfall in years prior to 1983 is from the gridded global rainfall product GPCC v.7
[154, 80]; custom interpolations of in-situ data are the preferred rainfall data source due to
their superior performance in basin-level analyses [155]. Other data sources include: BEST
daily temperature (C/day, mean and anomaly) [156]; SRTM v.4 elevation (m above sea level)
[52]; and HWSD soil features including sand and clay fractions and organic carbon content
(% weight) averaged over top- and sub-soils [157]. Data are area-weighted averages over
river basin spatial units. (See SI Text and Table B.1 for details). 326 river basins met data
quality requirements for analysis; additional criteria for inclusion in DID analyses further
subset basins into a smaller set of 46 (SI Text).

Differences-in-differences (DID) analysis

Treated basins were those with more than 10% basin-area mean forest loss between 2000-
2013, and control basins were those with less than 5% basin area-mean forest loss between
2000-2013; all treatment and control basins had < 20% agricultural land cover prior to
1990 in order to preserve correspondence between forest cover loss and agricultural land
cover gain (Figure B.3), which is otherwise complicated by urbanization in basins with
earlier development. The DID analysis relies on summaries of river basin longitudinal data
over two time periods: before and after treatment. The post-treatment period is more
precisely a period of gradual, continuous land use change that culminates in threshold levels
of deforestation; flow and other variables are summarized over both periods, prior to and
then simultaneous with this gradual change. Thus, there are 24 observations per river basin
- 12 in each period for each month (data summarized over all available period-years in each
month). Selected basins were required to have a minimum of five years of data for each
month in the pre-treatment (< 1990) and post-treatment (2000-2013) periods. We used
Mahalanobis Distance Matching (MDM) [158] to subset selected basins to those that were
maximally balanced [142, 159, 160] with respect to time-invariant and/or pre-treatment
qualities including: basin area, elevation, soil characteristics, rainfall, temperature, and
agricultural land cover (see SI Text). The matching process resulted in selection of 46 basins
for DID analysis. Specifications of the DID fixed effects log-linear regression, complimentary
mixed effects linear regression model, and the treatment effect coefficient of interest, are
described in the SI Text.

Streamflow Volumes

The mixed effects linear regression model used to estimate the relationship between mean-
normalized annual total (depth) of streamflow and either forest or agricultural land cover
is provided in the SI Text. River basins included in model fitting (173 basins for forest
cover, and 91 basins for agricultural land cover) were limited to those with: at least ten
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years of annual flow totals (across all available years) with fewer than three days missing in
any given year; a minimum of five site-year observations; and inclusion in a nested group
for which more than ten group-year observations were available in the measurement period
(2000-2013 for forest cover and 1950-2012 for agricultural land cover). The agricultural land
cover model was fit only on basins with less than 20% agricultural development by area prior
to 1990; 1964 is the earliest record of flow in these selected basins. Predictions (estimated
annual flow, and change in annual flow) were made on the full set of 326 basins for both
forest (2000-2012) and agricultural land cover (1950-2012) data, which allows for evaluation
of average flow change based on basin physical and climate features for all years, despite
missing values in the observed flow record. For basins used in model fitting, predicted values
rely on fixed effects and basin- and nested-group random effects; for basins not included in
model fitting, predicted values use only fixed effects. Basin-specific mean annual flow values
are used to back out volumes of flow from mean-normalized values. The proportion of flow
change induced by land cover change relative to all environmental change is the ratio of
flow change estimated from land cover change (regression coefficients) only, to flow change
estimated with the full fitted model. See SI Text and Table B.5.

Software and code availability

All data formatted for this analysis, as well as code, are available upon request from the
corresponding author. We carried out all analyses and generated all figures within the
Comprehensive R Archive Network (CRAN) [55] programming environment (see SI Text for
details).
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Chapter 5

Conclusion

5.1 Summary of Findings

Chapter 1 introduces background information on land use and hydrology in Brazil’s arc
of deforestation across the Amazon rainforest and Cerrado (tropical savanna) biomes, and
summarizes concepts and findings from Chapters 2 - 4.

Chapter 2 details effort required to acquire and process in-situ hydrological data, includ-
ing rainfall, streamflow, and associated geographic information including river basin bound-
aries and the location and drainage areas of hydropower reservoirs. Curation of quality-
controlled climate and hydrological data is an important but often overlooked ‘data scientific’
contribution to environmental research. Data science refers to the combination of traditional
statistical data analysis, data processing (i.e. cleaning and formatting), and data visualiza-
tion for communication. Data science thus acknowledges the conceptual and computational
challenges posed by the structure, size, messiness, and complexity of data [34, 35], and the
unique knowledge set required to address those challenges. Data science is not concerned
with the overall conceptual framing of research or scientific methods, but the process by
which data are made ready for analysis and the way in which results are interpreted. In
order to test a hypothesis, a researcher must collect data, evaluate the quality of and clean
data, and format data for a specific model or method. To present results of an analysis
(e.g. a model or method output), the researcher must carry out robustness checks, quantify
uncertainty, and visualize and summarize results for communication. In some studies, these
tasks may be of adequate simplicity, or rely on datasets or methods with strong historical
precedent, so as to be secondary in effort to the core scientific inquiry. In others, however,
data challenges are paramount: the effort spent on what is traditionally known as the science
may be small compared to that spent on the data science. The latter is the nature of the
data scientific work of this dissertation, and is the reason for explicit presentation of methods
used to curate the data used for analysis in Chapters 3 and 4.

Chapter 3 uses the rainforest-savanna transition region in Brazil as a case study to
show differences in the statistics describing rainfall across nine remotely-sensed (RS) and



CHAPTER 5. CONCLUSION 55

interpolated in-situ (IS) daily rainfall datasets covering the period of 1998-2013. Results
from this study show that differences between rainfall datasets were comparable to estimated
bias in global climate model projections, and rainfall trends from different datasets were
inconsistent at the scale of river basins. We demonstrate that direct empirical comparisons
between rainfall and streamflow provide a scalable alternative to modeling for evaluating
rainfall dataset performance across multiple areal (river basin) units, and highlight the need
for users of rainfall datasets to justify data choices for hydroclimatological analyses because
analysts may reach divergent understandings due to data selection alone. Analysts can reduce
‘data selection uncertainty’ by (i) justifying dataset choices using selection methods such as
the performance statistics demonstrated in Chapter 3, and/or (ii) including estimates of data-
selection uncertainty (e.g. confidence intervals based on variability across datasets) in their
findings. Evaluation of rainfall data prior to hydroclimatological analysis is both feasible
(if streamflow records are available) and necessary. In contrast to the use of climate model
outputs in analyses - where characterization of an ensemble of equally uncertain projections
is best practice - if an individual dataset corresponds more closely with a reference of choice
(e.g. streamflow) than other datasets, that dataset should be used for analysis.

Chapter 4 frames the case of land use change in Brazil as a natural experiment, and
estimates the direct causal effect of deforestation on sreamflow within an observational data
setting. This study demonstrates that agricultural-driven deforestation in the Amazon-
Cerrado region of Brazil is extensive and regional in its impact to streamflow, particularly
low, dry season flow. Results show that increases in (mean-normalized) river flow in basins
with high levels of deforestation were between 5 and 11 percentage points higher than in
minimally deforested basins, and that on average between 1950-2012, the Amazon-Cerrado
region experienced an increase of 0.93 mm/year (2.94 km3/year) due to land cover change,
accounting for 44% of total flow rate increases (6.72 km3/year). While elevated flow, and low
flow in particular, may be seen as a desirable outcome of deforestation with respect to small,
run-of-river hydropower generation and irrigation development in rural regions, tradeoffs
between short-term benefits and long-term costs of (perceived) flow increases, including the
potential masking of what would otherwise be decreases, are unclear. Deforestation-driven
flow increases may be sustained in the long term (such as in cultivated cropland), or flow
may eventually decline due to regrowth (such as in partially-deforested natural pasture)
[128]. What will happen in this region is unknown, but is likely a combination of the two
outcomes.

5.2 Future Work

The data outlined in Chapter 1 provides a foundation for a wide range of environmen-
tal analyses in rural and ecologically important Brazil. These core hydrological data can
be combined with other spatially-explicit data products, such as elevation, soil maps, and
remotely-sensed climate products (as in Chapters 3 and 4) to provide not only validation
of remotely-sensed products themselves (see Chapter 3), but can also be employed in novel
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empirical data analyses of hydroclimatic change (see Chapter 4) and in the calibration and
validation of coupled land surface-atmosphere model outputs.

Future work stemming directly from this dissertation includes analyses of the effects of
land use change on hydrology in several capacities additional to those presented in Chapter 4:
(i) evaluation of basin scale effects of land use change on flow through the analysis of nested
basin groups; (ii) evaluation of differences in flow (change) across basins with different types
of agricultural land cover (e.g. pasture vs. double-cropped corn and soy) using additional
land cover datasets providing detailed agricultural classifications [161, 94], and across basins
with different spatial patterns (e.g. clustering) of land cover; (iii) evaluation of interactions
of evapotranspiration (ET) and groundwater change in determining dynamics of flow change
using additional remotely-sensed datasets, including MODIS ET [162, 163] and GRACE
groundwater anomaly [164]; (iv) further investigation of the role of rainfall variability and
temperature in determining flow change - those hinted at in the regression analyses of Chapter
4 that demonstrated significant effects of rainfall and temperature, especially with respect
to climate and land use change feedbacks to climate; (v) the contribution of land cover
change, via spatially variable evapotranspiration change effects, to observed temperature
changes in the region; (vi) the relevance of flow change to regional hydropower generation,
and especially small (run-of-river) hydropower; and (vii) modeling of future change in flow
with (projected) future land cover change.

This study, and Chapter 4 in particular, provides a proof of concept for the use of
observational (non-experimental) causal identification methods in the water sciences. Larger-
sample empirical methods allow for the estimation of gradual, less extreme land use change
effects on streamflow where traditional methods are limited to analysis in more extreme land
cover transition cases. Thus, this dissertation motivates the discussion of the use of causal
statistical analysis methods in the water sciences, and motivates a more complete discussion
of the background and theory supporting causal statistical identification methods, their
overlap with existing literature and empirical approaches in physical hydrology, and the
translation of statistical terminology from other fields (economics, public health) to water
science applications. This will also be the subject of future work.
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A.1 Figures

All figures were generated using the Comprehensive R Archive Network (CRAN) [73] pro-
gramming environment (Version 3) on both Apple and Windows operating systems. See the
Supplementary Discussion for a list of utilized software packages. See the Methods section
of the main text for data source references.

Figure A.1: Rain gauge counts and densities in study region

The number of active rain gauges (left vertical axis) and active rain gauge density (right vertical axis),
daily between 1998-2013, in the eight-state and 5.25 million km2 study region. Rain gauge data is from the
curated data package used in this study [32].
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Figure A.2: Median and wet-day median rainfall

Median daily and wet-day (days with ≥ 1 mm/day) median daily rainfall between 1998-2013 over the
study region according to different datasets. Median values were calculated at each 0.25◦ grid cell. These
maps were generated in R, Version 3 (https://cran.r-project.org/) [55].
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Figure A.3: Extremes and variability of rainfall

Maximum (left) and standard deviation (right) of daily rainfall between 1998-2013 over the study region
according to different datasets. Maxima and standard deviations were calculated at each 0.25◦ grid cell.
These maps were generated in R, Version 3 (https://cran.r-project.org/) [73].
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Figure A.4: Mean annual total rainfall

Mean annual water year (October-September) totals of rainfall between 1998-2013 over the study region
according to different datasets. Mean values were calculated at each 0.25◦ grid cell. These maps were
generated in R, Version 3 (https://cran.r-project.org/) [73].
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Figure A.5: Occurrence of rainfall

Daily rainfall occurrence (percent of wet days, when rainfall depths are ≥ 1mm) between 1998-2013 over
the study region according to different datasets. Occurrence was calculated at each 0.25◦ grid cell. These
maps were generated in R, Version 3 (https://cran.r-project.org/) [73].
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Figure A.6: Supplemental daily rainfall statistics in river basins according to different rainfall
datasets

From left to right, top to bottom, the panels show the 5th, 50th (median), and 95th percentiles of daily
rainfall (mm/day); the (mean) total annual rainfall (cm/year); standard deviation of daily rainfall
(mm/day); and the (mean annual) maximum daily rainfall (mm/day). Each boxplot is generated with
n=89 (river basin) statistic results, calculated using basin area-average rainfall from the given rainfall
dataset (colors) from all days between 1998-2013.
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Figure A.7: Daily rainfall distributions by rain gauge density

Empirical probability distributions of daily rainfall between 1998-2013 across sample areas in the study
region by rainfall dataset (curves) and rain gauge density bins (panels). Rain gauge density bins are
labeled on the top of panels, and refer to the number of rain gauges per 104 km2. Samples at different
gauge densities are from rainfall-averaging areas extending outward from 100 regularly-sampled points in
the study region with radii between 10-200 km. The number of observations in each gauge density bin was
balanced by sub-sampling due to a greater number of observations in the low-density bin: each final bin
was composed of 106 observations. Distributions deviate between datasets primarily at the lowest and
highest rain gauge densities. GPCP, CPC, TRMM, and VP report a greater number of dry-day, low-rainfall
depth events (< 1 mm/day) than UKP, UK, OK, IDW, and PERSIANN, especially at lower and higher
gauge densities. The latter group of datasets register wet-day (≥ 1 mm/day), medium intensity rainfall
depths more frequently than the first group, especially at the lowest and highest rain gauge densities.
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Figure A.8: Differences in rainfall data quality as indicated by performance statistics, by
latitude and river basin area

Panel (a) shows performance statistics (correlation and peak correspondence) by rainfall dataset (colors)
plotted as local regression-smoothed curves across the range of latitudes (at basin centroids) in the study
region, with 95% uncertainty intervals (shaded). Panel (b) shows the same performance statistic curves
plotted across the range of river basin area sizes in the study region. In both panels, solid lines indicate the
best-performing gridded (PERSIANN) and custom-interpolated (IDW) datasets. In (a), non-overlapping
uncertainty intervals indicate distinguishable performance between datasets; dashed-lines indicate all other
datasets with uncertainty intervals that are not displayed, but are of similar width. In (b), uncertainty
intervals overlap in most of the displayed range due to the sparse sampling of basin size across the range of
basin sizes, and are therefore not shown. Gray tick-marks at the bottom illustrate the spread of latitudes
and rain gauge densities in the 89 river basins.
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Figure A.9: Differences in rainfall data quality as indicated by performance statistics, by
season

Panel (a) shows kernel-smoothed empirical probability distributions of performance statistics (correlation
and peak correspondence) by rainfall dataset and season (wet: October - April, dry: May - September).
Panel (b) shows the same performance statistics plotted by season as local regression-smoothed curves
across the range of rain gauge densities in the study region, with 95% uncertainty intervals (shaded). In
(b), solid lines and shaded regions indicate the best-performing gridded (PERSIANN) and
custom-interpolated (IDW) datasets and their 95% uncertainty intervals, respectively; non-overlapping
uncertainty intervals indicate distinguishable performance between datasets; dashed-lines indicate all other
datasets with uncertainty intervals that are not displayed, but are of similar width; gray tick-marks at the
bottom illustrate the spread of rain gauge densities in the 89 river basins.
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Figure A.10: Schematic of rainfall and streamflow peak correspondence methodology

Daily quickflow (top) and rainfall (bottom) for a two-month period; the data have been standardized to
[0,1]; rainfall has been lagged to maximize rain and flow cross-correlation. ‘Peak correspondence’ is a
performance statistic that measures the rate at which distinct rainfall peaks correspond to distinct
quickflow peaks within a basin-specific response time window. The shaded windows illustrate cases where
distinct peaks correspond; on the left - an exact match, and on the right - a match within the window.

A.2 Tables
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Table A.1: Two-sample Kolmogorov-Smirnov tests for differences in distributions of perfor-
mance statistics

Statistic Data GPCP CPC TRMM PERS UKP UK OK IDW

Correlation

CPC 0.034
TRMM 0.3 0.008
PERS 0.078 0.988 0.008
UKP 0 0.003 0 0.003
UK 0 0.001 0 0.001 0.948
OK 0 0.003 0 0.001 0.868 0.222
IDW 0 0 0 0 0.113 0.16 0.034
VP 0.014 0.868 0.001 0.948 0.005 0.002 0.008 0

Peak Corresp.

CPC 0.3
TRMM 0.756 0.3
PERS 0.003 0.16 0.003
UKP 0 0 0 0
UK 0 0 0 0 0.988
OK 0 0 0 0 0.113 0.078
IDW 0 0 0 0 0.16 0.3 0.005
VP 0.022 0.003 0.052 0 0 0 0 0

Two-sample Kolmogorov-Smirnov test p-values (rounded to three decimal places) for differences in
distributions of performance statistics (for year-round data). Datasets with performance statistic
distributions that are significantly different from each other are bolded (p-value < 0.05).

A.3 Supplementary discussion

Additional details about rainfall data

Rain gauge density factors into the quality of gridded datasets to the extent that each
dataset relies on gauge data: RS datasets (GPCP, TRMM, PERSIANN) rely on gauge data
for calibration, and the gridded IS dataset (CPC) relies on gauge data entirely. There is
overlap in the gauge data used in custom interpolations (from the custom data package [32])
and quality-controlled data released by the Brazilian government and included in the Na-
tional Center for Atmospheric Research (NCAR) Global Precipitation Climatology Centre
(GPCC) monthly product, which is used to calibrate all three RS products evaluated in this
study. The exact number of overlapping gauges across all gridded and custom interpolated
products is not available as data creators do not release detailed source data. Based on
information provided in referenced source documents (see Methods), our custom IS interpo-
lations incorporate gauged locations that are additional to those used in the gridded datasets,
and incorporate higher temporal resolution gauge data directly (instead of inclusion of only
monthly IS data for calibration, such as in the RS products [61]). Therefore it is possible
that the quality of custom IS interpolations relative to gridded datasets (according to per-
formance statistics) derives primarily from the greater number of rain gauges used in the
IS interpolations. Confirmation of this assertion for gridded RS datasets (GPCP, TRMM,
PERSIANN) would require an ability to separate the contribution of satellite retrievals (and
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associated processing algorithms) from the contribution of rain gauge calibration to the over-
all product; for the gridded IS dataset (CPC), confirmation would require use of the CPC
interpolation method on the custom data. These tasks are beyond the scope of this study,
and therefore we do not answer this question.

Our custom interpolations of IS data provide estimates of total rainfall amounts that
are similar to gridded data (see Supplementary Figures A.4 and A.6), especially when ag-
gregated up to monthly time scales. No single dataset reports consistently higher or lower
rainfall depths at any given location. According to statistics calculated over large to small
sample areas (100 regularly-sampled locations across the study region with radii of 200 km
and 10 km, respectively): IDW, OK, and UKP report the lowest proportion of extreme
rainfall (highest and lowest value) and anomalous rainfall (relative to mean of all datasets
combined) at daily, monthly, and annual time scales. All gridded datasets and VP, and
in some cases UK, are responsible for a greater fraction of extreme and anomalous rainfall
estimates (although no single dataset is responsible for > 50%). The datasets providing
the most extreme/anomalous estimates (and the percentage of extremes/anomalies they are
responsible for) change with respective to the temporal resolution (daily, monthly, annual).
According to cumulative sum plots, seasonality is consistent across the different datasets.

Selection of IS interpolation resolution

In an analysis of rain gauge (pair) distances across the study region between 1998-2013, the
average median distance is 1,150 km; the average 5% quantile distance is 250 m, and the
average 95% quantile distance is 2,370 km. While the average minimum distance is 2km,
this distance occurs for only a handful of rain gauge locations. Across the whole study
region, most areas have rain gauges located at a distance of greater than 1,000 km, for which
a 0.25◦ (28 km) resolution is sufficient. In a preliminary analysis, we carried out local IS
interpolations over basin areas at a 0.05◦ resolution; our analysis with those interpolations
yielded equivalent results, thus the performance of IS interpolations relative to RS data is
not a function of interpolation resolution.

Selection of IS interpolation specifications

We selected IDW parameters, UK predictor variables (latitude, longitude, elevation [52],
and RS data - PERSIANN), and compared prediction error of the different interpolation
methods and UK specifications using k-fold cross validation (CV). CV results were evaluated
using correlation, error interquartile ranges, and RMSE of the errors normalized by standard
deviation of observations. Kruskal-Wallis tests confirmed that these metrics discriminated
between the interpolation methods’ performance. An IDW parameter of 1.5, and UK (UKP)
covariates of latitude, longitude, and elevation (and PERSIANN) were best performing. The
UKP interpolation we used combines RS and IS data, which has been recommended [100,
165].
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Additional information on hydroclimate indices

Normality tests (q-q plots and the Shapiro-Wilk test [166]) suggest that the runoff ratio and
Horton index values (for each rainfall dataset) and/or means (across rainfall datasets) may
be non-normal, demonstrating that alternative methods for the calculation of confidence
intervals (e.g. non-parametric bootstrap sampling) may be preferred.

Additional information on performance statistics

IDW performs best on average, but the universal kriging methods (UKP and UK) can out-
perform IDW at low gauge densities. Unlike IDW and OK, which are local interpolations,
UKP and UK generate mean rainfall values at locations with no nearby rain gauges (us-
ing ‘universal’ predictors such as elevation across the full study region), thereby increasing
the occurrence of nonzero rainfall values at those locations. Because a greater number of
nonzero rainfall values will correspond with flow rises (relevant to correlation) and peaks
(relevant to peak correspondence) more frequently, kriging methods demonstrate better per-
formance at very low gauge densities. Therefore, this result does not necessarily imply better
representation of rainfall by kriging methods in low gauge density areas. Lastly, the kriging
method incorporating RS data (UKP) performs no better than its IS-only counterpart (UK),
although inclusion of the RS data in UKP attenuates UK’s otherwise higher median daily
values and occurrence.

With respect to the peak correspondence response time windows: in windows exceeding
1/3× τ (τ is the basin response timescale in units of days), the peak correspondence method
fails to distinguish between datasets. Use of a static window of 1 and 2 days across all
basins yielded similar results to those presented in the main text (where a basin-specific
window of 1/4× τ was used). In the context of a contingency or error matrix analysis [167],
peak correspondence is the true-positive rate (TPR) at which distinct peaks match within
a window of time that accounts for potential mismatches in the estimated basin response
time. Thus, 1-TPR gives a ‘false-negative’ rate, corresponding to type-II error, or error of
omission, in the rainfall datasets.

The performance statistics were validated on an external set of rainfall and streamflow
data from seven Australian basins of various sizes, including those with yearlong (wet) and
intermittent (dry) flow of different periods of record (2 - 39 years), provided in the R hydromad

package [168]. Real rainfall from each basin was perturbed with normally-distributed additive
random noise (mean = 0, standard deviation equal to a range of between 0.25 to 2 times
the rainfall standard deviation) to create 100 synthetic rainfall datasets per basin; negative
values of perturbed rainfall were set to zero, thus synthetic rainfall included additional
rainfall events, as well as eliminated existing ones. The generation of 100 synthetic datasets
was repeated 100 times (iterations) for each of the Australian basins. For each of the 100
iterations for each basin, we calculated the percentage of times each performance statistic
(correlation and peak correspondence) correctly identified the real rainfall dataset from the
combined set of synthetic (100) and real (1) datasets. Correlation and peak correspondence
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reliably selected the real rainfall dataset across basins with different flow types (intermittent
and yearlong) and time series lengths; correlation was, however, better able to distinguish the
correct dataset when random perturbations were small (low signal to noise ratios). When the
standard deviation was set to 1-2 times the real rainfall standard deviation, both performance
statistics correctly identified the real rainfall dataset 100% of the time. When the standard
deviation was smaller, for example, 0.5 times the rainfall standard deviation, correlation
identified the correct rainfall dataset again 100% of the time, however peak correspondence
identified the correct rainfall dataset on average (over all basins) 79% of the time. Specifically,
peak correlation identified the correct rainfall dataset in two of the seven basins 100% of the
time, regardless of the signal to noise ratio. However, it identified the correct rainfall dataset
with decreasing accuracy in other basins as the signal to noise ratio was decreased. There
were no similar features (e.g. size, intermittency) in the basins for which peak correspondence
worked best or worst (although short record durations negatively affect peak correspondence
due its reliance on peak events, which may occur infrequently, especially in dry basins).
Thus, we assume that variation in the ability of peak correspondence to identify the correct
rainfall dataset has to do with the nature of runoff data from individual basins; basins in
which peak correspondence is most likely to work well, given low signal to noise ratios, are
those that produce clear (and ideally, frequent) quickflow response signals.

We also evaluated a suite of alternative performance statistics, including: mutual in-
formation [169, 170]; peak correspondence calculated with less distinct (higher probability)
peaks (e.g. using all, instead of just distinct peaks); normalized cumulative distances; peak
correspondence and correlation with respect to local regression-smoothed rainfall time series;
peak correspondence and correlation with respect to probability- and information-weighted
quickflow and rainfall peaks; and moving-window correlation of peak magnitudes for rainfall
and quickflow. Mutual information results were similar to correlation, but were less reliable
in identifying true rainfall when tested on the suite of external data (described above), as
were peak correspondence measures calculated with less distinct peaks. The remaining trial
statistics either failed to reliably identify the correct rainfall dataset in validation tests, or
duplicated the results of the two primary performance statistics.

Software

Formatting and analysis of spatial data relied on the core R spatial analysis packages sp [171,
172], raster [173], gstat [174] and their dependencies. To estimate delay times between
rainfall and flow events and obtain test data for performance statistic validation, we used
the hydromad package [168]. To perform baseflow and quickflow separation, we used the
hydrostats package [175]. To categorize peaks in rainfall and quickflow, and calculate
their probability and significance, we used the pastecs package [176]. For construction and
analysis of error matrices, we used the caret package [177]. We used the rkt package [178]
for Seasonal Kendall (SK) tests and trend estimators. Figures and maps were generated using
using the ggplot2 [179], ggmap [180], and globe [181] packages and their dependencies.
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B.1 Text

Data

Table B.1 lists all data, its temporal and spatial resolution, time period coverage, and source.
In-situ hydrological data is provided along with comprehensive documentation on data ac-
quisition and quality assurance/quality control in the ”Curated Rain and Flow Data for
the Brazilian Rainforest-Savanna Transition Zone” data package [32] [see private link], and
an analysis-ready subset of these data are made discoverable through the Consortium of
Universities for the Advancement of Hydrologic Science (CUAHSI) Hydroshare platform
(https://www.cuahsi.org/HydroShare).

326 river basins met basic data quality requirements, which included: having high quality
streamflow data (see documentation in [32]); being an unregulated river basin, which was
defined as not having a gauge located directly downstream of a large (>30MW) reservoir
and with < 10% of basin area impacted by large reservoirs as of 2013; and being located
more than 50% (by area) within the eight-state study region boundary. The full set of 326
basins are those over which agricultural and forest cover summaries were calculated (see
Figure 4.1).

On average in the region, agricultural land development began to plateau after 1990,
and only a subset of basins in the region (for which we have data) experienced increases
in agricultural land cover, synonymous with deforestation, through the 2000s (see Figure
B.7). In general, agricultural land cover increases correspond to forest cover losses, except
in cases of urbanization where agricultural land cover reductions correspond to no change or
continued losses in forest cover. This was verified by observing agricultural and forest cover
trends in basins over the same period of time (Figure B.3), and is the rationale for the use
of only basins with less than 20% mean agricultural land cover prior to 1990 for any model
fitting exercise (DID and mixed effects regression models).

https://figshare.com/s/76363f9ea1b073e51d5f
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We quantified deforestation and prior agricultural land use in river basins using 1km grid-
ded annual agricultural land use (including cropland and pastureland, 1950-2012) [131] and
30m forest cover/loss (> 5m tree cover, 2000-2013) data [132]. We acquired forest cover and
change data from Google Earth Engine (http://earthenginepartners.appspot.com/science-
2013-global-forest/download.html) and generated annual forest cover from year 2000 forest
cover and subsequent annual forest loss data (https://sites.google.com/site
/earthengineapidocs/tutorials/global-forest-change-tutorial). The agricultural land cover
dataset incorporates year 2000 forest cover from the forest change dataset, along with spatial
reconstruction of historical agricultural census data [131]. Thus, the datasets are not inde-
pendent, and it is expected that they provide similar results in river basins where agricultural
land development is synonymous with forest removal.

We selected the monthly GPCC v.7 [154, 80] product to supplement in-situ rainfall data
due to its long-term coverage (data prior to 1983) and least bias relative to in-situ rainfall
data, as compared to other monthly datasets with similar temporal coverage (CRU TS3.10
and PREC/L .v1). We checked the consistency between monthly summaries of interpolated
rainfall and GPCC (correlation = 0.95).

Forest change

An average of 45% of the cumulative area deforested in Amazon-Cerrado river basins be-
tween 2000-2013 was from high-density forests (areas with > 85% tree cover); 24% was from
medium-density forest (areas with between 55-85% tree cover); and 32% was from what was
likely savanna and/or pasture (areas with between 10-55% tree cover, after [182]). 19% of
basins lost areas of high-density forest equivalent to between 5-34% of their total area, while
the percent of medium-density forest and savanna/pasture land that was deforested in any
basin was less than 5% of total basin area.

Flow normalization statistic

In our analyses, we used values of flow [m3/s] normalized by basin-specific historical mean
flow. This choice was based on an exploratory analysis of potential normalizing statistics that
included the mean, median, and the 99th percentile. These statistics were chosen because
they would produce normalized flow values that were interpretable at an individual basin
scale, and the exploratory analysis determined the consistency of each statistic with respect
to varying record durations. We took data from 176 river basins with more than 10 years of
daily data and less than 10% missingness, and evaluated: (i) the temporal consistency and
stationarity of each statistic by calculating variability and trends in one-year rolling-window
estimates; and (ii) the sensitivity of statistics to record duration and bias by comparing the
deviation between rolling-window and full-record estimates.

To look at variability and trends in the statistics over time (i), we calculated: (a) the
coefficient of variation (rolling-window standard deviations as a fraction of rolling-window
mean values); (b) simple linear slope estimates (linear regression of rolling-window statistic
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values on time); and (c) resulting linear model predictions of total one-year change as a
fraction of the rolling-window mean. On average across all basins evaluated, the coefficient
of variation (a) was 30% for the median and 99th percentile, and 20% for the mean; positive
and negative trends (b) were found in almost equal proportion (slightly more negative) for
all statistics; and the (absolute) interquartile range (IQR) of total predicted annual change
as a percent of the mean (c) was similar across all statistics, but slightly less for the mean
(<1% for the mean versus >1% for the median and 99th percentile). On average across all
basins, rolling-window deviations as a fraction of full-record mean values (ii) were - 0.5%
for the mean, and +5% and -12% for the median and 99th percentile, respectively. Thus,
the deviations and bias of the mean were least. In summary, the mean was determined to
provide a normalization statistic that would respond most consistently across a sample of
river basins for which record durations vary.

Diference-in-differences (DID) analysis

Prior to 1990, control basins tended to have low to mid-range (median) normalized flow rates
that were on average higher than those of treatment basins; however, after 2000, treatment
basin distributions of low (especially) and median flow were more similar to those of control
basins, while high flow distributions remained relatively similar between groups in pre- and
post-treatment periods (Figure B.5). This is the dynamic quantified by the DID regression.

DID linear fixed effects regression model

The DID model used in this study is:

log(flowimp + 1) ∼α + γi + λm + β1rainimp + β2tempimp + δ1(post-treatment)p+

τ1(treated)i · 1(post-treatment)p + εimp

Observations in the above model are for basin i, in month of year m, and period p (pre- or
post-treatment); flowimp is a flow percentile (i.e. 5th, 50th, 95th) calculated from daily flow
observations in basin i in month m and period p, and normalized by basin mean historical
flow percentiles; α is an intercept; γi is a basin fixed effect (estimated relative to the basin
with the lowest average 50th percentile flow); λm is a month-of-year fixed effect (estimated
relative to September, the lowest flow month in the study region); rainimp and tempimp are
average rainfall (monthly total) and temperature anomaly (daily average) for basin i in month
m and period p; δ1(post-treatment)p is an indicator variable equal to one for observations in
the post-treatment period (after 2000), and otherwise zero; τ1(treated)i · 1(post-treatment)p
is the interaction of treatment basin and post-treatment period indicators, and estimates the
treatment effect (on the treated); and εimp is an error term. The coefficient τ is the primary
coefficient of interest, and measures the differential effect of the treatment (> 10% forest
cover between 2000-2013) on the flow of a treatment group versus on a control group:
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τ̂ = (ytreated, post − ytreated, pre)− (ycontrol, post − ycontrol, pre)

where y = log(flowimp + 1), and ‘pre’ and ‘post’ refer to the two time periods, before and
after treatment. The effect of treatment (a difference of one unit in the period*treatment
interaction term) can be approximated as ((eτ − 1) ∗ 100).

For all flow percentile outcome specifications, this model meets ordinary least squares
(OLS) regression assumptions based on a suite of common diagnostics, although model fit
is poorer at low and high percentiles. The model fit according to the R2 was between
0.75-0.81 for all percentiles. Regression diagnostics used to evaluate the models’ underlying
statistical assumptions included inspection of Normal quantile-quantile (QQ) plots, residual
histograms, residual vs. fitted value plots, scale-location plots, and residual vs. leverage
plots. We selected the log-linear model, wherein the outcome variable (flow) was offset by 1,
based on model fit along the full range of flow percentiles, as well as for the log-linear model’s
ease of interpretation. Box-Cox transformations of the outcome variable would have provided
better custom fits for each flow percentile regression (e.g. different transformations for the
5th vs. 95h percentile); however, the DID regression results were not significantly different,
and such a transformation would have resulted in increased complexity in the interpretation
of results.

Linear mixed effects regression model specification of the DID model

The complimentary mixed effects linear regression model is:

log(flowimp + 1) ∼[α + (αj, αi)] + λm + β1rainimp + β2tempimp+

δ1(post-treatment)p + τ1(treated)i · 1(post-treatment)p + εimp

All terms are the same as those described for the traditional DID regression model.
However, in this mixed effects model, α is a fixed intercept, and αj, αi are random intercepts,
for nested groups and sites within nested groups.

DID assumptions

A key assumption of the DID model is that temporal trends in the treatment group’s outcome
(flow) would, absent treatment (deforestation), parallel trends in the control group. It is not
possible to directly check this assumption; however, comparisons of pre-treatment trends
in flow across treatment and control basins (Figure B.6) is suggestive of the validity of the
assumption. Comparisons for different percentiles of flow, from low to high, show that linear
temporal trends in normalized flow between the beginning of basin flow records (multiple)
and 1990 are parallel for low to medium-range flow. However, trends for high rates of flow
show differences between groups: the treated basin mean trend is increasing while the control
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basin mean value is unchanging. The effect of this, according to DID model assumptions,
is that the treatment effect is over-estimated at high flow. Given the high flow (>90th
percentile) treatment effect was small and insignificant, this does not alter the interpretation
of findings in this study

Matching

Matching is used to improve causal inferences in observational studies, and aims to reduce
imbalance in the distributions of observed pre-treatment variables between treatment and
control groups by subsetting data so that it is more (statistically) representative of data from
a randomized experimemt [142, 159, 160]. Before selecting Mahalanobis Distance Matching
(MDM) [158], we also explored Propensity Score Matching (PSM), another popular matching
method, which produced similar DID results (selection of basins into final dataset had about
80% overlap between PSM and MDM), but we ultimately selected MDM due to evidence of
superior performance of the MDM method in cases of limited data and a small number of
covariates [183, 160].

MDM performance was evaluated in terms of its reduction in mean differences between
covariates across treatment and control groups, and Student’s t-tests of differences in means
of those covariates across treatment and control groups. Matching reduced the mean dif-
ferences between all treatment and control covariates by between 10-79%, and Student’s
t-tests failed to reject the null (of no difference in means) at even a 90% confidence level for
all covariates except for pre-treatment % agricultural land cover (t-test p-value = 0.006).
The imbalance of prior agricultural land cover indicates possible bias in the selection of
basins into treatment and control groups with respect to agricultural land use (and previous
deforestation) history. This is unavoidable given data limitations. Treatment basins are
more likely to have experienced some level of agricultural development as early as the 1960s,
which marks the beginning of the flow record. For this reason, only basins with less than
20% agricultural land cover prior to 1990 were selected into either the treatment or control
groups, a threshold based on a previous finding that flow changes are generally insignificant
when basin land cover change is under this threshold [128], and with the understanding that
historical agricultural land cover indicates removal of natural vegetation [131, 1].

Because the DID method estimates the differential effect of treatment on a treatment
group versus treatment on a control group, this imbalance may bias results if the effect (basin
flow response) is different across levels of (< 20%) antecedent agricultural development.
Figure B.7 shows that flow change (mean differences in percentiles of flow across periods)
is not necessarily consistent across levels of pre-treatment agricultural land cover (% basin
area) for treated basins. The greater the percentage of a basin’s pre-treatment (historical)
agricultural land cover, the lesser is the flow change response (less positive change, or smaller
increases in flow) in treated basins from pre-treatment to post-treatment.

Treatment basins, as they are defined, tend to have greater pre-treatment agricultural
land cover percentages; a reality imposed by data limitations (with respect to the duration
of both flow and forest cover data). Prior to 1990, the majority of control basins have
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agricultural land cover percentages (of basin area) that are less than 5%, while treatment
basin agricultural land cover is spread more evenly between 2% and 20%. Based on graph-
ical analyses (Figure B.7), flow change (increase) is greater for treatment basins that are
less agriculturally developed prior to additional (2000-2013) deforestation. This suggests
that evaluation of treatment effects on treatment basins with less antecedent agricultural
development - a better matched analysis - would yield a larger treatment effect estimate.

Results

Table B.3 shows estimated DID model coefficients for the 5th, 50th, and 95th percentile
flows; these are the same as those presented continuously in Figure 4.3 in the main text.
Coefficients on the temperature terms indicate that the temperature anomaly, which cap-
tures deviation in average temperature from to a 1960-1990 baseline, has a weak negative
relationship with flow. Rainfall has a significant, positive relationship with flow, as expected.
The interpretation of the negative coefficient on the post-treatment indicator is that absent
deforestation and holding all else constant, flow is actually decreasing with time on average.
The regression coefficient estimates for rainfall and temperature include the combined effects
of any exogenous climate forcing and climate-feedback effects from previous land use change,
which may be significant [15, 16, 17, 20, 21].

Alternative specifications

A graphical summary of coefficient estimates with the specification from the main text
(described in the Methods, and summarized in Table B.3), are provided in Figure B.8.
Traditionally, an indicator for treatment would be included in the regression model. In the
model described in the main text, the treatment indicator term is absorbed by the basin fixed
effects (γi) term. We fit an alternative model that includes this term (instead of basins fixed
effects). See Table B.4 for results. This alternative specification estimates similar treatment
effects and other coefficients. The coefficient estimate on the treatment indicator shows that
treated basins have lower flow on average than control basins at low and medium ranges of
flow, which is also illustrated in Figure B.5. The linear mixed effects model includes basin
and basin-in-nested-group random effects (to account for correlation in the observations of
spatially overlapping basins), as well as a treatment indicator such as in the alternative
specification described above and in Table B.4.

Streamflow volume change analysis

Linear mixed effects regression model

A chief benefit of mixed effect models, in addition to being able to account for correlation
between basin observations, and basins within nested groups, is the capacity to represent
basin-level trends in basins with more complete data, and to draw trend estimates in basins
with sparse data towards the overall mean - what is referred to as ‘partial pooling’, which
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can improve predictive capacity relative to traditional fixed effects models [152]. The mixed
effects linear regression model used to estimate the relationship between mean-normalized
annual total (depth) of streamflow and either forest or agricultural land cover is:

flowijt ∼[α + (αj, αi)] + [τ + (τj, τi)] % coverit + λt + β1Xi1 + β2Xit2 + ε

Observations in the above model are for basin i in nested basin group j (basins with
overlapping areas and/or located along the same river network) in year t; flowijt is basin i
(in nested group j) and year t flow depth (sum of daily volumetric flow normalized by basin
area) as a percent of basin mean annual flow; α is a fixed intercept, and αj, αi are random
intercepts, for nested groups and sites within nested groups; τ is a fixed slope, and τj, τi are
random slopes, for nested groups and sites within nested groups with respect to % coverit,
which is the percent of basin i area forest cover that was lost, or agricultural land cover
that was gained, in year t; λt is an annual time trend; Xi1 are time-invariant basin physical
features including top- and sub-soil (average) sand and clay percent and organic carbon
(% weight), maximum basin elevation difference, and basin area; Xit2 are basin climate
covariates including rainfall (total) and temperature (daily average) for basin i and year t;
and ε is an error term. t is the calendar year for land cover variables (January-December),
and water year for flow and climate variables (October-September, starting in the same year
as the calendar year).

The interpretation of the pooled, fixed-effect slope coefficient τ is that a 1 unit (percent-
age point) change in basin forest loss or agricultural land cover gain in a given year corre-
sponds to a τ unit (percentage point) change in mean-normalized basin flow, holding all else
constant; τ + τj and τ + τi provide estimates for individual basin nested groups and sites,

respectively. Fitted or predicted values of percent of mean flow ˆflowijt are converted to flow

rates (mm/year) using the mean flow rate for each basin ( ˆflowijt∗long-term mean flowi/100).
Basin mean annual flow values for for the full set of 326 basins is based on the sum of

average monthly totals constructed from mean daily flow by month across all available years
of data for each basin, which allows calculation of annual totals even with significant missing
flow values in some years. The RMSE between these estimated mean annual flow values
and the actual mean annual totals from 226 basins with minimal missing data (fewer than
3 missing days per year, and ten or more years of data) is 17.5mm, which is 3% of basin
mean annual totals on average. Predictions of annual flow (and change) on only basins used
in model fitting (within-sample) generates roughly equivalent results as prediction across all
basins.

Average annual flow change from land cover change for basin i in year t is (τ + τi) ∗
% cover changeit, where cover change is the loss of forest or gain of agricultural land cover

in year t (relative to year t− 1) for each year over the period of record (2000-2012 for forest,
1950-2012 for agricultural land cover). If the basin was not included in model fitting, τi = 0,
and the estimate is based on the fixed effect only. Model coefficient estimates were made
by optimizing the restricted maximum likelihood (REML) criterion, p-values and degrees of
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freedom are based on the Satterthwaite approximation, and full model (total flow change)
and land cover (only) change predictions were estimated with 95% bootstrap prediction
intervals and confidence intervals, respectively (see SI Text ”Software” section).

Software

Analyses were carried out in the Comprehensive R Archive Network (CRAN) [73] program-
ming environment (Version 3) on both Apple and Windows operating systems. Formatting
and analysis of spatial data relied on the R spatial analysis packages sp [171, 172], raster
[173], gstat [174], geosphere [184] and their dependencies; data manipulation relied on the
reshape2 [185] and dplyr [186] packages. Fixed effects linear regressions (DID analysis)
relied on the standard R stats package, and linear mixed effects modeling relied on the
lme4 [187], lmerTest [188], and merTools [189]. Figures and maps were generated using
using the ggplot2 [179], ggmap [180], and globe [181] packages and their dependencies.

B.2 Figures

All figures were generated using the Comprehensive R Archive Network (CRAN) [73] pro-
gramming environment (Version 3) on both Apple and Windows operating systems. See the
SI Text ”Data” section, and ”Methods” section of the main text for data source references.
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Figure B.1: Change in cumulative agricultural land cover over time

Change is annual cumulative change in the percent of basin area categorized as agricultural land cover
(cropland and pastureland) between 1950-2012 [131]. Thin gray lines are individual basin time trends, and
the thick red line is a local polynomial regression fit. The figure on the left shows all 326 basins in the
study region, and the figure on the right shows 130 basins with < 20% agricultural land cover prior to
1990, which was a component of the criteria used to subset basins for the FDC and DID analysis.
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Annual loss in mean forest cover %
 all basin-years, 2000-2013
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Figure B.2: River basin losses in forest cover

The mean forest cover percent is the basin-area mean of all (30m) pixel-level values of percent (>5m) tree
cover [132]; losses are negative changes in the basin-area mean forest cover percent. A histogram of annual
losses is shown on the left, including observations from all basins in all years between 2000-2013 (n=4238),
and a histogram of total cumulative losses between 2000-2013 is shown on the right, with one observation
per basin (n=326).
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Figure B.3: Forest cover losses and corresponding agricultural land cover gain

The figures show annual agricultural land use (ALU) [131] (left axis, red) and forest cover [132] (right axis,
green) as a percent of basin area in a high-deforestation river basin (left panel), and low-deforestation basin
(right panel). Land cover change trends in these basins illustrate the correspondence that is present
between forest and agricultural land cover in basins with < 20% agricultural land cover prior to 1990.
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Figure B.4: Relationships between flow and land cover

Mean-normalized flow percentiles (5th, 50th, and 95th) are plotted against the percentage of total basin
area categorized as forest (top) and as agricultural, including cropland and pasture (bottom). The blue
trend line and 95% confidence interval are from robust linear regression. Each point represents a basin-year
observation from basins with less than 10% missing values and fewer than 30 consecutive missing values
(days). The forest cover data [132] is annual over the period of 2000-2013 (top: 2,579 basin-year
observations of 323 basins with between 1-14 observations each); the agricultural land cover data [131] is
annual over the period 1964-2012 (bottom: 7,533 basin-year observations of 326 basins with between 1-59
observations each).
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Figure B.5: Histograms of mean-normalized flow percentiles across periods and groups

Histograms are of 5th percentile (top), 50th percentile (middle), and 95th percentile (bottom)
mean-normalized flow across treatment (high-deforestation) and control (low-deforestation) groups, which
are indicated by color, and pre-treatment (<1990) and post-treatment (2000-2013) time periods, which are
indicated by panel columns (left and right, respectively).
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Figure B.6: Trends in pre-treatment (< 1990) flow by treatment and control group

The figures show scatterplots (points) of transformed (log and offset by one) normalized flow percentiles
(vertical axis) along years prior to 1990; the lines and 95% confidence intervals are those from a robust
linear regression; colors indicate high-deforestation and low-deforestation basin groups. The panels (left to
rigth) show results for the 5th, 50th, and 95th percentile of normalized flow. Percentiles were calculated in
all basin-years with less than 10% missing data for all basins (46) included in the DID analysis.
Basin-years prior to 1990 are determined by data availability in each basin, and therefore vary.
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Figure B.7: Between-period flow change corresponding to pre-treatment agricultural land
development

The vertical axes are change between pre-treatment (<1990) and post-treatment (>2000) period-mean
(log-transformed) flow percentiles for the 5th (left), 50th (center), and 95th (right) percentiles of
normalized flow. The horizontal axis is pre-treatment (1989) agricultural land cover as a percent of basin
area. Points are values of change in individual basins with respect to each basin’s level of pre-treatment
agricultural development; shape indicates whether or not the basin was included in the DID analysis; colors
indicate treatment group assignment of those basins; the lines and 95% confidence intervals are from a
robust linear regression of change on agricultural land cover %. Results from 75 basins are shown, and
include the 46 used in the DID analysis; additional basins that met data quality requirements for the DID
analysis (other than matching criteria) were included here in order to best approximate the relationship
between flow change and prior agricultural land use.
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Figure B.8: Visualization of DID regression coefficient estimates

DID regression coefficient estimates for the 5th, 50th, and 95th percentile, including the intercept and
month fixed effects (relative to a September baseline). All basin fixed effects (45, relative to the lowest flow
basin), are not included in the graphic above, but all are significant at a 95% confidence level for all flow
percentile regressions. The significance in monthly trends reflects seasonality in flow across the region.
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Figure B.9: The estimated effects of agricultural land development on annual flow

The map shows river basin centroids (n=326 river basins) [32]; colors indicate annual flow increases (mean
mm/year, 1950-2012) due to agricultural land cover gain [131]; circle sizes indicate the size of the river
basin. Values are basin mean estimates, and error bars are 95% confidence intervals. Estimates are mean
predicted values of change calculated from mixed effects model coefficient estimates (see Methods).
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Figure B.10: The estimated effects of all environmental change, including agricultural land
cover gain, on annual flow

The map shows river basin centroids (n=326 river basins) [32]; colors indicate annual flow increases (mean
mm/year, 1950-2012) due to all environmental change (climate and agricultural land cover); circle sizes
indicate the size of the river basin. Values are basin mean estimates, and error bars are 95% confidence
intervals. Estimates are mean predicted values of change calculated from mixed effects model coefficient
estimates (see Methods).
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Figure B.11: The estimated effects of all environmental change, including forest loss, on
annual flow

The map shows river basin centroids (n=326 river basins) [32]; colors indicate annual flow increases (mean
mm/year, 2000-2012) due to all environmental change (climate and forest cover); circle sizes indicate the
size of the river basin. Values are basin mean estimates, and error bars are 95% confidence intervals.
Estimates are mean predicted values of change calculated from mixed effects model coefficient estimates
(see Methods).

B.3 Tables



APPENDIX B. SUPPLEMENTARY INFORMATION (SI): CHAPTER 4 101

Table B.1: Data types, temporal resolution and duration, spatial resolution, and sources

Data Type
Temporal
Resolution

Duration
Spatial
Resolu-
tion

Source

River basin
boundaries

static - polygon
Derived from Agência Nacional de
Águas (ANA) data [32]

Streamflow (at
basin outlets)

m3/s 1980 - 2013 point
Derived from Agência Nacional de
Águas (ANA) data [32]

Large reservoir
(>30MW)
locations and
upstream drainage
areas

static 2013
point,
polygon

Derived from Agência Nacional de
Águas (ANA) and Agência Nacional
de Energia Elétrica (ANEEL)data [32]

Rainfall (in-situ) mm/day 1983-2013
0.25
degree

Derived from Agência Nacional de
Águas (ANA) data [32]

Rainfall (gridded) mm/day 1983-2013
0.25
degree

NOAA Climate Data Record (CDR) of
Precipitation Estimation from
Remotely Sensed Information using
Artificial Neural Networks
(PERSIANN-CDR), v.1 [89]

Rainfall (gridded) mm/month 1950-2013
0.5
degree

Global Precipitation Climatology
Centre (GPCC) v.7 [154, 80]

Temperature
(gridded)

C/day
(mean or
max
anomaly and
climatology)

1950-2013 1 degree
Berkeley Earth Surface Temperature
(BEST) [156]

Soil static -
various
(polygon)

Harmonized World Soil Database
(HWSD) [157]

Elevation static - 90m
NASA Shuttle Radar Topography
Mission (SRTM) v.4 [52]

Agricultural land
cover

%
agricultural
cover/year

1950-2012 1km
Agricultural land use in Brasil
(1940-2012) [131]

Forest cover and
change

% forest
cover/year

2000-2012 30m
Hansen/UMD/Google/USGS/NASA
[132]
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Table B.2: Data summary of Amazon-Cerrado river basin features

Mean Min Max SD
Mean annual flow (mm/year) 640.93 25.76 1867.01 279.29
First year in flow record 1982 1950 2009 14
Last year in flow record 2009 1968 2013 7
# years in flow record 27 2 64 14
Missingness of flow record (%) 0.1 0 0.85 0.12
Annual rainfall (mm) 1737.66 1295.89 2719.39 314.89
Mean daily temperature (C) 24.95 22.12 27.74 1.55
Soil sand (%) 46.06 3.5 91.5 18.33
Soil clay (%) 37.37 5 76.5 14.88
Soil organic carbon (% weight) 0.85 0.21 2.3 0.31
Mean elevation (m) 503.06 55.1 1228 296.91
Elevation change (m) 468.76 38 1277 237.84
Area (104 km2) 2.68 0 44.75 6.27
Forest cover (mean % area, 2000-2012) 39.77 1.52 99.93 33.31
Forest cover change (mean % point/year, 2000-2012) 0.3 0 2.66 0.43
Agricultural land cover (mean % area, 1950-2012) 24.43 0 64.68 18.37
Agricultural cover change (mean % point/year, 1950-2012) 0.24 -0.3 0.86 0.26
# Basins 326 - - -
# Nested basin groups 43 - - -

Mean, minimum, maximum, and standard deviation of river basin features. Soil features are averages of
topsoil and subsoil values, and are area-weighted averages over basin areas. Forest cover is the basin
areal-average, annual percentage of basin area with tree cover > 5m in height according to 30m resolution
forest cover and change data [132]. Agricultural cover is the basin areal-average, annual percentage of basin
area with 1km resolution land classified as natural pasture, planted pasture, and annual and perennial
cropland [131]. Climate data area basin areal-average, annual values. See Methods, SI Text ”Data” section,
and Table B.1 for complete data details and sources.
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Table B.3: DID regression model estimates

5th (Low) 50th (Median) 95th (High)

Effect 0.107 (0.019)∗∗∗ 0.039 (0.017)∗ 0.024 (0.022)
Rain 0.004 (0.002)∗∗ 0.014 (0.002)∗∗∗ 0.022 (0.004)∗∗∗

Temp 0.008 (0.019) −0.032 (0.023) −0.036 (0.038)
Post −0.019 (0.009)∗ −0.004 (0.012) −0.000 (0.020)
R2 0.78 0.81 0.80

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The columns are separate regression models with the outcome variables of 5th, 50th, and 95th percentile
mean-normalized flow. ”Effect” is the estimated treatment effect of high-levels of deforestation on flow.
”Rain” and ”Temp” are the coefficients on average monthly-total rainfall (cm) and average daily-mean
temperature anomaly in month-periods; ”Post” is the post-treatment period indicator. An intercept, site
fixed effects, and month fixed effects, were included in each regression. Standard errors (in brackets) are
clustered by site. Each regression has 60 (parameters, including those in the table, the intercept, and 45
basin and 11 month fixed effects) and 1,043 (residual) degrees of freedom.

Table B.4: DID regression model estimates, alternative specification

5th (Low) 50th (Median) 95th (High)

Effect 0.107 (0.019)∗∗∗ 0.038 (0.020) 0.023 (0.029)
Rain 0.002 (0.001) 0.012 (0.001)∗∗∗ 0.015 (0.001)∗∗∗

Temp 0.002 (0.026) −0.022 (0.027) −0.038 (0.039)
Treated −0.075 (0.014)∗∗∗ −0.016 (0.014) −0.017 (0.020)
Post −0.018 (0.017) −0.009 (0.017) −0.002 (0.025)
R2 0.61 0.79 0.74

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The columns are separate regression models with the outcome variables of 5th, 50th, and 95th percentile
mean-normalized flow. ”Effect” is the estimated treatment effect of high-levels of deforestation on flow.
”Rain” and ”Temp” are the coefficients on average monthly-total rainfall and average daily-mean
temperature anomaly in month-periods; ”Treated” is the treatment group indicator; ”Post” is the
post-treatment period indicator. An intercept and month fixed effects were included in each regression.
Each regression has 16 (parameters, including the intercept) and 1,087 (residual) degrees of freedom.
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Table B.5: Fixed effects estimates from fitted mixed effects model

Forest Agriculture

Forest −0.64 (0.86)∗∗∗

Agriculture 1.07 (0.32)∗∗∗

Rain 74.69 (2.62)∗∗∗ 56.75 (1.54)∗∗∗

Temp 0.27 (0.91) −6.54 (1.15)∗∗∗

Sand −0.04 (0.09) −0.00 (0.14)
Clay −0.11 (0.13) −0.20 (0.17)
OC 12.58 (4.70)∗∗ 8.11 (4.72)
Elevation 1.60 (0.44)∗∗∗ 1.75 (0.43)∗∗∗

Area −0.17 (0.12) −0.19 (0.15)
Year 0.12 (0.12) 0.04 (0.05)

Num. obs. 1410 2016
Num. basins 173 91
Num. nested basin groups 22 22

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The columns include fixed effects coefficient estimates from separate linear mixed effects regression models
with predictor variables of (left) forest cover between 2000-2012 and (right) agricultural land cover between
1950-2012 (% basin area/year). ”Rain” and ”Temp” are the coefficients on average annual-total rainfall
(m) and average annual daily-mean temperature (degrees C); ”Sand” and ”Clay” are the coefficients on
sand and clay percents in topsoil and subsoil combined; ”OC” is the coefficient the organic carbon content
in topsoil and subsoil combined (% by weight); Elevation is the coefficient on the maximum basin elevation
change (m); ”Area” is the coefficient on the area of each basin (104 km2), and ”Year” is the year of
observation. All variables were area-weighted averages over basin areas. Standard errors are in brackets.
Random intercepts and slopes with respect to land cover were estimated for each nested group and basin
(see Methods).
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