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ABSTRACT
SubHalo Abundance Matching (SHAM) is an empirical method for constructing galaxy cata-
logues based on high-resolution 𝑁-body simulations.We apply SHAMon theUNIT simulation
to simulate SDSS BOSS/eBOSS Luminous Red Galaxies (LRGs) within a wide redshift range
of 0.2 < 𝑧 < 1.0. Besides the typical SHAM scatter parameter 𝜎, we include 𝑣smear and
𝑉ceil to take into account the redshift uncertainty and the galaxy incompleteness respectively.
These two additional parameters are critical for reproducing the observed 2PCF multipoles
on 5–25 ℎ−1Mpc. The redshift uncertainties obtained from the best-fitting 𝑣smear agree with
those measured from repeat observations for all SDSS LRGs except for the LOWZ sample.
We explore several potential systematics but none of them can explain the discrepancy found
in LOWZ. Our explanation is that the LOWZ galaxies might contain another type of galaxies
which needs to be treated differently. The evolution of themeasured𝜎 and𝑉ceil also reveals that
the incompleteness of eBOSS galaxies decreases with the redshift. This is the consequence of
the magnitude lower limit applied in eBOSS LRG target selection. Our SHAM also set upper
limits for the intrinsic scatter of the galaxy–halo relation given a complete galaxy sample:
𝜎int < 0.31 for LOWZ at 0.2 < 𝑧 < 0.33, 𝜎int < 0.36 for LOWZ at 0.33 < 𝑧 < 0.43, and
𝜎int < 0.46 for CMASS at 0.43 < 𝑧 < 0.51. The projected 2PCFs of our SHAM galaxies also
agree with the observational ones on the 2PCF fitting range.

Key words: method: numerical – method: observational – galaxy: halo – cosmology: large-
scale structure of Universe

1 INTRODUCTION

Lambda-Cold-Dark-Matter (ΛCDM) has been the standard cosmo-
logical model since the 1990s. Under this framework, observations
confirm that dark matter (DM) is the dominant matter component
of the Universe (e.g., Planck Collaboration et al. 2020). DM parti-
cles interact only through gravity and their gravitational evolution
is assumed to start from a primordial Gaussian random field with
perturbations. If the over-density arising from the perturbation on
small scales is large enough, the infall of matter can overcome the
expansion of Universe, and form gravitational-bound clusters, i.e.,

★ E-mail: jiaxi.yu@epfl.ch
† E-mail: cheng.zhao@epfl.ch
‡ E-mail:albert.chuang@utah.edu

DMhaloes. Perturbations on large scales evolve into web-like struc-
tures known as the cosmic web (Bond et al. 1996). Baryonic matter
may be captured by haloes with deep potential wells and further
evolve into galaxies (Press & Schechter 1974; White & Rees 1978),
a good tracer of the invisible cosmic web.

Galaxy surveys explore the large-scale structure of theUniverse
bymeasuring the redshifts of millions of galaxies and quasars. Their
positions can be used to calculate the two-point correlation func-
tion (2PCF) that encodes the history of the universe expansion and
the structure growth. The Baryon Oscillation Spectroscopic Survey
(BOSS, 2008–2014; Dawson et al. 2012) is the largest project in the
third-stage Sloan Digital Spectroscopic Survey1 (SDSS-III; Eisen-

1 http://www.sdss.org/
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stein et al. 2011). It has collected the spectra ofmore than 1.5million
Luminous Red Galaxies (LRGs; Reid et al. 2016), the brightest red
galaxies in the Universe. Its extended version, eBOSS (2014–2020;
Dawson et al. 2016) in SDSS-IV (Blanton et al. 2017) has probed
another 300,000 LRGs (Ross et al. 2020). Additionally, eBOSS has
observed around 270,000 Emission Line Galaxies (ELGs; Raichoor
et al. 2020). They are bluer, star-forming galaxies that are abundant
in the redshift range of 0.5 < 𝑧 < 2, where there are active star
formation processes (Madau et al. 1998). With such a big amount
of tracers, both projects have achieved a percent-level precision in
cosmological parameter measurements (Alam et al. 2017, 2021a).
Ongoing surveys like the Dark Energy Spectroscopic Instrument
(DESI, 2020-2025; DESI Collaboration et al. 2016) is expected
to provide tracers in a larger footprint and with higher-resolution
spectra, and reach a higher precision in scientific results.

Meanwhile, 𝑁-body simulations can solve numerically the
gravitational evolution equation of DM in ΛCDM. They are able
to accurately describe the DM distribution in the non-linear regime
down to individual haloes in a large volume and provide halo prop-
erties at any cosmic epoch. Thus 𝑁-body simulations help validate
cosmological theories that are based on perturbation theories across
all the scales, and makes it possible to compare theoretical predic-
tions with observations.

But there is a gap between dark-matter-only 𝑁-body simula-
tions and observations. Since baryonic matter interacts with each
other through all fundamental forces, their clustering properties
do not necessarily follow those of DM on all scales (White & Rees
1978).Moreover, the spatial distributions of different types of galax-
ies, such as LRGs and ELGs, can also be different in the cosmic
web (e.g., Malavasi et al. 2016; Kraljic et al. 2018). To bridge the
gap, a galaxy–halo relation that modulates the clustering of haloes
to match the observation is of great importance. Because it enables
the direct comparison between the theory and the observation via
simulation (Wechsler & Tinker 2018).

SubHalo Abundance Matching is a simple and intuitive em-
pirical algorithm to model the galaxy–halo relation. As indicated
by the name, SHAM makes use of DM haloes and their substruc-
tures that are dubbed subhaloes. The basic assumption of SHAM
is a monotonic relation (not necessarily linear) between the galaxy
luminosity (or stellar mass) and the halo mass (or the circular veloc-
ity; Kravtsov et al. 2004; Vale & Ostriker 2004; Nagai & Kravtsov
2005; Conroy et al. 2006; Behroozi et al. 2010). The algorithm
applies the rank-ordering for both haloes and galaxies based on
mass-related properties as just mentioned, and assigns galaxies to
haloes/subhaloes one by one from the most massive end, until the
SHAM galaxy catalogue reaches a desired number density.

Galaxies from this mock catalogue follow the observed or re-
constructed luminosity function (e.g., Tasitsiomi et al. 2004; Conroy
et al. 2006) or stellarmass function (e.g., Guo et al. 2010;Rodríguez-
Torres et al. 2016) by construction. Their two-point statistics are
tuned to be consistent with the observed one by introducing a Gaus-
sian scatter between the galaxy luminosity and the halo circular
velocity (Tasitsiomi et al. 2004) to include the scatter of the Tully–
Fisher relation (Willick et al. 1997; Steinmetz & Navarro 1999).
Using the peak maximum circular velocity throughout accumula-
tion history (𝑉peak) instead of the halo mass further improves the
performance of SHAM, since the galaxy accretion is free from the
mass-stripping effect of subhaloes after reaching 𝑉peak (Trujillo-
Gomez et al. 2011). With all the improvements, SHAM catalogues
of Rodríguez-Torres et al. (2016) predict the galaxy–halo relation
that agrees with the weak-lensing observation from Shan et al.
(2017). Other work on SHAM has also included the effect of halo

assembly bias and galaxy formation (e.g., Chaves-Montero et al.
2016; Contreras et al. 2021). Due to the single-parameter feature
and its good agreement on data, SHAM has become a useful tool in
cosmological studies.

While most of the SHAM studies choose to fit the projected
2PCF which marginalizes the effect along the line of sight, 2PCF
multipoles can provide extra information in that direction. Due to the
Redshift-Space Distortion (RSD), 2PCF quadrupole in the redshift
space is vulnerable to the bias induced by the redshift uncertainty.
This uncertainty mainly comes from the LRG redshift determi-
nation pipeline that uses broad absorption lines to determine the
redshift (Bolton et al. 2012). For eBOSS LRG, Ross et al. (2020)
find the uncertainty measured by the repeat observations can be
fit by a Gaussian function with a dispersion of 91.8 km s−1. This
is negligible for large-scale clustering analysis like Baryon Acous-
tic Oscillation (BAO) at over 80 ℎ−1Mpc. Meanwhile, Smith et al.
(2020) demonstrates that the redshift uncertainty of eBOSS quasars
influences the quadrupole on 𝑟 < 60 ℎ−1Mpc, affecting SHAM that
mainly employs 2PCF on 𝑟 < 40 ℎ−1Mpc.

Moreover, the standard SHAM algorithm described above
works well for bright galaxies with complete samples, as it matches
halomasses and galaxymasses starting from themost massive ones.
When the sample is incomplete due to the survey requirement (e.g.
exclude targets with higher luminosity) or when the tracer is absent
in massive haloes due to the quenching process (e.g., Kauffmann
et al. 2004; Dekel & Birnboim 2006), this implementation can be
problematic (Favole et al. 2016a; Rodríguez-Torres et al. 2016).

In this paper, we present a general 3-parameter SHAM algo-
rithm for LRGs on 5-25 ℎ−1Mpc that considers the redshift uncer-
tainty effects and the galaxy completeness. In Section 2, we describe
the observational data, the 𝑁-body simulation and the galaxymocks
for covariance matrices. The calculation of 2PCFs and projected
2PCFs, the redshift uncertainty measurements, and the implemen-
tation of SHAM are introduced in Section 3. Section 4 illustrates
the good performance of SHAM in fitting the 2PCF, reproducing
the redshift uncertainty, the galaxy incompleteness evolution and
the projected 2PCF of the observation. Finally, we summarize our
findings in Section 5. In our study, we use a flat ΛCDM cosmology
withΩm = 0.31 and 𝐻0 = 67.7 km s−1Mpc−1, and the line-of-sight
direction of the comoving space is along the 𝑍-axis.

The BOSS & eBOSS SHAM study is part of the final release
of the eBOSS measurement. Ross et al. (2020); Lyke et al. (2020)
describe in detail catalogues for the large-scale structure analysis.
The mock challenge tasks are completed by Alam et al. (2021c);
Avila et al. (2020a); Rossi et al. (2021); Smith et al. (2020) for
systematics estimations. Galaxymocks for covariancematrices used
for cosmological analysis are constructed by Lin et al. (2020); Zhao
et al. (2021a). The BAO and RSD measurements2 are based on
the clustering of LRGs at 0.6 < 𝑧 < 1.0 (Bautista et al. 2021;
Gil-Marín et al. 2020), ELGs at 0.6 < 𝑧 < 1.1 (Raichoor et al.
2020; Tamone et al. 2020; de Mattia et al. 2021), quasars (QSOs)
at 0.8 < 𝑧 < 2.2 (Hou et al. 2021; Neveux et al. 2020) and also
the Ly𝛼 forest at 𝑧 > 2.1 (du Mas des Bourboux et al. 2020). Their
cosmological interpretations3 in combination with the final BOSS
results and other probes can be found in Alam et al. (2021b). eBOSS

2 https://www.sdss.org/science/final-bao-and-rsd-measure
ments
3 see https://www.sdss.org/science/cosmology-results-from-
eboss, and https://svn.sdss.org/public/data/eboss/DR16cosmo
/tags/v1_0_1/
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data also permit the analysis with cosmic voids (Aubert et al. 2020)
and multiple tracers (Wang et al. 2020; Zhao et al. 2021b, 2022).

2 DATA

2.1 SDSS Galaxies

We use the galaxy catalogues from the final data releases of SDSS-
III BOSS (DR12; Alam et al. 2015) and SDSS-IV eBOSS (DR16
Ahumada et al. 2020). BOSS LRGs are composed of two sub-
samples: LOWZ at 0.15 < 𝑧 < 0.5 and CMASS at 0.4 < 𝑧 < 0.7
(Reid et al. 2016). For eBOSS, its LRG sample has redshift at
0.6 < 𝑧 < 1.0 (Ross et al. 2020). Galaxy samples in the catalogues
are pre-selected using the photometric information to ensure the ob-
served samples are clean and abundant at a given redshift range for
scientific targets. Their spectra are observed by fibers (York et al.
2000; Gunn et al. 2006; Smee et al. 2013) and processed by the
spectroscopic pipeline in order to determine their galaxy type and
redshifts (Aihara et al. 2011; Bolton et al. 2012). The catalogues
used for clustering analysis (clustering catalogue hereafter) are com-
posed of the 3D position of tracers, as well as several weights to
eliminate systematics effects on 2PCF measurements.

2.1.1 Target Selection

Target selection using the photometric information includes the
signal-to-noise ratio (SNR) selection, the colour selection, the flux
limits cut, and the star exclusion (Reid et al. 2016; Prakash et al.
2016). In general, those criteria are meant to have high quality LRG
spectra, obtain the designed redshift range and number density,
exclude the low-redshift, blue galaxies and ensure high-redshift
successful rate, and remove stars from LRG samples, respectively.
LOWZ at 0.2 < 𝑧 < 0.4 and CMASS 𝑧 < 0.6 are expected to be
nearly volume-limited, i.e., they are complete (Reid et al. 2016). The
study of Leauthaud et al. (2016) confirms the LOWZ completeness
but also finds CMASS is not as complete as Reid et al. (2016)
describes.

For eBOSS LRG, there is a special magnitude cut, namely

𝑖 ≥ 19.9, (1)

which is set to avoid the BOSS CMASS galaxies (Prakash et al.
2016). This lower limit corresponds roughly to an upper limit of the
stellar mass, meaning that the most massive LRGs may have been
excluded from the eBOSS samples. We use 𝑉ceil to account for it
and we will explain it in detail in Section 3.3.

2.1.2 Repeat Observations

Repeat observations from SDSS aim at testing the reproducibility of
the spectral measurements and obtaining a higher SNR by coadding
multiple spectra (Dawson et al. 2012). We use them to estimate
the redshift uncertainty statistically in Section 3.2. The redshifts of
repeated samples from BOSS are determined by idlspec2d (Bolton
et al. 2012) and those from eBOSS LRGs are determined by re-
drock 4. Less than 5% of galaxies in the clustering catalogues are
observed twice, but those galaxies are good representatives of the
clustering galaxies (Section 4.2).

4 https://github.com/desihub/redrock

2.1.3 Galaxy Weights

The 2PCF contains the information of cosmological parameters and
structure growth in its amplitude. But the amplitude can be easily
modified by various systematics, e.g., photometric systematics, red-
shift failures, fibre collision effects and the varying galaxy number
density at different redshift (Reid et al. 2016; Ross et al. 2020). The
corresponding weights to remove their impacts are: 𝑤photosys for all
the photometric effects, 𝑤noz for the redshift failure rate, 𝑤CP for
the missing close galaxy pairs due to the fibre collision and 𝑤FKP
for minimizing the cosmic variance.

The fibre collision problem arises from the physical size of
fibres (62′′) that defines theminimumseparation between twofibres.
Hence galaxieswith small angular distances (i.e., close pairs) cannot
be observed in a single exposure. For the BOSS data, the close-pair
weight

𝑤CP =
𝑁CP + 𝑁good

𝑁good
, (2)

is applied to the nearest tracer of collided targets to nullify the fibre
collision effects. Here 𝑁CP is the number of the half-missing tracer
pairs and 𝑁good is the number of tracers with good redshifts (Ross
et al. 2020). This nearest-neighbour approach is not able to fully
correct the fibre collision effect (Guo et al. 2012; Rodríguez-Torres
et al. 2016). Nevertheless, our SHAM fitting results are not biased
by this effect (see Appendix A).

eBOSS uses a different weighting scheme. The pairwise-
inverse-probability (PIP) weighting proposed by Bianchi & Percival
(2017) is a better way to account for galaxy pairs with one missing
in a single observation and the angular up-weighting (ANG) scheme
introduced by Percival &Bianchi (2017) can recovermissing galaxy
pairs with a distance smaller than the size of a fibre. Mohammad
et al. (2020) apply both PIP and ANG weights on eBOSS samples
and provide unbiased galaxy clustering down to 0.1 ℎ−1Mpc.

The FKP weight is obtained by (Feldman et al. 1994)

𝑤FKP =
1

1 + 𝑛(𝑧)𝑃0
, (3)

where 𝑛(𝑧) is the number density at redshift 𝑧 and𝑃0 is the amplitude
of the observed power spectrum at 𝑘 ≈ 0.15 ℎMpc−1. For LRGs
in BOSS/eBOSS, we take 𝑃0 = 10000 ℎ−3Mpc3 (Reid et al. 2016;
Ross et al. 2020).

2.2 𝑁-body Simulation: UNIT

Future galaxy surveyswill span to larger cosmological volumeswith
a deeper photometry. The resolution and effective volume of the 𝑁-
body simulation should also keep up with the improvements. In our
study, we use the Universe 𝑁-body simulations for the Investigation
of Theoretical models from galaxy surveys5 (UNIT; Chuang et al.
2019). This is a high-resolution and large-effective-volume 𝑁-body
simulation that uses the fixed-amplitude method to suppress the
cosmic variance, thus increasing the effective volume (Angulo &
Pontzen 2016). Its effective volume is over 10 times larger than that
of BOSS/eBOSS LRGs. UNIT has 40963 particles in 1 ℎ−3 Gpc3
cubic box, and a mass resolution of 1.2×109M� ℎ−1. Its cosmolog-
ical parameters are Ω𝑚 = 0.3089, ℎ ≡ 𝐻0/100 km s−1Mpc−1 =

0.6774, 𝑛𝑠 = 0.9667, 𝜎8 = 0.8147. The simulation evolves from
𝑎(𝑡) = 0.01 (𝑧 = 99) to 𝑎(𝑡) = 1 (𝑧 = 0), and produces 128 snap-
shots at different redshifts. In our study, we use 12 snapshots from

5 http://www.unitsims.org/
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𝑧 = 0.2760 to 𝑧 = 0.9011 as shown in Table 1, and we take one
simulation box in each snapshot given the large effective volume of
UNIT (see Section 4.1).

2.3 Galaxy Mocks for Covariance Matrices

We use galaxy mocks to calculate covariance matrices in Sec-
tion 3.4. For BOSS, we use 1200 DR12 Patchy mocks in each
galactic cap. For eBOSS, there are 1000 realizations of EZmock
mocks for LRGs in each galactic cap. Both of them are able to re-
produce the observational two-point and three-point statistics down
to non-linear scales.

Kitaura et al. (2014) introduces the Patchy code to generate
galaxy mocks based on the Augmented Lagrangian Perturbation
Theory (ALPT). They determine the galaxy properties by apply their
own SHAM to the BigMultiDark simulation6 (Klypin et al. 2016)
and fit the observational statistics in both real and redshift space.
The clustering properties of Patchy mocks are then calibrated by
those of SHAM catalogues. The fiducial cosmology is a ΛCDM
cosmology with Ω𝑚 = 0.307115, Ω𝑏 = 0.048206, ℎ = 0.6777,
𝜎8 = 0.8225, 𝑛𝑠 = 0.9611 (Kitaura et al. 2016).

The Effective Zel’dovich approximation mock (EZmock) pro-
posed by Chuang et al. (2015) is another fast methodology to gen-
erate mock halo or galaxy catalogues, with the same cosmology
as Patchy mocks. EZmock relies on the Zel’dovich approximation
(Zel’Dovich 1970) to calculate the displacement of DM particles
at any redshift given their initial positions. Tracers are assigned in
the density field using both the deterministic and the stochastic bias
model (Zhao et al. 2021a). Besides covariance matrix calculations,
we also use EZmock mocks with and without systematics to study
the impact of the biased 2PCF monopole on the projected 2PCF in
Section 4.4.

3 METHODS

3.1 Galaxy Clustering

The 2PCF, denoted by 𝜉, measures the excess probability of finding
a galaxy pair compared to a random distribution in a given volume.
We use the Landy–Szalay estimator (LS; Landy & Szalay 1993)
which minimises the variances of the measurements:

𝜉LS =
DD − 2DR + RR

RR
, (4)

where galaxy–galaxy pairs (DD), random–galaxy pairs (DR) and
random–random pairs (RR) are normalized by the total number of
pairs. 𝜉 and the pair counts can be calculated as a function of the
pair separation 𝑠 and the cosine of the angle between s and the
line-of-sight (𝛽), i.e., 𝜇 = cos(𝛽). By weighting the 2D 𝜉 (𝑠, 𝜇) with
Legendre polynomials 𝑃ℓ (𝜇), we obtain the 1D 𝜉 multipoles as

𝜉ℓ (𝑠) =
2ℓ + 1
2

∫ 1

−1
𝜉 (𝑠, 𝜇)𝑃ℓ (𝜇)d𝜇. (5)

In our study we only consider the monopole 𝜉0 and quadrupole 𝜉2 at
𝑠 ∈ [5, 25] ℎ−1Mpc. This is because scales larger than 25 ℎ−1Mpc
are prone to imaging systematics (Huterer et al. 2013) while scales
smaller than 5 ℎ−1Mpc are sensitive to fibre collision effects. Even
with nearest-neighbour close-pair weights 𝑤CP, the biases of the
2PCF quadrupole due to fibre collision effects can be as large as 3𝜎

6 http://www.multidark.org/

at ∼ 5 ℎ−1Mpc (Guo et al. 2012; Rodríguez-Torres et al. 2016). To
understand its influence on our SHAM results, we test a fitting range
of [10, 25] ℎ−1Mpc – which is only mildly affected by fibre colli-
sions – for the BOSS data. It turns out that the SHAM constraints
in this range are consistent with those on 𝑠 ∈ [5, 25] ℎ−1Mpc (see
Appendix A). So we use the fitting range 𝑠 ∈ [5, 25] ℎ−1Mpc for
all BOSS/eBOSS samples hereafter.

We use linear 𝑠 bins with 1 ℎ−1Mpc interval, and 120 linear
𝜇 bins in the range of [0,1), for most of the 2PCF measurements in
this work. Only for the eBOSS LRGs in different redshift bins, we
have 8 logarithmic bins for 𝜉0 and 𝜉2 respectively.

𝜉 can also bemeasured as a function of the distance parallel (𝜋)
and perpendicular (𝑟𝑝) to the line-of-sight. By integrating 𝜉 (𝑟𝑝 , 𝜋)
with respect to 𝜋, one obtains the projected 2PCF as

𝑤𝑝 (𝑟𝑝) =
∫ 𝜋max

−𝜋max
𝜉 (𝑟𝑝 , 𝜋)d𝜋. (6)

We use 8 logarithmic bins for 𝑟𝑝 ∈ [5, 25] ℎ−1Mpc, but 𝜋max will
be changed according to our needs as introduced in Section 4.4.
FCFC7 (Zhao et al. in preparation) and Corrfunc Python module
(Sinha & Garrison 2019; Sinha & Garrison 2020) are employed
to calculate 𝜉ℓ (𝑠) and 𝑤𝑝 . 𝜉ℓ (𝑠) of eBOSS are computed with
PIP+ANG-weighted pair counts (Mohammad et al. 2020).

Our SHAM galaxy catalogue is built from an 𝑁-body simula-
tion in a box, so we convert the position of SHAM galaxies from
real space to redshift space before calculating the 2PCFwith (Kaiser
1987)

𝑍redshift = 𝑍real +
𝑣pec,Z

𝑎(𝑡)𝐻 (𝑧) , (7)

where 𝑍 is the coordinate and 𝑧 is the redshift, 𝑣pec,Z is the peculiar
velocity along the 𝑍-axis. The estimator used to calculate the SHAM
2PCF is the Peebles–Hauser estimator (Peebles & Hauser 1974)

𝜉PH =
DD
RR

− 1, (8)

where galaxy–galaxy pairs (DD) is also normalized by the total
number of pairs. The random–random (RR) counts follow the ana-
lytical expression:

RR =
4π
3

s3max − s3min
Vbox

1
N𝜇

, (9)

where 𝑠max and 𝑠min are the boundaries of the separation bins,
𝑉box = 1 ℎ−3 Gpc3 is the volume of the simulation box and
𝑁𝜇 = 120 is the number of 𝜇 bins. We do not apply weights to
SHAM galaxies as there are no observational systematics and ra-
dial selection. The 𝜉ℓ (𝑠) of SHAM galaxies is calculated by the
built-in 2PCF calculator in our SHAM implementation code.

3.2 Redshift Uncertainty

The redshift uncertainty is an inevitable error while measuring the
redshift. It mainly affects the quadrupole of our clustering mea-
surements (Smith et al. 2020), since it can be regarded as random
peculiar motions along the line-of-sight. As suggested in Bolton
et al. (2012), the redshift determination pipeline is the primary
source of the redshift uncertainty of SDSS LRGs, but it is not the
dominant source. Hence, using the error given by the pipeline will
underestimate the redshift uncertainty. As a result, we estimate it
statistically via repeat observations.

7 https://github.com/cheng-zhao/FCFC
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The redshift difference between two measurements Δ𝑧 can be
converted to Δ𝑣 that represents the radial motion as

Δ𝑣 =
Δ𝑧

(1 + 𝑧)𝑐 , (10)

where 𝑧 is the redshift of one of measurements with
SPECPRIMARY = 1. With jackknife errors, we fit all the Δ𝑣

histograms with Gaussian distributions, obtaining the best-fitting
dispersion 𝜎Δ𝑣 as illustrated in Fig. 1. We also quote their standard
deviation, 𝜎̂Δ𝑣 , as a statistical estimate of the redshift uncertainty.
In our SHAM algorithm, its clustering effect is quantified by 𝑣smear.

3.3 SHAM Implementation

Recent SHAM studies (e.g., Campbell et al. 2018; Granett et al.
2019; Contreras et al. 2021) consistently choose 𝑉peak to represent
the halo mass of haloes and subhaloes. The subsequent the progress
of the SHAM algorithm is to sort the galaxy stellar mass and 𝑉scatpeak,
which is obtained as

𝑉scatpeak = 𝑉peak𝑆𝑔, (11)

where

𝑆𝑔 = 1 + N(0, 𝜎2), (12)

and match them one by one from the largest 𝑉scatpeak, until the num-
ber density of SHAM galaxies equals to that of the observation. In
Eq. (11), N(0, 𝜎2) represents a Gaussian random distribution cen-
tred on zero with 𝜎2 variance, where 𝜎 is the only free parameter
in the SHAM. The choice of the Gaussian function is due to the fact
that the Tully–Fisher relation, i.e., the galaxy–halo mass relation,
has Gaussian distributed residuals (Willick et al. 1997; Steinmetz
& Navarro 1999). We assert

𝑆𝑔 = exp
(
N(0, 𝜎2)

)
. (13)

when the Gaussian scatter is negative. Nevertheless, it does not
change the fitting results.

There are four prerequisites for the standard SHAM described
above: 1) the cosmology of the simulation has to be close to the
true one; 2) the simulation should have a good resolution to resolve
the subhaloes down to the low-mass end and halo properties should
be accurate; 3) the observed clustering measurements should be
unbiased; 4) the observational stellar mass function (SMF) has to be
complete in themassive end. If one of these prerequisites is missing,
SHAM will not model the observed clustering signal accurately on
all scales.

For eBOSS LRGs, there is a rough truncation of the stellar
mass in the massive end (Section 2.1.1). A straightforward way to
account for this massive-end incompleteness is to discard the most
massive haloes. We introduce a new parameter 𝑉ceil to remove the
𝑉ceil per cent of the largest scattered 𝑉peak (i.e., 𝑉scatpeak). Since 𝜎
and 𝑉ceil both modulate the amplitude of 2PCF monopole, they are
degenerate.

The redshift uncertainty can add bias to the observed 2PCF
quadrupole. Therefore, we introduce an extra Gaussian-random dis-
tribution N(0, 𝑣2smear) in the peculiar velocity of SHAM galaxies
as

𝑣scatpec,Z = 𝑣pec,Z + N(0, 𝑣2smear). (14)

The target is to mimic the impact of the measured Gaussian redshift
uncertainties in the redshift-space clustering as presented in Fig. 1.

To conclude, our 3-parameter SHAM implementation is as
follows:

(i) Scatter the 𝑉peak as suggested in Eq. (11) with

𝑆𝑔 =

{
1 + N(0, 𝜎2), N(0, 𝜎2) ≥ 0
exp

(
N(0, 𝜎2)

)
, N(0, 𝜎2) < 0; (15)

(ii) Sort 𝑉scatpeak and discard the most massive 𝑉ceil per cent of
haloes/subhaloes;
(iii) From the remaining catalogue, keep the 𝑁gal-th largest

𝑉scatpeak;
(iv) Assign galaxies in the centre of those haloes/subhaloes, and

smear the peculiar velocities of galaxies along the line of sight with
Eq. (14);
(v) Convert the galaxy coordinates from the real space to the

redshift space using Eq. (7).

To model correctly the observed clustering, the redshift of the
UNIT snapshot should be close to the effective redshift of the data
computed with

𝑧eff =

∑
𝑧𝑤2∑
𝑤2

. (16)

where 𝑤 is the total galaxy weight. For eBOSS (Ross et al. 2020),

𝑤 = 𝑤photosys𝑤FKP𝑤noz𝑤CP, (17)

while for BOSS the total weight has a different form (Reid et al.
2016)

𝑤 = 𝑤photosys𝑤FKP (𝑤noz + 𝑤CP − 1). (18)

Then we apply SHAM on this snapshot to find the best-fitting pa-
rameters. Besides the 2PCF calculator mentioned in Section 3.1,
our code also has a built-in MultiNest sampler which will be in-
troduced in Section 3.4.

The number of SHAM galaxies 𝑁gal is determined by the
observed effective number density 𝑛eff in a given redshift range
calculated as

𝑛eff =

√√∫
𝑛(𝑧)2d𝑉∫
d𝑉

=

√√∫
𝑛(𝜒)2𝜒2d𝜒∫

𝜒2d𝜒
, (19)

where the second equality is due to d𝑉 = 𝐴eff ((𝜒 + d𝜒)3 − 𝜒3)/3 =
𝐴eff𝜒

2d𝜒 +O(d𝜒2), 𝐴eff is the effective area of the footprint and 𝜒
is the comoving distance for an object at redshift 𝑧. The values are
reported in Table 1.

3.4 SHAM Fitting

The SHAM best-fitting parameters are obtained by minimizing the
𝜒2 value (i.e., the maximum log-likelihood) between the SHAM
and the observational 2PCF. The 𝜒2 for a given parameter set Θ =

{𝜎, 𝑣smear, 𝑉ceil} is defined as

𝜒2 (Θ) = (𝜉data − 𝜉model (Θ))𝑇 𝑪−1 (𝜉data − 𝜉model (Θ)), (20)

where 𝜉 = (𝜉0, 𝜉2) denotes the vector composed of the 2PCF
monopole and quadrupole. The vectors 𝜉data and 𝜉model represent
the data vector and the SHAMmodel 2PCF respectively. In particu-
lar, 𝜉model is obtained by averaging the 2PCFs of 32 SHAM galaxy
realizations generated using the sameΘwith different random seeds.
This operation reduces the SHAM statistical uncertainty. 𝑪 is the
unbiased covariance matrix (Hartlap et al. 2007):

𝑪−1 = 𝑪−1
𝑠

𝑁m − 𝑁𝑠 − 2
𝑁m − 1 , (21)
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Figure 1. The Gaussian fitting of the Δ𝑣 histograms. The error bars of Δ𝑣 histograms are calculated from jackknife re-sampling. The best-fitting Gaussian
models are shown in red lines, labelled with their dispersion values 𝜎Δ𝑣 . The standard deviations of Δ𝑣 is written below the legend and the proportion of
outliers that are beyond the Gaussian fitting range is indicated above the subplots. SDSS has a Gaussian Δ𝑣 histogram, and the ourlier rate of eBOSS are much
larger than those of BOSS, consistent with the difference between 𝜎Δ𝑣 and 𝜎̂Δ𝑣 .

where 𝑁𝑠 is the length of 𝜉data, i.e., the total number of bins used in
the 2PCF fitting, and 𝑁m is the number of mocks used to compute
the covariance matrix. 𝑁m = 1200 for BOSS Patchy mocks and
𝑁m = 1000 for eBOSS EZmockmocks.𝑪𝑠 is the covariance matrix
calculated as (Zhao et al. 2021a)

𝑪𝑠,ij =
1

Nm − 1

Nm∑︁
𝑘=1

[𝜉k (𝑠i) − 𝜉 (𝑠i)] [𝜉k (𝑠j) − 𝜉 (𝑠j)], (22)

where 𝜉k is the correlation function measured from the 𝑘th mock,
and 𝜉 (𝑠i) is the average of the mock correlation function in a given
distance bin 𝑠i.

We assume a Gaussian likelihood L(Θ) for our parameters,
which is

L(Θ) ∝ e−
𝜒2 (Θ)
2 , (23)

and employ a Monte-Carlo sampler Multinest8 (Feroz & Hobson
2008; Feroz et al. 2009, 2019), an efficient nested sampling tech-
nique especially for multi-modal posteriors, to constrain Θ. The
survival volume (i.e., the prior volume) is defined as (Feroz & Hob-
son 2008)

𝑋 (𝜆) =
∫
{Θ:L(Θ)>𝜆}

Pr(Θ|𝐻)dΘ, (24)

8 https://github.com/farhanferoz/MultiNest

where Pr(Θ|𝐻) is the parameter prior, and the evidence integral can
be written as

Z =

∫ 1

0
L(Θ)d𝑋 ≈

𝑀∑︁
𝑖=1

L𝑖𝑤𝑖 , (25)

where 𝑖 is the number of iterations, 𝑤𝑖 = 1
2 (𝑋𝑖−1 − 𝑋𝑖+1), and

𝑋𝑖 is a sequence of decreasing values as 0 < 𝑋𝑀 < ... < 𝑋2 <

𝑋1 < 𝑋0 = 1. During the sampling, live points walk randomly and
simultaneously in the parameter space confined by the prior, and
some of them will be deactivated if they have the lowest likelihood
L𝑖 . The sampling terminates if the evidence contribution from the
𝑗th iteration ΔZ 𝑗 = Lmax𝑋𝑖 is lower than a certain threshold (i.e.,
the tolerance), where Lmax is the maximum likelihood among the
current set of live points (Feroz et al. 2019). The final results of our
SHAM do not change much when changing the tolerance and the
initial number of live points. Therefore, for all the tests, we set the
tolerance to be 0.5 and the number of particles to be 200, in order
to improve the efficiency of the convergence.

The built-in analyser of pyMultinest9 (Buchner et al. 2014) is
used to extract the median value and the 1𝜎 limits of the parameters,
and the maximum-likelihood 𝜒2 listed in Table 1. The parameter

9 https://github.com/JohannesBuchner/PyMultiNest
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project redshift 𝑧eff 𝑧UNIT 𝑉eff 104𝑛eff 𝜎 𝑣smear 𝑉ceil 𝜒2/dof rescaled
range (ℎ−3 Gpc3) (ℎ3Mpc−3) (s−1 km) (%) 𝜒2/dof

LOWZ 0.2 < 𝑧 < 0.33 0.2754 0.2760 0.29 3.37 0.09+0.06−0.06 100.3+7.6−10.4 0.0067+0.0019−0.0025 32/37 31/37
0.27+0.02−0.02 66.1+8.2−9.8 / 33/38 32/38

LOWZ 0.33 < 𝑧 < 0.43 0.3865 0.3941 0.33 2.58 0.20+0.05−0.05 73.9+12.2−12.3 0.0059+0.0026−0.0028 51/37 50/37
0.34+0.02−0.01 30.5+16.7−16.2 / 54/38 52/38

CMASS 0.43 < 𝑧 < 0.51 0.4686 0.4573 0.47 3.42 0.30+0.05−0.08 45.0+20.6−16.6 0.0078+0.0074−0.0040 41/37 39/37
0.43+0.01−0.02 17.4+11.8−9.6 / 45/38 43/38

CMASS 0.51 < 𝑧 < 0.57 0.5417 0.5574 0.46 3.63 0.23+0.04−0.04 23.2+18.5−15.0 0.0144+0.0037−0.0036 43/37 41/37
0.42+0.02−0.01 6.4+6.2−4.0 / 60/38 58/38

CMASS 0.57 < 𝑧 < 0.7 0.6399 0.6281 0.65 1.60 0.17+0.13−0.02 73.1+8.2−25.3 0.0459+0.0029−0.0143 54/37 51/37

eBOSS 0.6 < 𝑧 < 0.7 0.6518 0.6644 0.16 0.939 0.58+0.29−0.22 100.4+12.3−12.8 0.0510+0.0324−0.0194 16/13 16/13

eBOSS 0.6 < 𝑧 < 0.8 0.7071 0.7018 0.33 0.886 0.38+0.31−0.13 98.8+10.8−13.4 0.0617+0.0185−0.0308 24/13 23/13

eBOSS 0.7 < 𝑧 < 0.9 0.7968 0.8188 0.26 0.647 0.09+0.17−0.04 128.5+9.5−22.2 0.0690+0.0044−0.0172 30/13 30/13

eBOSS 0.8 < 𝑧 < 1.0 0.8778 0.9011 0.09 0.301 0.22+0.17−0.14 134.2+18.5−20.1 0.0481+0.0153−0.0155 16/13 16/13

LOWZ 0.2 < 𝑧 < 0.43 0.3441 0.3337 0.62 2.95 0.22+0.03−0.05 76.6+10.2−8.2 0.0031+0.0023−0.0015 45/37 42/37
0.30+0.01−0.01 54.5+6.9−6.7 / 45/38 42/38

CMASS 0.43 < 𝑧 < 0.7 0.5897 0.5924 1.58 2.64 0.20+0.20−0.03 63.5+9.1−44.6 0.0269+0.0032−0.0190 81/37 70/37

eBOSS 0.6 < 𝑧 < 1.0 0.7781 0.7018 0.43 0.626 0.40+0.19−0.06 109.7+8.0−6.1 0.0542+0.0067−0.0196 35/37 33/37

Table 1. Properties of analysed galaxy samples and their best-fitting SHAM results. The first six columns are the project names of galaxy samples, their
redshift ranges, effective redshifts 𝑧eff , the closest redshifts of the UNIT snapshot to 𝑧eff , effective volumes, and their average number densities. The next four
columns are the constraints of SHAM parameters {𝜎, 𝑣smear , 𝑉ceil} and the minimum 𝜒2/dof. The final column is the rescaled 𝜒2/dof taking into account the
uncertainty of UNIT simulations. There are redshift bins with two sets of SHAM parameters. The first set (row) is from the 3-parameter SHAM and the second
set is from 2-parameter SHAM without 𝑉ceil. The 2-parameter SHAM can only be applied to complete samples, i.e., LOWZ and CMASS galaxies at 𝑧 < 0.6
(Leauthaud et al. 2016). Redshift bins with only one set of SHAM results are from the 3-parameter SHAM.

set with the maximum-likelihood 𝜒2 is indicated in the posteriors
provided by Getdist (Lewis 2019) in Appendix C.

4 RESULTS

4.1 Galaxy Clustering Fitting

We calibrate our SHAM model with LRGs on 5–25 ℎ−1Mpc for
the full LOWZ, CMASS and eBOSS LRG samples as well as 9
finer redshift bins as summarized in Table 1. Figures 2–4 show
that 2PCFs of the SHAM catalogues agree with those of the ob-
servational data in general. Note that there are 32 realizations of
SHAM catalogues produced by the maximum-likelihood parameter
set, aiming at reducing the statistical error brought by the Gaussian
scatters. For this reason, we choose the mean value of their 2PCFs
to be the SHAM 2PCF, and rescale their 2PCF standard deviations
by 1/

√
32 to obtain the error of the SHAM. We find that the SHAM

error is negligible compared to observed statistical error determined
by PATCHYmocks or EZmock mocks. Thus, we decided to ignore
it in this study.

The reduced 𝜒2 values from the fits do not include cosmic
variances of the UNIT simulations. To include their influence in the
analysis, we divide the reduced 𝜒2 by

𝜖2com
𝜖2obs

= 1 +
𝜖2UNIT
𝜖2obs

≈ 1 +
𝑉eff,obs
𝑉eff,UNIT

, (26)

where 𝜖2obs and 𝜖
2
UNIT represent the observational variance and the

cosmic variance of UNIT simulation respectively and 𝜖2com is the
combination of two errors.𝑉eff,obs is the effective volume calculated
with (Wang et al. 2013; Reid et al. 2016)

𝑉eff,obs =
∑︁
𝑖

(
𝑛̄(𝑧𝑖)𝑃0
1 + 𝑛̄(𝑧𝑖)𝑃0

)2
Δ𝑉 (𝑧𝑖), (27)

where Δ𝑉 (𝑧𝑖) is the volume of the shell at redshift 𝑧𝑖 and 𝑛(𝑧𝑖) is
the mean number density of that shell. The values are listed in the
fourth column of Table 1 and we assume 𝑉eff,UNIT = 10 ℎ−3 Gpc3

(Chuang et al. 2019). The rescaled 𝜒2 values are recorded in the
final column of Table 1. As the rescaled value is a better indicator of
the goodness of the fit than the 𝜒2 value, our discussions hereafter
are all based on the rescaled ones.

The 𝜒2 value for the bulk CMASS sample is relatively large
compared to those of CMASS redshift slices and other bulk sam-
ples. This can be attributed to the varying sample completeness
of CMASS sample which we will prove later in this chapter. The
2PCF quadrupoles of all CMASS SHAM samples are underesti-
mated on 18–25 ℎ−1Mpc, which is consistent with the results of
Rodríguez-Torres et al. (2016). Similar (but less obvious) discrep-
ancies are also observed from the eBOSS samples. Theymay be due
to some uncorrected systematics. The monopole disagreement on
𝑟 > 10 ℎ−1Mpc and the resulting large 𝜒2 value for eBOSS SHAM
at 0.7 < 𝑧 < 0.9 might be due to observational systematics as well.

Our measured 𝜎 ∈ [0.17, 0.40] for CMASS at 0.43 < 𝑧 < 0.7
is consistent with 𝜎 = 0.31 obtained by Rodríguez-Torres et al.
(2016). It is worth noting that their scatter considers the incom-
pleteness of the observed stellar mass function, i.e., they obtain the
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Figure 2. The best-fitting 3-parameter SHAM 2PCF multipoles compared
with those of the LOWZ observations on 5–25 ℎ−1Mpc. The observational
data and the cosmic variance 𝜖obs, 𝜉0,2 are represented by dots with error
bars. Solid lines with shades are SHAM 2PCFs and their errors. The first
and third row are the monopole and the quadrupole respectively. Residuals
normalized by 𝜖obs, 𝜉0,2 are shown in the second and fourth row. The left
column is for galaxy samples in redshift slices and the right column is for
those in the bulk redshift range. SHAM 2PCFs agree with the observations
with rescaled reduced 𝜒2 values around 1.
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Figure 3. Same figure as Fig. 2, but for CMASS LRGs. The deviation for
the bulk CMASS sample (right panels) is relatively large compared to those
of the sliced redshift bins. We attribute this difference to its inhomogeneous
sample completeness shown in Section 4.1.
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Figure 4. Same figure as Fig. 2, but for eBOSS LRGs. The SHAM 2PCFs
also agree with the observations except the one at 0.7 < 𝑧 < 0.9.

intrinsic scatter 𝜎int. But we assume that the observed stellar mass
function in a certain range is complete. It means that our 𝜎 account
for both the intrinsic scatter and the observed incompleteness.

Since BOSS samples are complete at 𝑧 < 0.6 (Reid et al.
2016; Leauthaud et al. 2016), we also apply our SHAM model
without𝑉ceil (2-parameter SHAM hereafter) to the same simulation
snapshot as the 3-parameter version and fit to the same data. The
best-fitting 2PCFs and parameter constraints are shown in Fig. 5
and Table 1 respectively. The rescaled reduced 𝜒2 values for the
2- and 3-parameter SHAM models are similar for all LOWZ LRGs
and CMASS LRGs at 0.43 < 𝑧 < 0.51, which confirms their
galaxy completeness. The reduced 𝜒2 for the 2-parameter SHAM
at 0.51 < 𝑧 < 0.57 is significantly larger (the 𝜒2 difference shows
that SHAM with 𝑉ceil = 0 is rejected more than 4𝜎), due to the
discrepancy of quadrupole on 5–7 ℎ−1Mpc. It also means 𝜎 and
𝑉ceil are not completely degenerate. The monopole of the best-
fitting 2-parameter SHAM is also systematically lower than that of
the observation. The issue in the result of the 2-parameter SHAM
demonstrate that CMASS at 0.51 < 𝑧 < 0.57 is not complete, i.e.,
𝑉ceil ≠ 0, contrary to what has been presented in Reid et al. (2016).
This is consistent with the marginalized posterior distributions of
𝑉ceil in the 3-parameter SHAM (see Fig. C4).

4.2 Redshift Uncertainty indicated by 𝑣smear

Fig. 6 shows that 𝜎̂Δ𝑣 increases monotonically with 𝑧eff . This is
consistent with the fact that the absorption lines used to deter-
mine the redshift are broader at higher redshift than those at lower
redshift, leading to larger redshift uncertainties. There is a gen-
eral consistency between the best-fitting SHAM 𝑣smear and 𝜎̂Δ𝑣 ,
𝜎Δ𝑣 for CMASS. For the eBOSS samples, SHAM 𝑣smear agrees
with 𝜎̂Δ𝑣 , but both of them are systematically larger than 𝜎Δ𝑣 .
It means that we cannot neglect the Gaussian-fitting outliers and
their effects on eBOSS quadrupoles. The tail of eBOSS Δ𝑣 dis-
tributions also slightly deviates from the Gaussian model, mean-
ing that eBOSS 𝜎Δ𝑣 is not a good representative of the observed
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samples. However, for the BOSS LOWZ sample, 𝑣smear values are significant larger than those estimated from repeat observations.

redshift uncertainty. The best-fitting 𝑣smear values of 2-parameter
SHAM are lower than those of the 3-parameter SHAM, and this
difference is larger for complete samples at 𝑧 < 0.51 than that of
CMASS at 0.51 < 𝑧 < 0.57. This is not a contradiction because
the biggest change in 𝜎–𝑣smear posterior happens in CMASS at
0.51 < 𝑧 < 0.57 as shown in Figures C7–C9. The small change in
𝑣smear is due to its weaker 𝑉ceil–𝑣smear degeneracy.

Discrepancies also exist for LOWZ LRGs at all redshifts and
they remain for the 2-parameter LOWZ SHAM. To compare the
differences in the quadrupole, we replace the best-fitting 𝑣smear
values with 𝜎Δ𝑣 , generate SHAM galaxy catalogues and calculate
the 2PCFs. As presented in Fig. 7, their quadrupole differences
are larger than 3𝜎. It means that besides the statistical redshift
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and 𝜎Δ𝑣 are not mitigated for LOWZ SGC when there is a high rate of SDSS-III sample.

uncertainty, LOWZ has unknown factors that boost the quadrupole.
We investigate various potential causes listed below.

A. Missing subhaloes or velocity bias in the simulation:
The host haloes/subhaloes for LRGs have a large mass (e.g. > 1000
particles), so we expect they are well resolved. But their peculiar
velocity might have biases especially for subhaloes. However, our
simulation-based SHAM provides 𝑣smear that agrees with CMASS
and eBOSS samples and we do not expect a significant evolution in
the velocity bias. Therefore, the properties of haloes and subhaloes

should be reliable and do not lead to the 𝑣smear disagreement in
LOWZ.

B. Observational systematics: The LOWZ sample includes
SDSS-I/II galaxies with a redshift determination pipeline different
from that of SDSS-III BOSS (Bolton et al. 2012). Thus, it is possi-
ble that the spectroscopic pipelines yield different uncertainties of
redshift measurements. In fact, we find that in the clustering cata-
logue, 56 per cent of galaxies in the North Galactic Cap (NGC) and
90 per cent of galaxies in the South Galactic Cap (SGC) are from
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SDSS-III. The component difference in two galactic caps indicates
that we can analyse NGC and SGC separately. Repeated samples are
all from SDSS-III. Therefore, the Δ𝑣 from repetitive observations
may not be representative of the redshift uncertainty of the LOWZ
clustering.

However, as shown in Fig. 8, a high proportion of SDSS-III
galaxies in the SGC does not mean a smaller difference between the
𝜎Δ𝑣 -generated 2PCF and the 𝑣smear-generated 2PCF compared to
the difference for LOWZ in theNGC. Therefore, the difference in the
two spectroscopic pipelines cannot explain the 𝑣smear discrepancy.

C. Underestimation of redshift uncertainties: Considering
the fact that errors from the spectroscopic pipeline underestimate
redshift uncertainties, it is difficult to directly prove the representa-
tive of samples from the repeat observation. Nevertheless, we can
proceed with the photometric information (Appendix B). In the
LOWZ sample, we find that the fraction of the blue samples 𝑓blue in
repeat observation is smaller than that of the clustering sample, but
the differences are minor (See Table B1 and Table B2). Given the
similarity in the 𝑓blue and colour–redshift distributions, the sample
of the repeat observations are unbiased representatives of galaxies
in the clustering catalogue. Even if the repeated samples are biased,
this is not the main cause of the discrepancy. Because the redshift
uncertainty of LOWZ at lower redshift should be smaller than that
of CMASS, but 𝑣smear of LOWZ is systematically larger than that
of CMASS.

D. A more complete model for galaxy assignment:While we
are using the samemodel for CMASS and eBOSS LRGs to describe
LOWZ, the discrepancy might indicate that a more complete model
is required. E.g., the LOWZ sample is composed of a different type
of galaxies which has more satellites than CMASS.

In fact, our satellite fraction ( 𝑓sat) for LOWZ at 0.2 < 𝑧 < 0.43
is 12.6 per cent, similar to CMASS 𝑓sat = 12.3 per cent at
0.43 < 𝑧 < 0.7. They are close to results from Halo Occupa-
tion Distribution fitting with 𝑤𝑝 , another empirical model for the
galaxy–halo relation: Parejko et al. (2013) based on DR9 give 12±2
per cent for LOWZ at 0.2 < 𝑧 < 0.4 and Reid et al. (2014) based on
DR10 give 10±2 per cent at 0.43 < 𝑧 < 0.7. Both SHAM and HOD
do not support the explanation of large 𝑓sat in LOWZ. Neverthe-
less, given the difference in data and fitting scales, 𝑓sat can still be
the explanation. Additionally, as pointed out by Ross et al. (2014)
and Favole et al. (2016b), we know that the blue tail of CMASS
galaxies show a higher quadrupole at 5–40 ℎ−1Mpc compared to
the dominating redder galaxies, which has 2PCF close to that of the
full catalogue. For LOWZ, the ad hoc blue galaxies might play a
more important role in the clustering properties. The velocity bias
is also found to be different in CMASS and LOWZ samples (Guo
et al. 2015; Lange et al. 2022). So it is possible that the LOWZ
discrepancy can be mitigated by a better model that considers those
factors. We leave it for a future work.

4.3 Galaxy Incompleteness indicated by 𝜎 and 𝑉ceil

Due to the high degeneracy between 𝜎 and 𝑣ceil, the redshift evo-
lutions of 𝜎 and 𝑉ceil are not obvious in the marginalized posterior
of eBOSS (Fig. C6). But the 2D 𝜎–𝑉ceil posterior contours show a
clear trend that 𝜎 or 𝑉ceil are smaller at higher redshift.

Thus, given a smaller 𝜎, we keep more haloes with large𝑉peak
that can be scattered to a certain range of𝑉scatpeak, leading to a smaller
stellar mass incompleteness (see Section 4.1). A smaller𝑉ceil means
to remove fewer haloes with the largest𝑉scatpeak, so the sample is more
complete at massive-end. This agrees with the minimum magni-
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Figure 9. The redshift evolution of the completeness of eBOSS LRG tar-
gets. The photometric redshifts (𝑧photo) are taken from the DECaLS DR9
catalogues. The increasing completeness with respect to the redshift is the
result of the i-band lower limit imposed in the LRG target selection.
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Figure 10. The 𝑤𝑝 comparison between the best-fitting SHAM catalogues
and the observations. The first row and the third row are 𝑤𝑝 with 𝜋 inte-
grating up to 80 ℎ−1Mpc and 30 ℎ−1Mpc respectively, and their residuals
normalized by the cosmic variance 𝜖obs,wp is shown in the second and fourth
row. 𝜋max in the figures is for both observational and SHAM galaxies. The
deviation at 𝑟𝑝 around 20 ℎ−1Mpc for the bulk sample (0.2 < 𝑧 < 0.43)
decreases while using a smaller 𝜋max. However, we see that the deviation at
5 ℎ−1Mpc increases which might indicate systematics at smaller scales.
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Figure 12. Same as Fig. 10, but for eBOSS LRGs. Left figures (small
redshift bins) show obvious deviations when using 𝜋max = 80 ℎ−1Mpc, but
the deviations are mitigated when using 𝜋max = 30 ℎ−1Mpc.

tude truncation mentioned in Section 2.1.1, since this threshold is
expected to remove fewer galaxies at higher redshift (Zhai et al.
2017). To demonestrate this, we plot the completeness–redshift re-
lation in Fig. 9. The completeness is defined as the ratio of the
number of eBOSS LRG targets with a complete target selection in-
cluding (Prakash et al. 2016), to that from a target selection without
the 𝑖-band lower limit 𝑖 ≥ 19.9 (Eq. (1)). Since there are no spec-
troscopic redshift measurements for objects excluded by the eBOSS
target selection criteria, we match the eBOSS target catalogues with
the DECaLS DR9 data10 (Dey et al. 2019) to make use of the DE-
CaLS photometric redshift measurements (Zhou et al. 2020) and
78.5 per cent of the eBOSS LRG candidates without the 𝑖-band
lower limit are found in the DECaLS catalogue.

For the complete samples, i.e., LOWZ and CMASS at 0.43 <
𝑧 < 0.51), we obtain much tighter constraints on 𝜎 at different red-
shifts, as shown in Table 1. Since the 𝜎 parameter in this study ab-
sorbs the incompleteness of stellarmass function, ourmeasurements
provide upper bounds of the intrinsic scatter between stellar mass
and our halo mass proxy 𝑉peak, i.e. 𝜎int < 0.31 at 0.2 < 𝑧 < 0.33,
𝜎int < 0.36 at 0.33 < 𝑧 < 0.43, and 𝜎int < 0.46 at 0.43 < 𝑧 < 0.51
with 95 percent confidence. We do not consider the measurement
at 0.51 < 𝑧 < 0.57 to be robust as explained in Section 4.1.

4.4 Consistency Check with 𝑤𝑝

In principle, when the 2PCFmultipoles of a SHAM catalogue agree
well with those of the corresponding observational data, the 𝑤𝑝 of
the two catalogues should also be consistent. To investigate the im-
pacts of potential systematic effects that are usually observed on
large scales (Ross et al. 2016), we measure the 𝑤𝑝 with two integral
constraints for both the best-fitting SHAM catalogues and obser-
vations. At first, we use 𝑤𝑝 with 𝜋max = 80 ℎ−1Mpc to obtain a
good SNR and avoid the noise-dominated large scales (Mohammad
et al. 2020). This 𝜋max value is a common choice for HOD studies
(e.g., Avila et al. 2020b). In this case, the 𝑤𝑝 of the SHAM for
LOWZ samples agrees with the observed 𝑤𝑝 , while for CMASS
and eBOSS samples, the 𝑤𝑝 of SHAM catalogues are generally
underestimated compared to those of the observations. We then re-
duce 𝜋max to 30 ℎ−1Mpc, and the 𝑤𝑝 measured from the SHAM
and observational catalogues become consistent, as shown in Fig-
ures 10–12. Note that 𝜋max values are for both observational and
SHAM 𝑤𝑝 .

Potential uncorrected systematics that affect the 2PCF
monopole on 𝑟 & 80 ℎ−1Mpc can explain the inconsistency in 𝑤𝑝

with 𝜋max = 80 ℎ−1Mpc. The discrepancy on the large scales of the
2PCFmonopole is observed when comparing observations with the
galaxy mocks like Patchy (Kitaura et al. 2016) and EZmock (Zhao
et al. 2021a). Meanwhile, Huterer et al. (2013) explain that uncor-
rected photometric systematics can significantly bias clustering on
large scales.

To directly demonstrate the consequences of uncorrected sys-
tematics on 𝑤𝑝 with different 𝜋max, we compare the 2PCF mul-
tiples and projected 2PCFs of EZmock mocks without and with
observational systematics, respectively. EZmock mocks with ob-
servational systematics are mocks that mimic the data, including
all the systematics mentioned in Section 2.1.3. We do not apply
weight corrections, to investigate the potential biases due to sys-
tematics. The clustering difference is normalized by the quadra-
ture sum of the standard deviations for EZmock mocks with and

10 https://www.legacysurvey.org/dr9/files
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Figure 13. The effect of a biased 2PCF monopole on 𝑤𝑝 . The first col-
umn represents the 2PCFmultipoles of EZmock mocks without systematics
(black lines with shades) and EZmock mocks with systematics (blue lines
with shades). The second column is the 𝑤𝑝 comparison between EZmock
mocks without systematics (black lines with shades) and EZmock mocks
with systematics (red lines with shades). The first row is 𝑤𝑝 with 𝜋 in-
tegrating to 80 ℎ−1Mpc and the third row is 𝜋 integrating to 20 ℎ−1Mpc.
The second and fourth row for both columns are the difference between
their clustering normalized by the quadrature sum of the standard deviations
for EZmock mocks with and without systematics. The 𝑤𝑝 difference is
suppressed when 𝜋max equals a smaller value.

without systematics. As is shown in Fig. 13, the observational sys-
tematics is responsible for the monopole difference, especially at
scales larger than 50 ℎ−1Mpc. Consequently, the bias presented in
𝑤𝑝 with 𝜋max = 80 ℎ−1Mpc is much larger than that of 𝑤𝑝 with
𝜋max = 20 ℎ−1Mpc. The result reveals the importance of properly
choosing 𝜋max to avoid large-scale systematics as much as possible.

5 CONCLUSION

Subhalo Abundance matching is a powerful method of constructing
galaxy catalogue based on high-resolution simulations. We propose
a 3-parameter SHAM algorithm that is more general for different
galaxy surveys. Besides the classical 𝜎, we introduce 𝑣smear that
smears the peculiar velocities of SHAM galaxies to model the effect
of the redshift uncertainties, and𝑉ceil that removes themost massive
haloes/galaxies to account for the completeness of tracers in the
massive end due to the target selection (e.g. luminosity threshold).

We construct SHAM catalogues that reproduce the cluster-
ing of BOSS/eBOSS LRGs on [5, 25] ℎ−1Mpc at 0.2 < 𝑧 < 1.0,
based on the UNIT simulations. The 2PCF multipoles and pro-
jected 2PCFs of the SHAM catalogues are consistent with those
of BOSS/eBOSS samples, including the entire LOWZ, CMASS
and eBOSS samples, and 9 subsamples in different redshift slices.
These results validate our new SHAM model. However, for some
of the samples such as CMASS at 0.43 < 𝑧 < 0.7 and eBOSS
LRG 0.7 < 𝑧 < 0.9, the best-fitting reduced 𝜒2 values for the

2PCF multipoles can be larger than 2. This may be due to un-
known observational systematics. For the bulk CMASS samples,
the inhomogeneity in completeness at different redshift bins can
also contribute to the disagreement.

Since the galaxies at 𝑧 < 0.6 are supposed to be complete (Reid
et al. 2016), a SHAMmodel without𝑉ceil should alsowork for them.
This is confirmed by the fitting results except for the CMASS sample
at 0.51 < 𝑧 < 0.57,which is rejected atmore than 4𝜎. Therefore, the
BOSS LRGs should have already been incomplete from 𝑧 ≈ 0.5.
This finding is especially important for the reconstruction of the
stellar mass function.

Using our SHAM method, the 2PCF bias brought by red-
shift uncertainties can be quantified through the 𝑣smear parameter.
Meanwhile, we estimate the redshift uncertainty statistically with
the redshift difference Δ𝑣 obtained from repeat observations. There
are two estimators of the statistical redshift uncertainties: (1) the
best-fitting Gaussian dispersions 𝜎Δ𝑣 for the histogram of Δ𝑣; (2)
the standard deviations of Δ𝑣 as 𝜎̂Δ𝑣 . As expected, both of them
increase monotonically with the effective redshift due to broader ab-
sorption lines at higher redshifts. Both 𝜎Δ𝑣 and 𝜎̂Δ𝑣 agree with our
CMASS 𝑣smear measurements. For eBOSS samples, 𝑣smear agrees
with the 𝜎̂Δ𝑣 measurements while it is in tension with 𝜎Δ𝑣 . This
can be explained by the larger outlier fraction of eBOSS histograms.
In short, the standard deviations of the redshift differences are in
agreement with 𝑣smear for both the CMASS and eBOSS LRG sam-
ples.

However, for the BOSS LOWZ sample, there are significant
disagreements between 𝑣smear values and the redshift uncertainties
measured from repetitively observed targets. We have looked into
some potential sources of systematic biases including the robust-
ness of subhaloes from the UNIT simulations, the SDSS-III spec-
troscopic pipeline upgrade and the representativeness of the repeat
samples. But none of them can lead to the observed discrepancy.
Despite the fact that we have similar satellite fraction for LOWZ
and CMASS, it is still possible that LOWZ sample is composed of
a different subclass of LRGs that has different satellite properties
compared to LRGs from CMASS and eBOSS. To validate this, we
need a more detailed SHAM model for LOWZ samples. We leave
relevant studies to a future work.

We observe the redshift evolution of eBOSS𝜎–𝑉ceil posteriors,
indicating the sample is more complete at higher redshift bins.
With the photometric redshift from DECaLS, we confirm the target
selection criteria with a minimum i-band magnitude cut leads to
the completeness evolution. Since the scatter parameter 𝜎 in our
study include both the intrinsic scatter 𝜎int and the incompleteness
of galaxy samples, our 2-parameter SHAM measurements provide
the constraints on 𝜎int as 𝜎int < 0.31 for LOWZ at 0.2 < 𝑧 < 0.33,
𝜎int < 0.36 for LOWZ at 0.33 < 𝑧 < 0.43, and 𝜎int < 0.46 for
CMASS at 0.43 < 𝑧 < 0.51.

The projected 2PCFs of the best-fitting SHAM catalogues are
consistent with those of the observations when the integral limit
𝜋max is as small as 30 ℎ−1Mpc. However, 𝑤𝑝 of SHAM catalogues
deviates from the observations when 𝜋max = 80 ℎ−1Mpc. This can
be explained by potential uncorrected systematics that mainly affect
large scales. A test based on EZmock mocks with and without
systematics also proves that 𝑤𝑝 evaluated with a 𝜋max of around
30 ℎ−1Mpc is less sensitive to systematic effects, compared to 𝑤𝑝

with 𝜋max = 80 ℎ−1Mpc. The result also supports the choice of a
smaller 𝜋max when using 𝑤𝑝 for SHAM and HOD studies (e.g.,
Alam et al. 2020).

To conclude, our 3-parameter SHAM model works well for
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LRGs at a wide range of redshift, though there are a few excep-
tions that may be due to uncorrected observational systematics. Our
algorithm is also effective in estimating uncertainties of redshift
measurements, and detection of sample incompleteness for most
of the SDSS samples. We are going to further improve the SHAM
model by accounting for more properties, such as the satellite frac-
tion. In the meantime, we also plan to extend our the studies to
ELGs. Because their star-forming processes are quenched in mas-
sive haloes (Kauffmann et al. 2004; Dekel & Birnboim 2006), the
parameter 𝑉ceil is foreseen to be crucial. Later, we shall also con-
struct multi-tracer SHAMmodels for different types of tracers with
both auto- and cross-correlations for cosmological analysis.

DATA AVAILABILITY

The LOWZ and CMASS clustering and random catalogues, Patchy
mocks are all from SDSS data release 12. For eBOSS, the PIP+ANG
weighted clusterings can be provided by FM. The corresponding
EZmock mocks can be obtained with request to CZ. The spAll
catalogue used for the redshift differencemeasurements are publicly
available and the code of the redshift uncertainty measurement can
be obtained upon the request to JB.
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APPENDIX A: THE EFFECT OF FIBRE COLLISION

To avoid potential biases of the clustering measurements due to
uncorrected fibre collision effects with nearest-neighbour close-pair
weights (𝑤CP), we conduct a new SHAM fitting on the monopole
and quadropole in [10, 25] ℎ−1Mpc, which are not significantly
affected by fibre collision effects (Guo et al. 2012; Rodríguez-Torres
et al. 2016), for LOWZ at 0.2 < 𝑧 < 0.43. The resulting posterior
distributions of parameters are shown in Fig. A1. As demonstrated
in the figure, the constraints are consistent with those from our
fiducial fitting range ([5, 25] ℎ−1Mpc) at 1𝜎 level. It thus suggests
that our SHAM fitting results are robust.

0.1 0.2 0.3 0.4

0.005

0.010

0.015

V c
ei

l(%
)

20

60

100

140

v s
m

ea
r(

s
1
km

)
50 100

vsmear (s 1 km)
0.004 0.010 0.016

Vceil (%)

10-25 Mpc/h
5-25 Mpc/h

Figure A1. The posteriors of SHAM parameters for LOWZ at 0.2 < 𝑧 <

0.43, obtained with the fitting of monopole and quadropole at ranges on [10,
25] ℎ−1Mpc (red) and [5, 25] ℎ−1Mpc (blue).

APPENDIX B: BLUE SAMPLES IN LOWZ

In order to indirectly prove the representative of the repeat obser-
vation, we choose to study the fraction of blue galaxies, i.e., 𝑓blue
in the repeat measurement catalogue and the galaxy clustering cat-
alogue. The differentiation of the blue and red samples is achieved
by applying an ad hoc criterion on the colour–redshift diagram. For
example, with a constant colour cut (𝑔 − 𝑖) = 2.35, Favole et al.
(2016b) selects the blue tail of CMASS samples and find out that
they have different clustering properties from the red samples. The
magnitudes for colour calculation are the Composite Model Mag-
nitudes (i.e., CMODELMAG; Reid et al. 2016) from the spAll
catalogue. We start with using the same cut on both clustering cat-
alogue and repeated samples for LOWZ and CMASS (Fig. B1 and
Fig. B2). The results in Table B1 shows that 𝑓blue in clustering
samples are quite close to 𝑓blue of the repeat samples. Despite of
the minor difference, for LOWZ, 𝑓blue of the clustering catalogue is
always larger than 𝑓blue of the repeated samples, while for CMASS
it is the opposite. Additionally, there is no significant difference
in the 𝜎̂Δ𝑣 of blue galaxies and red galaxies that can lead to the
disagreement between LOWZ 𝑣smear and LOWZ Δ𝑣.

As shown in Fig. B2, a constant cut cannot help to select the
blue tail of LOWZ. A cut varies with the redshift is a better choice.
Sowe apply (𝑔−𝑖) = 2.8𝑧+1.2, and find 𝑓blue drops to the same level
as CMASS with a constant cut. The clustering catalogue still has
𝑓blue larger than that of the repeat observations and we have small
difference between the red and blue 𝜎̂Δ𝑣 just like our findings in the
results of the constant cut. The results can be found in Table B2. So
it proves that the redshift uncertainties measured based on repeat
samples should be representative for the clustering sample.
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Figure B1. The colour–redshift diagram for CMASS at 0.43 < 𝑧 < 0.7 and
the blue galaxy threshold (white dashed lines). Left: the colour distribution
of galaxies from the clustering catalogue. Right: the colour distribution of
galaxies from the repeat observation.
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Figure B2. The same as Fig. B1 for LOWZ with two cuts. The first cut is
(𝑔−𝑖) = 2.35 (the white solid line) and the second one is (𝑔−𝑖) = 2.8𝑧+1.2
(the white dashed line).

APPENDIX C: POSTERIORS OF BOSS AND EBOSS
SHAM

The posteriors of all the 3-parameter SHAM results are presented in
Figures C1–C6. The top panel of each column shows the marginal-
ized posterior of the parameter written at the bottom. The remain-
ing three panels are the 2D posterior contours. Parameters with
the maximum likelihood determined by pyMultinest11 (Buchner
et al. 2014) are marked in the figures. All the posteriors are from
converged Monte-Carlo chains of Multinest. The multi-modal 1D
posteriors of 𝜎 and 𝑉ceil may be due to the noisy data.

We also present the posteriors of the 2-parameter SHAMwith-
out 𝑉ceil in Figures C7–C9, comparing with those of the corre-
sponding 3-parameter SHAM. We keep the posteriors of 𝑉ceil for
the convenience of visualizing the 𝑉ceil–𝑣smear degeneracy.

This paper has been typeset from a TEX/LATEX file prepared by the author.

11 https://github.com/JohannesBuchner/PyMultiNest

z range 𝑓blue 𝑓blue red 𝜎̂Δ𝑣 blue 𝜎̂Δ𝑣

clst. (%) repeat (%) (s−1 km) (s−1 km)

0.2 < 𝑧 < 0.33 88.9 87.3 29.3±3.4 26.0±2.5

0.33 < 𝑧 < 0.43 46.1 44.6 33.1±1.7 33.1±3.6

0.2 < 𝑧 < 0.43 67.3 64.6 32.5±1.5 28.8±2.2

0.43 < 𝑧 < 0.51 37.3 37.5 46±2.7 48.3±4.7

0.51 < 𝑧 < 0.57 36.3 37.4 52.8±3.4 52.6±3.0

0.57 < 𝑧 < 0.7 37.0 38.8 61.0±3.6 60.7±4.8

0.43 < 𝑧 < 0.7 36.9 38.0 54.0±1.9 54.6±2.8

Table B1. The 𝑓blue for the clustering catalogue and the repeat observation,
and the 𝜎̂Δ𝑣 of the blue and the red galaxies for LOWZ and CMASS
samples at different redshift bins using the constant cut (𝑔 − 𝑖) = 2.35.
The 𝑓blue values of LOWZ clustering catalogue are larger than those of the
repeat catalogue, while CMASS samples shows the opposite relation. The
difference between the red and blue 𝜎̂Δ𝑣 is not significant for LOWZ and
CMASS.

z range 𝑓blue 𝑓blue red 𝜎̂Δ𝑣 blue 𝜎̂Δ𝑣

clst. (%) repeat (%) (s−1 km) (s−1 km)

0.2 < 𝑧 < 0.33 30.9 29.1 26.8±2.9 25.7±1.7

0.33 < 𝑧 < 0.43 30.5 30.2 32.7±1.4 34.1±5.1

0.2 < 𝑧 < 0.43 30.7 29.7 30.0±1.5 30.5±3.2

Table B2. The same as Table B1 for LOWZ using the redshift cut (𝑔 − 𝑖) =
2.8𝑧 + 1.2. The 𝑓blues of clustering are still larger than those of the repeat
catalogue and the difference between the red and blue 𝜎̂Δ𝑣 is also small.
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Figure C1. The posteriors of SHAM parameters for LOWZ samples at
0.2 < 𝑧 < 0.43. The black dots in the contours indicate the position of the
best-fitting parameters.
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Figure C2. The same as Fig. C1 for LOWZ SHAM at 0.2 < 𝑧 < 0.33
(magenta) and 0.33 < 𝑧 < 0.43 (blue).
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Figure C3. The same as Fig. C1 for CMASS SHAM at 0.43 < 𝑧 < 0.7.
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Figure C4. The same as Fig. C1 for LOWZ SHAM at 0.43 < 𝑧 < 0.51
(magenta), 0.51 < 𝑧 < 0.57 (blue) and 0.57 < 𝑧 < 0.7 (orange).
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Figure C5. The same as Fig. C1 for eBOSS LRG SHAM at 0.6 < 𝑧 < 1.0.
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Figure C6. The same as Fig. C1 for eBOSS LRG SHAM at 0.6 < 𝑧 < 0.7
(magenta), 0.6 < 𝑧 < 0.8 (blue), 0.7 < 𝑧 < 0.9 (orange) and 0.8 < 𝑧 <

1.0(red). The evolution of the 𝜎–𝑉ceil contour indicates the incompleteness
at higher redshift bins is lower than that of the lower redshift bins as explain
in Section 4.3.
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Figure C7. The posteriors of 3-parameter SHAM (magenta) compared with
2-parameter SHAM (red) for LOWZ samples at 0.2 < 𝑧 < 0.43.
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Figure C8. The same as Fig. C7 for LOWZ SHAM comparisons at 0.2 <

𝑧 < 0.33 (magenta, red) and 0.33 < 𝑧 < 0.43 (cyan, blue).
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Figure C9. The same as Fig. C7 for CMASS SHAM comparisons at 0.43 <
𝑧 < 0.51 (magenta, red) and 0.51 < 𝑧 < 0.57 (cyan, blue).
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