
UCSF
UC San Francisco Previously Published Works

Title
Applying Machine Learning Across Sites: External Validation of a Surgical Site Infection 
Detection Algorithm.

Permalink
https://escholarship.org/uc/item/1sp7j96f

Journal
Journal of The American College of Surgeons, 232(6)

Authors
Abe-Jones, Yumiko
Najafi, Nader
Sheka, Adam
et al.

Publication Date
2021-06-01

DOI
10.1016/j.jamcollsurg.2021.03.026
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sp7j96f
https://escholarship.org/uc/item/1sp7j96f#author
https://escholarship.org
http://www.cdlib.org/


Applying Machine Learning Across Sites: External Validation of 
a Surgical Site Infection Detection Algorithm
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Nader Najafi, MD, Adam Sheka, MD, Roshan Tourani, PhD, Steven J Skube, MD, Zhen Hu, 
PhD, Genevieve B Melton, MD, FACS, PhD
Institute for Health Informatics (Zhu, Simon, Tourani, Hu, Melton) and the Departments of 
Medicine (Simon) and Surgery (Wick), University of Minnesota, Twin Cities; Minneapolis, MN; and 
the Departments of Surgery (Abe-Jones, Najafi) and Medicine (Sheka, Skube, Melton), University 
of California San Francisco, San Francisco, CA

Abstract

BACKGROUND: Surgical complications have tremendous consequences and costs. 

Complication detection is important for quality improvement, but traditional manual chart review 

is burdensome. Automated mechanisms are needed to make this more efficient. To understand the 

generalizability of a machine learning algorithm between sites, automated surgical site infection 

(SSI) detection algorithms developed at one center were tested at another distinct center.

STUDY DESIGN: NSQIP patients had electronic health record (EHR) data extracted at one 

center (University of Minnesota Medical Center, Site A) over a 4-year period for model 

development and internal validation, and at a second center (University of California San 

Francisco, Site B) over a subsequent 2-year period for external validation. Models for automated 

NSQIP SSI detection of superficial, organ space, and total SSI within 30 days postoperatively 

were validated using area under the curve (AUC) scores and corresponding 95% confidence 

intervals.

RESULTS: For the 8,883 patients (Site A) and 1,473 patients (Site B), AUC scores were not 

statistically different for any outcome including superficial (external 0.804, internal [0.784, 0.874] 

AUC); organ/space (external 0.905, internal [0.867, 0.941] AUC); and total (external 0.855, 

internal [0.854, 0.908] AUC) SSI. False negative rates decreased with increasing case review 

volume and would be amenable to a strategy in which cases with low predicted probabilities of 

SSI could be excluded from chart review.
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CONCLUSIONS: Our findings demonstrated that SSI detection machine learning algorithms 

developed at 1 site were generalizable to another institution. SSI detection models are practically 

applicable to accelerate and focus chart review.

Surgical site infections (SSIs) account for 20% of all infections in the hospital setting. These 

infections are highly morbid, increase hospital length of stay, dramatically increase the risk 

of mortality, and on average, increase the cost of hospitalization by more than $20,000 per 

patient.1 Because many SSIs are preventable, they are included as elements of Centers for 

Medicaid and Medicare pay-for-performance programs, including the Hospital-Acquired 

Condition Reduction and the Hospital Value-Based Purchasing Programs; resulting in 

low-performing hospitals being at risk of losing billions of dollars in annual revenue.2,3 

Given the significant consequences of SSI on individual patients and their aggregate impact 

on healthcare systems financially, careful tracking of SSI outcomes and other hospital-

acquired infections (HAIs) is a national imperative in conjunction with continuous quality 

improvement around prevention.

Unfortunately, tracking SSIs and other surgical complications is costly and resource-

intensive today. Although national surgical registries, including the American College of 

Surgeons NSQIP, Society for Thoracic Surgeons National Database, National Trauma Data 

Bank, and National Healthcare Safety Network, among others, provide high quality data 

on short-term surgical outcomes, most of these databases require significant resources in 

the form of trained personnel to manually abstract these outcomes using retrospective chart 

review. Data collection is, therefore, a time-consuming and expensive process. In most cases, 

larger hospitals only track data on a sample of patients rather than all because of this cost. 

Moreover, program and data collection costs for NSQIP and other outcomes registries bias 

participation toward larger academic medical centers.4

To improve the efficiency of surgical adverse event reporting, investigators have started to 

explore the feasibility of using automated solutions in place of manual chart review. In 

most cases, this process has relied heavily on administrative data and claims data.5,6 In 

some cases, narrative clinical notes and other electronic health record (EHR) data have also 

been explored.7–10 However, these studies have been carried out at a single institution, and 

performance of these solutions varies widely across the studies.

In our previous work, we developed postoperative SSI detection algorithms based on 

structured EHR data for overall, superficial, and organ-space SSI using NSQIP as a 

gold standard comparator.11 As opposed to algorithms useful for prediction of SSI, this 

algorithm is used for detection of SSI, which has occurred using variables associated with 

diagnosis and confirmation (eg imaging studies, antibiotic therapy). Our machine learning 

models demonstrated high specificity and high negative predictive values, making them 

potentially useful in practice to reduce the workload and increase efficiency of clinical data 

abstractors by several fold. Also, when we applied these machine learning models to more 

contemporaneous surgical cases, we observed stable and robust performance over time at the 

same center.
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An outstanding question remains as to whether machine-learning algorithms, such as the 

ones described developed at a single site, are generalizable to other sites. This study 

was designed to evaluate the performance of EHR-derived postoperative SSI detection 

models at an outside, geographically separate site. This external validation also serves as 

a test for determining the feasibility of applying these models into widespread practice. 

We hypothesized that representation of variables used in a model of EHR-based clinical 

indicators to detect SSI would be consistent across sites, making automated detection 

models transferrable from 1 institution to another.

METHODS

Setting

This study was performed on cohorts of surgical patients at 2 independent NSQIP-

participating hospitals: University of Minnesota Medical Center (UMMC, Site A) located 

in Minneapolis, MN and University of California San Francisco Medical Center (UCSF, 

Site B) in San Francisco, CA. Institutional review board approval (IRB) was obtained from 

both institutions (multi-institutional IRB), with individual informed consent waived for this 

minimal risk study.

Dataset and outcomes

Figure 1 illustrates the overview of the methodological approach used in this study. Site 

A data were collected between 2011 and 2014. Site B data were collected between 2016 

and 2017. At each site, structured EHR data for all patients in that institution’s NSQIP 

registry during the study period were extracted from clinical data repositories prospectively 

maintained by each institution. The postoperative SSI outcome gold standard data were 

obtained from the NSQIP registry, using each patient’s unique identifier and date of surgery 

to link the 2 datasets. Per NSQIP guidelines, patients with infection present at the time of 

surgery (PATOS) were included. SSI determinations were obtained using standard NSQIP 

data collection methods, including contacting the patient. Patient contact was not recorded 

in the EHR by the NSQIP abstractor. While the Site A cohort used a classical sampling 

methodology for patients included in NSQIP registry database and did expand further to 

neurosurgery, urology, and gynecology between 2011 and 2014, the Site B cohort included 

all colorectal surgery cases in an effort to perform additional quality improvement around 

colorectal SSI.

Structured EHR data—From each EHR data repository, we collected a range of 

data elements (eTable 1). This included demographic information (eg age, sex), relevant 

laboratory results (eg white blood cell count, hemoglobin, glucose, creatinine, troponin) 

including microbiological results (eg urine culture, blood culture, wound culture), relevant 

diagnosis codes (eg International Classification of Diseases [ICD] diagnosis codes for 

SSI, urinary tract infection, and sepsis with mappings between ICD9 and ICD10 through 

intelligent medical objects interface terminology), orders and procedures for making a 

diagnosis or providing treatment (eg CT-guided interventional radiology drainage to treat 

SSI, an order for a blood culture), vital signs (eg temperature, heart rate, blood pressure) and 
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administration of antibiotics. We also extracted the American Society of Anesthesiologists 

(ASA) physical status classification and surgical wound classification.

For this SSI detection algorithm, clinical data of interest were included during the window 

from postoperative days 3 to 30. This was done to account for a recovery period over 

the first 2 postoperative days, when some abnormal measurements are common. During 

the postoperative window, repeated values (ie laboratory result and vital measurement) are 

summarized by extreme (lowest and highest) and average values. Binary variables were 

created for relevant orders, procedures, and diagnosis codes for their presence or absence. 

For microbiology tests, binary variables were created in addition to identification of specific 

bacterial types (eg Escherichia coli, Klebsiella pneumonia, Enterobacter, Enterococcus) and 

bacterial morphologies (eg gram positive rods, gram negative cocci).

NSQIP SSI gold standard—As previously described,12 NSQIP SSI data were collected 

by trained surgical clinical reviewers over the 30-day postoperative window. When this 

process has undergone a data quality auditing process, it has been reported to have over 95% 

accuracy and reproducibility.

Data analysis

Once EHR data and NSQIP data were linked, data preprocessing and modeling were 

tuned and optimized in order to better serve the purpose of model generalizability across 

sites. For example, preprocessing missing data imputations, we used the best practices 

proposed in Hu and colleagues13 including imputation schemes customized to each variable. 

Missing data in the variables with repeated measurements (ie labs and vitals) were imputed 

using the average value of patients without any adverse events in order to minimize bias. 

For ASA and wound classification, missing values were imputed using the median of 

all cases, as missingness was assumed to be random. Each SSI outcome was modeled 

independently on the UMMC dataset using lasso logistic regression, with its penalty 

parameter determined through the 10-fold cross validation process. With respect to model 

optimization for transferability, before fitting the lasso-penalized logistic regression model, 

we applied additional steps to reduce the dimensionality of the analytical matrix by using 

causal variable screening (PC-Simple algorithm) followed by backward elimination, which 

could prevent an overfitting issue during external validation. Before modeling, the high 

dimensionality of independent variables were first reduced by causal variable screening14 

using PC-Simple algorithm15 with a maximal condition set size of 3,16 followed by 

backwards elimination with a significance level of 0.05. By doing so, only the features most 

relevant to the outcomes are selected and included in the final model, in order to minimize 

collinearity. No interaction terms were included in the model. All analyses were conducted 

using R version 3.5.1.

Evaluation

Model performance was evaluated by measuring the area under the ROC curve (AUC) score, 

sensitivity, and specificity. Youden’s index was used to determine the optimal cut-off to 

maximize the sum of sensitivity and specificity. First, the model was internally evaluated 

on a leave-out test set at Site A. To assess the variability of the detection performance, 
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1,000 bootstrap replications were performed on the Site A test set and the empirical 95% 

confidential interval (CI) of the evaluation metrics was reported. Next, the models were 

externally evaluated on the (entire) Site B data set: a single value for each metric was 

reported. In order to further assess cases incorrectly classified by the algorithm, manual 

review of cases with low predicted probability of SSI was performed by a single surgeon 

(SS), with attention on clinical notes such as progress notes and discharge summaries. If 

there was a question about whether there was an SSI or not, the case was reviewed with 2 

other surgeons (AS, GM) to ensure consensus.

RESULTS

Table 1 summarizes patient cohorts from the 2 health systems including demographic 

information, case type, and SSI outcomes. The table also provides data and values for each 

of the algorithm model features that were significant in at least 1 of the models. Categorical 

variables are reported as the percentage of occurrence; continuous variables are reported as 

the median and the interquartile range. We observed that all variables that were features to 

the model were consistently represented with respect to most variable mappings. There was 

some additional variable mapping required around microbiology orders, antibiotic orders, 

and microbiology results to properly transfer the model. Overall, the Site B cohort has 

higher infection rates for all SSI types, likely due to the higher rates of colorectal and 

hepato-pancreato-biliary surgical cases. The cohorts also differed in age with Site B patients 

older, greater rates of inpatient cases, and higher wound class as compared to the Site A 

cohort.

Performance of each SSI detection model is summarized in Table 2. External validation of 

the model at Site B for superficial SSI demonstrated an AUC of 0.804, similar to Site A 

AUC internal validation (CI 0.784, 0.874). For organ/deep space SSI, external validation of 

AUC was 0.905, also with similar internal validation (CI 0.867 0.941). Finally, total SSI 

AUC external validation was 0.855, with internal validation AUC (CI 0.854, 0.908). Table 3 

summarizes the significant variables from the models and the corresponding coefficients for 

the multivariate detection models developed with the Site A dataset for superficial, organ/

space and the total SSI.

Figure 2 illustrates the tradeoff between false negative rate (FNR) and proportion of cases 

requiring manual review by illustrating the change of FNR against the case review volume 

needed for each model when applied internally on Site A dataset and externally on Site 

B dataset. On the horizontal axis it shows the FNR, and on the vertical axis it shows 

the percentage of cases requiring expert review. When the predicted probability of SSI 

falls below a predetermined threshold, the patient is automatically classified as a non-case 

(negative) and is excluded from further consideration. Patients above this threshold undergo 

manual review. Increasing automatic exclusion of patients reduces costly manual review, 

but increases the false negative rate (the proportion of SSI cases erroneously classified as 

negative). The model performs better generally on the Site A dataset, with fewer cases 

requiring review with relatively better performance as compared to Site B.

Zhu et al. Page 5

J Am Coll Surg. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To further understand where the algorithm was less accurate, manual review was performed 

for Site A cases who were reported to have SSI by NSQIP, but had very low probabilities 

of SSI with our algorithm. This demonstrated that NSQIP data were nearly always correct. 

In most cases, these SSI cases were missed because they were mentioned in progress notes 

or discharge summaries, but discrete data signals were not entered or recorded as a discrete 

diagnosis. A large majority of these cases were also from earlier years of study; we have 

noted that this issue appeared to mostly resolve itself in more recent years, with EHR 

documentation and coding practice improvements, and that natural language processing 

methods to extract these signals from clinical notes into the detection algorithm may further 

improve model performance.17,18

DISCUSSION

As healthcare faces an affordability crisis becoming increasingly regulated and value-

based, the need for automation and efficiencies in performing quality improvement are 

needed. Artificial intelligence algorithms and the application of machine learning holds 

significant promise for improving several of these processes. Unfortunately, algorithms often 

experience some level of degradation between populations and over time, as treatments 

and outcomes change, as well as due to differences in practice between sites and sets of 

surgeons. Best practices in transferring models between sites have not been well described, 

including adequate methods to deal with data preprocessing and model overfitting. In this 

study, we previously built and then validated machine learning models using structured 

EHR data for the detection of SSIs leveraging NSQIP outcomes. We then optimized these 

models for transferability and tested their performance externally at another site more 

contemporaneously over several years of data. Our results demonstrate that these models 

have good potential for reproducibility, and there is a wide range of similar opportunities 

for the application of these detection models in clinical practice, such as other HAIs 

and registries (eg Centers for Disease Control National Hospital Surveillance Network 

measures).

Broadly, an approach such as this may bring value to healthcare systems on several levels. 

While full automation of abstraction would be ideal, instead, the use of more focused 

abstraction may be more practical in keeping the accuracy of registry outcomes high while 

eliminating a large proportion of abstraction for cases that are clearly negative.19 Additional 

benefits include increased capacity for abstracting additional cases, possible decreased 

abstraction costs, lowering the barrier for broader participation of institutions that do not 

currently participate, and potentially additional focus on quality improvement and feedback 

to surgeons. This would provide opportunities for deploying interventions targeting SSI rates 

and evaluating their effectiveness.

We also observed a similar tradeoff between FNR and the review burden in our analysis for 

both sites. In order to reach current NSQIP standards, which allow for interrater reliability 

disagreement rates to 5%, between 40% and 55% of cases would still need to be reviewed 

to achieve this degree of reliability, and when reliability standards are relaxed to 10% for 

organ/deep SSI, only 24% to 37% of cases require review. Overall, our findings suggest that 

with a large percentage of cases eliminated as negatives, the chart review process may be 
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considerably accelerated using the proposed approach. As illustrated in Figure 1, the optimal 

tradeoff for false positives and false negatives should be used to adapt the cutoff point 

according to the acceptability of each for the particular use case. This algorithm would be 

used primarily by surgical abstractors for NSQIP to automate case determination for those 

cases clearly positive and those clearly negative to decrease the number of cases requiring 

manual review by many-fold.19

Generally speaking, we observed good AUC scores for both internal and external validations 

with our algorithms. One interesting aspect of the external model validation to Site B 

were the differences in case make-up between sites. NSQIP has encouraged sites interested 

in quality improvement around certain aspects of care, such as prominently SSI, the 

opportunity to include all cases vs a sampling methodology. In this case, Site A was 

interested in involving additional disciplines in NSQIP, including gynecology oncology, 

neurosurgery, and urology for additional tracking of quality improvement. In contrast, Site 

B was interested in decreasing SSI rates and other major complications associated with 

colon and rectal surgery and hepatobiliary surgery. Therefore, we also observed that even 

though Site B has higher rates of positive SSI cases, likely due to the greater proportion 

of colon and rectal surgical cases as compared with Site A, where model development 

occurred, our SSI detection models still showed good detection performance across sites. 

The observed resilience of our algorithms despite variations in surgical populations and sites 

also demonstrates good robustness of this approach for the task of SSI detection. We did, 

however, also observe worse performance of our superficial SSI detection model. In fact, 

we observed an extended plateau for performance around superficial SSI indicating that 

signals for superficial SSI are more challenging. This is consistent with findings nationally, 

particularly with gaps in follow-up in the postoperative ambulatory setting, where care can 

be fragmented and patients can receive follow-up documented in other systems or with other 

providers.

There are several limitations of this study, including our validation at a single academic 

center as opposed to a variable set of centers with nonacademic/community surgical 

populations. Also, the study was conducted at 2 sites with the same third party EHR vendor, 

Epic Corporation. For this reason, the underlying data model and structure of clinical data 

may be more similar as compared to a health system with a different EHR platform. Despite 

the similarities in EHR vendor between sites, our models did require some additional feature 

engineering due to differences in local terminology used for imaging studies, microbiology 

results, and orders for inpatient care. These efforts will be accelerated by mapping of 

features to interoperable standards and data exchange frameworks (eg HL7 FHIR, certified 

health information technology data standard). Also, if applied to sites with large numbers of 

specialized patient populations (eg a center specializing in surgical oncology or orthopaedic 

procedures), performance of our model may not be generalizable. It is also possible that 

there were differences in routine practices for diagnosing or treating SSIs, which we did not 

take into account specifically in our model development. Finally, we expect that algorithms 

will drift over time and require ongoing maintenance as care practices and outcomes change. 

Our future work will expand upon this work by developing and validating similar detection 

models for other HAIs including pneumonia, urinary tract infection, sepsis, and septic 

shock.
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CONCLUSIONS

Overall, our machine learning approach for SSI detection generalized well to an outside 

site using its EHR data over a 2-year period. The resulting AUC scores demonstrate that 

these approaches have very good potential for aiding in regulatory reporting and the process 

of data abstraction and ultimately, for aiding with work in clinical quality improvement. 

Scaling our approach to a wide range of sites and maturing our approach to multiple EHR 

platforms using clinical standards to interoperate is our next step. Ultimately, the maturation 

of artificial intelligence for clinical care has the potential to have a positive impact on 

surgical care and surgical quality improvement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of experimental approach for internal and external validation of algorithms 

for surgical site infection detection. EHR, electronic health record; UCSF, University of 

California, San Francisco; UMMC, University of Minnesota Medical Center.
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Figure 2. 
False negative rate (FNR) of 3 models vs percentage of case reviews based on predicted 

probabilities of surgical site infection (SSI) development. (A) Superficial SSI; (B) organ 

space SSI; (C) total SSI. FNR is calculated by applying the models internally on University 

of Minnesota Medical Center (UMMC, Site A) dataset and externally on University of 

California, San Francisco (UCSF, Site B) dataset. Generally, the results suggest that the 

developed models have lower FNR on the Site A dataset.
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