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ABSTRACT OF THE DISSERTATION 

 

Human Behavior and Intelligent Energy Metering Systems: 

Experimental Approaches 

 

by 

 

Omar Isaac Asensio 
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The use of field experiments and randomized controlled trials offer rich sources of inquiry to 

uncover causal mechanisms in the social and behavioral sciences. When these approaches are further 

integrated with the latest advances in engineering and information technologies, the result is an integrated 

research agenda that can shape new directions for innovation, science and public policy. 

This dissertation combines three essays on the use of experimental methods in the study human 

decision making with advanced technologies. The focus of this work is on demand side innovation for 

energy efficiency and conservation. We engage both business and residential consumers in energy 

efficiency and conservation decisions, using information-based strategies, smart metering technologies, 

and finally grand challenges as a policy mechanism. We investigate how information changes the 

behavior of consumers, households and firms, advancing the literature on non-monetary incentives for 

behavior change and making theoretical advances on altruistic motivations for energy conservation 

behavior. 
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PREFACE 
 

The use of field experiments and randomized controlled trials offer rich sources of inquiry to 

uncover causal mechanisms in the social and behavioral sciences. When these approaches are further 

integrated with the latest advances in engineering and information technologies, the result is an integrated 

research agenda that can shape new directions for innovation, science and public policy.  

This dissertation employs experimental (and quasi-experimental) techniques to identify the causal 

effects of interventions aimed at solving social problems for demand side innovation policies in energy 

and the environment. Mitigating undesirable environmental consequences related to human activities will 

require two important societal changes: the first is technological and the second is behavioral. 

Technological change involves understanding institutions, resource use and the forces that determine the 

adoption and diffusion of efficient technologies; especially those that can alter the trajectory of resource 

consumption in major contributing sectors and industries. Behavioral change involves understanding both 

economic and non-economic drivers for consumers to alter the use of materials and resources. I explore 

these human dimensions in greater detail in three chapters. 

Chapter I begins with the literature review of the dissertation. I examine 37 years of peer-reviewed 

behavioral field experiments in energy conservation from 1975-2012. This chapter synthesizes the 

experimental literature with a meta-analysis that combines statistical evidence across multiple studies. It 

extends previous (primarily qualitative) reviews with meta-regression techniques to quantitatively analyze 

the effectiveness of information-based behavioral interventions in the residential sector, while controlling 

for study level factors. The magnitude of the energy savings is discussed by intervention type as is the 

general finding that less rigorous studies tend to over-report the energy savings in the literature. 

In Chapter II, I study incentives for technological and behavioral change, using high-frequency 

analysis and high-performance computing. I discuss results of a large scale randomized controlled trial 



 

 xii 

(RCT) with residential consumers in which we provided households with real-time feedback about their 

home energy consumption down to individual appliances. In this study, we demonstrate that non-

monetary information strategies, which communicate the environmental and public health damages of 

electricity production—such as pounds of air pollutant emissions, childhood asthma and cancer—can 

result in economically significant changes in consumption with residential consumers.  

The human health effects of fine particulate air pollution resulting from industrial activity, which 

include premature mortality and morbidity, exceed $62 billion in health costs for families worldwide 

(National Research Council, 2006). The scale and magnitude of the problem greatly affect children’s 

health and welfare through somatic effects, those occurring in persons exposed to air pollution; along with 

genetic effects, those occurring in susceptible populations, particularly women in late stages of 

pregnancy, families with young children and urban communities more generally. In a rigorous field study, 

we demonstrate that tailored information disclosures about the “hidden” social costs of energy use, can 

incentivize household behavioral changes and even outperform traditional economic incentives for 

resource conservation in multifamily residential households. The behavioral savings achieved in the 

randomized trial were of economic significance, estimated rigorously at 8% versus control; and as 

predicted, were strongest in households with children with energy savings up to 19%. Remarkably, these 

behavioral savings enabled through recent innovations in metering and information technologies, 

occurred without changes to existing price structures or economic incentives. Chapter II contributes to 

behavioral theory on moralized consumer choice and the importance of altruism in consumer decision-

making. We show that the adage of ‘reducing harm to innocents’ is still a powerful motivator in society. 

We discuss strategies for the design of effective non-price interventions, particularly where price-based 

policies may not be politically feasible or effective. 

While the first two chapters address incentives in the residential sector, the third chapter focuses on 

incentives in the commercial sector. Commercial buildings readily account for half of all emissions in the 

United States, so its importance is central in the study of innovation policies for energy efficiency. The 
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chapter takes a challenge-based approach at the firm level, and conducts a program evaluation of a major 

public-private partnership in the City of Los Angeles unified under the U.S. Department of Energy Better 

Buildings Challenge. I evaluate the effectiveness of energy efficiency investments and incentives for 

technology adoption. Using quasi-experimental techniques and matching algorithms, I assess energy 

savings and various market outcomes to benchmark performance for societal grand challenges. Given the 

tightening of public finance to bear the costs of rebuilding existing infrastructure, the blending of public 

information programs with private spending can drive enhanced innovative capacity and increasing cost 

effectiveness to achieve reductions in energy intensity. 

 

 June 2, 2015      

Los Angeles, California    
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I 

INFORMATION STRATEGIES AND ENERGY CONSERVATION  

BEHAVIOR: A META-ANALYSIS OF EXPERIMENTAL STUDIES  

FROM 1975 TO 2012 
 

his chapter conducts a meta-analytic review of the experimental literature in energy conservation. 

Over the last 30 years, there has been a growing debate on the effectiveness of information 

programs used to meet energy conservation targets. Some researchers argue that tailored information 

programs have a tremendous potential for reducing household electricity use by as much as 20%. 

However, other researchers have criticized these information programs for their mixed empirical record, 

often citing heterogeneous effects by consumers, limitations in consumer attention or information 

processing, or crowding out of incentives, especially when the savings or benefits are small. Our main 

research question we address in this chapter is: How effective are information strategies in motivating 

energy conservation and what can we learn from the published experimental evidence about household 

behavioral changes in response to these programs? 

 Strategies that provide information about the environmental impact of activities are increasingly seen 

as effective to encourage conservation behavior. In this chapter, we offer the most comprehensive meta-

analysis of information based energy conservation experiments conducted to date. Based on evidence 

from 156 published field trials and 525,479 study subjects from 1975-2012, we quantify the reduction 

potential of information-based strategies for energy conservation. On average, individuals in the 

experiments reduced their electricity consumption by 7.4%. Our results also show that strategies 

providing individualized audits and consulting are comparatively more effective for conservation 

T 
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behavior than strategies that provide historical, peer comparison energy feedback. Interestingly, we find 

that pecuniary feedback and incentives lead to a relative increase in energy usage rather than induce 

conservation. We also find that the effect varies with the rigor of the study, indicating potential 

methodological issues in the current literature. 

 

HIGHLIGHTS 

− We conduct a meta-analysis of information-based energy conservation experiments. 

− We analyze 156 published trials and 524,479 study subjects from 1975 to 2012. 

− On average, individuals in the experiments reduced electricity consumption by 7.4% 

− Individualized feedback via audits and consulting results in the largest reductions. 

− Pecuniary feedback and incentives lead to a relative increase in energy usage 

 

Keywords: energy conservation, meta-analysis, feedback 

 

1.1   Introduction 

The environmental impact of everyday activities is often invisible to consumers. Information 

strategies that aim at correcting this information asymmetry are increasingly common. These include 

ecolabels (Crespi and Marette, 2005 and Leire and Thidell, 2005), and mandatory and voluntary corporate 

disclosure (Khanna, 2001 and Delmas et al., 2010). Information strategies are based on the principle that 

more and better information about the environmental impact of activities will encourage consumers to 

conserve. While theory suggests that information programs may be effective, the empirical evidence 

seems to indicate important differences in effectiveness according to type of information provided and the 

context in which the information is communicated (Delmas and Grant, 2010 and Delmas et al., 2010). 

Electricity conservation has been an especially active context for the deployment of information 

strategies. Energy use accounts for 40% of greenhouse gases across the world and effective conservation 
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programs could contribute to significant environmental improvements. A large number of energy 

conservation experiments have been conducted using various information strategies to reduce energy use 

(Abrahamse et al., 2005, Fischer, 2008 and Vining and Ebreo, 2002). These include providing users with 

savings tips, historical individual usage, real time energy usage, peer usage etc. Yet despite the 

accumulated experimental evidence, analyses of the effectiveness of such strategies have provided mixed 

results. Some researchers claim that more information has little or no effect on energy use (Abrahamse et 

al., 2005), while others estimate that information programs could result in energy use reductions on the 

order of 22 to 30% over the next 5 to 8 years (Laitner et al., 2009 and Gardner and Stern, 2008). 

However, these claims are not backed up by rigorous empirical comparison and include very different 

types of information strategies. 

Information strategies are varied. Pricing information has been widely used to induce individuals to 

save energy (Battalio et al., 1979, Katzev and Johnson, 1984, Nielsen, 1993, Reiss and White, 2008, 

Sexton et al., 1987 and Slavin et al., 1981). Despite the direct financial benefits of saving energy, research 

indicates that providing information about the cost of energy use does not necessarily affect energy use 

behavior among households (Lindén et al., 2006). At the same time, research on the influence of non-

price strategies such as peer comparisons (Katzev and Johnson, 1983, McCalley and Midden, 2002, 

Schultz et al., 2007 and Stern, 1992) has highlighted approaches beyond price information that may drive 

conservation behavior. At this point, an authoritative comparison of price vs. non-price experiments is 

lacking. Comparing these different approaches may shed light on the debate of what best motivates 

energy conservation behavior. 

In this paper, we compare the impact of different types of information strategies on energy use to 

strengthen our understanding of energy conservation information-based strategies. Information strategies 

include savings tips, energy audits, different forms of energy use feedback, and pecuniary strategies. 

Experiments generally use one, or at most two or three of these strategies, leaving open the question of 

how these strategies compare overall. We conduct a meta-analysis of existing field experiments to 
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quantify the effect of information strategies on energy conservation. We focus on experiments trying to 

lower overall consumption (energy conservation) as opposed to shifting usage in time from periods of 

high demand to off-peak periods (load shifting). We limit our study to residential settings. We build a 

dataset of experimental studies within economics, psychology and related fields, incorporating all 

available evidence. We normalize reported effects to reflect mean changes in energy usage between 

control and treatment groups. We find a significant overall effect of information strategies on energy 

savings with a weighted average of 7.4%. Our results also show that strategies providing individualized 

audits and consulting are comparatively more effective for conservation behavior than strategies that 

provide historical, peer comparison energy feedback and pecuniary feedback. This indicates that 

information delivered in person might be more effective than information provided through other media 

such as mail or e-mail. Interestingly, we find that pecuniary feedback tends to lead to a relative increase in 

energy usage rather than induce conservation. We also observe that the effect differ across studies 

depending on the rigor of the methodology used. Indeed the savings are down to 2% for the studies of the 

highest quality that include a control group as well as weather and demographics controls. 

Several authors have provided descriptive reviews of this research area, comparing methods used 

across studies (Abrahamse et al., 2005), discussing factors influencing residential energy conservation 

(Burgess and Nye, 2008 and Steg, 2008), classifying studies by theoretical approach (Fischer, 2008 and 

Vining and Ebreo, 2002), or presenting comparative case studies of residential energy efficiency 

programs in certain geographic areas (Faruqui et al., 2010 and Mullaly, 1998). While providing 

interesting insights, these qualitative reviews do not constitute a firm basis for estimating the average 

treatment effect of behavioral energy conservation programs. Our study is the first to quantify the 

conservation potential of energy conservation information-based strategies and provides insights into the 

relative effectiveness of different strategies, which has important policy implications for the future design 

of such programs. 
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The paper proceeds as follows. In Section 2, we develop hypotheses on the impact of different types 

of information strategies. In Section 3, we describe the data-collection and meta-regression methodology. 

In Section 4 we present the results. In Section 5 we outline steps for advancing methods and theory in this 

field. A conclusion follows. 

 

1.2  Understanding levers for energy conservation behavior 

The failure to engage in energy efficiency can be characterized as a market failure: individuals lack 

the relevant information or knowledge to engage in energy saving behaviors (DeYoung, 2000, 

Hungerford and Volk, 1990 and Schultz, 2002) and acquiring such information is costly. Therefore 

detailed and immediate feedback is a frequently proposed solution to remedy wasteful energy use patterns 

(Van Houwelingen and Van Raaij, 1989). 

We first describe how information about individual energy usage such as historical feedback, and 

real time feedback, as well as information on saving approaches might facilitate conservation behavior. 

While these strategies aim at reducing the cost of acquiring information, they do not touch on the 

potential motivations that might trigger conservation. We then describe the potential effectiveness of 

information strategies based on social norms and pecuniary incentives. 

 

1.2.1 Energy feedback 

Feedback can be described as “the mechanism that directs attention to a specific goal” (McCalley, 

2006). The most common form of feedback informs participants about their own energy usage, often 

drawing comparisons to the past (e.g., Nielsen, 1993 and Winett et al., 1979). Because most individuals 

have low awareness about their energy usage or its impacts (Attari et al, 2010; Kempton and 

Montgomery, 1982; Read et al., 1994), periodical energy use reminders, may render energy usage more 

salient and help trigger conservation activities. In addition, learning about one's own electricity use may 

increase the sense of relevance of taking action to conserve. If individuals perceive their own impact as 
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negligible, they might not behave in a prosocial manner (Larrick and Soll, 2008). Consequently, making 

an individual more aware of his or her own energy usage may contribute to conservation. We therefore 

hypothesize the following: 

 

H1. Information on past energy use will result in reduced energy use. 

 

1.2.2  Information on problem solving strategies 

Another set of information strategies provide participants with energy savings tips (e.g., Schultz et 

al., 2007 and Slavin et al., 1981) or conduct home energy audits (e.g., Nielsen, 1993 and Winett et al., 

1982). Both of these information strategies involve teaching consumers about new behaviors to lower 

their energy consumption. 

The implicit assumption behind the use of information strategies to reduce energy usage is that these 

strategies will result in a higher level of knowledge and therefore enable participants to change their 

behavior (Van Dam et al., 2010 and Ouyang and Hokao, 2009). According to norm activation theory, 

changes in behavior occur when a person is aware of an issue and thinks he can influence it (Fischer, 

2008, Schwartz, 1977 and Vining and Ebreo, 2002). These preconditions to taking action may be 

enhanced if the person receives additional information on how to perform certain activities and on the 

outcomes of these activities. With regard to energy conservation behavior, it is conceivable that learning 

about the impacts of energy usage and receiving conservation tips will lower the barrier to actions. 

Energy savings tips and audits are likely to contribute to both awareness and perceived behavioral control. 

Providing such information in an easily accessible manner lowers the cost of information on conservation 

strategies for the consumer. We therefore formulate the following prediction about the impact of problem 

solving strategies on energy use: 

 

H2.  Information on conservation strategies will result in reduced energy use. 
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Conservation strategies based on energy feedback and information increase individual awareness of 

the problem and of the possibilities to influence the problem. Once individuals have this information, they 

will weigh motives versus the cost of actions. The following information strategies frame the message to 

motivate behavior by focusing on pecuniary incentives or social norms. 

 

1.2.3 Pecuniary strategies 

Pecuniary strategies represent another set of strategies commonly used in conservation behavior 

studies. Lowered energy use results in immediate financial benefits to a household, provided the 

household pays its own electricity bill. Individuals should be expected to take up energy conservation as 

long as the benefits of doing so are larger than the costs. Researchers have pointed out the importance of 

financial incentives and price signals for conserving energy (Hutton and McNeill, 1981). 

Many energy conservation experiments inform participants about the financial expenses and/or 

savings potential associated with their energy usage (e.g., Bittle et al., 1979 and Wilhite and Ling, 1995). 

Some studies include actual price incentives. These may take the form of rewards or rebate payments 

(e.g., Slavin et al., 1981), where participants receive a monetary payment for achieving certain energy 

savings goals. Other studies change the price of electricity (e.g., Sexton et al., 1987), raising for example 

the price per kWh or introducing rate schedules that change with the time of day or demand levels. 

Two recent meta-analysis studies found strong effects of price signals on the timing of electricity 

consumption (Faruqui and Sergici, 2010 and Newsham and Bowker, 2010), demonstrating that price 

signals affect behavior. Furthermore, several studies have shown that electricity demand responds to 

prices, although price-elasticity can be low in the short-term (for an overview see Branch, 1993 and 

Gillingham et al., 2009). 

However, other studies indicate that pecuniary incentives might be counterproductive for energy 

conservation because they might crowd out more altruistic or prosocial motivations (Bénabou and Tirole, 
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2005; Bowles, 2008). Furthermore, pecuniary strategies might not be effective if the monetary incentives 

are negligible. Potential savings from conservation as well as price incentives used in the experiments are 

often small, in order to bear some relation to the actual price of electricity. For instance, a study by Hayes 

and Cone (1977) provided a $3 weekly rebate payment for up to a 20% reduction in energy use. In 

experiments using time of day pricing or critical peak pricing,1 price differences can be more substantial 

(e.g., 1:9 ratio used by Aigner and Lillard (1984), as well as Sexton et al. (1987)). The literature is 

therefore not unanimous about the effectiveness of pecuniary strategies in the current context. Based on 

the above discussion, we test the following hypothesis: 

 

H3. Information on monetary savings will result in reduced energy use. 

 

1.2.4  The power of norms 

Comparative feedback provides comparisons to others (e.g., Alcott, 2011, Kantola et al., 1984 and 

Schultz et al., 2007) and can also be called a motivational strategy, or nudge. Such strategies send non-

price signals to participants that activate intrinsic and extrinsic motivation. Besides comparative feedback, 

motivational strategies also include the use of competitions (e.g., McMakin et al., 2002) and goal-setting 

(e.g., Katzev and Johnson, 1984) where participants are assigned or select non-binding goals over a 

defined period of time. 

Recognizing the importance of social and psychological aspects, a number of studies on energy use 

behavior have made use of comparative feedback (Alcott, 2011 and Schultz et al., 2007). These studies 

illuminate other motivations for changing energy use behavior. In particular, the theory of normative 

conduct points to the importance of social norms in guiding conservation behavior. Norms influence 

behavior by giving cues as to what is appropriate and desirable. The effectiveness of social norms in 

                                                        

1 In time of day pricing, prices follow a daily schedule, rising during high demand times. In critical peak pricing, prices are only raised on days with high load 

forecasts. 
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bringing about conservation behavior is empirically supported by several studies. For example, Hopper 

and Nielsen (1991) find that recruiting neighbors to encourage and remind others in their community 

about recycling significantly increased recycling behavior. In an experiment presenting participants with 

the choice between a conventional, and a green, but inferior product, participants were more likely to 

choose the green product if their choices were publicly visible (Griskevicius et al., 2010). Similarly, 

Nolan et al. (2008) find that comparing individuals to the average energy user was more effective than 

other strategies at reducing energy usage. Overall, behavioral approaches predict that comparative 

feedback strategies making use of social norms will be effective in bringing about changes in behavior. 

We therefore hypothesize the following: 

 

H4. Information on peer consumption will result in reduced energy use. 

 

In our hypotheses, we focus on the most common strategies used in energy conservation 

experiments. In sum, we propose that providing information on past energy use, conservation strategies, 

financial savings and peer consumption will all contribute to increase energy savings. We now turn to a 

description of the methods and data collection, before testing our hypotheses and the comparative 

effectiveness of these strategies. 

 

1.3  Methods 

1.3.1  Data collection 

We used three complementary search strategies to identify relevant field studies for our analysis. 

First, we consulted prior narrative review articles in energy conservation (e.g., Abrahamse et al., 2005, 

Darby, 2006, Fischer, 2008 and Ehrhardt-Martinez et al., 2010). Second, we did a hand search of cited 

papers in these reviews. Third, we searched the following online databases: (1) EconLit, (2) PsychINFO, 

(3) Academic Search Complete, (4) Business Source Complete, (5) JSTOR, (6) GreenFILE, (7) 
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Environmental Sciences and Pollution Management, (8) Social Science Research Network (SSRN), (9) 

GeoRef, (10) Ecology Abstracts, and (11) the NBER database, covering a breadth of disciplines. We 

compiled a list of keywords using a Boolean search with the following logic: (i) terms relating to energy 

or electricity2, e.g., [“energy usage” “energy conservation” “energy demand”], and (ii) terms relating to 

study type or strategy, e.g., [“behavior*,” “feedback,” “information,” “randomized field trial,” “rewards,” 

“incentives,” “smart meter,” “pricing,” “rebates,”] and (iii) terms relating to household or individual level 

as the unit of analysis, e.g., [“household,” “residential,” “dormitories,” “building,” “individual.”] This 

resulted in a list of 6858 scholarly peer-reviewed publications, of which 3,511 were most relevant to our 

topic. We read all article abstracts and eliminated those not relevant to the topic. We developed a coding 

protocol and arrived at a short list of 365 articles, of which 59 were experimental studies used in the meta-

analysis. 

Studies were selected for inclusion on the basis of four criteria. First, as a measure of quality, we 

focused on peer-reviewed publications as well as the NBER database. Second, we selected only those 

studies involving behavioral experiments in electricity usage. Gas or water conservation studies, for 

example, were screened out. Third, only electricity feedback studies at the residential level were selected. 

Fourth, conditional on the above, we only included studies that reported a quantitative treatment effect, 

either in percentage relative to a baseline or in kilowatt hours (kWh) per unit time. Experiments focused 

on the timing of electricity use (e.g. dynamic pricing) were therefore included if they reported 

conservation effects (changes in kWh), but not if they only referenced load effects (changes in kW). 

A number of relevant studies were excluded from the meta-analysis because (1) they did not report 

quantitative effect sizes relative to baseline levels, or (2) they did not use actual energy readings through 

individual metering or other verifiable measurement. Electricity use information based strictly on self-

reported surveys or questionnaires were excluded from this analysis of experimental studies. Upon 

completion of the literature screening process, we obtained 59 unique papers, representing 156 field 
                                                        

2 We use the terms “energy” and “electricity” interchangeably. 
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experiments in 13 countries and 525,479 study subjects and covering the period from 1975 to 2012. 

Appendix 1 lists all included studies and information coded in the meta-analysis. Appendix 2 contains a 

complete listing of scholarly journals. All papers were read and coded by two researchers to assure 

reliable extraction of the effect size and numerical coding of behavioral strategies and of the experimental 

methods used. 

 

1.3.2 Overview of meta-analysis methodology 

Meta-analysis is the art of calibrating and combining statistical evidence from separate studies into a 

single analysis to provide a quantitative, systematic overview of an empirical effect in the literature. The 

goal in meta-analysis is to derive a common summary statistic for the effect size of a study and to derive 

corresponding confidence intervals. Meta-analysis methods have become widely used and cited in the 

economics and management literature (see for example Stanley and Jarrell (1989) Geyskens et al., 2009). 

The techniques for analysis generally result in increased statistical power—roughly equal to the sum of 

individual sample sizes – and can result in improved parameter significance and accuracy relative to 

primary studies alone (see Bijmolt and Pieters, 2001). 

This study uses meta-regression analysis (MRA) to estimate the effects of conservation strategies 

across many behavioral experiments. This advanced meta-analysis method addresses statistical issues of 

heterogeneity (Field, 2001, Lipsey and Wilson, 2001 and Nelson and Kennedy, 2009). Heterogeneity in 

this context occurs when effect sizes in primary studies do not consistently converge to a central 

population mean, which is certainly the case in energy conservation studies with heterogeneous treatment 

effects (see Alcott, 2011 and Costa and Kahn, 2010). A key advantage of meta-regression analysis is the 

ability to model excess heterogeneity in effect size distributions, particularly when combining empirical 

evidence across groups of studies. 
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1.3.3  The meta-regression model 

For the jth study and L number of studies included in the analysis, the reported empirical estimates of 

average treatment effects, bj are regressed on a vector of study-level characteristics Zjk (typically dummy 

or indicator variables) as follows: 

bj = β j + α k ⋅Z jk + ejk=1

K∑   where  j = (1,2,…,L)       (1) 

In equation (1), we adopt standard meta-analytic notation advocated by Stanley and Jarrell (1989). The 

meta-regression coefficients α k  provide an estimate of the biasing effect of K number of moderating 

variables, for example, the incentive type or duration of the study. Positive values of the meta-regression 

coefficients imply a positive bias (increased energy use relative to a control group or baseline) and 

negative values imply a negative bias (decreased energy use relative to a control group or baseline). β j  is 

the ‘true value’ of the treatment effect, net of the biasing effect. It is indexed by j because we allow for 

heterogeneous treatment effects by study. The residual errors are captured in ej . When individual study 

standard errors are known, we normalize expression (1) by dividing each term by the respective primary 

study standard errors (Sb) in order to combine unequal variances and mitigate heteroskedasticity; see 

Stanley and Jarrell (1989) and Roberts and Stanley (2005). In reduced form, we estimate the ‘true’ 

empirical effect of moderating variables as follows: 

t j =
bj
Sbj

=
β j

Sbj
+ α k

Z jk

Sbj
+
uj

Sbjk=1

K∑  where  j = (1,2,…,L)      (2)  

In the absence of publication bias (i.e. the tendency to favor significant or positive results in published 

studies), observed effect sizes should vary randomly around the ‘true’ value and we can empirically 

estimate meta-regression coefficients for our moderating variables of interest directly from equation (2). 

Because most of the standard errors in our data set are missing or not reported in primary studies, we 

take a commonly used approach in meta-regression analysis, that is, to proxy the effect size variance and 

hence the primary study standard errors using a monotonic transformation of the primary study sample 
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size (see Nelson and Kennedy, 2009 and Horowitz and McConnell, 2002). We estimate equation (2) by 

generalized least squares (GLS) and use the square root of the sample sizes as analytical weights. We use 

a more conservative specification by GLS panel clustered by publication ID (as compared with standard 

OLS or simple weighted least squares which tend to downward bias the standard errors) to remove 

heteroskedasticity in the disturbances of the regression model. This offers the advantage of adequately 

capturing variation in the estimated effect, correlation between effect sizes within the same study and any 

unobserved component. Our meta-regression model mitigates known heteroskedasticity, provides 

analytical weights to studies with larger sample sizes, and is less sensitive to estimation bias from small 

sample studies. In this way, we present robust estimates that allow for multiple effect sizes, model excess 

heterogeneity, and differences in precision due to sample size. 

 

1.3.4  Measures 

1.3.4.1 Dependent variable 

Our dependent variable is the reported “effect size” in percentage units. This is a normalized measure 

across all studies and is defined as the percent change in the treatment group minus the percent change in 

the control group. Effect sizes can take on both positive and negative values. A negative effect size 

estimate implies energy savings (conservation) relative to a control group or baseline, whereas a positive 

effect size estimate implies energy increases relative to a control group or other baseline. 

 

1.3.4.2 Independent variables 

We model the effect sizes as a function of study characteristics falling into one of three classes (i) 

feedback on energy usage feedback and problem solving strategies, (ii) pecuniary strategies, (iii) 

normative feedback, and (iv) study-level controls, such as weather or demographics. We code these 

behavioral strategies as dummy variables, taking the value of 1 if the strategy was applied and 0 

otherwise. 
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Energy feedback studies employ Usage Feedback: this means participants receive information about 

their own energy use as a self-comparison to their prior energy use (within subject comparison). We also 

test whether more specific feedback is helpful, by including a variable called Real-time: participants can 

access energy use information updated at frequencies greater than once per hour. Conservation strategies 

are measured by two variables, (1) Energy Saving Tips: participants receive information on how to save 

energy (leaflets, alerts or prompts) and (2) Audits and Consulting: participants receive in person advice on 

how to conserve energy or receive visits by technical personnel for home energy audits and consulting. 

Pecuniary information strategies include: Monetary Savings Information: participants receive 

information about financial impacts or potential monetary savings from actions to conserve energy. This 

also includes information about available incentive programs (utility rewards, rebates, tax credits, etc.) 

but does not involve direct financial transfers; Monetary Incentives: participants are involved in direct 

monetary incentives like rebates, cash rewards and/or tiered pricing or dynamic pricing. Participants can 

also receive other monetary incentives for conserving energy or achieving certain consumption targets. 

Finally, the social norm strategy is presented as the variable Comparative Feedback: participants 

receive information about their own energy use in comparison with others such as their neighbor(s) or 

community. 

Study-level controls include the following variables: Control Group indicates whether the study 

includes a control group as a measure of baseline consumption or treatment counterfactual. When a study 

does not contain an in-situ or blind control group, the value of this variable is set to zero. Weather 

Controls indicates if the study adjusts for the effects of weather, for example, using heating and cooling 

degree-days. The lack of weather controls are known to over- or under- estimate the impacts of 

conservation efforts, depending on the season. Demographic Controls specifies if the study adjusts for 

internal characteristics of the population such as income, education, etc. Feedback Duration identifies the 

time period for the behavioral treatment, measured in months. 
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1.4   Results 

1.4.1 Descriptive Statistics 

Table 1 presents the means, standard deviations and percentages of all observations and Table 2 

presents the correlations. We see that in general, the effect sizes are not strongly correlated with treatment 

categories presented in Table 2. This is reasonable and to be expected, given that treatment selection is 

typically randomized. Among the more significant correlations presented in Table 2, we observe that 

monetary savings information is strongly correlated with both individual and social comparison feedback 

strategies. Feedback strategies in conservation studies are often combined with residential billing data, 

which includes cost savings information as a combined treatment. In Table 4, we quantify the separate 

effects of these interventions with meta-regression technique. 

Our results indicate that quantitative feedback studies in energy conservation date back to at least the 

mid-1970s (Winett and Nietzel, 1975) with usage feedback representing 75.6% of all experimental 

observations and 76.9% of the papers. While direct feedback studies are far more common in this 

literature, the use of comparative feedback in energy conservation dates back to the early 1980s (Midden 

et al., 1983) but remained largely dormant as a behavioral treatment until rediscovered in the late 2000s, 

following an influential paper by Schultz et al. (2007)—whose insights from behavioral psychology 

demonstrated the potential of comparative feedback in residential electricity experiments. Since then, a 

number of larger studies have recently emerged that use comparative feedback or “social norms” to 

motivate household conservation (see for example, Alcott, 2011). In Table 1, we see that these 

comparative feedback studies now represent approximately 1/5 of all entries (23.7% of the observations 

and 20% of papers). Real-time feedback is still relatively rare and was used in only 22% of studies, for 

12.2% of observations. Other incentives tested include strategies such as energy savings tips (72.4% of 

observations and 63.1% of papers) and audits and consulting (8.3% of observations and 6.2% of papers). 
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Table 1  Descriptive Statistics 

Study Characteristic Field 
Observations Mean Std. 

Dev Min Max Percent of 
Observations 

Percent of 
Papers 

Weighted 
Average 
treatment 

effect 
Dependent Variable 
 Effect Size 

(Percent)  156 -7.441 10.02 -55.0 18.8 - - -7.4% 

Independent Variables 
Individual Usage 
Feedback 156 0.7564 0.43 0 1 75.6% 76.9% -8.5% 

 Energy Saving 
Tips 156 0.7243 0.45 0 1 72.4% 63.1% -9.6% 

 Real time 
Feedback 156 0.1217 0.33 0 1 12.2% 22.0% -11.0% 

 Audits and 
Consulting 156 0.0833 0.28 0 1 8.3% 6.2% -13.5% 

 Monetary Savings 
Info 156 0.3012 0.46 0 1 30.1% 26.2% -7.7% 

 Monetary 
Incentives 156 0.2179 0.22 0 1 21.8% 27.7% -5.7% 

 Social 
Comparisons 156 0.2371 0.42 0 1 23.7% 20.0% -11.5% 

Study Level Controls 
 Control Group 156 0.7115 0.45 0 1 71.1% 61.5% - 
 Weather 156 0.3141 0.46 0 1 31.4% 24.6% - 
 Demographics 156 0.1795 0.38 0 1 17.9% 15.4% - 
 Treatment Duration 

(months) 156 7.6872 12.53 0.3 60 100% 100% - 

 

 
Table 2 Correlations 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
(1) Effect Size (Percent) 1.00            
(2) Energy Saving Tips 0.00 1.00           
(3) Audits and Consulting -0.10 0.13 1.00          
(4) Monetary Savings Info 0.16* 0.00 -0.05 1.00         
(5) Monetary Incentives 0.12 -0.09 0.01 -0.08 1.00        
(6) Individual Usage Feedback 0.12 -0.08 -0.05 0.34* 0.08 1.00       
(7) Social Comparison Feedback 0.12 0.11 -0.17* 0.46* -0.26* 0.32* 1.00      
(8) Real Time Feedback -0.07 -0.38* -0.11 -0.03 -0.01 0.21* 0.07 1.00     
(9) Control Group -0.09 -0.20* -0.12 0.05 -0.32* -0.26* 0.09 0.02 1.00    
(10) Weather Control 0.12 0.05 -0.15* 0.31* 0.11 0.13 0.3* -0.13 -0.03 1.00   
(11) Demographic Control 0.22* 0.06 -0.14 0.42* -0.04 0.23* 0.49* -0.02 0.15 0.55* 1.00       
(12) Treatment Duration 0.18* -0.12 0.24* 0.28* 0.29* 0.03 -0.05 0.00 -0.18* -0.08 0.04 1.00 

 
N = 156 field observations 
* p <0.05 
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Price information and incentives are also directly tested. From Table 1, we see that monetary savings 

information represent 30.1% of observations and 26.2% of papers; monetary incentives (rebates, cash 

rewards and tiered pricing) represent 21.8% of observations and 27.7% of papers. These publications 

generally fall into one of two categories: (1) small-scale behavioral field experiments, typically 

psychology, building science or engineering, or (2) utility-scale conservation pilot projects, typically 

economics and related fields. Our sample also distinguishes between monetary incentives and monetary 

savings information, as we see no significant correlation between these two strategies in Table 2. 

 

1.4.2 Average treatment effect 

Across all studies (Table 3), we find the weighted average treatment effect to be −7.44%. A typical 

behavioral study, on average, will produce more than 7% savings potential, although the range can span 

significantly from −55% to +18.5%, depending on the study. These numbers are the most comprehensive 

field experimental figures to date. Interestingly, the average treatment effect differs between more and 

less methodologically rigorous studies. A savings effect of 1.99% is found for high quality studies that 

include statistical controls such as weather, demographics, and – most importantly – a control group. In 

contrast, lower quality studies without such statistical controls find a savings effect of 9.57%. This 

suggests that savings effects may be overestimated in some of these studies. 

We also calculated weighted average treatment effects for each type of treatment (Table 1). On 

average, field studies using energy audits saw the highest average energy savings, at 13.5%, followed by 

social comparisons, at 11.5% savings. 
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Table 3. Summary of Treatment Effects 

Description 
Field  

Observations 
Mean  
(%) 

St. Dev. Min Max 

All experimental studies 1975-2012 
(unweighted) 
 

156 -7.44 10.0 -55.0 18.5 

High quality studies with statistical 
controls 
(weather, demographics, and control 
group) 
 

22 -1.99 1.1 -5.0 5.5 

Lower quality studies without 
statistical controls (weather, 
demographics or control group) 

75 -9.57 12.1 -55.0 8.18 

 
 

 

Fig. 1 shows a funnel plot of the primary study treatment effect against a measure of sample size. 

While a large number of effect size observations are negative, implying energy savings, there is also a 

considerable number of non-negative experimental effect sizes reported. In Fig. 1, we see a high degree of 

symmetry (no major truncation about the vertical axis) in our group of studies, which suggests that 

publication bias is likely not a significant issue in this literature. More generally, we observe strong 

evidence for heterogeneous responses to behavioral treatments, consistent with prior literature (see Costa 

and Kahn, 2010 and Freedman, 2006). 

In Fig. 2, we plot the reported experimental effect sizes by publication year. Fig. 2 shows little 

convergence across effect size over the years, suggesting that the field has not converged on optimal 

strategies. 
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Figure 1. Funnel plot of conservation effect size vs. sample size 

 

 

Figure 2. Effect size by publication year 
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1.4.3  Outcomes of different strategies 

 Table 4 summarizes the results of the meta-regression model for the different types of behavioral 

strategies.  

Table 4. Meta-regression results 

  (1) (2) (3) (4) (5) (6) 

Study Characteristic  
Controls only Individual 

Feedback 
Conservation 

Strategies 
Monetary 

Information 
Comparative 

Feedback 
Full 

Model 

Experimental Treatment             
     Energy Use Feedback       
          Individual Usage Feedback 

 
1.858** 

  
2.384*** 1.346 

  
(0.796) 

  
(0.787) (1.000) 

          Real-time Feedback 
 

-2.849*** 
  

-2.197*** -1.175 

  
(0.555) 

  
(0.743) (1.205) 

     Conservation Strategies       
          Energy Saving Tips 

 
 1.695** 

 
 1.547 

  
 (0.781) 

 
 (1.109) 

          Audits and Consulting 
 

 -5.124*** 
 

 -5.678*** 

  
 (1.364) 

 
 (1.609) 

     Monetary Information       
          Monetary Savings  

 
 

 
2.225***  -0.067 

  
 

 
(0.521)  (0.991) 

          Monetary Incentives 
 

 
 

2.189***  2.174** 

  
 

 
(0.435)  (1.028) 

   Peer Consumption Feedback     0.262 0.617 
     (0.940) (1.374) 
Study-Level Controls       
     Control Group -1.950*** -2.028** -1.369* -1.340*** -1.227* -0.034 

 
(0.735) (0.827) (0.792) (0.460) (0.735) (1.144) 

     Weather Controls -0.125 -0.756 -1.008 -0.900* -0.882 -2.025*** 

 
(0.668) (0.683) (0.700) (0.471) (0.653) (0.728) 

     Demographic Controls 7.306*** 7.294*** 6.766*** 6.633*** 6.207*** 5.833*** 

 
(0.662) (0.804) (0.717) (0.484) (1.056) (1.236) 

     Treatment Duration 0.059** 0.023 0.149*** 0.011 0.016 0.120*** 

 
(0.029) (0.032) (0.031) (0.019) (0.035) (0.044) 

Constant -8.130*** -8.531*** -9.596*** -9.007*** -9.191*** 
-
10.899*** 

 
(0.718) (1.142) (1.115) (0.188) (1.024) (2.094) 

       
Number of Observations 156 156 156 156 156 156 
Number of Publications 58 58 58 58 58 58 
Wald chi-square 199.6 759.6 177.0 1446 276.5 146.5 

 Estimation by Generalized Least Squares (GLS) with inverse square root of the sample size as analytical weights. 
Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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In Model 1, we include controls relating to study design. These include Control Group, Weather, 

Demographics, and Treatment Duration. All of these, except for weather, are significant across 

specifications. For studies with dedicated control groups, we find a negative bias ranging between 1 and 

2% in specifications 1–5. This negative control group bias suggests that higher quality studies with 

control groups in the study design are more likely to report treatment effects as energy savings. We find 

that studies without demographic controls over-estimate energy savings between 5.8 and 7.3%. This result 

is consistent with the view that demographic characteristics are important statistical controls to include 

with randomly sampled experimental populations. In terms of treatment duration, for each additional 

month of treatment, there is a small, but significant increase in energy usage in both the simple and full 

models in Table 4. 

This finding indicates that the effect of information programs may be subject to attrition over time, 

and the dynamic effects of repeated interventions over time merits further investigation. Close to 60% of 

the field studies in our sample lasted for three months or less, suggesting that studies of longer duration 

are needed to understand durability of treatment effects during experimental periods, and persistence, 

whether information effects disappear over time. 

In Model 2, we test the effects of informational feedback: individual feedback about past usage and 

real-time feedback, controlling for various study level characteristics. Both types of feedback are 

significant. Interestingly, energy usage increased relative to the control group for studies employing 

individual feedback strategies. By contrast, conditional on providing information, real-time feedback 

drives significant energy savings. However, in combination with all other interventions, the effects of 

feedback are no longer significant in the full specification (Model 6), which combines statistical evidence 

with other interventions. This is an interesting finding, because it suggests that informational feedback 

alone (e.g., for example, via smart metering) may be a necessary but not a sufficient condition to produce 

conservation. 
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In Model 3, we test information strategies further by examining the effect of ‘Energy Saving Tips’ a 

relatively low involvement strategy and ‘Audits and Consulting,’ a relatively high involvement strategy. 

Controlling for additional study characteristics, we see that these education strategies are both significant 

in specification 3, but work in opposing directions. These results demonstrate the powerful role of 

information in motivating energy conservation and provide insight into whether experiments can 

stimulate learning effects to encourage conservation. As it turns out, low involvement information-based 

strategies, i.e. energy saving tips, are not effective at reducing energy use, while high involvement 

information strategies, i.e. home energy audits and consulting, do support our hypothesis that non-price, 

information strategies can lead to favorable energy use reductions. While most energy savings tips are 

provided either in billing or website data, these results suggest that simply providing energy saving tips 

does not sufficiently motivate subjects to conserve. 

For the pecuniary strategies (Model 4), we find ‘Monetary Savings Information’ or in other words, 

providing information about potential cost savings, to be significant predictors of energy use behavior, 

although the effect is opposite to what is predicted by theory. Controlling for major study characteristics, 

monetary savings information alone did not induce conservation outcomes among study participants but 

in fact increased usage. However, the significant effect vanishes in the full model (Model 6). Similarly, 

‘Monetary Incentives’ in energy feedback studies, which include rebates, tiered pricing and/or cash 

rewards is consistently positive and significant in Model 4 and in the full model (Model 6) which includes 

monetary savings in addition to other experimental treatments. There are several plausible explanations 

for this empirical finding. One reason for an increase in consumption in response to savings information 

is that people might simply ignore the potential savings, or that the actual savings might be too small to 

be meaningful especially given the low price elasticity of electricity use in the short term (Lijesen, 2007 

and Reiss and White, 2008) and the small contribution of electricity cost to household expenses. 

We also test the effect of comparative or normative feedback strategies in Model 5. Although studies 

using comparative feedback had the second highest average treatment effect of all strategies (Table 1), the 
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variable is not significant in the full specification. Note, however, that our analysis places analytical 

weights on experimental studies with larger study sample sizes (weighted by square root of the sample 

size). As Fig. 1 demonstrates, there is a difference in sampling distribution between studies that use 

individual feedback and those that use comparative feedback. With very few exceptions, studies using 

social comparisons have smaller sample sizes. This suggests that further, larger scale studies using 

comparative feedback are needed to evaluate behavioral effects at scale. 

 

1.5  Discussion 

Our study presents the first quantitative comparison of different information strategies used in 

studies targeted at energy conversation. At most, individual field experiments reported in the literature 

compare up to three of the six different strategies evaluated in this article. Our meta-analysis allows for a 

more expansive comparison, because it accounts for differences in strategies across many field 

experiments. We test some specific predictions about the effectiveness of information with and without 

financial incentives finding that neither the low-level information strategies (energy saving tips), nor the 

two feedback strategies (individual usage feedback; comparative feedback) lead to additional energy 

savings. It is only when information is given in real-time (real time feedback) or includes higher 

involvement interventions (e.g., home energy audits) that energy conservation is triggered over the span 

of monitored experimental periods. 

In addition, study participants actually increased their energy usage when provided information on 

monetary savings or monetary incentives (payments or rate changes). One potential explanation for these 

increases is the so-called “licensing effect” where participants may learn that their expenditures and/or 

potential savings are small, and they may feel entitled to benefits from energy use because they are paying 

for it. Overall, the strong focus of current policies on providing additional pricing information is not 

necessarily warranted based on our study. Rather, it indicates that non-price triggers for behavior change 

also merit consideration when building future conservation programs. 
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Although much prior research on energy conservation behavior has focused on pecuniary aspects, 

one limitation of this approach is that financial benefits from saving energy are often quite small (Wolak, 

2011). The average monthly residential electricity bill is $110 (EIA, 2010), so saving 5% energy 

translates to little more than $5 saved per month. This provides little incentive to conservation behavior 

given the potential impact on comfort or convenience. Furthermore, a rational actor model of electricity 

use behaviors, where individuals are utility maximizing and are primarily motivated by self-interest, 

neglects the pro-social behaviors that people often engage in Penner et al. (2005), Verplanken and 

Holland (2002). Providing financial incentives may crowd out such prosocial motivation (Bénabou and 

Tirole, 2005) and this could in fact explain the observed increase energy usage in over thirty years of 

experimental field studies dating back to the 1970s. Bowles (2008) describes several conditions under 

which explicit financial incentives may be counterproductive, because self-interest and prosocial motives 

are not separable, but interact. According to him when incentives were framed as a transaction in terms of 

a market exchange, they “all but extinguished the subjects’ ethical predispositions,” without succeeding to 

“enforce the social optimum.” Incentives may also evoke control aversion in individuals, who react 

exactly opposite to the incentives’ intent (see also: reactance theory, Brehm, 1966). Overall, 

psychological perspectives on incentives predict that financial incentives are effective only under specific 

circumstances, and sometimes can be counterproductive. 

Comparative feedback in the form of norms did not prove to be a significant driver of conservation 

behavior. As we indicated, one possibility for this finding might be the smaller size of the majority of the 

studies using this information strategy. Another possibility might be the delivery of the comparative 

feedback. For example, it is possible that comparative feedback is more effective when delivered in real 

time but no study in our sample includes real time comparative feedback. Variation in the type of metrics 

or comparison group might also be important. For example, a recent study found that privately disclosed 

information about a consumer own (relative) energy use was less effective than when such information 
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was publicly disclosed (Delmas and Lessem, 2012), allowing conservation to act as a signal of “green” 

virtue. 

Finally, the study provides insights into methodological challenges prevalent in this field. Many of 

the reviewed studies suffer from methodological problems. They involve small samples (e.g., Gronhoj 

and Thogersen, 2011 and Ueno et al., 2006), short time periods (e.g. Petersen et al. (2007)), and low level 

of granularity (i.e. providing overall electricity usage without appliance level information, see for 

example Alcott, 2011, Becker et al., 2010 and Wolak, 2011). A surprisingly large number of studies do 

not have control groups or do not take baseline measurements prior to reporting changes in consumption. 

Additionally, many studies also do not account for the impacts of weather characteristics over time or 

demographics, jeopardizing the reliability of estimates. The estimation methods themselves could also be 

improved, by adopting more rigorous statistical approaches for time series analysis that can include de-

seasonalizing trends in the data or employing difference-in-difference estimation. While we controlled for 

these methodological factors in the meta-analysis to the best of our ability, future studies in this field 

should pay careful attention to these aspects to contribute to building a more solid basis of experimental 

evidence. 

Based on our finding, the minimum recommended set of controls for experimental field studies 

should include: 

 

• Dedicated control group, where subjects are monitored in-situ, but receive no treatment 

• Weather controls (i.e. heating and cooling degree days or hours (see Day and Karayiannis, 

1998) 

• Demographic and household level controls 

• Randomization (or pseudo-randomization for opt-in studies) 
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Randomization appears to be well understood in this literature, so the fourth item is less of an issue 

in the experimental literature. However, the set of all controls above is non-obvious and forms the basis of 

methodological issues uncovered in this review, as very few studies incorporate all of the above elements 

in the experimental research design. 

The present study is limited in several regards. As mentioned above, the methodological 

shortcomings of the included case studies cast some doubt on the reliability of the reported effect sizes. A 

second limitation of this study is that strategies can differ in additional characteristics that are not tested in 

this study. For example, conservation strategies may have different levels of intensity. Participating in an 

energy audit requires greater involvement and time commitment than reading a tip sheet on how to 

conserve electricity. Studies also differ in the tailoring of the information given. Strategies can be generic 

(e.g., generalized energy savings tips) or tailored to the participant (e.g., appliance-specific energy-use 

feedback). For example, audits are custom-tailored to the particular needs of the participant. Finally, the 

comparison of individual information strategies suffers from confounding effects. There are very few 

studies that apply only one strategy per experimental group, making it difficult to identify the additional 

variability explained by a single strategy. 

 

1.6   Conclusion 

In this article, we provide a comparison of the quantitative evidence on behavioral strategies 

targeting energy usage across various literatures in behavioral psychology, economics and related fields. 

This study represents the most comprehensive review of experimental energy conservation studies to date. 

We find an overall treatment effect of 7.4% energy conservation across all experimental studies. Based on 

these results, we conclude that despite heterogeneous treatment effects, non-monetary, information-based 

strategies can be effective at reducing overall energy usage in controlled experimental studies. This is an 

important finding, because it suggests that information and education programs targeting conservation 

through behavioral change should be considered alongside with efforts to reduce energy consumption 
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through technological improvements. As the advent of new technologies such as smart meters reduces the 

cost of feedback and increases the quality and reliability of information provided, policy makers would be 

well-served to shift some means to these high-impact, relatively low-cost information programs, which 

can result in real savings. 

While this meta-analysis suggests that information strategies induce energy conservation, it is less 

clear which strategies work best, in part because many experiments simultaneously use more than one 

strategy leading to confounding issues and also because of the lack of methodological sophistication of 

some of the studies. To better identify the winning strategies, additional experiments are needed. Such 

experiments should learn from the previous literature by following a few guiding principles with regard to 

the methodological rigor. Sound experiments in energy conservation should use dedicated control groups, 

take sufficient baseline measurements and control for weather and demographic characteristics. It is also 

advisable to isolate individual strategies to assess their added value. The field could also benefit from 

studies of longer duration and larger sample size. With the continuing deployment of smart meters across 

the world, there are new and exciting opportunities to test information-based strategies for energy 

conservation. Providing information to encourage energy savings has enormous potential, but it is critical 

to carry out this research in a more methodologically rigorous manner.  
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II 

NONPRICE INCENTIVES AND ENERGY CONSERVATION 
 

n this chapter, we investigate the effectiveness of nonprice information strategies to motivate 

conservation behavior. We introduce environment and health-based messaging as a behavioral 

strategy to reduce energy use in the home and promote energy conservation. In a randomized controlled 

trial with real-time appliance-level energy metering, we find that environment and health-based 

information strategies, which communicate the environmental and public health externalities of electricity 

production, such as pounds of pollutants, childhood asthma, and cancer, outperform monetary savings 

information to drive behavioral change in the home. Environment and health-based information 

treatments motivated 8% energy savings versus control and were particularly effective on families with 

children, who achieved up to 19% energy savings. Our results are based on a panel of 3.4 million hourly 

appliance-level kilowatt–hour observations for 118 residences over 8 months. We discuss the relative 

impacts of both cost-savings information and environmental health messaging strategies with residential 

consumers. 

 

 Keywords: Energy conservation, decision-making, health information disclosure, environmental 
behavior, randomized controlled trials 
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2.1   Introduction 

In the electricity sector, energy conservation through technological and behavioral change is 

estimated to have a savings potential of 123 million metric tons of carbon per year, which represents 20% 

of US household direct emissions (1). Although some scholars contend that improvements in energy 

generation technologies offer the greatest potential for carbon emission reductions (2), others argue that 

household-level behavioral changes can also produce significant and immediate emission reductions (1). 

In residential electricity markets, however, promoting conservation through behavior change is 

particularly challenging. Traditional economic incentives for household energy conservation are typically 

small and subject to problems of inattention or imperfect information, which economists often classify as 

information or market failures (3–7). Tailored information strategies could solve problems of imperfect 

information in markets—by disclosing the unobserved costs of individual consumption decisions to 

consumers (8). However, because electricity demand is relatively price inelastic (9), nonprice information 

strategies using normative, intrinsic, or social motivations might prove effective alternatives (10, 11). In 

this article, we compare the effectiveness of environmental and health information disclosures on 

residential energy consumption to more traditional cost-based information strategies. 

Public environmental and health damages from energy generation, which include premature 

mortality and morbidity (such as cancer, chronic bronchitis, asthma, and other respiratory diseases), have 

not traditionally been the focus of energy conservation policies. However, decades of research on 

environment and health effects of air pollution have shown electricity generation to be one of the most 

important sources of pollution and with recognized impacts on global health such as childhood asthma 

and cancer. Since the 1990s, prospective cohort studies, time-series studies, and rigorous epidemiological 

data have provided strong causal evidence of the associated health effects of ambient air pollution (12). 

These include both “somatic effects”—for example, those occurring in the persons exposed—along with 

“genetic effects”—those occurring in at-risk populations (12). Global health damages are by far the most 

prominent externalities, primarily due to air pollution from coal and natural gas, which constitute a 
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majority of the current energy system. Health damage estimates already exceed $120 billion in 2005 US 

dollars (13), with electricity price structures that do not necessarily reflect these costs.  

 

2.2   Health externalities: a missing link in consumer choice 

The link between individual electricity use and the resulting impacts on human health (via energy-

related industrial emissions) remains elusive for most consumers. Household electricity use is typically 

“invisible,” meaning consumers have limited information about the external effects of their individual 

electricity consumption. In this article, we investigate whether information about the environmental health 

effects of energy consumption could impact conservation behavior. 

Behavioral theory suggests that disclosing environment and health-based externalities to consumers 

can be effective at shifting conservation preferences and reducing the perceived costs and/or moral 

benefits of individual consumption (14). Prior literature also points to important differences in the 

effectiveness of environmental cues, according to the type of information provided and the context in 

which the information is communicated (15–17). In the context of energy consumption, we argue that 

policies that correct information asymmetries between individual consumption and pollution externalities 

can encourage conservation by reframing and creating new mental accounts on the perceived costs and 

benefits of household actions to conserve energy. In pursuing tailored information disclosures related to 

environment and health externalities, we examine whether moral norms and moral choice can affect how 

individual consumption decisions are made and subsequently evaluated by consumers. 

There is a rich literature on the importance of moral payoffs and moral norms on household 

consumption decisions. Research in psychology (18–23), economics (24–27), marketing (28–30), 

sociology (31–34), philosophy (35, 36), and neuroscience (37, 38) has shown that normative strategies 

can motivate human behavior in the interests of the long-term benefits of the social group rather than the 

short-term, self-interested behavior of one person. Learning that one’s marginal consumption imposes 

social costs on others can lead to different moral sensitivities to external health damages. However, moral 
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sensitivity to reducing harm in others is to be distinguished from purely altruistic motivations such as in 

philanthropy or charitable giving, as the benefits of individual conservation actions bestow not only social 

benefits onto others but also private benefits on the individual (i.e., lower costs, reduced pollution, cleaner 

air, etc.). 

We consider two psychology-based mechanisms: The first is amplification of prosocial conservation 

preferences that is motivated by a need to reduce harm on others (or activate behavior that aids others); 

the second is amplification of private benefits from reduced marginal consumption, which also provide 

private benefits to the individual (e.g., fewer emissions leading to known health damages). This 

amplification strategy serves dual purposes and could apply equally to populations with greater 

sensitivities to the greater good and to those households who also stand to gain from cleaner air and the 

reduction of health externalities, which could represent a broad segment of the population. Particular 

examples of such study subjects could be urban communities and, in particular, affected populations such 

as the elderly or families with children. Targeting urban communities and families with children, we test 

the effectiveness of environment/health-related social messaging on household energy conservation in a 

real market setting. 

 

2.3   Experimental evidence 

 A large number of energy conservation studies have been conducted using various information 

strategies to reduce energy use (10, 39–45). These studies provide users with energy-saving tips, 

historical individual use, real-time energy use, and peer use, including social comparisons. Despite a 

growing body of literature on nonprice strategies with tailored information campaigns, researchers have 

not yet tested the effectiveness of consumer information disclosures based on environment and health 

externalities (45). Therefore, the empirical evidence of moralized consumer choice using environmental 

health cues remains as yet largely undetermined. Expanding the ensemble of large-scale behavioral 

strategies, we present experimental field evidence with residential electricity customers in a major US 
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city. We demonstrate that nonprice-based environment and health messaging can have substantial and 

economically meaningful reductions in demand at the household level. Our central contribution is to test 

the role of information disclosure about environment and health damages as a new class of nonprice 

strategies for household energy conservation.  

 

2.4   Measuring conservation behavior 

In the energy conservation context, prior field studies have been limited in their ability to measure 

high frequency behavior and to provide residents with timely feedback about their electricity use. Prior 

studies often use data obtained from long or infrequent residential billing cycles, indirectly using energy 

modeling techniques or self-reported surveys about intentions to conserve. More generally, the lack of 

appliance-level energy metering data in US households and businesses has been a long-standing problem 

for modeling and understanding consumer behavior in residential and commercial buildings (46). In the 

current study, new technology developments allow us to observe kilowatt–hour (kWh) electricity 

behavior in real time, at the appliance level (47). A kWh is the most common unit of electricity used by 

electric utilities in residential and commercial billing. 

Behavioral experiments in energy research are now transitioning from small-scale laboratory 

experiments to large-scale field studies (48–50), with randomized controlled trials (RCTs) emerging as a 

powerful approach for policy evaluation of information treatments. RCTs enhance the credibility of 

findings by modeling actual consumer behavior at scale and, under realistic settings, often in contrast to 

controlled laboratory studies. However, RCTs are usually more costly to conduct versus non- 

experimental observational studies. This is because archival data are often cheaper per unit of 

observation, so it is possible to have more observations for the same unit cost over a broader setting or 

population than might be available in a RCT, particularly in cases when there are limits to sampling, 

measurement error, or treatment imbalance. For a discussion of strengths and limitations of RCT, see refs. 

51 and 52. Sound inference comes from triangulating multiple sources of evidence. This is why we 
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combine RCTs with survey data, not only to provide richer evidence of the effects of a treatment before 

and after an intervention but also as a way to optimize the treatment itself. In the current study, we 

conduct a high-frequency, high time-resolution RCT study at a multiple-building, family apartment 

residential field site. We observe consumer behavioral responses to information treatments in real time 

with appliance-level metering capabilities not previously available. We integrate a behavioral science-

based consumer messaging strategy, which connects the causal chain between energy use and associated 

environment and health consequences at the individual household level. 

Our sample consists of Los Angeles Department of Water and Power (LADWP) customers who pay 

their electricity bills, and our experimental results represent outcomes of real-life consumption decisions 

in their natural settings. Our field experimental site, University Village, is a large family housing 

community in Los Angeles with 1,102 units. On a per capita electricity basis, University Village residents 

are typical of California multifamily renter populations (SI Appendix, Table S12) and are only slightly 

below the national average (due to the milder climate in the State of California). (For more information on 

the characteristics of our sample, please see SI Appendix.) Our 118 participating households consist of 

single, married, and domestically partnered graduate college students with and without children in the 

home. Residents are younger and more educated than the US population but are typical of users of 

information devices. Our target population represents the next generation of homeowners who are used to 

working with mobile electronic devices and increasingly rely on electronic communications in their 

consumption habits. Thus, our experimental results are indicative of how future residential electricity 

consumers can respond to high-frequency information, especially as electric utilities begin using smart 

metering data with information and communication technologies. 

Building an intelligent, wireless sensor network, we gave consumers real-time access to detailed, 

appliance-level information about their home electricity consumption. Our results are based on a panel of 

440,059 hourly kWh observations (or 3.43 million underlying appliance-level kWh observations) for 118 

residences over a time span of 8 months. We also conducted the analysis at higher frequency toward the 
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limit of the technology (metering and data processing) at 1/30 Hz—for example, one reading every 30 s—

to evaluate the optimal span of inference. Our optimal unit of observation in this study is hourly, which 

balances several competing requirements and considerations, not the least of which are the span of 

decision making for conservation behavior, the technical capabilities of the metering equipment, the 

precision of the estimates, computational burdens, and other practical considerations. We provided treated 

households with high-resolution information about costs (weekly cost estimates as opposed to monthly 

billing) or environmental and health impacts (weekly emissions and listing of particular health 

consequences; e.g., childhood asthma and cancer).  

Informational messages were delivered via a specialized, consumer-friendly website with monitored 

page views and analytics and weekly accessible emails by personal computer and portable electronic 

devices (SI Appendix, Fig. S1). Information feedback was specific to each consumer. Once randomly 

assigned to receive either cost savings or environment- and health-related information, households could 

not cross over between treatments. Building on previous literature and to provide all treated households 

with a reference point for their consumption, we compared our participants to the top 10% most energy 

efficient-similar neighbors in the complex. (Households were provided with factual evidence-based 

numbers that depended on their weekly kWh electricity consumption. Equivalent cost savings were 

calculated using household consumption data and the published LADWP electric rate schedules for 

residential customers. LADWP is the nation’s largest public utility. Equivalent non–base-load emissions 

were calculated using emission factors from the Emissions & Generation Resource Integrated Database 

maintained by the US Environmental Protection Agency.) After a 6-month baseline monitoring period, 

the treatment period was ∼100 d, which is the typical duration of an information campaign during peak 

summer or winter months. Our treatment period is also greater than 60% of comparable studies from 1975 

to 2012 (45).  
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Fig. 1. Effects of informational messages on study households (N = 490,994 hourly kWh observations, 118 
apartments by random assignment into treatment and control groups). Mean treatment effects are reported versus 
control households before and after treatment following a 6-mo baseline monitoring period. The cost savings 
information group shows no significant conservation behavior after the 100-d treatment period. The health group 
shows significant conservation behavior of 8.2% energy savings (significant at **P < 0.05) after the 100-d 
experimental period. Health-related information treatments are particularly effective on families with children, 
achieving 19% energy savings relative to control (significant at **P < 0.05). All panel regression estimates include 
statistical controls for household characteristics (apartment size, apartment layout, and building floor), occupancy 
(number of persons living in the household), hourly weather controls (e.g., heating and cooling degree hours), time 
fixed effects, and environmentalist ideology (head of household reports being an active member of an environmental 
organization). Materials and methods are available in SI Appendix.  
 

 

2.5  Results and discussion 

We find that health and environment messages, which communicate the public health externalities of 

electricity production such as childhood asthma and cancer, outperform monetary savings information as 

a driver of behavioral change in the home. Participants who received messages emphasizing air pollution 
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and health impacts associated with energy use reduced their consumption by 8.2% over the 100-d 

experimental monitoring period versus control (Fig. 1 and SI Appendix, Table S4, column 1). These net 

energy savings, which invoke considerations of health damages as a psychological mechanism, are at the 

high end of prior nonprice strategies using social comparisons (39, 40). To give a practical sense for what 

these savings mean for a typical two-bedroom family apartment, an 8% conservation effect would be 

equivalent to plugging out a laptop computer for an additional 87 h/wk, plugging out a flat-screen TV for 

an additional 36 h/wk, or turning off one standard 60-W light bulb for an additional 72 h/wk. [For these 

equivalencies, we used nameplate wattages for typical household consumer appliances compiled by the 

US Department of Energy (available at http:// energy.gov/energysaver/articles/estimating-appliance-and-

home- electronic-energy-use).] Using published price elasticities for California (53, 54), this conservation 

effect on the treated is equivalent to a long-run electricity price increase of 20.5% or a 60-d short-run 

price increase between 30% and 60%. Consistent with our predictions, health and environment messaging 

was particularly effective on families with children, who collectively achieved up to 19% energy savings 

(Fig. 1) in our target population. Our results are robust to various estimation procedures and 

specifications. [We estimate treatment effects by difference- in-differences panel regression. The full set 

of statistical controls for observable characteristics include hourly weather controls (e.g. heating and 

cooling degree hours), time fixed effects, apartment size, and occupancy characteristics, including a proxy 

for household environmental leaning. Any unobserved characteristics common to the community are 

captured in the control group monitoring. Supporting materials and methods and further robustness 

checks are available in SI Appendix.] In particular, our results are robust to sampling frequency, and we 

do not rely on our panel’s high time dimension to achieve statistical significance (SI Appendix, Table 

S11). Although we expect some attenuation of these effects across larger study populations, we 

demonstrate the behavioral principle of using health damages and moralized consumer choice as a 

promising behavioral strategy for residential energy consumption. By contrast, participants who received 

messages informing them about monetary savings did not produce significant conservation by the end of 
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the experimental period, net of all statistical controls (materials and methods are available in SI 

Appendix). This result of conservation in one group and no net conservation in another leads us to seek a 

deeper understanding of the underlying heterogeneity and individual behaviors driving household actions. 

The lack of a significant conservation effect with cost savings information, which might initially be a 

surprising result, is consistent with over 35 y of experimental evidence in the behavioral literature in 

energy conservation (45). Although cost savings has historically been an important economic incentive 

for household energy conservation, in practice the actual realizable dollar savings for most US 

households, compared with the top 10% most energy efficient-similar neighbors, is typically small. In the 

current experiment, for example, household cost savings potential for a two-bedroom family apartment 

with an average consumption was US$5.40 to US$6.60/mo in direct kWh charges, which is roughly 

equivalent to a fast food combo meal or two gallons of fortified whole milk, based on the consumer price 

index average price data. [The consumer price index average price data, published by the Bureau of Labor 

Statistics, provides monthly data on prices paid by urban consumers for a representative basket of goods 

and services (available at www.bls.gov/ cpi/).]  

On an annual basis, the savings estimate for the current multifamily residential housing complex, 

which is at the mid-range of national per capita electricity consumption (55), is a modest $65 to $80/y. 

These energy savings in dollar terms, although small relative to the US household budget, are realistic for 

most US households, suggesting that information about small monetary savings, especially over longer 

time horizons (weeks to months), may not sufficiently motivate household behavioral change and may be 

heavily discounted by consumers or subject to energy rebounds. Gneezy et al. (56) provide other 

examples on when and why monetary incentives do not work to modify behavior. Further work is needed 

to understand the thresholds that prompt informed consumers to change behavior, to disentangle the level 

of the incentive from incentive type.  
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Fig. 2. Quantile treatment effects on the treated (N = 490,994 hourly kWh observations, 118 
apartments). We observe significant conservation effects in the health treatment group across all quantiles of 
electricity use, except for the lowest decile (most energy efficient observations). By contrast, by the end of the 
experiment, we observe no significant conservation effect with the monetary savings group and observe 
splurging behavior, particularly among the highest use quantiles. Significance levels are as follows: ***P < 
0.01, **P < 0.05, *P < 0.1.  

 

 

2.5.1 Heterogeneous effects on households 

Although average treatment effects vary for households with and without children (Fig. 1), we also 

investigated whether heterogeneous effects could be uncovered for different household use patterns. 

Heterogeneous responses to information treatments are well known in the behavioral literature on energy 

conservation. Using cross-sectional quantile regression, we evaluated the distributional impact of 

informational messages on treated households (Fig. 2 and SI Appendix, Table S8). We find that health 

and environment messaging produced statistically significant conservation effects in all but the lowest 
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decile of household electricity use (e.g., households who are already the most energy efficient). Weekly 

cost savings messages, on the other hand, led to increased electricity use relative to control (Fig. 2). These 

deviations from mean treatment effects and positive splurging behaviors were particularly striking among 

families with children (Fig. 1) and the highest deciles of household electricity use (Fig. 2), whereas in 

contrast to health-based messages, monetary savings information was ineffective for the most energy-

intensive households. To further understand what changes in behavior may be driving these results, we 

evaluated the experimental treatment effects by appliance and by time of day.  

 

 

Fig. 3. Appliance-level electricity measurements (N = 490,994 hourly kWh observations, 118 
apartments). Plug load is the largest share of household electricity use. The average kWh consumption is 230.4 
kWh/mo across one-, two-, and three-bedroom units ranging from 595 to 1,035 square feet. Appliance-level 
data for multifamily residences in this study are among the first field demonstrations of comprehensive 
appliance-level metering capabilities not previously available. Results above represent a weighted average of 
all household electricity uses obtained by direct measurement and are not based on engineering estimates by 
modeling.  
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2.5.2 Appliance-level behavior 

The average electricity consumption across all households is 0.3157 kWh/h or ∼230.4 kWh/mo 

across one-, two-, and three-bedroom units ranging from 595 to 1,035 square feet. Because we have 

separately metered appliances, we can further decompose the appliance-level consumption. In Fig. 3, we 

provide the breakdown of the appliance-level readings for all apartments in the study. Major appliances 

(e.g., refrigerator, dishwasher), the plug load (e.g., charging devices, consumer electronics, etc.), and 

lighting make up a significant share of household direct energy use (73%). The results shown in Fig. 3 

represent experimentally observed appliance-level electricity readings and are not the result of survey 

estimates or modeling as in traditional approaches to obtain such data. By the current state of technology, 

there is no centralized appliance-level metering capability in US homes or residential electricity markets 

(46). This study is one of the first, to our knowledge, to have experimentally measured appliance-level 

data in a large energy study.  

 For decades, heating and cooling (e.g., space conditioning) was considered to be the major source of 

household electricity use, based on national data from the Residential Energy Consumption Survey. 

Estimates from the most recent Residential Energy Consumption Survey suggest that the share of 

residential electricity use for heating and cooling is declining nationally in the United States, down to 

48% in 2009 from 58% in 1993 (55). In California, due to the milder climate, the share of heating and 

cooling makes up a smaller fraction of energy use (31%), across all single and multifamily households, 

and only 19% in our multifamily residential field site (Fig. 3). Although space heating and cooling is 

declining nationally, the share of energy use for appliances and electronics continues to rise. Consistent 

with these estimates, by direct measurement, we show that plug load is already the largest share (36%) of 

appliance-level electricity consumption for residential apartments at our field site (Fig. 3).  

 For households randomly assigned to receive health messages, energy conservation occurs primarily 

through plug load and lighting behavioral changes (SI Appendix, Table S5). Whereas our environment 

and health strategy was most effective in reducing plug load, we observe markedly different appliance 
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behavior with the monetary savings strategy. For households randomly assigned to receive cost savings 

information, we identify conservation effects at the appliance level only in lighting (SI Appendix, Table 

S5). However, as lighting is only a minor share of total household energy consumption (15%), any 

observed behavioral changes in lighting conservation are not enough to overcome observed splurging 

behavior in other consumption categories such as heating and cooling, resulting in no net conservation 

with monetary savings information by the end of the experiment, and in some cases increasing electricity 

use relative to control. This empirical result of conservation in one or more appliances (e.g., lighting) but 

no net conservation in the household aggregate energy use motivates further research into dynamic 

responses to information treatments and habit formation. Results from our focus group indicated that 

people were unclear on how to operate the refrigerator controls, for example, and we observed an 8% 

increase in refrigerator use (SI Appendix, Table S5), which could be an opportunity for manufacturers to 

improve designs. The recent work of Attari et al. highlights the importance of consumer perception and 

cognitive ability on the effectiveness of environmental cues (17, 57). One could ask the obvious question: 

Why should health-based information lead to different observed appliance-level behaviors? One 

explanation for this empirical result is that health-based strategies lead morally sensitized consumers to be 

more cognizant of household energy uses that might be perceived as “wasteful” sources of electricity—

for instance, unused lights, phantom loads, or standby power sources. Consistent with this hypothesis, in 

post-study participant interviews, the most commonly reported behavioral changes in the health 

information group were turning off unused lights, unplugging electronics, and charging devices when not 

in use. Our metering technology has opened the possibility to study behavioral phenomena at very high 

resolution. 

  

2.5.3 Implications for load shifting 

We also decompose the appliance-level treatment effects by time of day to evaluate implications of 

our information treatments on possible load-shifting behavior. Load shifting of household electricity use 
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from peak hours to off-peak hours is desirable for electric utilities to manage system power loads and 

reduce the risk of blackouts, brownouts, or overvoltages on the grid. For households randomly assigned to 

environment and health messages, we observe daily conservation effects, versus control households, 

beginning from about 12:00 AM (midnight) through 12:00 PM (noon). In-treatment energy savings 

persist overnight and during peak morning demand hours (SI Appendix, Table S6), where a local peak 

load period occurs for the community at ∼9:00 AM (SI Appendix, Fig. S3). These changes in electric 

consumption patterns via appliance-level reductions in plug load and lighting behavior, particularly 

during morning peak hours, offers some evidence for habituation within treatment. Conservation 

treatment effects for our environment and heath group are also maintained overnight, consistent with our 

evidence of plug load conservation, suggesting both load-shifting behavior and conservation. By contrast, 

we find limited evidence of any load-shifting behavior with cost savings information treatments by the 

end of the experiment. 

 

2.5.4 Attitude-behavior gap 

In the conservation literature, there is often a dichotomy between what people say they do and what 

they actually do (58). This so-called attitude–behavior gap is uniquely revealed in this field setting. 

Before the study, we conducted a stated preference survey asking independent, random samples of 

participants to choose messages that would be most likely to change their behavior and motivate 

conservation in the home. When pushed to state their energy preferences, we find that consumers do state 

a willingness to change behavior and that financial savings are at the top of their concerns. However, 

when faced with decision making in an actual market setting, only our nonmonetary, environment, and 

health strategy produced a lasting conservation effect. This distance between what people say they would 

do and what they actually do is referred to as hypothetical bias. As long argued by psychologists and 

behavioral economists, monetary savings, which by standard accounts should motivate rational decision 

making in the home, can often fail with ordinary consumers (11, 14, 56). The idea that a nonmonetary, 
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information strategy centered on environment and health could produce energy conservation without a 

significant change in existing economic incentives advances our understanding of the range of large-scale 

behavioral science-based interventions that can be carefully applied at scale. Energy conservation 

strategies can be guided not only by traditional economic incentives such as rebates and price-based 

incentives but also by nonprice-based consumer disclosures concerning environmental and health 

damages not necessarily reflected in prices for electricity services.  

Our study shows that nonprice incentives can effectively induce energy conservation, but it is not 

without limitations. First, our experiment provides both novel and repeated information to participants, 

making it difficult to separate the effect of learning from salience. Our participants acknowledged 

learning about appliance-level use and indicated that the appliance-level information was the most useful 

piece of information provided on the website. Most of them conveyed that they were surprised by how 

much or little electricity specific appliances were being used. In addition, the information provided on the 

dashboard was updated in real time, and participants received weekly emails. Further research should 

seek to disentangle the effect of learning about the energy use of different appliances from the saliency of 

the information we provided, which reminded them repetitively about their energy consumption. This 

raises the important question of how often should people be reminded about their electricity use to form 

energy conservation habits. Our exit survey indicates that the combination of weekly emails with the 

possibility to access real-time data on a website was sufficient in our setting. Further research is needed to 

understand energy use habit-forming behavior with repeated information provision. Second, we report 

behavioral outcomes within the 100-d treatment period but do not study the persistence of these 

household behavior changes after the conclusion of the experiment. We therefore do not know whether 

energy conservation persisted after the end of the experiment. However, the results from the exit survey 

indicate that some actions undertaken during the experiment could have potential lasting effects on energy 

consumption. Indeed, the majority of the participants described that they achieved reduced energy use by 

unplugging electronics, changing the power savings settings of their computer or other electronics, or 
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programming different temperature settings on their thermostat. This is important because it suggests that 

the savings resulting from these changes could persist even without taking further action.  

 

2.6  Policy implications 

The relationship between electricity use and impacts on the environment and global health remains 

an elusive concept for many consumers. The generation of fine particulate air pollution and its effects on 

health are usually removed from ordinary daily consumer decision-making. This low consumer awareness 

stands in contrast to strides in our scientific understanding. We show that providing consumers specific, 

tailored, and scientifically verifiable information about the associated environmental and health effects of 

their electricity consumption can influence and motivate behavioral decision making about daily 

electricity use. More generally, this research advances our understanding of the effectiveness of 

information-based policies for conservation based on the principle that making information about the 

external damages of activities more salient to consumers can encourage conservation through household 

behavioral changes (59, 60). It has been argued that given the relative price inelastic behavior of 

electricity consumers in both the United States and the European Union, public policies to encourage 

energy conservation will require more than increases in electricity retail prices (9). Consumer information 

strategies can inform environmental policy about conservation efforts and can be used particularly where 

price-based strategies may not be politically feasible or effective. We argue that behavioral strategies in 

household electricity markets can be complements rather than substitutes for regulatory or price-based 

solutions.  

Energy conservation is desirable in the economy as an alternative to costly capital investments in 

new power generation and can help delay managerial investment decisions for new generation capacity. 

Although nonprice behavioral strategies can be viable alternatives to new capital projects by promoting 

peak load shifting and conservation, they can also be implemented immediately, at scale and at relatively 

low cost (11). Behavioral strategies enabled through information technologies can be an effective 
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component of sustainable development pathways and do not require long lead times typical of new capital 

investments in energy generation, distribution, and storage.  
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Appendix 1  

Supporting information 

 

Materials and Methods 

We outfitted 118 family apartments with wireless energy metering technology at a residential 

housing community in Los Angeles. We measured electricity use data in real-time 24 hours a day at the 

appliance level. The randomized controlled trial was conducted from October 2011 to July 2012 and 

weekly treatment messages were sent to participants. The first group of apartments was given detailed 

energy use feedback along with information about monetary savings. The second group was given 

feedback with a health message about emissions and its air quality impacts such as childhood asthma. The 

third group served as a statistical control following a six-month baseline period and random assignment. 

Fig. S1 shows an information graphic of the website shown to participants. No financial transfers or 

monetary rewards were offered for participation.  

Field Site. Our field experimental site, University Village, is a large residential community located 

in proximity to public transportation, local businesses, parks and schools. It is a multiple building, family 

apartment/condo-style housing complex with 1,103 units. The community spans two census block groups 

serviced by the Los Angeles Department of Water and Power (LADWP), the nation’s largest public 

utility. Although the facilities are owned and operated by the University of California, the University does 

not subsidize living costs for the community and offers market-based rental rates. All utilities are paid by 

the tenant, including electricity. While apartments vary in size and layout, all units are furnished with a 

common set of appliances—a refrigerator, gas stove, dishwasher, and microwave oven. This allows for 

standardization in the housing capital stock. We monitor direct electricity usage in each of the participant 

households.  

 

 



 

 61 

 

Fig. S1 Visualization of health-based messaging feedback for consumers 
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Treatment Messages. Information treatments received by households contain: (i) a neighbor 

comparison, which provides a reference point for their household consumption, and (ii) a stated impact of 

electricity use, either in terms of potential cost savings or public health externalities. The specific 

treatment messages are listed in Table S1.  

Table S1. Treatment Messages 

Group Treatment Message 
Monetary Savings Group “Last week, you used 66% more/less electricity than 

your efficient neighbors. In one year, this will cost you 
(you are saving) $34 dollars extra.”* 

Health Group “Last week, you used 66% more/less electricity than 
your efficient neighbors. You are adding/avoiding 610 
pounds of air pollutants which contribute to health 
impacts such as childhood asthma and cancer.”* 

Control Group None. 

* Efficient neighbor in this context means households in the top 10th percentile of  
household weekly average kWh consumption (households with the lowest electricity use)  
for similar size apartments in the community.  

Neighbor comparisons are standardized in the following form: “Last week, you used ___% more/less 

electricity than your efficient neighbors” Neighbor comparisons in the energy conservation context have 

gained broad use in (i) small-scale lab or field studies, typically in applied social psychology, building-

science and engineering, and (ii) utility-scale pilot projects, typically in economics and related fields. 

Impacts described were presented to households in numerical and scientifically verifiable terms. Unlike 

many lab studies where numerical impacts may be the subject of manipulation, we provided households 

with factual evidence-based numbers that depend on their weekly consumption. Equivalent cost savings 

were calculated using household-level consumption data and the published LADWP electric rate 

schedules for residential customers. Equivalent pounds of air pollutant emissions were calculated using 

emission factors from the Emissions & Generation Resource Integrated Database (eGRID) maintained by 

the U.S. EPA and based on LADWP electricity fuel mix. Treatment messages were also pre-tested in a 

series of questionnaires for clarity, comprehension and stated willingness-to-save energy with 

independent populations. 
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Time Series of kWh Consumption by Group 

 
Fig. S2 Time series of hourly community consumption. During the baseline period, the mean hourly 
kWh consumption is overlapping for all three groups. After treatment begins, the consumption diverges. 
Treatment effects are identified by difference-in-differences before-after-control-impact design. 

 
 

University Village Daily Load Profile 
 

 
Fig. S3  Peak daily consumption for the community occurs at 9:00am and 9:00pm 
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Participant Recruitment. Households were recruited to participate in the study. In order to prevent 

biases in recruitment selection, no direct environmental messaging was used. The recruitment process 

occurred within the context of several community events and information campaigns during the summer 

months prior to the start of the 2011-2012 academic year. To meet all Institutional Review Board (IRB) 

ethics requirements regarding research with human subjects, participation was strictly voluntary and no 

personally identifiable information (PII) was collected or shared. We conducted an enrollment survey to 

capture basic apartment demographics and occupancy characteristics for the community at-large, 

including households who opted in and those who opted out of the study. We recruited many more 

willing participants than there were active equipment allotments. Among the 1,103 households at 

University Village, 226 households volunteered to participate and another 88 households in our entry 

survey chose not to participate. This equals a participation rate of 20%. We randomly selected 118 

participating households from these 226 volunteers. The participating households in our experiment 

represent 10.7% of the population at University Village. Household assignment into treatment and control 

groups was then randomized. Fig. S2 shows a time series of the community consumption and Fig. S3 

shows the daily load profile over a 24 hour period. 

While households could at any point withdraw their consent to participate, no households dropped 

from the study for the entire duration of the experiment. 

We tested for potential differences between the population of households at our field site and our 

sample of volunteer participants. We compared the monthly electricity meter readings of the entire 

population of University Village to those of our participants as well as other characteristics such as the 

size of the apartment, the number of occupants, the apartment floor and the location of the apartment in 

the complex. As shown in Table S2, there are no significant differences between participating and non-

participating households. This analysis is based on electricity meter readings for 12 months prior to the 

start of the experiment.  
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Table S2. Comparison of Participating versus Non-Participating Households 
at University Village (Meter Readings Data) 

 
Participating 
Households 
(S.D.) 

Non-
Participating 
Households 
(S.D.) 

Mean 
Difference 
(S.D.) 

 
   Yin−Yout   

(S.E.) 

Electricity Consumption §      
      Average kWh per day 8.429 

(15.2) 
8.737 
(28.7) 

.3070 
(32.5) 

 
 

-.0004 
(.0004) 

      kWh per square foot .2007 
(.339) 

.2043 
(.479) 

.0036 
(.587) 

 
 

.0833 
(.198) 

      kWh per person 42.53 
(68.5) 

44.72 
(108.8) 

2.18 
(128.6) 

 
 

-.0003 
(.0009) 

Square Footage 859.79 
(106.3) 

868.83 
(98.54) 

9.04 
(144.9) 

 -.0001 
(.0002) 

Number of bedrooms 1.97 
(.379) 

1.97 
(.343) 

-0.003 
(.511) 

 -.0263 
(.160) 

Number of bathrooms 1.60 
(.490) 

1.65 
(.474) 

.05 
(.681) 

 .0143 
(.040) 

Number of occupants 4.03 
(.566) 

4.01 
(.512) 

-.02 
(.763) 

 -.0107 
(.126) 

Building Floor 2.08 
(.808) 

2.08 
(.786) 

.002 
(1.12) 

 -.0308 
(.021) 

Location in Complex  
     (1 if Sawtelle, 0 if Sepulveda) 

.543 
(.498) 

.596 
(.491) 

.053 
(.699) 

 -.041 
(.040) 

Number of Households 118 986 1,104  1,104 
Number of Observations 5,533 46,184 51,718  51,718 
F-test p-value - - -  0.669 

 

§ Based on 12 months of independent electricity meter readings. Coefficients for kWh per square foot and kWh 
per person are based on independent regressions. No significant differences are found. 

 

Empirical Strategy. We modeled the household behavioral outcomes as a time series of electricity 

consumption before and after the start of information treatments. Our general empirical strategy consists 

of panel regressions of total and appliance-level electricity loads on a series of treatment group indicators 

and important statistical controls: household and occupancy characteristics, a proxy for household 

environmental leaning and seasonal variables including weather and time trends. To estimate the 

treatment effects on the study population, we use an analytical approach by difference-in-differences 

(DD). We define “treatment” to mean weekly updating informational messages about household energy 

use defined previously. Treatments are exhaustive and mutually exclusive, meaning each household 

receives only one randomly assigned treatment. Once assigned, there is no crossover between treatments. 



 

 66 

A control group is also monitored alongside the treatment groups, but receives no information. See 

Appendix 3 for a theoretical model. 

Identification. In keeping with our identification strategy, we define treatment dummies denoting 

treatment group and event time status. Let  
⌢
Ti  be the binary treatment group indicator, equal to 1 if 

household is a member of treated group i, and 0 otherwise. Let P be the binary post-treatment 

indicator, equal to 1 after the start of information treatments (i.e., post-treatment period), and 0 during the 

baseline period (i.e., pre-treatment period). Let denote the expectations operator. The behavioral response 

function yj  for household j is allowed to be heterogeneous at the household level. Conditioning on 

observables, we define the average treatment effect on the treated (ATET) as: 

 

    (post-treatment period) 

   (pre-treatment period) (1.1) 

 

Treatment is identified when the group-time interaction  equals 1 over 

all feasible treatments {i = 1,2}  (i.e., monetary savings or health). The ATET in Equation 1.1 is the 

population average difference in the control group  
⌢
Ti = 0  before and after treatment minus the population 

average difference in the treated group  
⌢
Ti = 1  before and after treatment. We condition on household 

level covariates, X. Any common unobservable characteristics are also captured in the control group.  

We make two identifying assumptions for the estimation of treatment effects. First, treatment 

selection is independent of the behavioral response function, which is given by randomization. Second, 

treatments are independent and mutually exclusive. See Appendix 2 for a proof of identification. 

Dependent Variable. Our dependent variable and behavioral response measure is the total kilowatt-

hour (kWh) electric power consumption. A kilowatt-hour (kWh) is the most common unit of electricity 

    
τ DID ≡ E[y j | X ,


Ti = 1, P = 1]−E[y j | X ,


Ti = 0, P = 1]⎡⎣ ⎤⎦

    
− E[y j | X ,


Ti = 1, P = 0]−E[y j | X ,


Ti = 0, P = 0]⎡⎣ ⎤⎦

   {(

Ti = 1)× (P = 1)}

  E[⋅]
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used by electric utilities in commercial and residential billing. We aggregate real-time electricity 

measurements into hourly observations. Our total kWh signal for each household is further decomposed 

into one of six major appliance categories. By direct measurement, the appliance-level kWh consumption 

categories are: (i) lighting, (ii) heating and cooling, (iii) plug load, (iv) refrigerator, (v) dishwasher, and 

(vi) other kitchen (including the microwave and kitchen outlets). These six appliance categories make up 

the complete circuit breaker distribution for all electricity uses in the household. We note that this level of 

granularity in kWh measurement is unique to our installed metering technology and wireless sensor 

network. We normalize our dependent variable by dividing by the average post-treatment control group 

consumption, and multiplying by 100, allowing us to interpret our regression coefficients directly as 

percentages versus control group. We do not use logs as monotonic transformations of the hourly kWh 

measurements since appliance-level electricity loads in the range [0, R+) can frequently be equal or close 

to zero, for example, when the dishwasher or other appliance is off. For other examples of this 

normalization approach with electricity metering data, see (1). The distribution of dependent variables is 

shown in Table S3. 

 

Table S3. Distributions of Dependent Variables (hourly kWh measurements) 

Percentiles Total Heating  
Cooling Lighting Plug  

Load Refrigerator Dishwasher Other  
Kitchen 

1% 0.0044 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5% 0.0824 0.0007 0.0000 0.0075 0.0050 0.0000 0.0000 

10% 0.1038 0.0029 0.0000 0.0160 0.0187 0.0000 0.0000 
25% 0.1442 0.0083 0.0008 0.0337 0.0446 0.0000 0.0000 
50% 0.2288 0.0156 0.0160 0.0616 0.0675 0.0000 0.0041 
75% 0.4017 0.0239 0.0702 0.1197 0.0894 0.0060 0.0149 
90% 0.6321 0.1807 0.1351 0.2200 0.1275 0.0134 0.0742 
95% 0.8236 0.3704 0.1850 0.2941 0.1455 0.0487 0.1402 
99% 1.3374 0.8098 0.3091 0.6311 0.1794 0.1167 0.3857 
Mean 0.3157 0.0622 0.0471 0.1105 0.0701 0.0084 0.0277 

Std. Dev. 0.2746 0.1622 0.0700 0.2739 0.0402 0.0297 0.1061 
Observations  490,994   490,994   490,994   490,994   490,994   490,994   490,994  
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Independent Variables. The variables of interest are the treatment group indicators, observable 

household characteristics, and seasonal controls including weather and time trends. Household occupancy 

includes the number of adults (ranging from 0 to 3), and number of children (ranging from 0 to 4). 

Apartment size indicates the number of bedrooms in the unit, ranging from 1 to 3 bedrooms. Building 

floor captures apartment elevation, ranging from 1 to 3, where 1st floor indicates ground level. Floor plan 

captures differences in apartment layout, measured in nominal square footage. Because political leaning 

or ideology can significantly impact energy use attitudes and behaviors (2-4), we include statistical 

controls for household environmentalist ideology to account for the fact that greener participating 

households might have more proclivities toward conservation. To this end, member environmental 

organization is a proxy variable, which captures a fixed measure of household environmentalist ideology 

or orientation. It is equal to 1 if the head of household reports being an active member of an 

environmental non-governmental organization (NGO), and 0 otherwise.  

Seasonality and Time Trends. Electricity demand (in kWh per unit time) exhibits seasonal 

fluctuations and serial correlation that depends on outside factors such as time of day or weather. 

Modeling electricity loads with high time-resolution data requires special consideration of seasonality and 

time-varying characteristics on consumption, most notably, the effects of outside temperatures on hourly 

energy demand. Even with the milder climate in Los Angeles, heating and cooling hours capture 

significant seasonal variation on electricity consumption. We calculate heating and cooling degree hours, 

using quality-controlled local weather data from the Santa Monica Municipal Airport weather station, as 

maintained by the National Climatic Data Center (NCDC). Outside dry bulb temperatures were recorded 

hourly at the Santa Monica Municipal Airport weather station, located less than 1 mile from the study 

site. Archival access was provided by the National Oceanic and Atmospheric Administration (NOAA’s) 

Quality Controlled Local Climatological Data (QCLCD), which contains hourly, daily and monthly 

summaries of outside weather conditions for the specific station. Mean degree-hours are a fundamental 

measure in building energy management that expresses the magnitude of expected heating or cooling load 
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at a given location. Degree-hours capture seasonal heating or cooling requirements at a finer resolution 

than degree-days, making our hourly kWh observations compatible with outside weather variation.  

The weather vector is  where: 

        

      (1.2) 

 

As shown in Equation 1.2, the larger the indoor heating or cooling requirement, the larger the 

distance between the measured mean hourly outside temperature  θout  and a given base temperature  θb . 

By U.S. convention, the indoor base temperature  θb  is defined as 65˚F (18.3˚C) (5). When outside 

temperatures rise above the given indoor base temperature, cooling degree hours are strictly positive and 

heating degree hours are zero. Conversely, when outside temperatures fall below the base temperature, 

heating degree hours are strictly positive and cooling degree hours are zero. In this way, differential 

effects of heating and cooling load on electricity consumption are decomposed in a meaningful way over 

a 24-hour period. By rigorously specifying heating and cooling degree hours, we directly mitigate issues 

of seasonality and serial correlation in the disturbances of the regression model, addressing some 

methodological limitations previously identified in the literature (6). 

 Econometric Model. The basic econometric specification for household j, in treatment group i, 

at time t, is  

       E jit =αPi +τ (Pi ⋅Ti )+ H j +Ψt +γt + c +ε jt         (1.3) 

The dependent variable, Ejit , represents hourly panel observations of total and appliance-level 

electricity loads. Our main coefficient of interest,  
⌢τ , indicates the average treatment effect on the treated 

and the coefficient  α  indicates the post-treatment on the population. 
 
Η j  is the vector of household 

Ψt = [Ψt
H ,Ψt

C ]

  
Ψ t

H = max 0, θb −θout( )
h=1

24

∑⎧
⎨
⎩

⎫
⎬
⎭

heating degree hours

  
Ψ t

C = max 0, θout −θb( )
h=1

24

∑⎧
⎨
⎩

⎫
⎬
⎭

cooling degree hours
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covariates and  Ψt  is the weather vector. We include degree hours of the study period and day of the week 

time dummies to control for common time trends. Time dummies offer a convenient and robust control 

for community-wide effects. The regression constant is denoted by c and the residual error is captured in 

 
ε jt .  We mitigate the effects of serial correlation—a common source of estimation bias in difference-in-

differences models (7) by fully specifying important seasonal weather variables on consumption and 

clustering the standard errors at the household level. Our standard errors are satisfactory due to a number 

of important design considerations. First, we have very high-resolution measurement, down to individual 

appliances, in which both make and model of all appliances have been standardized across the 

community. This provides for more precise behavioral estimates than are otherwise available in 

comparable studies with monthly residential billing data. Second, we control for the impact of seasonality 

and time-varying characteristics on consumption by use of degree hours, which offers a finer resolution 

controls for weather variability than typical approaches that use heating and cooling degree-days, or that 

have no weather controls at all (6). In addition to seasonal degree-hours, we also specify time dummies to 

capture common time trends (or cycles) in the data and any calendar shocks on consumption. We estimate 

treatment effects in Equation 1.3 conservatively by difference-in-differences using the standard feasible 

generalized least squares estimator (FGLS),      β̂GLS = (XΩ̂−1X)−1X'Ω̂−1y  (8). We note that GLS panel 

estimation is feasible because the panel’s time dimension is larger than the cross-sectional dimension of N 

households, a characteristic of our high time-resolution data set. In the next section, we also present 

alternative results at various sampling frequencies and show robustness checks using OLS.  

Tables S4–S8 contain the supporting regression tables. Table S4 lists treatment effects on families 

with and without children. Table S5 lists treatment effects by appliance and Appendix 4 shows appliance 

dynamics. Table S6 lists treatment effects by time of day. Table S7 contains descriptives and correlations 

for all variables in the study and Table S8 contains the supporting conditional quantile regressions. 
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Table S4. Heterogeneous Treatment Effects on Families with Children 
 

  (1) (2) (3) 
Study Variables Total kWh Total kWh Total kWh 

Experimental    
     Post-Treat*Monetary Savings Group 3.785 1.688 3.771 

 
(4.391) (5.221) (4.391) 

     Post-Treat*Health Group -8.215** -8.206** -1.419 

 
(4.120) (4.119) (4.862) 

          Post-Treat*Monetary Savings Group*Children=1 or more 
 

7.831 
 

  
(11.32) 

           Post-Treat*Health Group*Children=1 or more 
  

-19.07** 

   
(8.998) 

     Monetary Savings Group 1.853 1.531 2.478 
 (7.814) (7.722) (7.844) 
     Health Group -1.383 -1.542 -0.844 
 (8.033) (8.022) (8.053) 
Household Characteristics    
     Adults 4.003 3.705 3.400 

 
(8.556) (8.419) (8.557) 

     Children (1 or more) 17.91** 16.63** 21.42*** 

 
(7.494) (6.923) (7.780) 

     Apartment Size (No. of bedrooms) 33.01* 32.44* 32.03* 

 
(16.95) (16.96) (17.06) 

     Floor Plan (Nominal square footage) -0.0109 -0.00983 -0.00852 

 
(0.0612) (0.0610) (0.0613) 

     Building Floor 9.854*** 9.732*** 9.265*** 

 
(3.400) (3.384) (3.426) 

Ideology    
     Member Environmental Organization -7.222 -7.464 -8.908 

 
(9.076) (8.937) (8.884) 

Hourly Weather Controls    
     Heating Degree Hours 0.284 0.286 0.281 

 
(0.255) (0.254) (0.255) 

     Cooling Degree Hours -0.811*** -0.809*** -0.813*** 

 
(0.186) (0.186) (0.186) 

Time Dummies    
 Day-by-Week Yes Yes Yes 
Constant 12.94 14.59 13.83 

 
(33.75) (33.45) (33.48) 

Observations 490,994 490,994 490,994 
Number of Apartments 118 118 118 

R2 0.0437 0.0451 0.0454 
Robust standard errors clustered at the household level in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table S5. Treatment Effects by Appliance 
 

  (4) (5) (6) (7) (8) (9) 
Study Variables Heating Cooling Lighting Plug Load Refrigerator Dishwasher Other Kitchen 

Experimental 
                Post-Treat*Monetary Savings Group 5.331* -11.46*** 0.414 8.844*** 3.260 0.987 

 
(2.779) (4.274) (2.395) (2.153) (3.918) (3.056) 

          Post-Treat*Health Group -2.567 -9.011*** -4.719** 8.673*** -3.790 -1.370 

 
(2.554) (2.324) (2.152) (1.981) (2.471) (4.454) 

     Monetary Savings Group 3.248 -20.61 -81.42 18.37* -16.68 -38.79 
 (3.189) (17.73) (51.13) (9.372) (24.42) (25.29) 
     Health Group 6.370** -19.32 -87.15* 15.41* -37.06* -37.81 
 (3.129) (14.29) (48.52) (9.161) (22.20) (24.93) 
Household Characteristics 

           Adults -0.839 -6.284 -2.518 16.83* -11.89 16.16 

 
(3.165) (16.27) (18.95) (10.13) (14.45) (17.74) 

     Children (1 or more) 3.982 0.650 -22.42 11.11* -4.389 -1.703 

 
(2.909) (14.67) (27.07) (6.722) (14.02) (14.67) 

     Apartment Size (No. of bedrooms) 3.792 53.26 -80.41 40.39*** 28.58 39.46 

 
(6.700) (43.85) (56.84) (14.94) (29.88) (28.09) 

     Floor Plan (Nominal square footage) 0.00887 -0.0676 0.226 -0.102* 0.00103 -0.105 

 
(0.0232) (0.0958) (0.231) (0.0547) (0.102) (0.0975) 

     Building Floor 1.661 -8.622 -5.106 13.81*** 5.492 3.162 

 
(1.553) (8.345) (22.40) (4.016) (8.502) (8.908) 

Ideology 
           Member Environmental Organization -6.223** -10.97 -0.228 -3.647 -14.51 3.426 

 
(2.742) (9.532) (16.15) (11.24) (15.75) (17.68) 

Weather Controls 
           Heating and Cooling Degree Hours Yes No No Yes No No 

Time Dummies 
           Hour-by-Day, Day-by-Week Yes Yes Yes Yes Yes Yes 

Constant -10.08 128.5*** 169.5 50.52* 67.38 95.00 

 
(12.59) (41.70) (141.8) (30.67) (53.80) (68.10) 

Observations 490,994 490,994 490,994 490,994 490,994 490,994 
Number of Apartments 118 118 118 118 118 118 
R2 0.0163 0.145 0.0316 0.0964 0.0159 0.0124 

Robust standard errors clustered at the household level in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table S6. Treatment Effects by Time of Day 

  (10) (11) (12) (13) (14) (15) (16) (17) 

Study Variables 

Midnight - 
3:00am 

3:00- 
6:00am 

6:00- 
9:00am 

9:00-
12:00pm 

12:00-
3:00pm 

3:00-
6:00pm 

6:00-
9:00pm 

9:00-
Midnight 

Experimental         
          Post-Treat*Monetary Savings Group -6.919 -0.351 4.434 1.965 8.999* 15.46*** 20.22*** 5.346 

 
(4.960) (4.890) (5.241) (5.953) (4.865) (5.215) (6.024) (6.099) 

          Post-Treat*Health Group -17.51*** -12.01** -11.43* -10.13* -1.689 6.665 5.027 -5.725 

 
(4.328) (5.048) (6.131) (6.110) (4.132) (4.354) (5.028) (4.871) 

     Monetary Savings Group 2.845 -5.393 -2.503 2.788 2.180 0.467 2.420 5.663 

 (9.320) (8.854) (8.023) (9.561) (9.127) (9.267) (10.12) (10.34) 

     Health Group -1.928 -0.428 5.402 -2.706 -3.751 -4.329 -3.850 -5.858 

 (9.900) (9.620) (9.740) (9.513) (8.211) (8.317) (9.220) (10.18) 

Household Characteristics 2.845 -5.393 -2.503 2.788 2.180 0.467 2.420 5.663 

     Adults 3.251 -8.546 -9.369 -0.283 7.129 12.16 15.51 13.51 

 
(9.976) (9.802) (10.04) (10.83) (10.06) (10.59) (12.69) (9.828) 

     Children 14.38* 10.79 15.81** 24.16*** 18.79** 18.75** 21.73** 18.74* 

 
(7.690) (6.931) (6.373) (9.312) (9.292) (9.383) (10.32) (9.836) 

     Apartment Size (No. of bedrooms) 28.36 28.26 38.97** 34.30 24.86 22.91 36.21 49.94** 

 
(19.41) (17.44) (16.59) (20.93) (20.01) (20.36) (22.79) (20.15) 

     Floor Plan (Nominal square footage) -0.0352 -0.0410 -0.0402 -0.00901 0.0143 0.0236 0.0222 -0.0177 

 
(0.0689) (0.0605) (0.0561) (0.0697) (0.0694) (0.0727) (0.0816) (0.0782) 

     Building Floor 9.115** 6.130* 11.25*** 8.551** 7.538* 8.820** 12.79*** 14.81*** 

 
(3.737) (3.533) (3.462) (4.260) (3.927) (4.259) (4.840) (4.358) 

Ideology         
     Member Environmental Organization -7.491 -4.355 -7.588 -4.960 -4.180 -2.367 -10.66 -15.94 

 
(9.676) (9.151) (9.098) (10.14) (9.862) (11.07) (12.95) (10.92) 

Hourly Weather Controls         
     Heating Degree Hours 0.800*** 1.251*** 0.746*** 1.258*** 0.188 0.119 0.765** 0.579 

 
(0.290) (0.269) (0.269) (0.241) (0.219) (0.219) (0.356) (0.395) 

     Cooling Degree Hours 2.662 -5.304*** 3.932*** -0.245 -0.157 0.517** -0.591 0.180 

 
(4.208) (1.936) (0.764) (0.181) (0.189) (0.260) (0.681) (1.294) 

Time Dummies         
      Day-by-Week Yes Yes Yes Yes Yes Yes Yes Yes 

Constant 48.54 49.73 25.34 9.612 -5.217 -23.34 -39.93 -2.685 

 
(38.41) (36.16) (34.22) (38.02) (37.89) (41.02) (45.58) (41.68) 

Observations 60,942 60,433 61,206 61,543 61,402 61,581 61,891 61,996 

Number of Apartments 118 118 118 118 118 118 118 118 

R2  0.0404 0.0521 0.0762 0.0616 0.0558 0.0542 0.0567 0.0630 
Robust standard errors clustered at the household level in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table S7. Means, Standard Deviations and Correlations
 

  Mean S.D. Min Max (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) Total kWh (normalized) 103.11 89.71 0.0 3489.1 1.00            
Experimental                 

(2) Health Group 0.37 0.48 0.0 1.0 -0.06* 1.00           
(3) Monetary Savings Group 0.38 0.49 0.0 1.0 0.02* -0.61* 1.00          
(4) Control Group 0.24 0.43 0.0 1.0 0.04* -0.44* -0.45* 1.00         

Household Characteristics                 
(5) Number of Adults 1.93 0.29 1.0 3.0 -0.01* -0.18* 0.12* 0.07* 1.00        
(6) Number of Children 0.52 0.81 0.0 4.0 0.14* -0.04* -0.08* 0.13* -0.10* 1.00       
(7) Apartment Size (beds) 1.97 0.38 1.0 3.0 0.15* -0.14* 0.04* 0.12* -0.09* 0.30* 1.00      
(8) Floor Plan (nominal sq.ft.) 862.3 104.49 595 1035 0.14* -0.14* 0.05* 0.10* 0.06* 0.20* 0.83* 1.00     
(9) Building Floor 2.07 0.81 1.0 3.0 0.08* 0.04* -0.13* 0.10* 0.07* -0.05* 0.03* 0.05* 1.00    

Ideology                 
(10) Member Env. Organization 0.09 0.28 0.0 1.0 -0.02* 0.00 0.10* -0.11* -0.15* -0.01* 0.02* -0.03* -0.05* 1.00   

Weather Controls                 
(11) Heating Degree Hours 7.15 5.76 0.0 26.0 0.03* -0.01* -0.01* 0.02* 0.00 0.00* 0.00 0.00 -0.01 -0.01 1.00  
(12) Cooling Degree Hours 0.6 1.94 0.0 26.0 -0.02* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.39* 1.00 

 
N = 440,059 panel observations (118 apartments) 
* p <.05 
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Table S8. Quantile Regression Estimates 
 

  Quantiles 

Study Variables 0.10 0.25 0.50 0.75 0.90 

Experimental      
          Post-Treat*Monetary Savings Group 3.835*** 2.597*** 2.006*** -1.031 4.912*** 

 
(0.153) (0.174) (0.382) (0.801) (1.587) 

          Post-Treat*Health Group 1.907*** -0.428** -5.898*** -13.98*** -15.52*** 

 
(0.170) (0.175) (0.339) (0.632) (1.200) 

     Monetary Savings Group -2.551*** -2.980*** -5.655*** -2.029*** 18.34*** 
 (0.112) (0.159) (0.331) (0.667) (1.212) 
     Health Group -3.137*** -2.574*** -5.780*** -6.069*** 7.288*** 
 (0.174) (0.117) (0.268) (0.541) (0.978) 
Household Characteristics      
     Adults -0.908*** 0.622*** -5.351*** -2.349*** 10.28*** 

 
(0.174) (0.141) (0.563) (0.760) (1.598) 

     Children 4.465*** 8.248*** 20.37*** 26.86*** 32.90*** 

 
(0.0942) (0.139) (0.256) (0.595) (0.920) 

     Apartment Size (No. of Bedrooms) 6.211*** 11.92*** 27.41*** 40.44*** 36.51*** 

 
(0.353) (0.289) (0.511) (0.941) (1.231) 

     Floor Plan (Nominal square footage) 0.00368*** 0.00481*** -0.0121*** -0.00597* 0.0626*** 

 
(0.00124) (0.000914) (0.00166) (0.00337) (0.00439) 

     Building Floor 3.760*** 4.814*** 6.871*** 10.16*** 14.93*** 

 
(0.0810) (0.0748) (0.125) (0.226) (0.343) 

Ideology      
     Member Environmental Organization 0.850*** -1.488*** -0.260 -6.505*** -23.09*** 

 
(0.135) (0.155) (0.377) (0.469) (1.182) 

Hourly Weather Controls      
     Heating Degree Hours -0.0523*** -0.0566*** -0.0626*** 0.687*** 1.642*** 

 
(0.00894) (0.00895) (0.0196) (0.0473) (0.0763) 

     Cooling Degree Hours -0.252*** -0.380*** -0.823*** -1.129*** -0.580*** 

 
(0.0287) (0.0231) (0.0507) (0.116) (0.223) 

Time Dummies      
      Day-by-Week Yes Yes Yes Yes Yes 

Constant 13.65*** 9.360*** 28.95*** 31.59*** -4.360 

 
(0.687) (0.521) (1.369) (2.381) (4.052) 

Observations 490,994 490,994 490,994 490,994 490,994 
Number of Apartments 118 118 118 118 118 

Pseudo R-squared .0119 .0199 .0337 .0403 .0397 
Quantile treatment effects with bootstrap standard errors. *** p<0.01, ** p<0.05, * p<0.1 
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Table S9. Comparison of Baseline Usage Characteristics  
Between Treated and Control Households 

 

 

Control 
Group 
(S.D.) 

Treatment 
Group 1:  

(S.D.) 

Treatment 
Group 2: 

(S.D.) 

Difference 
Treat 1-

Control (S.D.) 

Difference 
Treat 2 -
Control  
(S.D.) 

Y0
T −Y0

C

  
(S.E.) 

Average kWh usage/Day 8.660 7.543 7.457 -1.118 -1.204 -0.000377 

 (7.623) (6.485) (6.672) (10.01) (10.13) (0.00195) 
Apartment Size (bedrooms) 2.043 1.980 1.914 -0.063 -0.128 -0.153 

 (0.394) (0.339) (0.358) (0.520) (0.532) (0.205) 
No. of Adults 1.968 1.970 1.847 0.002 -0.122 -0.105 

 (0.175) (0.271) (0.360) (0.322) (0.401) (0.106) 
No. of Children 0.653 0.425 0.480 -0.227 -0.172 -0.0562 

 (0.800) (0.874) (0.713) (1.184) (1.072) (0.0572) 
Floor Plan (Square Footage) 877.66 867.17 846.04 -10.49 -31.62 0.000203 

 (97.451) (97.019) (108.761) (137.51) (146.03) (0.000674) 
Building Floor 2.163 1.919 2.103 -0.244 -0.060 -0.0494 

 (0.861) (0.813) (0.760) (1.184) (1.148) (0.0501) 
Member Environmental 
Organization 0.024 0.119 0.082 0.096 0.058 0.157* 

 (0.152) (0.324) (0.274) (0.358) (0.313) (0.0835) 
Number of Observations 119,609  187,684  183,701 307,293  426,902  371,385  
Number of Households 33 43 42 76 75 118 
F-test p-value      0.2485 

6 month baseline period (no electricity use feedback) *** p<0.01, ** p<0.05, * p<0.1 
 

Baseline Characteristics. Table S9 shows descriptive statistics for both treated and control 

households during the 6-month baseline period. As shown in Table S9, the covariates and electricity 

consumption are reasonably balanced between treated and control households. In particular, the average 

electricity consumption is statistically indistinguishable between groups along with other important 

household fixed effects. The last column in Table S9 shows the results of a regression testing for 

significant differences between groups. As given by the F-test p-value of 0.2485, we reject a hypothesis 

of imbalance between groups. One exception is the variable representing membership of an 

environmental organization, which is significant at the 10 percent level. We note that households who 

report membership in an environmental organization represent a very minor share (~8%) of households in 

the study. In separate results, we computed the effect of belonging to an environmental organization as a 

proxy for green behavior. These results show no significant interaction with either treatment (results 
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available from the authors upon request). This indicates that environmentalist households are not driving 

the study’s main results. 

Robustness checks. Table S10 shows the ATE specifications using OLS. Table S10 lists results of 

standard protocols with robust standard errors clustered at the household level, starting with a simple 

comparison between treatment and control groups and subsequently adding covariates.  

Table S10. ATE Specifications, OLS (Hourly Sampling) 
 

 
I II III IV V 

 
Total kWh Total kWh Total kWh Total kWh Total kWh 

Post-Treat*Cost Savings Group 5.210 3.917 3.915 3.822 5.297 

 
(5.019) (4.966) (4.968) (4.972) (4.533) 

Post-Treat*Health Group -9.958** -9.694** -9.682** -9.833** -8.192* 

 
(4.656) (4.648) (4.647) (4.652) (4.306) 

Treat Cost Savings  -7.302 2.801 2.797 2.902 2.238 

 
(8.488) (7.303) (7.303) (7.298) (7.382) 

Treat Health Group -8.469 -0.157 -0.173 -0.035 -0.795 

 
(8.870) (8.085) (8.086) (8.090) (8.060) 

Degree-hour bins No No No No Yes 

Apartment fixed effects No Yes Yes Yes Yes 

Day x Week time dummies No No Yes Yes Yes 

Hour x Day time dummies No No No Yes No 

Observations 490,994 490,994 490,994 490,994 490,994 

R2 0.005 0.043 0.044 0.094 0.044 

F-statistic 2.549 3.627 9.117 27.480 8.985 

Number of households 118 118 118 118 118 
Robust standard errors clustered at the household level *** p<0.01, ** p<0.05, * p<0.1 

 

Column I shows a simple comparison between treatment and control groups in the post-period, 

without adjustment for the covariates. We obtain a -9.9% point estimate of the treatment effect in the 

health treatment group, and no significant conservation result in the cost savings group. We then add 

covariates to reduce standard errors. Specifications II to V present the estimates with covariates, which 

are robust to different configurations of fixed effects and controls. In Column V in Table S10, we include 

heating and cooling degree hours in addition to hourly fixed effects. As described above, degree hours 

capture both the magnitude and direction of heating and cooling loads on electricity consumption due to 
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outside weather variation. We note that our use of degree-hour bins instead of hourly dummies leads to 

more conservative estimates of the treatment effects -8.2% treatment effect (Table S10, column V) versus 

-9.8% (Table S10, column IV). Here we confirm why usage of rigorous degree hours might be preferable 

to usage of time dummies alone. 

We also carefully considered the impact of a large effective sample size for this case given a fixed N 

and large T dimension across households. The issue of autocorrelation, cross-sectional correlation and 

finding appropriate controls has been in the household energy consumption literature for some time (9). 

As robustness checks on our estimates, we considered both a range of sampling intervals and clustering 

options in order to distinguish statistically trivial from substantively important treatment effects. First, we 

compared results based on different frequencies. Second, we evaluated some of the pitfalls of panel data 

analysis identified in Bertrand, Duflo, and Mullainathan (7), particularly autocorrelation variance 

estimation. Third, we implemented multi-way clustering as described by Cameron, Gelbach and Miller 

(10) and Thompson (11) to account for dependence in both group and time dimensions. 

 

Table S11. ATE Estimates at Various Sampling Frequencies, OLS  

 
I II III IV V VI 

 
Monthly Weekly Daily Hourly Minute 30 sec 

Post-Treat*Cost Savings Group 5.669 4.111 3.914 2.962 2.961 2.972 

 
(4.808) (4.696) (4.720) (4.455) (4.455) (4.471) 

Post-Treat*Health Group -8.673* -9.131** -9.474** -10.54** -10.54** -10.58** 

 
(4.409) (4.376) (4.429) (4.177) (4.176) (4.191) 

Treat Cost Savings  -0.314 0.4611 0.580 0.994 0.994 0.998 

 
(7.377) (7.478) (7.499) (7.542) (7.542) (7.569) 

Treat Health Group -2.431 -2.186 -1.991 -1.523 -1.523 -1.529 

 
(7.85) (7.859) (7.879) (7.864) (7.864) (7.892) 

Apartment fixed effects Yes Yes Yes Yes Yes Yes 
Degree-hour bins Yes Yes Yes Yes Yes Yes 
Day by Week time dummies Yes Yes Yes Yes Yes Yes 
Observations 855 3,320 21,437 490,994 26,718,555 53,437,110 
R2 0.003 0.023 0.023 0.048 0.024 0.024 
F-statistic 3.176 4.319 11.30 12.93 12.93 12.93 
Number of households 118 118 118 118 118 118 

Robust standard errors clustered at the household level *** p<0.01, ** p<0.05, * p<0.1 
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In order to check for the potential effects of large sample size on our estimates, Table S11 shows 

OLS estimates at various sampling frequencies. To do this, we re-sampled our electricity time series at 

monthly, weekly, daily, hourly, minute, and 30-second intervals. As expected, our clustered standard 

errors decrease as the sampling frequency increases, and we show that our ATE estimates are robust even 

at the lower-frequency sampling rate. While the precision of our estimates is improved by our panel’s 

time dimension, we do not rely on high T to demonstrate statistical significance. As such, we differentiate 

statistically trivial from substantively important effects, particularly for the health group in which the 

ATE estimates range from 8-11%. We report the most conservative ATE estimates in this study.  

Comments on External Validity. Our sample population consists of Los Angeles Department of 

Water and Power (LADWP) customers who pay their electricity bills. They are a California multi-family 

renter population with typical housing characteristics and demographics (age, income, household 

composition, per capita electricity usage, etc.). Table S12 compares the per capita residential electricity 

consumption between University Village residents to LADWP utility customers, California population 

and general U.S. population. Our population has been described as one of five recognizable U.S. lifestyle 

consumers: young urban families –new baby, new car, smaller unit, newer appliances, fast food, frozen 

food, travel for commuting, shopping and visiting (12). Importantly, our participants are part of the 

information generation of consumers who regularly use Internet-based devices in their consumption 

habits. 

Table S12. Per capita residential electricity consumption 
  

Region 2010 Population 
(in thousands) 

Annualized kWh kWh per 
capita 

United States* 308,746 3,749,985 x 106 12,146 
California* 37,254 250,384 x 106 6,721 
LADWP* 1400 8017.65 x 106 5,726 

University Village 0.518 2910.782 5,619 
Source: California Energy Commission data, 2010 

 



 

 80 

Here we compare the housing characteristics of our multi-family renter community with broader 

populations. For example, 42.1% of housing units in Los Angeles County and 30.9% of housing units in 

California are in multi-unit housing structures, making the multi-unit housing communities meaningful to 

study (U.S. Census, 2014). More generally, there are 28.1 million multi-family housing units in the 

United States (Residential Energy Consumption Survey 2013, 2009 data) and 24.3 million of these 

housing units are renter occupied. According to data from the American Community Survey 2013, 52.7% 

of American housing units are renter-occupied. Among these renter-occupied households nationally, the 

average number of occupants was 2.84 persons, which falls very close to the average occupancy of 2.42 

persons in our sample at University Village. We also note that 90% of all multi-family housing units in 

the United States are 1-, 2- and 3-bedroom units (Residential Energy Consumption Survey 2009), with the 

most common type being 2-bedrooms (there are 12.7 million 2-bedroom units in the U.S.). In our sample 

at University Village, all multi-family apartments are 1-,2- and 3-bedroom units, with 2-bedroom units 

being the most common type (N=101 households, 86% of all units in the study). In terms of square 

footage, the average size of multi-family homes in the U.S. (with 5 or more units) is 811 sq. ft. 

(Residential Energy Consumption Survey 2009). In our sample, the average sq. footage of multi-family 

homes at University Village is 835 (ranges from 595-1035 sq. ft.).  

In terms of sample demographics, we also compared the age range of our sample participants to a 

broader population. For example, the median age in our sample of participants (heads of household) is 31 

(ranges from 22 to 47); while the median age in California is 35.2 and in the U.S. is 37.2 (U.S. Census 

2010). We note that persons aged 18 to 44, who are the most common age span of our sample 

participants, make up 38.7% of the entire population in California (14.4 MM people), and 36.5% of the 

U.S. population (112.8 MM people) based on Census data. In terms of their educational attainment status, 

our participants at University Village are more highly educated than the general U.S. population, having 

all received a bachelors degree or higher. We note however, that this is still a population of interest. 

Persons with a bachelor’s degree or higher (age 25+) represent about 1/3 of the population: 29.5% of the 
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population in Los Angeles county, 30.5% of the population in California and 31.7% of the population in 

the U.S. as a whole (U.S. Census 2010). 

Our sample population is also a fast growing demographic in the. Between 2003 and 2013, there has 

been a 28% increase in the population of males seeking advanced degrees and 52.2% increase in females 

seeking advanced degrees. Thus, while educational attainment represents about 1/3 of the population in 

the U.S., our sample participants who are seeking advanced degrees, are also a growing demographic. 

Our final demographic variable we consider is family income. Because income disclosure was 

voluntary, we had very few respondents (N=46, or 38% of population) who provided family income 

information. Among those participants who chose to disclose the information: the median annual 

household income for University Village participants is $50,000 to $74,000 (ranging from under 25,000 

to 100,000 or more). By comparison, the median household income in the U.S. was $51,017 in 2012 (US 

Census 2014), which places our sample participants in the middle range of income in the U.S. Because 

our self-reported income data is a biased sample due to nonresponse, we report the average household 

income for the two nearest Census block groups. The average income for University Village block group 

1 is $51,182 (U.S. Census 2010) and the average income for University Village block group 2 is $61,467 

(U.S. Census 2010), which also places our sample in the mid-range of earners in the U.S. 
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Appendix 2   Proof of Identification 

 

Following Manski (1996), we extend the proof of identification for classical experiments in the case 

of two independent, randomly assigned treatments with known treatment shares (e.g. the fraction of 

households receiving treatment) and high compliance to treatment. Let  denote the randomization 

treatment rule which specifies treatments received by all households j=1,2,...N. For each household, let 

 denote the received information treatment by each household in the study population. The population 

outcome for each household in the study  can be represented as, 

                                         (2.1) 

where 1 is an indicator function, equals 1 if  and 0 otherwise. Under rule , the outcome 

distribution conditional on observed covariates  is: 

 (2.2) 

The first term on the RHS in Eq. 2.2 is the experimentally observed outcome distributions, 

conditioning on  and received information treatments . The second term on the RHS is the 

conditional probability of receiving treatment. Elements of the set of feasible treatments  are 

independent of one another. Write  

   

                              (by law of Total Probability)        (2.3) 

But  by conditional independence, which maintains the statistical 

independence of the household’s behavioral response function  from treatment selection. 

ℜ

 
ξ j

 
y j
ℜ

  
y j
ℜ ≡ y j (t) ⋅1[ξ j = t]

t∈T
∑

 
ξ j = t ℜ

 X

  
P( y j

ℜ | X ) = P[y j (t) | X ,ξ j = t] ⋅ P(ξ j = t | X ), ∀t ∈T
t∈T
∑

 X  
ξ j

 t ∈T

  
P[y j

ℜ(t)] = P[y j
ℜ(t) | X ,ξ j = t]⋅P(ξ j = t | X )

  
+ P[y j

ℜ(t) | X ,ξ j ≠ t]⋅P(ξ j ≠ t | X )

  
P[y j

ℜ(t) | X , ξ j = t] ≡ P[y j
ℜ(t) | X ]

  
y j (⋅)
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For feasible treatments, , the outcome distribution becomes: 

(control) 

                             (treatment 1) 

                            (treatment 2)   (2.4) 

By design, known fractions p1, p2 of the study population receive treatments  and  respectively. 

The ex-ante treatment shares are  for treatment 1,  for treatment 2, and its 

complement,  for the non-treated control group.  

Since treatment shares are known, the probabilites  are identified for each . 

Household outcomes  are also experimentally observed for each treatment group i. Therefore, 

each term on the RHS of Eq. 2.4 is point-identified for the study population.  

It follows that the the identification region, H for all treated households is:  

  (monetary savings or health group)  

  (2.5) 

The identification region, H for non-treated control households is: 

 (control group)   

    (2.6) 

  

  T ={t0 ,t1,t2}

  
P[y j

ℜ(t) | X ] = P[y j
ℜ(t0 ) | X ]⋅P(ξ j = t0 )

  
+P[y j

ℜ(t1) | X ]⋅P(ξ j = t1)

  
+P[y j

ℜ(t2 ) | X ]⋅P(ξ j = t2 )

  t1   t2

  
P(ξ j = t1) ≡ p1   

P(ξ j = t2 ) ≡ p2

  
P(ξ j = t0 ) ≡ 1− p1 − p2

  
P(ξ j = t)  t ∈T

  
P[y j

ℜ(ti ) | X ]

  
H{P[y j

ℜ(t1,2 ) | X ]}

  
= [0,1]∩ {P[y j

ℜ(t1,t2 ) | X ,ξ j = (t1,t2 )]− (1− p1 − p2 )}/ p1 + p2 , P[y j
ℜ(t1,t2 ) | X / (1− p1 − p2 )]⎡⎣ ⎤⎦

  
H{P[y j

ℜ(t0 ) | X ]}

  
= [0,1]∩ {P[y j

ℜ(t0 ) | X ,ξ j = (t0 )]− ( p1 + p2 )}/ (1− p1 − p2 ), P[y j
ℜ(t0 ) | X / ( p1 + p2 )]⎡⎣ ⎤⎦



 

 85 

Appendix 3  Theoretical model 

A Simple Mathematical Model of Energy Saving Bursts 

 

Consider a continuous series of energy savings over time versus a reference consumption level. The 

series S(t) can represent a negative shock in consumption as percentage savings or kilowatt-hours per unit 

time. The change in relative consumption can be expressed in continuous time as the product of two 

exponential functions. The first exponential models the immediate burst in energy savings behavior in 

response to an information campaign, , which we refer to as the novelty effect. The second 

exponential models the gradual decay in energy savings over time,  with repeated 

information provision, which is analogous to exponential or hyperbolic discount models. A is the 

amplitude of the savings and  are non-zero temporal parameters that govern the rise and rate of 

decay analogous to discount functions. By convention, negative values of S(t) means energy savings. We 

assume the rise in savings is fast relative to the rate of decay such as . A functional form for 

energy saving bursts satisfies the following: 

  ,  (3.1) 

where S(t) is the energy savings achieved versus the baseline consumption or reference control group 

over time t. In Eq. 3.1, novelty effects initially dominate after information provision, and then persistence 

effects dominate after the peak conservation (or rebound) occurs. With no consumption rebounds, the 

effects of repeated information provision are assumed to gradually descend back to the reference level 

such as . We do not assume consumers maximize consumption utility; instead we model 

psychology-based mechanisms of novelty and persistence using a value function that captures mental 
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accounting over time. The objective function above is not the only feasible functional form available, but 

provide the best empirical fits to the earliest available field data with high resolution energy metering. 

Peak Conservation. With complete or partial compliance to a given information strategy, peak 

energy saving occurs when . We refer to this as peak conservation. 

 

   (peak conservation time) (3.2) 

The maximum energy savings achieved S(t*) at peak conservation is: 

 

Before we characterize the savings behavior in greater detail, let us parameterize the model to allow 

for model calibration and statistical fits. Consider peak conservation along the time axis as  

and the resulting peak shape as , which gives a relative measure of learning to decay rate of 

energy savings. By direct substitution, we can express Eq. (1) as: 

  ,  (3.3) 

In this model of dynamic behavior, time is strictly positive t >0 and our response function is 

continuously differentiable.3 Under this equivalent representation in Eq. 3.3, we can fully characterize the 

consumption shock with just three intuitive parameters governing the rise, peak and decay of energy 

                                                        

3 Continuous differentiability is reasonable because we have real-time electricity metering. 
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savings bursts. First, the A parameter adjusts the amplitude of the savings. Second, the  parameter 

defines the peak shape, where generally  implies the onset of energy savings will be fast relative 

to the decay. Third, the  parameter stretches the timescale, where higher  values mean longer 

response times to reach peak energy savings. Figure 1 shows the effects of individual parameters on this 

theoretical model of energy saving bursts expressed by Eq. 3.3.  

Feedback Delays. When feedback delays are short, we implicitly set the initial time to receive 

information, to, as zero. Examples of consumer feedback delays in energy information might include, for 

example, the time delay to receive home energy reports in the mail, or the time delay to receive e-mail 

alerts or view billing records online. Including an initial feedback delay at t0, the expression for energy 

savings can be expressed more generally as, 

   for   (3.4) 

A note on exponential response functions. Observations that rapid behavioral responses to 

information stimuli change exponentially over time was initially formulated in early behavioral theories 

of impulsive behavior and impulse control (Ainslie 1975). Psychologists have also used exponential fits 

to model impulsive behaviors in animal studies for instance in pigeons and other species (Chung 1965; 

Killeen 1968; Chung and Hernstein 1967) and clinical studies in humans (Mowrer and Ullman 1945; 

Ainslie 1975). These studies generally show highly concave response curves that either exponentially rise 

or decline over time. These parametric choice experiments have generally been unidirectional (either 

exponentially increasing or decreasing) and have generally focused on social learning or time discounting. 

We describe a new application in mental modeling with two distinct temporally separable mechanisms. 

The following figures illustrate the temporal fits and numerical simulation obtained using the model of 

Eq. 3.4.   
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Numerical simulations 

 

 

 
Fig. S4. Effects of parameters on hypothetical model of energy saving bursts 
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Appendix 4  Supplement on appliance dynamics 

 

 

 

 

Fig. S5. Dynamic treatment effects at the appliance level (Continued on next page) 
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Fig. S5. (Continued) Dynamic treatment effects at the appliance level. 
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Appendix 5 Supplement on Conservation Messaging 

 
This chapter supplement summarizes results of a series of flash survey questionnaires administered 

at UCLA from October 2011 to January 2012. The purpose of these “Flash Surveys” was to evaluate and 

select treatment messages for the 2012 University Village field experiments in residential electricity use. 

The challenge posed was how to design messages to motivate conservation at the individual level. The 

approach outlined here emphasizes personal relevance for unobserved external impacts. 

This supplement analyzes the effectiveness of behavioral messaging in promoting stated intent, and 

not actual behavior, which is covered in the main text in Chapter II. I will describe the questionnaire, the 

audience and results. I use ordered choice models to identify willingness-to-save estimates and thresholds. 

The approach is easily scalable to larger study populations or consumer segments.  

The Messages. In this section, I describe several candidate messages, designed to connect the 

individual with one or more dimensions of externalities (social costs) associated with individual 

electricity use. The communication strategy begins with the recognition that household electricity is 

largely ‘invisible’ to the consumer and disconnected from the impacts of marginal electricity production, 

particularly emissions and health outcomes as a result of repeated air exposure to pollutants in the 

environment. We appeal to six distinct treatment messages, which are randomized and presented to 

respondents as self-administered prompts. One message describes the most obvious incentive to conserve 

energy—saving money. The remaining five messages make up other classes of nonmonetary incentives, 

which can appeal to higher order associations and cognition. Each message contains a peer comparison 

(how much energy is consumed relative to a similar neighbor or some reference level), and an impact 

described (e.g. what additional impacts their individual consumption may be causing). 

Peer Comparisons. In all cases, treatment messages are standardized with peer comparisons of the 

following form: “Last month, you used 66% more electricity than your efficient neighbor…” This type of 

language is commonly referred to as comparative or normative feedback, and has gained broad use in (1) 
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small-scale conservation lab or field studies, typically psychology and decision sciences and (2) utility-

scale conservation pilot projects, typically economics and related fields. Whereas the peer feedback 

component between messages is standardized, the second half of each message features a distinct end use 

impact or equivalence.  

Impacts Described. Each impact described in the second half of each conservation message is 

framed in such a way to maintain independence of tested concepts. For example, if conserving energy 

helps reduce emissions, only the emissions component of the impact is described in turn, regardless of 

whether collective conservation actions might also along other dimensions save money or reduce cases of 

childhood asthma. More importantly, each impact described is presented in numerical and scientifically 

verifiable terms. We use publicly available databases for calculating effect sizes and emissions 

equivalencies for all hypothetical electricity reductions. In particular, we derive our numbers using 

emission factors from the Emissions & Generation Resource Integrated Database (eGRID) maintained by 

the U.S. EPA.4 

It is important to note that household conservation actions are not generally assumed to affect 

baseload emissions (that is, emissions from continuously running power plants), but rather, non-baseload 

emissions (power plants that are brought online as necessary to meet excess demand). From a marketing 

perspective, these reductions in kWh must then be converted into familiar, contextually relevant and 

accessible consumer language. For instance, we can appeal to the number of additional smoke stacks 

fired, additional cars on the road, or the equivalent number of trees planted. The job of effective 

communication strategies therefore, is to translate this verifiable scientific data into salient dimensions 

that can be easily understood, have a high degree of credibility, and that can be individually relevant for 

inducing appropriate behavioral responses (e.g. conservation actions) broadly within the consumer base. 

Note these simple principles apply to both economic incentives like cost savings (are 100 pennies worth 
                                                        

4 eGRID is a national database of the environmental characteristics of almost all electric power generated in the United States. Environmental characteristics include 

air emissions for common greenhouse gases, NOx, SOx, CO2, CH4; emissions rates; net generation; resource mix; and other attributes. eGRID was accessed on 

2/1/2012 here:  http://www.epa.gov/cleanenergy/energy-resources/egrid   
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the trouble?) and non-economic incentives (do I care about saving trees?). Both types of messages are 

tested in this supplement.  

One important challenge in communicating to consumers is that effect sizes can be small at the 

margin (0.5% of a car for example) and so, often times, the expected costs and benefits must be 

aggregated over large distances, populations or time periods for salience at the consumer level. In this 

survey questionnaire, we do not vary the effect sizes within a message, as we are only interested in 

comparing conservation preferences for these emissions equivalencies. We fix the relative consumption to 

represent realistic scenarios and numbers.   

 The Survey. Table S13 lists the specific conservation messages tested. The flash surveys were 

administered online using Qualtrics survey software. Self-administered web-based data collection is 

particularly fitting because e-mail and website communications are the main communication channels in 

the University Village study. Three iterations of the questionnaire were conducted online over a span of 

four months. 5  Questionnaires were sent out anonymously via private link invitations distributed 

throughout the UCLA community. Survey invitations were not sent to residents of the UCLA University 

Village apartments to prevent contamination in the experimental study. Respondents were eligible to 

participate in the survey questionnaire only if they pay electricity bills at home. No other screening 

questions were used, although this could be easily be modified in a larger survey with broader consumer 

targeting or segmentation. Closed questions were administered on 7-point Likert scales and were 

interpreted as ordinal data to allow for rankings. The results summarized here correspond to the third 

iteration of the questionnaire—Flash3 following various rounds of pre-testing.  

No cash incentives or payouts were offered for participation in the survey questionnaire.  

 

 
                                                        

5 Flash1 pre-test was in the field October 2011, Flash2 in November 2011 and Flash3 in January 2012. Each iteration incorporated minor messaging changes and additions in 

response to feedback from respondents. Each survey maintained independent sampling populations. 
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Table S13. Treatment messages, flash survey 

Impact Message 
Financial savings "Last month you used 66% more electricity than your efficient neighbors. 

In one year, this will cost you $34 dollars extra.” 
Health "Last month you used 66% more electricity than your efficient neighbors. 

You are adding 610 pounds of air pollutants which contribute to health 
impacts such as childhood asthma and cancer." 

Trees "Last month you used 66% more electricity than your efficient neighbors. 
Over a year, your extra emissions are equivalent to removing 7 trees in 
your community." 

Cars  "Last month you used 66% more electricity than your efficient neighbors. 
Over a year, this is equivalent to adding 1 car to the road." 

Emissions "Last month you used 66% more electricity than your efficient neighbors. 
Over a year, this is an additional 609 pounds of CO2 emissions from a 
coal-fired power plant." 

Developing  
Country 

"Last month you used 66% more electricity than your efficient neighbors. 
Over a year, the extra energy would be enough to provide power to 3 
Kenyan citizens." 

 
 
 

Table S14. Respondents’ stated preference for willingness to save 
(strongly disagree=1, strongly agree=7) 

 I would save energy.     

Dimension 
(% respondents 
who Agree or 

Strongly Agree) 

(% respondents 
who Disagree or 

Strongly Disagree) 
Mean S.D. Min Max 

Health 60.0 6.4 5.454 1.542 1 7 
Financial savings 48.2 8.2 5.318 1.602 1 7 
Trees 46.4 7.3 5.127 1.527 1 7 
Emissions 42.7 8.2 5.054 1.5621 1 7 
Cars 40.2 10.7 4.795 1.709 1 7 
Developing Country 38.7 10.8 4.802 1.683 1 7 

N=110 
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 Table S14 shows descriptive statistics, the percentages, means, standard deviations and min/max for 

all tested messages. Responses were coded by level of agreement from negative to positive (Strongly 

Disagree=1, Strongly Agree=7). The ‘Health’ and ‘Financial savings’ strategies are our top two ranking 

messages by stated preference. Figure S6 lists the results by top 2 boxes, those percentages of respondents 

who agree or strongly agree that they would save energy after reading the randomly assigned message. It 

turns out that ‘Cars on the Road’ and ‘Developing Country’ were the lowest scoring messaging strategies 

with approximately 11% of respondents rating these messages in the bottom 2 levels of agreement in 

willingness-to-save.  

 

 
“After reading this message, I would save energy.” (N=110) 

 
Fig. S6.  Health and Financial savings are the top ranking messages 

 

 

 In the next sections, we present the results of our stated preference survey scored along three 

dimensions, namely, Comprehension, Believability, and Relevance. 

 Comprehension. If study subjects do not easily understand or are confused by our treatment 

messages in any way, maybe because of poor wording, poorly defined terms or unduly complicated 

language—they will not easily be motivated to change behavior. This might be a considerable challenge, 
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given the fact that the language surrounding energy and conservation can be highly technical. For 

example, what is the difference between saving power in watts and saving energy in kilowatt-hours? For 

ordinary consumers who do not work in the electric power industry or may not be as familiar with the 

technical language, some additional education or specialized communication may be necessary to get an 

intuitive understanding. What does saving an additional 10 kilowatt-hours per month mean anyway? The 

cognitive aspects of conservation messaging can be considerable. I argue that comprehension at the 

consumer level is a barrier that can crowd out statistical identification of treatment effects in experimental 

studies. This barrier is not widely discussed in the literature, although the issue is sometimes bundled with 

problems of consumer inattention or imperfect information. 

We tested each of our six conservation messages for stated Comprehension. Respondents were 

simply asked to rate their level of agreement (1=strongly disagree to 7=strongly agree) with the following 

statement: “I understand this message.” Figure S7-A contains the tabulated results. Respondents who 

rated in the Top 2 boxes (Agree=6 or Strongly Agree=7) were in the range of 78-93% and all tested 

messages show a high level of stated comprehension, although the standalone emissions and developing 

country messages could be improved. Such a favorable response rate to self-administered prompts is 

surprisingly high for conservation related messaging, and is at a level consistent with rule-of-thumb in 

marketing practice. We expect respondents who state a high level of comprehension to be more likely to 

state a willingness to save energy as a necessary but perhaps not sufficient condition.  

Believability. The next dimension we tested is Believability. Here we test the perceived credibility of 

the stated impacts. This turns out to be an incredibly important dimension not just for conservation related 

messaging, but also for other types of green marketing studies generally. ‘Believability’ or credibility 

might also be an important communication challenge to consider for other reasons. Conservation 

messaging is a special type of communication in the sense that behavioral responses require collective 

action. How credible are the external impacts from individual use? Can any one individual actually make 

a difference? This is a complex behavioral challenge because even if consumers understand the 
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importance of conservation, if the stated impacts are not fully credible—in other words, if I don’t believe 

that through my actions I can actually save 100 pennies or 100 pounds of air pollution—I may not be 

motivated to act. We expect ‘Believability’ to be positively correlated with respondents’ stated 

willingness to save energy. How should we test for this in our treatment messages? After each 

conservation message, we asked for ratings on the level of agreement with the following statement: “The 

impacts described are realistic.” 6 Figure S7-B shows the results. The cost savings message had the 

highest level of agreement on believability (Top 2 boxes were 78.2%), although not all respondents felt 

the energy savings were fully credible. By contrast, the developing country message had the lowest level 

of agreement on believability. Only 53% of respondents agreed or strongly agreed that the impacts 

described were realistic.  

In earlier iterations of the questionnaire, the Saving Trees message was ranked lowest in this 

category: “…Over a year, your extra emissions are equivalent to removing 7 trees.” We added the 

qualifying words “in your community” at the end of the impact message, so that the final communication 

stated: “…Over a year, your extra emissions are equivalent to removing 7 trees from your community.” 

This subtle word choice had the effect of increasing the importance of the trees message and the wording 

change boosted its relative ranking versus the other messages. One important insight is that this subtle 

word change effectively made the perceived social costs more personal, as we invariably do with the 

health messaging approach. In our statistical analysis, the word change also increased the likelihood of 

our respondents’ stated willingness to save energy. Our “7 Trees in your community” example 

highlights the fact that subtle word choice and framing can have an enormous influence on stated 

conservation preferences and the perceived value of conservation actions by individuals. To 

motivate conservation behavior, it is not simply enough to give consumers feedback—by conserving 

energy one can save 100 pennies—it’s also very important how those 100 pennies are described.  

                                                        

6 We also added the following qualifying language on each screen: “Realistic means the impacts described are believable.” 
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Ranking Conservation Messages.  
 

S7-A. “I understand this message.” 

 
 

S7-B. “The impacts described are realistic.” 

 
 

S7-C. “The message is relevant to me.” 

 
Fig. S7. Rank ordering messages on comprehension, believability, and relevance (N=110) 
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Relevance. Our third and final dimension we consider is Relevance. By relevance, we mean the 

relative importance the stated impacts have on an individual’s disposition toward the message. Relevance 

in this context is very closely related to the marketing concept known as “salience” which often stands for 

perceived differences in consumer attitudes. If measured correctly, relevance or salience can be quite an 

effective measure for what psychologists call predictive validity. Respondents were asked to rate their 

level of agreement (1=strongly disagree to 7=strongly agree) with the following statement: “This message 

is relevant to me.” Figure S7-C contains the tabulated results.  Our Financial savings and Health message 

were our top two ranking messages, (Top 2 boxes, 69.1%). We predict high scores in Relevance ratings to 

be positively correlated with respondents’ stated willingness to save.  

For simplicity in communication, we classify our 3 measures as follows: “I understand this message” 

means Comprehension; “The impacts described are realistic,” means Believability; and “The message is 

relevant to me,” means Relevance. Table III shows results of these 3 dimensions on our respondents’ 

stated willingness to save energy.  

Survey results. We run ordered logit models for each message type, and we report coefficients in 

log odds and the odds ratios. From Table S15, we see that all significant odds ratios are greater than 1, 

which implies higher levels of agreement with our tested dimensions are positively correlated with a 

stated willingness to save. For the cost savings message for example, a 1-unit Likert scale increase in 

Believability ratings implies respondents were 2.06 times as likely to state a willingness to save energy, 

holding all else equal. Similarly, for a 1-unit increase in Relevance ratings, respondents were 1.51 times 

as likely to state a willingness to save energy. For the Health message, estimates from odds ratios are 1.98 

and 2.08; so, high Believability and Relevance ratings on Health implies that survey respondents are 

twice as likely to state a willingness to save energy (See Table S15 for the full results). Even at the 

current sample size (N=110), simply ‘understanding’ the message, especially for the standalone emissions 

message, is not a sufficient promoter of Willingness-to-save.  
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In summary, these results show that survey respondents are 1.5 to 2.8 times as likely to state a 

willingness-to-save energy when the treatment message is “Relevant to me” and/or when “Impacts 

described are believable.” Our discrete choice data have allowed us to extract revealed preference 

orderings for subsequent predictions about which message(s) might be most effective in an experimental 

setting. 

Table S15. Ordered logit regressions of respondents’ willingness to save energy. 
“After reading this message, I would save energy.” 

 

Dimension 
(1) 

Cost Savings 
(2) 

Health 
(3) 

Trees 
(4) 

Emissions 
(5) 

Cars 

(6) 
Developing 

country 

 Coef. 
Odds 
ratio 

Coef. Odds ratio Coef. 
Odds 
ratio 

Coef. 
Odds 
ratio 

Coef. 
Odds 
ratio 

Coef. 
Odds 
ratio 

I understand this 
message. 

.0761 
(.2332) 

1.079 
(.2516) 

-.0166 
(.2347) 

.9835 
(.2308) 

.2190 
(.2275) 

1.244 
(.2832) 

.1464 
(.1964) 

1.157 
(.2274) 

.2537 
(.2112) 

1.288 
(.2722) 

.0305 
(.1829) 

1.031 
(.1886) 

The impacts 
described are 

realistic. 

.7242** 
(.2353) 

 
2.063** 
(.4853) 

 
.6867*** 
(.1802) 

1.9872*** 
(.3581) 

 
.5040* 
(.2215) 

1.6554* 
(.3666) 

.5676* 
(.2328) 

1.764* 
(.4107) 

.5444** 
(.1977) 

1.723** 
(.3408) 

.6421*** 
(.1791) 

1.900*** 
(.3403) 

This message is 
relevant to me. 

.4133* 
(.1666) 

 
1.511* 
(.2519) 

 
.7357** 
(.2552) 

 
2.0871** 
(.5326) 

 
1.0542*** 

(.2184) 
2.869*** 
(.6266) 

.7888*** 
(.1498) 

2.200*** 
(.3296) 

.5983*** 
(.1502) 

1.819*** 
(.2731) 

.7460*** 
(.1624) 

2.108*** 
(.3424) 

 χ
2  (d.f.=3) 54.16 57.15 89.08 70.18 63.76 85.06 

Log likelihood -155.41 -150.96 -141.43 -154.32 -170.96 -154.35 

Pseduo R2 0.1484 0.1592 0.2395 0.1853 0.1572 0.2160 

N 110 110 110 110 110 110 

Standard errors in parentheses. Significant to * p<.05, ** p <.01, *** p<.001 

 

In summary, we conducted a stated preference survey to identify willingness to save estimates prior 

to the experiment. We identified three important dimensions—Comprehension, Believability and 

Relevance—and used these to reveal a rank ordering of preferences for conservation messages in our 

target population. While all candidate messages scored high in stated Comprehension, survey respondents 

were 1.5 to 2.8 times more likely to state a willingness-to-save energy when the treatment message is 

“Relevant to me” and when “Impacts described are believable.” These ratings were strongest for health 
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and cost savings. Simply ‘understanding’ the message or the impacts described, especially for the 

standalone emissions messaging, is not a sufficient motivator of willingness-to-save. Our analysis 

suggests that cost savings and health are the two best messaging alternatives. These two approaches were 

therefore carried into the experimental study.  
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III 

EVALUATING PERFORMANCE IN SOCIETAL GRAND CHALLENGES:  

THE UNITED STATES DEPARTMENT OF ENERGY  

BETTER BUILDINGS CHALLENGE 
 

he diffusion of energy efficient technologies is increasingly important for firm competitiveness 

and productivity. Yet our ability to estimate causal relationships between targeted policies for 

technology adoption and performance outcomes has been limited. In this chapter, we use quasi-

experimental techniques to investigate the performance of information-based programs unified under the 

U.S. Department of Energy’s Better Buildings Challenge. Using a dataset of 178,777 commercial 

buildings performance data resulting from a public-private partnership in the City of Los Angeles, we 

analyze energy savings and economic returns to technological investments. We use evolutionary search 

algorithms to match commercial buildings on observable characteristics that define credible 

counterfactual consumption scenarios, which serve as the basis for performance comparisons. Our results 

suggest energy savings in the range of 18-25% across 35 million square feet of commercial real estate 

space for the buildings that implemented the energy audit program. We observe an energy efficiency 

project implementation rate of 42% for projects identified through government sponsored energy audits. 

We discuss program level barriers and drivers of success.  

 

Keywords: grand challenges, innovation, energy efficiency, matching algorithms 

 

 

T 
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3.1   Introduction 

Grand challenges have emerged in recent years as a way to inspire and organize research and 

innovation toward major societal problems. Grand challenges serve to capture the public imagination on 

major unresolved problems facing society such as global climate change, pandemics and communicable 

disease (Omenn, 2006). These mission-led approaches in research and innovation policy can span a wide 

array of fields from engineering and computer science, to medicine, global health and the environment. 

How effective are grand challenges in stimulating new technical or behavioral solutions? Assessing the 

degree to which grand challenges will have a measurable impact on the trajectory of technological 

progress will require deeper thinking about counterfactual scenarios and outcomes. 

The National Research Council defines grand challenges as “major scientific thrusts…that offer 

potential for major breakthroughs on the basis of recent advances, and are feasible with current 

capabilities, given a serious infusion of resources” (NRC, 2001). For many societal grand challenges, 

establishing causal links between specific challenge-based interventions and changes in performance or 

technological trajectories will be nontrivial for impact evaluation. This is because the costs and benefits of 

technological investments will accrue to many actors, which will require access to large amounts of 

disparate data on costs and benefits in new areas where public statistics have been scant. Technological 

progress on grand challenges will also require both public and private spending, especially for 

implementing new innovations. This stands in contrast with prior mission-oriented programs such as the 

Apollo mission or the Manhattan project, which were primarily publicly funded and in which government 

was the primary customer (Mowery, Nelson, & Martin, 2010). This chapter provides a basis for 

understanding performance in the context of the U.S. Department of Energy (DOE) Better Buildings 

Challenge, a national policy directive aimed at modernizing existing buildings and infrastructure.  

We evaluate demand side innovation in response to information-based programs in the commercial 

buildings sector. Using building-level micro data from the City of Los Angeles Better Buildings 

Challenge (LABBC), a public-private partnership aimed at driving energy efficiency in buildings, we 
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estimate energy savings and economic returns to technological investments. However, participating 

buildings in the program are not randomly assigned and we therefore use matching techniques to evaluate 

impacts versus a reference set of buildings with comparable characteristics. We use evolutionary search 

algorithms to match buildings on observable characteristics, which serve as the basis for performance 

comparisons. Our results suggest energy savings in the range of 18-25% across 35 million square feet of 

commercial real estate. We observe a project implementation rate of 42% for projects identified through 

government sponsored audits. We discuss program level drivers and barriers of success.  

 

3.2  Grand challenges: the demand side 

Several interrelated grand challenges have been announced on restoring and improving urban 

infrastructure, particularly approaches that consider the long-run sustainability of energy, water and 

transportation systems that fundamentally support communities (NRC 2001, NAE 2008). On resource use 

in the existing buildings, the U.S. Department of Energy announced the Better Buildings Challenge in 

2009 with an aim to enhance innovation and drive greater energy efficiency in the economy. The program 

supports U.S. commercial and industrial building owners to voluntarily commit to reducing energy 

consumption 20 percent or more over 10 years. The innovation challenge is to increase the rate, quality 

and effectiveness of building renovation to reduce energy intensity with large expected social benefits in 

reducing energy use externalities.  

The Better Buildings Challenge can be understood more generally in the context of demand side 

policies, which have grown in popularity in recent years in both the U.S. and E.U. (Edler & Georghiou, 

2007; Foray, Mowery, & Nelson, 2012). The idea is that when private and public actors express a 

concentrated need, it can thus trigger innovation in response to market demand (Mowery, & Rosenberg, 

1979; von Hippel, 1986; Edquist, & Hommen, 1999). Demand side policies address both the need for 

market implementation of new innovations (e.g. responsive demand) and also signal new functional needs 

to producers and providers of technology (e.g. triggering demand). 
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In stimulating demand for energy efficient technologies, there is an extensive literature describing 

under-investment in the economy due to structural, informational and other market barriers (Jaffe & 

Stavins, 1994a, 1994b; Gillingham, Newell & Palmer, 2009; Dietz, 2010). This so-called energy 

efficiency gap has stirred empirical debates over the existence and magnitude of this investment gap 

along with theoretical discussions about the role of incentives, information and other market-based 

technology policies (Allcott & Greenstone, 2012; Gillingham & Palmer, 2014). Informing agents of 

profitable investment opportunities and offering technical assistance with their implementation alleviates 

asymmetries of information, thereby increasing opportunities for conservation and reducing pollution 

externalities (Newell, Jaffe & Stavins, 2006). Search costs and imperfect information can impede sellers 

from effectively conveying the benefits to potential buyers of technologies (Howarth & Sanstad, 1995). 

The economic rationale for reducing these information asymmetries lies in the public goods aspects of 

information programs. Many energy efficiency programs work by providing subsidies to households and 

firms to adopt new technologies. The U.S. Department of Energy estimates that $34 billion dollars were 

spent by electric utilities on subsidies between 1995-2013, with spending increases every year from 2004 

to 2012 (DOE, 2013). However, designing incentives to spur investment and making causal inferences 

when these investments do occur are two very different tasks. Despite the importance of identifying 

linkages between incentives and behavior in meeting policy goals, there is surprisingly little direct 

evidence on private returns to energy efficiency investments (Allcott & Greenstone, 2013). Here we 

evaluate the effects of voluntary and information-based programs targeting social returns from energy 

efficiency investments. We investigate measures of cost effectiveness in strategic investment decisions by 

firms. 

 

3.3   Impact Evaluation 

What would technological progress be like in the absence of mission-oriented policies? The 

difficulty arises in the fact that participating firms in grand challenges rarely constitute random samples. 
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We also never directly observe the alternative states among participants in which an investment or 

participation decision is not made. These issues, non-random selection and how to construct a valid 

control group for counterfactual analysis have been an ongoing challenge in the evaluation literature 

(Klette, Moen, & Griliches 2000). Often, the more aggregate the level of analysis (e.g. policies, countries, 

regions), the harder it is to identify a proper control group. On the other hand, the more disaggregated the 

level of analysis (i.e. individual technologies or projects) the harder the data is to obtain. Other important 

challenges include the ability to establish an appropriate baseline, the inadequacy of public statistics to 

capture unobserved group and time varying characteristics, and blurred boundaries between desired 

implementation outcomes and measured impacts (Edler, Georghiou, Blind, & Uyarra, 2012). Further, 

cross-sectional analyses of programs can be misleading because changes in outcomes over time can be 

endogenous with technology adoption, pricing and consumer preferences, all of which limit our ability to 

make causal inferences. Prior evaluation studies have largely been based on non-experimental, 

observational data. These are primarily case studies of a select group of firms or industries; or interviews 

with program managers and field experts (Jaffe, 2002). This kind of expert testimony from professional 

evaluators often leads to upward biases in evaluation efforts because of the potential for favorable 

evaluations to lead to continued programmatic funding (Klette et al., 2000).  

Recent advances on the use of econometric techniques with firm-level data have been developed to 

mitigate some of these issues (Imbens & Wooldridge, 2009; Angrist & Pischke, 2010). Scholars have 

argued that the most rigorous approaches in the evaluation of energy efficiency programs for example is 

to use randomized controlled trials (Allcott, 2011; Allcott & Rogers 2014; Ayres, Raseman, & Shih, 

2013) and natural or quasi-experimental techniques (Boomhower & Davis, 2014; Ito, 2015). For example, 

Asensio and Delmas (2015) designed experimental framing interventions to motivate significant energy 

savings behavior in a California residential field site using nonmonetary health information disclosures. 

When randomization in treatment assignment is not possible, quasi-experimental techniques such as 

matching strategies and regression discontinuity (RD) designs can overcome some criticisms on the 
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ability of prevailing methods to effectively control for confounding variables in regressions based on non-

experimental, observational data (Imbens & Woolridge, 2009; Heckman, Ichimura, & Todd, 1998). For a 

discussion of strengths and limitations of experimental research in policy analysis, see surveys by Imai, 

King and Stuart (2008); Barrett and Carter (2010). Recently, scholars have called for better research 

designs that can allow for the study on the effectiveness of incentives based on ex-post evaluation of data 

(Allcott & Greenstone, 2012; Mathew, Dunn, Sohn, Mercado, Custudio, & Walter, 2015). In the next 

section we use micro level data and several matching algorithms to evaluate the performance of 

technological investments by private building owners and managers. We evaluate Better Buildings 

Challenge improvements in energy intensity (kWh per square foot) and building performance upgrades in 

commercial buildings. These impacts can also be translated into other performance measures such as 

economic returns, emissions reductions, or avoided pollution or health costs. We also benchmark 

performance outcomes versus complementary voluntary green building certification programs, LEED and 

Energy Star to evaluate strategic choices between competing approaches for efficiency goals. 

 

3.4  Los Angeles Better Buildings Challenge  

The City of Los Angeles was among the first and largest metropolitan cities selected to participate in 

the Better Buildings Challenge program. The LABBC is managed through a utility funded public-private 

partnership and is believed to be a model for other cities in stimulating regional innovation. The LABBC 

offers building owners and managers a number of services including: technical assistance, subsidized 

energy audits, benchmarking, project development support, energy measurements and verification, and 

hands-on assistance on financing, rebates and other available incentive programs. Beginning in 2011, 

eight independent auditing firms conducted subsidized ASHRAE Level II energy audits in participating 

buildings totaling 35 million square feet of commercial real estate across the City. A central concern with 

third party auditing is that independent auditors may invariably face a conflict of interest between 

providing favorable reports and maintaining business with client firms (Duflo, Greenstone, Pande, & 
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Ryan, 2012). Indeed, when firms can directly hire their auditing firm, they can bid for a favorable report 

and there is some prior evidence that this can undermine information provision. LABBC differs from 

other energy efficiency programs in that the entire program, including assignment of auditing firms to 

participating buildings owners was managed through external agents. The public private partnership acts 

as a conduit between technology providers, and the project engineering and project finance communities; 

with a primary objective to grow the pool of motivated building owners and managers, by reducing 

informational barriers and search costs. This includes standardization of all audit reports from 

engineering-based technical recommendations into financial investment language for proposed energy 

savings measures and investment risk profiles. 

 

3.5  Data Sources 

Our data include monthly electric utility data for all commercial accounts in the Los Angeles 

Department of Water and Power (LADWP) service territory from 2005-2012. This corresponds to a 

universe of 178,777 commercial buildings (16.5 million building-month panel observations) including 

pre- and post- challenge program participation. We also acquired detailed building stock characteristics 

from Costar, the premier commercial real estate database, which provides information such as physical 

and location characteristics, occupancy rates, building certifications, and other measures of building 

quality. We also obtained weather station data from NOAA, which allow us to calculate heating and 

cooling degree-days to the nearest weather station. See Delmas, Fischlein, & Asensio (2013) for a 

discussion of the importance of weather and seasonality controls in modeling electricity consumption 

data. Finally, we have detailed project data for 91 LABBC participating commercial buildings that 

received subsidized energy audits as part of the LABBC program. These total approximately 35 million 

square feet.7 We also benchmark energy performance of Energy Star and LEED certified buildings, which 

                                                        

7 For a detailed listing of participating buildings see http://la-bbc.com/projects/ (Accessed April 8, 2015) 
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have also invested in energy efficiency throughout this time. We conduct the analysis at the building-

level.  

 

3.6  Results & Discussion 

 Figure 1 presents maps of the sampling distributions of participating buildings across the City for the 

LABBC audits, LEED and Energy Star certified buildings. We observe program participation in each grid 

across all city council districts. The largest density of participating buildings by square footage is 

concentrated in areas of major commercial activity. This corresponds to the east city center for the largest 

concentration of LABBC audits and West Los Angeles for the largest concentration of LEED and Energy 

Star buildings. An important observation from Figure 1 is that given the underlying spatial heterogeneity, 

a simple linear or radial distance from city center would be a relatively ineffective matching strategy. 

Buildings close together are not necessarily similar in observable characteristics or in energy intensity. 

Also, given the diverse physical and occupant characteristics, it is necessary to test for imbalance in pre-

treatment covariates in order to reduce any model dependence and potential for bias in the statistical 

estimation of treatment effects.  

 

Table 1. Comparison of participating and non-participating buildings 
 

LABBC 
Audit  

Indicator 

kWh 
per month 

kWh per 
Sq. Ft. 

Building 
Class 

(1=A, 2=B,  
3=C, 4=Z) 

Sq. Ft. 
Taxes 

per  
Sq. Ft. 

Year  
Built 

Renovated 1= 
Yes 

Climate Zone 
(1=cool zone, 
2= hot zone) 

0 5,601 0.906 2.742 23,307 3.12 1959.0 0.00901 1.57302 
1 178,932 1.687 1.548 262,584 3.17 1969.3 0.28365 1.55646 

Number of 
Observations 

16,580,737 2,345,642 1,316,797 2,345,645 2,279,141 2,296,775 16,618,680 16,580,737 

 

 

Table 1 presents a descriptive comparison of both participating and non-participating buildings. The 

reference group for this initial comparison is a general commercial utility customer. We see significant 
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differences in observable characteristics. Audited buildings are generally larger (by square footage), more 

energy intensive (in kWh per month and kWh per square foot), and are more likely to have been 

renovated. In terms of building vintage, the average year of construction for participating buildings is 

1969 and for an average non-participating building is 1959. While the groups are reasonably balanced by 

billing climate zone and average taxes paid per square foot, participating and non-participating buildings 

are also significantly different in energy intensity during historical baseline years 2006-2009. This implies 

that a reference group comparison based on the average commercial building in the City would prove an 

ineffective reference group for counterfactual analysis, even after controlling for observable 

characteristics.  

These baseline differences are not too surprising and likely reveal targeting by program managers 

and administrators, and self-selection into the challenge program. An OLS regression that includes 

building fixed effects would therefore be severely biased because after challenge participants have 

adopted new energy efficient technologies following program audits, the treatment effect estimates would 

also reflect bias in the underlying distributions. 
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Figure 1.  
Distribution of Commercial Building Types (continued on the following page) 

 

 

 
 

A. LABBC Building Audits 
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Figure 1. (Continued) 
Distribution of Commercial Building Types 

 

 

 
 

 
B. LEED Certified Buildings 
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Figure 1. (Continued) 
Distribution of Commercial Building Types  

 

 

 
 

C. Energy Star Certified Buildings 
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An important insight behind the use of matching techniques is to analyze observational data by 

approximating as closely as possible a completely randomized experiment. This is done by examining 

observable explanatory variables to adjust for differences in outcomes unrelated to the treatment 

(Heckman & Navarro-Lozano, 2004). Implementing matching estimators is most effective in the case 

when there is a large available pool of possible matches and when the underlying covariate distributions 

reveal overt bias due to systematic differences between treatment and the reference group (Dehejia & 

Wahba, 2002) as shown in the previous section.  

Table 2 lists the most important observable building characteristics from Costar that have been 

merged with the monthly consumption data. If the selection process or behavioral response function 

depends on other unobserved factors, this could be problematic for the estimation of causal effects 

(Heckman, Ichimura, Smith, & Todd, 1996). For this reason, we also include the Costar building rating 

(scored from 1-5), which stands as a general proxy for building quality and captures a number of 

unobservable characteristics.  

 
 Table 2. List of Balancing Characteristics 

 
Observable Building Characteristic 

Physical Building Characteristics 
 Year Built 
 Year Renovated 
Building Location/Climate 
 Climate Zone 
Occupancy Characteristics 
 Rentable Building Area (Sq. footage) 
 Property Type 
 Occupancy Rate (Percent leased) 
Building Quality 
 Building Class 
 CoStar Rating * 
Industry Characteristics 
 SIC Industry Code 
 Utility Customer Class 
Building Operating Expenses 
 Average Rent 
 Taxes per Sq. Ft. 

 
* The CoStar building rating system is a national rating system for commercial buildings, which captures a number of 
characteristics including architectural attributes, structural and systems specifications, amenities, site and landscaping 
treatments and detailed property type specifics. Ratings reflect commercial real estate quality as valued by investors. 
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The CoStar rating is a national rating system for commercial buildings. It captures a number of 

characteristics including architectural attributes, structural and building system specifications, amenities, 

site and landscaping treatments and other detailed property type specifics. Ratings reflect commercial real 

estate quality as valued by investors. In observational studies, variables that affect the response outcome 

can be distributed unequally across treatment and reference groups. 

We implement the Genetic Matching algorithm using procedures described in Sekhon (2011) and 

Diamond and Sekhon (2013). Genetic Matching is an evolutionary search algorithm that automatically 

finds the optimal balance optimization for covariates by automatically determining the weight each 

covariate is given. We evaluate its performance versus other commonly used matching strategies based on 

logit estimation of propensity scores. The initial theory for use in economic applications and its 

subsequent implementation from machine learning was motivated in Mebane and Sekhon (1998). 

Increasing the sample size improves the performance of the genetic matching algorithm, which is 

favorable in this application with relatively high ratio of non-participating to participating buildings. 

Importantly, genetic matching avoids the manual process of checking covariate balance in post-matched 

samples and then re-estimating propensity scores. By using an automated process to search the available 

reference data for the best possible matches, the genetic matching algorithm is able to obtain better levels 

of covariate balance without requiring the evaluator to correctly specify the propensity score, which can 

be a strong assumption in many empirical settings. 

When using matching models based on estimated propensity scores, decisions have to be made 

regarding distance measure and the algorithm used. The propensity score is often considered an ancillary 

statistic for estimating the average treatment effects given the assumption that treatment assignment is 

ignorable, conditional on observed covariates (Hahn, 1998). Matching on correctly specified propensity 

scores will achieve balance conditional on the observed covariates (Rosenbaum and Rubin, 1983, 1984). 

For a given set of covariates, X, indexed by i, the propensity score,  π(Xi )  is the conditional probability of 

assignment to treatment:  



 

 118 

  π(Xi )≡ Pr(Treat i =1| Xi )= E(Treat i | Xi )        (1) 

The observed covariates are conditionally independent to the assigned treatment, given the true propensity 

score (Rosenbaum and Rubin, 1983), such as, 

  X ⊥ Treat | π(X)           (2) 

One of the central benefits of PS matching is that outcome data is not used in the estimation of 

propensity scores. However, covariate imbalance after matching can still be a concern. When there is a 

lack of sufficiently sampled data on the common support, this presents a challenge for achieving covariate 

balance and bias reduction. Prior to treatment, buildings with the same set of X observable characteristics 

should have a positive probability of being both participants and nonparticipants,  0<Pr(Treat=1| X)<1  

in the area of common support. There is often a tension between the quality and quantity of available 

matches in a tradeoff of removing residual bias versus the efficiency of the estimates (Caliendo, 

Kopeinig, 2008). In data balanced enough to approximate complete randomization, recent evidence has 

shown that PS matching can actually increase imbalance (King and Nielson, 2015; Rubin & Thomas, 

1992). Therefore, it is important to assess covariate balance in the matched sample particularly the extent 

to which residual bias in the underlying distributions have been mitigated in finite samples. 

Figure 2 reports the estimated propensity scores for our unmatched sample of commercial buildings 

using nearest neighbor matching (NN). Table 3 contains the first stage logit results used to estimate the 

propensity scores using standard procedures. The left hand side in Panel A refers to all non-participating 

commercial buildings and the right side refers to the LABBC participating commercial buildings, which 

defines the region of common support. In Panel B of Figure 2, we see that there is a sufficient sampling 

density in the region of common support in the matched sample. We therefore maintain the common 

support restriction in the matching algorithm, using only those observations that lie in the common 

support. This ensures that only the closest building matches are used when estimating treatment effects.  
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Figure 2. Estimated Propensity Scores 

 
Panel A: Building Audits, unmatched sample 

 
 
 

Panel B: Building Audits, matched sample 
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Table 3. Estimation of propensity score with logit 
 

Building Characteristics Coefficients Std. Err. p-values 95% Conf. Interval 
Building Class -2.32161 0.2582874 0.000 -2.827844 -1.815376 
Year Built -0.0276775 0.0053746 0.000 -0.0382116 -0.0171434 
Year Renovated -0.0084937 0.010705 0.428 -0.0294751 0.0124877 
Rentable Building Area -4.17E-09 3.86E-07 0.991 -7.61E-07 7.52E-07 
Property Type 0.0491568 0.0681534 0.471 -0.0844214 0.1827349 
Percent Leased 0.0342052 0.0077865 0.000 0.018944 0.0494664 
Average Rent 0.0164088 0.0091641 0.073 -0.0015525 0.0343702 
Taxes Per SF 0.1439159 0.0493309 0.004 0.047229 0.2406027 
SIC 2-digit industry code 0.2440616 0.1208359 0.043 0.0072275 0.4808956 
Utility Climate Zone -0.7324131 0.1704593 0.000 -1.066507 -0.398319 
Utility Customer Class -1.898097 1.39845 0.175 -4.639009 0.8428144 
Costar Rating -0.7147464 0.190264 0.000 -1.087657 -0.3418359 
Constant 69.69619 21.16018 0.001 28.22301 111.1694 
Observations 39,120 

    Pseudo R2 .17 
    Prob > chi2  0.000 
     

 

In Figure 3, we report the reductions in standardized percent bias across our covariates after 

matching. We allow for replacement in the matching algorithm, meaning that matched buildings can be 

reused in the pool of available matches. We demonstrate in Panel B in Figure 3 that we have effectively 

removed large systematic differences in the underlying distributions and achieved a high degree of 

balancing in observable characteristics after matching. Here we show that data-driven algorithms can be 

quite effective in removing common sources of bias. In a survey of the evaluation literature, Diamond and 

Sekhon (2013) find that very few studies in the empirical literature verify the extent of covariate balance 

and hence the reliability of resulting treatment effects. 
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Figure 3. Bias Reduction in Propensity Score Matched Samples  
 

Panel A: Nearest neighbor without replacement  
 

 
 
 

Panel B: Nearest neighbor with replacement 
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Table 4. Building Energy Performance using various matching algorithms without weather controls 

 

Matching Algorithm Treatment Control  ATT 

St. Err. 
(Abadie- 
Imbens) T-stat 

Unmatched 38.498 63.554 -25.056 6.613 -3.79 

Nearest Neighbor with replacement (k=1) 38.498 57.522 -19.024 3.298 -5.77 

Nearest Neighbor with replacement (k=2) 38.498 58.128 -19.630 3.978 -4.94 

Nearest Neighbor with replacement (k=3) 38.498 57.862 -19.365 4.161 -4.65 

Nearest Neighbor without replacement (k=1) 35.381 98.538 -63.157 4.183 -15.1 

Radius 38.498 63.554 -25.056 4.073 -6.15 

Radius with Caliper (0.05) 38.498 63.554 -25.056 2.655 -9.44 

Kernel Gaussian 38.498 63.663 -25.165 4.097 -6.14 

Kernel Epanechnikov 38.498 63.792 -25.295 4.097 -6.17 

Genetic Matching (Heuristic: minimize pvals)* 38.498 57.522 -19.024 7.9876 -2.38 

Genetic Matching (Heuristic: minimize QQ distance)* 38.498 57.522 -19.024 9.0335 -2.10 
 
 

 
Table 5. Los Angeles Better Building Challenge energy savings 

 

Strategy Average Treatment 
Effect Std. Err. T-stat p-value 

LABBC  -18.69 10.95 -1.71 0.088 
LEED certified -29.99 12.06 -2.49 0.055 

Energy Star -19.31 5.81 -3.32 0.021 
 

Estimated energy savings includes matching and additional weather and time controls 
 
 
 

Table 4 lists the detailed results of estimated program level energy savings using the most common 

matching algoritms including nearest neighbor, radius, and kernel matching methods. These methods rely 

on researchers to manually check the balancing properties. See Caliendo and Kopenig (2008) for a review 

of these widely applied matching strategies in the empirical literature. The energy savings (average 

treatment effects on the treated, ATT) are in the range of 19-25%. Not all matching algorithms are created 

equal. In Table 4, we observe that nearest neighbor matching without replacement, also referred to as 

greedy matching, leads to a gross over-estimation of the energy savings due to poorer quality of matches 
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and this matching with replacement is preferred. Both nearest neighbor (k=1) and genetic matching lead 

to the optimal balancing characteristics and estimates of program level the energy savings without time 

based weather controls are 19%, although the standard errors are more conservative with genetic 

matching (see Diamond and Sekhon, 2013). By removing residual bias in the underlying covariate 

distributions, genetic matching achieves automatic load balancing, effectively weighting control group 

observations to mimic randomization in finite samples. While matching in this application is effective in 

simulating group level effects, we are additionally concerned about time-varying seasonal effects due to 

outside weather variation and other changes over time.  

In Table 5, we report the final program level energy savings by difference-in-differences after 

including weather controls and time fixed effects, using the estimated propensity scores as weights. The 

final program level energy savings for the LABBC audited commercial buildings is -18.69%, significant 

at the 10% level. We also report the estimated program level savings for LEED and Energy Star green 

building certification programs as -29.99% and -19.31%, respectively. These results show that policies 

that reduce information barriers and target action in individual buildings can be used to accelerate new 

investment and yield significant energy savings via capital improvements. 

 

Conclusions 

We show that information-based programs can be effective at driving new energy efficiency 

investments as part of larger grand challenge goals. We analyzed technology adoption decisions in 

response to government-sponsored audits and voluntary certification programs. Our results indicate that 

information programs that include targeted building level information can lead to adoption of profitable, 

but previously unimplemented technologies. The energy savings of 18.7% achieved for the LABBC 

program imply a cost effectiveness ratio of 5.5 cents per square foot. This includes public expenditures of 

$4.2MM ($3.5MM for the audits and $700M in administrative costs) and private expenditures of $74MM 

in energy efficiency upgrades. For every public grand challenge dollar invested, this yielded a return of 
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$17.6 dollars in private infrastructure spending. Overall, 42% of recommendations outlined in the audits 

were implemented by building owners, which is consistent with implied hurdle rates in prior literature 

(Anderson & Newell, 2004). In response to community based grand challenges, individual owners and 

investors appear to be responsive to implementation costs rather than to actual energy savings (Anderson 

and Newell, 2004; Blass, Corbett, Delmas & Muthulingham, 2014). On restoring and improving urban 

infrastructure, finding opportunities to link challenge-based interventions with performance outcomes 

means we will have to devise new methods such as experimental paradigms for causal analysis. Having a 

unifying framework with community driven goals can be an important strategy to mobilize resources for 

grand challenges. Given the limits to public finance, public private partnerships can serve to extend 

traditional boundaries of the public sector and increase directed innovation toward meeting societal goals. 
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