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Chronic Cigarette Smoking in Healthy Middle-
Aged Individuals Is Associated With Decreased
Regional Brain N-acetylaspartate and Glutamate
Levels
Timothy C. Durazzo, Dieter J. Meyerhoff, Anderson Mon, Christoph Abé, Stefan Gazdzinski,
and Donna E. Murray
ABSTRACT
BACKGROUND: Cigarette smoking is associated with metabolite abnormalities in anterior brain regions, but it is
unclear if these abnormalities are apparent in other regions. Additionally, relationships between regional brain
metabolite levels and measures of decision making, risk taking, and impulsivity in smokers and nonsmokers have not
been investigated.
METHODS: In young to middle-aged (predominately male) nonsmokers (n 5 30) and smokers (n 5 35), N-
acetylaspartate (NAA), choline-containing compounds, creatine-containing compounds (Cr), myo-inositol (mI), and
glutamate (Glu) levels in the anterior cingulate cortex and right dorsolateral prefrontal cortex (DLPFC) were compared
via 4-tesla proton single volume magnetic resonance spectroscopy. Groups also were compared on NAA, choline-
containing compounds, Cr, and mI concentrations in the gray matter and white matter of the four cerebral lobes and
subcortical nuclei/regions with 1.5-tesla proton magnetic resonance spectroscopy. Associations of regional metabolite
levels with neurocognitive, decision-making, risk-taking, and self-reported impulsivity measures were examined.
RESULTS: Smokers showed lower DLPFC NAA, Cr, mI and Glu concentrations and lower lenticular nuclei NAA level;
smokers also demonstrated greater age-related decreases of DLPFC NAA and anterior cingulate cortex and DLPFC
Glu levels. Smokers exhibited poorer decision making and greater impulsivity. Across the sample, higher NAA and
Glu in the DLPFC and NAA concentrations in multiple lobar gray matter and white matter regions and subcortical
nuclei were associated with better neurocognition and lower impulsivity.
CONCLUSIONS: This study provides additional novel evidence that chronic smoking in young and middle-aged
individuals is associated with significant age-related neurobiological abnormalities in anterior frontal regions
implicated in the development and maintenance of addictive disorders.

Keywords: Brain metabolites, Cigarette smoking, Decision making and impulsivity, Magnetic resonance,
Neurocognition, Spectroscopy
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Chronic cigarette smoking in adults is associated with multiple
neurobiological and neurocognitive abnormalities (1–3). The
majority of earlier [see (1)] and recent (4–10) studies on
smoking-related neurobiological abnormalities employed mag-
netic resonance imaging (MRI)–based morphologic measures
(i.e., volume and cortical thickness). Overall, the findings
indicated that smokers demonstrate widespread structural
abnormalities that are particularly prominent in anterior frontal
lobe subregions (11).

Although MRI morphometry provides fundamental informa-
tion on the macroscopic viability of regional brain tissue,
magnetic resonance spectroscopy enables a more direct inter-
rogation of the functional integrity of brain tissue. Single volume
proton magnetic resonance spectroscopy (SVS) and spectro-
scopic imaging (SI) methods allow the noninvasive and con-
current quantitation of several brain metabolites that collectively
N: 0006-3223 Biolo
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provide information regarding the neurophysiologic viability of
tissue (12,13). Abnormalities in certain metabolite concentrations
(e.g., N-acetyl aspartate [NAA], choline-containing compounds
[Cho]) may precede macroscopic morphologic or neurocognitive
changes associated with some diseases or conditions (13). The
brain metabolites most commonly quantitated via SVS and SI
methods include biomarkers of neuronal integrity (i.e., NAA), cell
membrane turnover and synthesis (i.e., Cho), cellular bioener-
getics (i.e., creatine-containing compounds [Cr]), astrogliosis
and inflammation (i.e., myo-inositol [mI]), and excitatory neuro-
transmitter and neuromodulator pools (i.e., glutamate [Glu])
(13,14). Higher regional NAA and Glu levels are associated with
better function in multiple neurocognitive domains (15,16), and
both of these metabolites show age-dependent decreases in
concentration across adulthood (13). The few proton magnetic
resonance spectroscopy studies of “healthy” chronic smokers
& 2016 Society of Biological Psychiatry 481
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Table 1. Demographic and Clinical Measuresa

Variable
Nonsmokers
(n 5 30)

Smokers
(n 5 35)

Age (Years) 49.1 6 12.0 48.6 6 10.1

Education (Years) 16.5 6 2.1 14.9 6 2.1a

AMNART 119 6 9 117 6 6

Male (%) 87 89

Caucasian (%) 63 71

Body Mass Index 25.5 6 3.7 26.4 6 3.8

Beck Depression Inventory 3 6 3 5 6 4

STAI Score 31 6 8 35 6 9

Average Drinks/Month in 1 Year 14 6 14 22 6 20

Average Drinks/Month in Lifetime 19 6 12 26 6 20a

Biological Mother/Father Positive
History of Problem Drinking (%)

28 37

FTND NA 5 6 2

Cigarettes/Day NA 18 6 6

Total Lifetime Years of Smoking NA 29 6 11

Pack-Years NA 27 6 15

Data are presented as mean 6 SD unless otherwise indicated.
AMNART, American National Adult Reading Test; FTND, Fager-

strom Test for Nicotine Dependence; NA, not applicable; STAI, State-
Trait Anxiety Inventory.

ap , .05.
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primarily employed SVS at 3 tesla (T) and focused on anterior
frontal regions (e.g., anterior cingulate cortex [ACC], dorsolateral
prefrontal cortex [DLPFC]) and the hippocampus in young or
middle-aged adults; anterior frontal subregions and the hippo-
campus were emphasized because neurobiological abnormal-
ities in these regions are implicated in the development and
persistence of addictive disorders (17,18).

Gallinat et al. (19) reported that smokers showed lower NAA
levels than nonsmokers in the left hippocampus, and higher
pack-years were related to higher Cho levels in the anterior
cingulate gyrus; however, in a subsequent study, the same
investigators found no differences between active smokers,
former smokers, and nonsmokers on Glu levels in the ACC
and left hippocampus (20). O’Neill et al. (21) found no differ-
ences between smokers and nonsmokers in thalamic Glu
concentration, but among smokers, more cigarettes smoked
per day and pack-years of smoking were strongly related to
lower thalamic Glu level. Mennecke et al. (22) reported higher
left anterior cingulate Glu/glutamine and Cho concentrations in
smokers than nonsmokers; after 3 days of smoking cessation,
anterior cingulate glutamine decreased to nonsmoker levels,
but no changes were observed for Cho. In the sole SI study,
Durazzo et al. (23) observed that a small group of smokers had
lower Cho concentrations in the cerebellar vermis than non-
smokers. Taken together, these studies provide evidence that
chronic smoking is associated with regional derangements of
cortical NAA, Cho, and glutamine levels. However, a limitation
of the SVS method is that it does not simultaneously measure
metabolites across a large number of brain regions; the
regional specificity of the metabolic findings in chronic smok-
ers (e.g., anterior vs. parietal, temporal, or subcortical) and
their tissue specificity (i.e., gray matter [GM] vs. white matter
[WM]) is unclear. Additionally, previous studies did not assess
associations between the regional brain metabolite levels and
measures of neurocognition, decision making, risk taking, or
impulsivity; consequently, the functional relevance of the
metabolite abnormalities observed in smokers is uncertain.

This study compared regional brain metabolite levels in
healthy middle-aged smokers and nonsmokers. Imaging with
SVS at 4T measured NAA, Cho, Cr, mI, and Glu levels in the
right DLPFC and the bilateral ACC; studies at 4T facilitate
more accurate quantitation of the Glu signal than lower field
strengths because of greater spectral dispersion and
increased signal-to-noise ratio (13). Additionally, SI at 1.5T
simultaneously measured NAA, Cho, Cr, and mI (but not Glu)
concentrations in the GM and WM of the bilateral frontal,
parietal, and temporal lobes; occipital WM; and lenticular
nucleus, thalamus, and cerebellar vermis. Associations of
SVS and SI metabolite levels with performance on a compre-
hensive neurocognitive battery and on measures of impulsiv-
ity, decision making, and risk taking were examined.

Chronic smoking, independent of common smoking-related
diseases (e.g., cerebrovascular disease, chronic obstructive
pulmonary disorders), appears to affect adversely the integrity
of brain neurobiology (1). Additionally, we observed that
smoking is associated with greater age-related brain volume
loss than observed in morphological studies with healthy
individuals (9) and individuals with an alcohol use disorder
(24,25). Therefore, we predicted the following: 1) Compared
with nonsmokers, smokers demonstrate lower NAA and Glu
482 Biological Psychiatry March 15, 2016; 79:481–488 www.sobp.org
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levels in the DLPFC and ACC and lower NAA concentrations in
the frontal, parietal, and temporal lobes; lenticular nuclei; and
cerebellar vermis and smokers evidence significantly greater
age-related decreases of regional NAA and Glu levels. 2)
Smokers show greater levels of risk taking, impulsivity, and
poorer decision making. 3) Across smokers and nonsmokers,
higher regional NAA and Glu levels are related to better
neurocognition, whereas higher NAA and Glu concentrations
in DLPFC and ACC are specifically associated with better
decision making and with lower risk taking and impulsivity.
METHODS AND MATERIALS

Participants

Healthy, community-dwelling participants were recruited via
posters, electronic billboards, and word-of-mouth. Partici-
pants were between the ages of 24 and 69 and gainfully
employed at the time of the study (Table 1). Before engaging in
procedures, participants provided written informed consent
according to the Declaration of Helsinki, and the consent
document and procedures were approved by the University of
California San Francisco and the San Francisco Veterans
Administration Medical Center. For SVS, there were 35 current
smokers (4 smokers were female) and 30 nonsmokers
(4 nonsmokers were female); for SI, there were 28 current
smokers (2 smokers were female) and 36 nonsmokers
(3 nonsmokers were female). The SI data were gathered from
2001–2012, and the SVS data were obtained from 2005–2014.
Approximately 50% of participants with SI data also had SVS
data; smokers and nonsmokers with both SVS and SI data
were equivalent in number. The SI and SVS samples were
equivalent on demographic, cigarette use, and alcohol con-
sumption variables.
/journal
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Complete details of primary inclusion and exclusion criteria
are provided elsewhere (26). Briefly, participants were
screened for history of neurologic (e.g., seizure disorder,
neurodegenerative disorder, traumatic brain injury with loss
of consciousness .5 minutes), general medical (e.g., hyper-
tension, diabetes, chronic obstructive pulmonary disease), and
psychiatric (i.e., mood, thought, anxiety, substance/alcohol
use disorders) conditions or disorders known or suspected to
influence neurocognition or brain neurobiology. All female
participants were premenopausal, by self-report. Most non-
smoking participants never smoked, although a few smoked
,40 cigarettes during their lifetime but had no cigarette or
tobacco use in the 10 years before the study. All smoking
participants were actively smoking at the time of assessment
and smoked at least 10 cigarettes/day for $5 years, with no
periods of smoking cessation .1 month in the 5 years before
study. At the time of the study, no smoker was engaged in any
pharmacologic or behavioral smoking cessation program or
used any other form of tobacco or electronic cigarettes. All
smokers were allowed to smoke ad libitum before all proce-
dures and take smoke breaks when requested.

Psychiatric, Medical, and Substance and Alcohol
Consumption Assessment

Participants were administered the screening section of the
Structured Clinical Interview for DSM-IV Axis I disorders, Patient
Edition, Version 2.0, as well as an in-house questionnaire designed
to screen for medical, psychiatric, neurologic, and developmental
conditions known or suspected to affect neurocognition or brain
neurobiology. Participants also were administered semistructured
interviews for lifetime alcohol consumption (lifetime drinking
history) and substance use (in-house questionnaire assessing
substance type and quantity and frequency of use). From the
lifetime drinking history, we derived average number of drinks/
month (defined as containing 13.6 g of pure ethanol) over 1 year
before enrollment and average number of drinks/month over
lifetime. Participants also completed self-report measures of
depressive (Beck Depression Inventory) and anxiety (State-Trait
Anxiety Inventory, form Y-2) symptoms and family history of
problem drinking. Smokers completed a measure of nicotine
dependence level (Fagerstrom Test for Nicotine Dependence)
and provided information on the total number of cigarettes
currently smoked per day and the total number of years of
smoking over lifetime. From this information, pack-years—(typical
number of cigarettes per day/20) 3 total number of years of
smoking—were calculated for smokers. Before assessment,
participants’ urine was tested for common illicit substances (e.g.,
tetrahydrocannabinol, opiates, cocaine, amphetamines), and they
were assessed for recent ethanol consumption via breathalyzer.
No participant was positive for common illicit substances or
ethanol consumption at the time of assessment. Please see (9)
for corresponding references for the above measures.

Neurocognitive and Behavioral Assessment

Participants completed a comprehensive battery composed of
measures commonly used in clinical and research settings in
North America (27). Estimated verbal intelligence was assessed
with the American National Adult Reading Test (28). The battery
evaluated the following domains of neurocognition reported to
Biological Ps
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be affected adversely by chronic smoking (1,26): cognitive
efficiency, executive skills, general intelligence, processing
speed, learning and memory (auditory-verbal and visuospatial),
visuospatial skills, and working memory. A full description of
the neurocognitive battery and results of comparisons of
smokers and nonsmokers on the comprehensive neurocogni-
tive battery used in this study are provided elsewhere (26).
Participants also completed task-based measures of decision
making (Iowa Gambling Task [IGT]) (29) and risk taking (Balloon
Analogue Risk Task [BART]) (30,31) and a self-report measure
of trait impulsivity (Barratt Impulsiveness Scale-11 [BIS-11])
(32). Scores for all of the aforementioned measures were
converted to Z scores based on the performance of the
nonsmokers in this study. A global neurocognition score was
formed via the arithmetic average of Z scores for all of the
individual domains from the neurocognitive battery.

Magnetic Resonance Acquisition and Processing

MRI. See Supplement 1 Methods for MRI details. The 4T MRI
data were acquired on a Bruker MedSpec system (Siemens,
Erlangen, Germany); three-dimensional T1-weighted images
were obtained with magnetization prepared rapid acquisition
gradient-echo imaging, and three-dimensional T2-weighted
images via turbo spin echo. The 1.5T MRI data were acquired
on a Siemens Vision system (Siemens Medical, Inc., Iselin, New
Jersey); magnetization prepared rapid acquisition gradient-echo
and T2-weighted double spin echo images were acquired. The
4T structural images were segmented into GM, WM, and
cerebrospinal fluid (CSF) using the expectation maximization
segmentation method (33) and coaligned with the SVS volumes
of interest for determination of their tissue contribution (i.e., GM,
WM, CSF) (34). The 1.5T structural images also were segmented
into total brain GM, WM, and CSF via expectation maximization
segmentation. Subsequently, volumes for the four major lobes
and subcortical regions were calculated and coregistered to the
expectation maximization segmentation to obtain GM, WM, and
CSF fractions for the preceding regions (35). Finally, the
segmented 1.5T structural images were coaligned with SI
metabolite maps for anatomic localization (e.g., frontal WM)
and determination of tissue contributions (i.e., percent GM, WM,
CSF) in the corresponding SI voxels (23,36).

Magnetic Resonance Spectroscopy. See Supplement 1
Methods for SVS and SI acquisition and processing details.
For SVS at 4T, volumes of interest (VOI) for magnetic
resonance spectroscopy were placed over the perigenual
ACC and right DLPFC (Figure S1 in Supplement 1). The
NAA, Cr, Cho, mI, and Glu signals from both VOI were
acquired with a stimulated echo acquisition mode sequence
(37), and quantitated metabolite levels were corrected for CSF
contribution and scaled to water level from the corresponding
VOI.

For SI at 1.5T, spectra were acquired in three 15-mm-thick
parallel slices, slice gap of �6 mm, with a nominal SI voxel size
of 1 mL (effective size of 1.5 mL). The SI slices covered the four
major cerebral lobes, subcortical nuclei, midbrain, and cerebel-
lar vermis. The reconstructed metabolite maps were coaligned
with the segmented structural images, and concentrations
(CSF-corrected and scaled to water) were calculated for NAA,
ychiatry March 15, 2016; 79:481–488 www.sobp.org/journal 483
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Cho, Cr, and mI. Metabolite concentrations for the left and right
hemispheres for all regions were averaged because there were
no significant hemispheric differences in either group.

Statistical Analyses

Group Comparisons. Generalized linear modeling com-
pared smokers and nonsmokers on regional metabolite con-
centrations. The SVS analyses focused on NAA, Cr, Cho, mI,
and Glu concentrations in the ACC and DLPFC. The SI analyses
focused on NAA, Cr, Cho, and mI levels in the frontal, parietal,
and temporal GM and WM; occipital WM; thalami; lenticular
nuclei; and cerebellar vermis. Predictors in all models included
smoking status (smoker and nonsmoker), age, body mass
index, lifetime average drinks/month, GM fraction in the VOI
or SI voxel, and smoking status 3 age interaction. Body mass
index was used as a covariate because it was related to
metabolite concentrations measured via SVS and SI in healthy
controls (38,39). Lifetime average drinks/month was used as a
covariate because smokers drank significantly more than non-
smokers. All main effects and interactions were considered
statistically significant at p , .05. Significant main effects for
smoking status were followed-up with t tests (two-tailed)
comparing smokers and nonsmokers on mean regional metab-
olite levels. Despite our a priori predictions for lower regional
NAA and Glu in smokers, α levels for all t tests for metabolites in
each SVS or SI region were adjusted for multiple comparisons
via a modified Bonferroni procedure (40), which accounted for
the number of metabolites (five for SVS; four for SI), the number
of regions (2 for SVS; 10 for SI), and the moderate-to-strong
intercorrelation among metabolites across regions for the entire
sample. For SVS, the average intercorrelation among metabo-
lites across the DLPFC and ACC was r 5 .46. For SI, the
average intercorrelation of metabolites among the frontal,
parietal, and temporal GM and WM, lenticular nuclei, and
cerebellum was r 5 .66. Resulting adjusted α levels were p 5

.017 for SVS metabolite t tests and p 5 .020 for SI. Effect sizes
for mean metabolite concentration differences between smok-
ers and nonsmokers were calculated with Cohen’s d (41).

Decision-Making, Risk-Taking, and Impulsivity Meas-
ures. Generalized linear modeling compared smokers and
nonsmokers on the IGT net total score; BART average
adjusted pumps; and BIS total, attentional, motor, and non-
planning impulsivity scores. Predictors in all models included
smoking status (smoker and nonsmoker), age, education, and
lifetime average drinks/month. Main effects were considered
significant at p , .05, and significant main effects for smoking
status were followed-up with t tests. The t tests were adjusted
for multiple comparisons via the above-mentioned modified
Bonferroni procedure, based on the number of individual
measures (six) and their average intercorrelation (r 5 .44),
resulting in an adjusted α level of p 5 .019. Effect sizes were
calculated with Cohen’s d.

Associations of SVS and SI Metabolites With Neuro-
cognitive, Risk-Taking, Decision-Making, Impulsivity,
and Smoking Severity Measures. Associations of SVS
and SI metabolites with neurocognitive, risk-taking, decision-
making, and impulsivity measures were examined in the total
484 Biological Psychiatry March 15, 2016; 79:481–488 www.sobp.org
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sample (i.e., smokers and nonsmokers) with linear regression
(semipartial correlations reported) controlling for age, educa-
tion, and lifetime average drinks/month. Relationships of SVS
and regional SI metabolite levels with lifetime years of smoking
and pack-years were examined in smokers with linear regres-
sion (semipartial correlations reported) controlling for age and
lifetime average drinks/month. The associations for NAA and
Glu were considered significant at p , .05, given our a priori
predictions; p values for associations of Cho, Cr, and mI with
the above-mentioned measures were conservatively adjusted
with a standard Bonferroni procedure.
RESULTS

Participant Characteristics

No significant differences were observed between smokers
and nonsmokers on age, American National Adult Reading
Test, Beck Depression Inventory, State-Trait Anxiety Inventory
score, body mass index, and 1-year average drinks/month (all
p . .10). Groups were equivalent on frequency of Caucasians
and positive history of problem drinking in biological parents.
Smokers had significantly fewer years of education and more
lifetime average drinks/month (p , .05) (Table 1).

Group Comparisons of SVS Metabolite
Concentrations

ACC. A smoking status 3 age interaction was observed for
Glu [χ21 5 8.54, p 5 .003], where smokers showed lower Glu
concentration with increasing age relative to nonsmokers
(Figure 1A); a simple slopes difference test for age indicated that
the effect of age on Glu level was 1.5 times greater in smokers
than in nonsmokers (p5 .003). Smokers showed trends for lower
NAA (p 5 .054) and higher Cho (p 5 .052) compared with
nonsmokers. No significant difference in mean Glu, mI, or Cr
levels were observed between smokers and nonsmokers (all p .

.15). For all metabolites except Glu, higher lifetime drinks/month
were related to lower levels (all p , .03). There was no significant
difference of percent GM contributing to the ACC volume
between smokers (60%) and nonsmokers (58%).

Right DLPFC. A smoking status 3 age interaction was
yielded for NAA (χ21 5 5.88, p 5 .015) and Glu (χ21 5 8.76,
p 5 .003), where smokers showed significantly lower NAA and
Glu concentrations with increasing age relative to nonsmokers
(Figure 1B); a simple slopes test for age indicated that the effect
of age on NAA and Glu in smokers was twice that of nonsmokers
(both p , .015). Main effects for smoking status were observed
for NAA (χ215 13.69, p, .001), Cr (χ215 6.85, p5 .009), mI (χ215
11.63, p 5 .001), and Glu (χ21 5 6.81, p 5 .009); for each
metabolite, smokers demonstrated significantly lower concen-
trations than nonsmokers, and moderate-to-large effect sizes
were apparent for these mean differences (Table 2). There was
no significant difference in percent GM contributing to the
DLPFC volume between smokers (46%) and nonsmokers (43%).

Group Comparisons of SI Metabolite Concentrations

Main effects for smoking status were observed for NAA
concentration in the lenticular nuclei (χ21 5 8.54, p 5 .003),
/journal
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Figure 1. (A) Changes in anterior cingulate cortex glutamate levels across age for smokers and nonsmokers. (B) Changes in right dorsolateral
prefrontal cortex glutamate levels across age for smokers and nonsmokers. ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; i.u.,
institutional units.
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with a trend for in the frontal GM (χ21 5 4.06, p 5 .041), where
smokers demonstrated significantly lower NAA than non-
smokers in the lenticular nuclei (Table 2). No significant
smoking status 3 age interactions were apparent in any
region, and average lifetime drinks/month were not related to
metabolite levels in any region (all p . .20). No differences
were observed between smokers and nonsmokers on SI voxel
GM fraction or voxel count in any region (data not shown).

Group Comparisons of Decision-Making, Risk-
Taking, and Impulsivity Measures

Smokers demonstrated a lower IGT net total score (indicative
of poorer decision making) and higher scores on the BIS
motor, nonplanning, and total impulsivity score than non-
smokers (Table 2). No group differences were apparent on
the BART average adjusted pumps.

Associations of SVS and SI Metabolite Levels With
Neurocognitive, Decision-Making, Risk-Taking,
Impulsivity, and Smoking Severity Measures

In the entire cohort (smokers and nonsmokers), there were
significant moderate magnitude associations of right DLPFC
Glu and NAA concentrations with multiple neurocognitive
domain scores as well as with BIS nonplanning impulsivity
score; all correlations were in the expected direction (Table 3).
Similarly, there were numerous moderate magnitude relation-
ships, in the expected direction, between regional SI NAA
levels and neurocognitive domain scores; the SI regions most
consistently associated with neurocognition were the frontal
GM and lenticular nuclei (Table 3). The direction and magni-
tude of the above-reported associations was generally consis-
tent for smokers and nonsmokers. No significant associations
Biological Ps
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were apparent for regional metabolite levels with IGT and BART
measures (all p . .20). In smokers, greater lifetime years of
smoking was related to lower Glu in the ACC (r 5 2.40, p 5

.012) and right DLPFC (r 5 2.30, p 5 .044). Smoking severity
measures and SI metabolite levels were not significantly related.
The pattern and effect sizes for the above-reported findings
were essentially unchanged when female participants were
excluded from analyses.

DISCUSSION

The primary findings from this study were as follows: 1)
Compared with nonsmokers, smokers showed significantly
lower NAA, Cr, and mI concentrations in the right DLPFC as
well as lower NAA in the lenticular nuclei; smokers also
demonstrated significantly greater age-related decreases of
NAA in the right DLPFC and of Glu levels in the ACC and right
DLPFC relative to nonsmokers. 2) Smokers showed poorer
performance on a measure of decision making (IGT) and
greater self-reported impulsivity (BIS-11) than nonsmokers.
3) Across the total sample (i.e., smokers and nonsmokers),
higher right DLPFC NAA and Glu concentrations as well as
NAA in several lobar GM and WM regions and subcortical
nuclei, were associated with better performance on multiple
neurocognitive domains and lower (nonplanning) impulsivity.

The significantly decreased NAA level in the right DLPFC
and lenticular nuclei exhibited by smokers indicates compro-
mised neuronal integrity in these regions (13), and smokers
showed notably greater age-related decreases in DLPFC NAA
concentration. Smokers also showed notable trends for lower
NAA in the ACC (p 5 .054) and the total frontal GM (p 5 .041;
as measured with SI), with corresponding moderate effect size
(.50–.67). Smokers showed decreased DLPFC Glu level and
ychiatry March 15, 2016; 79:481–488 www.sobp.org/journal 485
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Table 2. Group Means for SVS and SI Metabolite Levels
(Institutional Units) and Performance on the Iowa Gambling
Task and BIS

Variable
Nonsmokers
(n 5 30)

Smokers
(n 5 35)

Effect Size
(Cohen’s d)

SVS Anterior Cingulate
Gyrus

NAA 5.88 6 .79 5.49 6 .79 .50

Cho 1.29 6 .22 1.40 6 .22 .51

Cr 4.62 6 .75 4.73 6 .74 .14

mI 3.89 6 .86 3.59 6 .85 .35

Glu 3.95 6 .69 4.01 6 .69 .09

SVS Dorsolateral
Prefrontal Cortex

NAA 5.58 6 .72 4.90 6 .71a .95

Cho 1.09 6 .17 1.05 6 .18 .22

Cr 4.59 6 .61 4.18 6 .60a .67

mI 3.68 6 .66 3.11 6 .66a .87

Glu 3.45 6 .53 3.09 6 .52a .67

SI Frontal Gray Matter NAA 33.12 6 3.09 31.06 6 3.10 .67

SI Lenticular Nucleus NAA 29.21 6 3.52 26.64 6 3.51b .73

Iowa Gambling Task 2.07 6 .91 2.64 6 .80c .67

BIS Motor Impulsivity .06 6 1.05 .86 6 1.03c .77

BIS Nonplanning Impulsivity .19 6 1.07 .91 6 1.03c .69

BIS Total Score .20 6 1.00 .86 6 .98c .66

Data are presented as mean 6 SD, values obtained from estimated
marginal means.

BIS, Barratt Impulsiveness Scale-11; Cho, choline-containing com-
pounds; Cr, creatine-containing compounds; Glu, glutamate; mI, myo-
inositol; NAA, N-acetylaspartate; SI, spectroscopic imaging; SVS,
single volume spectroscopy.

aSmokers , nonsmokers, p # .017.
bSmokers , nonsmokers, p # .020.
cSmokers , nonsmokers, p # .019.

Table 3. Associations of Regional SVS and SI Derived
Metabolites With Neurocognitive, Decision-Making, Risk-
Taking, and Impulsivity Measures in the Total Sample
(Smokers 1 Nonsmokers)

Measure Metabolite Region ra

Cognitive Efficiency NAA Right DLPFC .28

Lenticular nuclei .36

Temporal WM .31

Glu Right DLPFC .40

Executive Skills NAA Frontal GM .32

Glu Right DLPFC .30

General Intelligence Glu Right DLPFC .29

Processing Speed NAA Lenticular nuclei .32

Glu Right DLPFC .35

Visuospatial Learning NAA Frontal GM .47

Temporal WM .31

Occipital WM .36

Thalamus .31

Lenticular nuclei .38

Glu Right DLPFC .34

Visuospatial Memory NAA Frontal GM .35

Occipital WM .33

Thalamus .31

Lenticular nuclei .38

Glu Right DLPFC .36

Visuospatial Skills NAA Right DLPFC .28

Glu Right DLPFC .33

Global Neurocognition NAA Frontal GM .32

Lenticular nuclei .41

Glu Right DLPFC .37

BIS Nonplanning Impulsivity NAA Right DLPFC 2.33
Glu Right DLPFC 2.36

BIS, Barratt Impulsiveness Scale-11; DLPFC, dorsolateral prefrontal
cortex; Glu, glutamate; GM, gray matter; mI, myo-inositol; NAA,
N-acetylaspartate; SI, spectroscopic imaging; SVS, single volume
spectroscopy; WM, white matter.

aSemipartial correlation coefficient (adjusted for age, education, and
lifetime average drinks/month); all reported correlations p , .05.
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markedly greater age-related reduction in Glu compared with
nonsmokers; ACC Glu level did not differ between the groups,
but, similar to the DLPFC, smokers demonstrated greater age-
related decreases in ACC Glu concentration. These findings
indicate that smokers showed the greatest metabolite abnor-
malities in frontal lobe regions, which complement quantitative
MRI studies that found young and middle-aged smokers
demonstrated smaller volumes of the ACC, DLPFC
(25,42,43), and total frontal GM (25,44).

Nonsmokers demonstrated significantly higher DLPFC mI
and Cr, in addition to higher NAA and Glu levels. Elevated
cerebral GM mI and Cr have been reported in conditions with
pathologically confirmed neuroinflammation [e.g., human
immunodeficiency virus infection and Alzheimer’s disease
(14)]. The synthesis of NAA, mI, Cr, and Glu and the active
transport of mI, Cr, and Glu across cell membranes are
energetically demanding processes (13,45). Additionally,
average intercorrelation of these metabolite levels in the
DLPFC of nonsmokers was moderate in magnitude (r =
.46). Therefore, the elevated DLPFC mI and Cr concentra-
tions, in conjunction with higher DLPFC NAA and Glu levels,
likely reflect the coherence of the mitochondrial function
(46,47) of the neuronal and astroglial tissue in this region in
nonsmokers. In healthy controls, regional NAA (48) and Glu
(15,49) levels show age-related declines across adulthood.
The greater age-related reductions in DLPFC NAA and Glu
and ACC Glu concentrations demonstrated by smokers
suggest that smoking is associated with abnormally
486 Biological Psychiatry March 15, 2016; 79:481–488 www.sobp.org
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accelerated aging effects on the metabolic integrity of tissue
in these regions.

Smokers demonstrated a lower IGT total score and a higher
BIS-11 total score, which are indicative of poorer decision
making and greater impulsivity, respectively. These findings are
consistent with previous studies reporting compromised decision
making and greater self-reported impulsivity in smokers (50,51).

Across smokers and nonsmokers, higher Glu in the DLPFC
and higher NAA in the DLPFC and in several lobar GM and
WM regions were associated with better performance on
multiple neurocognitive domains. Higher DLPFC NAA and
Glu also were related to lower self-reported impulsivity across
the study sample. Studies with cognitively normal adults and
individuals with various biomedical and psychiatric conditions
consistently reported higher regional NAA concentrations were
associated with better performance on various neurocognitive
measures (13,52,53). Glu is the primary excitatory cerebral
neurotransmitter and mediates �70% of central nervous
system synaptic transmission (54). Higher basal ganglia Glu
/journal
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level was correlated with better neurocognitive performance in
cognitively normal adults (15,16). The lack of associations
between ACC metabolites and neurocognition may be related
to the perigenual location of our ACC volume. The perigenual
region of the ACC subserves affective/emotional processes,
whereas dorsal regions are indicated to be more involved in
cognitive processes, such as error monitoring and attentional
regulation (55). The ACC and DLPFC subserve multiple cognitive
processes, including decision making, risk taking, and impulse
control (56,57); the lower DLPFC NAA and Glu and the trends for
lower NAA levels in the ACC and total frontal GM in smokers
suggest a disturbance in tissue metabolic integrity in those
regions, particularly with increasing age, which may partially
explain the poorer performance of smokers on the IGT and
greater self-reported impulsivity on the BIS-11 as well as the
deficient performance on multiple neurocognitive domains
observed in this cohort in an earlier study (26). Overall, the
findings reinforce the utility of magnetic resonance spectroscopy–
derived brain metabolites as practical biomarkers of regional
neurobiological integrity and neurocognition. The potential mech-
anisms by which chronic smoking promotes neurobiological and
neurocognitive dysfunction are reviewed elsewhere (1,11).

This study has limitations that may affect the general-
izability of the findings. Unrecorded premorbid/comorbid
group differences in lifestyle or biomedical conditions (e.g.,
diet/nutrition, exercise, subclinical pulmonary or cardiovascu-
lar dysfunction) and genetic polymorphisms (58) may have
influenced the results. The small number of female participants
precluded assessment for sex effects.

In conclusion, this study contributes novel information to the
expanding body of evidence that cigarette smoking in young
and middle-aged individuals is associated with significant age-
related neurobiological abnormalities, particularly in anterior
frontal regions implicated in the development and maintenance
of addictive disorders. Longitudinal studies on the effects of
smoking cessation on the regional brain metabolites measured
in this study, with a greater number of female participants, are
warranted to determine if the observed metabolite abnormal-
ities are persistent or normalize with smoking cessation.
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