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Microseismic source deconvolution: Wiener filter versus
minimax, Fourier versus wavelets, and linear versus nonlinear

Jianye Ching,® Albert C. To, and Steven D. Glaser”
Department of Civil and Environmental Engineering, University of California at Berkeley,
Berkeley, California 94720

(Received 3 August 2002; revised 13 February 2004; accepted 13 Februajy 2004

Deconvolution is commonly performed on microseismic signals to determine the time history of a
dislocation source, usually modeled as combinations of forces or couples. This paper presents a new
deconvolution method that uses a nonlinear thresholding estimator, which is based on the minimax
framework and operates in the wavelet domain. Experiments were performed on a steel plate using
artificially generated microseismic signals, which were recorded by high-fidelity displacement
sensors at various locations. The source functions were deconvolved from the recorded signals by
Wiener filters and the new method. Results were compared and show that the new method
outperforms the other methods in terms of reducing noise while keeping the sharp features of the
source functions. Other advantages of the nonlinear thresholding estimator indudes
performance is close to that of a minimax estimat@yjt is nonlinear and takes advantage of sparse
representations under wavelet bases,(@his computation is faster than the fast Fourier transform.

© 2004 Acoustical Society of AmericdDOI: 10.1121/1.1705658

PACS numbers: 43.60.Pt, 43.40.Le, 43.60.BTB] Pages: 3048-3058
I. INTRODUCTION venient since there is only a linear inverse problem to solve,
and the fast Fourier transform can be calculated rapidly.
Microseismic(MS) signals carry important information However, time-invariant Wiener filters may perform

about the dislocation mechanisms within the solid that conpoorly if the assumed stationary properties are not appropri-
tains the source. It is of great interest to infer the characterate. Also, Wiener filters reject the use of a nonlinear estima-
istics of the dislocation source using the recorded MS sigtor, and the Fourier basis does not necessarily provide sparse
nals, and a common way of achieving this is to deconvolvaepresentations for MS signals and MS source functions.
the recorded MS signals by the corresponding Green’s fund-ast, to implement Wiener filters usually requires the knowl-
tions. The result of the deconvolution is an estimate of theedge of the noise power spectrum, which is another param-
MS source function, e.g., the slip time history of the dislo-eter to be determined.

cation source. Using the estimated source function, it is pos- In this paper, we introduce the nonlinear thresholding
sible to infer the dislocation mechanisms of the crack thakestimator(NTE) developed by Donoho and Johnstdt692
generates the MS energy. This technique has been routinejqhd Johnstone and Silvermét997). The estimator provides
implemented by geophysicists to invert seismic source functhe following advantages1) It does not assume a stationary
tions using seismogram@.g., Stump and Johnson, 1977 source function. Instead, the estimator is based on the mini-
and by researchers in nondestructive testiag., Michaels max concept(Bickel and Doksum, 1977from decision

etal, 198) and fracture mechanicée.g., Scrubyetal, theory. We argue that a minimax estimator is more suitable
1985; Kim and Sachse, 19BGo determine the fracture for a deconvolution problem than time-invariant Wiener fil-
mechanisms of cracks in solids. ters. (2) The NTE does not require the knowledge of the

A standard way of performing deconvolution is to noise power spectrun{3) The resulting algorithm is faster
implement time-invariant Wiener filter¢e.g., Oldenburg, than the fast Fourier transforn) The NTE is close to a
1981; Bertero, 1989; Chung and Liu, 1998vhich are  minimax estimator for a large class of functions, which no
Wiener filters with stationary assumptions. The time-linear estimators can achiev&) The NTE uses sparse rep-
invariant Wiener filters are linear estimators operating in theesentations of wavelet bases, and it is particularly suitable
Fourier domain. It is intuitive to implement such time- for estimating MS source functioriMS source functions are
invariant Wiener filters becaugé) sinusoidal functions are transient and are therefore sparse under wavelet bases
eigenfunctions of convolution operators, therefore it is con-  The NTE has been introduced and applied to deconvo-
venient and efficient to represent the operators in the Fouridution problems by Masudat al. (1999 for synthetic data.
domain. (2) Because of(1), the Fourier coefficients of sta- In this paper, we apply the NTE to experimental data and
tionary random processes over different frequencies are untiscuss the following concepts that were not presented in
correlated, and this simplifies the analyses if the MS sourc@élasudaet al. (1999 but are crucial to deconvolution prob-
function is also stationary3) They are computationally con- |ems: (1) the importance of sparse representations of MS
signals and MS source function®) the advantage of using
aElectronic mail: jyching@caltech.edu a nonlinear filter for transient MS source functions, 481
DElectronic mail: glaser@ce.berkeley.edu the advantage of a minimax estimator over Wiener filters.
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We first define the problem of MS source deconvolution o
in Sec. II. Then in Sec. I, we introduce Wiener filters and __Rq(§=7)-h(7)-d7=Ryr() V¢, ®)
time-invariant Wiener filters. In Sec. IV, we introduce the
minimax framework and the NTE, and some important prop-whereRy(£) andR;4(&) are the auto-correlation function of
erties of the NTE are discussed. Section V states the kegt and the cross-correlation function betwedeandd, respec-
considerations regarding how to choose the estimator for deively, with lag & h is now a time-invariant filter, and(7) is
convolution problems. Section VI presents two case studiests impulse response. With the assumption fhatdz in Eq.
from which we compare the performances of four different(1) are uncorrelated, Eq45) can be written in the frequency
deconvolution strategies. Sections VII and VIII contain dis-(Fourie domain as
cussions and conclusions.

(IG()[?[F(@)|?+Pz()) - H(0)=G(w)* - |F(w) (2

II. DEFINITION OF THE PROBLEM . . .
whereG(w) is the Fourier transform of the Green’s function

The MS deconvolution problem is defined as follows. G: H(w) andF () are the Fourier transforms bfandf; G*

AssumeG is a known Green’s function characterizing the denotes the Comp|ex Conjugate@;fandpz(w) is the power
host from the MS source to the sensaft) is stationary  spectrum ofz. It follows that

Gaussian random proce@wise at timet, andT is the total

number of discrete data points. Given a noisy MS sensor Hew) = G(w)* 7
signal{d(t):t=1,2,...T}, where (w)= 1G(w) |2+ P(w)/|F(w)|? (@)
d(t):f G(t—nf(ndr+z(t), t=1,2,..T, (1) In principle, |F(w)|? is not completely knowra priori,

so a key step in designing a Wiener filter is to choose a
our goal is to estimate the unknown MS source funcfion reasonabléF(w)|?. Different choices ofF (w)|? lead to dif-
We assume, f, andzin the equation are all continuous-time ferent designs of Wiener filters. For instance, Oldenburg
functions inL? (L2 is the function space that contains all (1981 choose$F (w)|?= 1/tand, whered is a resolution fac-
functions with finiteL 2 normg. We discuss two estimators of tor that varies from 0 to 2, Bertero (1989 chooses
f, Wiener filters and minimax estimator, and show that thgF(w)|?=u-|D(w)|*P,(w), whereu is usually chosen as
minimax framework can lead to nonlinear estimators basethe average power of the noise spectrum; Chung and Liu
on thresholding rules. (1998 choose|F(w)|?=|D(w)|%|G(w)|?. All of these al-
gorithms lead to low-pass filters, i.e., estimators with time-

IIl. WIENER FILTER ESTIMATE OF AN UNKNOWN invariant moving-average windows.

SOURCE FUNCTION

To begin with the discussions for Wiener filtétgaykin,
1991; Clarkson, 1993 let the estimated, denoted byf, be
generated by passing the datthrough a general linear filter
h (not necessarily time-invariant A. Minimax rule

IV. MINIMAX ESTIMATE OF AN UNKNOWN SOURCE
FUNCTION

. o Under the minimax framework, it is assumed tlias
f(t)ZJ h(t,7)-d(7)-dr, (2)  smooth in a certain sense, i.tis within some known func-

o tion setH. For instance, iff is a solution of some second-
whereh(t, 7) is the impulse response of the linear filter. The order differential equatiorf, is within H=C?, the function

optimal linear filterh that minimizes the riskalso known as  space of twice differentiable functions. Formally, the mini-

mean-square errpr max estimate of over H is the one that “minimizes” the
2 “maximum” risk over H. In other words,
Ez(If-f[3), (3) ) )
where E,(-) denotes expectation with respect to the prob- fi (d)=arginfRY(f(d),H)
ability density function(PDP of z, and ||f—f|3=/(f(t) )
—f(t))?dt is the squares of the? norm of g, is a (time- —arginf[ supR(F(d), f)

varying Wiener filter. A Wiener filter can be found by solv- feH }

ing the following Wiener—Hopf equation:
fw =arginf

()

SupEZ| f(d)—f|3|, ®)

feH

wRd(g_t,T)'h(t,T)'deRdf(g_t,t) V§,t, (4) Af<.)
whereRy(t, ) is the auto-correlation function betwedt) ~ Where fi{(-) denotes the minimax estimator, which is an
andd(7); Ryi(t,7) is the cross-correlation function between OPerator mappingdeL? to another function inL? and
d(t) andf(7). RM(f(d),H) denotes the maximum risk over the function set

In practice, a time-invariant Wiener filter is often used, H. That is, the minimax estimatdi(-) is the operatoif
which requires the assumption that bétandd are weakly  (-) that minimizes the maximum risRM(f(d),H). The
stationary processes. Under this assumption(&decomes minimized risk is called the minimax risk, i.e.,
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RMin max g H) = inf RM(f(d),H). (9) which spanV,= @lm;lwwj , and mother waveletéy; \ -k
- =1,2,...,2}, which spanw; (Mallat, 1999. We denote the
wavelet coefficients of a functionfelL? by amk(€)
A ) =(emk,&) andB; (&) =(¥; k. £), where(g,h) is the inner
EL||fM(d)—f|53=R(fM(d),f)<RM"MXd H) VfeH, product between functiog andh. For a sampled function of
(10 sample sizeT =27, the decomposition of is

f(-)
It can be seen from Eq$8) and (9) that

where the definition oR(f(d),f) is identical to the one in 2" -1 2

Eq. (3). That is, the resulting risR(f}/ (d),f) for everyf in =2 am() emt 2 2 Biu(f) ¥k (14)

H is guaranteed to be less than the fixed number - j=mk=1

RMin maX(d H), which is minimized in the minimax frame- An appealing feature of a wavelet basis is that many

work. In the case tha is sufficiently large, the minimax useful functions have sparse representations under wavelet
framework allows us to find an estimate fofvithout apply-  bases. The sparseness is due to the following two fét)s:
ing strong subjective constraints fp e.g., the stationary with a careful selection of mother wavelets, the functions can
properties assumed by time-invariant Wiener filters. be made orthogonal to polynomials less than a certain degree
Unfortunately, even for the simple deconvolution prob-(Mallat, 1998, and(2) mother wavelets have compact sup-
lem, the minimax estimator cannot be found for any arbitraryport (or nearly compact suppontegions. Consequently, tran-
H. Nevertheless, Donoho and Johnst¢h®94 showed that sient signals which are usually piecewise smooth functions
it is possible to construct estimators, the so-called nonlinea&re sparse in the wavelet domain since many wavelet coeffi-
thresholding estimators, which have maximum risks that argientsg; , in the smooth regions that are close to polynomi-
close to the minimax riskEq. (9)] over all Besov function als are close to zeros. In addition, a nonsmooth function
classeqTriebel, 1983, i.e., whose region of support does not intersect with the support
region of a mother wavelet is orthogonal to that mother

sup R(fNT5(d), f)~RM™ ma)id’B;,q)' (1) wavelet; hence, a small support region also helps supply
feBpg sparseness.
where fNTE(.) is the NTE estimatorB;, , is a Besov func-
tion space defined as follows: C. Nonlinear thresholding estimators
BS _ [ f-( J' (Wr,p(f;h)) q@ va Oc] Equat_ion(l) can be rewritten using an operator form as
P.g : hs h ' the following equation:
r d(t)=(G-f)(t)+z(t), t=1,2,..T, (15
Wi p(f;h) =‘ kgo |r( (—1D)*(t+kh) (12)  where G-) denotes the corresponding convolution operator.
LP Then the following equation is equivalent to H45):

Since the NTEs operate under wavelet bases, we discuss (G Ld)()=f()+ (G L-2)(1), t=1,2,.T (16)

wavelet bases in the next section. ) . )
whereG ! denotes the inverse operation®f The philoso-

B. Wavelet bases and sparse representations phy of the NTE is to compare the magnitudes®f!-d and
- ) G~1.z under a wavelet basis. If the wavelet coefficient
Traditionally, deconvolution problems are usually ma- - (G™L.d) is much larger thar)Gjyk(G‘l‘z), Bj,k(G_l

nipulated in the Fourier domain, e.g., a low-pass filter is & 4y s considered to contain a significant amount of informa-
linear estimator operating in the Fourier domain. Howeversiq, apoutf and is therefore kept; otherwisg; (G *-d) is

the Fourier basis can seldom provide a sparse representatiqizcarded and set to zero. Formally, the two NTEs proposed
for f unlessf is a periodic function. In this section, we intro- 3{ Johnstone and Silvermaf1997, called hard and soft

duce wavelet bases, which are more suitable to represefiiresholding estimators, are described by the following algo-
transient functions. In MS signal analysis, wavelets havgiinms:

been applied to material classificati@@i, 2000 and fracture (1) Computey=G1.d (or pseudo-inverse &~ * does
mode classification and determination of phase and groug exist and finda(y) m and B(Y) -
velocities(Takemotoet al., 2000. (2) Find the estimate of the standard deviation of

A wavelet basigDaubechies, 1992; Meyer, 1992; Mal- ,Bj,k(G_l'Z) for scalej, denoted by}j , by the median value

lat, 1998 is an orthonormal basis that decomposes 1tRe of {|ﬁj ()k=1,... 2‘} divided by 0.6745(Donoho and
function space into a series of function spaces containingohnst(’)ne, 1992and compute the level-dependent thresh-

functions with different degrees of oscillations: olding level\ =& 2 loam log(M
J ] .

, Z DiscussionDue to the fact thatis sparse under wavelet

L*= & W, (13 pases, the sétB; (f)|:k=1,...,2} contains mostly numbers

j=—»

that are close to zero. Therefore, most of the numbers con-
where® is the direct sum of linear space#j with a small  tained in the se{|,6’,—yk(y)|:k=.l,...,2'} are close to those in

j contains functions with slow oscillationgy; with a largej the set{|/3,-,k(G‘1z)|:k=1,...,2}. Consequently, the median
contains functions with rapid oscillations. Wavelet basisvalue of {|B;«(y)|:k=1,..,2} should be close to
functions include father wavelet§em:k=1.2,...2"%,  {|B;«(G '2)|:k=1,...,.2}.

3050 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Ching et al.: Microseismic source deconvolution



Also, since mother wavelets are almost eigenfunctiondVe have seen that the NTEs perform close to a minimax
for many convolution operatoréeyer, 1992, so the sta- estimator over any Besov function class; this makes the
tionary Gaussian noisé *-z becomes almost independent NTEs even more attractive.
under wavelet bases. Therefore, the median value of
{|Bj'k(G712)|Ik=1,...,2} d|V|ded by 06745 iS a p|ausib|e B. Linear versus non”near
estimate of its standard deviation. The constaatog(T) is ) ) .
chosen becaus@,-,k(G’lz) can be greater thax; with only _In general, npnlme_ar estimators can be assumed superior
an insignificant probability. to Ilnear ones since linear estlr_nat(_)rs_ are special cases of

(3) Thresholdg; ,(y) uses the hard thresholding, i.e., nonlinear ones. A_nother way of Just|_fy|ng the supe_rlorlty is

through the following example. Consider the following func-
Bik(y) 1Bjx(Y)I>\j, _ tion estimation problem:

. vj.k, 17
0 otherwise, : d(it)y="f(t)+e(t), t=1,2,..T, (20)

or uses the soft thresholding, i.e., wheree is a white Gaussian process. The goal is to estimate
Z;j (y) f based on the datgd(t):t=1,2,...T}. Now let us restrict
’ ourselves with a keep-or-kill estimator in the Fourier do-
(UBikNI=Nsan B k(¥)) 1B x>\, main: the estimation procedure is to first compute the Fourier
“lo otherwise, vk coefficients ofd, keepK(<T) Fourier coefficients ofl and
set others to zeros, and the estimatd i computed as the
R (18) inverse Fourier transform of the manipulated Fourier coeffi-
(4) Find the NTE off, denoted byfNTE, by the inverse cients ofd.
wavelet transform Clearly, the best strategy is to keep Kédargest Fourier
coefficients if the goal is to minimize the estimation risk

Zgj,k(y):{

om J-1 2l =
*NTE_ > _ R(f(d),f), and this strategy corresponds to a nonlinear esti-
f _gl “myk(y)‘ﬁmvkﬂzm g‘l By ejk- (19 mator since the decision of keeping or killing any coefficient

. . depends on the Fourier amplitude @f A linear estimator
tquéat:;)dn§(17) "’}Pd(lf‘) mdwe_:_tr? trt]st thhe ETES d?perld prohibits the dependence of the estimator on the data, so the
gn E.Eb 3 bm nodn Inear \;vays. 'he reks 0 |Ir(]jg es gnatotr correspondingk Fourier coefficients have to be prechosen.
escribed above does not require any knowiedge abou hFnerefore, all linear estimators perform worse than the best

POWer spectrum of the noise all we ne(?d to dp '%EEG,S“' nonlinear estimator unless the prechoecoefficients coin-
mate o; for each scale. The thresholding estimé IS Cide with theK largest coefficients.

nearly minimax over every Besov function space, while N0 \yiener filters are linear estimators while the NTEs are

linear estimator can be nearly-minimax over every Beso\ygnjinear. In fact, the NTEs behave similarly as the best
function space(Johnstone and Silverman, 1997his uni-  honjinear estimator mentioned in the last paragraph: the

form near-minimaxity over all the Besov spaces has the folyteg tend to keep wavelet coefficients with large amplitudes
lowing advantage: although in principle we need to knowgp 4 kill those with small amplitudes.

which Besov spacE.e., the values op, g, andsin Eq. (11)]
thatf belongs to before we implement the NTEs, in practiceC Fourier versus wavelets
we can ignore this step because it is very unlikely frddes '
not belong to any of the Besov function classes. Which orthonormal basis should we choose, Fourier or
wavelets? A transient signéls usually sparse in the wavelet
domain. Howeverf is usually not sparse under the Fourier
domain unlessf is periodic or stationary. Therefore, the
We have introduced Wiener filters and NTEs in the lastwavelet domain is usually a better platform for function es-
few sections. We now summarize the key considerations reimation than the Fourier domain for transidrgince in the
garding the original deconvolution problem: wavelet domain, it is easier to distinguish the patterns of the
signalf and the noisea (z is never sparse under any ortho-
normal basis MS source functions are usually transient, i.e.,
Which framework should we choose, Wiener filters ornonperiodic and nonstationary, and so are not sparse in the
minimax? For designing a time-invariant Wiener filter, as-Fourier domain, but are sparse under the wavelet domain.
signing a reasonablF (w)|? [Eq. (7)] is crucial. Unfortu-  Time-invariant Wiener filters operate in the Fourier domain
nately, for the deconvolution problem it is usually difficult to while the NTEs operate in the wavelet domain.
gain knowledge aboyF (w)|? a priori. Also time-invariant
Wiener filters assume thdt is stationary; however, it iS v CASE STUDIES
hardly the case that the MS source function is stationary. MS _ )
source functions are usually transient, hence nonstationary” ExPerimental setup and data processing
On the other hand, the minimax framework does not  In order to demonstrate the utility of our proposed
assumef to be stationary. Also, under the mjnimax frame- method, several experiments are conducted on a 600
work, it is guaranteed that the resulting riBf} (d),f) is ~ x600x50 mm steel platésee Fig. 1 Artificial sources are
smaller thanRM!" ™3(d,H) for everyf in H [see Eq.(10)].  used to generate MS signals, which are recorded by wide-

V. KEY CONSIDERATIONS

A. Wiener filters versus minimax

J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Ching et al.: Microseismic source deconvolution 3051



breaks, the plate is displaced locally by the vertical force
exerted by the rod through the capillary. Once the capillary
breaks, the surface displacement recovers suddenly. This
sudden rebound generates a steplike function that has a short
rise time[Fig. 2(a)]. The pencil lead break is generated by
loading vertically the tip of a mechanical lead pencil that is
held at some angle relative to the plate until the lead tip
breaks. The mechanism of the pencil lead break is similar to
that of the capillary break except that when the lead tip
breaks, the fracture energy displaces the broken lead tip fur-
ther into the plate before the local displacement on the plate
FIG. 1. The geometry of the steel pldia mm). The location of the sensor 'eébounds. Therefore, the source function of the pencil lead
is indicated, and numbers 1 and 2 in the figure indicate the two locationbreak has a distinct “dip” at the wavefront before the re-

where the artificial sources were applied. bound occurs with a steplike function as shown in Figp)2
The ball drop source is the most reproducible and has a bell-
band, high-fidelity displacement sensof§laser etal,  shaped source functidirig. 2(c)].

1998. Using the sensor signals, our goal is to estimate the Because of the wideband steplike source function, the
time histories of the artificial MS source functions. Threecapillary break signal is used to derive the empirical Green’s
classical artificial vertical force sourcé8reckenridgeet al, ~ function from which the pencil lead break and the ball drop
1990 are applied on the surface of the steel plate. They arsources are calculated. In the calculation, the rise time of the
(1) the fracture of a glass capillary of 0.4-mm diametercapillary break is neglected and its source signal is treated as
(called the capillary break(2) the fracture of a pencil lead a perfect step function. Therefore, the numerical derivative
of 0.3-mm diametekcalled the pencil lead bregkand (3) (the central difference methpadf the capillary break signal
the impact of a 3.16-mm-diam stainless steel ball droppeds treated as a perfect impulse response and is used as the
vertically (called the ball drop Figure 2 shows the highly empirical Green’s function. The technique has been per-
accurate source time functions of a 0.4-mm capillary break, éormed by Michaelt al. (1981, who have shown excellent
0.3-mm pencil lead break and a 3.175-mm-diam steel baltesults.
drop obtained by deconvolution from signals measured by A Glaser-type broadband piezoelectric senéBtaser
capacitive sensorgBreckenridgeet al, 1990. All these etal, 1999 (bandwidth 12 kHz to 1 MHgis placed at the
sources are well documented and can be reproduced easignter of the upper side of the steel plésee Fig. 1L The
and consistently. sources are applied at two different surface locations of the
The capillary break is generated by loading a rod verti-steel plateg(see Fig. 1 location 1(epicentral through plaje
cally on a glass capillary placed flat on the plate until theon the bottom side of the plate directly below the sensor, and
capillary shatters suddenly. Immediately before the capillarjocation 2 (off-epicentral through plaje on the bottom side

6 3.0
4 { 2.0
(V7] [92]
z z
22 2 1o
3 g
¥ Z
G 1 0
-2 -1.0
a S 10 15 20 25 0 S 10 15 20 25
TIME (ps) TIME (psd
(a) (b) FIG. 2. (a) The glass capillary break source function;
(b) The pencil lead break source functigis) The ball
2.0 drop source function(from Breckenridgeet al,, 1990.
0
Y-2.0
o
—
2-4.0
W-4.
-6.0
-8.0

0 s 10 15 20 =25
TIME (ps)

©
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04 T T T T T T

0.3} Capillary Break .
—_—
02f

Pencil Lead Break
01k ]

FIG. 3. Sensor signals for the three artificial sources
applied at location 1. The pencil lead break and ball
Ball Drop drop signals are added with white Gaussian noise of
constant amplitude.

Displacement (nm)
o

L
5 10 15 20 25 30 35 40 45 50
Time (us)

at a horizontal distance of 100 mm from the sensor. TheOldenburg(1981), respectively. The nonlinear hard thresh-
transient response®S signal$ are digitally sampled at a olding estimator is implemented using the procedure pre-

0.1-us interval with 14-bit resolution. sented in Sec. VIl with the Daubechies wave(#allat,
Given the recorded MS signals and the Green’s func41998 of order 12.
tions, i.e.,d and G in Eq. (1), we adapt four deconvolution As discussed before, the numerical derivative of the cap-

methods to estimate the unknown MS source functiohg— illary break signal is used as the empirical Green’s function
Eqg. (1). The four methods arél) the nonlinear hard thresh- at each source locatiafiocations 1 and 2 in Fig.)1and the
olding estimator(2) the maximum likelihood estimator, i.e., pencil lead break and the ball drop source functions are es-
the direct deconvolution estima@ d, which maximizes timated for each location. Artificial white Gaussian noise of
the likelihood function, and two time-invariant Wiener fil- constant variance is added to the recorded pencil lead break
ters, (3) Eq. (7) with |F(w)|?=|D(w)|?*|G(w)|?, and(4)  and ball drop signals to study the effects of ndiseise was

Eq. (7) with |F(w)|?=avg(D(w)|?)/|G(w)|?>, where not added to the capillary break signals since they were used
|D(w)|? is the power spectrum of the data estimated by theas empirical Green’s functionsThe amplitude of the artifi-
smoothed periodogram of the datslarple and Lawrence, cial Gaussian noise is much larger than usual experimental
1987. Both Wiener filters are intuitive because one expectsoise, so the noise power spectrum, which is needed for the
the prior PDF of the unknown source function to be close tawo Wiener filters, can be computedpriori. Note that the
that of the data. These two Wiener filters also coincide withnoise power spectrum is not necessary for the NTE and the
the deconvolution filters used by Chung and (1998 and  maximum likelihood estimator.

Direct
2 -
0 Wiener 1
Z -of )
o . . )
2 FIG. 4. The estimated pencil lead source functions us-
Lf -4 ing the four deconvolution methodkcation 1.
6 Thresholding |
-8F u
-10f 4
_‘2 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (us)
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Direct

Wiener 1

Z 5
3 Wiener 2 FIG. 5. The estimated ball drop source functions using
L -t the four deconvolution method#cation 1.

-15 "

Thresholding

_20_

-25}

-30 3 1 1 1 1 1 1 1 [l

5 10 15 20 25 30 35 40 a5 50
Time (us)

B. Analysis of results at location 1 convolving each of the four estimated source functions with

The sensor signals for the three artificial sources applie
at location 1(epicentral are shown in Fig. 3. Gaussian noise
of 5% signal power is added to the pencil lead break and ba

drop signals to simulate noisy experimental conditions. TheShown in Figs. 6 and 7 for pencil lead and ball drop sources,

S‘respectively. The direct deconvolution estimate always give
. . . . . 71

the empirical Green'’s function. Given the empirical Green’seﬁce"%m fr|]ts since tlhe ;St'.tn;]aiﬁ 'SGS'm@' fd atr_ld mIL_’lSt

function, the pencil lead and ball drop source functions ard€turn d when convolved with e Sreen's function. How-

estimated using the four deconvolution method@e esti-  €V€" this pgrfect fit is not deswablle since the direct decon-

mated pencil lead and ball drop source functions are showHOI.Utlon estimate does not. only fit the signal .bUt alsq the

in Figs. 9 and 10, respectivelyThe four estimates are simi- "S- The other three estimates all tend to fit the signals

lar except that the direct deconvolution estimate is mor

i/r:/stead of the noise. But notice that the fits of the second
noisy. Note that the four estimators preserve the sharp dowr!. iener filter estimates cannot adapt the sharp features of the
ward jump at the beginning of the pencil lead break sourc

éignals. The fits of the first Wiener filter estimates can adapt
function those sharp features, but the estimates themselves are more
All the waveforms of our estimated source time func-

noisy. Compared to the other estimates, the nonlinear thresh-
tions(Figs. 4 and Scompare favorably to those estimated by

gﬂe empirical Green'’s function. These fits should be close to
the actual recorded pencil lead or ball drop signals. The fits
ny the four estimators together with the recorded signals are

olding estimates are noise-free while being able to adapt the

Breckenridgeet al. (1990 shown in Figs. ) and Zc). sharp features of the signals.
Table | summarizes the rise times and peak forces of our
estimated source time functions and those of Breckenridg@agLE 1. Summary of properties of source time functions.
et al. (1990. The values of the rise time and peak force of
the pencil lead break source time functions are very similarSources Rise timéus) Peak force(N)
For the ball drop, the rise time and peak force for variouspencil lead break 0.3 mm 2.50 2.05
estimateqTable |) are different because the diameter of the (from Breckenridgeet al,,
ball and the height of the drop are different among the esti- 1990
mates. In general, the larger the diameter of the ball and thge"c!l 1ead break 0.3 mm 215 1.84
. . . . (at location 1 based on the

higher the ball is dropped, the longer the rise time and the g, methodl
larger the peak force. Nonetheless, the waveforms of the baplencil lead break 0.3 mm 231 222
drop estimates are very similar. (at location 2 based on the

The sources applied at location 1 generate sensor signalshew method
of large amplitudes, so the signal-to-noise ratios are highE.‘aa"n‘(jjrc(’jfo(d'ﬁge;'irzsélﬁnr:m 9.50 5.72
Therefore, the direct deconvolution estimates are not dra- (on Bri,cke%ridgét al, 1990
matically noisy, and the two Wiener filters and the NTE cangall drop (diameter 3.16 mm 10.30 10.05
only improve the results with limited degrees by filtering out and drop height 5.1 mm
the high-frequency noise from the direct deconvolution esti- (at location 1 based on the new method
mates. It is also found that the two Wiener filters and theBaa'l'n‘érg‘:cfd'ﬁgeﬁr;élﬁ];"m 9.00 8.68
NTE perform similarly in the location 1 cases. (at |0cat?0n ngaséd on the new method

Some measure of goodness of fit can be obtained by
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C. Analysis of results at location 2 as those for location 1, and the Wiener filters and NTE tend

The sensor signals for the three artificial sources applied? SUPPress sharp features of their estimates as they eliminate
at location 2(off-epicentral are shown in Fig. 8. Gaussian M0!S¢- _ _ _
noise of the same amplitude as the epicentral case is added to | "€re is a clear difference between the two Wiener fil-
the pencil lead break and ball drop signals to simulate nois§e"s In Figs. 9 and 10: the first Wiener filter results in §harper
experimental conditions. Since the off-epicentral signals ar&Stimates than the second one does, also the amplitudes of
weaker, the corresponding signal-to-noise ratios are lowdhe first Wiener filter estimate are larger than those of the
(the Gaussian noise is roughly 10% of the signal powiite ~ second one. On the other hand, the estimated ball drop
numerical derivative of the capillary break signal is againsource function of the first Wiener filter contains more high-
taken as the empirical Green’s function. The estimated pencfrequency oscillations than that of the second one. This phe-
lead and ball drop source functions using the four deconvoRromenon is due to the bias-variance tradeoff: the first Wiener
lution methods are shown in Figs. 9 and 10. Note that thdilter is less biased while its variance is larger, but the con-
direct deconvolution estimator is quite noisy because of thaerse is true for the second one. Since the Wiener filters are
low signal-to-noise ratios, and the two Wiener filters and thdinear, the second Wiener filter reduces the noise level by
NTE significantly improve the results by removing the high- smoothing its estimates uniformly over time. However, this
frequency noise from the direct deconvolution estimatestime-invariant smoothing strategy tends to shrink the overall
Also note that the estimated source functions are not as shagmplitudes of the estimates as well, not just the noise ampli-

0.1 T T T

Wiener 1

FIG. 7. The fits of the four estimates for the ball drop
data(location 1. The recorded ball drop signal added
with Gaussian noise is plotted as heavy lines.

Displacement (nm)
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FIG. 8. Sensor signals for the three artificial sources
applied at location 2. The pencil lead break and ball
drop signals are added with white Gaussian noise of
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o1k | constant amplitude.
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tude. Moreover, if the unknown functidnis highly nonsta- estimated pencil lead break and ball drop source time func-
tionary, this linear time-invariant smoothing strategy can reions at location 2 compare favorably with those obtained by
sult in large bias. Both pencil lead break and ball drop sourc®reckenridgeet al. (1990 (Fig. 2). The rise times and peak
functions can be considered highly nonstationary. Thereforeprces of the sources at location 2 are summarized in Table |
large bias is found in the second Wiener filter for both theand are similar to those obtained at location 1. The fits by the
pencil lead break and ball drop source functions. This biasfour estimators together with the recorded signals are shown
variance tradeoff is not significant for the cases of location 1in Figs. 11 and 12 for pencil lead and ball drop sources,
since the signal-to-noise ratios are high. respectively. They are all close to the recorded signals.
On the other hand, the NTE simultaneously eliminates
noise and preserves the amplitudes and sharp changes of the
estimates. Note that the NTE also preserves the downward
jump at the beginning of the pencil lead break source funcy. DISCUSSION
tion, while the jump is smoothed out by the second Wiener
filter. As discussed previously, this excellent performance is  Our results show that the NTE outperforms the two
due to the implementation of the minimax framework of thetime-invariant Wiener filters in the experimental case studies.
NTE, the nonlinearity of the NTE, and sparse representation¥he success of the NTE is because wavelet bases provide
of transient functions under wavelet bases. sparse representations for the transient MS source functions,
Similar to those at location 1, the waveforms of ourthe estimator is nonlinear, and it is based on the minimax

~
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FIG. 9. The estimated pencil lead source functions us-
-4r h ing the four deconvolution methodkcation 2.
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-6 :/\/\M’- 3

_8 Thresholding

Force (N)

i 1 L
12 $ 1 I L 1 !

4] 2 4 6 8 10 12 14 16 18 20
Time (us)

3056 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Ching et al.: Microseismic source deconvolution



101 Direct |

0 -
Wiener 1
z s
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framework. On the other hand, Wiener filters perform worsescribed and discussed. Time-invariant Wiener filters are lin-
probably because the assumed stationary properties are rgdr filters operating in the Fourier domain. These estimators

appropriate for MS source functions. assume stationary properties for the unknown microseismic

~ Some previous research has found that it is possible tgoyrce function. They are usually not optimal for deconvo-
finely tune a time-invariant Wiener filter to get better estima-| 1ion problems due to the following reasori®) microseis-

_tlon _results_, €.9., Oldgnburq_l98]) _developed a ftime- mic source functions are usually transient and nonstationary,
invariant Wiener filter with a fine-tuning parametér The

second Wiener filter used in the case studies is actually ?‘;ncg the a_lssu_med statlonary_ properties are not appropnate.
special case of the Wiener filter havirgequals 45°. It is ) Microseismic sgurce functions do _not ne_ce;sanly have
possible to adjus® to get a better estimate than our secondSParse representations under the Fourier beiid.inear es-
Wiener filter estimate, but this leads to ad hocparameter ~ fimators are usually not the best estimators to use.

fitting procedure while it still excludes the use of a nonlinear A nonlinear thresholding estimator is presented in this
estimator. In contrast, the NTE does not have such a frepaper, which operates in the wavelet domain. This estimator

parameter. is usually more suitable than Wiener filters for deconvolution
problems becausd) wavelet bases provide sparse represen-
VIIl. CONCLUSIONS tations transient microseismic source functiof®,the esti-

Two types of estimators, Wiener filters and minimax es-mator is nearly minimax over all Besov function classes;
timators, for microseismic deconvolution problems are delherefore, in practice, prior information about the microseis-

0.005 — T

Direct

-0.005

-0.01 Wiener 2
FIG. 11. The fits of the four estimates for the pencil
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break signal added with Gaussian noise is plotted as
heavy lines.
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