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Microseismic source deconvolution: Wiener filter versus
minimax, Fourier versus wavelets, and linear versus nonlinear

Jianye Ching,a) Albert C. To, and Steven D. Glaserb)

Department of Civil and Environmental Engineering, University of California at Berkeley,
Berkeley, California 94720

~Received 3 August 2002; revised 13 February 2004; accepted 13 February 2004!

Deconvolution is commonly performed on microseismic signals to determine the time history of a
dislocation source, usually modeled as combinations of forces or couples. This paper presents a new
deconvolution method that uses a nonlinear thresholding estimator, which is based on the minimax
framework and operates in the wavelet domain. Experiments were performed on a steel plate using
artificially generated microseismic signals, which were recorded by high-fidelity displacement
sensors at various locations. The source functions were deconvolved from the recorded signals by
Wiener filters and the new method. Results were compared and show that the new method
outperforms the other methods in terms of reducing noise while keeping the sharp features of the
source functions. Other advantages of the nonlinear thresholding estimator include~1! its
performance is close to that of a minimax estimator,~2! it is nonlinear and takes advantage of sparse
representations under wavelet bases, and~3! its computation is faster than the fast Fourier transform.
© 2004 Acoustical Society of America.@DOI: 10.1121/1.1705658#

PACS numbers: 43.60.Pt, 43.40.Le, 43.60.Bf@JCB# Pages: 3048–3058
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I. INTRODUCTION

Microseismic~MS! signals carry important information
about the dislocation mechanisms within the solid that c
tains the source. It is of great interest to infer the charac
istics of the dislocation source using the recorded MS s
nals, and a common way of achieving this is to deconvo
the recorded MS signals by the corresponding Green’s fu
tions. The result of the deconvolution is an estimate of
MS source function, e.g., the slip time history of the dis
cation source. Using the estimated source function, it is p
sible to infer the dislocation mechanisms of the crack t
generates the MS energy. This technique has been rout
implemented by geophysicists to invert seismic source fu
tions using seismograms~e.g., Stump and Johnson, 197!
and by researchers in nondestructive testing~e.g., Michaels
et al., 1981! and fracture mechanics~e.g., Scrubyet al.,
1985; Kim and Sachse, 1986! to determine the fracture
mechanisms of cracks in solids.

A standard way of performing deconvolution is
implement time-invariant Wiener filters~e.g., Oldenburg,
1981; Bertero, 1989; Chung and Liu, 1998!, which are
Wiener filters with stationary assumptions. The tim
invariant Wiener filters are linear estimators operating in
Fourier domain. It is intuitive to implement such time
invariant Wiener filters because~1! sinusoidal functions are
eigenfunctions of convolution operators, therefore it is co
venient and efficient to represent the operators in the Fou
domain.~2! Because of~1!, the Fourier coefficients of sta
tionary random processes over different frequencies are
correlated, and this simplifies the analyses if the MS sou
function is also stationary.~3! They are computationally con

a!Electronic mail: jyching@caltech.edu
b!Electronic mail: glaser@ce.berkeley.edu
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venient since there is only a linear inverse problem to so
and the fast Fourier transform can be calculated rapidly.

However, time-invariant Wiener filters may perform
poorly if the assumed stationary properties are not appro
ate. Also, Wiener filters reject the use of a nonlinear estim
tor, and the Fourier basis does not necessarily provide sp
representations for MS signals and MS source functio
Last, to implement Wiener filters usually requires the know
edge of the noise power spectrum, which is another par
eter to be determined.

In this paper, we introduce the nonlinear thresholdi
estimator~NTE! developed by Donoho and Johnstone~1992!
and Johnstone and Silverman~1997!. The estimator provides
the following advantages:~1! It does not assume a stationa
source function. Instead, the estimator is based on the m
max concept~Bickel and Doksum, 1977! from decision
theory. We argue that a minimax estimator is more suita
for a deconvolution problem than time-invariant Wiener fi
ters. ~2! The NTE does not require the knowledge of t
noise power spectrum.~3! The resulting algorithm is faste
than the fast Fourier transform.~4! The NTE is close to a
minimax estimator for a large class of functions, which
linear estimators can achieve.~5! The NTE uses sparse rep
resentations of wavelet bases, and it is particularly suita
for estimating MS source functions~MS source functions are
transient and are therefore sparse under wavelet bases!.

The NTE has been introduced and applied to decon
lution problems by Masudaet al. ~1999! for synthetic data.
In this paper, we apply the NTE to experimental data a
discuss the following concepts that were not presented
Masudaet al. ~1999! but are crucial to deconvolution prob
lems: ~1! the importance of sparse representations of M
signals and MS source functions,~2! the advantage of using
a nonlinear filter for transient MS source functions, and~3!
the advantage of a minimax estimator over Wiener filters
15(6)/3048/11/$20.00 © 2004 Acoustical Society of America
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We first define the problem of MS source deconvoluti
in Sec. II. Then in Sec. III, we introduce Wiener filters a
time-invariant Wiener filters. In Sec. IV, we introduce th
minimax framework and the NTE, and some important pro
erties of the NTE are discussed. Section V states the
considerations regarding how to choose the estimator for
convolution problems. Section VI presents two case stud
from which we compare the performances of four differe
deconvolution strategies. Sections VII and VIII contain d
cussions and conclusions.

II. DEFINITION OF THE PROBLEM

The MS deconvolution problem is defined as follow
AssumeG is a known Green’s function characterizing th
host from the MS source to the sensor,z(t) is stationary
Gaussian random process~noise! at time t, andT is the total
number of discrete data points. Given a noisy MS sen
signal$d(t):t51,2,...,T%, where

d~ t !5E G~ t2t! f ~t!dt1z~ t !, t51,2,...,T, ~1!

our goal is to estimate the unknown MS source functionf.
We assumed, f, andz in the equation are all continuous-tim
functions in L2 (L2 is the function space that contains a
functions with finiteL2 norms!. We discuss two estimators o
f, Wiener filters and minimax estimator, and show that
minimax framework can lead to nonlinear estimators ba
on thresholding rules.

III. WIENER FILTER ESTIMATE OF AN UNKNOWN
SOURCE FUNCTION

To begin with the discussions for Wiener filters~Haykin,
1991; Clarkson, 1993!, let the estimatedf, denoted byf̂ , be
generated by passing the datad through a general linear filte
h ~not necessarily time-invariant!:

f̂ ~ t !5E
2`

`

h~ t,t!•d~t!•dt, ~2!

whereh(t,t) is the impulse response of the linear filter. T
optimal linear filterh that minimizes the risk~also known as
mean-square error!

EZ~ i f̂ 2 f i2
2!, ~3!

whereEZ(•) denotes expectation with respect to the pro
ability density function~PDF! of z, and i f̂ 2 f i2

2[*( f̂ (t)
2 f (t))2 dt is the squares of theL2 norm of g, is a ~time-
varying! Wiener filter. A Wiener filter can be found by solv
ing the following Wiener–Hopf equation:

E
2`

`

Rd~j2t,t!•h~ t,t!•dt5Rd f~j2t,t ! ;j,t, ~4!

whereRd(t,t) is the auto-correlation function betweend(t)
andd(t); Rd f(t,t) is the cross-correlation function betwee
d(t) and f (t).

In practice, a time-invariant Wiener filter is often use
which requires the assumption that bothf andd are weakly
stationary processes. Under this assumption, Eq.~4! becomes
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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Rd~j2t!•h~t!•dt5Rd f~j! ;j, ~5!

whereRd(j) andRf d(j) are the auto-correlation function o
d and the cross-correlation function betweenf andd, respec-
tively, with lagj; h is now a time-invariant filter, andh(t) is
its impulse response. With the assumption thatf andz in Eq.
~1! are uncorrelated, Eq.~5! can be written in the frequenc
~Fourier! domain as

~ uG~v!u2
•uF~v!u21PZ~v!!•H~v!5G~v!* •uF~v!u2,

~6!

whereG(v) is the Fourier transform of the Green’s functio
G; H(v) andF(v) are the Fourier transforms ofh andf; G*
denotes the complex conjugate ofG; andPZ(v) is the power
spectrum ofz. It follows that

H~v!5
G~v!*

uG~v!u21PZ~v!/uF~v!u2
. ~7!

In principle, uF(v)u2 is not completely knowna priori,
so a key step in designing a Wiener filter is to choose
reasonableuF(v)u2. Different choices ofuF(v)u2 lead to dif-
ferent designs of Wiener filters. For instance, Oldenb
~1981! choosesuF(v)u251/tanu, whereu is a resolution fac-
tor that varies from 0 to 2p; Bertero ~1989! chooses
uF(v)u25m•uD(v)u2/PZ(v), wherem is usually chosen as
the average power of the noise spectrum; Chung and
~1998! chooseuF(v)u25uD(v)u2/uG(v)u2. All of these al-
gorithms lead to low-pass filters, i.e., estimators with tim
invariant moving-average windows.

IV. MINIMAX ESTIMATE OF AN UNKNOWN SOURCE
FUNCTION

A. Minimax rule

Under the minimax framework, it is assumed thatf is
smooth in a certain sense, i.e.,f is within some known func-
tion setH. For instance, iff is a solution of some second
order differential equation,f is within H5C2, the function
space of twice differentiable functions. Formally, the min
max estimate off over H is the one that ‘‘minimizes’’ the
‘‘maximum’’ risk over H. In other words,

f̂ H
M~d!5arg inf

f̂ ~• !

RM~ f̂ ~d!,H !

5arg inf
f̂ ~• !

F sup
f PH

R~ f̂ ~d!, f !G
5arg inf

f̂ ~• !

F sup
f PH

EZI f̂ ~d!2 f I 2
2G , ~8!

where f̂ H
M(•) denotes the minimax estimator, which is a

operator mappingdPL2 to another function inL2, and
RM( f̂ (d),H) denotes the maximum risk over the function s
H. That is, the minimax estimatorf̂ H

M(•) is the operatorf̂
(•) that minimizes the maximum riskRM( f̂ (d),H). The
minimized risk is called the minimax risk, i.e.,
3049Ching et al.: Microseismic source deconvolution
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RMin max~d,H !5 inf
f̂ ~• !

RM~ f̂ ~d!,H !. ~9!

It can be seen from Eqs.~8! and ~9! that

EZi f̂ H
M~d!2 f i2

25R~ f̂ H
M~d!, f !,RMin max~d,H ! ; f PH,

~10!

where the definition ofR( f̂ (d), f ) is identical to the one in
Eq. ~3!. That is, the resulting riskR( f̂ H

M(d), f ) for every f in
H is guaranteed to be less than the fixed num
RMin max(d,H), which is minimized in the minimax frame
work. In the case thatH is sufficiently large, the minimax
framework allows us to find an estimate off without apply-
ing strong subjective constraints tof, e.g., the stationary
properties assumed by time-invariant Wiener filters.

Unfortunately, even for the simple deconvolution pro
lem, the minimax estimator cannot be found for any arbitr
H. Nevertheless, Donoho and Johnstone~1994! showed that
it is possible to construct estimators, the so-called nonlin
thresholding estimators, which have maximum risks that
close to the minimax risk@Eq. ~9!# over all Besov function
classes~Triebel, 1983!, i.e.,

sup
f PBp,q

s

R~ f̂ NTE~d!, f !;RMin max~d,Bp,q
s !, ~11!

where f̂ NTE(•) is the NTE estimator;Bp,q
s is a Besov func-

tion space defined as follows:

Bp,q
s 5H f :S E S wr ,p~ f ;h!

hs D q
dh

h D 1/q

,`J ,

wr ,p~ f ;h!5I (
k50

r S r
kD ~21!kf ~ t1kh!I

Lp

. ~12!

Since the NTEs operate under wavelet bases, we dis
wavelet bases in the next section.

B. Wavelet bases and sparse representations

Traditionally, deconvolution problems are usually m
nipulated in the Fourier domain, e.g., a low-pass filter i
linear estimator operating in the Fourier domain. Howev
the Fourier basis can seldom provide a sparse represent
for f unlessf is a periodic function. In this section, we intro
duce wavelet bases, which are more suitable to repre
transient functions. In MS signal analysis, wavelets ha
been applied to material classification~Qi, 2000! and fracture
mode classification and determination of phase and gr
velocities~Takemotoet al., 2000!.

A wavelet basis~Daubechies, 1992; Meyer, 1992; Ma
lat, 1998! is an orthonormal basis that decomposes theL2

function space into a series of function spaces contain
functions with different degrees of oscillations:

L25 %

j 52`

`

Wj , ~13!

where% is the direct sum of linear spaces.Wj with a small
j contains functions with slow oscillations;Wj with a largej
contains functions with rapid oscillations. Wavelet ba
functions include father wavelets$wm,k :k51,2,...,2m%,
3050 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
r

-
y

ar
re

ss

-
a
r,
ion

nt
e

p

g

s

which spanVm5 % j 52`
m21 Wj , and mother wavelets$c j ,k :k

51,2,...,2j%, which spanWj ~Mallat, 1998!. We denote the
wavelet coefficients of a functionjPL2 by am,k(j)
5^wm,k ,j& andb j ,k(j)5^c j ,k ,j&, where^g,h& is the inner
product between functiong andh. For a sampled function o
sample sizeT52J, the decomposition off is

f 5 (
k51

2m

am,k~ f !•wm,k1 (
j 5m

J21

(
k51

2 j

b j ,k~ f !•c j ,k . ~14!

An appealing feature of a wavelet basis is that ma
useful functions have sparse representations under wa
bases. The sparseness is due to the following two facts~1!
with a careful selection of mother wavelets, the functions c
be made orthogonal to polynomials less than a certain de
~Mallat, 1998!, and ~2! mother wavelets have compact su
port ~or nearly compact support! regions. Consequently, tran
sient signals which are usually piecewise smooth functi
are sparse in the wavelet domain since many wavelet co
cientsb j ,k in the smooth regions that are close to polynom
als are close to zeros. In addition, a nonsmooth funct
whose region of support does not intersect with the supp
region of a mother wavelet is orthogonal to that moth
wavelet; hence, a small support region also helps sup
sparseness.

C. Nonlinear thresholding estimators

Equation~1! can be rewritten using an operator form
the following equation:

d~ t !5~G• f !~ t !1z~ t !, t51,2,...,T, ~15!

where (G•) denotes the corresponding convolution opera
Then the following equation is equivalent to Eq.~15!:

~G21
•d!~ t !5 f ~ t !1~G21

•z!~ t !, t51,2,...,T, ~16!

whereG21 denotes the inverse operation ofG. The philoso-
phy of the NTE is to compare the magnitudes ofG21

•d and
G21

•z under a wavelet basis. If the wavelet coefficie
b j ,k(G

21
•d) is much larger thanb j ,k(G

21
•z), b j ,k(G

21

•d) is considered to contain a significant amount of inform
tion aboutf and is therefore kept; otherwise,b j ,k(G

21
•d) is

discarded and set to zero. Formally, the two NTEs propo
by Johnstone and Silverman~1997!, called hard and soft
thresholding estimators, are described by the following al
rithms:

~1! Computey5G21
•d ~or pseudo-inverse ifG21 does

not exist! and finda(y)m,k andb(y) j ,k .
~2! Find the estimate of the standard deviation

b j ,k(G
21

•z) for scalej, denoted byŝ j , by the median value
of $ub j ,k(y)u:k51,...,2j% divided by 0.6745~Donoho and
Johnstone, 1992! and compute the level-dependent thres
olding levell j5ŝ jA2 log(T).

Discussion:Due to the fact thatf is sparse under wavele
bases, the set$ub j ,k( f )u:k51,...,2j% contains mostly numbers
that are close to zero. Therefore, most of the numbers c
tained in the set$ub j ,k(y)u:k51,...,2j% are close to those in
the set$ub j ,k(G

21z)u:k51,...,2j%. Consequently, the media
value of $ub j ,k(y)u:k51,...,2j% should be close to
$ub j ,k(G

21z)u:k51,...,2j%.
Ching et al.: Microseismic source deconvolution
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Also, since mother wavelets are almost eigenfunctio
for many convolution operators~Meyer, 1992!, so the sta-
tionary Gaussian noiseG21

•z becomes almost independe
under wavelet bases. Therefore, the median value
$ub j ,k(G

21z)u:k51,...,2j% divided by 0.6745 is a plausible
estimate of its standard deviation. The constantA2 log(T) is
chosen becauseb j ,k(G

21z) can be greater thanl j with only
an insignificant probability.

~3! Thresholdb j ,k(y) uses the hard thresholding, i.e.,

b̃ j ,k~y!5H b j ,k~y! ub j ,k~y!u.l j ,

0 otherwise,
; j ,k, ~17!

or uses the soft thresholding, i.e.,

b̃ j ,k~y!

5H ~ ub j ,k~y!u2l j !sgn~b j ,k~y!! ub j ,k~y!u.l j ,

0 otherwise,
; j ,k.

~18!

~4! Find the NTE off, denoted byf̂ NTE, by the inverse
wavelet transform

f̂ NTE5 (
k51

2m

am,k~y!fm,k1 (
j 5m

J21

(
k51

2 j

b̃ j ,k~y!w j ,k . ~19!

Equations~17! and ~18! indicate that the NTEs depen
on the datad in nonlinear ways. The thresholding estimat
described above does not require any knowledge abou
power spectrum of the noisez: all we need to do is to esti
mate ŝ j for each scale. The thresholding estimatef̂ NTE is
nearly minimax over every Besov function space, while
linear estimator can be nearly-minimax over every Bes
function space~Johnstone and Silverman, 1997!. This uni-
form near-minimaxity over all the Besov spaces has the
lowing advantage: although in principle we need to kn
which Besov space@i.e., the values ofp, q, ands in Eq. ~11!#
that f belongs to before we implement the NTEs, in pract
we can ignore this step because it is very unlikely thatf does
not belong to any of the Besov function classes.

V. KEY CONSIDERATIONS

We have introduced Wiener filters and NTEs in the l
few sections. We now summarize the key considerations
garding the original deconvolution problem:

A. Wiener filters versus minimax

Which framework should we choose, Wiener filters
minimax? For designing a time-invariant Wiener filter, a
signing a reasonableuF(v)u2 @Eq. ~7!# is crucial. Unfortu-
nately, for the deconvolution problem it is usually difficult
gain knowledge aboutuF(v)u2 a priori. Also time-invariant
Wiener filters assume thatf is stationary; however, it is
hardly the case that the MS source function is stationary.
source functions are usually transient, hence nonstationa

On the other hand, the minimax framework does n
assumef to be stationary. Also, under the minimax fram
work, it is guaranteed that the resulting riskR( f̂ H

M(d), f ) is
smaller thanRMin max(d,H) for every f in H @see Eq.~10!#.
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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We have seen that the NTEs perform close to a minim
estimator over any Besov function class; this makes
NTEs even more attractive.

B. Linear versus nonlinear

In general, nonlinear estimators can be assumed sup
to linear ones since linear estimators are special case
nonlinear ones. Another way of justifying the superiority
through the following example. Consider the following fun
tion estimation problem:

d~ t !5 f ~ t !1e~ t !, t51,2,...,T, ~20!

wheree is a white Gaussian process. The goal is to estim
f based on the data$d(t):t51,2,...,T%. Now let us restrict
ourselves with a keep-or-kill estimator in the Fourier d
main: the estimation procedure is to first compute the Fou
coefficients ofd, keepK(!T) Fourier coefficients ofd and
set others to zeros, and the estimate off is computed as the
inverse Fourier transform of the manipulated Fourier coe
cients ofd.

Clearly, the best strategy is to keep theK largest Fourier
coefficients if the goal is to minimize the estimation ris
R( f̂ (d), f ), and this strategy corresponds to a nonlinear e
mator since the decision of keeping or killing any coefficie
depends on the Fourier amplitude ofd. A linear estimator
prohibits the dependence of the estimator on the data, so
correspondingK Fourier coefficients have to be prechose
Therefore, all linear estimators perform worse than the b
nonlinear estimator unless the prechosenK coefficients coin-
cide with theK largest coefficients.

Wiener filters are linear estimators while the NTEs a
nonlinear. In fact, the NTEs behave similarly as the b
nonlinear estimator mentioned in the last paragraph:
NTEs tend to keep wavelet coefficients with large amplitud
and kill those with small amplitudes.

C. Fourier versus wavelets

Which orthonormal basis should we choose, Fourier
wavelets? A transient signalf is usually sparse in the wavele
domain. However,f is usually not sparse under the Fouri
domain unlessf is periodic or stationary. Therefore, th
wavelet domain is usually a better platform for function e
timation than the Fourier domain for transientf since in the
wavelet domain, it is easier to distinguish the patterns of
signal f and the noisez ~z is never sparse under any orth
normal basis!. MS source functions are usually transient, i.
nonperiodic and nonstationary, and so are not sparse in
Fourier domain, but are sparse under the wavelet dom
Time-invariant Wiener filters operate in the Fourier doma
while the NTEs operate in the wavelet domain.

VI. CASE STUDIES

A. Experimental setup and data processing

In order to demonstrate the utility of our propose
method, several experiments are conducted on a
3600350 mm steel plate~see Fig. 1!. Artificial sources are
used to generate MS signals, which are recorded by w
3051Ching et al.: Microseismic source deconvolution
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band, high-fidelity displacement sensors~Glaser et al.,
1998!. Using the sensor signals, our goal is to estimate
time histories of the artificial MS source functions. Thr
classical artificial vertical force sources~Breckenridgeet al.,
1990! are applied on the surface of the steel plate. They
~1! the fracture of a glass capillary of 0.4-mm diame
~called the capillary break!, ~2! the fracture of a pencil lead
of 0.3-mm diameter~called the pencil lead break!, and ~3!
the impact of a 3.16-mm-diam stainless steel ball drop
vertically ~called the ball drop!. Figure 2 shows the highly
accurate source time functions of a 0.4-mm capillary brea
0.3-mm pencil lead break and a 3.175-mm-diam steel
drop obtained by deconvolution from signals measured
capacitive sensors~Breckenridgeet al., 1990!. All these
sources are well documented and can be reproduced e
and consistently.

The capillary break is generated by loading a rod ve
cally on a glass capillary placed flat on the plate until t
capillary shatters suddenly. Immediately before the capill

FIG. 1. The geometry of the steel plate~in mm!. The location of the senso
is indicated, and numbers 1 and 2 in the figure indicate the two locat
where the artificial sources were applied.
3052 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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breaks, the plate is displaced locally by the vertical for
exerted by the rod through the capillary. Once the capill
breaks, the surface displacement recovers suddenly.
sudden rebound generates a steplike function that has a
rise time @Fig. 2~a!#. The pencil lead break is generated b
loading vertically the tip of a mechanical lead pencil that
held at some angle relative to the plate until the lead
breaks. The mechanism of the pencil lead break is simila
that of the capillary break except that when the lead
breaks, the fracture energy displaces the broken lead tip
ther into the plate before the local displacement on the p
rebounds. Therefore, the source function of the pencil l
break has a distinct ‘‘dip’’ at the wavefront before the r
bound occurs with a steplike function as shown in Fig. 2~b!.
The ball drop source is the most reproducible and has a b
shaped source function@Fig. 2~c!#.

Because of the wideband steplike source function,
capillary break signal is used to derive the empirical Gree
function from which the pencil lead break and the ball dr
sources are calculated. In the calculation, the rise time of
capillary break is neglected and its source signal is treate
a perfect step function. Therefore, the numerical derivat
~the central difference method! of the capillary break signa
is treated as a perfect impulse response and is used a
empirical Green’s function. The technique has been p
formed by Michaelset al. ~1981!, who have shown excellen
results.

A Glaser-type broadband piezoelectric sensor~Glaser
et al., 1998! ~bandwidth 12 kHz to 1 MHz! is placed at the
center of the upper side of the steel plate~see Fig. 1!. The
sources are applied at two different surface locations of
steel plate~see Fig. 1!: location 1~epicentral through plate!,
on the bottom side of the plate directly below the sensor,
location 2~off-epicentral through plate!, on the bottom side

s

;
FIG. 2. ~a! The glass capillary break source function
~b! The pencil lead break source function;~c! The ball
drop source function;~from Breckenridgeet al., 1990!.
Ching et al.: Microseismic source deconvolution
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FIG. 3. Sensor signals for the three artificial sourc
applied at location 1. The pencil lead break and b
drop signals are added with white Gaussian noise
constant amplitude.
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at a horizontal distance of 100 mm from the sensor. T
transient responses~MS signals! are digitally sampled at a
0.1-ms interval with 14-bit resolution.

Given the recorded MS signals and the Green’s fu
tions, i.e.,d andG in Eq. ~1!, we adapt four deconvolution
methods to estimate the unknown MS source functions—f in
Eq. ~1!. The four methods are~1! the nonlinear hard thresh
olding estimator,~2! the maximum likelihood estimator, i.e
the direct deconvolution estimateG21d, which maximizes
the likelihood function, and two time-invariant Wiener fi
ters, ~3! Eq. ~7! with uF(v)u25uD(v)u2/uG(v)u2, and ~4!
Eq. ~7! with uF(v)u25avg(uD(v)u2)/uG(v)u2, where
uD(v)u2 is the power spectrum of the data estimated by
smoothed periodogram of the data~Marple and Lawrence
1987!. Both Wiener filters are intuitive because one expe
the prior PDF of the unknown source function to be close
that of the data. These two Wiener filters also coincide w
the deconvolution filters used by Chung and Liu~1998! and
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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Oldenburg~1981!, respectively. The nonlinear hard thres
olding estimator is implemented using the procedure p
sented in Sec. VIII with the Daubechies wavelet~Mallat,
1998! of order 12.

As discussed before, the numerical derivative of the c
illary break signal is used as the empirical Green’s funct
at each source location~locations 1 and 2 in Fig. 1!, and the
pencil lead break and the ball drop source functions are
timated for each location. Artificial white Gaussian noise
constant variance is added to the recorded pencil lead b
and ball drop signals to study the effects of noise~noise was
not added to the capillary break signals since they were u
as empirical Green’s functions!. The amplitude of the artifi-
cial Gaussian noise is much larger than usual experime
noise, so the noise power spectrum, which is needed for
two Wiener filters, can be computeda priori. Note that the
noise power spectrum is not necessary for the NTE and
maximum likelihood estimator.
s-
FIG. 4. The estimated pencil lead source functions u
ing the four deconvolution methods~location 1!.
3053Ching et al.: Microseismic source deconvolution
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FIG. 5. The estimated ball drop source functions usi
the four deconvolution methods~location 1!.
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B. Analysis of results at location 1

The sensor signals for the three artificial sources app
at location 1~epicentral! are shown in Fig. 3. Gaussian nois
of 5% signal power is added to the pencil lead break and
drop signals to simulate noisy experimental conditions. T
numerical derivative of the capillary break signal is taken
the empirical Green’s function. Given the empirical Gree
function, the pencil lead and ball drop source functions
estimated using the four deconvolution methods.~The esti-
mated pencil lead and ball drop source functions are sh
in Figs. 9 and 10, respectively.! The four estimates are sim
lar except that the direct deconvolution estimate is m
noisy. Note that the four estimators preserve the sharp do
ward jump at the beginning of the pencil lead break sou
function.

All the waveforms of our estimated source time fun
tions~Figs. 4 and 5! compare favorably to those estimated
Breckenridgeet al. ~1990! shown in Figs. 2~b! and 2~c!.
Table I summarizes the rise times and peak forces of
estimated source time functions and those of Breckenri
et al. ~1990!. The values of the rise time and peak force
the pencil lead break source time functions are very sim
For the ball drop, the rise time and peak force for vario
estimates~Table I! are different because the diameter of t
ball and the height of the drop are different among the e
mates. In general, the larger the diameter of the ball and
higher the ball is dropped, the longer the rise time and
larger the peak force. Nonetheless, the waveforms of the
drop estimates are very similar.

The sources applied at location 1 generate sensor sig
of large amplitudes, so the signal-to-noise ratios are h
Therefore, the direct deconvolution estimates are not d
matically noisy, and the two Wiener filters and the NTE c
only improve the results with limited degrees by filtering o
the high-frequency noise from the direct deconvolution e
mates. It is also found that the two Wiener filters and
NTE perform similarly in the location 1 cases.

Some measure of goodness of fit can be obtained
3054 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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convolving each of the four estimated source functions w
the empirical Green’s function. These fits should be close
the actual recorded pencil lead or ball drop signals. The
by the four estimators together with the recorded signals
shown in Figs. 6 and 7 for pencil lead and ball drop sourc
respectively. The direct deconvolution estimate always g
excellent fits since the estimate is simplyG21d and must
return d when convolved with the Green’s function. How
ever, this perfect fit is not desirable since the direct dec
volution estimate does not only fit the signal but also t
noise. The other three estimates all tend to fit the sign
instead of the noise. But notice that the fits of the seco
Wiener filter estimates cannot adapt the sharp features o
signals. The fits of the first Wiener filter estimates can ad
those sharp features, but the estimates themselves are
noisy. Compared to the other estimates, the nonlinear thr
olding estimates are noise-free while being able to adapt
sharp features of the signals.

TABLE I. Summary of properties of source time functions.

Sources Rise time~ms! Peak force~N!

Pencil lead break 0.3 mm
~from Breckenridgeet al.,
1990!

2.50 2.05

Pencil lead break 0.3 mm
~at location 1 based on the
new method!

2.15 1.84

Pencil lead break 0.3 mm
~at location 2 based on the
new method!

2.31 2.22

Ball drop ~diameter 3.18 mm
and drop height 2.6 mm!
~from Breckenridgeet al., 1990!

9.50 5.72

Ball drop ~diameter 3.16 mm
and drop height 5.1 mm!
~at location 1 based on the new method!

10.30 10.05

Ball drop ~diameter 3.16 mm
and drop height 3.9 mm!
~at location 2 based on the new method!

9.00 8.68
Ching et al.: Microseismic source deconvolution
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FIG. 6. The fits of the four estimates for the pencil lea
break data~location 1!. The recorded pencil lead brea
signal added with Gaussian noise is plotted as hea
lines.
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C. Analysis of results at location 2

The sensor signals for the three artificial sources app
at location 2~off-epicentral! are shown in Fig. 8. Gaussia
noise of the same amplitude as the epicentral case is add
the pencil lead break and ball drop signals to simulate no
experimental conditions. Since the off-epicentral signals
weaker, the corresponding signal-to-noise ratios are lo
~the Gaussian noise is roughly 10% of the signal power!. The
numerical derivative of the capillary break signal is aga
taken as the empirical Green’s function. The estimated pe
lead and ball drop source functions using the four decon
lution methods are shown in Figs. 9 and 10. Note that
direct deconvolution estimator is quite noisy because of
low signal-to-noise ratios, and the two Wiener filters and
NTE significantly improve the results by removing the hig
frequency noise from the direct deconvolution estimat
Also note that the estimated source functions are not as s
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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as those for location 1, and the Wiener filters and NTE te
to suppress sharp features of their estimates as they elim
noise.

There is a clear difference between the two Wiener
ters in Figs. 9 and 10: the first Wiener filter results in shar
estimates than the second one does, also the amplitude
the first Wiener filter estimate are larger than those of
second one. On the other hand, the estimated ball d
source function of the first Wiener filter contains more hig
frequency oscillations than that of the second one. This p
nomenon is due to the bias-variance tradeoff: the first Wie
filter is less biased while its variance is larger, but the co
verse is true for the second one. Since the Wiener filters
linear, the second Wiener filter reduces the noise level
smoothing its estimates uniformly over time. However, th
time-invariant smoothing strategy tends to shrink the ove
amplitudes of the estimates as well, not just the noise am
p
d

FIG. 7. The fits of the four estimates for the ball dro
data ~location 1!. The recorded ball drop signal adde
with Gaussian noise is plotted as heavy lines.
3055Ching et al.: Microseismic source deconvolution
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FIG. 8. Sensor signals for the three artificial sourc
applied at location 2. The pencil lead break and b
drop signals are added with white Gaussian noise
constant amplitude.
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tude. Moreover, if the unknown functionf is highly nonsta-
tionary, this linear time-invariant smoothing strategy can
sult in large bias. Both pencil lead break and ball drop sou
functions can be considered highly nonstationary. Theref
large bias is found in the second Wiener filter for both t
pencil lead break and ball drop source functions. This b
variance tradeoff is not significant for the cases of locatio
since the signal-to-noise ratios are high.

On the other hand, the NTE simultaneously elimina
noise and preserves the amplitudes and sharp changes o
estimates. Note that the NTE also preserves the downw
jump at the beginning of the pencil lead break source fu
tion, while the jump is smoothed out by the second Wie
filter. As discussed previously, this excellent performance
due to the implementation of the minimax framework of t
NTE, the nonlinearity of the NTE, and sparse representat
of transient functions under wavelet bases.

Similar to those at location 1, the waveforms of o
3056 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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estimated pencil lead break and ball drop source time fu
tions at location 2 compare favorably with those obtained
Breckenridgeet al. ~1990! ~Fig. 2!. The rise times and pea
forces of the sources at location 2 are summarized in Tab
and are similar to those obtained at location 1. The fits by
four estimators together with the recorded signals are sh
in Figs. 11 and 12 for pencil lead and ball drop sourc
respectively. They are all close to the recorded signals.

VII. DISCUSSION

Our results show that the NTE outperforms the tw
time-invariant Wiener filters in the experimental case stud
The success of the NTE is because wavelet bases pro
sparse representations for the transient MS source functi
the estimator is nonlinear, and it is based on the minim
s-
FIG. 9. The estimated pencil lead source functions u
ing the four deconvolution methods~location 2!.
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FIG. 10. The estimated ball drop source functions usi
the four deconvolution methods~location 2!.
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framework. On the other hand, Wiener filters perform wo
probably because the assumed stationary properties ar
appropriate for MS source functions.

Some previous research has found that it is possibl
finely tune a time-invariant Wiener filter to get better estim
tion results, e.g., Oldenburg~1981! developed a time-
invariant Wiener filter with a fine-tuning parameteru. The
second Wiener filter used in the case studies is actual
special case of the Wiener filter havingu equals 45°. It is
possible to adjustu to get a better estimate than our seco
Wiener filter estimate, but this leads to anad hocparameter
fitting procedure while it still excludes the use of a nonline
estimator. In contrast, the NTE does not have such a
parameter.

VIII. CONCLUSIONS

Two types of estimators, Wiener filters and minimax e
timators, for microseismic deconvolution problems are
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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scribed and discussed. Time-invariant Wiener filters are
ear filters operating in the Fourier domain. These estima
assume stationary properties for the unknown microseis
source function. They are usually not optimal for deconv
lution problems due to the following reasons:~1! microseis-
mic source functions are usually transient and nonstation
hence the assumed stationary properties are not approp
~2! Microseismic source functions do not necessarily ha
sparse representations under the Fourier basis.~3! Linear es-
timators are usually not the best estimators to use.

A nonlinear thresholding estimator is presented in t
paper, which operates in the wavelet domain. This estim
is usually more suitable than Wiener filters for deconvoluti
problems because~1! wavelet bases provide sparse repres
tations transient microseismic source functions,~2! the esti-
mator is nearly minimax over all Besov function classe
therefore, in practice, prior information about the microse
il

as
FIG. 11. The fits of the four estimates for the penc
lead break data~location 2!. The recorded pencil lead
break signal added with Gaussian noise is plotted
heavy lines.
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FIG. 12. The fits of the four estimates for the ball dro
data ~location 2!. The recorded ball drop signal adde
with Gaussian noise is plotted as heavy lines.
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mic source function is not needed, and~3! the estimator is
nonlinear.

Two time-invariant Wiener filters and the nonline
thresholding estimator are compared using several case
ies of experimental microseismic data. From the results
the case studies, we conclude that the nonlinear threshol
estimator outperforms the Wiener filters. The nonline
thresholding estimator is able to achieve two goals simu
neously:~1! effectively remove estimation noise and~2! pre-
serve the sharp features in the source functions. The
Wiener filters fail to achieve the two goals simultaneously
some of the case studies.
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