
UC Irvine
ICS Technical Reports

Title
Low tech connections into the ARPA internet : the RawPacket split-gateway

Permalink
https://escholarship.org/uc/item/1sd3j38p

Author
Rose, Marshall T.

Publication Date
1984-02-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sd3j38p
https://escholarship.org
http://www.cdlib.org/

Low Tech Connections into the ARPA Internet;
— The RawPacket Split-Gateway

MarsbaU T._Ro^
Department of Information Computer Science

University of California, Irvine
lYi Feb 17 23:06:24 1984

Computer Mail: MRose@UCI

Technical Report Number 216

ABSTKACT

This report describes a "low technology" method for connecting into
the ARPA Internet. The use of a RawPacket interface in a system which
supports IP makes possible the construction of a split-gateway between two
hosts. The RawPacket interface permits a user-level process to introduce
arbitrary packets into the IP layer, resulting in a virtual network interface.
Since the split-gateway is implemented using a RawPacket interface, two
networks may be connected together using a convenient medium which does
not require explicit kernel support. Hence, split-gateways are well-suited
for use as stub-gateways, connecting a local network to a long-haul network
such as the ARPA backbone. In particular, the split-gateway discussed in
this report achieves a reasonable level of connectivity for a comparatively
small expenditure.

This report details how the RawPacket software and split-gateways are
implemented. In addition, various daemon configurations are presented,
modifications to the operating environment are discussed, and some per
formance measurements are given.

brary
CalifornI

IRVINE

Table of Contents

Page

Background 1

RawPacket Software 2

RawPacket Interface 2

RawPacket Daemon 3

Split-Gateways 5
How the Split-Gateway Works 5
A Note on Numbers 6

Multiple Split-Gateways 7
Known Problems 7

Running RawPacket 8
RawPacket Daemon Configurations 8
More Modifications to UNIX 8

A Few Other Changes 9
Performance Measurements 10

Closing Statement 12

Backgronnd

In the interests of brevity, we dispense with a lengthy, repetitive discussion of the
usual networking concepts. Instead, we note that the topics discussed in this report are
greatly intertwined with the behavior of a networking implementation that supports the
Internet ProtocoljlPJ. As a result, familiarity on the part of the reader with the general
notions of protocols and layeringfOSI] is assumed. In addition, the reader should have an
understanding of the concept of a "catenet," as described in (CERF78].

il

RawPaeket Software

The RawPaeket software discussed runs on 4.1aBSD VAX^/UNDC^systems, and, more
recently, on 4.2BSD systems as well. The software consists of two parts, a network
interface, which is kernel-level code, and a daemon, which is user-level code. The following
discussion is more meaningful if the reader is somewhat familiar with the internals of
the networking portions of the 4.2BSD kernel, and the system interface that the 4.2BSD
kernel provides, so it might be useful to consult {LEFFSSj and [JOY83] before continuing. In
particular, a number of the concepts presented in [LEFF83] appear throughout this section.

As a brief reminder, 4.2BSD UNIX supports a number of protocol families. A protocol
family consists of an addressing format, and a number of protocols, each of which
implement a particular type of UNIX socket. Currently, three sockets abstractions are
defined: SOCK-STREAN, which supports sequenced, reliable, two-way connection based byte
streams; SOCKJXiRAN, which supports unordered, unreliable, connection-less datagram
delivery; and, SOCKJIAW, which permits access to internet network interfaces. Our interest
is with the Internet Protocol suite, and in particular IP. Hence, we are more likely to
encounter those parts of the kernel dealing with the SOCKJIAV socket abstraction and the
AF-INET address format, than those parts dealing with other types of sockets or protocol
families.

RawPaeket Interface

The RawPaeket interface appears exactly like an ordinary network interface to the
UNIX kernel. Unlike an interface to a hardware device, such as an ethernet or an IMP, the
RawPaeket interface does not have an associated hardware component. Instead, like the
loopback interface, the network associated with the RawPaeket interface is implemented
in software.

When IP goes to send a packet to the network connected to the RawPaeket device,
the output routine for the RawPaeket interface is invoked, given the packet to be output,
along with a destination for the packet. This routine calls the standard input routine
for raw sockets, claiming that the packet came from the network associated with the
RawPaeket interface, that the protocol family associated with the packet is the RawPaeket
family, that the address format associated with the packet is the RawPaeket format, and
that the packet is destined for the address it was given. This raw input routine places the
packet into a queue for raw sockets, and then examines the raw sockets in the system to
see if the packet can be given to one of them.

In contrast, the software loopback interface, when called to output a packet, simply
places the packet on the IP input queue, as if it had read the packet from a device. This
differs from the RawPaeket interface in a subtle way: Instead of giving the packet back to
IP, claiming that it had newly arrived from an interface, and letting the IP input routine

^ VAX is a trademark ofDigital Equipment Corporation.
^ UNIX is a trademark of Bell Laboratories.

handle it, the RawPacket interface takes a packet from IP and gives it to a RawPacket
socket for processing.

The algorithm used by kernel to determine which raw socket is given the datagram is
relatively straightforward: the protocol families for the socket and the packet must agree,
and if the socket was created for a particular protocol in the protocol family, then it too
must agree. Further, if a local address is bound to the socket, then it must agree exactly
with the destination. Similarly, if a foreign address is bound to the socket, then it and the
packet's source address must agree. If no sockets exist which satisfy this criterion, then
the packet is dropped. For our purposes, the kernel looks for a raw socket associated with
the RawPacket protocol family, but without a specific protocol number in the RawPacket
family. To simplify things a bit, the local address of the socket is whatever network is
associated with the RawPacket device, and the socket does not have a binding for its
foreign address.

When a socket using the RawPacket family sends a datagram, another routine in
the RawPacket interface is invoked. This routine mimics the output routine for the
loopback interface: it simply places the packet on the IP input queue. Hence, as far
as IP is concerned, a network interface just read a packet. The entire contents of the
packet is uninterpreted. As expected, this is the inverse of the operation described above:
the RawPacket interface takes a packet from a RawPacket socket, and gives it to IP for
processing.

RawPacket Daemon

In order for RawPacket to be useful, a daemon is required to open an RawPacket
socket and accept datagrams given to it by the raw input routine. The daemon currently
in use is called rpd. The function of the daemon is simple: any packets it reads from the
raw socket it outputs somewhere else, and anything it gets back from that destination it
writes back to the socket. It is easy to visualise two such daemons, on different hosts,
connected via some medium exchanging packets. This forms the basis for a split-gateway,
which is discussed later. It is important to understand that ony medium could be used
to connect the two daemons. Although rpd uses tty lines, it could just as possibly use
punched cards'.

Let us proceed to the point where the two daemons have somehow connected to each
other over a terminal line, and consider what each daemon does. Each daemon opens the
line in raw mode to avoid any processing of characters that might occur. In addition,
parity checking is disabled along with echoing. This results (hopefully) in an unintepreted
8-bit data path between the two processes. Each daemon now opens a RawPacket socket
on their respective hosts, and enters an endless loop.

' Assumins, of course, that UNIX supported such anoutlandbh device.

VIf something can be read on the RawPacket socket, rpd reads it, and sends the packet
to its peer. To accomplish this, the daemon breaks the packet into a collection of 8-bit
bytes, and sends this stream over the terminal line;

|DLE||STXHencoded packet] idle 11ETX I

where |encoded packet| is the contents of the packet with every |DLE| byte preceeding
(a.k.a. escaped) by another |DLE|. The choice of values for the three characters is
arbitrary, providing that both rpd peers agree to their values.

If something can be read on the tty line, rpd reads it into a byte queue. Starting at
the beginning of the queue, the daemon looks for a |DLE||STX| pair. Upon finding that.
rpd copies the following characters to another buffer. If the daemon finds a |DLE| |ETX
pair, it declares the packet complete and writes it to the RawPacket socket. If rpd finds
a |DLE||DLE| pair, it copies only one |DLE| to the buffer to be written to the socket.
The daemon handles corrupted packets by dropping them. For instance, if when reading a
packet, rpd finds |DLE|fx], where isn't one of the three magic characters, it declares
the current packet bogus, and starts looking for another |DLE||STX| pair to start the
next packet.

Implementation wise, the daemon does all of it's I/O in non-blocking mode, performing
re-tries when appropriate. Fbrther, rpd forks into two processes when it starts, one reads
from the terminal, the other reads from the socket.

Split-Gatewaya

A split-gateway connects two networks together, like an "ordinary" gateway. Unlike
the normal definition, in which a gateway is viewed as one host that resides on two (or
more) networks, a split-gatewayis thought of as beingcomposed of twohosts (on separate
networks) that are connected together by an internal communication path (which is,
in fact, a third network). Each of the two "primary" networks see only their half of
the split-gateway, and do not suspect that the split-gateway is actually two machines
connected via another medium.

How the Split-Gateway Works

At present, the hosts UCI-750a and ISI-Troll form such a split-gateway, connecting
the UCIICS network into the Internet. To put things simply, the ARPA backbone "knows"
to give packets for UCIICS hosts to Troll, a host on ISI-NET, which in turn "knows" to
give packets to the RawPacket interface, these packets are then given to the RawPacket
daemon running on ISI-Troll, which transmits them to the RawPacket daemon running
on UCI-750a over a 9600-baud leased line from TelCo, which gives them to the RawPacket
interface. How the ARPA backbone knows to direct datagrams to Troll is not germane
to our concerns; the remainder of the transit is explained here.

There is a daemon known as routed which manages the kernel's routing tables. Every
30 seconds or so, routed broadcasts a datagram to its peers on each network interface.
The datagram summarizes the host's connectivity in terms of destinations and the "best"
hops to those destinations. When it starts, routed reads /etc/gatevays and adds the
routing entries it finds there to the kernel's routing tables. Hence, an entry is made in this
file declaring the network located at the other end of the split-gateway to be reachable
via the address bound to the local RawPacket daemon.

For the file on ISI-Troll, this entry is:

dst uciics gateway rp-gw metric 1 passive

while the entry in /etc/gatevays on UCI-7B0a is:
dst isi-net gateway rp-gw metric 1 passive

UCI/ISI-GW split-gateway

UCI-760a

rpd rpd

RAW RAW

rpO rpO

ISI-Troll

ISI-iccntest

OCIICS ISI-BET

Fignre 1. Path from PCIICS to the Interact

Both of these hosts axe VAX-11/750 systems running 4.1aBSD UNIX. This version of
the kernel does not support a "default" routing entry. Hence, each network that UCIICS
wants to be able to reach must have an entry in /etc/gateways. For Troll, the entry
directs traffic to the ISI-Accutest system which acts as a gateway between ISI-NET and
the ARPAnet, while the entry on UCI-750a directs traffic to the RawPacket daemon. For
UCIICS, UCI-750a functions as a stub-gateway to the Internet. Hence, a default routing
entry would be very useful: if a route is not known to a particular destination, give
datagrams for that destination to the RawPacket interface. Since this is not supported
in 4.1aBSD, each network that a host in UCIICS wants to connect to must be entered into
the /etc/gateways file on both ISI-Troll and UCI-750a. Intervention of this sort is
annoying at best. When these hosts convert to 4.2BSD, a default gateway can be used to
avoid these problems.

Figure 1 shows the path that a packet travels from the UCIICS network to the Internet.
A packet is received on the ethemet interface (ecOr) by UCI-750a, which gives it to IP.
IP consults the routing entry for the packet's destination and gives it to the RawPacket
interface (rpO:). The RawPacket interface writes the packet to rpd, which in turns sends
it across the leased line, to its peer on ISI-Troll. The peer writes the packet to the
RawPacket interface, which gives it to IP. IP consults the routing entry for the packet's
destination and gives it to the ethemet interface for ISI-Accutest, which enters the
packet into the ARPA subnet.

A Note on Numbers

In our context, a network interface has two addresses associated with it: a network
address, which is the number of the network that the interface is connected to; and, a
host address, which is the address of the local host on that network. The RawPacket

interface is no exception, the number chosen for the interface's network address is network
126. As the reader has probably guessed, the name rp-gw, is used to denote this number.
Although it makes sense to assign individual numbers to the two hosts composing the
split-gateway, it makes no operational difference, so rp-gw is used to represent the host
number as well.

It should be noted that net 126 is not an approved or official designation for rp-gw^
Fortunately, this network is known only to the two hosts forming the split-gateway, and
problems do not manifest themselves.

Multiple SpUt-Gatewaya

Given the previous explanation of the way the UNIX kernel selects a RawPadiet socket
to give a datagram to, it should be a straightforward exercise to envision how a host could
participate in more than one split-gateway^. That is, it should be possible for a host to
act as half of several instances of a split-gateway at the same time.

The solution, of course, is to run a RawPacket daemon for each split-gateway, and
have each daemon open a RawPacket socket using a different binding for the local address.
The routing tables for this host are then modified to refiect each of these addresses as
servicing the appropriate destination.

Known Problems

At present, there is one outstanding problem which has not been satisfactorily dealt
with. The largest datagram that the RawPacket interface will accept is 512 bytes (in
UNIX parlance, the MTU of the RawPacket interface is 512). If a protocol such as TCP
sends a large segment, IP must perform fragmentation to break the resulting datagram
into chunks small enough to be acceptable to the RawPacket interface.

For reasons not yet determined, these fragments are not correctly re-assembled at
the other end of the split-gateway. Since both halves of the split-gateway are running
4.1aBSD, a bug in 4.la's fragmentation or re-assembly algorithm is suspected. Ironically,
the only hosts on the Internet that experienced troubles in communication with hosts on
UCIICS are sites running 4.2BSD UNIX, owing to the large segment sizes selected by the
4.2BSD TCP implementation. As of this writing, this problem is still unresolved, although
there are a few leads on it'.

^ The software loopback interface, which uses net 127, and host 127.1, is similarly fuilty of this trans
gression.

Truth in advertising requires that the following statement be made: Although the author has every
confidence that multiple split-gateways will work as described, sadly, the opportunity to verify their behavior
has not yet arisen.

' This problem may well become moot when both hosts composing the split-gateway convert to 4.2BSD
which should not have these difiBculties.

Raniiing"^RmwPmeket

There's a bit more to running RawPacket that just setting up a couple of daemons
connected via a tty line. We now consider some of the different ways that rpd can be
configured to run between two hosts. Following that, we examine a few extra modifications
made to UNIX to support RawPacket more efficiently. Finally, we scrutinize the bottom
line by seeing how weU RawPacket performs.

RawPaeket Daemon Configurations

Using some method, the two daemons must connect with each other before the split-
gateway can operate. There are really two ways to set this up: establish a "dedicated"
tty line between the two, or have one daemon "call" the other one.

In the first case, it is necessary to teU init on each host that the tty line is not for
general use. This is easily done by modifying /etc/ttys. Next, each host modifies its
/etc/rc.local file to invoke rpd using the correct tty at system startup. This method
has the advantage that either host can go down or come up arbitrarily and no operator
interaction is required.

In the second case, one of the hosts requires a dialer (or similar device) connected to
a tty line, so it can establish a connection to the other host composing the split-gateway.
To facilitate this, rpd has a built-in script interpreter that reads a series of commands
describing how to dial other systems and what responses to expect. The host doing the
calling is known as the active host, and the /etc/rc.local file on the active host is
modified to invoke rpd with the proper script name at system startup.

The host being called is known as the passive host. The administrator on the passive
host establishes a UNIX login for the active host. TypicaUy the active host's script, after
logging a job in on the passive system, runs the rpd program. Although this configuration
can restart if the active host goes up or down, some sort of intervention is usually required
if the passive host goes down or comes up. In order to avoid manual intervention, not
only does rpd have to constantly retry if it can't establish a connection to the passive
host, but it also has to know (somehow) that the passive host has indeed gone down.

For production mode service, the direct-connect configuration is desirable, while the
calling configuration is good for debugging purposes.

More Modifications to UNIX

In order to get a reasonable data transfer rate, with all of the protocols being layered
over the RawPacket medium, a 9600-baud link is essential. Unfortunately, UNIX b
typically unable to handle a burst of traffic at high speeds on a tty line using either the
new or old tty drivers. At first glance, a good solution is to use the BerkNet (or "network")
line driver, since it was specifically designed to handle large amounts of continuous input
over a terminal line. The Berknet line discipline buffers up to 512 characters from the tty
line without any processing whatsoever. A record is terminated in the buffer by a newline
character (which is what we conveniently use as the |ETX| character). If a process tries to

read from a tty using this discipline, it blocks until the newline is received and the record
is terminated. Any characters arriving on the tty line after a record has been terminated,
but before it has been read, are discarded. The very limited processing performed by
UNIX permits a process to read large amounts of information efficiently from a tty line
with little system overhead. It turns out when using the new tty driver, even in raw mode,
UNIX executes a lot of code for each character input, by testing various conditions, and
usually ends up inserting the character into a queue. In contrast, the network line driver
executes a few (typically 3) lines of code for each character received.

A glaring deficiency of the Berknet line discipline is that it supports a 7-bit path only.
So, the first modification to be made is to permit 8-bit bytes to be transferred. This
change to UNIX is trivial, providing that any other applications making use of the network
line driver are prepared for this behavior.

A second problem, is that the RawPacket daemon uses some of the new BSD UNIX I/O
facilities, such as the select system call to perform synchronous I/O multiplexing. For
reasons unknown, the 4.2BSD kernel did not implement the select facility for terminals
using the network line discipline. A line of code here, a line of code there, and it all works
as expected.

Finally, if the system is loaded, it is possible that some characters could be dropped
if rpd did not wake-up soon enough to empty the kernel's buffer before the next packet
arrived. To protect against this happening too often, the Berknet line driver was modified
once again. This new modification allows it to continue to stuff characters into the buffer
even if they arrive after the record was terminated but before the daemon could empty it.
Obviously, no characters are accepted once the buffer is full, so they are dropped.

A Few Other Changes

If more than one 4.2BSD host is on the same local network that supports a broadcast
mechanism, then the zurho and ruptime commands provide an interesting facility. Invoking
rwho lists the users on each host, while running ruptime lists a summary of the number
of users and the load average on each host, along with the amount of time since each host
was booted. Clearly, it would also be useful to know how long the split-gateway, "the
link to the outside world," has been running. There are different ways that this can be
accomplished, the one implemented is described briefly here.

As previously mentioned, routed manages the routing tables for the kernel, by
sending a datagram to one or more peers on each network interface every 30 seconds or
so. Since the RawPacket interface appears as any other network interface to routed,
it sends a datagram to its peer at the other end of the split-gateway. As a result, in a
normally operating split-gateway, some traffic every 30 seconds should be expected in
both directions. All routed need do is note when it receives a datagram from its peer at
the other end of the split-gateway, and tell the daemon that keeps track of the information
used by the rwho and ruptime programs, rwhod. This is currently implemented by having
routed send a broadcast datagram on the local network, in the standard rwhod datagram

Load Disk Bytes Seconds Band
7.29 24 175067 253 5528

7.92 40 66256 109 4856

3.79 28 175067 241 5808

3.04 10 66256 82 6464

2.32 6 175067 234 5984

2.20 15 66256 84 6304

Figure 2. Informal Performance Measures

format, with the appropriate information (e.g., host "internet" has been up for 5 hours
and 17 minutes^). Further, rwhod was modified to accept packets from a routed process.

Although not the most elegant solution, it gets the job done and is very reliable. It
turns out that being able to invoke mptime and find out how long the split-gateway has
been up is very useful for a number of reasons. It should be noted that the modifications
to routed and rvhod (along with a cosmetic change to ruptine) were part of a "big hack
attack."

Finally, the rstat program, which reports on the status of the network from the local
host's perspective required some modification: the 4.1aBSD version had some bugs when
displaying information for raw sockets, and the 4.2BSD version didn't handle raw sockets
at all. Both of these problems got fixed.

Performance Measurements

Figure 2 presents some informal measurements that were made on FTP transfers
between UCI-750a and SRI-NIC. The split-gateway was operated over a 9600-baud line
between Troll and UCI-7B0a.

The Load colunm identifies the "5 minute load average" of processes waiting to run
on UCI-750a when the transfer took place. Similarly, the Disk column identifies the "disk
load average^." ISI-Troll is a lightly used system, with a 5 minute load average varying
from 0.50 to 1.25, and a disk average of about 5 to 10. Althou^ these averages are not
infallible metrics of the system's load, they do provide some insight into how busy the
UCI-750a was when these transfers took place.

It appears that with a moderate 5 minute load average of 3 or so, a data transfer rate
of 6000-baud can be achieved. This rate shows the speed that bytes can travel from one
user-level process to another (e.g., FTP client and server), and can be considered to be
the effective end-to-end throughput provided by the split-gateway.

^ The nptime can be calculated by keeping track <4 when rented started and how long ago the previous
datagram was received.

2 This number is calculated by examining thevalues ofjdkjcfer and jcpJtlne in the kernel and performing
some arcane calculations.

10

The costs of establishing the split-gateway was inexpensive, though not insignificant.
The 9600-baud leased line from TelCo cost $750.00 to install with a monthly charge
of $250.00. The modems cost $2560.00 each, and a pair of asynchronous/synchronous
interfaces cost $335.00 each. Hence, for a start-up cost of about $6300.00, a monthly
charge of $250.00, and some goodwiU from the people at ISI, UCIICS was able to connect
into the Internet.

11

Closing Statement ^

The RawPacket interface supporting a split-gateway is an inexpensive method
of establishing a stub-gateway for a local network. This provides the hosts on the
local network with connectivity with the Internet, by forming a split-gateway with a
"sponsor" Internet host. Since the RawFacket interface relies on a user-level process to
do actual transmission of packets between the ends of the split-gateway, the use of a
convenient medium can be exploited. Rirther, this makes possible experimentation with
different media and paths, without requiring kernel modifications or downtime once the
RawFacket interface is installed. Although user-level code partly implements the system,
measurements of end-to-end throughput show that "reasonable" data transfer rates can
be achieved.

12

Acknowledgements ^

The code implementing the RawPacket interface in the 4.1aBSD and 4.1cBSD UNIX
kernels was originally developed by David A. Kashtan at SRI International. In addition,
Mr. Kashtan supplied a VMS^EUNICE version of the RawFacket daemon. Without his
efforts, the split-gateway between UCI-760a and Troll would not have come about.

It should be noted that independent the of development of the RawPacket implemen
tation described in this report, Christopher A. Kent of Purdue-CS introduced a similar
capability for systems running the BBN TCP/IP implementation[GURW81] for 4.1BSD
VAX/UNIX.

The script interpreter found in rpd was inspired by a similar facility present in the
PhoneNet channel found in the University of Delaware's Multi-Channel Memo Distribution
Facility (MMDF). The script facility proved invaluable for debugging of rpd, and was
essential when the leased line had not yet been installed.

The author expresses his gratitude to Jim Koda of the USC/Information Sciences
Institute, who tirelessly supported the ISI end of the split-gateway, despite numerous
system crashes and software changes. In addition, a note of thanks goes to Paul
V. Mockapetris of USC/ISI who got the whole thing rolling by deciding that it was time
for UCI to enter the networking world and join the ARPA Internet community.

^ VMS ia a trademark of Digital fkinipment Corporatimi.

13

References

ICERF78)

[GURW811

IIP!

{JOY83]

[LEFF83|

lOSI]

V.G. Cerf, "The Catenet Model for Internetworking^, DARPA/IPTO,
Internet Experiment Notebook 48, (July, 1978).

R.F. Gurwitz, "VAX-UNDC Networking Support Project — Implementation
Description," Computer Systems Division, Bolt Beranek and Newman, Inc.,
Internet Experiment Notebook 168, (January, 1981).

"Internet Protocol," Request for Comments 791, Internet Protocol Transition
Workbook, Network Information Center, SRI International, (September,
1981).

W.N. Joy, E. Cooper, R.S. Fabry, S.J. Leffler, K. McKusick, D. Mosher,
"4.2BSD System Manual," Computer Systems Research Group, Technical
Report Number 5, University of California, Berkeley, (July, 1983).

S.J. Leffler, W.N. Joy, R.S. Fabry, "4.2BSD Networking Implementation
Notes," Computer Systems Research Group, University of California,
Berkeley, (July, 1983).

"Reference Model of Open Systems Interconnection," ISO TC97/16
Document Number 227, (June, 1979).

14

library

^Jniversity of CaiifornJ|
IRVINE

NOV 26 1985

