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INTRODUCTION

Single-cell genomics are enabling technologies that are instrumental to dissecting 

tumor heterogeneity and molecular underpinnings of drug response at unprecedented 

resolution1–11. However, their broad clinical application remains challenging, due to 

several practical and pre-analytical challenges that are incompatible with typical clinical 

care workflows, namely the need for relatively large, fresh tissue inputs. Here, we 

show that multi-modal single-nucleus RNA/T cell receptor (TCR) sequencing, spatial 

transcriptomics and whole-genome sequencing (WGS) is feasible from small, frozen 

tissues that approximate routinely collected clinical specimens (e.g., core needle biopsies). 

In comparison to data from sample-matched fresh tissue, we find similar quality and 

biological outputs of snRNA/TCR-seq data, while substantially reducing artifactual signals 

and compositional biases introduced by fresh tissue processing. Profiling sequentially 

collected melanoma samples from a patient treated on the KEYNOTE-001 trial12, we 

resolve cellular, genomic, spatial and clonotype dynamics that represents molecular 

patterns of heterogeneous intra-lesional evolution during anti-PD-1 therapy. To demonstrate 

applicability to banked biospecimens of rare diseases13, we generated a uveal melanoma 

liver metastasis single-cell atlas with matched WGS data. These results show that single-

cell genomics from archival, clinical specimens is feasible and provides a framework for 

translating these methods more broadly to the clinical arena.

MAIN

Single-cell genomics, namely single-cell RNA-sequencing (scRNA-seq), has enabled 

significant discoveries across all fields of biomedical research, including in several 

solid tumor, providing unique insights into tumor ecosystems1–5, metastasis5–8, and drug 

resistance2,9. Matched scRNA/TCR-seq is particularly informative for studies investigating 

the effect of transformative immunotherapies, such as anti-PD-1 therapies which lead 

to durable responses in patients with some cancers, such as metastatic melanoma10,11. 

While these methods have the potential to inform clinical studies, their broad application 

has been hampered by several challenges. In particular, the need for relatively large 

(milligrams), fresh tissue specimens and their immediate processing is incompatible with 

clinical workflows, thus, represents a major barrier challenges for standardized, multi-center 

analysis efforts. Furthermore, frequently used mechanical and enzymatic disaggregation of 
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solid tumor specimens to a single-cell suspension may introduce artifacts in resulting gene 

expression profiles. Consequently, single-cell studies to date have mostly been conducted 

in relatively small, heterogeneous patient populations (e.g. variable treatment exposures), 

which introduces challenging biases and may limit their generalizability. Building on 

recent developments that enable single-nucleus transcriptome sequencing (snRNA-seq) from 

frozen tissues14,15, we show that multi-modal single-cell genomics and accompanying WGS 

can be performed in a rapid, scalable manner on very small, frozen clinical specimens, 

thus, overcoming several existing practical, pre-analytical and analytical challenges. Thus, 

we provide a framework for enabling harmonized single-cell genomics studies across 

multiple institutions and an opportunity to implement these methods for biomarker or target 

discovery. (Methods).

We first performed head-to-head comparisons of scRNA/snRNA-seq of matched fresh 

and frozen tissues from patients with different cancers, including non-small cell lung 

cancer (NSCLC), metastatic cutaneous melanoma, and uveal melanoma using different 10X 

Genomics chemistries (3’, 5’v1, or 5’ V2), cell sorting (Methods, Extended Data Fig. 1a) 

and RNase inhibitor protocols (Methods; Supplementary Table 1).

Overall, in snRNA-seq using 5’ chemistries, the data quality (median number of genes 

detected per cell) was comparable to that of tissue-matched scRNA-seq and was consistently 

superior compared to 3’ chemistries (Fig. 1a–c), while scRNA-seq protocols had a higher 

rate of mitochondrial reads (Extended Data Fig. 1b–d). In the NSCLC comparison, for 

example, we recovered a median of 3,117 genes/cell using 5’v1 (with addition of RNase 

inhibitor) compared to 2,521 in fresh scRNA-seq (Wilcoxon rank-sum p-value 1.67e-29) and 

1,392 in the best 3’ condition (Wilcoxon rank-sum p-value < 1e-30), respectively. Similar 

results were observed in cutaneous and uveal melanoma tissue comparisons (Fig. 1b–d 

Supplementary Table 2). Compared to previously published protocols (after correcting for 

sequencing saturation), our approach compared favorably with respect to required tissue 

input (~1000-fold lower), cell recovery, and data quality overall and on a per cell-type basis 

(Extended Data Fig. 1e and Supplementary Table 2).

Importantly, we noted substantial expression of an artifactual program16 associated with 

tissue processing in scRNA-seq, while this artifact had lower expression in matched snRNA-

seq data (Fig. 1d–f). This artifactual expression manifested particularly strongly in the 

NSCLC comparison, was increased by fluorescence-activated cell sorting (FACS), and 

was more prominent in immune cells. Notably, this stress signature captures important 

inflammatory pathways, among others, and may bias the interpretation of these pathways in 

scRNA-seq.

In 5’ chemistry sc/snRNA-seq, we were able to robustly recover TCRs matched to 

single-cell transcriptomes (Extended Data Fig. 2). In both cutaneous and uveal melanoma 

comparisons, we recovered highly overlapping clonotypes (hypergeometric test, p=1.55e-62, 

and p=0.0018, between the single-cell 5p CD45+ and single-nuclei 5p with inhibitor 

samples, respectively) (Fig. 1g,h) and TCR diversity (Gini coefficient, Supplementary 

Table 3). Lastly, we inferred copy-number alterations (CNAs) and found strong agreement 

(Spearman R2=0.69) between scRNA-seq and snRNA-seq protocols (Fig. 1i).
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Despite procedural and technical differences, matched sc/snRNA-seq showed good mixing 

of cell types (determined using the LISI score17, Methods) following batch correction 

(Methods) indicating preservation of global transcriptional outputs (Extended Data Fig. 

3,4). Accordingly, we identify comparable cell type diversity (estimated using the Shannon 

index, Extended Data Fig. 5a,b). Notably, cell type composition was highly consistent 

among different snRNA-seq runs within the same specimen, indicating high reproducibility 

(Extended Data Fig. 5a). Comparing sc/snRNA-seq, we noted one important outlier in 

cellular composition: there was low recovery of cancer cells in the NSCLC sample profiled 

using scRNA-seq (23% of all cells), while snRNA-seq robustly detected this population 

(87.9–92.8% of all cells) (Extended Data Fig. 5c). This is consistent with prior studies 

of NSCLC7 using scRNA-seq that showed disproportionally low recovery of malignant 

cells, suggesting that these cells are vulnerable to sample processing, and emphasizes an 

advantage of snRNA-seq for this common cancer type.

To test the feasibility and strengths of these methods, we chose two application cases. 

First, we obtained sequentially collected (before, and two on-treatment) biopsy specimens 

from a patient treated on the first clinical trial (KEYNOTE-001)12 using anti-PD-1 antibody 

MK-3475 (now known as pembrolizumab), and achieved a partial response (Extended Data 

Fig. 6a). Although these samples were ~10 years old, we achieved excellent technical 

quality (Extended Data Fig. 6b) with minimal artifactual gene expression (Extended Data 

Fig. 6c), while revealing cellular diversity (Fig. 2a, Extended Data Fig. 6d,e). We inferred 

CNAs and identified distinct cancer clones (Fig. 2b, Methods) and noted evolving CNA 

patterns during therapy (Fig. 2b) and corresponding transcriptional changes over time (Fig. 

2c,d). Interestingly, immune-resistant clones (yellow 1 and purple 2) emerged from a small 

sub-population of pre-existing cancer cells (prior to receiving therapy) and enriched for 

expression of cancer cell intrinsic signatures of immunotherapy resistance9 (Fig. 2e) that 

was not exclusively explained by gene dosage, but showed conserved gene regulatory 

networks (GRNs), Extended Data Fig. 7c,d; Methods) and de-differentiation (Fig. 2f). 

Importantly, despite the expression of antigen-presentation and IFNg pathway genes in clone 

2 (Extended Data Fig. 7c), these cells were strongly enriched for pathways associated with 

immune evasion (Extended Data Fig. 7e,f) and reduced expression of CD58 in (Fig. 2g), 

a recently identified mechanism of resistance to immune checkpoint blockade18,19. Among 

non-malignant cells, we observed increased infiltration with T cells and macrophages (Fig. 

2a, Extended Data Fig. 7a,b). Integrated analysis of CD8+ T cells revealed tumor infiltration 

of both stem-like, precursor exhausted, and terminally differentiated cells20 (Fig. 2h) with 

corresponding diversification of clonotypes and contraction of pre-existing T cell clones 

over time (Fig. 2i). On the same specimens, we also performed spatial transcriptomics 

using Slide-seq V221, and deconvolved and analyzed these data together with corresponding 

single-cell transcriptomes using robust cell type deconvolution (RCTD)22 and Starfysh23. 

Spatial projection (Methods) of clone 2 revealed its distinct geographical location with 

strong expression of the immune resistance signature and lack of activated immune cell 

infiltration during anti-PD1 therapy, compared to tumor areas populated by other cancer 

clones, which showed dense infiltration and immune cell differentiation at the tumor/normal 

border, indicative of active immune editing (Fig. 3a,b and Extended Data Fig. 7g). Together, 

these findings suggest that similar to pre-existing cells with resistance mutations or cell 
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states that grow out under the pressure of oncogene-targeted therapies2,24, pre-existing 

cancer cell populations defined by their underlying CNAs or conserved gene regulatory 

circuitry may emerge during cancer immunotherapy, despite apparently adequate T cell 

responses.

To demonstrate the scalability of performing such studies in larger cohorts from a multi-

institutional clinical trial, we performed snRNA/TCR-seq of 169,015 cells from 20 core-

needle biopsies collected from 7 patients with liver-metastatic uveal melanoma treated with 

MEK-inhibitor selumetinib13 (Extended Data Fig. 8a,b). Liver metastases occur in most 

patients with uveal melanoma and are associated with immunotherapy resistance in different 

cancers, although the underlying mechanisms remain poorly understood25. We achieved 

excellent technical quality (Extended Data Fig. 8b) and recovered diverse cell types (Fig. 

4a), thereby providing a large metastatic-niche-specific atlas of uveal melanoma. Among 

cancer cells, we find that in some patients, rapid changes in aneuploidy patterns (changes 

in large-scale CNAs) and distinct transcriptional outputs (indicated by distinct cancer cell 

clusters corresponding to different CNA-defined cancer clones) occur within days of therapy 

(Fig. 4b).

Given the importance of dynamic CNA/aneuploidy pattern changes in both case studies 

presented here, we next established population-matched low pass whole-genome sequencing 

(lp-WGS) of the same cell pool from which we performed snRNA-seq (Extended Data 

Fig. 9a). We predicted CNAs in single-cell data using inferCNV2 (Extended Data Fig. 

9b) and ichorCNA26 in the lp-WGS data (Extended Data Fig. 9c,d), and found a strong 

correlation between both methods (R2=0.66) (Fig. 4c) (Methods). Matched snRNA-seq 

and lp-WGS performed on a melanoma sample also showed strong concordance across 

methods (Extended Data Fig. 9c). This data supports the use of single-cell inferred 

CNAs and corresponding gene expression changes to study genomic and dynamic 

transcriptional changes in clinical specimens. We next performed integrated analyses 

of T cell transcriptomes and TCRs across the uveal melanoma and treatment-naïve 

melanoma lesions presented here (Fig. 1b and Fig. 2), revealing a conserved trajectory 

of T cell differentiation (from naïve to terminal differentiation) and corresponding TCR 

clonality (Fig. 4d, e). Thus, these methods enable systematic comparison of immune 

environments of specific metastatic niches within and across different cancer lineages. 

Together, these analyses emphasize the feasibility of performing multi-modal single-cell 

studies on biospecimens collected on clinical trials and across institutions where immediate 

tissue preparation is both impractical and introduces several pre-analytical biases.

There are important considerations for future implementation of the approaches outlined 

here. snRNA-seq performs an unselected detection of cells from the tumor-ecosystem, 

including capture of cells that are poorly represented in scRNA-seq (e.g. lung cancer cells). 

Representation of TCRs will be dictated by the in-situ fraction of T cell abundances (or lack 

thereof). However, in frozen tissues, sorting of cell nuclei based on size and scatter patterns 

may be used to enrich T cells and enhance recovery of matching TCRs. Furthermore, 

reference atlases are increasingly becoming helpful in identifying cell types and states. 

As snRNA-seq is being more systematically implemented, it will be critical to build such 

references from frozen tissue specimens to enable rapid definition of cell types and states 
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relevant to specific tissue contexts and therapies5,27. Lastly, we expect that incorporating 

additional single-cell measurements from frozen tissue (e.g., chromatin accessibility or 

metabolomics) will be feasible, and will help determine which analytes may be best-suited 

to guide future research and clinical applications.

In summary, we show that performing multi-modal single-cell profiling and WGS is feasible 

from tissue inputs equivalent to small, routinely collected clinical specimens. This enables 

application of these methods to multi-institutional efforts through harmonized and scalable 

processes while reducing pre-analytical biases, thus representing an important step toward 

implementing these technologies in guiding clinical care.

METHODS

Patient tissue collections and Ethical approval

Fresh and frozen tissue specimens were collected under IRB approved protocols at New 

York Presbyterian Hospital/Columbia University Medical Center (AAAT7416, AAAT2278), 

Dana Farber Cancer Institute, and University of California, Los Angeles. All procedures 

performed on patient samples were in accordance with the ethical standards of the 

respective IRB and the Helsinki Declaration and its later amendments. For the comparison 

of single-cell RNA-sequencing (scRNA-seq) and single-nuclei RNA-sequencing (snRNA-

seq) protocols, surgical specimens were reviewed by qualified pathologists according to 

institutional guidelines and immediately placed in ice-cold RPMI 1640 (Thermo Fisher, 

Waltham, MA; #21875034) without supplements and transported to the laboratory space 

for immediate processing (scRNA-seq) and parallel collection of matched flash frozen 

specimens (snRNA-seq). Frozen uveal melanoma liver metastases were collected as core-

needle biopsies during a trial of targeted MEK inhibition13 (NCT01143402). Frozen 

sequential biopsies of cutaneous melanoma prior and during treatment with anti-PD-1 

therapy were collected during the KEYNOTE-001 trial 12.

Fresh tissue specimen processing

All steps apart from the digestion were carried out on wet ice with pre-cooled buffers. 

Tissue specimens were weighted and split in half, and pieces of ~5–8 mm edge length 

were placed in cryovials and snap frozen in liquid nitrogen and stored at −80°C. The 

remaining tissue was kept in ice cold RPMI in a petri dish and cut into 1 mm3 cubes 

using two scalpels. The cubes and RPMI were transferred to a 50 ml Falcon tube (Corning) 

using a 10 ml serological pipette and collected by 5 min centrifugation at 300 x g at 4°C. 

The tissue was then digested using human tumor dissociation enzymes (Miltenyi Human 

Tumor Dissociation Kit; #30–095-929) according to manufacturer instructions based on 

the tissue weight. Briefly, tissue was resuspended in pre-warmed RPMI and human tumor 

dissociation enzymes were added. The sample was then placed in a 37°C water bath and 

agitated every 2 minutes. Every 5 minutes the tissue was further mechanically dissociated 

by pipetting using pipettes of decreasing calibers. This process was continued until most 

of the tissue had dissociated. After 10 minutes (melanoma) or 15 minutes (lung cancer) of 

dissociation the samples were filtered through a pre-wetted 70 µm cell strainer (Corning) 

into a separate 50 ml Falcon tube, collected by centrifugation for 5 min at 400 x g and 
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4°C, and the supernatant was decanted. The cell pellet was resuspended in 3 ml ACK buffer 

(Thermo Fisher; #A1049201) to lyse red blood cells. After 1 min incubation the reaction 

was terminated by dilution with 30 ml ice cold sorting buffer (2% Fetal bovine serum/1mM 

EDTA in PBS). The cells were collected by centrifugation for 5 min at 400 x g and 4°C, 

resuspended in 1 ml ice cold sorting buffer and cell count and viability was assessed using 

trypan blue and disposable Neubauer counting chambers (Bulldog Bio, Inc. Portsmouth, 

NH; #DHC-N002). Cells were then allocated for direct loading (non-small cell lung cancer 

and primary uveal melanoma), or further processed for fluorescence-activated cell sorting 

(cutaneous melanoma and primary uveal melanoma).

Fluorescence-activated cell sorting

To enrich viable immune cells (primary uveal melanoma sample) or sort viable immune 

and non-immune cells (cutaneous melanoma) the samples were sorted using a FACS 

Influx instrument (BD Biosciences) gating on viable CD45+ (immune) or viable CD45- 

(non-immune) cells (Extended Data Fig. 1a). First, cells were stained for viability (Zombie 

NIR, 1:500 in PBS; Biolegend, San Diego, Ca; #423106) for 10 min at room temperature in 

the dark. Thereafter, cells were washed once with sorting buffer, collected by centrifugation 

and surface antigens were stained for 15 minutes on ice in the dark. The primary 

uveal melanoma sample was stained with Pacific-Blue-aCD45 (Biolegend, #304022). The 

cutaneous melanoma sample was stained with the following (all Biolegened): Human 

TruStain FcX (#422302), Pacific-Blue-aCD45 (#304022), PE-Dazzle594-aCD3 (#300450), 

PE-CY7-aCD66b (#305116), APC-aCD15 (#301908). After staining, the samples were 

washed twice with ice-cold sorting buffer and 1.5×103 cells per population of interest were 

sorted and immediately processed for scRNA-seq.

Single cell RNA library preparation

Sorted and unsorted single cell suspensions (1.2–1.5×103 cells) were transferred into 

low-binding 1.5 ml Eppendorf tubes (Eppendorf, Hamburg, Germany), centrifuged and 

washed twice with 1 ml loading buffer (PBS with 0.05% RNase-free BSA; Thermo Fisher, 

#AM2616) using a swinging bucket centrifuge at 4°C with 400 x g for 5 min. After the 

final spin all but 31 µl buffer were removed and the samples were loaded on a Chromium 

controller with Chromium Single Cell V(D)J Reagents (10X Genomics, Pleasanton, CA; 

#1000006) for 5’ RNA capture. Gene expression libraries were then generated using 

Chromium Single Cell 5’ Library construction kit (#1000020) according to manufacturer 

instructions.

Tissue sparing extraction of single-nuclei from small frozen specimens

We adopted the previously described salt-tris (ST) based extraction method (protocol 

below)14,15 and implemented changes to enable tissue sparing extraction of nuclei for single-

nuclei RNA-sequencing from clinical-grade frozen tissue specimens and allow profiling of 

minute specimens such as core-needle biopsies. To this end, we used a Leica CM1950 

cryostat (Leica, Wetzlar, Germany) for initial tissue processing and additional washing steps 

for OCT removal. Frozen tissue specimens with 2–10 mm edge length were embedded in 

optimal cutting temperature (OCT) compound (Tissue-Tek, Sankura; #4583) on dry ice. 

Samples were then mounted on sample holders and excess OCT was trimmed away using 
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a blade leaving ~5 mm OCT around each side of the tissue. Fine needle aspiration biopsies 

were directly mounted on sample holders of the cryostat using a small amount of OCT. 

Multiple 20 µm tissue curls were cut per tissue and collected in pre-cooled 5 ml tubes 

(Eppendorf, Hamburg, Germany) ensuring no thawing while transferring and stored on dry 

ice until processing. The number of curls required depends on the tissue size and ranges 

from 3–4 curls for large specimens (1 cm2) to 10–15 for core needle biopsies, thus leaving 

most of the specimen intact for future investigation. All subsequent steps were performed 

on wet ice and all centrifuges were equipped with swinging buckets and cooled to 4°C. For 

extraction of nuclei, the tubes were moved from dry ice to wet ice and left to equilibrate 

briefly. After 30 seconds, 4 ml of ice-cold PBS without calcium or magnesium (Thermo 

Fisher, #10010023) were added and the tubes were inverted until all OCT had dissolved and 

the clean tissue could be collected by centrifugation at 300 x g for 2 min. The tissue was 

then resuspended in 1 ml ST buffer [146 mM NaCl, 10 mM Tris-HCL pH7.5, 1mM CaCl2, 

and 21 mM MgCl2 in ultrapure water] with 0.03% Tween-20 Sigma Aldrich, #p-7949 

(=TST buffer) with 0.1% BSA (New England Biolabs, B9000S) and supplemented with 

or without 40 U/ml RNAse inhibitor (RNAse OUT, Thermo Fisher) (Supplementary Table 

1). ST buffer was prepared from stock solutions listed in Supplementary Table 5. The 

suspension was thoroughly pipetted 15 x using a 1 ml pipette to mechanically dissociate the 

tissue and left to incubate for 5 min on ice. After 5 min the pipetting step was repeated, and 

the reaction was quenched using 4 ml ST buffer with or without 40 U/ml RNAse inhibitor 

(RNAse OUT, Thermo Fisher, #10777019) (Supplementary Table 1). The sample was 

filtered through a pre-wetted 70 µm nylon mesh filter (Fisher Scientific) into a 50 ml conical 

tube and the filter was washed with 5 ml ST buffer. The tube was then centrifuged at 500 x 

g for 5 min to collect the dissociated nuclei. After carefully decanting the supernatant, the 

nuclei were resuspended in 100–400 µl ST buffer without RNAse inhibitor and filtered with 

a 40 µm mesh filter attached to a FACS tube (Fisher Scientific). The nuclei concentration 

and dissociation quality was then determined in a 5 µl aliquot using Neubauer counting 

chambers (Bulldog Bio, Inc. Portsmouth, NH) and a fluorescent microscope (EVOS FL, 

Thermo Fisher) after staining of nuclear DNA with 50µg/ml Hoechst 33342 (Thermo Fisher, 

H3570).

Single-nuclei extraction using large tissue input

For comparison with established protocols, we extracted single nuclei from two specimens 

(melanoma and NSCLC) using the salt-tris (ST) based extraction method with mechanical 

dissociation using spring scissors14. Frozen tissue blocks (10 – 15 mg and from tissues 

measuring approximately 4×4×4 mm) from the same specimens as in the aforementioned 

tissue sparing extraction method were used to directly enable comparison of key quality 

control metrics. All steps were performed on wet ice and centrifuges were equipped with 

swinging bucket rotors and precooled to 4°C. To extract nuclei, frozen tissue was placed 

inside a 6 well plate and 1 ml of either TST buffer (see above) or ST buffer with 0.5 % 

CHAPS (Millipore, 220201) (CST buffer) were added. Tissues were then chopped for 10 

minutes using Noyes spring scissors (Fine Science Tools, 15514–12). After chopping, the 

homogenized solution was filtered through a 40 µm cell strainer (Falcon, 08–771-1) and 

plate and filter were washed with 1 ml ST buffer. After addition of 3 ml ST buffer the 

suspension was transferred to a 5 ml tube (Eppendorf) and centrifuged for 5 min at 500g. 
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After centrifugation the supernatant was carefully decanted. Depending on pellet size, the 

nuclei were resuspended in 100–200 µl ST buffer, filtered through a 35 µm cell strainer 

(Falcon, 352235). Finally, the nuclei concentration and dissociation quality was determined 

in a 5 µl aliquot using Neubauer counting chambers (Bulldog Bio) and a fluorescent 

microscope (EVOS FL, Thermo Fisher) after staining nuclear DNA with 50µg/ml Hoechst 

33342.

Single nuclei RNA library preparation

0.9–1.5×103 nuclei were loaded in ST buffer without RNAse inhibitor using a Chromium 

controller and chromium reagents (10X Genomics) for 3’ (#1000075) or 5’ capture 

(#1000006 and #1000263) as indicated (Supplementary Table 1). After reverse transcription 

and cleanup, cDNA libraries were generated according to manufacturer instructions with one 

additional cycle of cDNA amplification to account for the relatively lower amount of RNA 

in nuclei compared to whole cells.

Single cell and nuclei TCR library preparation

Single cell and single nuclei TCR libraries were prepared from amplified cDNA libraries 

according to manufacturer instructions using the following reagents (all 10X Genomics): 

Chromium Single Cell V(D)J Enrichment Kit for human T cells (#1000005) was used 

for cDNA generated with Chromium Single Cell V(D)J reagents (#1000006), and final 

sequencing libraries were prepared using Chromium i7 multiplexing kit (#120262)

Single Cell Human TCR Amplification Kit (#1000252) was used for cDNA generated with 

Chromium Next GEM Single Cell 5’ V2 reagents (#1000263), and final sequencing libraries 

were prepared using Library construction kit (#1000190) and Dual Index Kit TT set A 

(#1000215).

Sequencing of single cell and single nuclei libraries

Final sequencing libraries were quantified using Tapestation D1000 and D5000 reagents 

(Agilent) and a 2200 TapeStation system. Samples were then mixed and sequenced to target 

>20,000 reads per cell for gene expression libraries and >5,000 reads per cell for TCR 

libraries using NovaSeq S4 or HiSeq 4000 (Illumina. San Diego, CA) with at least 2×100bp 

read length (Supplementary Table 1).

Genomic DNA extraction and library construction for for low-pass whole genome 
sequencing

Excess nuclei (>1×105) from the sample preparations for sn-RNAseq were collected by 

centrifugation (500 x g, 5 min) and snap frozen after removing all but ~10 µL ST buffer 

and stored until further processing at −20°C. If insufficient numbers of nuclei were available 

after loading, additional curls were processed using the same methods as described above for 

single nuclei extraction. To extract genomic DNA from nuclei the nuclei were briefly thawed 

on wet ice and genomic DNA was extracted using DNeasy Blood and Tissue kit (Qiagen, 

Hilden, Germany; #69504) according to manufacturer instructions and eluted in RNAse and 

DNAse free water at 37°C for 5 minutes. The DNA concentration was then quantified using 

a Nanodrop. For library construction, see Supplementary Information.
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lp-WGS sequencing and copy number assignment

Indexed WGS-libraries were mixed equimolarly and sequenced on an Illumina MiSeq 

instrument with 0.1–1X coverage using the V2–300 cycle kit (Illumina). Using Illumina 

pipelines, .bam and .bai files were generated from .fastq files which served as input for 

ichorCNA26 generating .seg files for visualization. Finally, GISTIC 2.028 was used to assign 

a copy number to each gene.

Computational Methods

For routine raw data processing, alignment and initial quality control and filtering steps, see 

Supplementary Information.

CNA comparison between snRNA and scRNA samples

To measure correlation of inferred CNA profiles in snRNA and scRNA-seq samples (Fig. 

1i), for datasets that included both types of samples, we calculated average inferCNV 
scores for each chromosome arm for the cancer cells in each individual sample. To exclude 

chromosome arms that did not exhibit any large-scale amplifications or deletions, we filtered 

out arms that had an average inferCNV score between −.01 and .01. We also did not 

consider the CD45+ sample from our melanoma dataset, as it mostly contained immune 

cells, or the NSCLC 3’ sequencing protocols, as these appeared to be of lower quality in 

terms of gene counts and stress signature expression than the 5’ protocols (Fig. 1d). For 

every possible pair of one fresh vs. one frozen sample in each of our datasets, we then 

calculated the Spearman correlation between average chromosome arm inferCNV scores in 

each of the two samples.

Comparison of TCR clonotype composition between fresh and frozen samples

For our primary uveal melanoma and cutaneous melanoma brain metastasis TCR datasets 

(Fig. 1g,h), we used a hypergeometric test to compare clonotype compositions between 

every pair of fresh vs. frozen samples. We used the clonotype composition of the fresh 

sample as a reference, and compared it with the composition of the frozen sample. 

Specifically, we used the clonotypes that were shared between the fresh sample and frozen 

sample as input to the x argument of the dhyper function in R v4.0.2, the clonotypes found 

in the fresh sample as the m argument, clonotypes found in the frozen sample but not the 

fresh sample as the n argument, and the total number of clonotypes in the frozen sample as 

the k argument. For each sample, we also calculated the Gini coefficient of the distribution 

of TCR clonotype frequencies, using the gini function downloaded from https://github.com/

oliviaguest/gini/blob/master/gini.py

Comparison of arm-level CNAs between single-cell inferCNV predictions and lp-WGS 
measurements in uveal melanoma liver metastases

Using Illumina pipelines (automatic on miSeq machine), .bam and .bai files were generated 

from each sample from .fastq. ichorCNA analysis of these files generated .seg files for 

visualization. GISTIC 2.0 was used to assign a copy number to each gene. We calculated 

average inferCNV scores for each chromosome arm for the cancer cells in each sample 

of our uveal melanoma liver metastases dataset. We then compared this with the median 
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log relative copy number measured for each chromosome arm using lp-WGS (Fig. 4c). 

We calculated the Spearman correlation between these two values using two settings. First, 

we included all chromosome arms, and second, to exclude chromosome arms that did not 

exhibit any large-scale amplifications or deletions, we filtered out arms that had a lp-WGS 

median log relative copy number between −.1 and .1.

Evaluation of batch correction methods on fresh and frozen samples

To determine the extent of integration achievable between samples of fresh and frozen 

origin, we applied the following set of batch correction methods using python (v3.8.3) and R 

(v4.1.1): STACAS29 (v1.1.0), scVI30 (v0.8.1) and Seurat (v4.0.3), (Extended Data Fig. 3,4). 

For integration methods, genes were filtered using scanpy31 by selecting only the top 8000 

highly variable genes. Integration results were visualized using UMAP. For scVI, nearest 

neighbors were computed in the reconstructed gene space (with PCA preprocessing); for 

STACAS and Seurat, UMAP was computed in the integrated space with PCA preprocessing. 

The degree of integration achieved by each method was evaluated by computing the LISI 

score17. For all methods, LISI scores were computed on 20 principal components and 

visualized using UMAP. The mean LISI score was also computed for each method.

Analysis of tumor clonal dynamics in the KEYNOTE-001 patient

Preprocessing—Cells from all treatment time-points were normalized by library size 

together and log transformed using scanpy.pp.normalize_per_cell and scanpy.pp.log1p32 

(Fig. 2a). Batch correction was not performed, due to the observation that immune cells 

across samples showed more overlap in cluster assignments than tumor cells. We then 

selected tumor cells from the normalized anndata object from the KEYNOTE-001 patient 

only. For our data, we verified tumor cell identification using both inference of copy number 

alterations that were expected to be present in malignant cells using inferCNV (v1.6.0) 

(Fig. 2b), as well as known lineage marker genes, including MITF, MLANA, as well as the 

MITF-high and AXL-high signature gene sets (Fig. 2e,f, Supplementary Table 6).

Identification of tumor clones—We utilized K-means clustering on copy number data 

generated from inferCNV to group cells into clones defined by shared patterns in copy 

number alterations across genes (Fig. 2b). We found through visual inspection of inferCNV 
results that, across all treatment time points, there appeared to be four distinct groups of 

cells, each having a unique inferCNV footprint. Thus, K-means clustering was performed 

with k=4. Visualization via UMAP was utilized to analyze clonal dynamics with treatment. 

Temporal analysis was performed by plotting the proportion of cells belonging to each 

clone at each treatment time-point. Expanding tumor clones were then defined as those that 

showed an increase in proportion at the “on_later” time point compared to the “pre” time 

point (Fig. 2d).

Characterization of differentially expressed genes in expanding clones—We 

selected 300 differentially expressed genes for each clone, via the procedures outlined 

above. The differentially expressed genes for expanding Clone 2 were analyzed using 

the pre-ranked option in GSEA33 and the c5.goBP curated set of genes. The normalized 
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enrichment score and false discovery rate for the top 25 enriched gene sets was visualized 

(Extended Data Fig. 7d).

Analysis of patterns exhibited by known genes/gene signatures—
Characterization of clonal and treatment-induced dynamics was performed by analyzing 

the expression of genes belonging to previously defined geneset signatures, including 

immune checkpoint inhibitor resistance (ICR) signature9 and the AXL-high signature2 

(Supplementary Table 6). Normalized expression was averaged across all genes belonging to 

the signature set, and plotted using the UMAP representation (Fig. 2e,f). Individual genes of 

interest were manually selected and visualized using a heatmap, where cells were grouped 

on the x-axis according to treatment groups and clones within each (Extended Data Fig. 

7c). For each gene, z-scoring was performed across all cells to normalize the data and 

show variability across all cells. Analysis of CD58 expression (Fig. 2g) was performed by 

partitioning cells into clones. Normalized expression of CD58 was summarized across cells 

in each group, and significance was assessed using a Mann-Whitney U test.

Diffusion component (DC) analysis of T cells—For CD8+ T-cells in our three 

sequential anti-PD1 therapy samples (Fig. 2h), we computed DCs using the ‘DiffusionMap’ 

function of the Destiny R-package34. The ‘AddModuleScore’ function in Seurat was applied 

to calculate average expression levels of several T-cell gene signatures on a single-cell level 

(Supplementary Table 4). We plotted expression of several of these signatures, as well as 

expression of the TOX and TCF7 genes, and TCR clonotype expansion, on the first three 

diffusion components.

Comparison of T cells across metastatic niches—To compare the dynamics of 

T-cells across varying sites of origin, we extracted cells bearing the T/NK annotation from 

the uveal samples, the cutaneous melanoma samples, and the pre-treatment sample from the 

KEYNOTE-001 patient. Cells were batch corrected using scVI. Granular annotation was 

performed in a hierarchical fashion through Louvain clustering and evaluation of expression 

of known marker genes as well as differentially expressed genes. CD4 and CD8 T-cells 

were then analyzed separately, with an emphasis on dynamics within CD8. Diffusion 

component analysis was performed in order to visualize cells in a three-dimensional 

diffusion component space (Fig. 4e). We found that visualization in the space of components 

1, 2, and 3 highlighted the expected TCF7 to TOX progression. Louvain clustering was 

performed to further aid analysis. Lastly, diffusion pseudotime analysis (DPT)34 was applied 

using the Scanpy implementation to confirm the trajectory observed from cells high in TCF7 

to cells high in TOX.

Finally, we analyzed clonal expansion of TCRs among cells of fresh and frozen origin 

separately (Fig. 4d). We defined clonal expansion to be cells with a TCR clonality of >1 and 

<10, and clonal hyperexpansion to be cells with a clonality of >=10. Cells with no expansion 

were labeled as “singles,” while cells for which no TCR data was available were labeled as 

“none.”

Association of copy number alterations with immune resistance signature 
genes—We used Fisher’s exact test to determine, for each individual cell in our data, 
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whether immune resistance signature genes were more likely to be located in recurrently 

copy number-altered regions (Extended Data Fig. 7e). To do this, we defined an individual 

gene as being a recurrently copy number-altered in our inferCNV results if its copy number 

is significantly amplified or deleted in >10% of cells. We then defined a chromosomal 

region in an individual cell to be recurrently copy number altered if >10 individual genes 

were recurrently altered. Finally, we used Fisher’s exact test to test whether, for each 

individual cell, there was an association between positive and negative marker genes in 

the immune resistance signature, compared to whether a marker gene was located in a 

recurrently amplified or deleted gene. For the vast majority of cells, we find no significant 

association (p >0.05).

SCENIC analysis of sequential treatment samples

We performed analysis of putative gene regulatory networks using SCENIC35 on tumor 

cells, using a list of 1390 curated TFs obtained from the SCENIC github site (https://

github.com/aertslab/pySCENIC/hs_hgnc_curated_tfs.txt). We calculated AUCell scores for 

the strength of transcriptional programs mediated by these TFs. We then used the Wilcoxon 

rank-sum test to determine if the AUCell scores for any TF were significantly different in 

copy number clone 2 versus the other clones in each of our samples. We used a maximum 

threshold of .05 for Bonferroni-adjusted p-value, and a minimum threshold of 0.25 for 

log-fold change of AUCell score in clone 2 versus all other clones. Furthermore, we then 

determined TFs that passed these thresholds in all three timepoints (pre, on and on_later), 

resulting in a list of 26 TFs.

Analysis of spatial transcriptomic data

Preprocessing—We used the Slide-seq tools pipeline to process our Slide-seq data, and 

loaded the data into Seurat.

Deconvolution of cell types (RCTD)—We used the RCTD22 pipeline (v1.2.0), as part 

of the R package spacexr, which accepts two inputs: 1. count matrices for a spatial single-

cell sequencing dataset, and 2. a non-spatial single-cell sequencing dataset with cell type 

annotations. The count matrices obtained after preprocessing of the Slide-seq V2 assays of 

sequential treatment samples served as the first input. For the reference, we used previously 

published and annotated non-spatial single-nuclei sequencing data5. RCTD then uses the 

reference dataset to learn expression profiles for each annotated cell type, and uses these 

profiles to deconvolve cell type proportions at each location in the spatial single-cell data. 

Based on these inferred cell type proportions, discrete cell types were assigned by taking the 

cell type with the highest inferred proportion at a particular location (Extended Data Fig. 

6g).

Mapping of signatures in spatial datasets—We used the FindMarkers function in 

Seurat, with default parameters, to find marker genes that differentiate clone 2 tumor 

cells in the sequential therapy dataset from non-clone 2 tumor cells. We then used the 

AddModuleScore function in Seurat to determine strength of the clone 2 signature as well as 

immune resistance signature in our sequential therapy Slide-seq V2 samples.
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Spatial mapping of T cell states—To further deconvolve T cell states in the Slide-
seq V2 data, we applied our recently developed method Starfysh (Spatial Transcriptomic 

Analysis using Reference-Free auxiliarY deep generative modeling and Shared Histology) 

(He, et al, in preparation)23. In summary, Starfysh leverages a deep generative model 

with auxiliary variables representing cell state proportions in spots or barcoded areas. 

Importantly, Starfysh does not require paired single-cell RNA-seq data as reference and 

instead uses two sets of features to guide the deconvolution: (1) expression of known 

marker gene sets for cell states and (2) archetypal analysis which identifies the extreme 

vertices of a polytope encompassing all spots.We adapt Starfysh for use with Slide-seq V2 
data by reading the coordinates obtained from Slide-Seq into an AnnData object that can 

then be interfaced with downstream Starfysh methods. We then ran Starfysh with a set of 

immune and melanoma markers in order to obtain inferred proportions. The proportions 

of activated CD8 T cell and dysfunctional CD8 T cells (defined by published signatures20, 

Supplementary Table 7) are shown in Fig. 3b and Extended Data Fig. 6f.

Statistics and reproducibility

Samples for comparison of scRNA-seq and snRNA-seq were based on available tissue 

with sufficient material for fresh and consecutive frozen profiling as collected in the Izar 

laboratory from 2019–2021. For clinical trial samples from the liver metastasis trial all 

patients from the original trial with tissue from pre, on, and post time points were included. 

For the case-study of a partial response lesion from KEYNOTE-001 a patient with samples 

obtained pre therapy and on two post therapy timepoints was selected based on sufficient 

material for matched snRNA-seq and spatial profiling. No statistical method was used to 

predetermine sample size. No data were excluded from the analysis. Upper and lower edges 

of boxplot indicate 75th and 25th percentiles respectively, and middle line indicates median. 

The experiments were not randomized and the investigators were not blinded to allocation 

during experiments and outcome assessment.
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Extended Data

Extended Data Figure 1: 
a, Gating strategy for sorting viable CD45+ and CD45- cells from freshly digested 

surgical specimens. Final sorting gates indicated in red. b-d, Violin plots and boxplots 

indicating percent of mitochondrial reads across samples and different experimental settings 

in (b) NSCLC, (c) cutaneous melanoma, (d) uveal melanoma. e, Genes detected per 

cell in the NSCLC sample using procedures presented here compared to two previously 

reported protocols (CST and TST, indicated in green) after adjustment for sequencing 

saturation (Methods). Upper and lower edges of boxplot indicate 75th and 25th percentiles 

respectively, and middle line indicates median.
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Extended Data Figure 2: 
a, UMAP clustering of T cells, with projected clonality (top), sequencing source (middle) 

and cell cycle markers and T cell dysfunction and stemness markers (bottom) in primary 

uveal melanoma. b, same as (a) for cutaneous melanoma.
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Extended Data Figure 3: 
Application of three integration methods in NSCLC.
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Extended Data Figure 4: 
Application of three integration methods across cutaneous and uveal melanoma.
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Extended Data Figure 5: 
a, Stacked bar plots indicating proportions of all cell types in NSCLC, cutaneous and uveal 

melanoma across different methods. b, Simpson diversity index for immune cells in the 

same samples as (a). c, Stacked bar plots of malignant and non-malignant cell fractions in 

the same samples as (a).
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Extended Data Figure 6: 
a, Timing of sequentially collected specimens in a patient on anti-PD1 therapy. b,c, Violin 

plots and boxplots of (b) genes per cell detected (left) and percent of mitochondrial 

reads (right), and (c) expression of artifactual signature across samples collected over 

different time points. Upper and lower edges of boxplot indicate 75th and 25th percentiles 

respectively, and middle line indicates median. d,e, UMAP representation of CD8+ T cells 

across all time points and with projected TCR clonality, and (e) cell cycle markers (top) 

and T cell dysfunction and Stemness markers (bottom). f, Starfysh inferred proportions of 

cells corresponding to the CD8+ T cell activation and CD8+ T cell dysfunction signatures 

(columns), for data collected at the pre-treatment time point. g, Major cell types deconvolved 

using RCTD in on-treatment and on-treatment (later) timepoints. h, IGV plots of copy 

number changes measured in WES and US-WGS analysis of a pre-treatment melanoma 

specimen (presented in Fig. 2).
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Extended Data Figure 7: 
a,b, Stacked bar plots indicating proportion of (a) all cell types across sequentially collected 

anti-PD1 therapy tissue specimens and (b) malignant and non-malignant fractions. c, 

Heatmap of selected genes (rows) and their gene expression (normalized expression) in 

individual cells (column). Indicated on the bottom are time points of sample collection (pre, 

on, on_later) and clones (0–3) as defined in Fig. 2. d, Gene set enrichment analysis (GSEA) 

of genes differentially expressed in clone 2. e, Violin plots of the distribution of p-values 

from Fisher’s exact test in pre, on and on_later timepoints (9969, 6651, and 4447 cells 

respectively), testing for association of recurrent copy number alterations in each cell with 

ICR signature gene location. f, Top: Histogram of gene density across genome for positive 

and negative genes in ICR signature. Bottom: Plot of inferCNV inferred copy number 

alterations in on timepoint sample. g, Transcription factors associated with Clone 2 in pre, 
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on-treatment and on-treatment later timepoints, based on Wilcoxon rank-sum test of AUCell 

scores in Clone 2 cells vs. non-Clone 2 cells () from SCENIC analysis.

Extended Data Figure 8: 
a, Schematic of tissue collection and indicated number of specimens per time point. MEKi, 

MEK-inhibitor (Selumetinib). b, Violin plots and boxplots indicating number of genes 

detected per cell (top lane), percent of mitochondrial reads (middle lane) and expression of a 

stress signature (bottom lane) across 20 uveal melanoma specimens. Upper and lower edges 

of boxplot indicate 75th and 25th percentiles respectively, and middle line indicates median. 

Yellow color indicates a specimen sequenced with 10X 3’ V3 chemistry, with lower quality, 

while data for the remainder of samples (indicated in red) were generated with 5’ chemistry. 

c, Exemplary baseline and post-treatment MRI of the abdomen showing moderate response 

of a liver metastatic lesion in a uveal melanoma patient treated with selumetinib.
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Extended Data Figure 9: 
a, Schematic design of generation of (low-pass) whole-genome sequencing from the same 

cell/nucleus pool that was also used for single-nucleus RNA and TCR sequencing. b, 

Inferred CNAs (columns) across samples (indicated by bar on the left) in the uveal 

melanoma cohort. c, Exemplary whole-genome sequencing result (top) showing copy 

number alterations (y axis, log2 ratio) with amplifications in red, deletions in green and 

unaltered chromosome regions in blue. Inference of CNAs of the using snRNA-seq that was 

generated from the same starting cell/nucleus pool as WGS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a-c, Violin plots and boxplots of genes detected per cell in (a) non-small cell lung cancer, (b) 

cutaneous melanoma and (c) uveal melanoma samples. Upper and lower edges of boxplot 

indicate 75th and 25th percentiles respectively, and middle line indicates median. Blue plots 

indicate scRNA-seq from fresh tissue, and red indicates snRNA-seq from frozen tissue. 10X 

chemistry type and presence/absence of RNAse inhibitor is indicated on labels beneath each 

violin. d-f, Violin plots and boxplots of relative expression of an artifactual stress-associated 

gene expression signature. Samples and experimental settings corresponding to panels (a-

c) above. g,h, Circos plots of T cell receptor clonotypes in (g) cutaneous and (h) uveal 

melanoma, respectively. Connections indicate overlap of identical TCRs found in both fresh 

scRNA-seq and frozen snRNA-seq samples (hypergeometric test, (g) p=1.55e-62, using the 

dhyper function in R with x=66, m=1204, n=55, and k=121, and (h) p=0.0018, between the 

single-cell 5p CD45+ and single-nuclei 5p with inhibitor samples, using the dhyper function 

in R with x=19, m=488, n=2, and k=21). i, Spearman correlation of average cutaneous 

melanoma cell arm-level CNAs predicted by inferCNV, in a fresh CD45- scRNA-seq sample 

(x-axis) vs. two frozen 5p snRNA-seq protocols (y-axis).
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Figure 2. 
a, Merged, unintegrated UMAP and annotation of clusters of cells from sequentially 

collected specimens during anti-PD-1 therapy. b, Inferred copy number alterations across 

the chromosomal landscape for melanoma cells, in pre- and sequential on-treatment biopsies 

(from left to right). Genomic location is indicated across the x axis, with chromosomes 

delineated by vertical lines. Individual cells are plotted along the y axis, with each row 

representing the CNA profile of one cell, and amplifications in red and deletions in 

blue. Colored bar to the left indicates clones identified by k-means clustering. c, Merged, 

unintegrated UMAP embedding of cancer cells from three time points indicated by different 

colors. d, (left) Same projection as (c) indicating cancer clones defined by aneuploidy 

patterns in (b) and their proportion (right) across pre- and sequential on-treatment biopsies. 

e,f, Same projection as in (c) showing expression of (e) immunotherapy resistance program9 

and (f) AXL-signature2. g, Violin plots of expression of CD58 in emerging clone 2 
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compared to other cancer clones based on aneuploidy patterns. (n=7921, 4858, 4808, 3486; 

box denotes Q1-Q3 and whiskers correspond to farthest data point within 1.5*IQR). h, 

Diffusion component (DC) analysis of CD8+ T cells with projections of cells in first 

3 DCs colored by indicated genes, signatures and clonotypes. i, Circos plots of T cell 

receptor clonotypes across different time points (indicated on different aspects of the circle). 

Connections indicate overlap of identical TCRs between time points.
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Figure 3. 
a-b, Representation of spatial transcriptomics generated with Slide-seq V2 with indicated 

expression of the immune resistance signature (ICR) (first row), clone projection (second 

row) (a) and distribution of deconvolved T cell states (b) in the on-treatment (first column) 

and on-treatment later (second column) specimens. ICR and clone 2 signatures were defined 

by average expression of marker genesets, and differentially expressed genes, respectively. 

Deconvolution of cell states was achieved with Starfysh. Major cell types inferred with 

RCTD are presented in Extended Data Fig. 6g.
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Figure 4. 
a, Merged, unintegrated UMAP and annotated clusters of snRNA-seq transcriptomes across 

20 uveal melanoma liver metastasis samples colored by specimen of origin (left) and cell 

type (right). b, Exemplary representation of inferred copy number alterations across the 

chromosomal landscape of an uveal melanoma liver metastasis specimen (left; color bar on 

left delineating CNA clones identified by k-means clustering), and corresponding UMAP 

embedding and clustering (right) colored by respective CNA clones, demonstrating impact 

of CNA heterogeneity on Transcriptional output. c, Spearman correlation of chromosome 

arm copy number alterations predicted by inferCNV from uveal melanoma liver metastases 

snRNA-seq data vs. population-matched low-pass whole-genome sequencing. d, TCR 

clonotypes of CD8+ T cells from the uveal melanoma samples, the cutaneous melanoma 

samples, and the pre-treatment sample from the KEYNOTE-001 patient projected onto the 

first 3 diffusion components. e, CD8+ T cells projected into diffusion component space 

(same as d), colored by cluster, tissue origin, inferred pseudotime, and T cell differentiation 

in the TCF7+ to TOX+ continuum.
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