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Encoding of Syntax and Phonology in a Premotor Songbird Nucleus 

Kurtis J. Swartz 

Abstract 

 A major question in motor systems neuroscience is how complex actions are encoded, on 

the timescale of both shorter individual elements and longer sequences. Birdsong is a tractable 

system, where a learned complex vocal behavior combines a categorical set of shorter individual 

elements into longer sequences, making it well-suited to address this question. The song nucleus 

HVC (used as a proper name) contributes to song sequence and timing. While much has been 

studied about HVC in zebra finches, which sing linear, stereotyped songs through their adult 

lives, relatively little data has been collected from HVC in their close relatives, Bengalese 

finches, that sing flexible, variably sequenced songs. We built a custom microscope to record 

neural activity reported by the calcium indicator GCaMP from populations of neurons from HVC 

in awake, freely moving Bengalese finches. We analyzed how populations of neurons in HVC 

encode information around divergence points, where one syllable can be followed by multiple 

syllables, and convergence points, where one syllable can be preceded by multiple syllables. We 

found that HVC projection neuron bursting can encode for upcoming sequence many syllables 

ahead of divergence points, and prior sequence many syllables after convergence points. We also 

found that HVC bursting encodes variation in the acoustic structure (phonology) of the different 

renditions of a given syllable in different contexts. Moreover, we found that HVC has 

overlapping representations of distinct syllables, especially those which are acoustically similar. 

These results help to reveal how premotor regions can encode multiple types of sequence and 

phonological information simultaneously.
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Chapter 1: Introduction 

1.1 Motor Control of Variable Sequential Actions  

Many complex motor behaviors, such as speech or playing the piano are performed by 

sequencing together smaller units of action. These sequences require constant, moment to moment, 

decisions about which smaller action should be taken next. How does the brain represent individual 

actions and organize them into sequences? When these actions can be variably sequenced, how is 

the selection of what comes next (or what has just been produced) encoded in brain activity?  

Additionally, when a given action is produced in different motor contexts (i.e. different sequences), 

how similar is the neural representation of that action across contexts? Answers to such questions 

are fundamental to understanding how the brain organizes and produces complex sequences of 

motor actions yet remain difficult to study in humans.  

Singing in oscine finches parallels these complex motor behaviors as song is formed by 

sequentially ordering a set of acoustically distinct vocalizations, called syllables, into larger motifs 

(Brainard and Doupe 2013). These birds are easily maintained in lab settings and have a well-

defined neural circuitry specialized for song (Nottebohm et al. 1976; Konishi et al. 1985; Figure 

1.1 B). Moreover, across different species of finches, there is a range in the complexity of song 

both in the number and structure of the individual syllables, and in the complexity of the syntax 

that defines how these syllables are sequenced. By understanding the neural mechanisms of song 

production, we can begin to gain a better understanding of how the brain strings together individual 

actions into more complex behaviors. 
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The song system is in part composed of the premotor cortical analog HVC (proper name) 

which projects to the motor cortical analog RA (robust nucleus of the arcopallium) as well as the 

basal ganglia homolog Area X. HVC contains two main classes of cells: inhibitory interneurons, 

and excitatory projection neurons which send axons to either Area X or RA (Reiner et al, 2004). 

The properties of these cell types have been most extensively studied in zebra finches. In these 

finches, both classes of projection neurons fire precisely timed bursts that are locked to specific 

vocal elements (Vu et al. 1994; Fee et al. 2004). Each RA projection neuron fires a single burst 

associated with one syllable while Area X projection neurons fire bursts during multiple different 

syllables (typically 2-3; Yu and Margoliash, 1996; Hahnloser et al., 2002). Together, these neurons 

exhibit a unique population level pattern of firing at each moment in song. It has therefore been 

hypothesized that HVC neurons encode the timing and sequence of each of the vocal elements of 

song (Yu et al. 1996; Lynch et al. 2016; Picardo et al. 2016; Katlowitz et al. 2018). Further 

experiments showed that cooling of HVC led to slowing down of song tempo without grossly 

altering song acoustics, further supporting this idea (Long et al. 2008 2010; Andalman et al. 2011; 

Zhang et al. 2017).  

While much has been studied about HVC’s role in song timing and sequencing, most of 

these studies were done in zebra finches which do not display variable song sequences. Instead, 

zebra finches produce syllables in a single stereotyped sequence across each song rendition. This 

lack of variability in sequencing makes it difficult to differentiate activity related to the ordering 

of syllables from the activity associated with the production of each individual syllable. In contrast, 

Bengalese finches, close relatives of zebra finches, can display variability in the ordering of 

syllables (Nakamura and Okanoya 2004; Kentaro et al. 2013; Kentaro et al. 2011). Despite these 

differences in song syntax, the neural circuitry responsible for song in zebra finch and Bengalese 
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finches is strikingly similar. Both species contain the same nuclei responsible for the production 

of song, which are well conserved across all passerine songbirds examined to date. Additionally, 

transcriptomic profiles of song nuclei across zebra and Bengalese finches demonstrate highly 

conserved cell types (Colquitt et al. 2021). The fact that both a stereotyped behavior as well as a 

more variable behavior are underpinned by very similar circuitry provides an excellent opportunity 

to enrich our understanding of neural control of complex motor sequences. 

The sequence variability in Bengalese finches occurs at “branch points” in song and comes 

in three main types: divergences, convergences, and variable repeats (Figure 1.1. C, D, E). 

Divergence points are places in song where one syllable can lead to multiple other syllables 

(syllable “a” goes to either “f” or “b” in Figure 1.1. C/D). Convergence points occur when one 

syllable is sung after multiple different syllables (syllable “i” is preceded by “e” and “c” in Figure 

1.1. C/E). Finally, variable repeats are syllables which are repeated a varying number of times 

before transitioning to another song element (syllable “c” in Figure 1.1. A/C). These branch points 

have consistent statistics which remain stable over months, suggesting that the brain must have 

some representation that biases these statistics (Jin et al 2011, Kentaro et al. 2011 and 2013). 

Additionally, Bengalese finches can be trained to alter the probabilities of transitions at these 

branch points, suggesting active neural control over decisions of song sequence (Warren et al. 

2012). 

The sequence variability in Bengalese finch song provides opportunities to study how HVC 

encodes variable transitions. First, divergence points appear to be probabilistic transitions where 

the bird has two or more possibilities of what to sing in the future. One possibility is that the 

selection of which syllable to sing is made just before the syllable itself. In this case we may expect 

to see evidence of this selection very close to the divergence point. Another possibility is that this 
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selection is made a few or many syllables in advance of the divergence. Here, we might expect to 

see neurons which fire only to one type of transition multiple syllables in advance of the divergence 

point. By analyzing when activity in HVC is predictive of the upcoming sequence, we can gain 

insights into the timescale at which the syllable selection process is made. 

Convergence points provide another key feature of song to study as one syllable can be 

sung in two different preceding contexts. This raises the question of whether HVC represents 

context as well as syllable identity. For example, is a syllable “a” sung after a “b” the same as an 

“a” sung after a syllable “c”. These “a’s” sung in different contexts could either have the same 

representation in HVC or have information about the preceding sequence. Such information about 

preceding context could enable subsequent transitions to be changed based on past sequence. 

Indeed, we see that birds can adjust probabilities of transitions at divergence points dependent on 

the preceding sequence (Warren et al. 2012). Additionally, birds can learn to adjust the pitch of a 

given syllable in one preceding sequence, but not another (Tian and Brainard 2017). This reflects 

some capacity to jointly represent the syllable and the sequence in which it is produced. 

Understanding how information about previous sequences is encoded within HVC will constrain 

models of how sequence history affects subsequent syllable production. 

Two previous studies have provided significant insight into how HVC encodes variable 

sequences in songbirds: one in Bengalese finches and one in canaries (Fujimoto et al. 2011 and 

Cohen et al. 2020 respectively). Fujimoto and colleagues studied song syntax within HVC of 

Bengalese finches by recording single unit HVCX projecting neurons individually. They 

sequentially recorded 48 individual neurons across nine Bengalese finches. They found that similar 

to what was described in zebra finches, most HVCX  projection neurons fired bursts during multiple 

distinct points in song. They defined multiple types of HVCX neurons based on the specificity of 
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their bursts. Some HVCX neurons were termed “syllable selective” because they consistently fired 

for one syllable no matter what context it was sung in (for example a firing for syllable “b” in both 

an “a→b” and a “f→b” context). Other neurons were termed “transition selective”, preferring to 

fire during one context vs the other (for example firing more for syllable “d” in a “b→ d” context 

vs a “g→d” context). They further split these “transition selective” neurons into two additional 

classes. They termed these transition selective neurons “all-or-none” if they fired only in one 

context and “intermediate” selective if they fired during multiple contexts and fired more spikes 

in one context. These data showed that HVC can encode information about past sequences, rather 

than encoding only what is happening at that exact moment in song as had been hypothesized in 

zebra finch HVC.  

At divergence points Fujimoto and colleagues found “syllable selective” and 

“intermediate” transition selective neurons, but no “all-or-none” transition selective neurons 

(Fujimoto et al. 2011). The “intermediate” transition selective neurons encode future transitions 

one syllable prior to it being sung. For example, such neurons might fire more during a syllable 

“a” that transitions to syllable “b” than during an “a” that transitions to syllable “i”. Hence, HVC 

can encode information about variable transitions at least one syllable in advance. While this work 

laid the framework for understanding how HVC can encode syntax, it is limited in scope by the 

small number of neurons recorded and the fact that they were recorded sequentially rather than 

simultaneously. As this work found significant variability in the firing of HVC projection neurons, 

understanding if this variability is shared across the population may provide great insight into the 

mechanisms of production for variably sequenced songs.  

Cohen et al. 2020 began to address this limitation by using calcium imaging to record from 

many HVC projection neurons (likely including both HVCX and HVCRA) in canaries. Canary song 
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differs from zebra finch or Bengalese finch song as it contains many different trills (similar to 

variable repeats) which last a few seconds each (Markowitz et al. 2013). These trills are treated 

similarly to individual syllables in Bengalese finch song as they can also transition to multiple 

other trills, creating convergence and divergence points. They found that individual projection 

neurons could encode information about either past or future sequences. Such neurons could reflect 

what was or would be sung up to 2 phrases in the past or future. As these trills last many seconds, 

they conclude that HVC can maintain a representation of past transitions over many seconds. 

Furthermore, HVC neurons can encode information about subsequent transitions several seconds 

before they occur. As canary song is very different from finch song, with transitions between 

different elements being sparse in time, there are still many questions on how past and future 

transitions are encoded in a song with shorter timescale transitions. 

This previous work still leaves many open questions to address. While Cohen et al. 

recorded from large populations of neurons, they did not focus their analysis on population metric 

which may encode features not seen in individual neurons. As Fujimoto et al. only looked at shorter 

range information encoded within HVC, does Bengalese finch HVC also contain long range past 

and future information? To best address these questions, we recorded from large populations of 

HVC projection neurons using calcium imaging in Bengalese finches. We found that HVC in 

Bengalese finches encodes both long range information reflective of both past and future 

transitions in a more subtle fashion than seen in canaries. Additionally, we report that HVC 

neurons contain strong correlations in their firing strength across renditions. Our results indicate 

that the HVC population in Bengalese finches influences upcoming sequences far in advance but 

is not fully predictive. 
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1.2 Encoding of Acoustic Features  

In speech, humans use a given word in many different sentences. While this word may 

sound different each time we say it, we understand that we are saying that same word and our 

brains likely maintain a similar representation of its production. Additionally, many different 

words are made up of similar sounds. By encoding words which sound similar with overlapping 

representations, the brain could more efficiently encode a large vocabulary. Learning how the 

brain represents individual vocal elements across contexts is an important question in 

understanding how the brain generally encodes distinct actions. 

Similar to human speech, Bengalese finch song contains individual elements that are 

easily distinguishable called syllables. One fundamental question in speech is how the brain 

encodes variations in the production of the same word as every time we say the same word, it 

doesn’t sound exactly the same. Slight variations in duration, pitch, entropy, and other features 

make each time a word is said, or a syllable is sung unique. Yet, we are easily able to distinguish 

which words are the same. Just as in human speech, the same syllable sung at different times has 

a great deal of acoustic variability.  Additionally, there are many distinct syllables with similar 

acoustic elements. Given that Bengalese finch song is variability sequenced, context cues about 

which syllables were sung ahead of a given syllable can help to differentiate whether two 

iterations of a syllable should be given the same or different label. However, this can often be a 

difficult task deciding which syllables should be grouped together or split apart. We can begin to 

address this question by looking into the neural representation of individual syllables during song 

production. As we know that HVC should encode information about syllable identity, recordings 

from HVC can help identify which syllables are the same and which are different. 
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While we expect the same syllables to be encoded by similar neurons within HVC, it is 

unclear whether syllables which are clearly distinct but are acoustically similar may have 

overlapping representations. Prior work has indicated that HVC appears to operate as a clock and 

only encodes sequence and timing in song (Lynch et al. 2016, Picardo 2016). RA then controls 

the mapping of individual acoustic elements in song (Leonardo and Fee 2005; Sober et al. 2008). 

Yet, as HVC projects directly to RA, one might expect that small trial by trial variations in HVC 

firing during the same syllable could influence its overall acoustic features. Indeed, work from 

our lab has found that infusion of the cholinergic agonist carbachol into HVC, increases the 

firing rate of multi-unit sites within HVC and in turn alters syllable acoustics, such as pitch (Jaffe 

2020). Other work has found infusion of drugs which alter inhibitory interneurons within HVC 

also influence spectral features of song (Isola et al. 2020). These findings raise the question of 

whether natural variations in the acoustic properties of syllables may be encoded within HVC.  

Past recordings of HVC have reported little on correlations of the location of HVC bursts 

and the phonology of syllables. Lynch et al. 2016 found that burst rate in HVC projection 

neurons is correlated only with pitch goodness (metric of how harmonic a syllable is) when 

looking at 6 different acoustic features. However, they did not analyze whether representations 

of similar syllables are more similar within HVC. This may be because in zebra finches HVCRA 

projecting neurons only fire one burst per motif, making these sorts of comparisons impossible. 

Nevertheless, the possibility that HVCX projection neurons, which fire multiple bursts per motif, 

may encode syllable similarity has not been fully examined. Additionally, HVC coding of 

sequence variable Bengalese finch songs may look very different from the stereotyped zebra 

finch song. Sequence variability leads to many questions about which syllables are the same or 

different as there is no longer consistent context to guide human labels. Song often contains 
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multiple distinct syllables with some shared acoustic elements (stacks, sweeps, etc.), yet with 

enough differences in other elements (duration and frequency) to make them separable. By 

analyzing how HVC represents syllables which are acoustically similar, we can better understand 

which features of song HVC encodes. 

By analyzing large populations of HVC projection neurons recorded in singing Bengalese 

finches, we correlated the neural activity associated with the production of each syllable with 

how similar each syllable combination was. We found that HVC encodes variation in the same 

syllable sung in different contexts. Additionally, we report that syllables which are acoustically 

similar are also similar in neural activity within HVC. These results show that HVC can encode 

phonological features of song as well as sequence and timing information, expanding our 

understanding of its role in vocal production. 
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Figure 1.1: Bengalese finch song sequence and circuitry 
Legend: A. An example of a spectrogram of Bengalese finch song B. Basic song circuitry of 
Bengalese Finches. HVC sends projections to RA and Area X. RA projects down to motor 
neurons while Area X is part of the Anterior Forebrain Pathway (AFP) loop which projects to 
RA C. Diagram of the song in 1a. Syllables in red are divergence points, syllables in blue are 
convergence points, and syllables in green are both divergent and convergent. D. Example of a 
divergence point in this song. Syllable “a” can transition to either syllable “f” or “b” with a 40:60 
probability E. Example of a convergence point in this song. Syllable “I” can be sung after 
syllables “cde” or “ccc” 
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Chapter 2: Development of a custom 1-photon fiber optic 

calcium imaging microscope 

2.1 Microscope design 

To address questions of acoustic and sequence encoding in HVC, we need to record from 

large populations of individually identified neurons in singing Bengalese finches. One method to 

accomplish this is calcium imaging. There are currently many designs available for collecting 1-

photon calcium imaging data in-vivo at a cellular resolution (Zhang et al. 2019; Cannon et al. 

2015; Scherrer et al. 2023). Each of these requires a miniature microscope to be mounted on the 

head of the animal (2-3 g, Zhang et al. 2019; Scherrer et al. 2023). While this works well for 

larger animals such as mice and rats, for smaller animals such as finches (which weigh ~15 g), 

this is a significant burden and leads to animals not performing natural behaviors as easily. 

Previous studies in songbirds have successfully used miniaturized microscopes for freely moving 

1-photon imaging, or head fixed 2-photon.  

 Furthermore, even for larger animals, the size of these microscopes allows for only 

imaging one area at a time. Additionally, having the microscope on the head of the animal can 

lead to significant movement artifacts which increases the inaccuracy of the signal (Zhang et al. 

2019). One solution would have the microscope off the head of the animal. While advances in 

miniaturization will allow smaller and smaller animal-mounted imaging systems, moving the 

microscope off the head will always allow larger, more complex imaging pathways and 

components. This will allow easier movement of the animal, more advanced cameras and optical 

components, and easier customization of multiple cameras and excitation wavelengths.  
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To accomplish this, the use of fiber optic cables is necessary to transmit light from the 

brain of the animal to the microscope. While typical fiber optics do not allow for spatial 

localization, recent advances now allow for fiber optics which can create an image with a 

resolution of up to 2 µm (Toader, Regalado et al. 2023). Using these new fiber optics, we 

designed an easily customizable and affordable 1-photon microscope capable of imaging with 

cellular resolution. As the fiber optic cables are only 350 µm in diameter, they can easily be 

positioned to record from multiple brain areas simultaneously. The microscope was built using 

the components in Table 1. 

2.2 Grin Lens Implant and Positioning 

Bengalese finches were injected with either GCaMP6s or GCaMP8s and implanted with 

1 mm diameter GRIN lenses with a working distance of 200 µm (Inscopix PN:130-000143). The 

lens was positioned over HVC as visualized using retrograde DiI from Area X. The lenses 

allowed us to cover a large area of HVC giving us the ability to search multiple areas for the best 

expression level. As the fiber optic cables were only 350 µm in diameter, we could only select a 

smaller region of the lens to image. We designed a custom 3D printed and machined parts 

system to couple the fiber optic and the grin lens. This device held the fiber at the working 

distance above the lens to create a focused image on the camera. Additionally, the holders 

allowed us to easily search HVC and adjust the position of the fiber while birds were awake and 

behaving. We adjusted the position of the fiber and allowed the birds to sing until we found an 

area that showed the strong song responses. These devices held the fiber at the working distance 

above the lens to create a focused image on the camera.  
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2.3 Software for collection of song aligned videos 

 We designed a custom software using Python and the Spinnaker Python SDK to capture 

video from the microscope camera and align it to audio from a microphone recording the bird's 

song. We constantly record and store audio in a buffer and trigger acquisition of video based on 

sound, as song is a spontaneous behavior and occurs throughout the day. If there was audio 

greater than a certain amplitude, we would begin the recording as well as turn on the excitation 

LED. This sound triggered recording was used to reduce bleaching of the GCaMP signal within 

HVC. 

2.4 Potential Future Applications  

 One of the advantages of removing the microscope from the head of the animal is that it 

allows for further customization of the optical setup. In addition to using faster, and higher 

resolution cameras which are larger in size, we can also add in multiple cameras to the set up. 

This allows for multiple different features. First, we could add in a second camera that would 

collect another wavelength of excitation and emission. This would allow for recording of another 

fluorescent reporter in a different wavelength of light. This could be used to identify different 

cell types with retrograde tracers, or record signals using a red shifted activity reporter. Second, 

by having two or more cameras, we can offset the frame acquisition of these cameras to have an 

effective higher frame rate, while still maintaining a longer exposure time. For example, while 

maintaining a 30 ms exposure time across 3 cameras, if we offset the acquisition time of each 

camera by 10 ms, we can make our effective frame rate 3 times faster. This could allow for better 

temporal resolution with the newer generation of faster GCaMP8 proteins as well as open the 

door for 1 photon voltage imaging.  
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Table 1: Custom 1-photon fiber optic microscope components 

Part name Company Part number 

Tube Lens ThorLabs AC254-180-A 

Lens Mount ThorLabs CP35/M 

Emission Filter ThorLabs MDF-GFP2 

Excitation Filter ThorLabs MDF-GFP2 

Dichroic Mirror  ThorLabs MDF-GFP2 

Filter cube ThorLabs DFM1/M 

SMA fiber mount ThorLabs SM1SMA 

4x Achromat Objective Olympus RMS4x 

Z-axis objective mount ThorLabs SM1ZA 

Objective Adapter ThorLabs M32RMSS 

Excitation LED ThorLabs 470L5 

LED Collimator ThorLabs SM1U25-A 

LED Driver ThorLabs LEDD1B 

Fiber Optic Cables Fujikura FIGH-10-350S 

Camera FLIR BFS-U3-32S4M-C 

C-Mount Adapter ThorLabs SM1A9 

External Thread Coupler ThorLabs SM1T2 

Camera Cable Edmund Optics 86-770 

Mirror Mount ThorLabs KCB1C/M 

Dielectric Mirror ThorLabs BB1-E02 

Cage assembly rods (multiple 
lengths) 

ThorLabs ERxx 

 

https://urldefense.com/v3/__https:/www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=120&pn=AC254-150-A__;!!LQC6Cpwp!tzM5HBxYjpaJ0nNpkVkjuhw21H_bCYvpjby3H-V8gbtxTXtp8PTPz2ClzFogZgNO_IA1iSEAXm5ZZIQHMQ03MHrVQA$
https://www.thorlabs.com/thorproduct.cfm?partnumber=CP35/M
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2990&pn=MDF-GFP2
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2990&pn=MDF-GFP2
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2990&pn=MDF-GFP2
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12315&pn=DFM1/M
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=69&pn=SM1SMA
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1044&pn=RMS4X
https://www.thorlabs.com/thorproduct.cfm?partnumber=SM1ZA
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10426&pn=M32RMSS
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2692
https://www.thorlabs.com/thorproduct.cfm?partnumber=SM1U25-A
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2616&pn=LEDD1B
https://myriadfiber.com/fujikura-image-fiber-qaurtz-glass/
https://www.edmundoptics.com/p/bfs-u3-32s4m-c-usb3-blackfly-s-monochrome-camera/37237/?gad_source=1
https://www.thorlabs.us/thorproduct.cfm?partnumber=SM1A9
https://www.thorlabs.us/thorproduct.cfm?partnumber=SM1T2
https://www.edmundoptics.com/p/usb-30-locking-cable-3m-length/29172/
https://www.thorlabs.com/thorproduct.cfm?partnumber=KCB1C/M#ad-image-0
https://www.thorlabs.com/thorproduct.cfm?partnumber=BB1-E02
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4125&pn=ER05-P4


15 

Chapter 3: HVC encoding of future and past sequences 

3.1 Characterization of single neuron firing patterns 

Burst heights vary from trial to trial  

To better understand how branch points are encoded within the songbird brain, we 

recorded neural activity with cellular resolution from HVC using calcium imaging in Bengalese 

finches (Figure 3.1. A, B, C). While HVC is known to play an important role in song timing, 

little is known about how it might encode variable sequence information (Cohen et al. 2020; 

Fujimoto et al. 2011). We recorded activity from HVC in Bengalese finches, which display 

sequence variability, to investigate signals that encode for the production of the current syllable, 

from signals which encode upcoming or past sequence. 

 We began our analysis by quantifying the different properties of bursting in HVC 

projection neurons. While much has been studied about the timing of HVC projection neuron 

firing, there has been less focus on the number of spikes fired for each burst and how variable 

this is. Calcium indicators reflect the amount of calcium in the cell which increases upon neurons 

firing action potentials (Zhang et al. 2023). The greater the number and frequency of action 

potentials, the larger the increase in GCaMP fluorescence will be. We observed that the increase 

from baseline in calcium signal varies from trial to trial (Figure 3.2 A). Across all recorded 

neurons the standard deviation of burst heights ranged from 0.15 to 1.5 with a mean of 0.58 and 

a median of 0.53 (Figure 3.2 B/C).  We concluded that HVC projection neuron firing in 

Bengalese finches contains a large amount of variance in its magnitude. 
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Correlation of burst heights 

While there is clearly variation in the magnitude of firing in HVC projection neurons, this 

variation could either come from intrinsic properties of neurons, or from larger network 

correlations.  To address this, we pulled out the longest consistently occurring sequence of 

syllables which contained all syllables for each bird. We refer to these consistent sequences of 

syllables as motifs. We then aligned the activity from all neurons to this motif and extracted out 

all which occurred during this motif. As many neurons burst at more than one location in this 

motif, some bursts will come from the same neuron. We first treated each burst as independent 

and organized them into a response matrix of size number of unique bursts by number of motifs. 

In this matrix, each entry represents the height of a burst during a single rendition of the motif. 

We then took the correlation of this matrix to get a matrix of correlation coefficients of size 

number of bursts by number of bursts. This matrix reflects correlation between the heights of 

each burst across all motifs (Figure 3.2 D, Supplemental Figure 3.2.1). Thus, each pair of 

bursts has one correlation coefficient across all motifs. We found that there were many 

significant correlations across birds. Approximately 30% of all pairs of bursts had correlations 

that were significant (threshold p=.05). The prevalence of such correlations across bursts 

suggests that there are network properties that change from motif to motif that lead to changes in 

burst height.  

Correlations between bursts were present both for bursts from different neurons (“across 

neurons”) as well as bursts for one neuron that occurred at different locations in the motif 

(“within neuron”) (Supplemental Figure 3.2.1 A). To investigate the contribution of individual 

vs network properties to variance in burst height, we compared the strength of within neuron 

versus across neuron correlations. We found that within neuron correlations were more prevalent 
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than across neuron correlations (Figure 3.2 E). 70% of within neuron comparisons were 

correlated across motifs. In comparison 27% of across neuron comparisons were correlated. 

Furthermore, significant correlations of bursts from within neuron were significantly greater than 

those across neurons (p<10-10 Wilcoxon rank sum). The average absolute value of the correlation 

within the same neuron was 0.57 vs 0.36 for different neuron comparisons. We concluded that 

bursts from the same neuron are more likely to be correlated and are more strongly correlated 

than bursts from different neurons. However, there is still a large amount of shared variance 

across the neural population as bursts from different neurons are also strongly correlated.  

Another aspect of correlations is their sign (+/-). If the correlation coefficient is positive, 

this means that when one burst is high in a given motif, the other burst is also likely to be high. If 

the correlation is negative, it means that when one burst is high, the other is more likely to be 

low. We found that ~80% of significant correlations were positive.  We found that the 

correlation coefficients between bursts from the same neuron were more likely to be positive 

than bursts between different neurons (Figure 3.2 E). Approximately 98% of significant 

correlations within neuron were positive while ~80% of significant correlations across neurons 

were positive. This means that on certain motifs, individual neurons are consistently more or less 

active across all bursts, rather than larger firing in one burst correlating with lower firing in 

another. This effect is more nuanced with bursting across different neurons, as these bursts can 

either be positively or negatively correlated. This smaller fraction of negative correlations might 

reflect coupling of excitatory projection neurons by inhibitory interneurons. We concluded that 

while bursting across the population is highly correlated, changes in individual neuron 

excitability account for a larger fraction of the burst height variance.  This suggests a model 
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where individual neurons maintain a state of either high, or low excitability throughout a single 

motif.  

Burst heights decrease over each successive motif 

 Another variable that may correlate with neural activity is the time at which a given 

neuron was active. For example, a neuron which fires for syllable “a” on average might fire more 

for syllable “a” during the first rendition in song, and then less during each successive “a” sung. 

To test this, we plotted the average burst height for each neuron against the motif number in song 

(for example if a motif is sung for the 3rd time in song vs the 5th time in song). In each bird 

there was a general trend that calcium signals decreased over successive motifs (Supplemental 

Figure 3.2.2 A). This correlation of motif number vs burst height was significant across all 

bursts in all birds (p< 10-10 R2=.01). While this correlation explains relatively little of the 

variation of burst heights it is a consistent trend. To confirm that this trend is not an artifact of 

the calcium imaging itself, we reanalyzed data from HVC multi-unit electrophysiology 

recordings previously done in our lab (Jaffe 2020). For each motif, we calculated the average 

firing rate during each syllable. In both birds analyzed, motif number and average firing rate 

were significantly correlated at a similar level to our calcium data (Supplemental Figure 3.2.2 

B; p<e-10, R2 = .04). Thus, we concluded that there is a significant decrease in the activity of 

HVC neurons over the course of the song. 
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3.2 Analysis of firing around divergence points 

Divergence points are preceded by changes in burst size in HVC projection 

neurons 

 In any variably sequenced motor action, the brain must prepare the muscles to act in the 

desired fashion. For example, when playing the piano if the next note played requires a jump to a 

key far away from the ones currently being played, preparations must be made for this more 

difficult jump. Similarly, in Bengalese finch song, vocal musculature must be prepared to sing 

one note after the other. Indeed, activity during syllable “a” when the bird will transition to 

syllable “b” looks different than a transition to syllable “c” (Fujimoto et al. 2011). Little is 

known about how far in advance Bengalese finches determine these upcoming divergence points. 

These selections may be made many syllables in advance, or just before the onset of the 

divergence. For example, differences in firing may be fully predictive of the upcoming variable 

sequence many syllables ahead, suggesting that the selection of which syllable to sing is made 

far in advance and is more deterministic just before the divergence point. On the other hand, 

there may be more subtle differences in firing leading up to the divergence point, suggesting that 

while there is some level of longer-range influence, the ultimate decision at the divergence point 

is more stochastic. 

To determine how HVC might encode changes in song sequence, we asked whether we 

could detect changes in firing activity that predicted the chosen sequence at divergence points. 

We began by aligning motifs that contained long strings of stereotyped syllables leading up to a 

divergence point. For example, one bird sang a motif of “iafghcdeia” which then led to a 

divergence point where it either sang f or b. Any neuron which burst consistently during the 



20 

stereotyped motif leading to one branch but not during the same sequence in the other would be 

encoding the upcoming branching syllable. This “all-or-none” type firing would be evidence that 

the upcoming divergence point is not decided at the branch itself, but during the stereotyped 

motif beforehand. Aligning the neural data as such made it clear that there are none of these “all-

or-none” type neurons (Figure 3.3A). Across all neurons recorded in all birds during divergence 

points, if a neuron displayed a burst in a sequence leading up to one branch, it also burst in that 

same preceding sequence for the other branch (n=309 bursts in 131 ROIs). This aligns with 

previous results from Fujimoto et al. as they also did not find any “all-or-none” predictive 

neurons at divergence points. Thus, we concluded that HVC projection neurons do not encode 

future information in an “all-or-none” fashion, different from observations in canaries (Cohen 

2020). 

  While there are not any neurons which are fully predictive of the upcoming branch 

syllable, we observed that burst size in HVC projection neurons is varied, leading us to analyze if 

any of these smaller differences in firing could predict the upcoming branch. Using a Wilcoxon 

rank-sum test, we compared all bursts leading up to the divergence point in these stereotyped 

sequences (Figure 3.3B/C). We found that across 4 sequences in 4 birds 55 of 309 bursts prior to 

the divergence point were significantly different (threshold of p <. 05). These bursts were then 

assigned to a syllable allowing us to compare the percentage of bursts that differed in each 

syllable window prior to the divergence point (see methods). Figure 3.3D shows the percentage 

of bursts that differed for each syllable leading up to the divergence point across all birds.  

To determine which differences were greater than expected by chance, we shuffled the 

labels of the post branch identities 1000 times and determined the 95th percentile of branch 

selective neurons (see methods).Compared to a shuffled distribution we found that the 
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percentage of bursts in the 1st, 2nd, 4th, 9th, and 10th syllables prior to the branch which were 

selective for the upcoming sequence were significantly greater than expected by chance. This 

reveals that while there are not “all-or-none” type selective bursts which predict the upcoming 

divergence points, there are more subtle changes in burst heights that do. This led us to conclude 

that there is evidence that signals within HVC can reflect the upcoming sequence selection. 

These more subtle differences suggest a model where activity in HVC influences the upcoming 

selection far in advance, but still allows for a more stochastic process at the divergence point. 

 The observation that there are significant differences in neural activity more than 8 

syllables prior to the divergence was surprising. While only the differences during the 9th and 

10th syllables were greater than the 95% shuffled distributions, many of the other syllables were 

at the 95% chance level. We sought to gain a better understanding of the dynamics of these 

neurons as they may provide insight into how decisions at divergence points are made. To 

investigate this, we looked at all of the neurons that were divergence selective more than 7 

syllables prior to the divergence point (n=17). The z-scored fluorescence averages of some 

examples of these neurons are plotted in Figure 3.3E. 10 out of 17 of the neurons burst again 

either during the branch syllable or the syllable before it. Another 4 bursts occurred 2 syllables 

prior to the divergence. Of the neurons that burst in the 1 or 2 syllables before the divergence, 5 

out of 8 had significantly different firing during this syllable as well. Thus, while some bursts are 

far from the divergence point in time, the neurons responsible for these bursts are active again 

close to the divergence. This aligns with our finding that different bursts from the same neurons 

are positively correlated across trials. Thus, the past activity of the neurons that are predictive 

and fire around the divergence point play a role over the upcoming sequence decision. We 
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concluded that the firing of individual neurons in the past can influence the upcoming branching 

decision. 

Influence of motif number on divergence points 

 While we found many differences in neural activity leading up to divergence points, we 

know that neural activity in our dataset is also correlated with a general decrease in activity over 

the course of the song. While this trend only accounts for a small portion of the variation in burst 

heights (R2 = .01), it is still possible this is partially responsible for differences across branches. 

If the differences we observe are due to the general decrease in neural activity, we would expect 

transition probabilities to also change accordingly over the course of the song. Thus, we plotted 

transition probabilities vs the motif number in which they were sung (Supplemental Figure 

3.2.1). We observed that in 3 out of 4 birds, the divergence point probability changed over the 

course of the song, but did not consistently increase or decrease. However, in 1 bird, we 

observed the transition probabilities of the divergence point changed over the course of the 

motif. Thus, in at least one bird, changes in HVC activity may reflect a general decrease in 

activity which could be related to the change in probability.  

To further investigate the relationship of motif number in song, divergence point 

probabilities and burst height we fit a linear mixed effects model using both the upcoming 

branch identity and motif number as fixed effects for the burst height of neurons. In the 3 birds 

which did not show a clear trend in divergence probability as a function of motif number, the 

number of significant neurons that were selective for the upcoming sequence did not 

significantly decrease. In the bird that did show a change in transition probability as a function of 

motif number, 7 neurons remained significantly transition selective out of the previously 

observed 25. Overall, there were now 40 of 309 bursts that were significantly transition selective 
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prior to divergence points). This number [MB1] exceeds the 99.99th percentile of the null 

distribution based on shuffled models (out of 1000 shuffles the maximum number of transition 

selective neurons was 30). While more analysis is needed to disambiguate the general decrease 

over motifs with differences in bursting around divergence points, we conclude that the 

observation of transition selective bursts cannot be explained exclusively by the general decrease 

of burst heights over the course of song. 

Decoding upcoming branch syllables from neural firing 

 Given that we found many bursts which were transition selective during syllables prior to 

divergence points, we wanted to test if we can decode the upcoming branch identity from the 

calcium signal prior to the divergence point. Using the calcium signal increases per syllable we 

built a Support Vector Machine Classifier (SVM) to decode the upcoming branch syllable 

(Figure 3.4). The input to this SVM was the burst height binned by each syllable window (same 

data as in Figure 3.3D). For each additional syllable in the sequence, we used all the calcium 

signals that occurred before the offset of that syllable. For example, in one bird the sequence was 

“iafghcdeia” which diverged to either a “b” or an “f”. As there are 10 syllables leading up to the 

divergence, the first syllable in the sequence “i” is labeled the -10 syllable and the last syllable 

“a” is the -1 syllable. Thus, when decoding the upcoming branch at -10, we only use calcium 

signals prior to the offset of the first syllable “i”. For the -1 syllable, we use all the calcium 

signals that occurred prior to the offset of the last “a”, which includes signals from the entire 

sequence prior to the divergence. 

 We found that across all birds, we could decode upcoming syllable identity with 65% 

accuracy using all the calcium signals prior to the branch syllable. In one bird, we could decode 

the upcoming syllable with 90% accuracy at this same time point, while other birds had lower 
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accuracy. This suggests that in certain birds, upcoming branch identity may be decided earlier in 

the sequence. Additionally, for 2 out of the 3 birds which had consistent sequences over 10 

syllables prior to the divergence, upcoming branch identity could be decoded up with ~60% 

accuracy even during the first syllable of the sequence. This confirms our observation that there 

are transition selective bursts many syllables in advance of the divergence. In general, 

information about upcoming syllable selection is available prior to the divergence but is not fully 

predictive. This could indicate that while activity within HVC prior to the divergence influences 

the upcoming sequence, it is not fully deterministic until the moment the branch syllable is sung. 

3.3 Analysis of firing around convergence points 

Past information is encoded within HVC  

Convergence points are another aspect of sequence variability in Bengalese finch song. 

Convergence points are places in song where one syllable can be sung after multiple different 

syllables, giving that one syllable multiple preceding contexts (Figure 1.1.E blue circle “i” 

contexts “cde” and “ccc”, and Figure 3.5A).  Previous studies have revealed that HVCX 

projecting neurons can encode information about this preceding context (Fujimoto et al. 2011). 

This encoding is different than the selectivity around divergence points as there are many 

neurons which are “all-or-none” selective (in Figure 1.1.E bursting during syllable “i” in context 

“cde” but not in context “ccc”) in addition to those which fire more spikes on average during one 

context than another (similar to the encoding of divergence points) (Fujimoto et al. 2011). While 

previous work looked mainly at selectivity during syllables leading up to convergence points, we 

also wanted to analyze how long after a sequence has converged can neural activity still contain 

information about the preceding sequence. This is a fundamentally different question as we want 
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to understand not only the differences in encoding during the convergent syllable, but also how 

syllables downstream may also reflect differences in the history of that vocalization.  

We began this analysis by aligning neural activity to convergence points in song and 

looking for differences in burst height at each successive syllable after the convergence point 

(Figure 3.5A). As expected, we found many bursts which encoded for the prior sequence during 

the convergent syllable (threshold p<.005 Wilcoxon rank sum). Across all birds ~30% of bursts 

were context selective at the convergent syllable. This is less than previous findings which found 

that ~70% of HVCX projection neurons were context selective at convergence points (Fujimoto 

et al. 2011). This result may be explained by the fact that we are likely recording from both 

HVCX and HVCRA projection neurons, in addition to differences in how syllables are labeled 

(see discussion). In addition to differences during the convergent syllable, we found many 

significant differences in syllables up to 11 syllables after convergence. This result shows that 

HVC contains long range information about the past. This may help to explain the observation 

that song sequence often displays long range history dependence. 
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Figure 3.1: Calcium imaging in songbirds using image fiber bundles 
Legend: A. Microscope diagram. GCaMP expressed in HVC is imaged using high-density 
imaging fibers capable of resolving single neurons B. An example of a temporal Maximum 
Intensity Projection of a video taken of neurons (Figure caption continued on the next page)  
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(Figure caption continued from the previous page) within right HVC. ROIs are shown. Colors 
match colors of traces in C. Note, not all colors are present as some ROIs come from fiber over 
left HVC C. Top: Example song. Middle: 14 example ROI Z-scored intensities recorded during 
and aligned to a single rendition of the song. Bottom: Max normalized derivatives of all ROIs 
recorded (n=53) aligned to song  
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Figure 3.2: Quantification of individual and population neural properties 
A. Z-scored intensity of one ROI aligned to the onset of syllable “b” in all songs recorded. Offset 
of previous syllable, onset and offset of “b” marked with dashed black lines. Dashed red line 
indicates calculated burst onset time. B. Histogram of the change from minimum to maximum of 
the traces in 1D. Standard deviation = .53 C. Histogram of the standard deviation of all recorded 
ROIs D. Correlation coefficient matrix of all individually extracted bursts in example bird in 3.1 
C. Each burst is represented as an individual even if they come from the same neuron. Bursts are 
sorted by ROI number so bursts from the same neurons are located next to each other. E. 
Histogram of correlation coefficients of bursts from within same neurons (blue) and across 
different neurons (red). p < 10e-15 that means are different Wilcoxon rank sum test.    
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Supplemental Figure 3.2.1: Calculation of correlation coefficients across 
motifs 
Legend: A. Three example neurons from one rendition of selected motif. Each neuron 
contributes 3 bursts to the matrix in C B. Correlations of 2 pairs of example bursts from different 
ROIs. Top: burst 32 and burst 50 are significantly positively correlated across motif. Bottom: 
burst 57 and burst 38 are significantly negatively correlated C. Example matrix of z scored burst 
heights for each burst in each motif sung.  
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Supplemental Figure 3.2.2: Neural activity decreases over the course of 
each motif 
Legend: A. Average z-scored burst height from all neurons in each motif rendition number in all 
4 birds. B. Average z-scored mean firing rate across all multi-unit sites in two birds. C. 
Transition probability of one motif for each of the recorded in A 
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Figure 3.3: Burst heights can encode for upcoming divergence points 
Legend: A. Top Down: 1) Raster plot of average (Figure caption continued on the next page)  
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(Figure caption continued from the previous page) derivative of 49 neurons recorded 
simultaneously in HVC aligned and linearly time warped to sequence “afghcdeiabc” 2) Same as 
1 but with sequence “afghcdeiafg” 3) D’ statistic in 1 vs 2 for each neuron 4) Average D’ across 
all neurons. Time 0 is the onset of either syllable b or f. B. Z-scored fluorescence traces from all 
trials for an example neuron from raster in 3a, aligned to onset of syllable i. Blue traces are all 
trials which go to syllable b, red traces are all trials which go to syllable f. Darker traces are 
means for each syllable type  C. Histogram of the peak of the traces in 3B D. For all bursts in all 
birds, percent of neurons which have significantly different bursting across divergence points in 
blue (as in 3c). Each burst is assigned to a syllable and plotted relative to how many syllables 
away from the divergence it is. Dotted orange line is 95th percentile of shuffle burst differences, 
showing chance level. E. Average fluorescence traces of example neurons in 3 birds which have 
significantly different bursting at least 5 syllables prior to the divergence point. Different 
divergence sequences are plotted in red or blue. Labeled syllables are the offset times of each 
syllable. Dotted line shows offset of the last same syllable across sequences. F. Histogram of 
locations of the burst closest to divergence in all ROIs that have significantly different firing at 
least 7 syllables prior to the divergence point. 
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Figure 3.4: Upcoming branch identity can be decoded above chance 
from burst heights 
Legend: A. Balanced accuracy score per bird with across bird means using a Support Vector 
Machine (SVM).  



34 

 

Figure 3.5: Burst heights encode for past convergence points 
Legend: A. Examples of the spectrograms of two (Figure caption continued on the next page)  
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(Figure caption continued from the previous page) convergence points from two birds.3rd order 
convergence “bcde” vs “hcde” and 2nd order convergence “abc” vs “hbc”. The order of the 
convergence refers to how many syllables in the past was the last different syllable across the 
two sequences. Top 3rd order convergence p<.001. Bottom 2nd order convergence p<10-8 B. Z-
scored fluorescence traces from all trials from two example neurons which are context selective 
for the sequences in 3A. Left traces from different contexts plotted in red or blue. Darker trace is 
the mean for each context, lighter surface are 95% confidence intervals. Right, raster plot of the 
derivative of the traces. C. Per bird percent of neurons which are context selective vs the order of 
the convergence point. Individual birds in color, mean of all birds in black D. Per bird mean 
COM distance of syllables vs order of convergence point E. Correlation of percent of bursts 
context selective (data from 5C) vs COM distance (data from 5D) F. Correlation of percent of 
bursts context selective vs COM distance for each individual syllable. p<10-8 R2 = .49 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



36 

Chapter 4: HVC encoding of phonology 

4.1 HVC encodes phonology across same syllables in different contexts  

 Numerous studies in the Zebra Finch have contributed to a model in which HVC activity 

abstractly encodes timing in song, while the specific acoustic features that are produced at each 

moment in time depend on the pattern of connections from HVC to RA (Lynch et al. 2016; Long 

and Fee 2008; Long et al. 2010). However, an alternative model suggests that HVC activity 

encodes some acoustic features (Amador et al. 2013), and manipulations of HVC activity can 

influence acoustic features such as pitch (Jaffe et al. 2020). Part of the difficulty in 

differentiating between these models in the zebra finch arises because of the stereotypy of zebra 

finch song, such that any specific moment in song is highly correlated with the specific acoustic 

features at that moment. In contrast, in BF song the variable sequencing of syllables, and 

differences in phonology of individual syllables depending on when they are produced in song, 

provides an opportunity to examine whether HVC activity covaries with acoustic structure. 

 Previous work has shown that the same syllable sung in different convergent contexts 

(“a” in “xyza” vs in “bcda”) can have significantly different acoustic structure, and that the 

magnitude of phonological differences are correlated with differences in RA activity 

(Wohlgemuth 2010). Moreover, neural activity in RA differs across acoustically distinct 

renditions of individual syllables and can encode acoustic features such as pitch (Sober et al. 

2008; Wohlgemuth 2010). This further raises the question of whether phonological encoding 

first arises in RA or is also present in the inputs to RA from HVC. 

Figure 4.1A shows an example song of an adult Bengalese finch which displays many of 

these features. We can see multiple syllables with different contexts. Syllable “b” can occur after 
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“a” or after “k”. Syllable “c” can occur after a “b” or a “f”. We wanted to test if the songs of our 

birds also contained phonological differences at convergent syllables. To quantify how different 

the same syllables sung in different contexts are, we need a metric of syllable similarity. We used 

a similar approach to previous work (Wohlgemuth 2010; Tchernichovski 1999). For each 

syllable, we measured 9 acoustic features which quantify measures of frequency, amplitude, and 

other spectral features (see methods; Tchernichovski 1999). These features were taken across the 

syllable so that each syllable had 100 data points per feature, leaving us with a 900-dimensional 

representation of each syllable (Supplemental Figure 4.1B). This was then reduced in 

dimension using PCA. The top 10 PCs were used to place each syllable in a reduced dimensional 

space. For each syllable, we calculated the center of mass (COM) across all renditions of each 

syllable in each context in this space. We then measured the Euclidean distances between COMs 

as a way of comparing how similar two syllables are (COM distance; Wohlgemuth 2010; Figure 

4.1B). The more similar the syllables, the lower the COM distance. This comparison can be 

made either across the same syllables in different contexts, or different syllables. The matrix in 

Figure 4.1B shows these COM distances for all different syllables in Figure 4.1A. Note that as 

expected this metric is smaller for syllables together which by eye appear similar. “k” and “b” 

are the most similar comparisons, but we can also see “a” and “e” have similar structure and 

have a low COM distance. 

Using this metric for syllable similarity, we tested whether syllables that are more similar 

acoustically also have more similar neural representations. We began by analyzing if the 

differences in firing after convergence points can be explained in part by differences in 

phonology. We found that in the birds we collected calcium imaging data from, the 1st order 

convergent syllable had a mean COM distance of 5.9 across all birds, which was significantly 
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larger than the distance of any other order of convergence. This confirms the previous report that 

convergent syllables contain significant phonological differences dependent on their preceding 

sequence (Wohlgemuth 2010). The mean COM difference for same syllables in different 

contexts decreased as a function of the order of convergence (Figure 3.5 D), and this decrease 

had a qualitatively similar shape to that for the percent of neurons that were context selective as a 

function of the order of convergence. To test if there was a significant correlation between the 

COM distance and the percent of context selective neurons, we fit a 1st order linear model and 

found that they indeed significantly correlate (Figure 3.5E;   p < 10-9, R2= .49). We concluded 

that differences in same syllable phonology after convergence points are encoded within HVC 

projection neurons. 

The observation that neural activity correlates with the mean COM distance of the same 

syllables in different contexts raises the question of the extent to which HVC encodes the 

phonology of individual variations of these syllables. To compare how similar neural activity 

was we used the D’ statistic across the change in fluorescence during the syllable window (see 

methods). The lower the D’, the more overlapping the two signals are. We then compared each 

same syllable in each different 3 syllable context (for example syllable “b” in the “kiab” context 

vs in the “ghkb” context. Across the 4 birds recorded the mean D’ across all neurons was 

significantly correlated with the inter-syllable COM distance (Figure 4.1D, p < 10-7 R2 = 0.31). 

We concluded that individual variations of the same syllables in different contexts are encoded 

within HVC. 
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4.2 HVC encodes phonology across different syllables 

While the finding that HVC encodes phonological differences across renditions of the 

same syllable is striking, we wanted to test if this would also extend to phonological differences 

across different syllables. Another feature of Bengalese finch song is that distinct syllables can 

often have similar acoustic features. For example, in Figure 4.1A, syllables “b” and syllable “k” 

contain similar frequency bands that down-sweep over the course of the syllables. However, “k” 

is reliably distinguishable from “b” as it has a longer duration and flatter frequency bands at the 

start of the syllable (Supplemental Figure 4.1A). Additionally, “k” always occurs before the 

syllable “h” making it easier to identify. Likewise, syllables “a” and “e”, and syllables “e” and 

“f” have shared acoustic structure. Consistent with these qualitative observations, the COM 

distances of all these pairs of syllables in Figure 4.1B have lower than average COM distances. 

To test if these syllables which by COM distance are acoustically similar are also 

encoded by similar firing in HVC, we analyzed bursts of single neurons across similar syllables. 

We observed that neurons which burst for one syllable also tend to fire for syllables which 

looked acoustically similar. Figure 4.1C shows the derivative of the fluorescence signal of 3 

neurons that all burst during syllable “b” sung after syllable “a” Figure 4.1A. Each of these 

neurons also burst during syllable “k” as well as the “b” that is sung after syllable “k”. The two 

syllable “b’s” in different contexts were more similarly encoded than syllable “k”. There were 

clear differences in the two “b’s” as the top neuron was more active during the “kb” while the 

middle neuron was more active during the “ab”. Both neurons also had a smaller increase in 

calcium signal during syllable “k”. The bottom neuron burst more strongly during syllable “k”, 

yet reliably burst for both “b’s”. This provides a striking example of how HVC projection 
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neurons represent three phonologically separable elements more similarly than expected if their 

firing was independent of acoustic features. 

To test if this trend was significant across the population of all different syllables, we fit 

the mean D’ of the increase in fluorescence during the syllable window against the mean COM 

distances of all different syllable pairs in each 3 syllable context (“k” in “cghk” vs “b” in 

“kiab”). We grouped each syllable in these 3 syllable contexts to account for the consistent 

acoustic differences across convergence points. Across 4 birds we found that COM distance and 

neural D’ were significantly correlated (Figure 4.1E, p < 10-8 R2= .02). This result shows that 

syllables that have more similar acoustic features have more overlapping neural representations 

in HVC. This correlation explains less variation than the same syllables in different context 

comparisons (Figure 4.1D). This could be due to multiple factors, including that the metric of 

COM distance may not accurately pull out all features that HVC represents. While within 

syllable similarity will remain fairly stable across different acoustic features, different syllable 

comparisons are more sensitive to which features are used. Further work is needed to better 

understand which features HVC best correlates with and which syllables HVC encodes most 

similarly. Overall, we conclude that HVC can represent phonology both across different syllables 

and within the same syllable in different contexts. This provides strong evidence that in 

Bengalese finches, HVC encodes more than just sequence and timing and that the previously 

described phonological encoding in RA derives in part from HVC. 
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Figure 4.1: HVC encodes phonology within and across syllables 
Legend: A. Spectrogram of song. B. Z-scored COM distances of syllables in spectrogram in 6A 
C. Derivative traces of 3 example neurons which fire (Figure caption continued on the next page)  
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(Figure caption continued from the previous page) during the song in A warped and aligned to 
the onset of each syllable in the motif. Dotted lines show the maximum derivative for each 
neuron. The z-scored D’ of these neural representations is -.91 D. Z-scored mean D’ of 
fluorescence increase in signal across all ROIs vs Z-scored COM distance across same syllables 
in different 1st-3rd order contexts E. Z-scored mean D’ of fluorescence increase in signal across 
all ROIs vs Z-scored COM distance across different syllables in all 1st-3rd order contexts. F. All 
same and different syllable comparisons (combined data from D and E) z-scored and fit together 
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Supplemental Figure 4.1.1: SAP features extracted, and neural activity 
binned by syllable 
Legend: A. Example of 4 renditions of syllable “b” and 4 renditions of syllable “k”. B. Mean 
feature curves of all 9 SAP features used in PCA to calculate COM distance. Shaded area shows 
mean +/- 1 standard error. C. Neural activity for all recorded ROIs for all contexts of syllables 
“b” and “k” 
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Chapter 5: Discussion 

 In this study, we measured activity in populations of neurons within the HVC of 

Bengalese finches during the production of variably sequenced songs. Many prior studies have 

analyzed the role of HVC in the control of stereotyped song production in zebra finches. 

However, relatively little is known about how HVC contributes to birds who sing variably 

sequenced songs. Studying HVC activity during the variably sequenced song of Bengalese 

finches allows us to characterize how HVC encodes current actions, plans future actions, and 

keeps track of past history. Our results in the Bengalese finch show that the bursting of HVC 

projection neurons does not simply reflect the specific time and identity of the concurrently 

produced syllable, as in the zebra finch. Rather, consistent with previous studies in the Bengalese 

finch and canaries (Fujimoto 2011; Cohen 2020), we found that the magnitude of bursts during 

the production of a syllable can additionally encode information about sequence variation many 

syllables before and after the syllable. 

 We additionally took advantage of the graded acoustic similarity of many syllables in 

Bengalese finch songs to investigate whether HVC encodes aspects of syllable phonology. While 

much work has been put into automatic systems to cluster and label syllables, little has been 

studied about the correlation of these clusters in acoustic space vs clusters in neural space 

(Cohen et al. 2022; Liu et al. 2022). We found that HVC population representations were more 

similar across syllables which were acoustically more similar. This is true both for comparisons 

of activity for the same syllable produced in different sequences, and for comparisons across 

different syllables. These results are different from those observed in Zebra finches; indicating 

that HVC can encode more than just timing information about syllable production. 



45 

5.1 HVC Activity predicts upcoming divergence up to 10 syllables prior  

 One long standing question about divergence points in Bengalese finch song is whether 

the selection of which syllable to sing happens abruptly at the divergence point or evolves over a 

longer timescale. If these decisions appear to happen suddenly in HVC we would expect to see 

more “all-or-none” neurons. These could be just before the divergence point, or even further in 

advance. Our results did not find any of these “all-or-none” neurons until the gap after the 

divergent syllable. In other words, we did not observe robust differences in neural activity 

leading up to divergence points until just before the bird was singing different syllables. 

However, we found many neurons which had greater activity in one branch (“intermediate 

selective”) up to 10 syllables prior to the divergence point. This was further in advance than 

previously reported and may be because a higher sample size of neurons was required to capture 

these types of differences (Fujimoto et al. 2011). This finding that HVC projection neurons begin 

to significantly bifurcate in their representation of the same syllables leading up to divergence 

points suggests a model where decisions are gradually made over a longer timescale. This result 

suggests a model where trial by trial variations of HVC activity can nudge the upcoming syllable 

selection process many syllables in advance. However, given the overlapping nature of these 

signals across branches, and the lack of “all-or-none” type neurons the ultimate selection of 

which syllable to sing appears to be made closer to the syllable itself. 

What model of sequencing control does this suggest? Previous models of divergence 

points have built upon the idea of a feedforward synaptic chain driving control of song in a 

“branching chain” model of sequencing (Jin 2009). This model suggests that there is a “winner-

take-all” competition between neural representations of the possible syllables which can be sung 

at the divergence points (Figure 5.1 top). This competition will lead to one population of 
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neurons inhibiting the other through interneurons within HVC. One prediction of this model is 

that the relative strength of firing of neurons that are active around the divergence point may 

determine (and therefor correlate with) which branch of the chain “wins” during a given 

rendition of song. Consistent with this possibility, we found that many neurons active prior to 

branch points had firing rates that were predictive of which branch was subsequently followed. 

However, we also found such predictive differences in neural activity up to 10 syllables in 

advance of the divergence point. How could we account for such long-range relationships 

between firing and branching? One such possibility would be that there are two chains of 

neurons for each of the stereotyped syllables leading up to the divergence point (Figure 5.1 

bottom). These may inhibit each other over a longer timescale than previously thought from the 

predictions of the “branching chain”. 

We also observed that the neurons which are more active for the selected branch far in 

advance ( > 7 syllables prior) also fire again either at the divergence point, or during one of the 

two branches. Thus, the past firing of neurons which are active during the variable transition to 

one branch or other is predictive of the upcoming decision. This may be due to intrinsic 

properties of the neurons which affect their firing at the divergence point. Indeed, we find the 

firing within the same neurons is correlated across motifs, meaning enhanced firing that is 

predictive of the upcoming syllable far in advance is more likely to also be predictive when that 

same neuron fires close to the divergence.  

Finally, we often observed a significant reduction in neural activity over the course of 

song, including decreases in the amplitude of individual bursts over successive motifs. Such 

differences were not simply an artifact of calcium imaging, as we found a similar trend in multi-

unit extracellular electrophysiology data and has not been previously reported. Understanding 
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how this decrease in activity contributes to branch selection at divergence points will require 

further investigation. We began this analysis by controlling for this effect by using mixed effects 

models. In one bird, we found that divergence point probabilities also changed over subsequent 

motifs. In this individual the mixed effects model significantly reduced the number of divergence 

selective neurons observed, especially those predictive 9 and 10 syllables prior to divergence. 

Thus, this effect of decreasing activity over song may play a role in the selection of upcoming 

syllables but does not fully explain the presence of divergence selective neurons.  

5.2 HVC Maintains History of Context Many Syllables After 

Convergence Points  

Bengalese finch song often contains long range sequence history dependence (Warren et 

al. 2012; Jin and Kozhevnikov 2011; Kentaro et al. 2011). For example, the statistics at 

divergence points are often dependent on the syllables preceding it. For example, a divergence of 

syllable “a” to “b” vs “c” may go to either option with a 50:50 probability when preceded by 

syllables “def”. This probability will change to 70:30 in favor of branch “b” if preceded by 

syllables “hig”. The mechanisms of these types of statistical changes dependent on past sequence 

are not well known. To be able to accomplish this kind of consistent statistical dependence, 

information of past sequence must be encoded within the brain. If HVC is important for making 

upcoming decisions based on past sequence, it must have access to this past information. 

We found that HVC indeed does have different representations for syllables at 

convergence points. As previously reported, we found neurons which were selective for past 

sequence at the convergent syllable (Fujimoto et al. 2011). We additionally found many neurons 

that were selective for 2nd and 3rd order convergent syllables (syllables 1 or 2 syllables after the 
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convergence point. In one bird, we even found differences selective at 10th order convergent 

syllables. Thus, Bengalese finch HVC can encode long range information about previous 

sequences. This information could contribute to the previously observed history dependence in 

syllable sequencing.  

5.3 HVC Encodes Phonological Similarity of Both Same and Different 

Syllables 

 HVC is often compared to a clock, as some view it only as a control center for timing of 

syllable production (Lynch et al. 2016). However, little has been studied about the encoding of 

phonology in HVC and whether it may influence acoustic features of syllables. The traditional 

view is that the mapping of specific features is encoded with RA. As HVC projects directly to 

RA, it follows that changes in HVC activity could also lead to changes in phonology.  

 Previous work has found that convergent syllables (same syllables sung in different 

contexts) have different acoustic properties depending on their context (Wohlgemuth 2010). This 

result along our current finding that HVC neurons encode past context suggests that activity in 

HVC could correlate with the phonology of these syllables on a trial-by-trial basis. Indeed, we 

found that the percent of neurons that are selective for different orders of convergent syllables 

correlates strongly with the COM distance of those syllables. More generally, we found that the 

COM distance of any pairs of syllables in different 3 syllable contexts (“fghc” vs “iabc”) 

correlates strongly with the mean D’ of the neural activity during those syllables. Additionally, 

Bengalese finch song often contains syllables that are acoustically similar but are still clearly 

separable into two groups. We found that different syllable COM distances were strongly 

correlated with the similarity of their neural representations. This means that syllables which are 
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clearly distinct have overlapping representations in HVC if they have similar acoustic features. 

These results indicates that finds HVC activity can be correlated with acoustic features during 

unmanipulated singing. 

 Why has this encoding of phonology not been reported previously in recordings from 

Bengalese finch HVC (Fujimoto et al. 2011)? Two main reasons could be differences in labeling, 

as well as a lack of thorough analysis around syllable similarity. Labeling of syllables is a key 

decision that must be made to do any analysis of song. We found that acoustically similar 

syllables often had the same HVC projection neuron firing patterns. By clustering the audio 

features of these syllables which were similar but were labeled as distinct elements in PCA 

space, we observed clear separation between their clusters, indicating that they were indeed 

separable vocal elements. If previous analysis done in other labs had instead grouped these 

syllables as the same, they may not have noted this overlapping neural representation. It is 

important to note that even if we had labeled these different syllables as the same, our analysis 

would still have drawn the correlation with acoustic and neural similarity as we also compared 

the same syllables that were sung in different contexts. Indeed, when we correlate D’ and 

syllable distance in both same and different syllables together, the correlation remains significant 

(p < 1010; R2 = 0.09; Figure 4.1F). As others may have not focused analysis on the acoustic 

variation of the same syllables in different contexts, they also may not have observed this 

correlation. Overall, our analysis of acoustic similarity indicates that HVC represents 

phonological information in Bengalese finches. 

Why have these observations not been made in recordings of zebra finch HVC? One 

main reason is that each HVCRA neuron bursts at most once per motif in zebra finch song. Any 

analysis focused on these neurons would be unable to compare overlapping HVC representations 
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as there are none. Additionally, many previous studies have treated all HVC bursts as 

independent and thus would not even be able to make this comparison in HVCX projection 

neurons which fire during multiple acoustic elements. In our dataset, we do not know which 

types of HVC projection neurons we are recording from. Previous studies which express GCaMP 

using the same virus and CAG promoter that we used successfully labeled HVCRA projection 

neurons (Daliparthi et al. 2019). Using retrograde DiI injections from Area X, we have 

confirmed expression of GCaMP in HVCX projection neurons in our dataset. Thus, it is likely 

that we are also recording from both HVCRA and HVCX projection neurons. This leaves open the 

door that HVCRA neurons may fire bursts for multiple syllables in Bengalese finches, which 

would be a significant discovery and show distinct coding from zebra finch HVC. This type of 

one-to-many encoding might be useful for building more syllables with fewer neurons. If certain 

populations of HVCRA neurons already encode for a specific acoustic output, it would be more 

efficient to reuse these neurons for representations of other syllables rather than building distinct 

representations. Recordings from identified HVCRA neurons are necessary to directly test this 

hypothesis.  

 If HVC and RA maintain more similar encodings for similar syllables, we would expect 

that when the motor program of one syllable is adjusted, the other one is also affected. One 

common paradigm in the birdsong field is to use an aversive white noise stimulus to shift the 

pitch of a targeted syllable (Tumer and Brainard 2007). This learning is mediated through the 

anterior forebrain pathway (AFP), which receives information from HVC through HVCX 

neurons. Some of this learning is eventually consolidated in the motor pathway, as when AFP 

inputs to RA are blocked, the pitch of trained syllables is still shifted (Andalman and Fee 2009; 

Warren et al. 2011). If the motor pathway maintains a similar representation for similar syllables, 



51 

we would expect that if the pitch was shifted for one syllable, any syllables that are similar to it 

would also be shifted. In fact, if the pitch of a syllable in one context, but not the other context is 

targeted, there is a generalization of learning. (Hoffman and Sober 2014; Tian and Brainard 

2017). For example, if the pitch of syllable “a” is targeted in the “bcda” context but not the 

“efga” context, the pitch of both syllables increases. Additionally, when AFP inputs to RA are 

blocked, the pitch of the non-targeted syllable remains unchanged, meaning this shift is fully 

encoded in the motor pathway (Tian and Brainard 2017).  This suggests that the representation of 

the same syllable in different contexts is overlapping, as predicted by our neural observations. 

Further analysis is needed to find whether different syllables which are acoustically similar also 

have this type of generalized learning. 

 It is also possible the overlapping encoding of similar syllables is accomplished entirely 

through HVCX neurons. HVCX neurons can affect the acoustics of syllables through the AFP 

loop. However, the delay from HVC to RA through this loop is on the order of 50-100 ms (Kao 

et al. 2005), so the correlation of HVC with RA observed here would not affect acoustic outputs 

on this timescale. Thus, if HVC directly controls acoustic features of similar syllables, it is likely 

this is accomplished by the HVCRA population. However, if the HVCX population is responsible 

for encoding syllable similarity, its function may be less about more efficiently encoding 

syllables, and more about allowing the bird to keep track of which syllables are most similar. 

This could be useful for generalizing learning of one syllable to another similar one, which may 

help with initial vocal acquisition by co-learning similar vocal elements. 
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Impact 

 This work offers a population level look into population activity of singly identified HVC 

neurons in the Bengalese finch. Additionally, it provides a new method for recording from 

multiple brain regions simultaneously in awake freely moving songbirds. This work provides 

multiple insights which drive forward our understanding of variable motor sequencing in 

songbirds. First, we found that divergence points evolve over multiple syllables leading up to the 

divergence. While we can decode the upcoming syllable identity above chance, there is still a 

large amount of error in this signal. This suggests that the ultimate control over what syllable is 

sung at a divergence point does not occur until just before the branch syllable is sung. Next, we 

found that at convergence points, HVC encodes past sequences. This is strongly correlated with 

differences in phonology of convergent syllables. Finally, we found that HVC not only encodes 

phonological variation in the same syllables in different contexts, but also has overlapping 

representations for different syllables which are acoustically similar. This finding was 

unexpected as previous results from zebra finches have not reported any encoding of phonology 

within HVC. This result expands our understanding of the types of features which HVC encodes, 

and that different species may encode song differently, which reflects the many differences in 

their singing behaviors. 
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Figure 5.1: Models of divergence point branch selection 
Legend Figure: Two models of divergence point syllable selection. Top: branching chain model 
proposed by Jin 2009 where neurons selective for the branching syllable mutually inhibit one 
another leading to one branch winning out. Bottom: parallel chains are simultaneously active 
leading to one branch or another. These chains inhibit one another leading to one ultimately 
winning out at the branch syllable. 
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Methods  

Calcium Imaging 

Camera settings 

Calcium traces were collected using monochrome CMOS camera (FLIR BFS-U3-

32S4M-C). We used the Spinnaker software from FLIR to adjust camera settings for data 

acquisition. We used a frame rate of either 20 or 33 Hz and binned at 2 pixels. 

Raw data to calcium traces 

After videos during singing were collected, we concatenated all frames into one larger 

video. Videos were then band pass filtered to remove both high frequency noise and low 

frequency background increases. To accomplish this, we used a 3-pixel gaussian kernel to 

smooth the video (high pass filtered) and made a separate version of the video smoothed with a 

20-pixel gaussian kernel (low pass filtered). We then subtracted the low pass filtered video from 

the high pass filtered video. This band pass filtered video was then fed into CNMF using a 

custom version of the EZ calcium software package, which automatically detected ROIs (Cantu 

et al. 2020). Every ROI was manually checked to see if it fit the expected behavior of song 

aligned activity. We also confirmed activity automatically extracted for many ROIs activity by 

drawing manual ROIs using the maximum intensity projection of the concatenated video. 

Neurons were classified as either projection neurons or other based on whether the song aligned 

activity displayed the expected projection neuron behavior of sparse bursts. Only those ROIs that 

were classified as projection neurons were used for the analysis in this paper. To control for 
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bleaching, traces were normalized by the mean intensity of the video they were recorded from. 

The extracted intensity traces from ROIs were z-scored across all the songs they were recorded 

during to normalize across neurons.  

Data analysis 

Calculating burst time and magnitude 

 For analysis of singing related activity, traces of calcium activity were aligned to the 

onsets of individual syllables. Traces were then interpolated so that the new time between frames 

was 5ms. Traces were then averaged across 10 ms bins sliding at 1 ms to calculate the average 

syllable aligned activity. We used the derivative of the z-scored ROI intensities to determine 

whether neurons were bursting, based on the presence of well-defined peaks. The derivative was 

calculated by subtracting subsequent frames of ROI intensity dividing by the sampling rate. 

Bursts were identified as points in song where the derivative exceeded an intensity increase of 1 

standard deviation per 100 ms. The time of the burst based on the first bin where the derivative 

was greater than 0.1 SD/100 ms prior to the burst. We additionally assumed a pre-motor delay of 

25 ms, along with a delay in calcium increase after spike to be 25 ms for GCaMP6s and 0 ms for 

GCaMP8s, based on studies simultaneously recording calcium signal and electrophysiology 

(Zhang 2024). Bursts were associated with a syllable if the time of the burst occurred after the 

offset of the previous syllable and before the offset of the current syllable (Figure 3.2 A). For 

bursts assigned to syllables, burst magnitude was calculated for individual trials as the difference 

of the minimum and the maximum of z-scored trace during the burst. The minimum was the 

minimum intensity during the bins 50 ms prior and bin of the burst onset time. The maximum 

was the maximum intensity of bins up to 150 ms after the burst onset. 
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Significance across divergence and convergence points  

 To determine if a ROI had significantly different bursting across either divergence or 

convergence points, burst heights were calculated for each either past or future context and then 

compared using a Wilcoxon rank sum test. 

 For analysis of divergence points done in Figure 3.3, we identified the longest 

stereotyped sequence leading up to a divergence point in each bird (length of 4 to 11 syllables). 

This was done to control for other sequence variability leading up to a divergence in order to 

compare activity associated specifically with differences in divergences. We calculated where 

bursts occurred in the sequence and their trial-by-trial magnitude for each ROI and attributed 

each to a syllable (see calculating burst time and magnitude). We then used a Wilcoxon rank sum 

test to compare the trials of each branch type. Bursts were considered significantly different with 

p < 0.05. To control for differences expected by chance, we created a shuffled distribution of 

1000 iterations where the labels for the divergence context were swapped. We calculated the 

percent of bursts that were significant in each of the 1000 iterations and then built a distribution. 

We then used the 95th percentile of shuffled bursts to determine the chance level (plotted as 

orange dotted line Figure 3.3D). For display purposes in Figure 3.3E we linearly time warped 

calcium traces relative to the time of offsets of successive syllables in the sequence. Traces were 

interpolated to 10 ms prior to warping. and then average across each branch. 

 For convergence points, we extracted out all 4 syllable chunks that occurred in song and 

found which of these chunks had 2 different syllable contexts preceding them, up to 15 syllables 

back. This allowed us to find convergent syllables up to the 15th order. For example, the 3rd 

order convergent syllable seen in Figure 3.5 A is syllable “e” sung in a “eiaf” context. It is a 3rd 

order convergence as it can be preceded by “bcd” or “hcd”. Thus, the two compared sequences 
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are “bcdeiaf” and “hcdeiaf”. This ensures we compare convergent sequences that do not diverge 

until at least 3 syllables in the future. We then determined if a burst occurred in at least one of 

the contexts during the 1st syllable of the 4-syllable chunk. If a burst occurred, we compared the 

activity during this burst in the two different contexts using a Wilcoxon rank sum test. 

Decoding of upcoming branch identity 

 We used the same data used for detecting differences leading up to divergence points 

(Figure 3.3D). We fit a Support Vector Machine (SVM) on the cumulative calcium signals prior 

to each syllable offset in the sequence. For example, if we have 10 syllables leading up to a 

divergence, at the 5th syllable before the branch syllable, we used all data which was assigned a 

burst time prior to the offset of the 5th syllable. If the sequence extended to 10 syllables prior to 

the branch this included bursts for the 10th through 5th syllables.  

Data was split into 5 cross validation sets of equal size. We then fit the data 5 times using 

an SVM holding out 1 cross fold each time and predicting on the left-out fold. Thus, each subset 

of the data predicted once. To determine an overall accuracy score we took the average of the 5 

cross folds. We did a grid search of various SVM parameters and select k-best features to 

determine which parameters we best at decoding the upcoming identity of a branch. 

Correlations of burst heights 

 To determine if burst heights were correlated across motifs, we first identified the longest 

consistently occurring motif from each bird that ended in a divergence point. We then aligned, 

averaged, and extracted bursts in the same way as for the divergence point analysis. These bursts 

were organized into a matrix of size number of bursts by number of motifs. We computed the 

Pearson correlation of this matrix in to quantify correlations for each pair of bursts across motifs. 
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COM Distance 

 To determine acoustic similarity, we calculated 9 different Sound Analysis pro features: 

amplitude modulation, frequency modulation, wiener entropy, momentary amplitude, gravity 

center, pitch goodness, pitch, pitch chosen, pitch weight (Tchernichovski et al. 2000). These 

features are as described below: 

Mean AM: amplitude modulation. 

Mean FM: frequency modulation (0-90 degrees). 

Mean Entropy: Wiener entropy or spectral flatness which describes how tonal a sound is. 

Mean Amplitude: momentary sound amplitude in Db. 

Gravity Center: mean frequency of the spectrogram. 

Pitch Goodness: estimate of harmonic pitch periodicity. High goodness of pitch can be 

used as a detector of harmonic stack. 

Pitch: estimate of the perceived pitch of a sound (lowest common denominator of 

frequency peaks). 

Pitch Chosen: Similar to fundamental frequency. Derived from pitch and pitch weight. 

Pitch Weight: Weight by which pitch chosen is derived from pitch. Based on pitch 

goodness. 

These features were calculated on each bin of the spectrograms for each syllable. We then 

interpolated each feature so that each syllable had 100 samples across each of these 9 features. 

This 900-dimensional space was then reduced down to 10 dimensions using PCA. This PCA 

space was calculated across all syllables for each bird separately. Thus, each bird has its own 

PCA space. To compare how similar two syllables are in this space we calculated their center of 
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mass (COM) in this 10-dimensional space. We then found the Euclidean distance between these 

two COMs and used this as the COM distance of the two syllables. 

D’ statistic for neural similarity 

 To calculate how similar neural activity was for each pair of syllables, we determined the 

increase in intensity for all ROIs over each syllable window. We then calculated the D’ statistics 

for each neuron during one context of each syllable vs. another (for example D’ of syllable “c” in 

the “b” context vs the “h” context). The formula for D’ is as follows: 

D’ = 𝑎𝑎𝑎𝑎𝑎𝑎( 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2)

�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2
2

 

 This gave us a D’ for each ROI. We then defined the neural similarity for two syllables as 

the mean D’ across all ROIs.  

Correlation between D’ and COM distance 

 To compare whether the D’ and COM distance of syllable pairs was related in Figure 4.1 

we fit a simple linear model using the MATLAB fitlm function. As we noted significant 

differences in firing during the same syllables in different contexts, we treated each syllable in all 

3 syllable contexts as distinct. For example, “b” in a “ghkb” context was extracted separately 

from “b” in a “kiab” context.  

 We first compared all the same syllables in these different 3 syllable contexts. Both D’ 

and COM distance we z-scored for each bird so that they were normalized and more comparable 

across birds. Next, all different syllables in 3 syllable contexts were compared. These were 

separately z-scored for each bird, not including the D’ or COM distances of the same syllable 
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comparisons. As noted, if all D’ statistics from same and different syllables are z-scored 

together, the correlation remains significant (p < 1010; R2 = 0.14). 

Surgical Procedures and Bird Husbandry  

Subjects 

Imaging data was collected from n=4 adult (>150 dph) male Bengalese finches raised and 

housed at our bird colony located in the Sandler Neuroscience building on the University of 

California San Francisco campus. Birds were housed singly in cages and were isolated during 

collection of imaging data. Otherwise, birds were housed in sound boxes with other birds in 

isolated cages. Birds were maintained on a 14:10 light dark cycle.  

Song Recording 

Audio was recorded in a custom-written LabVIEW program (National 

Instruments; digitized at 44.1 kHz) using an omnidirectional microphone (Countryman; PN: 

B3P4FF05B) fed through an inline 100 Hz high pass filter (Shure; PN: A15HP) preamplifier 

(Symetrix; PN: 302) and 10 kHz low pass filter (Krohn-hite; PN: FMB300) into a National 

Instruments BNC 2090 terminal block. Songs were then digitally filtered between 500 and 

10,000Hz. Onsets and offsets of syllables were determined using the rectified envelope of the 

amplitude smooth with a 2 ms square window. All labeling was done manually using custom 

MATLAB software.  
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Anesthesia and analgesia  

 Prior to all surgeries birds were injected with an appropriate amount of ketamine (20 

mg/ml) and midazolam (1 mg/ml).  Birds were placed on a custom stereotaxic and anesthetized 

using 0.1-1% isoflurane.    

Virus injections and grin lens implants 

HVC was targeted as reported previously using injection of retrograde lipophilic tracer 

DiI into Area X and using a fluorescent microscope to locate HVC after at least 1 week (Cohen 

2020). After locating HVC, birds were injected either with AAV9-CAG-jGCaMP8s-WPRE or 

AAV9-CAG-jGCaMP8s-WPRE (Addgene 179256-AAV9 and 100844-AAV9). We injected ~ 

750 ηL of virus into multiple depths around HVC ranging from 600- 200 µm below the surface 

of the brain. We then covered the craniotomy in silicon and waited at least 2 weeks for viral 

expression. For grin lens implantation we either left the hippocampus intact or removed it 

depending on how visible HVC was. Additionally, we used a fluorescent microscope to locate 

where GCaMP expression best overlapped with DiI. Grin lenses were lowered to the surface of 

the brain and then a further 100 µm to make sure they maintained contact with the brain and 

were then held in place with dental cement. We used a 1 mm diameter grin lens with a working 

distance of 200 µm (Inscopix 1050-004595). We implanted 61 birds with grin lens bilaterally 

over HVC. Of these, 14 birds had some level of song aligned increases in activity, and 4 birds 

which contained greater than 20 clear individual ROIs. The final dataset included n=1 bird in 

both left and right HVC, n=3 birds right HVC only. This is comparable to the sample size of 

other studies in the field.  
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