
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Real-Time Detection of In-flight Aircraft Damage

Permalink
https://escholarship.org/uc/item/1sb9d3gj

Journal
Journal of Classification, 34(3)

ISSN
0176-4268

Authors
Blair, Brenton
Lee, Herbert KH
Davies, Misty

Publication Date
2017-10-01

DOI
10.1007/s00357-017-9237-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sb9d3gj
https://escholarship.org
http://www.cdlib.org/


Real-Time Detection of In-flight Aircraft Damage

Brenton Blair and Herbert K. H. Lee

Department of Applied Mathematics and Statistics

University of California, Santa Cruz

Misty Davies

NASA Ames Research Center

Abstract

When there is damage to an aircraft, it is critical to be able to quickly detect and diag-

nose the problem so that the pilot can attempt to maintain control of the aircraft and land

it safely. We develop methodology for real-time classification of flight trajectories to be able

to distinguish between an undamaged aircraft and five different damage scenarios. Principal

components analysis allows a lower-dimensional representation of multi-dimensional trajec-

tory information in time. Random Forests provide a computationally efficient approach with

sufficient accuracy to be able to detect and classify the different scenarios in real-time. We

demonstrate our approach by classifying realizations of a 45 degree bank angle generated

from the Generic Transport Model flight simulator in collaboration with NASA.

1 Introduction

The goal of this research is to develop a real-time aircraft damage detection algorithm. When

damage occurs mid-flight, it is critical to be able to warn the pilot as quickly as possible. Because

damage can occur in many ways, it is helpful to have multiple systems that can detect damage.

We develop here a model to detect and classify damage based on flight trajectory information.

The model can monitor trajectory data in real-time to monitor for a sudden occurrence of damage.

As part of work done within NASA’s Aviation Safety Program, a non-linear six degree-of-freedom

flight dynamics model of a scaled transport aircraft was implemented as a computer simulator.

The Generic Transport Model (GTM) sub-scale simulator was designed in part to help train pilots

how to properly handle upset conditions in scenarios that would not be feasible in a real-life flight

in a transport aircraft such as a Boeing 757 (Jordan et al., 2005). We develop our methodology

on this sub-scale simulator, with the intention of being able to eventually apply it to flight data.

1



The flight simulator enables us to take an experimental design approach where we explore the input

space, which includes various physical parameters. There is also the capability to onset damage

to the aircraft at any time-step in the simulation and allow the flight trajectory to continue to

evolve. The output data of even a few seconds of the simulator is on the order of thousands of

observations if you consider the small time-step used and over a dozen kinematic measurements

provided.

The general emphasis in the literature has been placed on developing methods to give pilots a few

more seconds of control in an upset situation via adaptive-control algorithms. Hovakimyan and

Cao (2011) developed and successfully tested an L-1 adaptive control system on over ten flights

of the GTM model aircraft. While adaptive control systems have seen great advances in recent

years, Holloway and Johnson (2007) caution that such systems may be futile if lacking proper

information about the health of related components and systems. Thus the development of a

damage detection system would supplement an adaptive control system as well as provide pilots

better opportunities for recovery during loss of control scenarios. Indeed, our focus is instead

on fast detection of damage. The benefit of this could be twofold as it could be utilized to

supplement an adaptive control algorithm or directly be used by a pilot of the aircraft. To explore

the development of a real-time damage detection system, we begin with a motivating example

generated from the GTM simulator.

Perhinschi et al. (2011) conducted a fault detection study of the GTM simulator utilizing an

artificial immune system design and an artificial neural network to predict angular rate output

parameters. This is perhaps the most related publication to date in that it utilizes the GTM and

statistical learning to identify damage. Our methodology differs in that we fit a model to more

Simulator output parameters in an off-line ensemble fashion.

The remainder of the paper explores statistical modeling methodology and is outlined as follows: in

the rest of this section we discuss the NASA GTM simulator in detail and outline the motivation of

our research. In Section 2 we describe the methodology behind our statistical modeling approach,

including the design of a simulation experiment to generate data to train a statistical model,

principal component analysis (PCA) as a dimension reduction technique and a Random Forest

approach to classification. In Section 3, we expand our methodology to consider the inherent

sequential structure of the problem. In Section 4, we present results of our sequential algorithm.

In Section 5, we offer conclusions and ideas for future work.

2



1.1 The Generic Transport Model Simulator

The Generic Transport Model (GTM), a dynamically scaled unmanned aerial vehicle (UAV) de-

veloped to research the control of large transport vehicles under upset conditions, is one vehicle

in the Airborne Subscale Transport Aircraft Research (AirSTAR) testbed. AirSTAR provides an

integrated flight test infrastructure which utilizes remotely piloted, powered sub-scale models for

flight testing built as part of NASA’s Aviation Safety Program. Its development dates back to

the early 2000s at NASA’s Langley Research Center. The UAV is a 5.5% sub-scale model of a

transport vehicle such as a Boeing 757 (Jordan et al., 2006).

Using data from previous wind tunnel tests along with as-built mass properties data from the

fabrication team, a non-linear six degree-of-freedom flight dynamics model of the GTM was devel-

oped and incorporated into a real-time pilot simulation tool. This PC-based simulator was used

by the pilots to evaluate the flight handling characteristics of the dynamically scaled aircraft. It

also allowed the pilots to practice flight procedures during degraded performance conditions. It

implements general rigid body equations of motion for the vehicle dynamics and draws aerody-

namic forces from a standard coefficient expansion implemented as table lookups. The simulation

is coded in Simulink, a model-based environment using a commercial simulation package from

Mathworks, Inc. The software makes use of numerical libraries for basic operations as well as the

overall time-stepping and numerical integration routines.

The simulator accommodates a large number of inputs, we focus on the 12 inputs the engineers

deem most critical. Table 1 (Left) shows these inputs and their lower and upper bounds. Ixx, Iyy,

Izz are the moments of inertia about each respective axis, while Ixz, Iyz, Ixy are the corresponding

products of inertia. Moments of inertia by definition must be positive, while products of inertia

may be negative. Collectively, these six inputs take into consideration the distribution of mass in

the airplane and help determine how quickly the aircraft can accelerate or rotate. Along with these

inputs, we consider potential variability in the airspeed, angle of attack, weight of the aircraft,

altitude, and wind. The range for each input we vary is provided in the table.

For each simulation run, 13 kinematic outputs at each time-step are calculated and can be found

in Table 1 (Right). There are three positional outputs: longitude, latitude, and altitude. The one

positional velocity output, equivalent airspeed, is defined as the airspeed the aircraft would be

flying at under aerodynamic conditions present at sea level. The remaining outputs include six

angular measurements and three angular velocities. The angle of attack is defined as the vertical

angle between the oncoming air and a reference line on the airplane. The reference line is a line

connecting the leading edge and trailing edge at some average point on the wing. A related output,

the sideslip angle, is a measurement of the lateral rotation of the aircraft about the reference line

from the relative wind. The flight path angle, also known as the climb angle, is measured between

3



Lower Upper

Bound Bound Units

wind speed 0 10 knots

wind direction 0 360 degrees

altitude 600 1000 feet

airspeed 56.25 93.75 knots

angle of attack 2.25 3.75 degrees

gross weight 39 65 pounds

Ixx 0.92 1.53 slug-feet2

Iyy 3.39 5.65 slug-feet2

Izz 4.15 6.92 slug-feet2

Ixz 0.09 0.15 slug-feet2

Iyz -0.05 0.05 slug-feet2

Ixy -0.05 0.05 slug-feet2

Units

longitude degrees

latitude degrees

altitude feet

equivalent airspeed knots

angle of attack degrees

sideslip degrees

flight path angle degrees

roll angle degrees

pitch angle degrees

yaw angle degrees

roll angular velocity deg/sec

pitch angular velocity deg/sec

yaw angular velocity deg/sec

Table 1: Left: Simulator Inputs, Right:Simulator Outputs

the flight path vector and the horizon. On modern commercial jets it is calculated in reference to

the ground.

The roll, pitch, and yaw angles are measurements of rotation between the center of mass of the

aircraft and the longitudinal, lateral, and vertical axis respectively. The longitudinal axis passes

from the nose to the tail of the aircraft. The displacement about this axis is called bank and

occurs when a pilot uses the ailerons and rudder to alter the direction of the aircraft. The lateral

axis passes from wingtip to wingtip. Rotation about this axis controls the change in elevation of

the aircraft and can be performed by adjusting the elevators. The vertical axis is perpendicular

to the wings of the aircraft with its origin at the center of gravity. Rotation about this axis moves

the aircraft from side to side and is performed by adjusting the rudder. We also have as output

the rate of change with respect to time of these three angular measurements presented as angular

velocities in Table 1 (Right).

1.2 Motivation for Real-time Classification

Although modern aircraft are designed to avoid extreme pitch, roll and yaw environments, there

are situations such as sensor errors that can lead to an upset for which pilots have not been

trained. Airline pilot training is based significantly on full-flight simulators that are calibrated

to a limited flight-verified and wind-tunnel tested envelope. Typically there is no data to model

handling characteristics in extreme attitudes. Thus, pilots may not be able to train in that setting

4



using a full-flight simulator. This presents the possibility that pilots may experience a condition in

flight that they have not previously experienced in training. The primary motivation of the GTM

simulator is to create an environment that enables pilots to realistically train in upset conditions

while not risking their safety or unnecessarily causing damage to a commercial sized aircraft. For

example, the GTM allows a pilot to train in a simulated environment to recover control and land

an aircraft with damage to the wingtip.

The GTM simulator has the capability to consider instantaneous onset of damage to various

surfaces on the air vehicle including the wing, elevator, stabilizer, rudder, and tail. In each

damage case, the GTM simulator takes into account the change in mass, center of gravity and

aerodynamic properties of the aircraft. In certain instances of damage, if detected early enough,

the pilot of the aircraft may employ strategies to maximize the possibility of recovery and safe

landing of the aircraft. In other instances of damage, the pilot’s options are extremely limited.

Nonetheless, it is imperative that if damage does occur, a real-time detection system is in place

that can notify the pilot specifically where the damage has occurred.

As a motivating example, suppose that an aircraft is making a 45 degree bank angle (roll) in

an attempt to make an abrupt change of direction. Using the GTM simulator, we maintain a 45

degree bank angle for 5 seconds and then inflict different damage cases to the aircraft. We plot the

resulting trajectories for each of the damage cases (continuing the simulation for 3 seconds) along

with the planned flight path in Figure 1. The planned, or “nominal”, trajectory is the black line

with arrows indicating the flight direction in Figure 1. The distinct damage cases are represented

by 5 colored lines that deviate from the nominal flight path.

Figure 1: Trajectories for various damage cases.

Perhaps the most interesting damage case involves the rudder in the sense that its deviation from

the nominal flight path is significantly less than the other cases. If damage is accurately detected

5



in this scenario, then the pilot has the best chance of safely landing the aircraft among the damage

cases considered. However, as a result of the minimal deviation from the planned flight path, it

certainly could go unnoticed by the pilot far longer than damage to other surfaces of the aircraft.

If the pilot is unaware where damage actually has occurred, this creates a scenario where continued

effort to use that surface for recovery of control could occur. This certainly is a less than ideal

situation as the pilot could be wasting time or even making the situation worse, while other fully

functional surfaces could be used instead. The stabilizer case is the most distinct from the others,

having the worst prognosis of recovery. However, an adaptive-control algorithm may be able to

offset the damage and thus provide a pilot with an opportunity of recovery. The elevator and tail

cases have similar impact on the resulting trajectory. The impact of the wing damage, although

unique from the others, does not initially appear as severe as the stabilizer. While we will use this

as our motivating example to build our model, we must consider that there are initial conditions

of physical parameters that could vary, resulting in differing trajectories than those plotting in

Figure 1. We take that into consideration in our model development and next discuss it further.

2 Model

We proceed with a classification case study including the six scenarios of an aircraft making the

45 degree bank angle discussed above. The six scenarios include the nominal (undamaged) case

along with damage cases to the wing, elevator, stabilizer, rudder, and tail of the aircraft. In

practice, there is rarely prior knowledge that an aircraft will incur damage during flight, and if so

the aircraft remains on the ground until safe to fly. Thus in the extremely rare case that damage

occurs in flight, the pilot is not aware until it has occurred or a system has sent a notification.

Our goal is to create a system to notify the pilot.

We implement a statistical modeling approach using a Random Forest (Breiman, 2001) to demon-

strate that each of the five damage scenarios mentioned can be detected promptly after onset.

Before providing details, we first describe the experimental design used to obtain data from the

NASA GTM simulator. We next discuss the “sliding window” approach we use to account for the

sequential nature of the problem. Principal Component Analysis (PCA) is used as a dimension

reduction technique.

2.1 Experimental Design

In our experimental setup, we solely consider damage occurring 5 seconds after the initialization

of the plane turning. However when fitting and predicting, we use sliding windows in time because

6



in practice, damage can occur at any point in time.

Here we consider the five damages cases mentioned along with the nominal case for a 45 degree

bank angle. As noted in Table 1, the GTM simulator gives the user the option of varying initial

conditions for several inputs. Even in the specific case of a 45 degree bank angle, variability in

the wind or aircraft’s speed among other inputs can play a significant role in the response of

the aircraft’s trajectory. To account for this variability, we utilized a Latin Hypercube Sampling

(LHS) sampling function available in the statistics toolbox in MATLAB to obtain unique initial

conditions of the 12 inputs that were used for 600 flight simulations. For a detailed explanation on

LHS, see Santner et al. (2003). The simulations were run for 8 seconds with damage being onset

at 5 seconds with the exception of the 100 nominal cases. The default time-step for the simulator

is 0.005 seconds and thus there are 1601 × 13 output values for each of the 600 simulations.

As a result of the size of each output vector from the simulator, we will resort to using Principal

Component Analysis as a standard dimension reduction technique. Before discussing that aspect

of our model, it is important to outline the implementation of an approach that explores the

variability of the simulator output spanning the temporal domain, we refer to as the “sliding

window”.

2.1.1 The Sliding Window Approach

Realistically, pilots don’t know if or when damage will occur to the aircraft. As a result, our goal

is to create a single model to continuously monitor for damage to the five different surfaces of the

aircraft. To build this model, we want to leverage the variability present in the GTM simulator

output that is attributed to aircraft damage, rather than environmental fluctuations possibly

present from the LHS sampling of inputs. One effort we could have explored was to train a model

simply on the entire set of raw output from the NASA GTM experiment we designed. However, we

felt this would not be reasonable because it would be training the model to be detecting damage

at only the 5 second mark, and we need the model to be able to pick up damage at an arbitrary

time point. Also, with 8 second runs, we don’t want to build a model that has to wait for 3

seconds of data past the damage point in order to be able to detect the damage, notification to

the pilot needs to occur as quickly as possible.

On the other extreme, it is possible to build a model by considering the 13-dimensional output

vector at each time step independently. However, this approach is not sufficient either because of

the variability present in the 13-dimensional vector. Thus, we needed to find the optimal subset of

information provided in each realization of the GTM training data to build a model, rather than

these extreme scenarios mentioned.

7



We considered the 13 kinematic output over an interval, or window, of time. This window contin-

ually shifts as time elapses as we attempt to monitor the flight for damage. We explored different

possibilities for the the length of the time windows that included deterministic as well as ran-

domly assigned lengths. We ultimately chose 5 second windows because they provided sufficient

information for successful classification in the test phase without requiring an excessive amount of

data. For clarity, the information utilized at a given time step in the test phase would include the

output of the 13 kinematic outputs at the preceding time steps within 5 seconds. How the data

were organized as we trained the model is discussed at the end of this section.

While it was necessary to consider the ideal window length for training a model that continuously

monitors for damage in practice, it was also an imperative task to determine an optimal method

to train a model that possessed sufficient coverage of the considered temporal domain. Thus, we

explored the impact of the damage by “sliding” the window or incrementing the time interval to

look at the kinematic outputs as time elapses as we built our model. This is done in an iterative

fashion until we have reached the end of our output data, or 8 seconds. While using kinetic output

over windows of time was beneficial to classification performance, there remained the question of

how to best increment the window to provide sufficient classification performance spanning the

entire temporal domain. We found that the performance of the classification was impaired if

we used increments larger than 0.5 seconds. For example, if we trained on 5 second windows

incremented by 1 second (0-5, 1-6, . . ., 3-8 seconds), the classification performance was good near

those time points after damage (e.g. 6, 7, 8 seconds). However, at points in time in between (e.g.

5.7, 7.4 seconds), the classification performance deteriorated significantly. Thus, we found that

half-second increments provide sufficient temporal spread to give good classification results when

testing at times other than the interval endpoints (e.g. 0.7 or 1.2 seconds after damage). While

we explored smaller increments, such as 0.25 seconds, we found the results were comparable to

using half second increments, but required more storage. There is a trade-off between increasing

predictive accuracy when using more increments and extra computational expense from having

more increments. The increased predictive accuracy has diminishing returns, and we found the

half-second increments gave the best balance between accuracy and computational efficiency.

We now describe how we stored the data into a matrix while implementing the sliding window

approach. Although there are alternative ways we could have stored the data, we took an ap-

proach we felt most appropriate for this classification problem. Considering we are using 5 second

windows, an observation vector can be created by concatenating the 1001 measurements (recall

the 0.005 time step) of the 13 output together, giving a vector of length 13013. Each observation

vector can be thought of as a row in the matrix we will use for PCA. Next we consider how to

store the realizations across the different damage cases. From the simulator we had 100 realiza-

tions for each of the six classes (including undamaged). For each of these 600 realizations, we

8



have 7 unique time windows: 0-5, 0.5-5.5, 1-6, 1.5-6.5, 2-7, 2.5-7.5, 3-8 seconds. We stack the

4200 (100 realizations each × 6 classes × 7 time windows) vertically, to create a 4200 × 13013

matrix. There is some overlap in the time windows, and thus elements of the rows of our data

matrix. This resulted from choosing values (discussed earlier) that provided best coverage of the

temporal domain in terms of classification performance. By storing the data in a matrix this way,

we capture the variability resulting from the different damage onsets over several time windows.

This is ideal as it helps discriminate the classes from one another and enables us train a single

model to continuously monitor for damage.

2.1.2 Dimension Reduction via PCA

In order to deal with a more reasonably sized data set, we choose to perform Principal Component

Analysis (PCA) on the observation matrix created by using the sliding window approach. We

choose to use this standard technique because it is imperative we retain as much as variability

present in the original data set while reducing its dimension.

Let X denote our n × p (4200 x 13013) observation matrix with rank r. We choose to find the

PCs via the Singular Value Decomposition (SVD) due to its computational efficiency. We can

write the SVD as: X = UΣA′. Where U and A are n × r, p × r column orthonormal matrices

respectively, and Σ is an r × r diagonal matrix. By computing the SVD, we are able to obtain

the coefficients and standard deviations of the principal components for X. The columns of UΣ

are interpreted as the principal components of X. The diagonal elements of Σ, or singular values,

are denoted as σk for k = 1 . . . r and correspond to the variability associated with each respective

PC. For further discussion about PCA, see Jolliffe (2002).

Consider that the cumulative percentage of variation explained (CPVE) can simply be computed

using the square of our singular values:

CPV E =

∑t
i=1 σ

2
i∑r

j=1 σ
2
j

Of particular interest is selecting a small subset of the principal component vectors while retaining

most of the variance in the original data set. This can be done by selecting the smallest value

for t in which the cumulative percentage of variation explained exceeds some threshold. Using a

threshold of 0.99 we found t = 35 and produced a CPVE plot in Figure 1. Projecting the “sliding”

window vectors with the subset of 35 learned PCs, we now have a matrix of 4200 × 35.

9



0 10 20 30 40 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Variation Explained vs. Number of PCs

Principal Component

C
um

ul
at

iv
e 

V
ar

ia
tio

n

Figure 2: Principal Components.

2.2 Random Forest

Considering the goal to implement an accurate, real-time detection system we elected to explore

tree based methods due to their efficiency. While a CART model (Breiman et al., 1984) provided

encouraging preliminary results, we found Random Forest models to have much greater predictive

accuracy as they avoid the typical high variance found in a single tree. A Random Forest, an

ensemble method, is a large collection of tress that are combined to provide for single classification.

It can also be thought of as an extension of another popular method, Bootstrapping Aggregation

(Bagging) with the difference being that Random Forest considers decorrelated trees by using a

random subset of variables at each node split in each tree. Trees were grown deep, with a minimum

node size of 1, resulting in the mean number of nodes per tree greater than 700. The subset size of

variables (in our case Principal Component scores) to determine node splits was 5, approximately

the square root of the original number of variables as Breiman suggests.

Once the forest is built, we can do prediction by considering class probability estimates. Let Ĉb(x)

be the class prediction of the bth tree in the forest. The class probability for the kth class is:

p̂k =
1

B

B∑
b=1

I
(
Ĉb(x) = k

)
Observations typically are classified to class k = argmaxkp̂k

10



In order to determine the number of trees to include in our forest, we used a common approach by

looking at an estimate of the test error rate using Out-of-Bag samples. Because bootstrapping is

done via sampling with replacement, each tree grown in the forest will have observations from the

original data set that are not used. These samples are known as “Out-of-Bag” (OOB) and can be

used accordingly to get an estimate of the error in the forest. In Figure 3 below we can see that

the OOB error estimate converges to a minimum after about 200 trees are included in the forest.

Thus, we use this value as the number of trees in the forest, as more trees would not necessarily

provide better test performance, but would be less efficient.

0 100 200 300 400 500

0.
00

0.
04

0.
08

OOB Error vs. Number of Trees

Number of Trees

O
ut

 o
f B

ag
 E

rr
or

 E
st

im
at

e

Figure 3: Out of Bag Error

3 Sequential Design

3.1 Motivation

Once we have learned the principal components and random forest, we are able to evaluate our

model by classifying test flight trajectories. Because we built a single model (one random forest)

to span the temporal domain and we are continuously monitoring for damage, we will use our

single classifier repeatedly as we are checking for damage. We seek detection of true damage in

minimal time from onset. One possible approach is to simply classify damage to the class that

has the maximum empirical probability provided by the random forest. The default state, or null

hypothesis, is that there is no damage to the aircraft. Thus, the majority of the time there will

be no damage notification because the maximum probability belongs to the nominal class (true

negative). However, if we only use a single time step (instantaneous detection) we may have issues

with our false positive rate as well as misclassification amongst the damage classes.

11



To demonstrate these possibilities, empirical probability trace plots were generated by sequentially

(sequence of time steps) classifying test cases using the forest previously trained. Trace plots

appear in Figures 4-6 that are examples where for a few time steps the forest misclassifies the test

observation before classifying the correct class. We are creating the trace plots by obtaining the

probability estimates from evaluation of the random forest every 0.05 seconds.

5.0 5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

True Class = Nominal

Time

C
la

ss
 P

ro
ba

bi
lit

y

elevator
nominal
wing
rudder
stabilizer
tail

Figure 4: Probability Trace Plots: True Class: Nominal.

12



5.0 5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

True Class = Wing

Time

C
la

ss
 P

ro
ba

bi
lit

y

elevator
nominal
wing
rudder
stabilizer
tail

Figure 5: Probability Trace Plots: True Class: Wing.

Figure 4 is an example where if we simply look at the class associated with the maximum empirical

probability output at a single point in time, we could briefly obtain a false positive (in this case

notification of Rudder damage when the aircraft is undamaged). In Figure 5, it can be seen that

the same method would briefly misclassify true damage to the wing as damage to the tail. Finally

in Figure 6 it can be seen that true damage to the stabilizer would briefly be classified as damage

to the rudder.

5.0 5.5 6.0 6.5 7.0

0.
0

0.
5

1.
0

1.
5

True Class = Stabilizer

Time

C
la

ss
 P

ro
ba

bi
lit

y

elevator
nominal
wing
rudder
stabilizer
tail

Figure 6: Probability Trace Plot. True Class: Stabilizer.

13



3.2 Learned Thresholds via Validation Set

The demonstration of misclassifications in the preceding empirical probability trace plots begs the

following questions:

1. What is the optimal probability threshold for classifying a damage case?

2. What is the optimal temporal threshold for classifying a damage case?

By optimal, we simply mean the respective values that will minimize predictive classification er-

ror. To answer these questions simultaneously, a validation set of 300 cases was created (50 per

class). The space explored included threshold probabilities ranging from 0.4 to 0.9 in 0.025 in-

crements and a time window ranging from 2 time steps to 12 time steps (0.1-0.6 seconds). To

classify an observation from the validation set as a damage case, it is required to have exceeded

the probability threshold consistently for the number of time steps allocated to the time window.

All windows of the appropriate number of time steps are sequentially considered until 2 seconds

after damage onset. Although there are similarities, this is a separate process from the “sliding

window” approach used for PCA that was discussed earlier. If an observation does not exceed the

threshold consistently for the number of time steps necessary over all possible windows up to 2

seconds, it is considered a nominal case.

All 300 validation observations are classified over the grid of the probability and temporal thresh-

olds space. For each pair of probability and temporal thresholds considered, the classification

error rate is considered. We choose to select the pair of values for the thresholds that minimizes

this error rate on the validation set. If the error rate is the same for multiple pairs of thresholds,

we select the pair that contains the shortest temporal threshold in consideration of the effort to

detect damage in real time. Using this process we found the optimal probability threshold for

classification to be 0.575 and the time threshold to be 2 time steps or 0.1 seconds.

4 Results

To evaluate the fit of our model, we now consider an independent test set generated from the

GTM flight simulator in MATLAB. The test set contains 600 observations (100 from the six

classes). Using the principal components and the random forest learned earlier we generate a

matrix of empirical probabilities for each test observation using a time step of 0.05 seconds. With

this information we can now use our learned probability and time thresholds to classify each test

case. In doing so we see there are only 5 false negatives (in the sense that no damage at all was

14



detected). Implementation of this is efficient, running as a batch mode in R in seconds. The

results are presented in Table 2:

elevator Nominal Rudder stabilizer Tail wingtip

elevator 97 0 0 0 0 0

Nominal 2 98 3 0 0 0

Rudder 1 2 97 0 0 0

stabilizer 0 0 0 100 0 0

Tail 0 0 0 0 100 0

wingtip 0 0 0 0 0 100

Table 2: True class in columns, prediction in rows

While the results thus far seem promising, Table 2 only provides us with the knowledge of how

successful we are at detecting damage within 2 seconds of damage onset, but leaves out valuable

information. To have a more complete picture, consider Figures 7-9 below. Each figure provides

the distribution of times it takes the sequential algorithm to detect the damage to the respective

part of the aircraft (only true positives included). In each figure the red vertical line represents

the mean time.

The mean time it takes to detect the correct damage class is less than a half of a second in all five

damage classes. In the case of damage to the wingtip, the entire distribution is within 1.4 seconds

of damage onset. We are most encouraged by the performance of the algorithm when damage

occurs to the Rudder as it results in the least affected trajectory among the damage cases. We

expected this damage scenario would take longer to diagnose successfully, but our results indicate

it is comparable with the other damage cases.

Tail

Time to Detect Damage (secs)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Wing

Time to Detect Damage (secs)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

Figure 7: Distribution of time to detect Tail and Wing Damage respectively.

15



Stabilizer

Time to Detect Damage (secs)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Elevator

Time to Detect Damage (secs)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Figure 8: Distribution of time to detect Stabilizer and Elevator damage respectively.

Rudder

Time to Detect Damage (secs)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Figure 9: Distribution of time to detect Rudder Damage (Successful cases)

4.1 Timing Profile of Testing Algorithm

Although the classification results we presented thus far seem reasonable as a proof of concept, we

have yet to discuss perhaps the most important goal of our model: classification in real time. The

test results previously discussed were generated in a batch mode without considering a profile of

the time the algorithm took to classify all cases.

If the algorithm were to be realistically implemented in an applied setting, it would require that

16



the sequential classification scheme at a given instant in time take no longer than the selected

time step, 0.05 seconds. Assuming we have kinematic output data stored in an appropriate data

structure as well as class probabilities assigned from the previous time step (recall our optimal

temporal threshold was two time steps), we must be able to do the following in less than 0.05

seconds:

1. Project the previous 5 second “sliding window” using our learned Principal Components

2. Run our projected test vector through the random forest to get the instantanous class prob-

abilities

3. Concatenate the instantaneous class probabilities to those previously stored

4. Determine if any of the classes have probabilities that exceeded the learned probability

threshold (0.575) for 2 time steps (0.1 seconds)

5. Inform the user (i.e. notify the pilot)

To demonstrate a proof of concept of our real time considerations, we iteratively (rather than

batch mode) time the outlined tasks for all 600 test cases at 6.5 seconds into the 45 degree bank

angle (1.5 seconds after damage when applicable) in the R Studio Development Environment on a

laptop computer with the following specifications: Intel R© CoreTM i3 processor @ 2.26 GHz, 4 GB

RAM, Windows 7 64-bit OS. In doing so we have a CPU run time of the outlined process above

for each test case. As we can see in Figure 10, the distribution of these run times is entirely less

than the chosen time step of 0.05 seconds with a mean of 0.034 seconds. We feel these results are

encouraging considering the timing profile results were created in a relatively slow environment,

R Studio. Furthermore, if implemented in a faster environment with an upgraded CPU, we would

expect to be able to safely use a smaller time step than the one utilized here.

Distribution of Test Algorithm Run Times (RF)

Time (seconds)

D
en

si
ty

0.00 0.01 0.02 0.03 0.04 0.05

0
10

20
30

40
50

Figure 10: Distribution of Test Classification Run Time

17



5 Conclusions

Using kinematic data from the NASA GTM simulator we demonstrate a real-time damage clas-

sification algorithm. Our methodology combines several statistical techniques including principal

component analysis, random forest, and cross-validation to produce a fast and reliable classifier.

Using a sliding window approach, we are able to consider the sequential nature of the problem and

simultaneously learn probability and temporal thresholds using a validation set from the simulator.

This methodology results in an 98.7% predictive accuracy rate and, perhaps more significantly,

routinely diagnoses the appropriate damage within a half second of onset on independent test

realizations. Even in a scenario where the flight trajectory’s deviation from the planned path is

minimal, the algorithm is able to detect rudder damage with comparably efficiency to the other

classes.

Another encouraging result from our methodology is that the timing of the routine is consistently

within the chosen time step of 0.05 seconds implying that it could be implemented in real time.

When considering this is done in R studio on an older laptop, we believe in an ideal computing

environment it could be much faster and thus a smaller time step could be selected, which could

help inform the pilot even more quickly.

Acknowledgment

This research was conducted at NASA Ames Research Center. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not constitute or imply its endorsement by the United States Government.

References

Breiman, L. (2001). “Random Forests.” Machine Learning , 45, 5–32.

Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. (1984). Classification and Regression

Trees . Belmont, CA: Wadsworth.

Holloway, C. and Johnson, C. (2007). “How Past Loss of Control Accidents May Inform Safety

Cases for Advanced Control Systems on Commercial Aircraft.” In Proceedings of the IET 1st

Int. Conf. on System Safety .

Hovakimyan, N. and Cao, C. (2011). “L1 Adaptive Control and its Transition to Practice.” In

IEEE Conference on Decision and Control .

18



Jolliffe, I. (2002). Principal Component Analysis . New York: Springer.

Jordan, T., Foster, J., Bailey, R., and Belcastro, C. (2006). “AirSTAR: A UAV Platform for Flight

Dynamics and Control System Testing.” Tech. rep., NASA.

Jordan, T., Langford, W., , and Hill, J. (2005). “Airborne Subscale Transport Aircraft Research

Testbed-Aircraft Model Development.” Tech. rep., NASA.

Perhinschi, M. G., Moncayo, H., Wilburn, B., Bartlett, A., Davis, J., and Karas, O. (2011). “Test-

ing of Immunity-Based Failure Detection and Identification Scheme with the NASA Generic

Transport Model.” In AIAA Guidance, Navigation, and Control Conference.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer

Experiments . New York: Springer.

19




