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ABSTRACT OF THE DISSERTATION

New Methods for Solving Maximum Likelihood Estimating Equations of Logistic and
Probit Regression Models

by

Haoyu Wang

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2011

Dr. Subir Ghosh, Chairperson

Several iterative methods are available in literature for solving the Maximum Likelihood

Estimating Equations (MLEEs) of logistic and probit regression models. Generalized

Self Consistency (GSC) method is such an existing iterative method. We introduce a new

idea using the paired observations and combine it with the GSC method for both logistic

and probit regression models and propose several new methods for solving MLEEs. For

probit regression model, we introduce a linear approximation method for finding the

exact solution of MLEEs. We illustrate the proposed methods with a real data as well

as a simulated data and compare their performances with the existing methods. We

investigate some theoretical properties of our estimates. We also present a meaningful

method of choosing the initial values of parameters for the iterative methods.
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Chapter 1

Introduction

Maximum Likelihood Estimate (MLE) is a popular method of estimation. The MLEs

of unknown parameters are obtained from solving the Maximum Likelihood Estimat-

ing Equations (MLEEs). We often do not have an exact solution of MLEEs. There

are several numerical methods available for finding the solution. The purpose of this

dissertation is to propose new methods for solving MLEEs and compare them with the

existing methods.

Generalized Self Consistency method (GSC) is an existing iterative method for solving

the MLEEs in multinomial model. Tsodikov and Chefo (2008) introduced the GSC

method based on the Quasi-EM algorithm idea in Tsodikov (2003). We apply the GSC

method to logistic and probit regression models. For a real binomial data from Cornfield

(1962), we present the estimating equations, describe the iterative methods for solving

them and explain the results. We then introduce a new idea using the paired obser-

vations and combine it with the GSC method. On this basis we propose several new

methods using the paired observations and apply them to the logistic and probit regres-

1



sion models. We analyze the Cornfield data as well as a simulated data and compare

them with the existing methods. We also present a meaningful method of choosing the

initial values of parameters for the iterative methods. We find that the efficiencies of

the iterative methods would be substantially improved by the initial values provided by

the method. Moreover, we investigate some theoretical properties of these methods. We

demonstrate that the proposed methods perform as good as the existing methods with

respect to all criteria considered, and even better with respect to some of them.

For the probit regression model, we do not have any closed form solution of MLEEs. We

propose a new method by introducing a linear approximation which provides an exact

solution of the MLEEs. We compare our estimates with the existing numerical method

estimates through the Cornfield data as well as a simulated data. We find that our

method performs as good as the existing methods with respect to all criteria considered,

and even better with respect to some of them. The strength of our proposed method

is that we have the closed form solution of MLEEs while the existing methods do not

have. In addition, we establish some theoretical properties of our estimates.

In Chapter 2, we present the GSC method in general. In Chapter 3, we briefly recall the

logistic regression model. In Chapter 4, we apply the GSC method to logistic regression

model. In Chapter 5, we introduce a new method using the paired observations, PGSC

method. In Chapter 6, we present some properties of the GSC method and PGSC

method in logistic regression model. In Chapter 7, we introduce new methods based on

PGSC method. In Chapter 8, we recall the probit regression model and propose a linear

approximation method. In Chapter 9, we present some properties of the GSC method

and PGSC method in probit regression model.

2



Chapter 2

Generalized Self Consistency

(GSC) Method

2.1 Introduction

Generalized Self Consistency method is an iterative method for calculating the param-

eter estimates in multinomial model. Tsodikov and Chefo (2008) introduced the GSC

method based on the Quasi-EM algorithm idea in Tsodikov (2003). In this chapter, we

review the GSC method in general.

2.2 Artificial Variable

We study the dependence of a response variable y on some covariates represented in

the vector z. The p(y, z) describes the distribution of y with z. We now introduce an

artificial non-observable random variable U into the distribution p(y,z) by

p(y,z) = EU |y,z [p(y,z, U)] . (2.1)

3



For the model in (2.1), Tsodikov and Chefo (2008) provided an EM-like algorithm

with E-step finding the imputation of U and M-step maximizing the log-likelihood from

p(y,z, U).

2.3 Artificial Variable in Multinomial Model

We consider the data {yij , zj}, i = 1, . . . , J ; j = 1, . . . , N given below in Table 2.1.

Table 2.1: Multinomial Data

Covariate Value
1 · · · j · · · N
z1 · · · zj · · · zN

Response Category

1 y11 · · · y1j · · · y1N
...

...
...

...
...

...
i yi1 · · · yij · · · yiN
...

...
...

...
...

...
J yJ1 · · · yJj · · · yJN

In this data, there are J categories of response variable y and N independent realizations

of covariate vector z. The discrete random variable yij is the count of observations in

the jth covariate group with covariate value zj and in response category i. Many data

in reality can be described in this form. For example, we consider a situation where

we are interested in preferences for J different brands of burger. The covariate vector

is z = (Gender,Age,Height,Weight) and we have N covariate groups where the jth

group has the same values of covariates zj . Then for the jth covariate group, we will

have yij responses for the ith brand of burger.

People often use multinomial model to describe the data in Table 2.1. Indeed, for

4



each covariate group represented by the columns of Table 2.1, we have a multinomial

experiment. For the jth covariate group, let pi(zj) be the probability that the response

will be in category i, and denote y·j =
J∑
i=1

yij . The likelihood for this group j is

f∗j =
y·j !

y1j ! · · · yij ! · · · yJj !
p1 (zj)

y1j · · · pi (zj)
yij · · · pJ (zj)

yJj , (2.2)

where 0 < pi (zj) < 1 and
J∑
i=1

pi (zj) = 1.

We now denote pi(zj) as

pi (zj) =
θ∗i (zj)
J∑
k=1

θ∗k (zj)

, (2.3)

where θ∗i (zj) is unknown parameter. By dividing the numerator and denominator of

(2.3) by θ∗1(zj), we get

pi (zj) =

θ∗i (zj)
θ∗1(zj)

1+···+
θ∗
i (zj)
θ∗1(zj)

+···+
θ∗
J(zj)
θ∗1(zj)

.

We denote θi (zj) =
θ∗i (zj)
θ∗1(zj)

, and note that θ1(zj) = 1. Thus we have

p1(zj) =
θ1(zj)
J∑
k=1

θk(zj)

=
1

1 +
J∑
k=2

θk(zj)

, pi(zj) =
θi(zj)

1 +
J∑
k=2

θk(zj)

, i = 2, . . . , J. (2.4)

Moreover, we model θi (zj) as a function of a vector of unknown parameters βi

θi (zj) = eβ
′
izj . (2.5)

Our goal is to make inferences on the unknown parameter vectors β1,β2, . . . ,βJ . We

want to maximize the likelihood under multinomial model to obtain their estimates.

Since the N covariate groups are independent, the likelihood for all the data is

L∗ =
N∏
j=1

f∗j , (2.6)

5



where f∗j is in (2.2). Note that the factorial terms in the likelihood do not contain

unknown parameters, we consider the adjusted likelihood by ignoring these terms

LA =

N∏
j=1

fj =

N∏
j=1

p1 (zj)
y1j · · · pi (zj)

yij · · · pJ (zj)
yJj . (2.7)

Now we will bring artificial random variables into (2.7) as what we did in (2.1).

For U ∼ exp(1), we have (See Appendix A.1)

EU

[
e−Uθ

]
=

1

1 + θ
. (2.8)

Now we introduce N artificial unobserved random variables U1, · · · , Uj , · · · , UN that are

i.i.d. exp(1) for each j, then (2.4) could be written as

pi(zj) = EUj [pi(zj , Uj)] = EUj

θi(zj) · e−Uj J∑
k=2

θk(zj)

 ,
where we denote

pi(zj , Uj) = θi(zj) · e
−Uj

J∑
k=2

θk(zj)
, (2.9)

and

pi(zj) = EUj [pi(zj , Uj)] . (2.10)

Therefore, the adjusted likelihood (2.7) becomes

LA =

J∏
i=1

N∏
j=1

pi (zj)
yij =

J∏
i=1

N∏
j=1

{
EUj [pi (zj , Uj)]

}yij . (2.11)

For our conveninece, we now consider the following likelihood

L =

J∏
i=1

N∏
j=1

pi (zj , Uj)
yij . (2.12)

Now for simplicity, denote θi (zj) = θij . Then the log-likelihood (See Appendix A.2) is

l = logL =
J∑
i=2

li =
J∑
i=2

N∑
j=1

(yij · log θij − y·jUjθij). (2.13)
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2.4 Quasi-EM Algorithm in Multinomial Model

In (2.13), if we can find an appropriate imputation Ûj → Uj as the E-step, then the

M-step is just to maximize (2.13) with respect to the unknown parameters βi. However,

pi(zj , Uj)’s in (2.9) are not real probabilities because they have to be between 0 and 1

as real probabilities. The actual range of pi(zj , Uj) is in fact (0,+∞). Recall the E-step

in EM algorithm must be defined as a conditional expectation of the complete-data log-

likelihood given observed data based on a real probabilistic model, and apparently in

our case we do not have a real probabilistic model. In this section, we will introduce an

EM-like algorithm called Quasi-EM (QEM) proposed by Tsodikov (2003) to deal with

this problem.

Generally speaking, QEM algorithm is a generalization of EM algorithm by substituting

integral operator “E” by some other operator called “Quasi-Expectation” operator (QE)

and the “M” step remains the same. Recall that EM algorithm allows us to obtain the

estimates of the unknown parameters β by maximizing a log-likelihood of the form

l(β) = EU |observed data[l(β, U)], (2.14)

where the log-likelihood is based on a real probabilistic model and U is an unobserved

random variable. Since in our case we do not have a real probabilistic model but we

also want to preserve the good properties of EM algorithm, we introduce QE operator

such that we would also obtain estimates of the unknown parameters β by maximizing

l(β) = QEU |observed data[l(β, U)], (2.15)

where the log-likelihood is not based on a real probabilistic model and U is not necessar-

ily a random variable because we are using QEU |observed data instead of EU |observed data.
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In summary, “E” operator requires a real probabilistic model and U to be a random

variable while “QE” operator does not have such requirement. We might consider the

Quasi-EM algorithm as “distribution free”. The detail of how to apply this idea to

multinomial model is discussed below.

Now we apply this Quasi-EM algorithm to the multinomial model. For multinomial

model, Tsodikov (2003) and Tsodikov and Chefo (2008) defined the following basis

functions

e0(U, s) = e−Us, e1(U, s) = Ue−Us, e2(U, s) = U2e−Us, (2.16)

and QE operator was defined as a linear operator on the linear span of {ek} such that

QEU [e0(U, s)] = γ
(
e−s
)
. (2.17)

For each j, let

γ(e−sj ) =
1

1 + sj
. (2.18)

Therefore, from (2.16)–(2.18), we could rewrite (2.4) as

pi(zj) = θi(zj) · γ(e−sj ) = QEUj [θi(zj) · e0(Uj , sj)] , (2.19)

where sj =
J∑
k=2

θk(zj).

From (2.19), note that pi(zj) only contains e0(Uj , sj), which makes the adjusted likeli-

hood LA (representing the observed data) in (2.11) only contains e0(Uj , sj), namely,

QEUj |observed data (Uj) = QEUj |LA(Uj) = QEUj |e0(Uj ,sj) (Uj) . (2.20)

Tsodikov (2003) and Tsodikov and Chefo (2008) also defined

∂

∂s
QEU {ek (U, s)} = QEU

{
∂ek(U, s)

∂s

}
, k = 0, 1, 2. (2.21)
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and, for any function f in the {ek} linear span, conditional QE as

QEU |f (U) =
QEU (Uf)

QEU (f)
(2.22)

Therefore, from (2.20)–(2.22), we have the imputation

U∗j = QEUj |e0(Uj ,sj) (Uj)

=
QEUj (Uj ·e0(Uj ,sj))

QEUj (e0(Uj ,sj))

=
QEUj (e1(Uj ,sj))

QEUj (e0(Uj ,sj))

=
QEUj

(
− ∂
∂sj

e0(Uj ,sj)

)
γ(e−sj )

=
− ∂
∂sj

QEUj (e0(Uj ,sj))

γ(e−sj )

=
− ∂
∂sj

γ(e−sj )

γ(e−sj )

=
− ∂
∂sj

1
1+sj

1
1+sj

= 1
1+sj

.

(2.23)

Then the algorithm for multinomial model should work in the following steps

1. Set initial values of β
(0)
i , i = 2, . . . , J and set iteration step m = 0.

2. For each j , compute U
∗(m)
j = 1

1+s
(m)
j

where s
(m)
j =

J∑
k=2

θ
(m)
kj and θ

(m)
kj = exp

[
βk

(m)′zj

]
.

3. Solve J − 1 separate MLE problems

β
(m+1)
i = arg max

βi

N∑
j=1

[
yij log(θij)− y·jU∗(m)

j θij

]
, i = 2, . . . , J. (2.24)

4. If the convergence criterion is reached, stop; else increase m and return to step 2.

From this procedure, it is clear that we can divide the entire unknown parameter set

into some subsets in a clever way, and then solve the subsets respectively.
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An important research question is on the best choice for the initial values of β
(0)
i . The

performance of the algorithm depends on the initial values. So we are interested in how

to find the best choice of initial values, how the algorithm performs and what properties

the algorithm has.
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Chapter 3

Logistic Regression Model

3.1 Introduction

In this chapter, we present the model setup, assumptions and the estimating equation

for logistic regression model. We also present an illustrative example of a real data from

Cornfield (1962).

3.2 Model for General N

From now on, we consider a special case of multinomial model with J = 2. First of all,

we introduce the data. In this data, we delete the first subscript of yij representing the

response category since we only have 2 categories, and we introduce the total number

of observations nj for each group j. Thus we have Table 3.1 similar as Table 2.1.

Table 3.1: Binomial Data

Covariate Value
1 · · · j · · · N
z1 · · · zj · · · zN

Response Category
1 y1 · · · yj · · · yN
2 n1 − y1 · · · nj − yj · · · nN − yN
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People often use logistic regression model to fit this data. As in multinomial model, for

each covariate group, we have a binomial experiment. For the jth group, let p(zj) and

1− p(zj) be the probabilities that the response variable will fall in response category 1

and 2 respectively. Notice we only have 2 categories, we further simplify the notation

and denote p(zj) = pj . And we have the likelihood for the jth group

f∗j =
nj !

yj ! · (nj − yj)!
p
yj
j (1− pj)nj−yj . (3.1)

Again, we define pj as

pj =
θ (zj)

1 + θ (zj)
, (3.2)

where θ (zj) = θj is modeled as a function of unknown parameters β by

θj = eβ
′zj . (3.3)

Here we recall the basic assumption of logistic regression model

log
pj

1− pj
= β′zj . (3.4)

In (3.4), we actually have a linear regression model of the logit of pj . This function is

also called the link function. The equation (3.4) is equivalent to (3.2) and (3.3). This

unknown parameter vector β is again our major interest. We want to maximize the

likelihood to obtain the estimates of β.

Since we know that N covariate groups are independent, the likelihood of the whole

data is

L∗ =

N∏
j=1

f∗j , (3.5)

where f∗j is in (3.1).
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Note that the factorial terms in the likelihood do not contain unknown parameters, we

consider the adjusted likelihood by ignoring these terms

LA =

N∏
j=1

fj =

N∏
j=1

p
yj
j (1− pj)nj−yj . (3.6)

We substitute the expression of pj from (3.6) and obtain

LA =
N∏
j=1

fj =
N∏
j=1

(
eβ
′zj
)yj ( 1

1 + eβ
′zj

)nj
. (3.7)

The logarithm of adjusted likelihood is

lA =
N∑
j=1

log fj =
N∑
j=1

[
yjβ

′zj − nj log
(

1 + eβ
′zj
)]
. (3.8)

Taking the derivative of (3.8) with respect to β, we get the estimating equation (3.9)

∂

∂β
lA =

N∑
j=1

[
yjzj − njzj

eβ
′zj

1 + eβ
′zj

]
= 0. (3.9)

Solving this equation (3.9), we obtain the MLE of the unknown parameter vector β.

3.3 Example

We now present a real data from Cornfield (1962). We use this data to study the per-

formance and property of all the methods and algorithms proposed in this dissertation.

A sample of male residents of Framingham, Massachusetts, aged 40 through 59, was

classified on blood pressure. According to different blood pressure ranges, people were

separated to 8 different groups. In each group, the total number of people and the

number of people who were observed heart diseases were recorded. We take the middle

point of each blood pressure interval to be the value of the covariate z and let the

covariate vector be z = (1, z)′. For the jth covariate group, we want to model the
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Table 3.2: Real Example Data

Covariate Value
z1 z2 z3 z4 z5 z6 z7 z8

111.5 121.5 131.5 141.5 151.5 161.5 176.5 191.5

Disease 3 17 12 16 12 8 16 8
No Disease 153 235 272 255 127 77 83 35

number of people with disease yj based on the covariate vector zj . The data is shown

in Table 3.2.

For this real example, we use logistic regression model discussed in the previous section

to fit the data and obtain estimates of β. From (3.9), the estimating equation becomes

∂
∂β lA =

N∑
j=1

yj
 1

zj

− nj
 1

zj

 eβ0+β1zj

1+eβ0+β1zj

 =

 0

0


⇒

∂
∂β0

lA =
N∑
j=1

[
yj − nj exp(β0+β1zj)

1+exp(β0+β1zj)

]
= 0,

∂
∂β1

lA =
N∑
j=1

[
yjzj − njzj exp(β0+β1zj)

1+exp(β0+β1zj)

]
= 0.

(3.10)

Based on the data in Table 3.2, we solve (3.10) to find the estimates of β0 and β1.

3.4 Estimates of Parameters for N = 2

The equation (3.10) is a transcendental equation. It does not have a closed form solution

and thus needs numerical method for finding the solution. However, if we only consider

a pair of observations, i.e., N = 2, we have a closed form solution. For example, we

consider observations i and j. Denote the estimates of β0 and β1 by β̂0 and β̂1, and the
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predicted values of yi and yj by ŷi and ŷj . Then equation (3.10) becomes
[
yi − ni exp(β0+β1zi)

1+exp(β0+β1zi)

]
+
[
yj − nj exp(β0+β1zj)

1+exp(β0+β1zj)

]
= 0,[

yizi − nizi exp(β0+β1zi)
1+exp(β0+β1zi)

]
+
[
yjzj − njzj exp(β0+β1zj)

1+exp(β0+β1zj)

]
= 0.

⇒
exp(β0+β1zi)

1+exp(β0+β1zi)
= yi

ni
,

exp(β0+β1zj)
1+exp(β0+β1zj)

=
yj
nj
.

and we get the exact solution as
β̂0 =

zi·log
yj
nj
−zj ·log

yi
ni

+zj ·log
(

1− yi
ni

)
−zi·log

(
1−

yj
nj

)
zi−zj ,

β̂1 =
log

yi
ni
−log

yj
nj

+log

(
1−

yj
nj

)
−log

(
1− yi

ni

)
zi−zj .

(3.11)

Consequently, we have

ŷi = yi, ŷj = yj . (3.12)
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Chapter 4

GSC Method for Logistic

Regression Model

4.1 Introduction

In this chapter, we apply the GSC method to logistic regression model. We present the

estimating equation and describe the iterative method for solving it.

4.2 Method for General N

Now we apply GSC method discussed in Chapter 2 to logistic regression model. Recall

the algorithm for multinomial model discussed at the end of Chapter 2. Since logistic

regression model is a special case of multinomial model with J = 2, the algorithm works

in a very similar fashion as below

1. Set initial values of β(0) and iteration step m = 0.

2. For each j, compute U
∗(m)
j = 1

1+s
(m)
j

where s
(m)
j = θ

(m)
j = exp

[
β(m)′zj

]
.
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3. Solve an MLE problem

β(m+1) = arg max
β

N∑
j=1

[
yj log(θj)− njU∗(m)

j θj

]
. (4.1)

4. If the convergence criterion is reached, stop; else increase m and return to step 2.

We now use the Cornfield data introduced in Chapter 3 to study this method. In our

example, remember θj = exp (β0 + β1zj) and θ
(m)
j = exp

[
β

(m)
0 + β

(m)
1 zj

]
, then the MLE

problem becomes

β(m+1) = arg max
β

N∑
j=1

yj (β0 + β1zj)− nj
exp (β0 + β1zj)

1 + exp
(
β

(m)
0 + β

(m)
1 zj

)
. (4.2)

We take the derivative of objective function in (4.2) with respect to β0 and β1, and get

N∑
j=1

[
yj − nj

exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

)
]

= 0,

N∑
j=1

[
yjzj − njzj

exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

)
]

= 0.

(4.3)

The algorithm works as follows:

1. Set initial values of β
(0)
0 , β

(0)
1 and iteration step m = 0.

2. Solve an equation



N∑
j=1

[
yj − nj

exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

)
]

= 0,

N∑
j=1

[
yjzj − njzj

exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

)
]

= 0.

3. If the convergence criterion is reached, stop; else increase m and return to step 2.

For general N , the regular MLE estimating equation is (3.10). Solving this (3.10)

requires numerical method. A popular method to solve (3.10) is the Iterative Reweighted
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Least Squares (IRLS) method, and there are several other similar methods. Under the

GSC framework, Quasi-EM algorithm provides us another way to obtain the estimates

from (4.3). The method using (4.3) is also an iterative numerical method for solving

(3.10). Our goal is to compare the standard method with the method in (4.3).

4.3 Method for N = 2

We can not directly solve (4.3) for general N since it is a transcendental equation.

However, if we only consider a pair, i.e., N = 2, then we are able to obtain the exact

closed form solution. For example, we consider observations i and j. Directly solving

(4.3) provides the exact solution as

β
(m+1)
0 =

zi·log
yj
nj
−zj ·log

yi
ni

+zi·log
[
1+exp

(
β

(m)
0 +β

(m)
1 zj

)]
−zj ·log

[
1+exp

(
β

(m)
0 +β

(m)
1 zi

)]
zi−zj ,

β
(m+1)
1 =

log
yi
ni
−log

yj
nj

+log
[
1+exp

(
β

(m)
0 +β

(m)
1 zi

)]
−log

[
1+exp

(
β

(m)
0 +β

(m)
1 zj

)]
zi−zj .

(4.4)

In other words, for N = 2, (4.3) has an exact solution and does not need any numerical

method.
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Chapter 5

A New Method: PGSC Method

5.1 Introduction

In this chapter, we propose a new method called PGSC method by applying the GSC

method to all paired observations. We apply the new method to the logistic regression

model and use it to analyze the Cornfield data. Then we compare it with the GSC

method and standard method. Moreover, we present a method for the choice of the

initial values of the parameters. We find that the efficiency of the standard method can

be substantially improved by selecting better initial values provided by the new method.

5.2 Paired Observations

For a data with N observations, the standard method to obtain MLE is to consider these

N observations together as the whole data and apply a specific algorithm. For the Corn-

field data, the IRLS method gives us the estimates β̂0 = −6.082033 and β̂1 = 0.02433824

of β0 and β1 for the whole data. Now we take a pair containing observations 1 and 8.

Then i, j in (4.4) become i = 1, j = 8, and (4.4) converges at m = 12 and result in
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the estimates β
(m)
0 = −7.354763, β

(m)
1 = 0.03069899. We see that the solution obtained

from the chosen pair is close to the solution obtained from (3.10). Our research question

becomes: What happens if we use this solution to be the initial value of the GSC method

(4.3) to obtain the solution for the whole data?

We know that, for N observations, we have N(N−1)
2 = M different pairs of data. The

standard method to obtain MLE for the whole data requires numerical approximation

because we do not have the exact closed form solution. Since we can obtain the exact

solution of estimating equation by only using one pair, we apply the GSC method to

each of the M pairs and choose the best pair with respect to a criterion. The estimates

of the unknown parameters are based on this best pair. We present the details in next

section.

5.3 PGSC Method

We define a criterion for selecting the best pair as follows:

Definition 1 Denote the predicted value of an observation yi by ŷi. The criterion we

use to measure the goodness of fit is defined as

∆ =
N∑
i=1

|yi − ŷi|.

We want to find an estimate of β which makes ∆ as small as possible.

We now introduce the new method called PGSC method. For each of M pairs, we apply

the GSC method until it converges and finally choose the best pair which gives us the

smallest ∆. The method works as follows:
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1. Set u = 1.

2. For the uth pair, give initial values of β
(0)
0 and β

(0)
1 , compute β

(m+1)
0 and β

(m+1)
1

by using equation (4.4) until it converges. Calculate ∆ and set u = u+ 1.

3. Repeat step 2 until u = M + 1.

4. Choose the pair giving us the smallest ∆. Use the estimates of β0 and β1 obtained

from this pair to be the final estimates.

We apply this method to the Cornfield data. We take (0, 0) as the initial value for (4.4).

Then we compare solutions from (3.11) and (4.4) for all pairs. In Table 5.1, we present

the final estimates of (β0, β1) and the number of steps of convergence for all M = 28

pairs for both the PGSC method and standard method. In Table 5.1, we see that ∆

attains its minimum value 14.17 for the 21st pair containing observations 4 and 7 for

both methods. We take β0 = −7.30647 and β1 = 0.032069227 as the final estimates by

the PGSC method.

5.4 GSC Method for General N

We recall that the GSC method for general N uses equations in (4.3) to numerically

find the values of β
(m)
0 and β

(m)
1 . We now directly solve (4.3) for general N . We

use two different sets of initial values, one is (0,0) and the other one is the PGSC

method solution described in the previous section, i.e., (-7.306470, 0.032069227). We

use
|∆(m+1)−∆(m)|

∆(m) < 10−5 as our stopping rule where ∆(m) is the value of ∆ at the mth

stage. In Table 5.2, we present the comparison for these two different initial values. In
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Table 5.1: Comparison Between PGSC Method and Standard Method with Paired Ob-
servations for All Pairs (Cornfield Data)

PGSC Method Standard Method

Pair
(
β

(m)
0 , β

(m)
1

)
∆ m

(
β̂0, β̂1

)
∆

(1,2) (-18.487632, 0.130545346) 451.28 9 (-18.487632, 0.130545346) 451.28

(1,3) (-8.452762, 0.040546511) 25.83 8 (-8.452762, 0.040546511) 25.83

(1,4) (-8.254869, 0.038771694) 21.21 8 (-8.254869, 0.038771694) 21.21

(1,5) (-8.315295, 0.039313630) 22.26 9 (-8.315295, 0.039313630) 22.26

(1,6) (-7.650265, 0.033349235) 19.48 9 (-7.650265, 0.033349235) 19.48

(1,7) (-7.852464, 0.035162673) 17.87 11 (-7.852464, 0.035162673) 17.87

(1,8) (-7.354763, 0.030698989) 23.52 12 (-7.354763, 0.030698989) 23.52

(2,3) (3.382085, -0.049452325) 62.79 8 (3.382085, -0.049452325) 62.79

(2,4) (-1.761884, -0.007115133) 39.68 8 (-1.761884, -0.007115133) 39.68

(2,5) (-3.708094, 0.008903058) 29.53 9 (-3.708094, 0.008903058) 29.53

(2,6) (-3.725972, 0.009050207) 29.49 9 (-3.725972, 0.009050207) 29.49

(2,7) (-4.791547, 0.017820369) 32.74 11 (-4.791547, 0.017820369) 32.74

(2,8) (-4.623252, 0.016435224) 31.21 11 (-4.623252, 0.016435224) 31.21

(3,4) (-7.752596, 0.035222059) 16.97 9 (-7.752596, 0.035222059) 16.97

(3,5) (-8.128514, 0.038080749) 21.01 10 (-8.128514, 0.038080749) 21.01

(3,6) (-6.875359, 0.028551051) 15.45 9 (-6.875359, 0.028551051) 15.45

(3,7) (-7.430132, 0.032769856) 14.48 11 (-7.430132, 0.032769856) 14.48

(3,8) (-6.726163, 0.027416482) 16.20 11 (-6.726163, 0.027416482) 16.20

(4,5) (-8.561605, 0.040939439) 24.30 9 (-8.561605, 0.040939439) 24.30

(4,6) (-6.336675, 0.025215547) 15.25 9 (-6.336675, 0.025215547) 15.25

(4,7) (-7.306470, 0.032069227) 14.17 11 (-7.306470, 0.032069227) 14.17

(4,8) (-6.427209, 0.025855366) 14.77 12 (-6.427209, 0.025855366) 14.77

(5,6) (-3.797266, 0.009491656) 28.97 9 (-3.797266, 0.009491656) 28.97

(5,7) (-6.680233, 0.028521142) 16.52 12 (-6.680233, 0.028521142) 16.52

(5,8) (-5.705059, 0.022084348) 18.51 13 (-5.705059, 0.022084348) 18.51

(6,7) (-8.919370, 0.041207466) 27.27 12 (-8.919370, 0.041207466) 27.27

(6,8) (-6.508893, 0.026281912) 15.03 13 (-6.508893, 0.026281912) 15.03

(7,8) (-3.650649, 0.011356358) 58.76 12 (-3.650649, 0.011356358) 58.76
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Table 5.3, we present the computation times for two different initial values.

Table 5.2: GSC Method for Whole Data (Cornfield Data)

Stopping Rule Initial Value m β
(m)
0 β

(m)
1 ∆ −2 logL

|∆(m+1)−∆(m)|
∆(m) < 10−5

(0,0) 6 -6.082 0.0243 17.14 38.62

(-7.306,0.0321) 3 -6.082 0.0243 17.14 38.62

Table 5.3: Computation Time of GSC Method for Whole Data (Cornfield Data)

Initial Value 10 times 102 times 103 times 104 times 105 times

(0,0) 0.21 s 0.58 s 4.48 s 43.05 s 412.73 s

(-7.306,0.0321) 0.18 s 0.42 s 2.72 s 25.37 s 251.72 s

In Tables 5.2 and 5.3, we see that the GSC method converges to the same

values no matter what initial values we choose. However, the GSC method

using the PGSC method estimates as initial value converges faster than the

(0, 0) initial value.

5.5 Comparison Between GSC Method for General N and

PGSC Method

We now compare the two methods in section 5.3 and 5.4. In Table 5.4, we present the

comparison of two sets of estimates, and the corresponding ∆ and −2 logL values.

In Table 5.4, we observe that the PGSC method gives a better estimate

than the GSC method for whole data with respect to the criterion function
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Table 5.4: Comparison Between GSC Method for General N and PGSC Method (Corn-
field Data)

Method
(
β̂0, β̂1

)
∆ −2 logL

GSC (Whole Data) (-6.082007, 0.02433807) 17.13631 38.61038

PGSC (-7.306472, 0.03206920) 14.17023 41.56182

∆. However, the GSC method for whole data performs better than the PGSC method

with respect to the criterion function −2 logL. Figure 5.1 plots yi
ni

against zi where

i = 1, . . . , 8 for PGSC and GSC methods.

Figure 5.1: Comparison Between GSC Method for General N and PGSC Method (Corn-
field Data)

Figure 5.2 plots the ∆ values against β0 in (−7.5,−5.5) and β1 in (0.010, 0.035) and

Figure 5.3 provides the contour plot of ∆ surface against β0 in (−7.5,−5.5) and β1 in

(0.010, 0.035).
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Figure 5.2: 3-D Surface Plot of ∆ (Cornfield Data)

In Figure 5.2, we see that the location of (-7.306472, 0.0320692) provided by the PGSC

method is closer to the “dip” which represents the lowest ∆ values in the region, while

the location of (-6.082007, 0.02433807) is far away from the “dip”.

In Figure 5.3, we see that the estimate of (-7.306472, 0.0320692) provided by the PGSC

method makes ∆ fall in “15 contour”. However, the estimate of (-6.082007, 0.02433807)

provided by the GSC method to whole data only makes ∆ fall in “20 contour”. This

demonstrates that the PGSC method is better with respect to ∆.

25



Figure 5.3: Contour Plot of ∆ Surface (Cornfield Data)
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Chapter 6

Properties of GSC and PGSC

Methods

6.1 Introduction

In this chapter, we investigate the theoretical properties of the GSC and PGSC methods

when applied to the logistic regression model. These properties include the convergence

of the iteration process and the choice of the initial value.

6.2 GSC Method

We consider first the GSC method for general N to obtain the estimates of β0 and β1

from (4.3). We now study the theoretical properties of GSC method.

6.2.1 Property 1: Identical Solution

First, we compare the GSC method with the regular MLE estimating equation solving

method. We find that GSC method gives the same solution as the regular MLE esti-
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mating equation solving method. We denote the numerical solution of (3.10) by β̂0 and

β̂1 and call them true solution. We have the following results.

Theorem 2 In the GSC method (4.3), if two consecutive estimates at mth step and

(m + 1)th step are close enough, i.e., β
(m)
0 is close enough to β

(m+1)
0 and β

(m)
1 is close

enough to β
(m+1)
1 , then the estimates β

(m+1)
0 and β

(m+1)
1 will be identical with the true

solution of (3.10), β̂0 and β̂1. In other words, if we define β
(m)
0 = β

(m+1)
0 , β

(m)
1 = β

(m+1)
1

up to a certain decimal place, then we must have β
(m)
0 = β

(m+1)
0 = β̂0, β

(m)
1 = β

(m+1)
1 =

β̂1 up to the same decimal place.

Proof. From (3.10), we have
N∑
j=1

yj =
N∑
j=1

nj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
(1)

N∑
j=1

yjzj =
N∑
j=1

njzj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
(2)

Now we define β
(m)
0 = β

(m+1)
0 , β

(m)
1 = β

(m+1)
1 up to a certain decimal place, then from

(4.3) we have 
N∑
j=1

yj =
N∑
j=1

nj
exp
(
β

(m)
0 +β

(m)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

) (3)

N∑
j=1

yjzj =
N∑
j=1

njzj
exp
(
β

(m)
0 +β

(m)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

) (4)

From (1)− (3) and (2)− (4) we have

N∑
j=1

nje
β̂0+β̂1zj(

1+eβ̂0+β̂1zj
)(

1+eβ
(m)
0 +β

(m)
1 zj

) [1− exp
(
β

(m)
0 − β̂0 + β

(m)
1 zj − β̂1zj

)]
= 0 (5)

N∑
j=1

njzje
β̂0+β̂1zj(

1+eβ̂0+β̂1zj
)(

1+eβ
(m)
0 +β

(m)
1 zj

) [1− exp
(
β

(m)
0 − β̂0 + β

(m)
1 zj − β̂1zj

)]
= 0 (6)
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Denote ỹj =
nje

β̂0+β̂1zj(
1+eβ̂0+β̂1zj

)(
1+eβ

(m)
0 +β

(m)
1 zj

) which is > 0 for all j, then (5) and (6) become


N∑
j=1

ỹj =
N∑
j=1

ỹje
β

(m)
0 −β̂0+

(
β

(m)
1 −β̂1

)
zj (7)

N∑
j=1

zj ỹj =
N∑
j=1

zj ỹje
β

(m)
0 −β̂0+

(
β

(m)
1 −β̂1

)
zj (8)

Multiplying LHS of (7) by RHS of (8) and LHS of (8) by RHS of (7), we obtain

N∑
i=1

ỹi
N∑
j=1

zj ỹje

(
β

(m)
1 −β̂1

)
zj =

N∑
i=1

ziỹi
N∑
j=1

ỹje

(
β

(m)
1 −β̂1

)
zj

⇒
N∑
i=1

N∑
j=1

(zi − zj) ỹiỹje
(
β

(m)
1 −β̂1

)
zj = 0

⇒∑
i<j

N∑
j=1

(zi − zj) ỹiỹje
(
β

(m)
1 −β̂1

)
zj +

∑
i>j

N∑
j=1

(zi − zj) ỹiỹje
(
β

(m)
1 −β̂1

)
zj = 0

⇒

∑
i>j

N∑
j=1

(zi − zj) ỹiỹj
(
e

(
β

(m)
1 −β̂1

)
zi − e

(
β

(m)
1 −β̂1

)
zj

)
= 0 (6.1)

Without loss of generality, we assume zj > 0 for any j and zi < zj for i < j. In (6.1),

there are three possibilities:

1. If β
(m)
1 < β̂1

For i > j, we have zi > zj and zi − zj > 0 . Also ỹj > 0 for any j. Further-

more, we have β
(m)
1 − β̂1 < 0. Therefore,

(
β

(m)
1 − β̂1

)
zi <

(
β

(m)
1 − β̂1

)
zj which

implies e

(
β

(m)
1 −β̂1

)
zi − e

(
β

(m)
1 −β̂1

)
zj < 0. Hence, every term of (6.1) is < 0. This is

impossible.
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2. If β
(m)
1 > β̂1

For i > j, we have zi > zj and zi − zj > 0 . Also ỹj > 0 for any j. Further-

more, we have β
(m)
1 − β̂1 > 0. Therefore,

(
β

(m)
1 − β̂1

)
zi >

(
β

(m)
1 − β̂1

)
zj which

implies e

(
β

(m)
1 −β̂1

)
zi − e

(
β

(m)
1 −β̂1

)
zj > 0. Hence, every term of (6.1) is > 0. This is

impossible.

3. If β
(m)
1 = β̂1

Equation (6.1) holds.

To sum up, we see that only the case β
(m)
1 = β̂1 is possible. Thus we have proved that

β
(m)
1 = β̂1. Then by plugging β

(m)
1 = β̂1 in (7) or (8), we see that β

(m)
0 = β̂0. Thus

β
(m)
0 = β

(m+1)
0 = β̂0, β

(m)
1 = β

(m+1)
1 = β̂1 up to a certain decimal place.

6.2.2 Property 2: Initial Value

We now consider the issue of the initial value choice for the GSC method (4.3). We find

that if we use the true solution of the regular estimating equation to be the initial value,

the GSC method will stop at the 1st iteration step and give exactly the true solution as

the estimates. The following property gives more details.

Theorem 3 In the GSC method (4.3), if we use the true solution of (3.10) to be the

initial value of (4.3), i.e., β
(0)
0 = β̂0, β

(0)
1 = β̂1, then (4.3) would stop at the 1st iteration

step and give the same solution β
(1)
0 = β̂0 and β

(1)
1 = β̂1.

Proof. Denote ŷj = nj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
, then (3.10) becomes


N∑
j=1

yj =
N∑
j=1

nj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
=

N∑
j=1

ŷj (1)

N∑
j=1

yjzj =
N∑
j=1

njzj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
=

N∑
j=1

ŷjzj (2)
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If we use β
(0)
0 = β̂0, β

(0)
1 = β̂1, then at the 1st step (4.3) becomes
N∑
j=1

yj =
N∑
j=1

nj
exp
(
β

(1)
0 +β

(1)
1 zj

)
1+exp(β̂0+β̂1zj)

(3)

N∑
j=1

yjzj =
N∑
j=1

njzj
exp
(
β

(1)
0 +β

(1)
1 zj

)
1+exp(β̂0+β̂1zj)

(4)

From (1) to (4) we have
N∑
j=1

yj =
N∑
j=1

nj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
× e

(
β

(1)
0 −β̂0

)
+
(
β

(1)
1 −β̂1

)
zj

N∑
j=1

yjzj =
N∑
j=1

njzj
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
× e

(
β

(1)
0 −β̂0

)
+
(
β

(1)
1 −β̂1

)
zj

⇒
N∑
j=1

ŷj =
N∑
j=1

ŷje

(
β

(1)
0 −β̂0

)
+
(
β

(1)
1 −β̂1

)
zj (5)

N∑
j=1

zj ŷj =
N∑
j=1

zj ŷje

(
β

(1)
0 −β̂0

)
+
(
β

(1)
1 −β̂1

)
zj (6)

Multiplying LHS of (5) by RHS of (6), LHS of (6) by RHS of (5), we obtain

N∑
i=1

ŷi
N∑
j=1

zj ŷje

(
β

(1)
1 −β̂1

)
zj =

N∑
i=1

ziŷi
N∑
j=1

ŷje

(
β

(1)
1 −β̂1

)
zj

⇒
N∑
i=1

N∑
j=1

ziŷiŷje

(
β

(1)
1 −β̂1

)
zj =

N∑
i=1

N∑
j=1

zj ŷiŷje

(
β

(1)
1 −β̂1

)
zj

⇒
N∑
i=1

N∑
j=1

(zi − zj) ŷiŷje
(
β

(1)
1 −β̂1

)
zj = 0

⇒∑
i>j

N∑
j=1

(zi − zj) ŷiŷje
(
β

(1)
1 −β̂1

)
zj +

∑
i<j

N∑
j=1

(zi − zj) ŷiŷje
(
β

(1)
1 −β̂1

)
zj = 0

⇒

∑
i>j

N∑
j=1

(zi − zj) ŷiŷj
(
e

(
β

(1)
1 −β̂1

)
zi − e

(
β

(1)
1 −β̂1

)
zj

)
= 0 (6.2)
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Without loss of generality, we assume zj > 0 for any j and zi < zj for i < j. In (6.2),

there are three possibilities:

1. If β
(1)
1 < β̂1

For i > j, we have zi > zj and zi − zj > 0 . Also ŷj > 0 for any j. Furthermore,

we have β
(1)
1 − β̂1 < 0. Therefore,

(
β

(1)
1 − β̂1

)
zi <

(
β

(1)
1 − β̂1

)
zj which implies

e

(
β

(1)
1 −β̂1

)
zi−e

(
β

(1)
1 −β̂1

)
zj < 0. Hence, every term of (6.2) is< 0. This is impossible.

2. If β
(1)
1 > β̂1

For i > j, we have zi > zj and zi − zj > 0 . Also ŷj > 0 for any j. Furthermore,

we have β
(1)
1 − β̂1 > 0. Therefore,

(
β

(1)
1 − β̂1

)
zi >

(
β

(1)
1 − β̂1

)
zj which implies

e

(
β

(1)
1 −β̂1

)
zi−e

(
β

(1)
1 −β̂1

)
zj > 0. Hence, every term of (6.2) is> 0. This is impossible.

3. If β
(1)
1 = β̂1

Equation (6.2) holds.

To sum up, we see that only the case β
(1)
1 = β̂1 is possible. Thus we have proved that

β
(1)
1 = β̂1. Then by plugging β

(1)
1 = β̂1 in (5) or (6), it is easy to show that β

(1)
0 = β̂0.

6.3 PGSC Method

We recall that the PGSC method is to obtain the estimates of β0 and β1 by using (4.4).

Now we study the theoretical properties of PGSC method.

6.3.1 Property 1: Identical Solution

We consider the uth pair containing observations i and j. First, we compare the PGSC

method (4.4) with regular MLE estimating equation solving method (3.11). We find
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that the PGSC method gives the same solution as the regular MLE estimating equation

solving method. We denote the exact solution of (3.11) by β̂0 and β̂1 and call them true

solution. We have the following property.

Theorem 4 In the PGSC method (4.4), if two consecutive estimates at mth step and

(m + 1)th step are close enough, i.e., β
(m)
0 is close enough to β

(m+1)
0 and β

(m)
1 is close

enough to β
(m+1)
1 , then the estimates β

(m+1)
0 and β

(m+1)
1 will be identical with the exact

solution of (3.11), β̂0 and β̂1. In other words, if we define β
(m)
0 = β

(m+1)
0 , β

(m)
1 = β

(m+1)
1

up to a certain decimal place, then we must have β
(m)
0 = β

(m+1)
0 = β̂0, β

(m)
1 = β

(m+1)
1 =

β̂1 up to the same decimal place.

We present two proofs of Theorem 4.

Proof 1. From (4.4), we have
yi
ni

=
exp
(
β

(m+1)
0 +β

(m+1)
1 zi

)
1+exp

(
β

(m)
0 +β

(m)
1 zi

) (1)

yj
nj

=
exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

) (2)

From (3.12), we have 
yi
ni

=
exp(β̂0+β̂1zi)

1+exp(β̂0+β̂1zi)
(3)

yj
nj

=
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
(4)

Dividing (1) by (3) and (2) by (4), we have
1 = e

(
β

(m+1)
0 −β̂0

)
+
(
β

(m+1)
1 −β̂1

)
zi 1+exp(β̂0+β̂1zi)

1+exp
(
β

(m)
0 +β

(m)
1 zi

) ,
1 = e

(
β

(m+1)
0 −β̂0

)
+
(
β

(m+1)
1 −β̂1

)
zj 1+exp(β̂0+β̂1zj)

1+exp
(
β

(m)
0 +β

(m)
1 zj

) .
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For β
(m)
0 = β

(m+1)
0 , β

(m)
1 = β

(m+1)
1 up to a certain decimal place, we get

1 =
exp
((
β

(m)
0 −β̂0

)
+
(
β

(m)
1 −β̂1

)
zi

)
+exp

(
β

(m)
0 +β

(m)
1 zi

)
1+exp

(
β

(m)
0 +β

(m)
1 zi

) ,

1 =
exp
((
β

(m)
0 −β̂0

)
+
(
β

(m)
1 −β̂1

)
zj

)
+exp

(
β

(m)
0 +β

(m)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

) .

⇒
(
β

(m)
0 − β̂0

)
+
(
β

(m)
1 − β̂1

)
zi = 0,(

β
(m)
0 − β̂0

)
+
(
β

(m)
1 − β̂1

)
zj = 0.

⇒
β

(m)
0 = β̂0,

β
(m)
1 = β̂1.

Thus we have proved that β
(m)
0 = β

(m+1)
0 = β̂0, β

(m)
1 = β

(m+1)
1 = β̂1.

We now present the second proof.

Proof 2. From (4.4), we have
yi = ni

exp
(
β

(m+1)
0 +β

(m+1)
1 zi

)
1+exp

(
β

(m)
0 +β

(m)
1 zi

)
yj = nj

exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

)
And the predicted values are expressed as

ŷ
(m+1)u
i = ni

exp
(
β

(m+1)
0 +β

(m+1)
1 zi

)
1+exp

(
β

(m+1)
0 +β

(m+1)
1 zi

)
ŷ

(m+1)u
j = nj

exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m+1)
0 +β

(m+1)
1 zj

)

Denote am = exp
(
β

(m)
0 + β

(m)
1 zi

)
and we will have a sequence of {am}. This sequence

has the following property

yi = ni
am+1

1 + am
⇒ am+1

1 + am
=
yi
ni

= qi ≤ 1
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where qi is a constant and usually qi < 1.

Therefore we have

am+1 = qi (1 + am) = qi + qiam

= qi + q2
i (1 + am−1) = qi + q2

i + q2
i am−1

= qi + q2
i + q3

i + · · ·+ qm+1
i + qm+1

i a0

=
qi(1−qm+1

i )
1−qi + qm+1

i a0

⇒ lim
m→∞

am =
qi

1− qi

Plug the above limit in the expressions of the predicted values, and then we have

lim
m→∞

ŷ
(m)u
i = lim

m→∞
ni

exp
(
β

(m)
0 + β

(m)
1 zi

)
1 + exp

(
β

(m)
0 + β

(m)
1 zi

) = lim
m→∞

ni
am

1 + am
= niqi = yi

From (3.11) and (3.12), we have ŷi = yi and ŷj = yj . If we continue the iteration

for the PGSC method for a long time, then ŷ
(m)u
i converges to yi. This implies that

lim
m→∞

ŷ
(m)u
i = yi and lim

m→∞
ŷ

(m)u
j = yj . Therefore, in limit, the predicted y values for i

and j approach to their true values. In other words, the solution of (4.4) converges to

the solution of (3.11).

Note: There is an important strength regarding the initial values of the PGSC method.

The initial values of β
(0)
0 , β

(0)
1 give us a0 = exp

(
β

(0)
0 + β

(0)
1 zi

)
. According to Proof 2,

no matter what initial values we choose, ŷ
(m)u
i will always converge to the real value yi.

In other words, the choice of a0 does not influence the convergence of ŷ
(m)u
i to yi.

6.3.2 Property 2: Initial Value

We now consider the issue of the initial value choice for the PGSC method (4.4). We

find that if we use the exact solution of the regular estimating equation to be the initial

value, the PGSC method will stop at the 1st iteration step and give exactly the exact

35



solution as the estimates. The following property gives more details.

Theorem 5 In the PGSC method (4.4), if we use the exact solution of (3.11) to be the

initial value of (4.4), i.e., let β
(0)
0 = β̂0, β

(0)
1 = β̂1, then (4.4) would stop at the 1st

iteration step and give the same solution β
(1)
0 = β̂0 and β

(1)
1 = β̂1.

Proof. From (4.4), we have
yi
ni

=
exp
(
β

(m+1)
0 +β

(m+1)
1 zi

)
1+exp

(
β

(m)
0 +β

(m)
1 zi

)
yj
nj

=
exp
(
β

(m+1)
0 +β

(m+1)
1 zj

)
1+exp

(
β

(m)
0 +β

(m)
1 zj

)
Now we consider the first step, then we have

yi
ni

=
exp
(
β

(1)
0 +β

(1)
1 zi

)
1+exp

(
β

(0)
0 +β

(0)
1 zi

)
yj
nj

=
exp
(
β

(1)
0 +β

(1)
1 zj

)
1+exp

(
β

(0)
0 +β

(0)
1 zj

)

We use the exact solution of (3.11) β̂0 and β̂1 to be the initial value, i.e., β
(0)
0 = β̂0 and

β
(0)
1 = β̂1. Then we have

yi
ni

=
exp
(
β

(1)
0 +β

(1)
1 zi

)
1+exp(β̂0+β̂1zi)

(1)

yj
nj

=
exp
(
β

(1)
0 +β

(1)
1 zj

)
1+exp(β̂0+β̂1zj)

(2)

Also, from (3.11), we have
yi
ni

=
exp(β̂0+β̂1zi)

1+exp(β̂0+β̂1zi)
(3)

yj
nj

=
exp(β̂0+β̂1zj)

1+exp(β̂0+β̂1zj)
(4)
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Dividing (1) by (3) and (2) by (4), we get
1 =

exp
(
β

(1)
0 +β

(1)
1 zi

)
exp(β̂0+β̂1zi)

1 =
exp
(
β

(1)
0 +β

(1)
1 zj

)
exp(β̂0+β̂1zj)

⇒
β

(1)
0 + β

(1)
1 zi = β̂0 + β̂1zi

β
(1)
0 + β

(1)
1 zj = β̂0 + β̂1zj

⇒
β

(1)
0 = β̂0

β
(1)
1 = β̂1

6.3.3 Property 3: Monotonic Convergence

Now that we know the PGSC method will converge, we would like to investigate how

well it performs. We find another good property of the PGSC method.

Theorem 6 Consider the PGSC method (4.4) and the uth pair containing observations

i and j. Every step of the PGSC method provides us a predicted value closer to the real

value and monotonically converges to the real value. In other words, from (4.4), we

have (β
(m)
0 , β

(m)
1 ), (β

(m+1)
0 , β

(m+1)
1 ) and (ŷ

(m)
i , ŷ

(m+1)
i ). Then ŷ

(m)
i < ŷ

(m+1)
i < yi or

yi < ŷ
(m+1)
i < ŷ

(m)
i , and finally ŷ

(m+1)
i = ŷ

(m)
i = yi. Similarly for j.

Proof. Define a0i = 1 + exp
(
β

(0)
0 + β

(0)
1 zi

)
. In Table 6.1, we present ŷ

(w)u
i for

w = 0, 1, . . . ,m.
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Table 6.1: Progress of ŷ
(w)u
i for the PGSC Method

w exp
(
β

(w)
0 + β

(w)
1 zi

)
ŷ

(w)u
i

0

1 a0i
yi
ni

a0iyi
1+a0i

yi
ni

2 a0i
yi
ni

(
yi

ŷ
(1)u
i

) a0iyi

(
yi

ŷ
(1)u
i

)

1+a0i
yi
ni

(
yi

ŷ
(1)u
i

)

3 a0i
yi
ni

(
yi

ŷ
(1)u
i

)(
yi

ŷ
(2)u
i

) a0iyi

(
yi

ŷ
(1)u
i

)(
yi

ŷ
(2)u
i

)

1+a0i
yi
ni

(
yi

ŷ
(1)u
i

)(
yi

ŷ
(2)u
i

)

...
...

...

m a0i
yi
ni

(
yi

ŷ
(1)u
i

)(
yi

ŷ
(2)u
i

)
· · ·
(

yi

ŷ
(m−1)u
i

) a0iyi

(
yi

ŷ
(1)u
i

)(
yi

ŷ
(2)u
i

)
···
(

yi

ŷ
(m−1)u
i

)

1+a0i
yi
ni

(
yi

ŷ
(1)u
i

)(
yi

ŷ
(2)u
i

)
···
(

yi

ŷ
(m−1)u
i

)
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We have

ŷ
(m)u
i =

a0iyi

(
yi

ŷ
(1)u
i

)
···
(

yi

ŷ
(m−1)u
i

)

1+a0i
yi
ni

(
yi

ŷ
(1)u
i

)
···
(

yi

ŷ
(m−1)u
i

)

= 1
1

a0iyi

 yi

ŷ
(1)u
i

···
 yi

ŷ
(m−1)u
i

+ 1
ni

,

(6.3)

and

ŷ
(m+1)u
i =

a0iyi

(
yi

ŷ
(1)u
i

)
···
(

yi

ŷ
(m−1)u
i

)(
yi

ŷ
(m)u
i

)

1+a0i
yi
ni

(
yi

ŷ
(1)u
i

)
···
(

yi

ŷ
(m−1)u
i

)(
yi

ŷ
(m)u
i

)

= 1
1

a0iyi

 yi

ŷ
(1)u
i

···
 yi

ŷ
(m−1)u
i

 yi

ŷ
(m)u
i

+ 1
ni

.

(6.4)

We now compare ŷ
(m)u
i and ŷ

(m+1)u
i . There are three possibilities:

1. If

(
yi

ŷ
(m)u
i

)
< 1, then yi < ŷ

(m)u
i

This means at the mth step we overestimate yi. However, we observe that ŷ
(m+1)u
i

is decreasing compared with ŷ
(m)u
i , i.e., ŷ

(m+1)u
i < ŷ

(m)u
i . Furthermore, since

0 < yi < ŷ
(m)u
i < ni, we get

ŷ
(m+1)u
i = 1

1

a0iyi

 yi

ŷ
(1)u
i

···
 yi

ŷ
(m−1)u
i

 yi

ŷ
(m)u
i

+ 1
ni

= 1(
1

ŷ
(m)u
i

− 1
ni

)(
ŷ
(m)u
i
yi

)
+ 1
ni

= yi

1−
ŷ
(m)u
i
ni

+
yi
ni

= yi

1+

(
yi−ŷ

(m)u
i

)
ni

> yi
1

Thus yi < ŷ
(m+1)u
i < ŷ

(m)u
i . This indicates that ŷ

(m)u
i will monotonically converge

to yi.
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2. If

(
yi

ŷ
(m)u
i

)
> 1, then yi > ŷ

(m)u
i

This means at the mth step we underestimate yi. However, we observe that

ŷ
(m+1)u
i is increasing compared with ŷ

(m)u
i , i.e., ŷ

(m+1)u
i > ŷ

(m)u
i . Furthermore,

since 0 < ŷ
(m)u
i < yi < ni, we get

ŷ
(m+1)u
i =

yi

1 +

(
yi−ŷ

(m)u
i

)
ni

<
yi
1

Thus ŷ
(m)u
i < ŷ

(m+1)u
i < yi. This indicates that ŷ

(m)u
i will monotonically converge

to yi.

3. If

(
yi

ŷ
(m)u
i

)
= 1, then yi = ŷ

(m)u
i

This means at the mth step our estimate of yi exactly equals yi. By comparing

ŷ
(m)u
i with ŷ

(m+1)u
i , we observe that ŷ

(m)u
i = ŷ

(m+1)u
i . In other words, if at some

step our estimate of yi equals yi, then from this step on every estimate of yi will be

equal to the real value of yi. If this happens, the algorithm stops and converges.
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Chapter 7

Our Methods

7.1 Introduction

In this chapter, we combine the paired observation procedure with the GSC method in

a different way with in Chapter 5. This results in two new methods for solving MLEEs

of logistic regression model. We present the details of these methods illustrating with

the Cornfield data. We also compare these two methods with the standard method. We

present a simulation study for our illustration.

7.2 Method 1

We first introduce four criteria based on (3.10) to measure the goodness of fit of logistic

regression model.

Definition 7 For a given estimate
(
β̂0, β̂1

)
of (β0, β1), we define the first criterion ∆
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to be 

∆1

(
β̂0, β̂1

)
=

N∑
i=1

∣∣∣∣yi − ni exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

∣∣∣∣
∆2

(
β̂0, β̂1

)
=

N∑
i=1

∣∣∣∣yizi − nizi exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

∣∣∣∣
∆
(
β̂0, β̂1

)
= ∆1

(
β̂0, β̂1

)
+ ∆2

(
β̂0, β̂1

)
(7.1)

Definition 8 For a given estimate
(
β̂0, β̂1

)
of (β0, β1), we define the second criterion

∆̃ to be 

∆̃1

(
β̂0, β̂1

)
=

N∑
i=1

∣∣∣∣ yini − exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

∣∣∣∣
∆̃2

(
β̂0, β̂1

)
=

N∑
i=1

∣∣∣∣ yini zi − zi exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

∣∣∣∣
∆̃
(
β̂0, β̂1

)
= ∆̃1

(
β̂0, β̂1

)
+ ∆̃2

(
β̂0, β̂1

)
(7.2)

Definition 9 For a given estimate
(
β̂0, β̂1

)
of (β0, β1), we define the third criterion ∆2

to be 

∆2
1

(
β̂0, β̂1

)
=

N∑
i=1

(
yi − ni

exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

)2

∆2
2

(
β̂0, β̂1

)
=

N∑
i=1

(
yizi − nizi

exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

)2

∆2
(
β̂0, β̂1

)
= ∆2

1

(
β̂0, β̂1

)
+ ∆2

2

(
β̂0, β̂1

)
(7.3)

Definition 10 For a given estimate
(
β̂0, β̂1

)
of (β0, β1), we define the fourth criterion

∆̃2 to be 

∆̃2
1

(
β̂0, β̂1

)
=

N∑
i=1

(
yi
ni
− exp(β̂0+β̂1zi)

1+exp(β̂0+β̂1zi)

)2

∆̃2
2

(
β̂0, β̂1

)
=

N∑
i=1

(
yi
ni
zi − zi

exp(β̂0+β̂1zi)
1+exp(β̂0+β̂1zi)

)2

∆̃2
(
β̂0, β̂1

)
= ∆̃2

1

(
β̂0, β̂1

)
+ ∆̃2

2

(
β̂0, β̂1

)
(7.4)

In (4.4), we have given the exact closed form solution of (4.3) for N = 2. We now use

it to introduce a new method to solve (4.3) for general N . We have M pairs of data

and solve each pair separately. Then we get M pairs of
(
β

(m+1)
0 , β

(m+1)
1

)
. We select

the pair that provides us the smallest value of the criterion function (defined above).

We then use the estimate in (4.4) for this chosen pair as our new estimate for general
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N . We perform the iteration process until it converges. The stopping rule we use is the

same as in standard method “glm” in R, which is |Deviance
(m)−Deviance(m+1)|

(|Deviance(m+1)|+0.1)
< 10−8. The

step-by-step description of this method is as follows:

1. Set initial values of
(
β

(0)
0 , β

(0)
1

)
= (0, 0) and set iteration step m = 0.

2. In (4.4), plug
(
β

(0)
0 , β

(0)
1

)
to obtain

(
β

(1)
0 , β

(1)
1

)
for M pairs.

3. Calculate M values of the criterion function for M pairs.

4. Select the pair giving the smallest value of the criterion function.

5. Take
(
β

(1)
0 , β

(1)
1

)
from the pair chosen in step 4 to calculate

(
β

(2)
0 , β

(2)
1

)
. Then

repeat this process until the convergence criterion is reached.

7.2.1 Analysis of Real Example

For each criterion function, we present the convergence steps in Tables 7.1-7.4. In Table

7.5, we compare the criterion values for different estimates obtained by using our method.

Note: Criterion V is the standard method “glm” in R.

When we apply these five criteria to Method 1, Criterion III (∆2) has an interesting

phenomenon. It does not converge to one solution but fluctuates between two solutions.

In this case, we choose the solution which provides the smaller ∆2 criterion value.

In Table 7.5, we have the smallest ∆ value for Criterion I and the smallest ∆̃
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Table 7.1: Convergence Steps for Criterion I (∆)

∆ β̂0 β̂1

Step 0 78963.75 0.00000 0.000000

Step 1 4936.55 -6.42119 0.028369

Step 2 2015.24 -6.79344 0.028345

Step 3 1964.32 -7.22182 0.031465

Step 4 1959.40 -7.29250 0.031970

Step 5 1958.78 -7.30419 0.032053

Step 6 1958.69 -7.30610 0.032067

Step 7 1958.68 -7.30641 0.032069

Step 8 1958.68 -7.30646 0.032069

Step 9 1958.68 -7.30647 0.032069

Step 10 1958.68 -7.30647 0.032069

Step 11 1958.68 -7.30647 0.032069

Step 12 1958.68 -7.30647 0.032069

Table 7.2: Convergence Steps for Criterion II (∆̃)

∆̃ β̂0 β̂1

Step 0 480.10 0.00000 0.000000

Step 1 43.03 -6.42119 0.028369

Step 2 13.18 -6.47543 0.026376

Step 3 12.28 -6.44904 0.026020

Step 4 12.13 -6.43203 0.025890

Step 5 12.11 -6.42815 0.025862

Step 6 12.10 -6.42739 0.025857

Step 7 12.10 -6.42724 0.025856

Step 8 12.10 -6.42722 0.025855

Step 9 12.10 -6.42721 0.025855
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Table 7.3: Convergence Steps for Criterion III (∆2)

∆2 β̂0 β̂1

Step 0 972112351 0.00000 0.000000

Step 1 3257854 -6.42119 0.028369

Step 2 1134804 -6.01479 0.024279

Step 3 1137043 -6.58741 0.027922

Step 4 1111550 -5.88685 0.023285

Step 5 1122687 -6.55891 0.027720

Step 6 1113400 -5.87919 0.023234

Step 7 1122282 -6.55773 0.027713

Step 8 1113474 -5.87892 0.023232

Step 9 1122270 -6.55770 0.027712

Step 10 1113477 -5.87891 0.023232

Step 11 1122269 -6.55769 0.027712

Step 12 1113477 -5.87891 0.023232

Table 7.4: Convergence Steps for Criterion IV (∆̃2)

∆̃2 β̂0 β̂1

Step 0 28559.49 0.00000 0.000000

Step 1 387.78 -6.42119 0.028369

Step 2 35.53 -6.47543 0.026376

Step 3 32.53 -5.78911 0.022574

Step 4 33.58 -5.71601 0.022151

Step 5 33.76 -5.70670 0.022095

Step 6 33.80 -5.70533 0.022086

Step 7 33.80 -5.70511 0.022085

Step 8 33.80 -5.70507 0.022084

Step 9 33.80 -5.70506 0.022084

Step 10 33.80 -5.70506 0.022084

Step 11 33.80 -5.70506 0.022084

Step 12 33.80 -5.70506 0.022084
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Table 7.5: Comparison of Estimates Obtained by Using Different Criteria for Method 1
(Cornfield Data)

Criterion m β̂0 β̂1 ∆ ∆̃ ∆2 ∆̃2

I 12 -7.30647 0.032069 1958.68 17.97 1417676 121.78

II 9 -6.42721 0.025855 2006.12 12.10 1253788 41.99

III 13 -5.87891 0.023232 2448.91 14.39 1113477 31.48

IV 12 -5.70506 0.022084 2494.43 13.75 1175245 33.80

V 5 -6.08203 0.024338 2319.25 14.11 1040658 30.79

value for Criterion II. Consequently, Method 1 using Criterion I is perform-

ing better than the standard method. The same is true for Method 1 using

Criterion II. On the other hand, the standard method is performing better

than Method I using Criterion III and IV.

Figure 7.1 provides the comparison among the proportions of the standard method ver-

sus Method 1 using criterion functions I-IV.

We now consider the issue of initial value choice. Notice that in Tables 7.1-7.4, no

matter which criterion we use, the first step gives us the same estimates (β̂0, β̂1) =

(−6.42119, 0.028369). We use this estimate to be the initial value for Criterion V (stan-

dard method “glm” in R), and we also use (0, 0) as initial value for Criterion V. Then

we compare these two results by using stopping rule |Deviance
(m)−Deviance(m+1)|

(|Deviance(m+1)|+0.1)
< 10−8.

In Tables 7.6 and 7.7, we present the detail of convergence for these two different initial

values.

From Tables 7.6 and 7.7, we see that if we use the first step estimates (β̂0, β̂1) =
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Figure 7.1: Comparison of Estimates Obtained by Using Different Criteria for Method
1 (Cornfield Data)

Table 7.6: Criterion V with (0,0) as Initial Value (Cornfield Data)

β̂0 β̂1 ∆ ∆̃ ∆2 ∆̃2 −2 logL

Step 0 0.00000 0.000000 78963.75 480.10 972112351 28559.49 1236.28

Step 1 -2.71448 0.007153 14987.82 81.59 40217553 924.88 137.45

Step 2 -4.62996 0.016182 4095.01 23.61 3490647 83.49 47.56

Step 3 -5.83348 0.022904 2450.88 14.09 1120725 31.62 38.81

Step 4 -6.07510 0.024298 2322.85 14.11 1041768 30.78 38.61

Step 5 -6.08203 0.024338 2319.25 14.11 1040659 30.79 38.61

Step 6 -6.08203 0.024338 2319.25 14.11 1040658 30.79 38.61

Step 7 -6.08203 0.024338 2319.25 14.11 1040658 30.79 38.61
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Table 7.7: Criterion V with (-6.42119,0.028369) as Initial Value (Cornfield Data)

β̂0 β̂1 ∆ ∆̃ ∆2 ∆̃2 −2 logL

Step 0 -6.42119 0.028369 4936.55 43.03 3257850 387.77 45.32

Step 1 -6.13634 0.024872 2364.50 15.13 1055128 34.95 38.67

Step 2 -6.08310 0.024347 2319.66 14.12 1040552 30.81 38.61

Step 3 -6.08203 0.024338 2319.25 14.11 1040658 30.79 38.61

Step 4 -6.08203 0.024338 2319.25 14.11 1040658 30.79 38.61

Step 5 -6.08203 0.024338 2319.25 14.11 1040658 30.79 38.61

(−6.42119, 0.028369) obtained by using Method 1 to be the initial value, the

convergence speed is somewhat faster than the initial value (0, 0).

7.2.2 Simulation Study

We use R to generate 100,000 observation vectors of y by assuming β0 = −6.5, β1 = 0.02,

the same n and z as in the Cornfield data. For each vector y, we apply Method 1. We

record the mean and median values of 100,000 pairs of
(
β̂0, β̂1

)
for each criterion and

obtain Table 7.8 and Table 7.9.

Table 7.8: Mean Value of 100,000 Pairs of
(
β̂0, β̂1

)
Criterion β̂0 β̂1

I -6.52987 0.019725

II -7.07977 0.022586

III -6.51811 0.019860

IV -7.27488 0.023735

V -6.49773 0.019786

Truth -6.5 0.02

We also record the descriptive statistics of 100,000 pairs of
(
β̂0, β̂1

)
for each criterion.

48



Table 7.9: Median Value of 100,000 Pairs of
(
β̂0, β̂1

)
Criterion β̂0 β̂1

I -6.53243 0.020362

II -6.59712 0.020468

III -6.53230 0.020357

IV -6.44183 0.019784

V -6.48997 0.019928

Truth -6.5 0.02

Consequently we obtain the histograms and tables. In Table 7.10, we present the de-

scriptive statistics of 100,000 pairs of
(
β̂0, β̂1

)
for each criterion. In Figures 7.2-7.6, we

present the corresponding histograms.

Table 7.10: Statistics of
(
β̂0, β̂1

)
for 100,000 Simulations

Criterion β̂0 β̂1

Q1 Q3 S.D. Q1 Q3 S.D.

I -7.51781 -5.49968 1.66702 0.012699 0.026712 0.011074

II -8.06326 -5.20209 3.39466 0.011393 0.030594 0.019915

III -7.33729 -5.54399 1.54122 0.013478 0.025973 0.010117

IV -8.22197 -5.09072 4.05358 0.010321 0.030664 0.023151

V -7.27609 -5.70537 1.18490 0.014604 0.025135 0.007963

Moreover, we use the counts of β̂0 and β̂1 in some chosen intervals to compare these

different criteria and obtain Table 7.11 and Table 7.12.
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Figure 7.2: Histogram of
(
β̂0, β̂1

)
(Criterion I) (Method 1)

Figure 7.3: Histogram of
(
β̂0, β̂1

)
(Criterion II) (Method 1)

Figure 7.4: Histogram of
(
β̂0, β̂1

)
(Criterion III) (Method 1)
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Figure 7.5: Histogram of
(
β̂0, β̂1

)
(Criterion IV) (Method 1)

Figure 7.6: Histogram of
(
β̂0, β̂1

)
(Criterion V) (Method 1)

Table 7.11: Counts of 100,000 β̂0

Criterion (-6.5-0.5,-6.5+0.5) (-6.5-1.5,-6.5+1.5) (-6.5-2.5,-6.5+2.5)

I 25027 66593 88807

II 20127 53241 77866

III 27517 70110 90726

IV 18528 48506 73050

V 33523 79980 96345

Table 7.12: Counts of 100,000 β̂1

Criterion (0.02-0.005,0.02+0.005) (0.02-0.01,0.02+0.01) (0.02-0.015,0.02+0.015)

I 38596 66357 83190

II 30408 51688 71424

III 42124 70012 86775

IV 27801 48482 68334

V 47851 79705 93989
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If, for some particular response vectors y out of 100,000 vectors, some criteria do not

converge to one solution but fluctuate between several solutions, then we choose the

solution giving us the smallest criterion value.

From all the above tables and figures we observe that our Method 1 for Criterion I and

III are better than Criterion II and IV. This is consistent with our result in Section 7.2.1

and in Chapter 5. However, from Table 7.11 and Table 7.12, we observe the standard

method performs better than Method 1. This motivates us to further improve our

Method 1.

7.3 Method 2

In this section, we introduce our second method. We have two versions of Method 2.

First, we introduce the first version, Method 2.1.

7.3.1 Method 2.1

We take
(
β

(0)
0 , β

(0)
1

)
= (−6.421191, 0.02836856) from the first iteration step estimate of

Method 1. Then we plug this into (4.4) to obtain 28 pairs of
(
β

(1)
0 , β

(1)
1

)
.

For each pair, we investigate the following equation (7.5) with m = 0.
8∑
i=1

yi = exp
(
β

(m+1)
0

) 8∑
i=1

ni exp
(
β

(m+1)
1 zi

)
1+exp

(
β

(m)
0 +β

(m)
1 zi

)
8∑
i=1

yizi = exp
(
β

(m+1)
0

) 8∑
i=1

nizi exp
(
β

(m+1)
1 zi

)
1+exp

(
β

(m)
0 +β

(m)
1 zi

)
⇒

8∑
i=1

yi = a1

8∑
i=1

nib
zi

1+exp
(
β

(m)
0 +β

(m)
1 zi

)
8∑
i=1

yizi = a2

8∑
i=1

nizib
zi

1+exp
(
β

(m)
0 +β

(m)
1 zi

)

(7.5)
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We use
(
β

(0)
0 , β

(0)
1

)
= (−6.421191, 0.02836856) to plug in the denominator of (7.5) and

use this pair’s β
(1)
1 to plug in the numerator of (7.5) to get a1 and a2.

Now we have 28 pairs of
(

log a
(1)
1 , log a

(1)
2

)
which are based on all of 8 observations.

Then we choose the pair giving us the smallest
∣∣∣log a

(1)
1 − log a

(1)
2

∣∣∣. In our case, it is

the 20th pair (Observations 4 and 6). Then we calculate two values of each criterion

function by using
(

log a
(1)
1 , β

(1)
1

)
and

(
log a

(1)
2 , β

(1)
1

)
of the 20th pair. We select the

smaller criterion which is
(

log a
(1)
2 , β

(1)
1

)
in our case. Then we take this

(
log a

(1)
2 , β

(1)
1

)
of the 20th pair as our

(
β

(1)
0 , β

(1)
1

)
for general N . And then we perform the iteration

until it converges. The entire procedure is described step-by-step as follows:

1. Set initial value as
(
β

(0)
0 , β

(0)
1

)
= (−6.421191, 0.02836856) and iteration step as

m = 0.

2. Plug
(
β

(0)
0 , β

(0)
1

)
in (4.4) to obtain M = 28 pairs of

(
β

(1)
0 , β

(1)
1

)
.

3. For each pair in M = 28 pairs of
(
β

(1)
0 , β

(1)
1

)
, plug this pair’s β

(1)
1 in the numerator

of (7.5) and plug
(
β

(0)
0 , β

(0)
1

)
in the denominator of (7.5) to get a1 and a2.

4. Choose one pair from M = 28 pairs giving us the smallest |log a1 − log a2|.

5. Calculate two values of a criterion function (any criterion of four criteria defined

in previous section) by using
(

log a1, β
(1)
1

)
and

(
log a2, β

(1)
1

)
from the pair chosen

in Step 4. Select the one providing smaller criterion value.

6. Take the one chosen in Step 5 as
(
β

(1)
0 , β

(1)
1

)
for general N . Perform the iteration

process until the stopping rule is reached.

We use four different criteria at Step 5. Therefore, we have four different types of

Method 2.1. We apply them to the Cornfield data using the same deviance stopping
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rule as in previous sections. The results are given in Table 7.13.

Table 7.13: Method 2.1 (Cornfield Data)

Criterion m β̂0 β̂1 ∆ ∆̃ ∆2 ∆̃2 −2 logL

I 9 -6.25220 0.025461 2279.07 14.79 1028515 34.05 38.67

II 9 -6.25220 0.025461 2279.07 14.79 1028515 34.05 38.67

III 9 -6.25220 0.025461 2279.07 14.79 1028515 34.05 38.67

IV 9 -6.25220 0.025461 2279.07 14.79 1028515 34.05 38.67

In Table 7.13, we see that we have the same solution for Criteria I-IV.

7.3.2 Method 2.2

We still take
(
β

(0)
0 , β

(0)
1

)
= (−6.421191, 0.02836856) as initial value. Also, we plug this

into (4.4) to obtain 28 pairs of
(
β

(1)
0 , β

(1)
1

)
.

For each pair, we also investigate equation (7.5). This time we use this pair’s β
(1)
1 to

plug in the numerator of (7.5) and use this pair’s
(
β

(1)
0 , β

(1)
1

)
to plug in the denominator

of (7.5) to solve for a1 and a2.

Now we have 28 pairs of
(

log a
(1)
1 , log a

(1)
2

)
which are based on 8 observations. Then

we choose the pair giving us the smallest
∣∣∣log a

(1)
1 − log a

(1)
2

∣∣∣. In our case, it is the 18th

pair (Observations 3 and 8) at the first step and the 20th pair (Observations 4 and 6)

in the following steps. Then we calculate two values of a criterion function by using(
log a

(1)
1 , β

(1)
1

)
and

(
log a

(1)
2 , β

(1)
1

)
of this chosen pair. We select the one with smaller

criterion value and take that as our
(
β

(1)
0 , β

(1)
1

)
for general N . And then we perform the
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iteration until it converges. The entire procedure is described step-by-step as follows:

1. Set initial value as
(
β

(0)
0 , β

(0)
1

)
= (−6.421191, 0.02836856) and iteration step as

m = 0.

2. Plug
(
β

(0)
0 , β

(0)
1

)
in (18) to obtain M = 28 pairs of

(
β

(1)
0 , β

(1)
1

)
.

3. For each pair in M = 28 pairs of
(
β

(1)
0 , β

(1)
1

)
, plug this pair’s β

(1)
1 in the numerator

of (7.5) and plug this pair’s
(
β

(1)
0 , β

(1)
1

)
in the denominator of (7.5) to solve for

a1 and a2.

4. Choose one pair from M = 28 pairs giving us the smallest |log a1 − log a2|.

5. Calculate two values of a criterion function by using
(

log a1, β
(1)
1

)
and

(
log a2, β

(1)
1

)
of the pair chosen in Step 4. Select the one providing smaller criterion value.

6. Take the one chosen in Step 5 as
(
β

(1)
0 , β

(1)
1

)
for general N . Perform the iteration

process until the stopping rule is reached.

Similar as Method 2.1, we use four different criteria at Step 5. Therefore, we have four

different types of Method 2.2. We apply them to the Cornfield data using the same

deviance stopping rule as in previous sections. The results are given in Table 7.14.

Table 7.14: Method 2.2 (Cornfield Data)

Criterion m β̂0 β̂1 ∆ ∆̃ ∆2 ∆̃2 −2 logL

I 5 -6.25934 0.025439 2254.88 14.50 1027700 32.84 38.68

II 5 -6.25934 0.025439 2254.88 14.50 1027700 32.84 38.68

III 5 -6.25642 0.025448 2264.75 14.62 1027453 33.28 38.67

IV 5 -6.25934 0.025439 2254.88 14.50 1027700 32.84 38.68
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In Table 7.14, we see that we have the same solution for Criterion I, II and IV. We

observe that the solution of Criterion I, II and IV is better than that of Criterion III

with respect to ∆ and ∆̃, and worse with respect to ∆2 and ∆̃2.

We see that the solution of our Method 2 is very close to the solution of

standard method, which indeed improves Method 1.

7.3.3 Simulation Study

We use R to generate 100,000 observation vectors of y by assuming β0 = −6.5, β1 = 0.02,

the same n and z as in the Cornfield data. For each vector y, we apply both versions of

Method 2. We record exactly the same values as in simulation of Method 1 and present

them in the following tables and figures.

Tables 7.15-7.19 and Figures 7.7-7.11 are simulation results for Method 2.1. Table 7.15

presents the mean value of 100,000 pairs of
(
β̂0, β̂1

)
. Table 7.16 presents the median

value of 100,000 pairs of
(
β̂0, β̂1

)
. Table 7.17 presents the descriptive statistics of 100,000

pairs of
(
β̂0, β̂1

)
. Table 7.18 presents the counts of 100,000 β̂0 in some chosen intervals

centered at true value. Table 7.19 presents the counts of 100,000 β̂1 in some chosen in-

tervals centered at true value. Figures 7.7-7.11 present the histograms of 100,000 pairs

of
(
β̂0, β̂1

)
.
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Table 7.15: Mean Value of 100,000 Pairs of
(
β̂0, β̂1

)
(Method 2.1)

Criterion β̂0 β̂1

I -6.49922 0.019791

II -6.49932 0.019791

III -6.49899 0.019791

IV -6.49924 0.019791

V -6.49894 0.019793

Truth -6.5 0.02

Table 7.16: Median Value of 100,000 Pairs of
(
β̂0, β̂1

)
(Method 2.1)

Criterion β̂0 β̂1

I -6.50815 0.020269

II -6.50829 0.020269

III -6.50732 0.020269

IV -6.50770 0.020268

V -6.49424 0.019953

Truth -6.5 0.02

Table 7.17: Statistics of
(
β̂0, β̂1

)
for 100,000 Simulations (Method 2.1)

Criterion β̂0 β̂1

Q1 Q3 S.D. Q1 Q3 S.D.

I -7.28656 -5.69561 1.200911 0.014336 0.025205 0.008086

II -7.28673 -5.69588 1.200965 0.014336 0.025206 0.008086

III -7.28656 -5.69504 1.201030 0.014341 0.025204 0.008086

IV -7.28684 -5.69571 1.201047 0.014338 0.025204 0.008086

V -7.27575 -5.71581 1.185476 0.014581 0.025162 0.007981
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Figure 7.7: Histogram of
(
β̂0, β̂1

)
(Criterion I) (Method 2.1)

Figure 7.8: Histogram of
(
β̂0, β̂1

)
(Criterion II) (Method 2.1)

Figure 7.9: Histogram of
(
β̂0, β̂1

)
(Criterion III) (Method 2.1)

Figure 7.10: Histogram of
(
β̂0, β̂1

)
(Criterion IV) (Method 2.1)
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Figure 7.11: Histogram of
(
β̂0, β̂1

)
(Criterion V) (Method 2.1)

Table 7.18: Counts of 100,000 β̂0 (Method 2.1)

Criterion (-6.5-0.5,-6.5+0.5) (-6.5-1.5,-6.5+1.5) (-6.5-2.5,-6.5+2.5)

I 32974 79393 96008

II 32979 79391 96007

III 32963 79397 96011

IV 32982 79385 96004

V 33506 80140 96266

Table 7.19: Counts of 100,000 β̂1 (Method 2.1)

Criterion (0.02-0.005,0.02+0.005) (0.02-0.01,0.02+0.01) (0.02-0.015,0.02+0.015)

I 47709 78314 92877

II 47707 78309 92873

III 47701 78309 92876

IV 47708 78305 92874

V 47741 79702 93927

59



From the above simulation result, we observe that Method 2.1 performs very

good. The mean and median values of (β̂0, β̂1) are very close to the true value

as well as the solution of standard method (Criterion V). The histograms of

(β̂0, β̂1) and counts of (β̂0, β̂1) demonstrate Method 2.1 performs as good as

the standard method.

Tables 7.20-7.24 and Figures 7.12-7.16 are simulation results for Method 2.2. Table

7.20 presents the mean value of 100,000 pairs of
(
β̂0, β̂1

)
. Table 7.21 presents the me-

dian value of 100,000 pairs of
(
β̂0, β̂1

)
. Table 7.22 presents the descriptive statistics of

100,000 pairs of
(
β̂0, β̂1

)
. Table 7.23 presents the counts of 100,000 β̂0 in some chosen

intervals centered at true value. Table 7.24 presents the counts of 100,000 β̂1 in some

chosen intervals centered at true value. Figures 7.12-7.16 present the histograms of

100,000 pairs of
(
β̂0, β̂1

)
.

Table 7.20: Mean Value of 100,000 Pairs of
(
β̂0, β̂1

)
(Method 2.2)

Criterion β̂0 β̂1

I -6.51384 0.019903

II -6.51395 0.019903

III -6.51365 0.019903

IV -6.51372 0.019902

V -6.50144 0.019807

Truth -6.5 0.02
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Table 7.21: Median Value of 100,000 Pairs of
(
β̂0, β̂1

)
(Method 2.2)

Criterion β̂0 β̂1

I -6.51765 0.020307

II -6.51765 0.020307

III -6.51741 0.020308

IV -6.51753 0.020307

V -6.49651 0.019956

Truth -6.5 0.02

Table 7.22: Statistics of
(
β̂0, β̂1

)
for 100,000 Simulations (Method 2.2)

Criterion β̂0 β̂1

Q1 Q3 S.D. Q1 Q3 S.D.

I -7.29808 -5.71425 1.211656 0.014667 0.025253 0.008169

II -7.29793 -5.71418 1.211722 0.014667 0.025253 0.008169

III -7.29802 -5.71394 1.211707 0.014668 0.025252 0.008168

IV -7.29770 -5.71394 1.211704 0.014666 0.025252 0.008169

V -7.27755 -5.71581 1.18619 0.014665 0.025135 0.007982

Figure 7.12: Histogram of
(
β̂0, β̂1

)
(Criterion I) (Method 2.2)
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Figure 7.13: Histogram of
(
β̂0, β̂1

)
(Criterion II) (Method 2.2)

Figure 7.14: Histogram of
(
β̂0, β̂1

)
(Criterion III) (Method 2.2)

Figure 7.15: Histogram of
(
β̂0, β̂1

)
(Criterion IV) (Method 2.2)

Table 7.23: Counts of 100,000 β̂0 (Method 2.2)

Criterion (-6.5-0.5,-6.5+0.5) (-6.5-1.5,-6.5+1.5) (-6.5-2.5,-6.5+2.5)

I 33259 79338 96029

II 33267 79339 96030

III 33236 79327 96035

IV 33262 79339 96033

V 33640 80107 96330

62



Figure 7.16: Histogram of
(
β̂0, β̂1

)
(Criterion V) (Method 2.2)

Table 7.24: Counts of 100,000 β̂1 (Method 2.2)

Criterion (0.02-0.005,0.02+0.005) (0.02-0.01,0.02+0.01) (0.02-0.015,0.02+0.015)

I 48034 78332 92839

II 48035 78329 92840

III 48028 78334 92839

IV 48033 78330 92840

V 48021 79727 93859

From the above simulation result, we observe that Method 2.2 also performs

very good. The mean and median values of (β̂0, β̂1) are very close to the

true value as well as the solution of standard method (Criterion V). The his-

tograms of (β̂0, β̂1) and counts of (β̂0, β̂1) demonstrate Method 2.2 performs

as good as the standard method. Moreover, from the histograms, we see

that Method 2.2 does not perform well in some cases, but the count tables

indicate this happens rarely.

Both Method 2 and standard method are iterative methods. One advantage

of Method 2 is that we have exact expressions of (β̂0, β̂1).
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7.4 Comparison of Two Methods

We present Table 7.25 where we compare the estimates of parameters and the corre-

sponding values of all criterion functions.

Table 7.25: Comparison of Method 1 and Method 2 (Cornfield Data)

Method 1 (I.V.) m (β̂0, β̂1) ∆ ∆̃ ∆2 ∆̃2 −2 logL

C-I (0,0) 12 (-7.30647, 0.03207) 1958.68 17.97 1417676 121.78 41.56

C-II (0,0) 9 (-6.42721, 0.02586) 2006.12 12.10 1253788 42.00 39.88

C-III (0,0) 13 (-5.87891, 0.02323) 2448.91 14.39 1113477 31.48 38.80

C-IV (0,0) 12 (-5.70506, 0.02208) 2494.43 13.75 1175245 33.80 39.00

C-V (0,0) 7 (-6.08203, 0.02434) 2319.25 14.11 1040658 30.79 38.61

C-V (*) 5 (-6.08203, 0.02434) 2319.25 14.11 1040658 30.79 38.61

Method 2 (I.V.) m (β̂0, β̂1) ∆ ∆̃ ∆2 ∆̃2 −2 logL

2.1: C-I-IV (0,0) 9 (-6.25220, 0.02546) 2279.07 14.79 1028516 34.05 38.67

2.2: C-I, II, IV (*) 5 (-6.25934, 0.02544) 2254.88 14.50 1027700 32.84 38.68

2.2: C-III (*) 5 (-6.25642, 0.02545) 2264.75 14.62 1027453 33.28 38.67

In Table 7.25, (*)=(-6.42119, 0.028369). “C” stands for “Criterion”.“I.V.” stands for

“Initial Value”. We observe that Method 2 improves Method 1 with respect to ∆2 and

−2 logL, and Method 2 also performs better than the standard method (Criterion V)

with respect to ∆ and ∆2.

We select the first iteration step estimate of Method 1 which is (-6.42119,

0.028369) as the initial value for Method 2 or the standard method. Results

illustrate that this initial value is closer to the final estimate and the number

of iteration steps is smaller. It demonstrates that our Method 1 identifies a
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better initial value than (0,0). A better initial value increases the efficiency

of an iterative method. Method 2 gives us exact closed form solutions of

(β̂0, β̂1) which standard method is unable to provide.
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Chapter 8

Probit Regression Model

8.1 Introduction

In this chapter, we consider the probit regression model for binomial data. Since stan-

dard method in obtaining the MLEs of parameters requires numerical method, the

final parameter estimates do not have any closed form expressions. We introduce a

new method by using a linear approximation which provides an exact solution of the

MLEEs. We compare our estimates with the standard numerical method estimates with

the Cornfield data as well as a simulated data, and find that our method performs as

good as the standard method, even better with respect to some criteria. We also present

some theoretical properties of our estimates.

8.2 Probit Regression Model

8.2.1 Model for General N

We now consider the binomial model and the same data shown in Table 3.1.
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Using the same notation, we also have the likelihood for the jth group

f∗j =
nj !

yj ! · (nj − yj)!
p
yj
j (1− pj)nj−yj . (8.1)

Since we know that N covariate groups are independent, the likelihood of the whole

data is

L∗ =

N∏
j=1

f∗j . (8.2)

For the probit regression model, pj is defined as

pj = Φ(β′zj), (8.3)

where Φ(·) is the distribution function of standard normal random variable, and β is the

vector of unknown parameters. We want to maximize the likelihood in (8.2) to obtain

the estimates of β.

Ignoring all factorial terms which do not include unknown parameters, the adjusted

likelihood becomes

LA =

N∏
j=1

fj =

N∏
j=1

p
yj
j (1− pj)nj−yj =

N∏
j=1

[
Φ (β′zj)

1− Φ (β′zj)

]yj (
1− Φ

(
β′zj

))nj . (8.4)

The logarithm of adjusted likelihood is

lA =
N∑
j=1

log fj =
N∑
j=1

{
yj log

[
Φ (β′zj)

1− Φ (β′zj)

]
+ nj log

[
1− Φ

(
β′zj

)]}
. (8.5)

Taking the derivative of (8.5) with respect to β, we get the estimating equation (8.6)

∂

∂β
lA =

N∑
j=1

(
yjzj

φ (β′zj)

Φ (β′zj) (1− Φ (β′zj))
− njzj

φ (β′zj)

1− Φ (β′zj)

)
= 0. (8.6)

Solving this equation (8.6), we obtain the MLE of the unknown parameter vector β.
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For the Cornfield data introduced in Chapter 3, the estimating equation (8.6) becomes

∂
∂β lA =

N∑
j=1

yj
 1

zj

 φ(β0+β1zj)
Φ(β0+β1zj)(1−Φ(β0+β1zj))

− nj

 1

zj

 φ(β0+β1zj)
(1−Φ(β0+β1zj))

 = 0

⇒
∂l
∂β0

=
N∑
j=1

(
yj

φ(β0+β1zj)
Φ(β0+β1zj)(1−Φ(β0+β1zj))

− nj φ(β0+β1zj)
(1−Φ(β0+β1zj))

)
= 0,

∂l
∂β1

=
N∑
j=1

(
yjzj

φ(β0+β1zj)
Φ(β0+β1zj)(1−Φ(β0+β1zj))

− njzj φ(β0+β1zj)
(1−Φ(β0+β1zj))

)
= 0.

(8.7)

8.2.2 Estimates of Parameters for N = 2

As in Chapter 3, (8.7) is a transcendental equation and does not have a closed form

solution and needs a numerical approximation for finding the solution. However, if we

only consider a pair of 8 observations, i.e., N = 2, we have the exact closed form solution.

For example, we consider the observations i and j. Denote the estimates of β0 and β1

by β̂0 and β̂1, and the predicted values of yi and yj by ŷi and ŷj . Then equation (8.7)

becomes 
β̂0 + β̂1zi = Φ−1

(
yi
ni

)
,

β̂0 + β̂1zj = Φ−1
(
yj
nj

)
.

(8.8)

which gives

ŷi = yi, ŷj = yj . (8.9)

and the exact solution is 

β̂0 =
ziΦ
−1

(
yj
nj

)
−zjΦ−1

(
yi
ni

)
zi−zj ,

β̂1 =
Φ−1

(
yi
ni

)
−Φ−1

(
yj
nj

)
zi−zj .

(8.10)

In other words, for N = 2, (8.7) has an exact solution and does not need any numerical

approximation.
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8.3 Linear Approximation

In this section, we present a linear approximation method to solve the equation (8.7)

which provides an exact solution of β0 and β1. We also have some good properties that

the standard numerical method does not have. For our estimates of β0 and β1 using

this linear approximation, we find the expectations.

We now present this approximation method. In the estimating equation (8.7), we write

xj = β0 + β1zj , and define

A (xj) =
φ (xj)

Φ (xj) · (1− Φ (xj))
(8.11)

and

B (xj) =
φ (xj)

1− Φ (xj)
. (8.12)

Then (8.7) becomes 
N∑
j=1

yjA (xj)−
N∑
j=1

njB (xj) = 0,

N∑
j=1

zjyjA (xj)−
N∑
j=1

zjnjB (xj) = 0.

(8.13)

The graphs of the two functions A(x) and B(x) are shown in Figure 8.1 and Figure 8.2

for the values of x satisfying −3 ≤ x ≤ 3.

We now approximate A(x) on each side of x = 0 by two linear functions and similarly

for B(x). In other words, we approximate A(x) and B(x) by

A (x) =
φ (x)

Φ (x) · (1− Φ (x))
=


γ0 + γ1x, if x > 0

γ0 − γ1x. if x ≤ 0

(8.14)
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Figure 8.1: Graph of Function A(x)
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Figure 8.2: Graph of Function B(x)
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and

B (x) =
φ (x)

1− Φ (x)
=


δ0 + δ1x, if x > 0

δ0 + δ2x. if x ≤ 0

(8.15)

To use (8.14) and (8.15) in (8.13), we need the signs of xj ’s.

8.3.1 The Signs of xj’s

We now present a method to determine the signs of xj ’s. The sample proportion
yj
nj

is

an estimator of Φ(xj). We know that Φ(xj) > 0.5 when xj > 0 and Φ(xj) < 0.5 when

xj < 0. Therefore, the method is as follows:

1. We take xj > 0 if
yj
nj
> 0.5.

2. We take xj < 0 if
yj
nj
< 0.5.

8.3.2 Values of γ0, γ1, δ0, and δ2

We also need the values of γ0, γ1, δ0, and δ2. We now present three methods to deter-

mine these values.

Method 1

Note that function A(x) is symmetric about 0, we use two points (0, A(0)) and (2, A(2))

to fit the linear function. Similarly, we use two points (0, B(0)) and (2, B(2)) to fit the

linear function when x > 0, and use two points (0, B(0)) and (−2, B(−2)) to fit the lin-

ear function when x < 0. Then we get γ0 = 1.5957691, γ1 = 0.4163471, δ0 = 0.7978846,

δ1 = 0.7876655, δ2 = 0.3713183.

Method 2

1. Calculate x̂j = Φ(−1)(
yj
nj

) for all j’s;
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2. Find all N pairs of (x̂j , A(x̂j)) and locate their positions on the curve of A(x).

Use Least Squares Method to fit the line and get γ0 and γ1;

3. Find all N pairs of (x̂j , B(x̂j)) and locate their positions on the curve of B(x).

Use Least Squares Method to fit the line and get δ0 and δ2;

Method 3

1. Choose the uth pair containing (yi, ni) and (yj , nj), where u = 1, . . . , N(N−1)
2 ;

2. Using this chosen pair to obtain (β̂
(u)
0 , β̂

(u)
1 ) by using (8.10);

3. Calculate x̂
(u)
j = β̂

(u)
0 + β̂

(u)
1 zj for all j’s;

4. Find all N pairs of (x̂
(u)
j , A(x̂

(u)
j )) and locate their positions on the curve of A(x).

Use Least Squares Method to fit the line and get γ0 and γ1;

5. Find all N pairs of (x̂
(u)
j , B(x̂

(u)
j )) and locate their positions on the curve of B(x).

Use Least Squares Method to fit the line and get δ0 and δ2;

6. Repeat 1-6 until all

 N

2

 = N(N−1)
2 pairs are calculated;

7. Choose the best pair according to a specified criterion.

8.3.3 Analysis of Real Example

We now use our method to analyze the Cornfield data. For the Cornfield data, we

observe that all
yj
nj

’s are far less than 0.5, thus we have xj < 0 for all j’s. Then (8.13)

73



becomes
N∑
j=1

yj (γ0 − γ1 · (β0 + β1zj))−
N∑
j=1

nj (δ0 + δ2 · (β0 + β1zj)) = 0,

N∑
j=1

zjyj (γ0 − γ1 · (β0 + β1zj))−
N∑
j=1

zjnj (δ0 + δ2 · (β0 + β1zj)) = 0.

⇒


(
γ1

N∑
j=1

yj + δ2

N∑
j=1

nj

) (
γ1

N∑
j=1

yjzj + δ2

N∑
j=1

njzj

)
(
γ1

N∑
j=1

yjzj + δ2

N∑
j=1

njzj

) (
γ1

N∑
j=1

yjz
2
j + δ2

N∑
j=1

njz
2
j

)

 β0

β1



=


γ0

N∑
j=1

yj − δ0

N∑
j=1

nj

γ0

N∑
j=1

yjzj − δ0

N∑
j=1

njzj



(8.16)

Equation (8.16) gives us β̂0

β̂1

 =


(
γ1

N∑
j=1

yj + δ2
N∑
j=1

nj

) (
γ1

N∑
j=1

yjzj + δ2
N∑
j=1

njzj

)
(
γ1

N∑
j=1

yjzj + δ2
N∑
j=1

njzj

) (
γ1

N∑
j=1

yjz
2
j + δ2

N∑
j=1

njz
2
j

)

−1

γ0

N∑
j=1

yj − δ0
N∑
j=1

nj

γ0

N∑
j=1

yjzj − δ0
N∑
j=1

njzj



=



(
γ1

N∑
j=1

yjz
2
j + δ2

N∑
j=1

njz
2
j

)
−

(
γ1

N∑
j=1

yjzj + δ2
N∑
j=1

njzj

)

−

(
γ1

N∑
j=1

yjzj + δ2
N∑
j=1

njzj

) (
γ1

N∑
j=1

yj + δ2
N∑
j=1

nj

)



γ0

N∑
j=1

yj − δ0
N∑
j=1

nj

γ0

N∑
j=1

yjzj − δ0
N∑
j=1

njzj


(
γ1

N∑
j=1

yj+δ2
N∑

j=1
nj

)(
γ1

N∑
j=1

yjz
2
j +δ2

N∑
j=1

njz
2
j

)
−
(
γ1

N∑
j=1

yjzj+δ2
N∑

j=1
njzj

)2

(8.17)

The solutions β̂0 and β̂1 in (8.17) are the estimators of β0 and β1 by our proposed method.

Since we have three methods to obtain the values of γ0, γ1, δ0, and δ2, we present three

results of the analysis.

Method 1
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We use (8.17) to get β̂0 = −3.09881 and β̂1 = 0.009909. Figure 8.3 and 8.4 demon-

strate the fit of function A(x) and B(x). Figure 8.5 demonstrates the comparison of our

method 1 with the standard method.

Figure 8.3: Fit of Function A(x) of Method 1

Method 2

We use (8.17) to get β̂0 = −3.24837 and β̂1 = 0.012232. Figure 8.6 and 8.7 demon-

strate the fit of function A(x) and B(x). Figure 8.8 demonstrates the comparison of our

method 2 with the standard method.

Before we present the result of Method 3, we present our list of criterion functions. We
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Figure 8.4: Fit of Function B(x) of Method 1

Figure 8.5: Comparison of Standard Method with Method 1 (Cornfield Data)
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Figure 8.6: Fit of Function A(x) of Method 2 (Cornfield Data)

Figure 8.7: Fit of Function B(x) of Method 2 (Cornfield Data)
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Figure 8.8: Comparison of Standard Method with Method 2 (Cornfield Data)

are interested in ∆, −2 logL, Deviance(D), Pearson’s χ2 and the goodness of fit for

A(x) and B(x). The definitions are

∆ =

N∑
i=1

|yi − ŷi|, (8.18)

and

D = 2

N∑
i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi) log

(
ni − yi
ni − ŷi

)]
, (8.19)

and

χ2 =

N∑
i=1

(yi − nip̂i)2

nip̂i (1− p̂i)
, (8.20)

and

A(f) =

N∑
i=1

|Ai − Âi|, (8.21)

and

B(f) =
N∑
i=1

|Bi − B̂i|, (8.22)
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where ŷi = nip̂i = niΦ(β̂0 + β̂1zi), Ai and Bi are the values on the curve, Âi and B̂i are

the corresponding values of the fitted line.

Method 3

Method 3 for the Cornfield data gives 8(8−1)
2 = 28 sets of values of the above criteria.

We find the 1st pair containing observation (y1, n1) and (y2, n2) (denoted by (1,2) for

simplicity) is unusually bad. From the remaining 27 results, by selecting the minimum

−2 logL, D, Pearson’s χ2 and ∆, we find that the (5,8) pair gives us the best result.

We have β̂0 = −3.11237 and β̂1 = 0.011427. Figure 8.9 and 8.10 demonstrate the fit of

function A(x) and B(x) for (5,8) pair. Figure 8.11 demonstrates the comparison of our

method 3 for (5,8) pair with the standard method.

Figure 8.9: Fit of Function A(x) of Method 3 (Pair (5,8)) (Cornfield Data)
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Figure 8.10: Fit of Function B(x) of Method 3 (Pair (5,8)) (Cornfield Data)

We now present Table 8.1 where we compare the estimates of β0, β1 and the correspond-

ing values of those criteria for these three different methods.

Note: In Table 8.1, SM(·) stands for “Standard Method (·)” where we minimize the

criterion function “·” to get estimates β̂0 and β̂1.

From Table 8.1, we see that Method 2 and Method 3 for the majority of

pairs perform as good as the standard method by all criterion functions,

even better with respect to some criteria. The strength of our methods is

that we have the exact closed form solution of the MLEEs by using the pro-

posed linear approximation.
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Table 8.1: Comparison of Standard Method with Our Linear Approximation Methods
(Cornfield Data)

Method (β̂0, β̂1) ∆ −2 logL D χ2 A(f) B(f)

SM(−2 logL) (-3.19699, 0.012053) 17.17 38.76 6.06 6.51 NA NA

SM(D) (-3.19699, 0.012053) 17.17 38.76 6.06 6.51 NA NA

SM(χ2) (-3.07957, 0.011359) 18.63 38.94 6.24 6.31 NA NA

M1 (-3.09881, 0.009909) 32.76 54.28 21.58 27.14 0.82347 0.58769

M2 (-3.24837, 0.012232) 16.45 38.99 6.28 7.14 0.12307 0.09250

M3 (1,3) (-3.19863, 0.011734) 16.86 39.56 6.86 7.90 0.16925 0.12601

M3 (1,4) (-3.21296, 0.011843) 16.72 39.50 6.80 7.85 0.15920 0.11949

M3 (1,5) (-3.18117, 0.011601) 17.02 39.64 6.93 7.96 0.18396 0.13678

M3 (1,6) (-3.29146, 0.012456) 15.98 39.24 6.54 7.61 0.14087 0.10589

M3 (1,7) (-3.22376, 0.011926) 16.62 39.46 6.76 7.82 0.15697 0.11785

M3 (1,8) (-3.30747, 0.012584) 15.82 39.20 6.50 7.58 0.13933 0.10515

M3 (2,3) (-4.21542, 0.019536) 33.44 49.83 17.12 18.50 0.89010 0.66147

M3 (2,4) (-3.37477, 0.013493) 19.21 39.43 6.73 7.16 0.23688 0.17809

M3 (2,5) (-3.06176, 0.011294) 19.23 39.09 6.38 6.34 0.11085 0.08319

M3 (2,6) (-3.05797, 0.011267) 19.26 39.09 6.39 6.34 0.10984 0.08244

M3 (2,7) (-2.89590, 0.010158) 20.70 39.63 6.93 6.61 0.11042 0.08237

M3 (2,8) (-2.91557, 0.010291) 20.52 39.54 6.84 6.55 0.10660 0.07965

M3 (3,4) (-3.21355, 0.011883) 16.74 39.35 6.65 7.63 0.15056 0.11304

M3 (3,5) (-3.18690, 0.011616) 16.95 39.76 7.06 8.15 0.19488 0.14483

M3 (3,6) (-3.25442, 0.012281) 16.39 38.97 6.27 7.13 0.12391 0.09346

M3 (3,7) (-3.21115, 0.011859) 16.76 39.38 6.68 7.67 0.15237 0.11439

M3 (3,8) (-3.25056, 0.012244) 16.43 39.00 6.30 7.16 0.12402 0.09320

M3 (4,5) (-3.21365, 0.011682) 16.94 40.47 7.77 9.18 0.24578 0.18227

M3 (4,6) (-3.22257, 0.012127) 16.76 38.84 6.13 6.81 0.11426 0.08607

M3 (4,7) (-3.21334, 0.011871) 16.73 39.39 6.69 7.70 0.15317 0.11499

M3 (4,8) (-3.21913, 0.012057) 16.76 38.92 6.22 6.96 0.11687 0.08780

M3 (5,6) (-3.06344, 0.011298) 19.16 39.07 6.37 6.33 0.10904 0.08184

M3 (5,7) (-3.14759, 0.011517) 17.45 39.08 6.38 7.07 0.12973 0.09711

M3 (5,8) (-3.11237, 0.011427) 17.93 38.83 6.13 6.50 0.10474 0.07852

M3 (6,7) (-3.48619, 0.013330) 17.18 42.71 10.01 12.84 0.27785 0.20882

M3 (6,8) (-3.26623, 0.012337) 16.26 39.05 6.34 7.27 0.12752 0.09619

M3 (7,8) (-2.78598, 0.009564) 22.98 40.78 8.07 7.32 0.13946 0.10386
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Figure 8.11: Comparison of Standard Method with Method 3 (Pair (5,8)) (Cornfield
Data)

For Cornfield data, we now perform a detailed study of Method 1. We use two points

(0, A(0)) and (x0, A(x0)) to fit a line and we also use two points (0, B(0)) and (x2, B(x2))

to fit another line when x < 0. However, instead of using x0 = 2 and x2 = −2, this time

we search for x0, x2 within the range (1.5, 2.5) and (−2.5,−1.5). We use step=0.2 to find

γ1 and δ2 for every pair of x0, x2, then we use equation (8.17) to obtain the estimates of

β0 and β1. We want to find how our choice of x0, x2 will influence the estimates of β0

and β1. Table 8.2 gives the details.

In Table 8.2, we observe the following:

1. When the absolute value of x is increasing, the estimates of both β0 and β1 are

closer to the standard method estimates. In terms of the closeness of our estimates

of β0 and β1 to the standard method estimates, the better absolute values of x0

82



Table 8.2: Region Search of Linear Approximation Method 1 (Cornfield Data)

x2 = −1.5 x2 = −1.7 x2 = −1.9

x0 = 1.5 (-2.57564, 0.007811) (-2.75709, 0.008423) (-2.95857, 0.009111)

x0 = 1.7 (-2.58643, 0.007948) (-2.76903, 0.008577) (-2.97179, 0.009283)

x0 = 1.9 (-2.59622, 0.008075) (-2.77982, 0.008718) (-2.98369, 0.009441)

x0 = 2.1 (-2.60503, 0.008191) (-2.78949, 0.008847) (-2.99431, 0.009584)

x0 = 2.3 (-2.61288, 0.008295) (-2.79808, 0.008963) (-3.00371, 0.009713)

x0 = 2.5 (-2.61984, 0.008390) (-2.80567, 0.009068) (-3.01197, 0.009829)

x2 = −2.1 x2 = −2.3 x2 = −2.5

x0 = 1.5 (-3.17951, 0.009874) (-3.41856, 0.010710) (-3.67369, 0.011613)

x0 = 1.7 (-3.19414, 0.010067) (-3.43472, 0.010925) (-3.69146, 0.011854)

x0 = 1.9 (-3.20725, 0.010243) (-3.44911, 0.011122) (-3.70719, 0.012072)

x0 = 2.1 (-3.21889, 0.010403) (-3.46182, 0.011300) (-3.72100, 0.012270)

x0 = 2.3 (-3.22914, 0.010547) (-3.47295, 0.011460) (-3.73302, 0.012446)

x0 = 2.5 (-3.23811, 0.010675) (-3.48265, 0.011602) (-3.74343, 0.012604)

and x2 are close to 2.

2. As the value of β̂0 increases with x, the corresponding value of β̂1 decreases.

Finally, we consider the initial value choice for the standard method. Method 3 gives us

the best pair (5,8). We use the estimates β̂0 and β̂1 obtained from the best pair as the

initial value for the standard method. Table 8.3 gives the result.

In Table 8.3, we see that our linear approximation also provides a better

initial value for the standard method with respect to the number of iteration

steps. It is a substantial improvement on the efficiency of the standard

method.
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Table 8.3: Different Initial Values for Standard Method (Cornfield Data)

Method Initial Value m (β̂0, β̂1)

SM (−2 logL) (0,0) 6 (-3.19699, 0.012053)

(-3.11237, 0.011427) 3 (-3.19699, 0.012053)

SM (D) (0,0) 6 (-3.19699, 0.012053)

(-3.11237, 0.011427) 3 (-3.19699, 0.012053)

SM (χ2) (0,0) 8 (-3.07957, 0.011359)

(-3.11237, 0.011427) 2 (-3.07957, 0.011359)

8.3.4 Simulation Study

We now present a simulation study of our approximation method. Let β0 = −3.2,

β1 = 0.01 and we use the same zi’s and ni’s as in Cornfield data shown in Table 3.2.

For each covariate group corresponding to zi, we use R to randomly generate a yi based

on probit regression assumption. Then we use both our linear approximation method

and the standard method to obtain the estimates of β0 and β1. We do this for T times

and compare the results. Table 8.4 shows the simulation result for Method 2.

Table 8.4: Simulation of Method 2

T = 25, 000 T = 50, 000 T = 100, 000

β̂0 Mean -3.25569 -3.26397 -3.26209

Linear Median -3.20971 -3.22060 -3.21683

Approximation β̂1 Mean 0.010134 0.010188 0.010170

Median 0.009898 0.009964 0.009939

β̂0 Mean -3.20167 -3.20786 -3.20616

Standard Median -3.19632 -3.20577 -3.20116

Method β̂1 Mean 0.009966 0.010007 0.009991

Median 0.009980 0.010034 0.010005
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Note: The true values of β0 and β1 are β0 = −3.2 and β1 = 0.01.

We now present the histograms of the bias of β̂0 and β̂1 for both our proposed linear

approximation method and the standard method.

Figure 8.12: Histogram of Bias of β̂0 of Simulation for Method 2 (T = 25, 000)

Figure 8.13: Histogram of Bias of β̂1 of Simulation for Method 2 (T = 25, 000)

Moreover, we present in Table 8.5 the counts of estimates falling in some chosen intervals

centered at the true values for both methods.

In Table 8.4, Table 8.5 and Figures 8.12-8.17, we see that for the simulated
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Figure 8.14: Histogram of Bias of β̂0 of Simulation for Method 2 (T = 50, 000)

Figure 8.15: Histogram of Bias of β̂1 of Simulation for Method 2 (T = 50, 000)

Figure 8.16: Histogram of Bias of β̂0 of Simulation for Method 2 (T = 100, 000)
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Figure 8.17: Histogram of Bias of β̂1 of Simulation for Method 2 (T = 100, 000)

Table 8.5: Counts of Estimates in Certain Intervals for Both Methods of Simulation for
Method 2

Estimate Interval T = 25, 000 T = 50, 000 T = 100, 000

LA SM LA SM LA SM

(-3.2-0.4,-3.2+0.4) 15140 15967 30204 32050 60410 64073

β̂0 (-3.2-0.8,-3.2+0.8) 22253 23265 44513 46532 88958 93018

(-3.2-1.2,-3.2+1.2) 24220 24814 48329 49641 96615 99253

(0.01-0.003,0.01+0.003) 16315 17052 32772 34208 65567 68501

β̂1 (0.01-0.006,0.01+0.006) 23023 23830 46107 47653 92083 95215

(0.01-0.009,0.01+0.009) 24632 24918 49190 49822 98304 99679
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data our proposed linear approximation method 2 performs as good as the

standard method.

Similarly, we also present the simulation result for Method 3.

Table 8.6: Simulation of Method 3

T = 25, 000 T = 50, 000 T = 100, 000

β̂0 Mean -3.18819 -3.18699 -3.19041

Linear Median -3.18539 -3.18136 -3.18556

Approximation β̂1 Mean 0.009881 0.009877 0.009897

Median 0.009896 0.009864 0.009912

β̂0 Mean -3.19979 -3.19808 -3.20198

Standard Median -3.19910 -3.19453 -3.20025

Method β̂1 Mean 0.009952 0.009945 0.009968

Median 0.009979 0.009949 0.009997

Note: The true values of β0 and β1 are β0 = −3.2 and β1 = 0.01.

Figure 8.18: Histogram of Bias of β̂0 of Simulation for Method 3 (T = 25, 000)
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Figure 8.19: Histogram of Bias of β̂1 of Simulation for Method 3 (T = 25, 000)

Figure 8.20: Histogram of Bias of β̂0 of Simulation for Method 3 (T = 50, 000)

Figure 8.21: Histogram of Bias of β̂1 of Simulation for Method 3 (T = 50, 000)
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Figure 8.22: Histogram of Bias of β̂0 of Simulation for Method 3 (T = 100, 000)

Figure 8.23: Histogram of Bias of β̂1 of Simulation for Method 3 (T = 100, 000)

Table 8.7: Counts of Estimates in Certain Intervals for Both Methods of Simulation for
Method 3

Estimate Interval T = 25, 000 T = 50, 000 T = 100, 000

LA SM LA SM LA SM

(-3.2-0.4,-3.2+0.4) 16267 16148 32735 32482 65073 64699

β̂0 (-3.2-0.8,-3.2+0.8) 23395 23330 46900 46837 93512 93400

(-3.2-1.2,-3.2+1.2) 24858 24861 49679 49704 99363 99363

(0.01-0.003,0.01+0.003) 17418 17306 34939 34705 69425 68905

β̂1 (0.01-0.006,0.01+0.006) 23930 23910 47897 47911 95622 95575

(0.01-0.009,0.01+0.009) 24932 24940 49859 49862 99701 99725
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In Table 8.6, Table 8.7 and Figures 8.18-8.23, we see that for the simulated

data our proposed linear approximation method 3 also performs as good as

the standard method. Moreover, by comparing Table 8.5 and Table 8.7, we

find Method 3 is closer to standard method than Method 2.

Our analysis of the Cornfield data and simulated data demonstrate our

Method 2 and Method 3 perform as good as the standard method, even

better with respect to some criteria. These two methods also provide a

better initial value for the standard method, which would improve the ef-

ficiency of the iterative method in terms of the number of iteration steps.

Most importantly, these two methods give us the exact closed form solu-

tions of MLEs under our proposed linear approximation framework, while

the standard method gives only the numerical solutions. With the closed

form solutions, we plan to perform deeper research and obtain more infor-

mation and properties of the estimators.

8.3.5 Properties

We now present some theoretical properties of our estimators. In (8.17), we denote

uj = γ1yj + δ2nj , vj = γ0yj − δ0nj . (8.23)

Then our estimators become

 β̂0

β̂1

 =



N∑
i=1

N∑
j=1

uizivj(zi−zj)

N∑
i=1

N∑
j=1

uiujzi(zi−zj)

−
N∑
i=1

N∑
j=1

uivj(zi−zj)

N∑
i=1

N∑
j=1

uiujzi(zi−zj)


. (8.24)
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Let f1 (y1, . . . , yN ) =
N∑
i=1

N∑
j=1

uizivj (zi − zj), f2 (y1, . . . , yN ) = −
N∑
i=1

N∑
j=1

uivj (zi − zj) and

g (y1, . . . , yN ) =
N∑
i=1

N∑
j=1

uiujzi (zi − zj). We have

 β̂0

β̂1

 =


f1(y1,...,yN )
g(y1,...,yN )

f2(y1,...,yN )
g(y1,...,yN )

 =

 h1 (y1, . . . , yN )

h2 (y1, . . . , yN )

 . (8.25)

Since we have the closed form expressions of these estimators, we are able to calculate

their expectations and variances. Directly calculating the expectation and variance of

β̂0 and β̂1 is difficult. Thus we consider the first order approximation of Taylor series

expansion.

We take β̂0 as an example. We have

h1 (y1, . . . , yN ) ≈ h1 (0, . . . , 0) + y1 · ∂
∂y1

h1 (y1, . . . , yN ) |(0,...,0) + y2 · ∂
∂y2

h1 (y1, . . . , yN ) |(0,...,0)

+ · · ·+ yN · ∂
∂yN

h1 (y1, . . . , yN ) |(0,...,0).

(8.26)

Denote a0 = h1 (0, . . . , 0) and ai
ni

= ∂
∂yi
h1 (y1, . . . , yN ) |(0,...,0). Then we have

E
(
β̂0

)
= E (h1 (y1, . . . , yN )) ≈ a0 +

a1

n1
E (y1) +

a2

n2
E (y2) + · · ·+ aN

nN
E (yN ) . (8.27)

Since E (yi) = nipi = ni · Φ (β0 + β1zi), we write

E
(
β̂0

)
≈ a0 + a1Φ (β0 + β1z1) + a2Φ (β0 + β1z2) + · · ·+ aNΦ (β0 + β1zN ) . (8.28)

Now we use the Taylor series expansion again to approximate Φ (β0 + β1zi). The first

order approximation is

Φ (β0 + β1zi) ≈
1

2
+

1√
2π

(β0 + β1zi) . (8.29)

Plugging (8.29) in (8.28), we have

E
(
β̂0

)
≈

a0 +

N∑
i=1

ai

2

+

N∑
i=1

ai
√

2π
β0 +

N∑
i=1

aizi
√

2π
β1. (8.30)
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We observe from (8.30) that E(β̂0) = β0 when

1. a0 +

N∑
i=1

ai

2 = 0, and

2.
N∑
i=1

ai =
√

2π, and

3.
N∑
i=1

aizi = 0.

Since all ai’s depend on the values of γ0, γ1, δ0 and δ2, we are able to select these values

such that E(β̂0) = β0 holds.

Furthermore, we present the exact expressions of ai’s in (8.30),

a0 = h1 (0, . . . , 0) =

N∑
i=1

N∑
j=1

uizivj (zi − zj)

N∑
i=1

N∑
j=1

uiujzi (zi − zj)
|(0,...,0) =

N∑
i=1

N∑
j=1
−δ0δ2ninjzi (zi − zj)

N∑
i=1

N∑
j=1

δ2
2ninjzi (zi − zj)

,

(8.31)

and

ak
nk

= ∂
∂yk

h1 (y1, . . . , yN ) |(0,...,0)

=

N∑
i=1

ni(zk−zi)(−γ1δ0zk−γ0δ2zi)
N∑
i=1

N∑
j=1

(δ2
2ninj)zi(zi−zj)+

N∑
i=1

N∑
j=1

(δ0δ2ninj)zi(zi−zj)
N∑
i=1

γ1δ2ni(zk−zi)2

(
N∑
i=1

N∑
j=1

(δ2
2ninj)zi(zi−zj)

)2

.

(8.32)

We have the similar derivation for β̂1.
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Chapter 9

GSC and PGSC Methods for

Probit Regression Model

9.1 Introduction

In this chapter, we apply the GSC and PGSC methods to probit regression model. We

present the details of the algorithms, analyze the real data and compare them with the

standard method. We find that all the properties of these two methods established for

logistic regression model in Chapter 6 also hold for probit regression model.

9.2 GSC Method

We recall the GSC method introduced in Chapter 2. Similar as the procedure in Chapter

4, we have the GSC method for probit regression model as follows:

1. Set initial values of β(0) and iteration step m = 0.

2. For each j, compute U
∗(m)
j = 1

1+s
(m)
j

where s
(m)
j = θ

(m)
j =

Φ
(
β(m)′zj

)
1−Φ(β(m)′zj)

.
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3. Solve an MLE problem

β(m+1) = arg max
β

N∑
j=1

[
yj log(θj)− njU∗(m)

j θj

]
. (9.1)

4. If the convergence criterion is reached, stop; else increase m and return to step 2.

For the Cornfield data, we have θ
(m)
j =

Φ
(
β

(m)
0 +β

(m)
1 zj

)
1−Φ

(
β

(m)
0 +β

(m)
1 zj

) . If we denote Φj = Φ (β0 + β1zj)

and Φ
(m)
j = Φ

(
β

(m)
0 + β

(m)
1 zj

)
, then the MLE problem becomes

β(m+1) = arg max
β

N∑
j=1

(
yj · log

Φj

1− Φj
− nj

(
1− Φ

(m)
j

) Φj

1− Φj

)
. (9.2)

We take the derivative of objective function in (9.2) with respect to β0 and β1, and get
N∑
j=1

nj ·
φ

(m+1)
j

Φ
(m+1)
j

(
1−Φ

(m+1)
j

)
(
yj
nj
− Φ

(m+1)
j

(
1−Φ

(m)
j

)
(

1−Φ
(m+1)
j

)
)

= 0,

N∑
j=1

njzj ·
φ

(m+1)
j

Φ
(m+1)
j

(
1−Φ

(m+1)
j

)
(
yj
nj
− Φ

(m+1)
j

(
1−Φ

(m)
j

)
(

1−Φ
(m+1)
j

)
)

= 0.

(9.3)

Therefore, for the Cornfield data, the algorithm works as follows:

1. Set initial values of β
(0)
0 , β

(0)
1 and iteration step m = 0.

2. Solve an equation


N∑
j=1

nj ·
φ

(m+1)
j

Φ
(m+1)
j

(
1−Φ

(m+1)
j

)
(
yj
nj
− Φ

(m+1)
j

(
1−Φ

(m)
j

)
(

1−Φ
(m+1)
j

)
)

= 0,

N∑
j=1

njzj ·
φ

(m+1)
j

Φ
(m+1)
j

(
1−Φ

(m+1)
j

)
(
yj
nj
− Φ

(m+1)
j

(
1−Φ

(m)
j

)
(

1−Φ
(m+1)
j

)
)

= 0.

3. If the convergence criterion is reached, stop; else increase m and return to step 2.

Furthermore, for N = 2, we find the exact solution of (9.3) as

β
(m+1)
0 =

ziΦ
−1

 yj

yj+nj

(
1−Φ

(
β

(m)
0 +β

(m)
1 zj

))
−zjΦ−1

 yi

yi+ni

(
1−Φ

(
β

(m)
0 +β

(m)
1 zi

))


zi−zj ,

β
(m+1)
1 =

Φ−1

 yi

yi+ni

(
1−Φ

(
β

(m)
0 +β

(m)
1 zi

))
−Φ−1

 yj

yj+nj

(
1−Φ

(
β

(m)
0 +β

(m)
1 zj

))


zi−zj .

(9.4)
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9.3 PGSC Method

We now apply the PGSC method to probit regression model with the Cornfield data.

We present Table 9.1 where we see that ∆ attains its minimum value 13.55 for the 14th

pair containing observations 3 and 4. We also apply the GSC method and the standard

method to the Cornfield data and present the comparison in Table 9.2. In Table 9.3, we

present the comparison of different initial values for the standard method.

From Tables 9.1-9.3, we get similar results as in Chapter 5. In Table 9.1, we

observe that the solution of the PGSC method is identical with the solution

of standard method with paried observations. In Table 9.2, we observe that

the PGSC method gives a better estimate than the GSC method for whole

data with respect to the criterion function ∆. However, the GSC method

for whole data performs better than the PGSC method with respect to the

criterion function −2 logL. In Table 9.3, we observe that, for the standard

iterative method, the number of iteration steps by using the PGSC method

solution as the initial value is smaller than using (0,0).

9.4 Properties of the GSC and PGSC Methods

The properties of the GSC and PGSC methods for logistic regression model

also hold for probit regression model. In other words, we have the following

theorems similar as in Chapter 6.

Theorem 11 In the GSC method (9.3), if two consecutive estimates at mth step and
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Table 9.1: Comparison Between PGSC Method and Standard Method with Paired Ob-
servations for All Pairs (Cornfield Data)

PGSC Method Standard Method

Pair (β
(m)
0 ,β

(m)
1 ) ∆ m (β̂0, β̂1) ∆

(1,2) (-8.480322, 0.057492560) 363.95 7 (-8.480322, 0.057492560) 363.95

(1,3) (-3.992097, 0.017239423) 15.54 7 (-3.992097, 0.017239423) 15.54

(1,4) (-3.954339, 0.016900779) 14.54 7 (-3.954339, 0.016900779) 14.54

(1,5) (-4.038438, 0.017655036) 17.22 8 (-4.038438, 0.017655036) 17.22

(1,6) (-3.751510, 0.015081692) 17.59 7 (-3.751510, 0.015081686) 17.59

(1,7) (-3.926059, 0.016647146) 14.29 9 (-3.926059, 0.016647146) 14.29

(1,8) (-3.710823, 0.014716783) 18.83 9 (-3.710823, 0.014716783) 18.83

(2,3) (1.301190, -0.023013714) 63.21 7 (1.301190, -0.023013714) 63.21

(2,4) (-1.082470, -0.003395111) 39.75 7 (-1.082470, -0.003395111) 39.75

(2,5) (-2.026644, 0.004375866) 29.71 7 (-2.026644, 0.004375866) 29.71

(2,6) (-2.039172, 0.004478975) 29.66 7 (-2.039172, 0.004478975) 29.66

(2,7) (-2.615293, 0.009220708) 33.40 10 (-2.615293, 0.009220708) 33.40

(2,8) (-2.540600, 0.008605959) 32.07 9 (-2.540600, 0.008605951) 32.07

(3,4) (-3.858502, 0.016223501) 13.55 6 (-3.858502, 0.016223490) 13.55

(3,5) (-4.101404, 0.018070648) 17.76 8 (-4.101404, 0.018070648) 17.76

(3,6) (-3.519194, 0.013643196) 15.27 8 (-3.519194, 0.013643196) 15.27

(3,7) (-3.879598, 0.016383916) 13.56 9 (-3.879598, 0.016383916) 13.56

(3,8) (-3.549794, 0.013875941) 14.82 8 (-3.549794, 0.013875941) 14.82

(4,5) (-4.381248, 0.019917807) 22.02 8 (-4.381248, 0.019917807) 22.02

(4,6) (-3.310835, 0.012353049) 15.69 8 (-3.310835, 0.012353049) 15.69

(4,7) (-3.887688, 0.016429752) 13.61 9 (-3.887688, 0.016429752) 13.61

(4,8) (-3.459888, 0.013406431) 14.24 8 (-3.459881, 0.013406431) 14.24

(5,6) (-2.089140, 0.004788395) 28.93 6 (-2.089126, 0.004788289) 28.93

(5,7) (-3.641437, 0.015034536) 15.49 8 (-3.641437, 0.015034524) 15.49

(5,8) (-3.148148, 0.011778521) 17.64 9 (-3.148148, 0.011778519) 17.64

(6,7) (-4.847073, 0.021865352) 31.74 10 (-4.847073, 0.021865347) 31.74

(6,8) (-3.594358, 0.014108596) 15.82 11 (-3.594358, 0.014108595) 15.82

(7,8) (-2.108941, 0.006351866) 56.18 9 (-2.108941, 0.006351866) 56.18
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Table 9.2: Comparison Between GSC Method for General N , PGSC Method and Stan-
dard Method (Cornfield Data)

Method
(
β̂0, β̂1

)
∆ −2 logL

GSC (Whole Data) (-3.196911, 0.01205205) 17.17103 38.75740

PGSC (-3.858502, 0.01622350) 13.55034 42.68684

Standard (Whole Data) (-3.196988, 0.01205270) 17.17140 38.75740

Table 9.3: Different Initial Values of Standard Method (Cornfield Data)

Initial Value m β
(m)
0 β

(m)
1 ∆ −2 logL

(0,0) 6 -3.197 0.0121 17.17 38.76

(-3.859, 0.0162) 3 -3.197 0.0121 17.17 38.76

(m + 1)th step are close enough, i.e., β
(m)
0 is close enough to β

(m+1)
0 and β

(m)
1 is close

enough to β
(m+1)
1 , then the estimates β

(m+1)
0 and β

(m+1)
1 will be identical with the true

solution of (8.7), β̂0 and β̂1. In other words, if we define β
(m)
0 = β

(m+1)
0 , β

(m)
1 = β

(m+1)
1

up to a certain decimal place, then we must have β
(m)
0 = β

(m+1)
0 = β̂0, β

(m)
1 = β

(m+1)
1 =

β̂1 up to the same decimal place.

Theorem 12 In the GSC method (9.3), if we use the true solution of (8.7) to be the

initial value of (9.3), i.e., β
(0)
0 = β̂0, β

(0)
1 = β̂1, then (9.3) would stop at the 1st iteration

step and give the same solution β
(1)
0 = β̂0 and β

(1)
1 = β̂1.

Theorem 13 In the PGSC method (9.4), if two consecutive estimates at mth step and

(m + 1)th step are close enough, i.e., β
(m)
0 is close enough to β

(m+1)
0 and β

(m)
1 is close

enough to β
(m+1)
1 , then the estimates β

(m+1)
0 and β

(m+1)
1 will be identical with the true

solution of (8.10), β̂0 and β̂1. In other words, if we define β
(m)
0 = β

(m+1)
0 , β

(m)
1 = β

(m+1)
1

up to a certain decimal place, then we must have β
(m)
0 = β

(m+1)
0 = β̂0, β

(m)
1 = β

(m+1)
1 =

β̂1 up to the same decimal place.

Theorem 14 In the PGSC method (9.4), if we use the exact solution of (8.10) to be
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the initial value of (9.4), i.e., let β
(0)
0 = β̂0, β

(0)
1 = β̂1, then (9.4) would stop at the 1st

iteration step and give the same solution β
(1)
0 = β̂0 and β

(1)
1 = β̂1.

Theorem 15 Consider the PGSC equation (9.4) and the uth pair containing observa-

tions i and j. Every step of the PGSC method provides us a predicted value closer to

the real value and monotonically converges to the real value. In other words, from (9.4),

we have (β
(m)
0 , β

(m)
1 ), (β

(m+1)
0 , β

(m+1)
1 ) and (ŷ

(m)
i , ŷ

(m+1)
i ). Then ŷ

(m)
i < ŷ

(m+1)
i < yi or

yi < ŷ
(m+1)
i < ŷ

(m)
i , and finally ŷ

(m+1)
i = ŷ

(m)
i = yi. Similarly for j.

All the proofs are exactly the same as in Chapter 6 except we use a different θj and pj .
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Chapter 10

Conclusions

In this dissertation, we propose several new methods for solving the Maximum Likeli-

hood Estimating Equations (MLEEs) of logistic and probit regression models. We study

the performances of these methods by analyzing the Cornfield data (Cornfield (1962))

as well as a simulated data. We compare them with the existing methods. We also

investigate theoretical properties of these methods.

For probit regression model, we introduce a linear approximation method to solve

MLEEs. We find our method performs as good as the existing methods and even better

with respect to the ∆ criterion function defined in (8.18) and the Pearson’s

χ2 criterion function defined in (8.20). The advantage of our method is that

we find the exact closed form solution of MLEEs. With the closed form expres-

sions, we calculate the expectations of our estimates. This calculation of expectation is

not possible for the standard method. Moreover, we study the properties of the

existing Generalized Self Consistency (GSC) method. We then introduce a new method

by the repeated application of the GSC method to all paired observations. We call this
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method the PGSC method. This method provides a better initial value of parameters

for iterative methods. The number of steps for convergence to the final solution

using the better initial value is smaller than using (0,0). In addition, we find

that the PGSC method monotonically converges and its solution is identical with the

solution for standard method.

For logistic regression model, we also implement the PGSC method which has exactly

the same goodness properties as in probit regression model. Moreover, we

combine the paired observation procedure with the GSC method in another way to

propose two new methods. These two new methods also provide us a meaningful way

to choose the initial value of parameters for the iterative methods.
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A.1: Proof of equation (2.8)

EU
[
e−US

]
=
∫∞

0 e−u · e−usdu =
∫∞

0 e−u(1+s)du

= − 1
1+s

∫∞
0 e−u(1+s)d − u (1 + s)

= − 1
1+se

−u(1+s)|∞0

= 1
1+s
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A.2: Proof of equation (2.13)

l =
J∑
i=1

N∑
j=1

yij · log [pi(zj , Uj)] =
J∑
i=1

N∑
j=1

yij · log

θij · e−Uj J∑
k=2

θkj


=

J∑
i=2

N∑
j=1

yij · log

θij · e−Uj J∑
k=2

θkj

+
N∑
j=1

y1j · log

θ1j · e
−Uj

J∑
k=2

θkj


=

J∑
i=2

N∑
j=1

yij ·
[
log θij − Uj

J∑
k=2

θkj

]
+

N∑
j=1

y1j ·
[
log θ1j − Uj

J∑
k=2

θkj

]
=

J∑
i=2

N∑
j=1

yij · log θij −
J∑
i=2

N∑
j=1

(
yij · Uj

J∑
k=2

θkj

)
−

N∑
j=1

(
y1j · Uj

J∑
k=2

θkj

)
=

J∑
i=2

N∑
j=1

yij · log θij −
J∑
i=1

N∑
j=1

(
yij · Uj

J∑
k=2

θkj

)
=

J∑
i=2

N∑
j=1

yij · log θij −
N∑
j=1

((
J∑
i=1

yij

)
Uj

J∑
k=2

θkj

)
=

J∑
i=2

N∑
j=1

yij · log θij −
N∑
j=1

(
y·jUj

J∑
k=2

θkj

)
=

J∑
i=2

N∑
j=1

(yij · log θij − y·jUjθij)

=
J∑
i=2

li
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