
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Repurposing the Ubiquitous Acoustic Devices for Cross-Modality Sensing

Permalink
https://escholarship.org/uc/item/1s80d5r1

Author
Sun, Ke

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1s80d5r1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Repurposing the Ubiquitous Acoustic Devices for Cross-Modality Sensing

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Ke Sun

Committee in charge:

Professor Xinyu Zhang, Chair
Professor Rajesh K. Gupta
Professor Patrick Pannuto
Professor Tauhidur Rahman
Professor Edward Wang

2024

Copyright

Ke Sun, 2024

All rights reserved.

The Dissertation of Ke Sun is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2024

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . viii

List of Tables . xii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Opportunities for Repurposing Acoustic Sensors and Actuators in Ubiquitous

Devices . 2
1.1.1 Repurposing Loudspeakers and Microphones for Ultrasonic Sonar 2
1.1.2 Repurposing Actuators for Inaudible Sound Generation 3
1.1.3 Transforming Various Sensors into Side-channel Microphones 3
1.1.4 Repurposing Microphones for Daily-Life Sound Logging 4

1.2 Dissertation Contributions . 5

Chapter 2 Automatic Speech Privacy Protection Against Voice Assistants 9
2.1 Introduction . 9
2.2 Related Works . 12

2.2.1 Hidden Command Attacks and Defenses . 12
2.2.2 Audio Privacy Leakage and Protection . 14

2.3 Threat Analysis . 15
2.4 Automatic Jamming Control . 17

2.4.1 A Primer of Selective Jamming . 17
2.4.2 Jamming Control Pipeline . 19
2.4.3 Minimizing Wake Word Misdetection . 21
2.4.4 Maximizing Private Speech Mute Rate . 22
2.4.5 When to Resume Jamming? . 23

2.5 Practical Jamming Design . 24
2.5.1 Inaudible Jamming Sound . 24
2.5.2 Jamming a Single Microphone . 25
2.5.3 Jamming a Microphone Array . 26

2.6 Implementation . 34
2.6.1 Hardware . 34
2.6.2 Software . 34

2.7 Experimental Evaluations . 35

iv

2.7.1 Micro Benchmarks . 35
2.7.2 Latency Analysis . 37
2.7.3 Energy Consumption . 38
2.7.4 Generalization . 41

2.8 Limitations and Future Work . 43
2.9 Conclusion . 44
2.10 Acknowledgments . 44

Chapter 3 Stealing Permission-protected Private Information From Smartphone Voice
Assistant Using Zero-Permission Sensors . 45

3.1 Introduction . 45
3.2 Related Works . 49

3.2.1 Motion Leakage via Sensors on Smartphone . 49
3.2.2 Speech Recognition via Motion Sensors . 50
3.2.3 Spoken Language Understanding . 51

3.3 Threat Analysis . 52
3.4 Motion Sensor Signal (MSS) Preprocessing . 55

3.4.1 Choosing the Sensor Type and Channel . 55
3.4.2 Real-time Detection and Segmentation of Voice in MSS 56
3.4.3 Feature Extraction . 57
3.4.4 VUI Response Identification . 58

3.5 Inferring Privacy from a Single VUI Response . 59
3.5.1 Problem Statement . 59
3.5.2 Model Design . 61
3.5.3 Training Strategy . 63

3.6 Extracting Permission-protected Privacy . 65
3.6.1 One-Time Stealing . 65
3.6.2 Short-Term Contextual Inference . 66
3.6.3 Long-Term Monitoring . 68

3.7 Defense Against StealthyIMU . 69
3.7.1 Predistortion of Speech Signals . 69
3.7.2 Redesigning the Permissions . 70

3.8 Dataset and Implementation . 70
3.8.1 StealthyIMU Dataset . 70
3.8.2 Implementation . 73

3.9 Evaluation . 74
3.9.1 DNN Model Ablation Study . 74
3.9.2 One-time Stealing . 78
3.9.3 Short-term Contextual Inference . 79
3.9.4 Long-term Monitoring . 80
3.9.5 Generalization . 82
3.9.6 System Overhead Evaluation . 85
3.9.7 Defense Evaluation . 86

3.10 Conclusion . 88

v

3.11 Acknowledgments . 89

Chapter 4 Single-Channel Speech Enhancement Using Ultrasound on a Smartphone . 90
4.1 Introduction . 90
4.2 Related Work . 93

4.2.1 Audio-only Speech Enhancement . 93
4.2.2 Multi-modal Speech Enhancement . 95
4.2.3 Device-free Ultrasonic Sensing . 96

4.3 Sensing the Articulatory Gestures . 96
4.3.1 Transmitted Ultrasound Signals Design . 98
4.3.2 Mitigating Sensing Interference . 99

4.4 An Overview of UltraSE DNN Model . 100
4.5 DNN Input Feature Design . 101
4.6 Multi-modal Fusion Design . 104

4.6.1 Two-stream Feature Embedding . 104
4.6.2 Speech and Ultrasound Fusion Network . 106

4.7 cGAN-based Cross-modal Training . 106
4.7.1 Cross-modal Similarity Measurement . 109
4.7.2 cGAN-based Model Training . 112

4.8 Multi-domain Speech Enhancement . 114
4.8.1 Understanding the Pros and Cons of T-F Domains Speech Enhancement 114
4.8.2 Two-stage Multi-domain Network Design . 116

4.9 UltraSE Implementation . 118
4.9.1 UltraSpeech Dataset . 118
4.9.2 UltraSE DNN Implementation . 119

4.10 Experimental Evaluation . 119
4.10.1 Micro Benchmark Comparison . 120
4.10.2 Ablation Study . 122
4.10.3 System Efficiency . 123
4.10.4 Generalization . 124

4.11 Conclusion . 128
4.12 Acknowledgments . 129

Chapter 5 Multimodal Daily-life Logging in Free-living Environments Using Non-
Visual Egocentric Sensors on a Smartphone . 130

5.1 Introduction . 130
5.2 Related work . 136
5.3 EgoADL Setup and Data Collection . 138
5.4 Preliminary Study . 144

5.4.1 Advantages of Egocentric Sensing . 144
5.4.2 Sensing Modality Selection . 147

5.5 EgoADL Supervised Learning . 148
5.5.1 Problem Formulation . 148
5.5.2 Input and Output Design . 149

vi

5.5.3 MMFWSF Transformer . 150
5.5.4 Training Strategy . 153

5.6 EgoADL Self-supervised Learning . 154
5.6.1 Single-modal Self-Supervised Deep Clustering . 154
5.6.2 Cross-Modal Self-Supervised Deep Clustering . 156

5.7 Knowledge Distillation from Natural Language Labels . 157
5.7.1 Label Refinement . 157
5.7.2 Distilling Contextual Information from Text . 159

5.8 Implementation and Experimental Evaluation . 160
5.8.1 EgoADL Implementation and Evaluation Metrics 160
5.8.2 Micro Benchmark Analysis of EgoADL Supervised Learning Model . . . 161
5.8.3 Accuracy, Generalization and Extensibility of EgoADL SSL Model 162
5.8.4 Evaluating the Limits of Non-Visual Sensors . 167
5.8.5 Evaluation on Knowledge Distillation from Natural Language 170
5.8.6 Energy Consumption . 172

5.9 Discussion and Limitations . 173
5.10 Conclusion . 175
5.11 Acknowledgments . 176

Chapter 6 Conclusion and Future Work . 177
6.1 Dissertation Conclusion . 177
6.2 Future Work . 180

6.2.1 Multi-device Multi-modal Sensing on Ubiquitous Acoustic Devices 180
6.2.2 Resource-efficient Cross-Modality Sensing on Ubiquitous Acoustic De-

vices . 180
6.2.3 Enabling Human-AI-Sensor Interaction for Acoustic Sensing and Privacy

Protection . 181
6.2.4 Decoding Semantic Boundaries for Cross-Modality Sensing 182

Bibliography . 183

vii

LIST OF FIGURES

Figure 2.1. MicShield acts as a companion device with the VAs. 10

Figure 2.2. Analysis of “Alexa” speech signals. 17

Figure 2.3. Proof-of-the-concept experiments for jamming control pipeline design. . . . 19

Figure 2.4. MicShield automatic jamming control pipeline. 20

Figure 2.5. Analysis of private speech: “Pizzerias are convenient for a quick lunch.” . . 25

Figure 2.6. Jamming effectiveness v.s. SNR. Frequency distortion jamming can effec-
tively protect the speech privacy for the single-microphone VA when the
speech SNR is less than −15 dB. 27

Figure 2.7. Jamming effectiveness for different jamming methods. 28

Figure 2.8. SPL heat map for ultrasonic transducer. 29

Figure 2.9. Acoustic overloading of received microphone. (a) zoomed-in saturated
jammed signal in time domain; (b) spectrogram of jammed signal. 30

Figure 2.10. Geometric model for MicShield design. 30

Figure 2.11. Hardware implementations and setups of MicShield. 31

Figure 2.12. Software stack design and implementations. 31

Figure 2.13. Micro benchmark using the wake word of “Alexa”. 32

Figure 2.14. Analysis of system time consumption. 37

Figure 2.15. An example instantaneous power. 38

Figure 2.16. Micro benchmark using the wake words of “OK Google” & “Hey Google”. 40

Figure 3.1. StealthyIMU threat model. 46

Figure 3.2. Motion sensor channels SNR . 56

Figure 3.3. Ultra Lightweight Voice Detection Pipeline . 57

Figure 3.4. Feature Extraction and Speaker Identification . 58

Figure 3.5. Example to convert the navigation voice text to private intents 59

viii

Figure 3.6. Model Architecture . 61

Figure 3.7. Knowledge Distillation Training Strategy. 63

Figure 3.8. Trace and commands in navigation . 65

Figure 3.9. Pipeline of the speech predistortion defense. 69

Figure 3.10. Google Assistant Voice Identification. 77

Figure 3.11. GPS trace recovery examples . 78

Figure 3.12. Short-term GPS distance error . 81

Figure 3.13. Long-term attack results . 81

Figure 3.14. Long-term home address inference. 81

Figure 3.15. Generalization across different smartphones, volume levels, and motion
artifacts. 84

Figure 3.16. Predistortion Speech Defense . 87

Figure 4.1. UltraSE targets the scenario where the user holds the smartphone to record
the speech in a noisy environment. UltraSE uses ultrasound sensing as
a complementary modality to separate the desired speaker’s voice from
interferences. 91

Figure 4.2. T-F domain features of an example speech segment: “Don’t ask me to carry
an oily rage like that.” . 97

Figure 4.3. DNN input feature design . 103

Figure 4.4. Overview of UltraSE’s multi-modal multi-domain DNN design. Convolu-
tion layer notation: Channels@Kernel size . 104

Figure 4.5. Two-stream feature embedding. Channels@Kernel size in convolution layer. 105

Figure 4.6. Architecture of the T-F domain cross-modal similarity measurement net-
work (i.e., the Discriminator). 109

Figure 4.7. Overview of UltraSE’s cGAN-based cross-modal training. 110

Figure 4.8. PDF of outputs from the cross-modal similarity measurement network. . . . 111

Figure 4.9. Benchmark of the T-F domain methods. 115

ix

Figure 4.10. T domain phase network. Channels@Kernel size in convolution layer. . . . 117

Figure 4.11. Noisy SiSNR v.s. Enhanced SiSNR. 122

Figure 4.12. SNR of articulatory gestures. 126

Figure 4.13. SNRg under hand gesture interference . 127

Figure 4.14. Real-world Usage WER. 128

Figure 5.1. EgoADL is an egocentric ADL sensing system, leveraging an on-body
smartphone as a sensor hub to capture the audio, Wi-Fi CSI, and motion
sensor signals simultaneously. 131

Figure 5.2. EgoADL data in the time domain, including Wi-Fi CSI, audio, accelerome-
ter signals, ground truth labels and egocentric video from a head-mounted
GoPro for ground truth labeling. 138

Figure 5.3. EgoADL demographics of participants. 139

Figure 5.4. Implementation pipeline of the EgoADL preprocessing and labeling. 140

Figure 5.5. EgoADL labeling tool . 141

Figure 5.6. State-based human behaviors in EgoADL dataset. 142

Figure 5.7. Event-based human behaviors in EgoADL dataset. 143

Figure 5.8. Egocentric v.s. Device-free Sensing SNR for audio and Wi-Fi. 144

Figure 5.9. Egocentric SINR for the same benchmark sound event and human activity
as in Fig. 5.8. 145

Figure 5.10. EgoADL dataset labels word cloud. 146

Figure 5.11. Venn diagram visualizes the advantages of each modality. 147

Figure 5.12. EgoADL Multi-Modal Frame-Wise Slow-Fast (MMFWSF) transformer
design with modality-specific encoders and a transformer-based seq-2-seq
model for translating sensory feature into natural language. 149

Figure 5.13. EgoADL SSL methods. 155

Figure 5.14. Representative label refinement. 158

Figure 5.15. BERT-based EgoLM design, which learn the contextual information. 159

x

Figure 5.16. EgoADL classwise mAP . 164

Figure 5.17. EgoADL classwise mAP with label refinement . 165

Figure 5.18. Venn diagram visualizes the advantages and limitations of EgoADL multi-
modal fusion. Actions/ objects with > 80% top-1 mAP are in the circle for
different modality fusions. 166

Figure 5.19. Overlapped ADL labels between EgoADL and egocentric vision 170

Figure 6.1. Ambient Intelligence Vision . 179

xi

LIST OF TABLES

Table 2.1. Power consumption (mW) in controlled settings. 39

Table 2.2. Percentage of words in CMU Pronouncing Dictionary [17] that have similar
number of consecutive phoneme sequence as different wake words. 42

Table 3.1. StealthyIMU potential attacking permissions and VUI response examples. . 54

Table 3.2. Types of Voice Command and Dataset Scale. 71

Table 3.3. Impacts of Training Datasets. 75

Table 3.4. VUI response identification ablation study. 75

Table 3.5. VUI Response Private Entity Recognition Ablation Study. 76

Table 3.6. SLU model training approach. 77

Table 3.7. One-time stealing results. 79

Table 3.8. Navigation voice for different cities. 82

Table 3.9. Generalization across different smartphones and sampling rate 82

Table 3.10. Voice detection and segmentation overhead. 85

Table 3.11. On-device DNN overhead. ID: VUI response identification model; SLU:
VUI response private entity recognition model. 85

Table 3.12. Defense Speech Quality Subjective Assessment . 87

Table 4.1. Layers comprising ultrasound subnetwork. 107

Table 4.2. Layers comprising speech subnetwork (BLSTM and FC layers parameters
are the same as the ultrasound subnetwork.). 108

Table 4.3. Layers comprising T domain phase network. Kernel size = 32, Stride = 2,
Padding = 15. 113

Table 4.4. UltraSE micro benchmark. 120

Table 4.5. UltraSE ablation study. 124

Table 4.6. Inference time for processing 5 s speech. 124

Table 5.1. Representative ADL systems using Wi-Fi CSI, IMU and Audio. 135

xii

Table 5.2. EgoADL CNN-based encoders parameters (C: Channel). 151

Table 5.3. EgoADL micro benchmark. 163

Table 5.4. Accuracy of EgoADL SSL. 167

Table 5.5. Generalization of EgoADL SSL. 168

Table 5.6. Extensibility of EgoADL SSL. 168

Table 5.7. Comparison between EgoADL and egocentric vision. 169

Table 5.8. Performance gain due to EgoLM. “ADL”, “A”, “O”, “S”, “E” represent to
“Overall ADL”, “Action”, “Object”, “State” and “Event”, respectively. 171

xiii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to everyone who has supported me throughout

my Ph.D. journey. Without the encouragement, guidance, and understanding of so many, this

dissertation would not have been possible.

I am profoundly grateful to my advisor, Professor Xinyu Zhang, for his unwavering

support, insightful guidance, and encouragement. His expertise, patience, and constructive

feedback have not only shaped this dissertation but also significantly contributed to my growth

as a researcher. Professor Zhang always encouraged me to pursue the most impactful research

problems that aligned with my interests, and our intensive discussions helped me refine ideas

and tackle complex challenges. He also provided invaluable assistance in shaping my career

path, supporting me wholeheartedly in achieving my dream of becoming a professor. Without

his unwavering support, I would not have been able to secure my tenure-track assistant professor

position at the EECS department of the University of Michigan, Ann Arbor. I could not have

asked for a better advisor.

I would also like to extend my heartfelt thanks to my Ph.D. committee members: Professor

Rajesh K. Gupta, Professor Patrick Pannuto, Professor Tauhidur Rahman, and Professor Edward

Wang. Their invaluable time, feedback, and insights have played a pivotal role in refining my

research and broadening my understanding of key concepts in my field. Their collective expertise

and thoughtful advice have been instrumental in improving this dissertation.

To my academic collaborators, I extend my deepest gratitude for their partnership and

shared efforts in advancing our research together. This includes Professor Farinaz Koushanfar,

Professor Kun Qian, Professor Lu Su, Professor Wei Wang, and Professor Chris Xiaoxuan Lu, as

well as graduate students Chunyu Xia, Jung-woo Chang, Chen Chen, Baicheng Chen, Xingyu

Chen, Songlin Xu, and Zihao Feng. Our collaborative discussions sparked insightful ideas that

greatly influenced the direction of our research. Their contributions have made our joint work

rewarding and enriching, and I have learned a great deal from each of them.

I would also like to acknowledge my mentors and managers from the industry, whose

xiv

real-world perspectives, mentorship, and encouragement have shaped my approach to practical

problem-solving and enriched my professional development. Special thanks go to Doctor

Berkant Tacer, Doctor Ravi Pulugurtha, Doctor Nikhil Shankar, Krishna Kamath, Doctor Renato

Nakagawa, Doctor Rong Hu, and Doctor Karthik Kumar from Amazon Lab 126; Doctor Hao

Chen and Doctor Charlie Zhang from Samsung Research America; and Doctor Lindsey Sunden

from Google Research. Their mentorship has had a profound impact on both my research and

my career development.

I am incredibly thankful to my friends, both near and far, for their unwavering support,

encouragement, and understanding throughout this journey. I would like to specifically mention

Renjie Zhao, Jiayou Guo, Yi Xu, Song Wang, Jingqi Huang, Wenyu Peng, and many others

who have stood by me through both the highs and lows. Their friendship has been a source of

strength, and their camaraderie has enriched my experience during my Ph.D.

Lastly, I owe my deepest gratitude to my family. To my parents, Lingzhu Huang and

Wenjie Sun, for their unconditional love and sacrifices. Because of the pandemic, I haven’t seen

them in the last five years, yet their constant presence and reassuring words have given me the

strength and determination to persevere. To my wife, Haiwei Yong, for her constant support,

patience, and belief in me—her love has been a source of energy and encouragement during even

the most challenging times. She has been my pillar of strength, helping me when I felt exhausted

and bringing joy and balance to my life.

To everyone mentioned above, and to all those whose names I may have inadvertently

omitted, please accept my sincerest thanks for your contributions and support. This dissertation

would not have been possible without your assistance and encouragement.

Chapter 2 contains material from “Alexa, Stop Spying on Me: Speech Privacy Protection

Against Voice Assistants”, by Ke Sun, Chen Chen, and Xinyu Zhang, which appears in the

18th ACM Conference on Embedded Networked Sensor Systems (SenSys), 2020 [211]. The

dissertation author was the primary investigator and author of this paper.

Chapter 3 contains material from “StealthyIMU: Extracting Permission-protected Private

xv

Information from Smartphone Voice Assistant using Zero-Permission Sensors”, by Ke Sun,

Chunyu Xia, Songlin Xu, and Xinyu Zhang, which appears in the 30th edition of the Network

and Distributed System Security Symposium, 2023 [213]. The dissertation author was the

primary investigator and author of this paper.

Chapter 4 contains material from “UltraSE: Single-Channel Speech Enhancement Using

Ultrasound”, by Ke Sun, and Xinyu Zhang, which appears in the 30th annual International

Conference on Mobile Computing and Networking (MobiCom), 2021 [215]. The dissertation

author was the primary investigator and author of this paper.

Chapter 5 contains material from “Multimodal Daily-life Logging in Free-living En-

vironments Using Non-Visual Egocentric Sensors on a Smartphone”, by Ke Sun, Chuyu Xia,

Xinyu Zhang, Hao Chen, and Charlie Zhang, which appears in the Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), Volume 8, Issue 1, 2024

[214]. The dissertation author was the primary investigator and author of this paper.

xvi

VITA

2012–2016 Bachelor of Computer Science and Technology, Department of Computer Science
and Technology
Nanjing University of Aeronautics and Astronautics

2016–2019 Master of Computer Science, Department of Computer Science and Technology
Nanjing University

2019–2024 Doctor of Philosophy, Department of Computer Science and Engineering
University of California San Diego

xvii

ABSTRACT OF THE DISSERTATION

Repurposing the Ubiquitous Acoustic Devices for Cross-Modality Sensing

by

Ke Sun

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2024

Professor Xinyu Zhang, Chair

Ubiquitous acoustic sensors and actuators, i.e., microphones and loudspeakers, are among

the most common components in consumer electronic devices. Traditionally, these components

have been primarily used for sound-related tasks, including voice-user interfaces, sound playback,

and sound event detection. However, with the growing demand for consumer electronics to

deliver more intelligent, cost-effective, human-centric, and trustworthy ambient intelligence

while reducing costs, energy consumption, and computational overhead, there is an increasing

need to unlock the full potential of these components for cross-modality sensing applications.

The dissertation argues that, by designing advanced signal processing techniques and

deep learning models, I am able to repurpose acoustic components for cross-modality sensing

xviii

applications, achieving resolutions comparable to dedicated sensors. To support this, I develop

end-to-end systems that encompass hardware design, sensor placement optimization, advanced

signal processing, deep neural network architectures, and system-level optimizations. By lever-

aging a thorough understanding of the strengths and limitations of acoustic sensors and actuators,

this dissertation reveals novel functionalities in ubiquitous acoustic devices, including speech

privacy protection, speech enhancement, and monitoring of daily life and health.

xix

Chapter 1

Introduction

Acoustic signals are fundamental to human communication and interaction, serving

as the backbone of our daily lives. From spoken language to environmental sounds, these

signals provide a continuous stream of information that helps us interpret and navigate the

world around us. On average, humans are exposed to between 20,000 and 30,000 words each

day, primarily through speech, underscoring the omnipresence of acoustic communication.

Beyond interpersonal interactions, acoustic signals hold immense potential in various domains,

including environmental monitoring, healthcare, and human-computer interaction. The wealth

of information embedded in sound waves can be harnessed to assess the environment, track

physiological states, and enhance user experiences through advanced technologies.

Acoustic devices, which process these signals, have become ubiquitous in modern life.

As of 2023, over 6.8 billion people worldwide use smartphones, most of which are equipped with

high-performance microphones and speakers. Additionally, smart speakers, wireless earbuds,

and other acoustic-enabled devices are experiencing rapid growth, with the global smart speaker

market projected to exceed 500 million units by 2026. The pervasiveness of these devices

is evident as individuals frequently engage with multiple acoustic platforms daily, whether

for communication, virtual assistant interactions, or media consumption. This widespread

availability of acoustic devices presents significant opportunities for repurposing them beyond

their conventional functions. This dissertation explores how these ubiquitous acoustic devices,

1

when paired with the right algorithms and models, can be transformed into powerful sensors for

tasks beyond traditional audio processing, particularly for cross-modality sensing.

1.1 Opportunities for Repurposing Acoustic Sensors and
Actuators in Ubiquitous Devices

Acoustic sensors and actuators (i.e., microphones and loudspeakers) are widely integrated

into a broad array of mobile, wearable, and IoT devices. Traditionally, their primary roles

include supporting voice-user interfaces, sound playback, and sound event detection. However,

this dissertation posits that these acoustic components can be repurposed for cross-modality

sensing applications—such as speech privacy leakage protection, speech processing, and mobile

health—by employing cross-modality signal processing and deep learning models. This approach

harnesses a comprehensive understanding of the strengths and limitations of various sensors to

reveal novel and unexpected functionalities of acoustic sensors and actuators. In this section, I

explore several key opportunities that illustrate the potential of these repurposed technologies.

1.1.1 Repurposing Loudspeakers and Microphones for Ultrasonic Sonar

Loudspeakers and microphones in ubiquitous devices are primarily designed for audible

sound. However, since these components typically operate at a sampling rate of 48 kHz, they

are capable of transmitting and receiving inaudible acoustic signals with frequencies above the

audible range, specifically higher than 20 kHz. This characteristic enables their repurposing for

ultrasonic sonar applications.

In my previous research, this principle has been utilized to transform the loudspeakers

and microphones in consumer devices into ultrasonic sonar systems, enabling the detection

of distance and movement between two acoustic devices, or between objects and the acoustic

devices. The core concept involves using loudspeakers to transmit ultrasonic signals (above

20 kHz), while the microphones capture the reflected signals from various propagation paths.

By applying software-based solutions, these devices can extract key information from the

2

propagation paths, such as time-of-flight (ToF), time difference of arrival (TDoA), and phase

changes, etc. This enables precise measurement of distance, object positioning, and real-time

tracking of distance changes. This principle has been applied in both device-based and device-free

tracking applications. For instance, it has been used for device-based tracking and localization,

such as tracking smartphones [180, 148] and drones [150]. Additionally, it has enabled device-

free tracking, where objects without embedded acoustic sensors can be monitored, as seen in

hand gesture tracking [248, 250, 245] and vital sign monitoring [183, 243]. In this dissertation, I

extend this principle in a novel way by utilizing a single pair of loudspeakers and microphones for

multi-modal sensing. Specifically, I design a single-channel speech enhancement and separation

solution on smartphones, as detailed in Sec. 4, leveraging ultrasonic sonar techniques to enhance

speech processing capabilities.

1.1.2 Repurposing Actuators for Inaudible Sound Generation

Recent research has demonstrated that various actuators can generate imperceptible

acoustic vibrations, which are detectable by microphones but remain inaudible to humans. This

principle has raised significant security concerns, as it enables the injection of “inaudible voice

commands” into voice assistants, potentially leading to unauthorized device control. For example,

loudspeakers can transmit ultrasonic signals that, while inaudible to humans, can be interpreted

as audible commands by microphones [281, 191]. Additionally, ”inaudible voice commands”

can be generated through the photoacoustic effect, as shown in [210].

In contrast, this dissertation leverages such inaudible sound generation to seamlessly jam

the microphone to achieve automatic speech privacy protection, which is discussed in Sec. 2.

1.1.3 Transforming Various Sensors into Side-channel Microphones

The pervasive use of speech communication devices amplifies the potential threats of

speech eavesdropping, i.e., secretly listening to private speech without the speaker’s consent or

awareness. Due to the emergence of smart devices, speech eavesdropping can occur in broader

3

scenarios than overhearing through walls. Recent research indicates that non-acoustic hardware,

such as motion sensors [153, 32, 34, 39, 209, 80], actuators [151, 192, 138], communication

devices [255, 240, 271, 133, 254], storage devices [125], radars [52, 75, 268, 238, 288, 279, 54],

cameras [63, 141], and instruments [169, 168, 286, 195], can create a side channel to eavesdrop

the speech generated by humans or loudspeakers.

While these devices are not intended for sound recording, they can capture the unintended

acoustic byproducts of speech, potentially enabling the recovery of private conversations. In

this dissertation, I introduce a new attack model that leverages side-channel eavesdropping to

intercept responses from voice user interfaces of voice assistants. Since voice assistants often

serve as “Oracle” apps for mobile and IoT devices, my research shows that side-channel sensors

can bypass permission protection mechanisms and steal sensitive information from the voice

assistant’s responses, as discussed in Sec. 3.

1.1.4 Repurposing Microphones for Daily-Life Sound Logging

Microphones are traditionally used not only for speech capture but also to detect ambient

sound events in the environment. Typically, external microphone arrays, such as those integrated

into voice assistants, are employed to capture these sounds, which are then classified into a

few pre-defined categories such as household noises, outdoor activities, or social interactions

[126, 122, 82]. This form of sound event detection has proven useful for specific applications by

identifying distinct sound patterns can trigger specific actions.

However, current sound event detection systems rarely integrate with wearable smart

devices, such as smartphones, smartwatches, or earbuds, and, importantly, are not yet deeply

connected with the human daily life context. Wearable devices, which are increasingly embedded

into the user’s everyday environment, offer an untapped potential for continuous sound logging at

specific on-body location. By leveraging the microphones on these devices, it becomes possible

to capture and analyze a wide range of sounds associated with daily human activities, such as

footsteps, door movements, or interactions with objects.

4

In this dissertation, I explore the potential of repurposing microphones in wearable

devices to fuse with other existing sensors for continuous, unobtrusive sound logging in daily

life (see Sec. 5). This extends the role of microphones beyond simple speech and ambient

sound detection to a richer, more nuanced understanding of a person’s daily auditory landscape,

contributing to applications such as personal activity tracking, health monitoring, and context-

aware computing. This integration of daily-life sound logging into wearable devices not only

enhances user experience but also opens new possibilities for ambient intelligence systems that

are deeply intertwined with human life.

1.2 Dissertation Contributions

This dissertation investigates the potential of repurposing ubiquitous acoustic devices for

innovative IoT applications, including speech privacy leakage and protection, speech processing,

and healthcare monitoring. The core innovation lies in leveraging the existing sensors and actua-

tors embedded in these devices, without requiring significant hardware modifications, to enable

cross-modality sensing. This approach carefully balances enhanced sensing capabilities with

the need for privacy protection. To achieve this, the dissertation explores the unique advantages

of various sensors within these ubiquitous acoustic devices, identifies novel opportunities for

cross-modal sensing, designs both hardware and software solutions to realize these functionali-

ties, proposes advanced signal processing techniques and neural network models to address the

challenges of multi-modal and cross-modal data fusion.

The specific contributions of this dissertation are:

• In Chapter 2, I design MicShield, the first system designed as a companion device to

automatically protect speech privacy from always-on microphones. MicShield introduces

a novel selective jamming mechanism that obfuscates the user’s private speech while

allowing legitimate voice commands to pass through to voice assistants. The system

proposes an innovative speech processing pipeline that utilizes framewise likelihood to

5

detect the onset of wake words, enabling precise selective jamming. To minimize user

disruption, MicShield generates inaudible jamming signals that can still be captured by

conventional microphones due to a well-known non-linear aliasing effect. To counteract

potential defense mechanisms, such as microphone arrays, MicShield employs acoustic

waveguides to direct jamming signals toward each microphone while preventing self-

interference. I prototype a fully offline version of MicShield using low-cost off-the-shelf

components and validate its effectiveness in protecting speech privacy without impairing

the functionality of voice assistants. With MicShield, both automatic speech recognition

(ASR) systems and human listeners can recognize less than 0.1% of words in private

speech, while achieving nearly the same wake word response rate and speech signal-to-

noise ratio (SNR) during normal voice assistant use.

• In Chapter 3, I propose StealthyIMU, a new threat that uses motion sensors to steal

permission-protected private information from the Voice User Interfaces (VUIs). By ex-

ploiting the deterministic patterns inherent in VUI responses, I formulate the StealthyIMU

attack as an spoken language understanding problem. I develop a sequence-to-sequence

deep neural network (DNN) model with a cross-modality knowledge distillation strategy,

enabling the direct extraction of private entities from motion sensor data. Our experiments

demonstrate that StealthyIMU can accurately extract private information from 23 com-

monly used voice commands, including contacts, search history, calendar details, home

address, and even GPS traces. To mitigate this threat, I propose a speech pre-distortion

mechanism that defends against StealthyIMU while maintaining the natural quality of VUI

speech output.

• In Chapter 4, I propose UltraSE, which aims to tackle the holy grail of audio processing,

i.e., single-channel speech separation and enhancement(SSE). UltraSE uses ultrasound

sensing as a complementary modality to separate the desired speaker’s voice from in-

terferences and noise. UltraSE uses a commodity mobile device (e.g., smartphone) to

6

emit ultrasound and capture the reflections from the speaker’s articulatory gestures. It

introduces a multi-modal, multi-domain deep learning framework to fuse the ultrasonic

Doppler features and the audible speech spectrogram. Furthermore, it employs an adver-

sarially trained discriminator, based on a cross-modal similarity measurement network, to

learn the correlation between the two heterogeneous feature modalities. Our evaluation

results show that UltraSE can separate the targeted speech in a sophisticated environment

with multiple speakers and ambient noise , improving SNR by 10.65 to 17.25 dB. UltraSE

achieves an SNR gain of 6.04 dB on average over state-of-the-art single-channel speech

enhancement methods, across various interference/noise settings. Its performance gain is

even comparable to multi-channel (audio-visual) solutions.

• In Chapter 5, I introduce EgoADL, the first egocentric human activities of daily living

(ADL) sensing system that uses an in-pocket smartphone as a multi-modal sensor hub to

capture body motion, interactions with the physical environment and daily objects using

non-visual sensors (audio, wireless sensing, and motion sensors). I developed a platform

for EgoADL sensor data collection and labeling, establishing a comprehensive dataset

for multi-modal egocentric ADL sensing through non-visual sensors. The platform has

enabled the collection of 20 hours of labeled data and over 100 hours of unlabeled data,

covering 221 distinct ADLs involving 70 actions and 91 objects. This data was gathered

from 30 users across 20 different home environments, encompassing unrestricted activities,

including ambulatory motion and interactions with daily objects. To process this data, I

designed multi-modal frame-wise slow-fast encoders to learn feature representations that

capture the complementary strengths of various sensing modalities. Additionally, I adapted

a transformer-based sequence-to-sequence model to decode time-series sensor signals into

sequences of words representing ADLs. To address the challenge of limited labeled data

and enhance generalization, I introduced a self-supervised learning framework that extracts

intrinsic supervisory signals from multi-modal sensor data. Our experiments in free-living

7

environments demonstrate that EgoADL achieves performance comparable to video-based

approaches, advancing the vision of ambient intelligence in real-world settings.

8

Chapter 2

Automatic Speech Privacy Protection
Against Voice Assistants

2.1 Introduction

Voice assistants (VAs), e.g., Amazon Echo [31] and Google Home [85], can enable

hands-free interactions between human and smart computing devices. They have become a

mainstream user interface in the smart home ecosystem, and are widely adopted by emerging

mobile devices, e.g., wearable earbuds and virtual reality headsets. Market analysis reveals an

installation base of more than 76 million [208], and 21% of US adults have a VA device in their

homes [260].

Despite the surging popularity and the alluring ability to automate human life, VAs are

sparking an outcry of privacy concerns. Officially, vendors advocate that these devices are

programmed to record and send information to the cloud for processing only when they are

activated by a wake word/ phrase, e.g., “Alexa!” or “OK Google!” [29, 87]. However, there

exists no easy way for users to trust and enforce such behavior. In fact, there are numerous

cases when certain VA devices record private speech without user’s knowledge or consent. For

instance, due to firmware bugs, an early version of Google Home Mini [86] kept recording users

for 24/7 even without the wake word, and uploaded all the records to cloud servers [36]. Amazon

reportedly hires human workers to transcribe recordings from their Echo devices, in the name

of improving device performance and consumer experience. However, it has been found that

9

End User

MicShield

? ???

Attacker

Voice Assistant (VA)

Cloud

“<Private Speech> Alexa, how is the weather?”

“<Private Speech> Alexa, how is the weather?”

Time

Figure 2.1. MicShield acts as a companion device with the VAs. The transducer of Mic-
Shield would start/stop emitting inaudible jamming signal based on the wake word. The
unintended private speech before wake word is thus obfuscated before reaching the VA, which
prevents attackers from eavesdropping the private conversations.

majority of the transcribed clips were uneventful or not preceded by wake words. Users have no

control on their unintended audio records once being sent to remote cloud [275]. Besides, it has

long been a concern that certain government agencies may take advantage of the VAs as a means

of pervasive surveillance [263].

In this paper, we seek to answer the question: can we force the VAs to record the legitimate

commands only, rather than private speech? A straightforward way to protect speech privacy

is to disable the VA through a physical mute button B [118], and unmute only when the user

needs to issue a command. However, this compromises the very first advantage of VAs, i.e.,,

convenient hands-free interactions. Besides, once the VA is compromised, the mute button is not

trustable any more. Alternatively, one can adopt anti-eavesdropping approaches, which generate

an interfering signal to jam the VA’s microphone [193, 55]. But this makes the VA deaf and

irresponsive to any activation commands.

10

We propose MicShield, a companion device which, for the first time, prevents VAs from

recording private speech without affecting the VAs’ normal functionalities. Figure 2.1 illustrates

the basic threat model and defending mechanism of MicShield. Assuming the VA is untrustable,

MicShield continuously emits a jamming signal to deafen the VA. Meanwhile, it keeps listening

and stops jamming immediately when it senses the onset of a wake word. MicShield works

offline, keeping all processing local and shredding voice data immediately afterwards. So it is

not subject to the privacy risks from the always-listening, cloud-operated VAs.

To protect speech privacy without disturbing the VAs’ daily usage, we must address two

challenges. First, a straightforward way of continuous jamming will suppress not only private

speech, but the wake word. This will cause VAs to become unresponsive to the subsequent

voice commands. To overcome the dilemma, we leverage the fact that the wake word follows

a fixed phoneme pattern, and even with the first few milliseconds jammed, the wake word

can still be identified by Automatic Speech Recognition (ASR) algorithms. MicShield thus

dynamically switches on/off jamming based on the likelihood of a wake word onset (e.g., the

initial few milliseconds of “Alexa!”). Once the likelihood exceeds a predefined threshold,

MicShield suspends jamming to ensure the VA can hear majority of the wake word and the

following voice commands. To avoid disturbing users, MicShield generates inaudible jamming

signals, which however can be captured by regular microphones due to a well known non-linear

aliasing effect [191].

The second challenge is to defeat the potential countermeasures based on microphone

arrays, which exist in majority of the Off-The-Shelf (OTS) VAs. Whereas the microphone arrays

have been used for sound localization [93], they can enhance the user’s voice through acoustic

beamforming, thus mitigating the effectiveness of MicShield’s jamming. MicShield thwarts such

potential countermeasures through a gain suppression method, which saturates the microphones

and fully obfuscates the private speech. Our design employs acoustic waveguides to redirect

the jamming signal towards each microphone. Meanwhile, these waveguides avoid the self-

interference setbacks and ensure MicShield itself can still identify the wake words amid the

11

jamming signal.

We built a prototype of MicShield with OTS components and a 3D printed shield. In

accordance with the privacy protection assumption, we optimize both the computation and

energy consumption to make the whole MicShield system work offline. Our experimental results

demonstrate the effectiveness of MicShield in protecting private speech and countering potential

threats. With MicShield, both ASR algorithms and human perception can only recognize less

than 0.1% of the words in private speech. Besides, MicShield does not break the functionalities

of VAs. It achieves nearly the same wake word response rate and speech Signal-to-Noise-Ratio

(SNR). Furthermore, we show the MicShield’s generalization across various wake words and VA

devices provided by different vendors.

The main contributions of MicShield are as follows.

• We introduce a new concept to automatically protect speech privacy against always-on

microphones by selectively jamming unintended private speech while passing intended

voice command.

• We propose a novel speech processing pipeline which leverages the framewise likelihood

to detect the onset of a wake words, thus realizing selective jamming.

• We propose a method to jam an entire microphone array using a single speaker, while

avoiding self-interference.

• We prototype purely offline MicShield through low-cost OTS components, and validate its

effectiveness in speech privacy protection without affecting the VAs’ functionalities.

2.2 Related Works

2.2.1 Hidden Command Attacks and Defenses

Inaudible Voice Attacks and Defenses: Inaudible voice attacks [191, 281, 193, 210] use ul-

trasound or laser to generate imperceptible acoustic vibration signals that can be captured by

12

microphones. BackDoor [191] shows that ultrasound can be recorded by traditional microphones

in spite of the built-in low-pass filters. This is enabled by the hardware non-linearity of micro-

phones, which creates aliased version of signals in the low frequency band. DolphinAttack [281]

leverages a similar effect to attack the VAs through inaudible voice commands. [193] extended

the attacking range from 5 ft to 25 ft, by using multiple ultrasonic speakers. A defending method

was further proposed [193] to discriminate such attacks from speech signal, by identifying the

spectrogram traces left by the non-linear effects. He et al. [102] further introduced a way to

suppress the inaudible voice commands by using an ultrasonic transducer and interference cancel-

lation methods. Inaudible voice command [210] can also be generated through the photoacoustic

effect. By modulating the laser beam targeting a MEMS microphone, acoustic commands can

be fabricated even at a distance of 110 m. To avoid disturbing users, MicShield uses inaudible

voice as the jamming signal. Whereas previous work [191, 281, 193, 210, 102] investigated the

attacks and defending approaches against inaudible voice commands, we focus on protecting

speech privacy without handicapping the VAs.

Black-box Attacks and Defenses: Black-box attacks [46, 233, 277, 47] generate adversarial

audio samples that can be interpreted by VAs, but are unintelligible to human. For example, [46,

233, 47] generate white-noise-like malicious voice commands, which however can be interpreted

as legitimate by VAs. These attacks can target different ASR algorithms including statistical

learning models (e.g., CMUSphinx [12]) and deep learning approaches. CommanderSong [277]

embeds the voice command into songs to attack VAs. As for defense, certain post processing

methods, e.g., audio turbulence and audio squeezing, can single out the adversarial examples.

On the other hand, Kumar and Zhang et al. [124, 284] investigated the interpretation errors made

by ASR algorithms. The key observation is that different words may share similar phonemes

which confuse ASR algorithms. An attacker leverages such systematic errors to unconsciously

redirect users to malicious applications.

13

2.2.2 Audio Privacy Leakage and Protection

The always-on microphones on ubiquitous VA devices are imposing a looming threat to

speech privacy. By penetrating the VA or the associated cloud, attackers can extract the sematic

contents, and thus the personally identifiable information (PII), from the voice records.

Protection by Obfuscating the Audio Signal Waveform: One potential solution to audio

privacy leakage is to obfuscate the unintended speech. For example, Tung et al. [229] proposed

to protect private phone conversations against eavesdropping malware. They mix the private

speech with mask signals which are known to a trusted server but unknown to eavesdroppers.

The server can eliminate the mask through self-interference cancellations. However, the masking

sound needs to be shared in advance as a known audible secret key, which disturbs practical

usability. Besides, a third trustable key generating server is needed, and it only uses symmetric

key encryption. Therefore, the security guarantee breaks once the shared secrets and/or the key

generator server are compromised. Chen et al. [55] designed a wearable jamming device using

multiple ultrasonic transducers to protect speech privacy. This always-on jamming device make

all nearby VAs malfunction and deaf to legitimate voice commands. In contrast, MicShield adopts

a simple full-duplex phoneme-level selective jamming mechanism which ensures the wake words

and voice commands are audible to the VAs.

Network Level Protection: An alternative protection mechanism is to identify and prevent

the privacy leakage through transport layer packet filtering. Prior works, such as PrivacyProxy

[207], ProtectMyPrivacy [25] and Meddle [186], introduced VPN proxies that detect the leakage

of audio data packets by intercepting the outbound network traffic. Yet these systems cannot

discriminate legitimate voice commands from unintended private speech. VoiceMask [181], on

the other hand, used an intermediary between VAs and cloud to anonymize speech data. But

the unintended semantic content can still be exploited from the private speech. Additionally,

these mechanisms all rely on interception and interpretation of TCP/HTTP data. Yet all modern

mobile devices are shifting toward encrypted SSL/TLS connections to prevent man-in-the-middle

14

attacks [57, 2]. Thus, designing a VPN proxy to intercept, and thus control encrypted audio

privacy data over transport layer, is practically challenging.

2.3 Threat Analysis

Threat Model: MicShield targets the scenario where adversaries use VA’s always-on micro-

phones to eavesdrop on private speech, i.e.,, the voice signals that are not preceded by a wake

word. To establish the threat model, we assume the adversaries are powerful enough to: (i)

access the unprocessed speech signals captured by the always-on microphones; (ii) run existing

post processing algorithm to enhance the sound quality; (iii) use existing ASR algorithms [43]

and human perception to infer the semantic content.

Protection Goals: Under the premise of not breaking the VAs’ functionalities, MicShield aims

to prevent the private speech from reaching the VAs. Consequently, the adversaries can no longer

exploit semantics of private speech by compromising the VAs, sniffing the network traffics, or

hacking the remote cloud. MicShield acts as a companion device to enforce speech privacy

without modifying existing VAs’ hardware/software. To achieve this goal, first, MicShield should

work entirely offline to make sure that the manufacturer of MicShield imposes no privacy threat.

Second, MicShield should ensure that the wake words still trigger a VA, whereas users’ private

speech preceding the voice command is jammed, shielded against the VA (Section 2.4). Third,

MicShield needs to thwart powerful countermeasures that employ microphone arrays to enhance

the speech while weakening the jamming (Section 2.5). We consider the worst case protection

scenario: (i) The VA’s received A-Weighting Sound Pressure Level (SPL) [6] is sufficiently

high, but less than 75 dBA, known as the maximum SPL in daily conversations without harming

human auditory [7]; (ii) The adversary knows the exact location of the speech source, so it can

maximize the speech enhancement through array beamforming.

Security Guarantees and Evaluation Metrics: Unlike traditional cryptography-based security

systems that define an exact security guarantee using the estimated computational time for

15

breaking the system, providing similar guarantee for MicShield is challenging. However, this

is also a common issue for non-cryptography systems. Inspired by the idea of Wyner wiretap

model for a secure wireless system [267], we define the evaluation metrics as follows:

• Mute Rate: defined as the ratio between the jamming duration and the entire speech duration,

excluding silent periods. Our design of jamming control policy focuses on wake word mute rate

and private speech mute rate. Theoretically, an ideal design would have an 100% private speech

mute rate and 0% wake word mute rate, to guarantee the speech privacy without reducing the

responsiveness of the VAs. Practically, a less-than-100% private speech mute rate, caused by

leakage of less importance phonemes, hardly exposes any threats to private content at word-level.

Similarity, a slightly higher than 0% wake word mute rate does not necessarily fail the VAs,

since the wake word recognition is imperfect even when no jamming signal exists.

• Wake Word Misdetection Rate: defined as the probability that a wake word cannot be

correctly recognized. Our design needs to ensure a near equivalent wake word misdetection rate

for the VAs, with and without MicShield jamming.

• Jamming Effectiveness: We quantify the jamming effectiveness by PESQ (Perceptual Eval-

uation of Speech Quality), a metric for objective voice quality assessment commonly used

by telecom operators [187], and Speech Recognition Rate, defined as the probability that the

obfuscated speech can be correctly recognized by ASR or human perception. Theoretically,

PESQ models the mean opinion score with a range between 1 (bad) to 5 (excellent) [187]. A

typical acceptable range for VoIP applications lies between 3.8 and 5 [190], and PESQ less than

2 is known as the extremely low speech quality. To evaluate the speech recognition rate, we

compare the ground truth and transcribed words by asking human participants to recognize the

speech, and by using cloud based ASR services [43], including Amazon Transcribe [11] and

Google Speech-To-Text (STT) [13].

16

-0.8

0

0.8

 A
m

pl
itu

de

 AH L EH K S AH

(a) Speech signal in the time domain

0

2

4

6

8

 F
re

q
(k

H
z)

(b) Spectrogram after applying STFT

-0.8

0

0.8

 A
m

pl
itu

de

 Mute

(c) Speech signal with first 100 ms muted

-0.8

0

0.8

 A
m

pl
itu

de

 Jam

(d) Speech signal with first 100 ms being obfuscated
by noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 Time (s)

0

0.5

1

 H
M

M
 L

ik
el

ih
oo

d

Likelihood Threshold

 Ah
 L
 Eh
 K
 S

(e) HMM likelihoods of phoneme states in HMM
Lexicon Model

Figure 2.2. Analysis of “Alexa” speech signals. Wake word “Alexa” follows a specific sequence
of phonemes and can be recognized when the first few milliseconds of speech is muted.

2.4 Automatic Jamming Control

In this section, we introduce the automatic jamming control algorithm that passes the

wake words to VAs while obfuscating private speech. For ease of explanation, we use Amazon

Echo Dot as the VA with “Alexa!” as the wake word [3]. Generalizations to other wake words

and devices is straightforward and will be discussed in Section 2.7.4.

2.4.1 A Primer of Selective Jamming

To realize selective jamming, an intuitive way is to use a third-party “pre-wake” word

detector [115]. The detector keeps jamming, and only stops when it hears a pre-wake word

defined by the user. Immediately afterwards, it regenerates the real wake word “Alexa” through

an inaudible channel, and passes it to the VA. However, our experiments reveal that, even a short

wake word like “Alexa” takes at least an additional 500 ms. Thus, the inaudible “Alexa” will

inevitably overlap with the user’s voice query which follows the pre-wake word immediately – a

17

conflict causing the VA to malfunction.

In contrast to word-level detection, we propose to use phoneme-level features to identify

wake words from its early onset, which leads to negligible latency, thus avoiding the conflict.

As an example, Figure 2.2(a) and 2.2(b) show the acoustic signal waveform of “Alexa” and the

spectrogram after applying Short Time Fourier Transform (STFT), respectively. The “Alexa”

follows the fixed phoneme sequence pattern, noted as /@"lEksi@/, where the first phoneme /@/

lasts from 43 ms to 136 ms. For the VA to be able to recognize the wake word, MicShield

needs to switch off jamming after identifying the first phoneme. To verify the feasibility of

such phoneme-level selective jamming, we conduct the following experiment with a dataset [35]

containing 369 “Alexa” utterances from 87 users with different accents.

• Can the VAs be activated when the initial part of the wake word is corrupted by jamming?

We evaluate the wake word misdetection rate of Amazon Echo Dot when the first few milliseconds

of the wake word is corrupted. To identify the beginning of “Alexa”, we use the CMUSphinx [12]

phoneme forced alignment algorithm with resolution of 10 ms to compute the beginning time and

duration of the first phoneme /@/. Figure 2.2(c) and 2.2(d) illustrate the signal waveforms when

the first few milliseconds of speech is muted and jammed, respectively. The jamming signal is a

4 kHz bandwidth white noise. Finally, the processed audio is played using a smartphone speaker.

Figure 2.3(a) shows the wake word misdetection rate versus predefined initial duration

for mute and jamming cases. Surprisingly, we found that even with the first 60 ms muted or

jammed, the wake word can still activate the Echo Dot with 95% accuracy–the same as the

case without mute/jamming (i.e.,, 0 jamming duration). Beyond 110 ms, misdetection rate under

jamming is slightly lower than muting. This is likely because the amount of residual semantic

information that can be exploited from the jammed signal is more than that of muted signals.

Therefore, if MicShield stops jamming within the first 60 ms, Echo Dot is still able to recognize

the wake word and the subsequent voice commands. This is also true for other common wake

words and VAs, as will be discussed in Sec. 2.7.4.

18

0 20 40 60 80 100 120 140 160

 Jamming Duration (ms)

0

5

10

15

20

25

30

 M
is

de
te

ct
io

n
R

at
e

(%
) Mute

 Noise Jamming

(a) Wake word misdetection rate

71.6%

2.1%

5.0%

0.2%

1.6%

4.6%

1.6%

79.2%

1.5%

0.2%

0.2%

0.6%

4.1%

2.3%

70.5%

0.8%

0.6%

0.0%

0.2%

0.4%

1.7%

82.6%

2.5%

1.1%

0.4%

0.0%

0.1%

0.4%

89.3%

0.9%

0.5%

0.0%

0.0%

0.1%

0.1%

97.0%

71.6%

2.1%

5.0%

0.2%

1.6%

4.6%

1.6%

79.2%

1.5%

0.2%

0.2%

0.6%

4.1%

2.3%

70.5%

0.8%

0.6%

0.0%

0.2%

0.4%

1.7%

82.6%

2.5%

1.1%

0.4%

0.0%

0.1%

0.4%

89.3%

0.9%

0.5%

0.0%

0.0%

0.1%

0.1%

97.0%

Ah L Eh K S Sil

 True Phoneme

Ah

L

Eh

K

S

Sil

 P
re

di
ct

ed
 P

ho
ne

m
e

(b) “Alexa” phoneme confusion matrix

Figure 2.3. Proof-of-the-concept experiments for jamming control pipeline design.

2.4.2 Jamming Control Pipeline

Figure 2.4 elucidates MicShield’s jamming control pipeline built upon the above insights.

First, we use framewise phoneme recognition to estimate the phoneme-level confidential scores

that quantify the likelihoods of a wake word onset (Phase A). This enables us to control jamming

with frame-level resolution. Second, we propose a Hidden Markov Model (HMM) based lexicon

model to track the phoneme sequence (Phase B). This allows us to compute the likelihood of the

wake word’s occurrence. Finally, the ultrasonic transducer would start/stop jamming based on

previous two outputs (Phase C).

• Phase A: Framewise Phoneme Recognition. Upon receiving audio stream from the

analogue front end, the voice signal is first sampled and segmented into individual frames at

16 kHz sampling frequency, 25 ms window, and 15 ms overlap. Second, we apply Mel-Frequency

Cepstral Coefficients (MFCC) analysis [90] with 12 coefficients and 26 filter-bank channels

to each frame. Together with the first order differential coefficients, a.k.a. the Deltas and the

log-energy, this results in a 26-dimension feature vectors for each frame. Finally, to identify each

phoneme from the framewise feature vectors, we train a vanilla Recurrent Neural Network (RNN)

with one layer containing 275 hidden units and sigmoid activation function [90]. This trained

19

Frame N

h1 h2 hn

Frame 1 Frame 2

…
MFCC MFCC MFCC…

…

h1 h2 hn

Frame 2 Frame 3 Frame N+1

…
MFCC MFCC MFCC

Phoneme Score

…

…

h1 h2 hn

Frame M-N+1 Frame M-N+2 Frame M

…
MFCC MFCC MFCC…

…
…..

Sampling, Framing and Segmentations

….. …..Audio Stream:

SP: Speech Loop;
NSP: Non-speech Loop;
TS: Terminate State

/l/ /ɛ/ /k/ /s/ /l//ə/

NSP SP

/ə/ TS

Stop Jamming & Wait for Trigger Commands; Stop Jamming & Wait for Voice Commands;

Phoneme Score Phoneme Score

Phase A: Framewise Phoneme Recognition Phase C: Jamming Control PolicyPhase B: HMM Lexicon Model

Phase A

Phase B

Phase C

Figure 2.4. MicShield automatic jamming control pipeline.

model is then used to compute the likelihood for each possible phoneme, upon the input of each

framewise feature vector. The English speech contains a limited set of 61 basic phonemes, as

suggested in the TIMIT Acoustic-Phonetic Speech Corpus [81].

• Phase B: HMM Lexicon Model. In Phase A, we use the RNN-based approach to recognize

the possible phoneme from a sequence of framewise features. Following the lines of traditional

ASR methods [90], we leverage an HMM-based lexicon model to specify the transitions of

phoneme states, where the state space is defined by the wake word’s phonemes. For “Alexa”,

we define the state space as: {/@/, /l/, /E/, /k/, /s/}. Shown in Figure 2.4, once not following the

predefined wake word sequence, the phoneme state would transition to the speech/non-speech

loop. With HMM forward algorithm [184], we can compute the likelihood of each phoneme

state over time, as shown in Figure 2.2(e).

• Phase C: Jamming Control Policy. Our jamming control policy is based on the phoneme

level likelihood estimations, shown in Figure 2.2(e). Once likelihood of the initial phoneme

/@/ exceeds the predefined threshold, MicShield will suspends jamming. However, it will

20

immediately switch on jamming again if the subsequent phoneme states deviate from the wake

word’s predefined phoneme sequence. Otherwise, if the speech follows the predefined phoneme

sequence, the HMM model will start decoding and identify the wake word. Subsequently,

MicShield would stop jamming and allow the voice commands to pass through.

2.4.3 Minimizing Wake Word Misdetection

To avoid disturbing the VAs’ basic functionalities, the jamming control pipeline must

minimize the wake word misdetection rate.

Phoneme Level: Towards this end, the first challenge lies in the low accuracy of framewise

phoneme-level recognition method compared to the word-level recognition [90]. With the

aforementioned setup, the overall accuracy can only reach 64% for 61 different phonemes with

input length of 15 frames. Fortunately, unlike generic ASR models, our phoneme recognition

model can be trained to be sensitive to the specific phonemes associated with the wake words,

e.g., /@"lEksi@/. We thus harness this observation to enhance the detection accuracy for specific

phonemes. Specifically, we fine-tune the model using a combination of the “Alexa” utterance

dataset [35] and partial DARPA TIMIT Acoustic-Phonetic Speech Corpus containing phonemes

in {/@/, /l/, /E/, /k/, /s/} [81]. Figure 2.3(b) shows the phoneme recognition result of /@"lEksi@/.

With the fine tuned model, the accuracy increases from 64% to 78.7%.

Lexicon Level: Besides, we further minimize the wake word misdetection rate by decreasing

the HMM likelihood threshold in Phase B. As a result, even if a phoneme does not achieve

the highest phoneme likelihood in Phase A, the HMM-based lexicon model will still pass the

frame. However, a low threshold leads to a low mute rate for private speech, which would in turn

degrade the jamming effectiveness. Therefore, an optimal HMM likelihood threshold should

consider the trade-off between wake work misdetection rate and jamming effectiveness. We will

elaborate on this design trade-off in Section 2.4.4.

Another side effect of reducing the wake word misdetection rate is the increase of false

alarm rate. However, this will not affect the VA’s basic functionalities, since the speech signals

21

mistakenly identified by MicShield as wake word will be passed to and reprocesssed by the VA.

As long as the wake word is not identified, the VA will not be activated. In addition, although

such speech signals are unprotected by MicShield, the false alarm rate is negligible (only once

per 12 hours of speech as shown in Section 2.7.1), so the attacker can hardly exploit any sensitive

semantic information.

2.4.4 Maximizing Private Speech Mute Rate

Our second goal is to ensure the unintended private speech is successfully obfuscated by

the jamming signal, given high wake word detection accuracy as in Section 2.4.3. This requires

us to maximize the private speech mute rate.

Recall that MicShield’s selective jamming mechanism may still incur some phoneme-

level speech leakage. For example, when the user is saying “Agree” (/@"gri/), MicShield first stops

jamming when it hears /@/, and then resumes jamming immediately when it hears /g/. Thus, the

phoneme /@/ is leaked. However, because the remaining phonemes of “Agree” are still jammed,

such occasional phoneme leakage will not incur word-level privacy issues practically. In some

extreme cases, when certain words’ phoneme sequence resembles that of the wake word, these

words cannot be properly protected. We have investigated the percentage of the words that have

the same phoneme subsequences as “Alexa” in the CMU Pronouncing Dictionary [17]. Only

0.01% of 134000 words share the same first 4 phonemes, and most of these words are human

names, e.g.,“Alexei”, “Oleksy”, etc. Therefore, MicShield can theoretically satisfy the audio

privacy protection in a majority of practical settings.

In practice, the framewise phoneme recognition model is not prefect. To reduce the wake

word misdetection rate, our fine-tuned model is sensitive to the phonemes appearing in wake

words (Section 2.4.3), which in turn increases the phoneme false alarm rate, defined as the

probability when a wake word phoneme is incorrectly identified. This will in turn degrade the

private speech mute rate. For instance, MicShield may confuse the first phoneme of “Alexa”

(/@"lEksi@/) with that of “Apple” (/"æp @l/), and determine not to jam the first phoneme of “Apple”.

22

The phoneme false alarm rate in Phase A achieves an average 25.62% for those associated with

the wake word (see Figure 2.3(b)). To address this issue, we use the HMM lexicon model to track

the phoneme sequence pattern based on that of the expected wake word. With this approach,

MicShield will immediately restart jamming once identifying unexpected phoneme sequence.

Thus, even with a relatively high phoneme-level false alarm rate, the wake word recognition

can still maintain a low false alarm rate. Combined with the method proposed in Section 2.4.3,

we thus are able to ensure the expected functionalities, while protecting the unintended private

conversations.

2.4.5 When to Resume Jamming?

MicShield needs to resume jamming once the VA is back to the inactive mode. There are

mainly two policies for VAs to return to the inactive mode.

• It detects a sufficiently long silent period after it is triggered.

• It identifies the end of the voice command based on the semantic contents.

Practical VA devices employ voice activity detection (VAD) methods and semantic content

interpretation to realize these policies. MicShield needs to realize the same policies to determine

when to resume jamming.

MicShield uses VAD methods [120] as in existing VAs to realize the first policy. For

example, we empirically found that the Amazon Echo and Google Home use a 7 s and 8 s

VAD threshold, respectively. Other VA devices’ policy can be reverse engineered in the same

way. However, the second policy is challenging for MicShield to implement, as the limited

computational resources on the offline devices do not allow for analyzing language semantics. To

circumvent this hindrance, MicShield resumes jamming immediately when it detects that the VA

begins to respond to the voice command. With this measure, it protects subsequent periods when

the user starts speaking again. To differentiate between the user’s voice and the VA’s response,

we use the well known human/speaker sound detection methods in [42, 26]. Note that although

23

the VAs are not trustable in our threat model, the adversarial VAs still have to respond to the

user so that it can pretend to be normal. Furthermore, even the VA cheats the MicShield by

intentionally not responding to the voice command, MicShield will still resume jamming after a

few seconds of VAD detection.

Our scheme also supports the follow-up mode, where users can issue multiple requests

interactively without repeating the wake word before each commands [30] by omitting the second

policy, because the follow-up mode adopts the same waiting period as the first policy, i.e.,, the

VA will need to be triggered by another wake word if no voice activity is detected across the

waiting period. Interrupting commands, e.g.,“Alexa, Stop!”, will also be identified by VA since

such commands require the “Alexa” wake word even for the follow-up mode in our real-world

test. Thus, MicShield will follow the same policy in Section 2.4.2 to recognize the early onset of

the wake word and suspend jamming immediately.

2.5 Practical Jamming Design

2.5.1 Inaudible Jamming Sound

To avoid disturbing users, MicShield uses inaudible sound to jam the microphones.

Similar mechanism has been employed recently [191, 281, 193] to send inaudible commands

and hijack the VAs. Specifically, we use an ultrasonic transducer to transmit the ultrasound

signals Sin = cos(2π fht)(α +m(t)), where fh = 40 kHz is the high frequency carrier, and m(t)

is the low frequency jamming signal. Due to the microphone non-linearities, the recorded signals

can be modeled as Sout ≃ A1Sin +A2S2
in. After passing the low-pass filter and DC removal, the

signals received by the microphone become Smic = A2αm(t)+ A2
2 m(t)2. These signals will be

picked up and thus jam the microphones.

24

-0.8

-0.4

0

0.4

0.8

 A
m

pl
itu

de

(a) Raw speech waveform

0

2

4

6

8

 F
re

q
(k

H
z)

(b) Raw speech STFT results

-0.8

-0.4

0

0.4

0.8

 A
m

pl
itu

de

(c) Frequency distortion jamming

0

2

4

6

8

 F
re

q
(k

H
z)

(d) STFT results of frequency distortion jamming

-0.8

-0.4

0

0.4

0.8

 A
m

pl
itu

de

(e) Frequency distortion jamming with beamforming

0.5 1 1.5 2 2.5

 Time (s)

0

2

4

6

8

 F
re

q
(k

H
z)

(f) STFT results of frequency distortion jamming
with beamforming

Figure 2.5. Analysis of private speech: “Pizzerias are convenient for a quick lunch.” Although
frequency distortion jamming is effective to jam a single microphone ((c) and (d)), beamforming
based attack can mitigate the frequency distortion jamming and enhance the private speech for
attackers ((e) and (f)).

2.5.2 Jamming a Single Microphone

A single microphone can be easily jammed with traditional frequency distortion jamming

method, which reduces the speech SNR by transmitting white/color noise. We verify the

effectiveness by using a 0 ∼ 4 kHz white noise as jamming signal. To control the speech SNR,

we gradually increase the noise amplitude, while summing the private speech and the noise with

16-bit quantization. We reuse the TIMIT speech dataset [81] for evaluation.

Figure 2.5(c) and Figure 2.5(d) show the private speech “Pizzerias are convenient for

a quick lunch.” time series waveform and STFT results from one microphone. Clearly, the

low frequency components (0 ∼ 4 kHz) are successfully obfuscated by noise. We further use

PESQ and speech recognition rate to quantify the jamming effectiveness. Figure 2.6(a) shows

that, by using frequency distortion jamming, the speech recognition rate is 1%, 0.3% and 0.9%

for human perception, Amazon Transcribe [11] and Google STT [13], respectively, at −15 dB

25

speech SNR. Under this condition, the PESQ stays at 1.15 on average, and the maximum PESQ

is less than 1.6, i.e.,, extremely bad speech quality (see Figure 2.6(b)).

The experiment implies that frequency distortion jamming can effectively protect the

speech privacy for the single-microphone VA when the speech SNR is less than −15 dB. To cap

the SNR below -15 dB under the highest speech SPL of 75 dBA (Section 2.3), the corresponding

noise SPL should be above 90 dBA. To check the feasibility of this jamming noise volume, we

measure the SPL generated by a single transducer at its maximum volume, with frequency range

of 10 Hz ∼ 20 kHz. The SPL is sampled for each 1 cm in 7 different angles from 0◦, to 90◦, at

a step of 15◦. Figure 2.8(a) plots the resulting spatial distribution of SPL, where the contours

are smoothed by 3D interpolation [68]. We see that frequency distortion jamming achieves

the required 90 dBA SPL, only when MicShield’s ultrasonic transducer is placed within 4 cm

towards the microphone.

2.5.3 Jamming a Microphone Array

Beamforming based Attack: We now investigate how an attacker can leverage a microphone

array as a countermeasure to mitigate the effectiveness of the aforementioned frequency distor-

tion jamming. Since commercial multi-microphone VAs do not allow access to raw recorded

signals, we use the ReSpeaker 6-microphone array [16] for experimental purpose. The speech is

transmitted by a smartphone 30 cm away from the microphone array, and the received sound

has similar volume as a human user 0.5 m away from the VAs (SPL ranges from 50 to 75 dBA).

The jamming noise pattern is the same as in the previous experiment, and is generated by an

ultrasonic transducer fixed at 5 cm above the center of the microphone array. As discussed

in Section 2.3, we consider a scenario most advantageous to the attacker, assuming it knows

the exact location of the speech source. Equivalently, under the setup as in Figure 2.11(b), the

attacker knows the exact time difference of arrival (TDOA) of each microphones pair on the VA.

Then it can perform the classical delay-and-sum beamforming [114, 218] to enhance the sound

coming from the source location.

26

No Jam 3 0 -3 -6 -9 -12 -15

 Speech SNR (dB)

0

20

40

60

80

100
 A

SR
 R

ec
og

ni
tio

n
R

at
e

(%
)

 AWS Transcribe
 Google STT
 Human Ear

(a) Speech recognition rate

1 1.2 1.4 1.6 1.8 2 2.2

 PESQ (1~5)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 3 dB
 0 dB
 -3 dB
 -6 dB
 -9 dB
 -12 dB
 -15 dB

(b) PESQ

Figure 2.6. Jamming effectiveness v.s. SNR. Frequency distortion jamming can effectively
protect the speech privacy for the single-microphone VA when the speech SNR is less than −15
dB.

Figure 2.5(e) and 2.5(f) show that, with the beamforming countermeasure, the speech

waveform and STFT results become much closer to raw audio signals than the case without

beamforming. The 6-microphone beamforming countermeasure can enhance the speech SNR

by 12 dB. The private speech recognition rate increases significantly, i.e.,, to 75.0%, 44.2% and

32.2% for human perception, Amazon Transcribe and Google Speech-to-text, respectively. Some

of the speech corpora even achieves a PESQ higer than 2.0 (see Figure 2.7(b)).

Gain Suppression Jamming: To effectively defeat the beamforming-based countermeasure, we

explore an alternative gain suppression jamming method. The idea is to transmit high-volume

sound to saturate the microphone, i.e.,, force the microphone to reach the Acoustic Overload

Point (AOP). AOP occurs when overwhelming input sound pressure causes the microphone

output to be severely distorted [258]. In practice, the gain suppression jamming needs to address

2 dilemmas.

• (D1) Dilemma between jamming noise volume and audibility: Ideally, a high-power

jamming noise can more effectively trigger gain suppression. However, a high output volume

will trigger a non-linear effect at the speaker’s diaphragm and amplifier, making the jamming

27

95.092.6

83.9

75.0

44.2

32.2

6.0
1.6 4.2

0.0 0.0 0.0

No Jam

Distortion w/ BF

Distortion w/o BF

Gain Suppression

 HMM Likelihood Threshold

0

20

40

60

80

100
 A

SR
 R

ec
og

ni
tio

n
R

at
e

(%
)

Human Ear
AWS Transcribe
Google Speech-to-text

(a) Speech recognition rate

1 1.5 2 2.5

 PESQ (1~5)

0

0.2

0.4

0.6

0.8

1

 C
D

F Distortion w/ BF
 Distortion w/o BF
 Gain Suppression

(b) PESQ

Figure 2.7. Jamming effectiveness for different jamming methods.

sound audible and disturb users [158]. To verify this phenomenon, we add a class D audio

amplifier PAM8403 [4] to the ultrasonic transducer, which helps adjust the volume of jamming

noise. We then ask 5 volunteers to stay 0.5m away and check if the noise is audible. With 3

W input power, no volunteer hears the transducer. But when the input power reaches 4 W, 2

volunteers can hear the sound.

To avoid the audibility while ensuring gain suppression, we thus fix the input power of the

transducer to 3 W and maximize the jamming volume using a single-frequency jamming signal

close to the resonant frequency [113], where the transducer exhibits the maximum amplitude

response.

Figure 2.9 shows the waveform of private speech (see Figure 2.5(a)) jammed by the

single-frequency signal. Clearly, the microphone becomes saturated, and the speech signals are

clipped and distorted into square-like waveform, losing the typical frequency-domain features as

well. Our measurements show that the obfuscated signals have a low PESQ of 1.09 and a 0%

speech recognition rate using Amazon Transcribe [11] and Google STT [13].

• (D2) Dilemma between jamming noise volume and coverage: Ideally, when gain

suppression jamming is applied to each microphone on a microphone array, the speech signals

28

(a) SPL 2D heat map for ultrasonic transducer

14 cm

9 cm

(b) SPL 2D heat map for amplified ultrasonic
transducer

12 cm
7 cm

No self-interference
region

(c) SPL 2D heat map for amplified ultrasonic
transducer with tube

0

30

60
90

120

150

180
-5 -4 -3 -2 -1 0

Attenuation (dB)

(d) SPL attenuation with MicShield

Figure 2.8. SPL heat map for ultrasonic transducer. Compared to (a) and (b), acoustic waveguide
design in (c) extends the jamming space to make it possible to saturate the microphone array,
and isolate the self-interference from MicShield.

will all become clipped into square-wave like waveform (see Figure 2.9) and completely unintel-

ligible. Beamforming cannot recover the signals, as distortion occurs in the analog front-end.

However, the acoustic transducer has a directional gain pattern with a narrow beam angle,

whereas the multiple microphones on a VA are usually laid out to form a circular array. One

could place the transducer away from the microphone array so as to expand the sound beam’s

angular coverage. However, under the 3 W power constraint, it is challenging to ensure a single

transducer can generate sufficiently high SPL at all the microphones.

To elucidate this dilemma, we measure the SPL of a single transducer with the 3 W

29

0 5 10 15 20
 Time (ms)

-1
-0.5
0

0.5
1

 A
m

pl
itu

de

0.5 1 1.5 2 2.5
 Time (s)

0

10

20
 F

re
q

(k
H

z)

Clipped

Figure 2.9. Acoustic overloading of received microphone. (a) zoomed-in saturated jammed
signal in time domain; (b) spectrogram of jammed signal.

x

y

z Mic1 (h, 0, r)
Mic2 (h, r, 0)
Mic3 (h, 0, -r)
Mic4 (h, -r, 0)

Jammer (0, 0, 0)

(a) Single jammer geometry

Splitter

Ultrasonic Transducer

Mic
Mic

Mic Array

Connector
Connector

Guider

4 cm

2 cm

(b) 3D model for MicShield

Figure 2.10. Geometric model for MicShield design.

amplifier under the same setup of our previous SPL experiment. Figure 2.8(b) plots the resulting

spatial distribution of SPL. Although the microphone hardware specifies 120 dBA SPL, we

find that when the SPL exceeds 100 ∼ 110 dBA, it already causes complete gain suppression.

Correspondingly, when the VA’s microphone is placed within the yellow region in Figure 2.8(b),

gain suppression occurs effectively.

As shown in Figure 2.8(b), with the amplifier (fixed to 3W to avoid audibility), the gain

suppression works when the jamming transducer stays within 14 cm towards the microphone.

However, for multi-microphone VAs, it is obvious that a single jamming source cannot cover the

30

ADC

DAC

MicShield Transducer

MicShield Mic

VA Mic

(a) Jamming w/o shield (b) Microphone array counter-
measure

VA Mic Array

MicShield Transducer

MicShield Mic

Shield Design

Audio Amplifier

MicShield Controller

(c) Jamming w/ shield

Figure 2.11. Hardware implementations and setups of MicShield.

Recording Thread Control Thread

Activity
Detected

Preprocessed Frame Buffer Software Stack Deployments

Microphone Ultrasonic Speaker

Preprocessing
& MFCC

Jamming Thread

Jamming Control Signals

Voice Activity
Detection

Jamming
Control

Wake Word
Detection

Phoneme
Detection

Jamming/
Stop Jamming

Figure 2.12. Software stack design and implementations.

microphone array. Suppose the transducer is fixed h cm above the microphone array (circular

array with radius r), as shown in Figure 2.10(a). Even with the amplifier, the largest radius of the

gain suppression region is only 4.5 cm when h = 5 cm (Figure 2.8(c)). In contrast, many of the

mainstream smart speakers (e.g., Google Home and Apple HomePod) have a radius larger than

4.5 cm, which cannot be covered by the jammer. We present our solution in the next section.

Acoustic Waveguide Design: To address dilemma D2, we design a physical shield which can

extend the coverage of a single ultrasonic transducer to jam large microphone arrays. Our basic

idea is to leverage an acoustic wave guide to redirect the jamming signal to fully saturate the

multiple microphones.

31

No Jam 5e-4 1e-3 5e-3 1e-2 5e-2

 HMM Likelihood Threshold

0

20

40

60

80

100

 M
u

te
 R

at
e

(%
)

 Private Speech
 Wake Word

(a) Mute rate

No Jam 5e-4 1e-3 5e-3 1e-2 5e-2

 HMM Likelihood Threshold

0

5

10

15

20

25

30

 M
is

d
et

ec
ti

o
n

 R
at

e
(%

)

 No noise
 Music (6 dB SNR)
 Music (3 dB SNR)
 Music (0 dB SNR)
 Speech (6 dB SNR)

(b) Wake word misdetection

92.59

83.91

0.96 0.87 0.22 0.32 0.03 0.05 0.02 0.02 0.00 0.00

No Jam 5e-4 1e-3 5e-3 1e-2 5e-2

 HMM Likelihood Threshold

0

20

40

60

80

100

 A
S

R
 R

ec
o

g
n

it
io

n
 R

at
e

(%
)

 AWS Transcribe
 Google Speech-to-text

(c) Speech recognition rate

1 1.1 1.2 1.3 1.4

 PESQ (1~5)

0

0.2

0.4

0.6

0.8

1

 C
D

F 5e-4
 1e-3
 5e-3
 1e-2
 5e-2

Likelihood threshold

(d) PESQ CDF

Figure 2.13. Micro benchmark using the wake word of “Alexa”.

Acoustic Waveguide Design: Our acoustic waveguide splits the transducer’s output signals

using multiple silicone tubes and redirects them towards the microphones. We choose the 10 mm

diameter tube (> half-wavelength (4.2 mm)) to prevent the volume attenuation due to thermo-

viscous effects [227]. Figure 2.8(c) profiles the SPL generated by a flexible silicone tube which is

20 cm in length and connected to a single ultrasonic transducer. It shows that, the sound is much

more directional than the case without the tube. As a result, the acoustic waveguide also isolates

the self-interference from the MicShield’s ultrasonic transducer to its own microphone. So it can

keep detecting the wake word while jamming the VA’s microphone. Meanwhile, it improves the

directionality and hence propagation distance of the sound signal (see Figure 2.8(c)). Therefore,

if we can connect the transducer with multiple sound tubes, each tube can jam one microphone

in an array.

32

Geometrical Design: We design a “acoustic multiplexer” to split the acoustic jamming

signal across multiple tubes. Figure 2.10(b) shows the 3D mock-up design, which contains two

parts, i.e.,, “splitter” (top) and “guider” (bottom). The ultrasonic transducer transmits jamming

signals from the top of the “splitter”. The bottom of the “splitter” comprises multiple connectors

which connects to the “guider” through tubes. Then, the “guider” uses another set of tubes to

guide the jamming sound to each of the VA’s microphones, thus enabling the gain suppression

jamming. Note that the “guider” can be customized for different VAs, depending on the VAs’

form factor and number of microphones. Figure 2.10(b) shows a typical geometrical design for

the Respeaker 6-Mic circular array [16].

One might be concerned that the 3D printed shield may block the voice from the user.

We conduct one experiment to quantify such degradation. We play the speech sound using

smartphone and record the signals using the ReSpeaker 6-Mic Array [16] with or without our

mock-up shield in 7 different angles from 0◦, to 90◦, at a step of 15◦. Figure 2.8(d) shows the

attenuation with the shield. We observe the degradation is only 1 dB even in the worst case

when the sound source is on the top of the VA. This minor effect is unlikely to harm the VA’s

sensitivity in voice recognition.

Another practical concern for MicShield is the ultrasound safety issue. As suggested by

World Health Organization (WHO), the human-exposure limits for 40 kHz airborne acoustic

radiation should be less than 110 dB SPL when the duration of exposure does not exceed 4 hours

per day [9]. As shown in Figure 2.8(d), MicShield guarantees that the transmitted SPL is always

within the safety limits. Besides, our acoustic waveguide design further isolates the ultrasound

and shrinks the high SPL region to prevent harm to users.

33

2.6 Implementation

2.6.1 Hardware

We implement MicShield using low-cost OTS components. Figure 2.11(a) shows the

MicShield prototype for single-microphone case, comprising one ultrasonic transducer, one

microphone and RPi. The RPi interfaces with a Pimoroni pHAT DAC 24-bit/192 kHz Sound

Card [8] and then an ultrasonic transducer, in order to generate inaudible jamming sound. To

minimize self-interference and maximize jamming, the MicShield ultrasonic transducer is facing

away from its own microphone while towards the VA microphone. For multi-microphone case,

Figure 2.11(c) shows the custom-built shield to guide the jamming sound to each microphone.

To achieve a reasonable operating range in detecting wake words, MicShield uses ReSpeaker

2-Microphone Pi HAT supporting up to 3 m sensing distance [16]. The sampling rate is set

to 16 kHz. The overall cost of single and multiple microphone schemes are around $25 and

$35, respectively, exclude the RPi and 3D printed mechanical shield. We expect a great cost

reduction and form factor enhancement by additional engineering efforts and integrating majority

of components into System-on-Chip (SoC).

2.6.2 Software

Our software stack runs on the RPi, which implements the pipelines described in Sec-

tion 2.4.2 and Figure 2.4. As shown in Figure 2.12, our implementation has three parallel threads,

for recording, control, and jamming purposes. The recording thread captures and preprocesses

the sound signals based on the policy in Phase A. To reduce energy consumption, this thread

also determines whether it needs to emit jamming signals, with an energy-based voice activity

detection scheme [120]. The control thread takes each MFCC frame features along with the

previously preprocessed frames’ MFCC features as input, and then determines whether to pass

the jamming command to the jamming thread, based on the results of automatic jamming control

algorithm (see Figure 2.4). The lightweight RNN and HMM in the automatic jamming control

34

are implemented using Theano[18]. Upon receiving the jamming control, the jamming thread

will start jamming. For single-microphone case, we transmit jamming noise to ensure the SPL at

the receiver microphone being around 95 dBA, which is measured 3 cm away from the ultrasonic

transducer. For multi-microphone case, we ensure the SPL of jamming noise received being

approximately equal to 110 dBA, which is measured 1 cm away from the sound tubes.

2.7 Experimental Evaluations

2.7.1 Micro Benchmarks

We first evaluate MicShield following the metrics in Section 2.3, and discuss the trade-off

between the wake word misdetection and the jamming effectiveness. We use the TIMIT corpus

[81] as the private speech dataset and the Alexa dataset [35] as the wake word dataset. We split

the private speech data into training and testing set, containing 190 min and 70 min speech

corpus for 630 and 168 users, respectively. Similarly, the Alexa dataset is split into 200 and 167

wake words for 50 users and 37 users, respectively. Since OTS VAs do not allow access to raw

recorded signals, we use the ReSpeaker 6-Mic Array with RPi [16] to record both the private

speech and the wake word sound in this experiment.

• Mute Rate: Figure 2.13(a) shows the private speech mute rate and the wake word

mute rate under different HMM likelihood thresholds. A higher threshold, e.g., 0.05, leads to

high mute rate for both private speech and wake word. When the threshold falls below 0.001,

the wake word’s mute rate becomes almost 0%, whereas the private speech words’ mute rate

remains high (72%).

• Wake Word Misdetection Rate: Since commercial VAs do not expose their wake word

detection algorithms, we playback the recorded wake word sounds under MicShield jamming

to Amazon Echo Dot [3], in order to measure the end-to-end misdetection rate. Figure 2.13(b)

shows that, compare to the case without MicShield, the wake word misdetection rate with

MicShield’s selective jamming does not degrade as long as the likelihood threshold is less than

35

0.01. When the likelihood threshold is 0.005, only 1/167 wake word from 37 users (16 females,

21 males), which can be recognized without MicShield, is misdetected with MicShield in the

Alexa testing set.

• Wake Word False Alarm: When testing the private speech, there is only 1 false alarm

of wake word, out of the 12 hours of normal speech. This means the jamming effectiveness is

virtually unaffected by wake word false alarms. Meanwhile, as we discuss in Section 2.4.3, the

wake word false alarm will not affect the VAs basic functionality either.

• Jamming Effectiveness: We evaluate the jamming effectiveness by using PESQ and

speech recognition rate. We use ASR algorithms (i.e.,, Amazon Transcribe [11] and Google

STT [13]) and human recognition to evaluate the jammed speech recognition rate. Figure 2.16(c)

shows that the speech recognition rates for both ASR algorithms are less than 1% when the

threshold is 0.0005 (corresponding to mute rate 66% for private speech). We found that the

recognized words are mainly short words with the first phoneme close to /@/, e.g.,“I”, “a”, “as”,

“all”, “also”, etc. In addition, human users cannot interpret the jammed speech either. The PESQ

of all the jammed speech signals is less than 1.4, under different likelihood thresholds, as shown

in Figure 2.13(d).

• Impact of Environmental Noise: To evaluate the robustness of MicShield, we mix the

wake word sound plus private speech with two types of environmental noises, i.e.,, speech noise

and music noise, which come from AudioSet [82], an ambient noise dataset widely adopted

in speech recognition research. We play these two types of the environmental noises by an

additional loudspeaker while using MicShield. The SNR levels between private speech and noise

vary between 6 dB, 3 dB, and 0 dB. Figure 2.13(b) shows the misdetection rate of wake word.

When the HMM likelihood threshold is less than 0.005, the wake word misdetection rate remains

the same as the case without MicShield. Here we omit the results where the speech SNR is

below 3 dB, since the VA itself is no longer usable in such cases — the wake word misdetection

rate exceeds 50% even without MicShield. Meanwhile, we find that the wake word false alarm

and jamming effectiveness is barely affected in noisy environments, and instead is more sensitive

36

6.20 ms

 17.93 ms

 0.89 ms

 VAD

 Phoneme

 Wake word

(a) Contributions of latency

150 160 170 180 190 200

 RNN Input Frame Length (ms)

16

19

22

25

 T
im

e
C

on
su

m
pt

io
n

(m
s)

(b) Frame length v.s.Time

Figure 2.14. Analysis of system time consumption.

to the HMM likelihood threshold.

• Real-world Usage Experiments: We deployed the VA with MicShield (see Figure

2.11(b)) across four different rooms, i.e.,, bedroom, kitchen, living room, and bathroom, and

asked the users to use the VA as usual for 5 days. 120/125 voice commands, including some

interrupting voice commands, e.g.,“Alexa, stop!”, are correctly responded by VA with MicShield.

MicShield is not sensitive to the VA locations since we use the MFCC features, which is more

related to the speech characteristics rather than environmental characteristics, as the framewise

phoneme recognition input. The only 5 missed voice commands are due to the low-volume of

the voice commands which can not trigger the jamming suspending policy.

To summarize, when the HMM likelihood threshold is 0.01, MicShield is able to maximize

the jamming effectiveness, achieving 90.4% mute rate and 0.02% speech recognition rate for

private speech, without affecting the VA’s ability to detect wake words even in noisy environments

across different VA locations.

2.7.2 Latency Analysis

The latency for MicShield from receiving the first frame of the wake word to stop jamming

is 25.02 ms (≤ 60 ms). This will not degrade the wake word misdetection rate (see Figure 2.3(a)).

37

0 20 40 60 80 100
 Time (s)

0
200
400
600
800

 P
ow

er
 (m

W
)

Jamming modeIdle mode Idle mode

Duty Cycle

Figure 2.15. An example instantaneous power.

We evaluate this by measuring the processing latency of the MicShield software stack running

on RPi 3B+. The processing time includes 3 parts: (i) MFCC & VAD; (ii) RNN-based phoneme

recognition; (iii) HMM-based wake word recognition. As shown in Figure 2.12, upon receiving

audio stream from the analog front-end, the recording thread first performs the MFCC and Voice

Activity Detection (VAD), incurring ∼ 6.20 ms latency. Second, the control thread performs the

automatic jamming control (phoneme recognition and wake-up word recognition) to determine

whether to pass the jamming control signals to the subsequent jamming thread. In this thread,

the latency and control frequency are dominated by sequence length of RNN-based phoneme

recognition significantly. Figure 2.14(b) shows the measured correlations between control

thread latency and input frame length. We choose input length of 15 frames (each frame takes

25 ms-window length and adjacent frames have a 15 ms-overlaps), and the control thread has

17.93+0.89 = 18.82 ms latency each time. The overall latency is 25.02 ms for MicShield to

response to a 25 ms frame speech, which is sufficient to pass the wake-up word to VAs based on

our previous discussion in Section 2.3(a).

2.7.3 Energy Consumption

Our current MicShield prototype, as our proof-of-concept, incurs an estimated energy

consumption of 2 Wh per day.

Power Consumption of Major System Components: We use INA 219 [5] to measure

the instantaneous power consumption of major system components, i.e.,, transducers, micro-

phones and RPi. Table 2.1 summarizes the power consumption averaged over 10 min for the

38

Table 2.1. Power consumption (mW) in controlled settings.

(a) Single-microphone VA

Transducer Microphone RPi Total
Idle / 12.99 84.61 97.60

Jamming 121.03 12.99 262.33 403.35

(b) Multi-Microphone VA

Transducer Microphone RPi Total
Idle / 31.52 84.61 116.13

Jamming 156.83 31.52 262.33 450.68

single- and multi-microphone setup. For single-microphone VA, MicShield consumes 97.6 mW

and 403.35 mW in the idle and jamming mode, while for multi-microphone VA, the power

consumption is 116.13 mW and 450.68 mW, respectively. We notice more than 65.04% of

power is attributed to the RPi, which centers on an ARM based SoC and running a full fledged

Debian OS. However, we expect the a product version of MicShield can be implemented based

on dedicated low power chip, without the power hungry OS kernel modules and background

daemon.

Approximation of Energy Consumption in a Practical Settings: In daily usage

scenarios, it is known that a user speaks for about 2 hours on average per day [152]. Accordingly,

we assume MicShield works in 14 hours of idle mode and 2 hours of jamming mode in a single

day. Thus, MicShield would incur an energy consumption of ∼ 2 Wh per day. This means that,

with a typical smartphone battery, MicShield can work for about 8 ∼ 10 days [62]. The energy

would be largely reduced if a low-power DSP or ASIC is used as the substitute of RPi [160].

For example, a recent developed AI chip by Syntiant shows high potentials to be applied in our

case with the power consumption down to the order of hundreds µW [160]. Alternatively, we

also noticed a majority of multi-microphone VAs draw power from the mains, which is also

applicable to MicShield.

39

No Jam 5e-4 1e-3 5e-3 1e-2 5e-2

 HMM Likelihood Threshold

0

20

40

60

80

100

 M
u

te
 R

at
e

(%
)

Private Speech
Wake Word

(a) Mute rate

No Jam 5e-4 1e-3 5e-3 1e-2 5e-2

 HMM Likelihood Threshold

0

2

4

6

8

 M
is

d
et

ec
ti

o
n

 R
at

e
(%

)

 "Hey Google"
 "OK Google"

(b) Wake word misdetection

92.59

83.91

7.55 7.91
2.44 4.15

0.31 0.71 0.15 0.69 0.06 0.38

No Jam 5e-4 1e-3 5e-3 1e-2 5e-2

 HMM Likelihood Threshold

0

20

40

60

80

100

 A
S

R
 R

ec
o

g
n

it
io

n
 R

at
e

(%
)

 AWS Transcribe
 Google Speech-to-text

(c) Speech recognition rate

1 1.1 1.2 1.3 1.4

 PESQ (1~5)

0

0.2

0.4

0.6

0.8

1

 C
D

F 5e-4
 1e-3
 5e-3
 1e-2
 5e-2

Likelihood threshold

(d) PESQ CDF

Figure 2.16. Micro benchmark using the wake words of “OK Google” & “Hey Google”.

40

2.7.4 Generalization

Our previous design and experiments use the Amazon Echo Dot by default. However,

MicShield can be well generalized to alternative VAs. In this section, we show the generalizations

of MicShield for Google Home [85] and Amazon Echo [31], 2 VAs that currently dominate the

market [260].

• Generalizations across Wake Words: The same VA can use different pre-defined

wake words. For example, Amazon Echo supports to change the wake of as one of the 4 words:

“Alexa”, “Echo”, “Amazon”, and “Computer” [31]. To accommodate this, MicShield stores

the trained RNN and HMM models in the persistent memory for all the wake words that a

user needs. It only needs to change the RNN and HMM models to adapt to the wake word

modifications. Our current design only supports pre-defined wake words. However, this will not

limit the generalizations of our design, as all current VA devices only supports limited number

of wake words. Besides, new wake words can be trained following the same pipeline. The

main difference for different wake words is the phoneme sequence pattern. Table 2.2 lists the

percentages of the words in CMU Pronouncing Dictionary [17] that have different number of

same consecutive phoneme as wake words used by Amazon Echo and Google Home. First,

relatively large number of words (0.12% of 134000 words) shares the same first 4 phonemes

with the wake word “Computer” since “Comp” (/k@mp/) is a word prefix. This means MicShield

will have relatively high risk of leaking private words with the same word prefix as the wake

word. Second, Google Home chooses to use the short utterances as the wake word, e.g.,“Hey

Google” and “OK Google”. This leads to that MicShield will leak the onset word of the short

utterances, i.e.,, “Hey” and “OK”. MicShield can still protect the speech privacy in most of the

practical settings, and we encourage users to use the words without the word prefix and onset

word, e.g.,“Alexa” and “Amazon”, to better protect the speech privacy.

MicShield can be well generalized to multiple wake words at the same time. Some VAs

support multiple wake words triggering, e.g., users can trigger Google Home by “OK Google”

41

Table 2.2. Percentage of words in CMU Pronouncing Dictionary [17] that have similar number
of consecutive phoneme sequence as different wake words.

of Consecutive Phoneme 1 2 3 4 5
“Alexa” 2.05 0.19 0.02 0.01 0.01

“Amazon” 1.46 0.15 0.03 0 0
“Echo” 1.51 0.17 0.01 / /

“Computer” 9.73 1.13 0.25 0.12 0.01
“Hey Google” 5.00 0.19 0.01 0 0
“OK Google” 0.48 0.03 0 0 0

and “Hey Google”. To evaluate the performance of MicShield in this case, we use the Google

Home as an example. Our dataset is composed of 2 wake words speech from existing cloud

based Text-To-Speech (TTS) services and real-world participants. For TTS based approach,

we use the wake word speech from 24 “virtual” participants, generated by Google TTS [14],

Amazon Polly [10] and IBM Watson TTS [15]. Our dataset also includes speech examples

from 5 real-world participants. Overall, we collect 79 samples from 29 people for “OK Google”

and “Hey Google”. To train HMM and RNN model in automatic jamming control pipeline (see

Figure 2.4), we shuffled and used 70% and 30% samples for training and testing purpose. The

mute rate, misdetection rate and jamming effectiveness is plotted in Figure 2.16. A comparison

with Figure 2.3 shows a negligible performance degradation for the 2 wake words setting.

• Generalizations across VA Devices: The geometry and sensitivity of microphone

array varies across different VAs. To show the generalizations across devices, our evaluation is

based on Amazon Echo Dot (4 microphones) and Google Home Mini (2 microphones). Note

that these 2 multi-microphone VAs do not allow access to the private speech, but will record

the history of the voice command after each wake word. Thus, we disable the jamming control

policy for voice command and force the MicShield to only pass the wake word and obfuscate the

voice command, so as to obtain the jammed results of commercial VAs. We use a smartphone

to transmit the sound signals with 70 dBA SPL to first wake up the VA, and then continue with

the voice commands. The voice commands are selected from the top 20 most popular ones [1].

42

Both Amazon and Google provide the metadata (content of the recognized voice command) for

each request. The experimental results show that, all the metadata of these 100 jammed voice

commands is “Audio could not be understood” or “unknown voice command”. Amazon also

provides the received audio signals of the voice commands. Whereby this, we showed the real

participants and ASR algorithms cannot recognize the jammed audio signal neither. This means

that MicShield can effectively protect the private speech for these different devices.

2.8 Limitations and Future Work

Sensitivity of Microphones: Our experiments indicate the achievable distance be-

tween MicShield and sound source highly depends on the sensitivity of microphone on the

MicShield. Our current prototype supports up to 3 m range for wake word detection. For many

single-microphone VAs, e.g., smartphones, the user-device distances are generally limited within

1 m. MicShield can well address such usage scenarios. However, commercial microphone array

based VAs may be able to achieve longer than 3 m detection range. To ensure comparable detec-

tion range, MicShield needs to adopt similar hardware setup as such commercial VAs, e.g.,using

a microphone array along with self-interference cancellation, acoustic echo cancellation and

beamforming algorithms. We expect a commercial buildout of MicShield can be easily equipped

with such capabilities.

Attacks on MicShield: MicShield’s threat model assumes that the VAs are untrustable,

but MicShield itself still needs to run the wake word detection mechanism, albeit always offline.

An attacker may attempt to defeat MicShield by forcing the VA to secretly play the wake word

sounds with low volume or inaudible voice [281], so as to cheat MicShield and stop its jamming.

The attackers may also employ other speaker devices, e.g.,TV, to play the wake words. However,

such forged voices can be easily identified, e.g.,by installing multiple microphones on MicShield

to locate the sound source, or through liveness detection methods [130, 283]. These attacks and

countermeasures targeting the wake word detection have been well explored, and are beyound

43

the scope of our work.

2.9 Conclusion

The always-on microphones on voice assistants (VAs) have raised serius privacy con-

cerns. In this paper, we propose MicShield, the first system to automatically protect speech

privacy against always-on microphones. MicShield introduces a novel selectively jamming

mechanism, which can obfuscate private speech while passing legitimate voice commands using

phoneme-level features. We prototype implementation and experiments verify the feasibility

and effectivness of MicShield in protecting speech privacy without degrading the VAs’ basic

functionalities. MicShield marks a critical step in addressing the potential privacy risks of VAs.

2.10 Acknowledgments

This chapter contains material from “Alexa, Stop Spying on Me: Speech Privacy Protec-

tion Against Voice Assistants”, by Ke Sun, Chen Chen, and Xinyu Zhang, which appears in the

18th ACM Conference on Embedded Networked Sensor Systems (SenSys), 2020 [211]. The

dissertation author was the primary investigator and author of this paper.

44

Chapter 3

Stealing Permission-protected Private
Information From Smartphone Voice As-
sistant Using Zero-Permission Sensors

3.1 Introduction

Voice User Interfaces (VUIs) allow a user to interact with a smartphone through

voice/speech commands, which significantly improves the smartphone’s usability and accessibil-

ity. Voice Assistants (VAs), e.g., Google Assistant and Apple Siri, and voice-guided navigation

apps, e.g., Google Maps and Apple Maps, represent the most popular apps that employ the VUIs.

To function properly, these apps have to access many strong permissions related to user privacy,

e.g., calendar, contacts, locations, microphone, SMS, and storage. Then they can vocally respond

to user queries through the built-in loudspeaker. Such VUI responses often contain sensitive

private information (see examples in Table 3.1).

On the other hand, motion sensors, e.g., accelerometer and gyroscope, are co-located

with the loudspeaker, and can potentially create a side channel to eavesdrop on the loudspeaker

through vibration sensing [39, 34, 65, 282, 200]. These sensors pose an alarming threat especially

since they are accessible by any app on mainstream mobile OS (e.g., Android and iOS) without

user permission. However, existing threats mainly target on classifying a small set of digits and

hot words [39, 34], rather than natural speech, from the side channel. The potential risk remains

45

Voice command reply speech
transmitted by Loudspeaker

Vibration caused by speech

Zero-permission
motion sensor

signals

Lightweight
StealthyIMU

DNN

Malicious APP

Permission: Calendar
Todo: Buy flowers
Time: Tomorrow at 8 A.M.

One-time
stealing

Short-term
context

Long-term
monitoring

Permission: GPS Trace

Permission: Home address
Home: 40.66°N 73.93°W

Figure 3.1. StealthyIMU threat model. StealthyIMU is a malware that can be built in as an
ordinary app to continuously capture the motion sensor signals, from which it extracts permission-
protected private information.

unclear in real-world scenarios.

In this paper, we propose StealthyIMU, a novel and practical threat that uses the zero-

permission motion sensors to extract permission-protected private information from the VUI

responses. These permissions are explicitly granted to the VUI by the user and are strongly

associated with user privacy. StealthyIMU is a malware that can be built in or disguise as an

ordinary app, to indirectly acquire such permissions through the motion sensor side channel.

Fig. 3.1 illustrates our basic threat model. StealthyIMU continuously captures the motion

sensor signals (MSS) and identifies the segments associated with the VUI response, from which

it recognizes the type and content of the private information. Over time, StealthyIMU can

accumulate more context to further improve the accuracy and richness of the information.

To realize StealthyIMU, we need to resolve 4 key challenges. (i) How to single out the

MSS segments of interest with negligible overhead? First of all, since StealthyIMU does not

know when the VUI responses occur, we need to identify the MSS segments associated with

VUI responses, out of all the motion signals, without being noticed by the user. Processing

the MSS in the cloud is not always feasible since the StealthyIMU app may not have “network

46

in the background” permission to continuously upload the sensor data. We thus design an

on-device two-stage (temporal and frequency domain) detection algorithm, which can identify

and segment the sound-induced MSS in the background, and then save them in the app memory

with negligible overhead. We further design a lightweight DNN model to single out the subsets

of segments that contain an actual VUI response.

(ii) How to recognize the private content from a segment of MSS containing a VUI

response? Due to the limited sampling rate of smartphone motion sensors (< 500 Hz), recog-

nizing general speech from the motion sensor is a highly underdetermined problem [39, 34].

Unlike existing work, our unique observations are: 1) VUI responses usually come from a small

set of machine-rendered voices, resulting in a constrained user dependent speech recognition

problem; 2) the acoustic characteristics and format of VUI responses are more deterministic

than natural human speech, making it easier to be recognized. Since the attacker cares more

about the meanings rather than wordings, we formulate the StealthyIMU attack as an end-to-end

Spoken Language Understanding (SLU) problem, which further evades the need for word level

recognition. Specifically, we extract the contents associated with private permissions from the

VUI responses and label them in the form of private entity list (see Tab. 3.1). Then we design a

DNN model to recognize the private entity lists from MSS. To enhance the SLU, we propose

a cross-modality teacher-student training strategy to distill knowledge from data-rich speech

models to guide the training of the MSS model.

(iii) How to extract the private information by combining the contextual information

across multiple VUI responses? The one-shot SLU from a single VUI response is inevitably

error-prone. However, by processing multiple VUI responses targeting the same permission, we

can infer the user privacy (e.g.,city name and home address) with high accuracy. In addition, by

inferring the user’s city and combining the city map along with the contextual information from

a series of navigation voices, we can even recover the user’s GPS trace.

(iv) How to defend against the StealthyIMU attack? The limited sampling rate of

motion sensors brings opportunities to counteract the StealthyIMU attack by modifying the VUI

47

response speech alone. We propose to pre-distort the low-frequency components of speech

signals to prevent the motion sensor from capturing the voice-related information, without

noticeably affecting the speech quality of the VUI response. Specifically, we design a speech

signal processing pipeline to reduce the SNR of the MSS and distort the spectrogram by adding

artificial low-frequency components.

To evaluate StealthyIMU, we develop an Android app to collect more than 45,000

VUI responses from Google Assistant and Google Map, along with the MSS in the real world.

The VUI responses include 23 types of frequently-used voice commands (see Tab. 3.2). Our

evaluation shows that, for the one-shot attack, StealthyIMU can extract the private entities

including contacts, location, reminder/ alarm TODO list and time, and search history with

an average 85.55% success rate. For long-term monitoring, StealthyIMU achieves 99.8%

success rate in recognizing a user’s city name via 5 weather-related queries and locates the

user’s home address with 11 m average error simply through 10 navigations to home. For

short-term contextual inference, StealthyIMU can combine the city road map and a series of

navigation voices to recover users’ GPS trace within 30 m distance error in 80% of cases.

Whereas StealthyIMU can be directly deployed on smartphones, we also take the first step to

exploit alternative deployment models of StealthyIMU (e.g.,in the cloud), and show the trade-off

between the required permissions and on-device system resources. On the other hand, our

defense approach is able to prevent the StealthyIMU attack, reducing its SNR down to 2.7 dB

and success rate to less than 4.94%. For the purpose of reproducing our approach, we release

our labeled VUI response, MSS dataset, and the source code 1.

We make the following contributions in this work:

• We introduce a new threat model that uses zero-permission motion sensors to extract

permission-protected private information from VUI responses on smartphones.

• We formulate the StealthyIMU attack as an SLU problem and design a sequence-to-

1https://github.com/Samsonsjarkal/StealthyIMU

48

https://github.com/Samsonsjarkal/StealthyIMU

sequence DNN model with a cross-modality knowledge distillation strategy to directly

extract the private entities from the MSS. Our model is optimized for on-device execution

with minimal overhead.

• We design algorithms to realize the short-term and long-term StealthyIMU attack, and

demonstrate how it steals user calendar, GPS trace, home address, etc.with extensive

experiments in real-world scenarios.

• We propose a speech pre-distortion mechanism to defend against StealthyIMU without

noticeably affecting the VUI speech quality.

We note that, even if future smartphone OS restricts the motion sensor permission,

the StealthyIMU attack can still work—it can pretend to be an innocuous app that needs the

motion sensor permission alone, while using it to extract other permission-protected sensitive

information.

3.2 Related Works

3.2.1 Motion Leakage via Sensors on Smartphone

To facilitate common user interaction functions (e.g., screen auto-rotation and app layout

rendering), motion sensors are designed to be accessible by arbitrary smartphone apps without

explicit permissions. Prior work has investigated various security/privacy threats associated with

such zero-permission sensors. ACCessory [175] and Adam et al. [38] use the accelerometer

as a side channel to extract text input, PIN, and unlock pattern on a smartphone touchscreen

keyboard. AccelPrint [65] and TapPrints [156] show that accelerometers and users’ tapping

both possess unique fingerprints and can be used to identify the users. Mole [242], Liu et

al. [139], Wang et al. [239] and Snoopy [142] investigate the motion leakage via smartwatch

motion sensors. Further, motion sensors can be used to infer the user’s moving trajectories

[96, 166, 108, 161]. ACComplice [96] records the motion sensor signals for more than 15 mins

49

to recover a relatively long trajectory, and then fits the trajectory to a map based on the shape of

the trajectory. Narain et al. [166] further designed a graph theoretic model to infer the users’

trajectory via accelerometers with 30% top-10 route accuracy. Hua et al. [108] demonstrate that

accelerometer data can indicate train location. PinMe [161] combines sensory and non-sensory

data to infer user location. PowerSpy [154] proposes to use the power consumption change

caused by the phone cellular modems to track the user location. Although these attacks are related

to the location permission attack in StealthyIMU, they assume either the attacker knows the

user’s initial location, or the victim is traveling along a small set of known routes. In comparison,

StealthyIMU can extract the location by using a single navigation voice, recover the user’s GPS

route by combining multiple navigation voices, and even reveal sensitive locations such as home

addresses without knowing the user’s initial location. Further, it can be combined with relative

motion tracking [166, 108, 161] to infer more precise user locations. Besides, StealthyIMU can

steal a much wider range of private information than motion leakage attacks.

3.2.2 Speech Recognition via Motion Sensors

Typically, the voiced speech of an adult male and female has a fundamental frequency

85 ∼ 180 Hz and 165 ∼ 255 Hz, respectively. A small portion of the low-frequency speech

signals can be captured by the smartphone motion sensor (typical sampling rate 200 ∼ 500

Hz). Prior research exploited this side channel to recognize speech from the loudspeaker

vibration. Gyrophone [153] achieves about 50% success rate in identifying 10 speakers, and

65% and 26% for speaker-dependent and speaker-independent 10-digit speech classification.

Accelword [282] achieves a hot word detection accuracy of 85% in static scenarios and 80%

in mobile scenarios among 10 users. Their threat model assumes that the loudspeaker and

the attacking sensor are separated but share a common surface (e.g., desktop) which is not

always feasible. Speechless [32] analyzes the MSS side channel and shows that through-air

human speech does not noticeably affect the motion sensors. Recently, Spearphone [33, 34] and

AccelEve [39] further examined the feasibility of using smartphone motion sensors to recognize

50

the speech reverberations from a co-located loudspeaker. StealthyIMU differs from existing

work in two aspects. First, the threat model and end goal are different. Previous work only

demonstrates the possibility of using MSS to recognize a predefined set of numbers or words.

In contrast, StealthyIMU can extract complete semantic information. It reveals a real-world

privacy threat where MSS can steal crucial smartphone permission-protected private information,

e.g., GPS trace, location permission, calendar, contacts, etc. Second, the attacking vector and

methods are different. Previous work casts the eavesdropping of numbers/words into a simplified

classification problem. In comparison, we formulate the StealthyIMU attack as an end-to-end

private speech understanding problem, and design speech and natural language processing

algorithms to efficiently extract the private information from the MSS side channel. We also

investigate the one-time stealing, short-term contextual inference, and long-term monitoring

threat models.

3.2.3 Spoken Language Understanding

SLU systems infer the intents and meanings of a spoken utterance [230]. This is critical

for VUIs, which convert the speaker’s utterance into action or query. SLU typically consists of

two tasks: Intent detection, a classification problem where utterances are labeled with predefined

intents; Slot filling, a sequence labeling task that identifies the semantic concepts. The basic

problem behind StealthyIMU is close to SLU. It tries to first classify the leaky permission

(corresponding to intent detection) and then recognize the private information (corresponding

to slot filling) from the MSS. Existing SLU systems can be categorized into two classes: a

cascaded pipeline approach and an end-to-end approach [199]. The former contains an automatic

speech recognition (ASR) system to decode the speech into text, followed by a natural language

understanding (NLU) system that interprets the meaning of the text [58]. The performance highly

depends on the accuracy of the ASR stage, whose error may be propagated and amplified in the

NLU [50]. The latter approach uses a single DNN model to map the speech signals directly to

the speaker’s intent without an explicit text transcription [199]. In this paper, we systematically

51

analyze the unique challenges of StealthyIMU, and choose to design an end-to-end model to

extract the private permission from the MSS (Sec. 3.5.1).

3.3 Threat Analysis

To function properly, VUI apps have to access many strong permissions related to user

privacy. For example, Google Assistant requires 7 permissions, including calendar, contacts,

locations, microphone, phone, SMS, and storage. StealthyIMU targets the scenario where a

malware uses zero-permission motion sensors to record the vibrations caused by the voice

assistant and voice-guided navigation apps, and then steals the permission-protected private

information from these apps. To establish the threat model, we assume the adversary can

mislead the victim to install an ordinary app that contains the StealthyIMU malware, which then

continuously collects MSS in the background. Once the app receives the MSS, it will detect

whether there exist any VUI responses, recognize the types of responses, infer the private entities

from the responses, and recover the explicit results of the stolen permission-protected private

information. Finally, these information will be saved in the app locally or uploaded to a cloud

server (if permitted), to monitor the user’s real-time location and trajectory, understand the user’s

daily schedule (e.g., medication input), personal habits and preferences, etc. Notably, popular

mobile browsers such as Firefox allow motion sensor access by default. So, besides hiding itself

in a normal app, StealthyIMU can also be launched through an executable (e.g., Javascript) on a

seemingly innocuous website.

Attacking requirements: The StealthyIMU attacker needs no explicit permission to

capture the MSS. However, it needs to ensure neither the smartphone OS nor the user will notice

the attack. To this end, it needs to carefully make several trade-offs related to system resource

requirements.

• Voice detection on device v.s. continuous network streaming: Since StealthyIMU does

not assume to know when the motions come from the VUI, the first step of StealthyIMU is

52

to single out the VUI-induced motion signals from all the MSS. Although such computation

overhead of StealthyIMU can be completely outsourced to the adversaries’ cloud server, it is

not reasonable to assume that the malicious app always has the “network in the background”

permission to continuously upload the MSS stream. Consequently, the malicious app should be

able to perform on-device identification of the MSS associated with VUI responses, with minimal

overhead. Note that StealthyIMU still needs “network” permission to upload private information

to adversaries. However, the on-device processing helps StealthyIMU to avoid continuous

network streaming. Uploading private information to adversaries can be accomplished when

the malicious app is active, and the uploading data size is significantly reduced compared to

uploading the MSS stream.

• Memory v.s. storage: After identifying the MSS of interest, StealthyIMU can choose

to save the segment of signals in the app memory or local storage, depending on whether it

has the “storage” permission. Note that if the app saves the segment in memory, only a small

amount of memory is needed (16 KB per VUI response on average. see Sec. 3.9.6), so it is

indistinguishable from an innocuous app.

This paper takes the first step to exploit these choices and navigate the trade-off between

required permissions and on-device resources. We design StealthyIMU such that it can steal

private information even without continuous network streaming and “storage” permissions,

by only using on-device computation. On the other hand, if StealthyIMU has access to the

continuous network streaming and “storage” permissions, it can execute the majority of the

attack vector on the cloud.

Target permissions: We investigate frequently used voice commands related to reading

the VAs’ permissions [88] and summarize a list of vulnerable permissions and example attacks

in Table 3.1. We put these privacy-related voice commands into 3 categories, i.e.,, set/check

calendars and alarms, make calls and send messages, and ask questions. In addition, we put

voice-guided navigation in a separate category, as it only utters the navigation voices without

a conversation with the user. StealthyIMU can steal 5 reading permissions, i.e.,, reading the

53

Ta
bl

e
3.

1.
St

ea
lth

yI
M

U
po

te
nt

ia
la

tta
ck

in
g

pe
rm

is
si

on
s

an
d

V
U

Ir
es

po
ns

e
ex

am
pl

es
.S

te
al

th
yI

M
U

pr
op

os
es

to
us

e
th

e
M

SS
ca

us
ed

by
th

e
re

sp
on

se
s

of
th

e
VA

(I
n

th
e

“E
xa

m
pl

es
”

co
lu

m
n,

ut
te

ra
nc

es
st

ar
tw

ith
“A

”)
to

in
fe

rt
he

pe
rm

is
si

on
-p

ro
te

ct
ed

pr
iv

at
e

in
fo

rm
at

io
n

fr
om

th
e

V
U

I.

Vo
ic

e
C

om
m

an
d

Pe
rm

is
si

on
E

xa
m

pl
es

Pr
iv

at
e

E
nt

ity
L

is
t

Se
t/C

he
ck

ca
le

nd
ar

/r
em

in
de

r
R

ea
d

ca
le

nd
ar

Q
:S

et
a

re
m

in
de

rt
o

ch
ec

k
ba

nk
ac

co
un

t.
A

1:
G

ot
it.

”[
C

he
ck

ba
nk

ac
co

un
t]

”.
W

he
n

do
yo

u
w

an
tt

o
be

re
m

in
de

d?
Q

:T
om

or
ro

w
8

PM
A

2:
Su

re
.I

w
ill

re
m

in
d

yo
u

[t
om

or
ro

w
at

8
PM

].

A
1:

C
al

en
da

rs
[T

od
o:

C
he

ck
m

y
ba

nk
ac

co
un

t]
A

2:
C

al
en

da
rs

[T
im

e:
8

PM
]

M
ak

e
ca

lls
an

d
se

nd
m

es
sa

ge
s

R
ea

d
co

nt
ac

ts
R

ea
d

SM
S

Q
:S

en
d

a
m

es
sa

ge
to

m
y

fa
th

er
.

A
3:

Su
re

.W
ha

t’s
th

e
m

es
sa

ge
?

Q
:C

al
lm

e
ba

ck
.

A
4:

Se
nd

in
g

a
m

es
sa

ge
to

[B
ob

]s
ay

in
g

”[
C

al
lm

e
ba

ck
]”

.

A
3:

A
4:

M
es

sa
ge

[C
on

ta
ct

s:
B

ob
,

C
on

te
nt

:C
al

lm
e

ba
ck

]

A
sk

Q
ue

st
io

n

W
ea

th
er

A
cc

es
s

co
ar

se
lo

ca
tio

n

Q
:W

ha
t’s

to
da

y’
s

te
m

pe
ra

tu
re

s?
A

5:
Te

m
pe

ra
tu

re
in

[N
ew

Y
or

k]
to

ni
gh

ti
s

pr
ed

ic
te

d
to

be
54

◦
F.

A
5:

W
ea

th
er

[C
ity

:N
ew

Y
or

k]

N
av

ig
at

io
n

Q
:N

av
ig

at
e

m
e

to
L

os
A

ng
el

es
.

A
6:

O
K

.[
L

os
A

ng
el

es
].

L
et

’s
go

.
A

6:
N

av
ig

at
io

n
[C

ity
:L

os
A

ng
el

es
]

St
oc

k,
Sp

or
ts

,M
us

ic
A

cc
es

s
se

ar
ch

hi
st

or
y

Q
:W

ha
ti

s
th

e
st

oc
k

pr
ic

e?
A

7:
[A

m
az

on
.c

om
]a

tX
X

X
do

llo
ar

s.
A

7:
Se

ar
ch

[C
om

pa
ny

:A
m

az
on

]

N
av

ig
at

io
n

A
PP

A
cc

es
s

fin
e

lo
ca

tio
n

A
8:

In
60

0
fe

et
us

e
th

e
ri

gh
tl

an
e

to
[t

ur
n

ri
gh

t]
on

to
[H

ol
ly

w
oo

d
B

ou
le

va
rd

].
A

9:
U

se
th

e
le

ft
tw

o
la

ne
s

to
[t

ur
n

le
ft

]o
nt

o
[W

es
te

rn
A

ve
nu

e]
.

A
8:

N
av

ig
at

io
n

[I
nt

en
t:

Tu
rn

ri
gh

t,
R

oa
d:

H
ol

ly
w

oo
d

B
ou

le
va

rd
]

A
9:

N
av

ig
at

io
n

[I
nt

en
t:

Tu
rn

le
ft

,
R

oa
d:

W
es

te
rn

A
ve

nu
e]

54

calendar, contacts, SMS; accessing the location (coarse and fine), and search history. The

“Examples” column shows the conversational examples between the user (Utterances starting

“Q”) and the VA (starting with “A”). The last column, “Private Entity List”, shows the information

that StealthyIMU aims to extract from the MSS. With the inferred private entities, StealthyIMU

indirectly steals the permission-protected private information from the VA and the voice-guided

navigation app.

3.4 Motion Sensor Signal (MSS) Preprocessing

In this section, we introduce the lightweight on-device preprocessing mechanisms to

prepare StealthyIMU for an attack. Basically, we first select the motion sensor channels based

on the SNR. Then we design a near-zero overhead algorithm to continuously detect and segment

the sound-induced samples in the MSS. Finally, we use a voice identification model to identify

whether a detected segment is associated with a VUI response from the co-located loudspeaker.

3.4.1 Choosing the Sensor Type and Channel

Figure 3.2 shows the accelerometer signal waveform when a smartphone (i.e., Samsung

S8) loudspeaker is playing the VUI response at 80% volume. We quantify the motion sensor’s

response to sound by SNRdB = 10log10
P(S)
P(N) , where P(⋅) is the sum of squared magnitude values;

S and N are two series of MSS recorded with and without the loudspeaker voice. Prior work

[39] showed that the speech-induced vibration may cause different SNR on different sensors

and sampling channels. The accelerometer’s Z axis signals always have the strongest SNR,

regardless of the smartphone placement and sound volume, because the vibration generated by

the loudspeaker is always perpendicular to the smartphone’s motherboard (along Z axis) [39].

Although using all the IMU sensors for StealthyIMU may improve its performance, it will also

increase the attacking overhead significantly. We thus choose the accelerometer’s Z axis signals

alone as the input in StealthyIMU.

Existing IMU-based sensing systems [39, 33] save an entire stream of signals locally

55

9.5
9.75
10

-0.25
0

0.25

-0.25
0

0.25

Acc X

Acc Y

Acc Z

(a) Acc waveform

AccX AccY AccZ GyroX GyroY GyroZ
0

5

10

15

20

 I
M

U
 S

N
R

 (
d

B
)

(b) Channel SNR

Figure 3.2. Motion sensor channels SNR

and preprocess it offline. However, as discussed in Sec. 3.3, StealthyIMU may not always have

permission to do so. Instead, we propose a real-time signal processing workflow to detect and

segment voice-induced accelerometer signals with minimal computation and memory overhead.

Meanwhile, our detection algorithm needs to achieve a high true positive rate, while maintaining

a reasonable false positive rate in order to limit memory usage.

3.4.2 Real-time Detection and Segmentation of Voice in MSS

One major challenge for preprocessing lies in the unstable sampling frequency of the

motion sensors, which varies over time and across different smartphones. Prior work [39]

resamples the accelerometer signals and normalizes to the same sampling frequency frame

by frame by using linear interpolation, which incurs too much computational overhead (1

multiplication and 2 additions per sample). In contrast, our voice detection is an ultra lightweight

two-stage algorithm. The first stage detects the vibration of interest based on an empirical

std. threshold, to rule out the cases where the smartphone is either static or moving abruptly.

The second stage resamples the signals to 500 Hz, and then normalizes the magnitude values.

Resampling here incurs an acceptable computational overhead since only a small fraction of

MSS passes the first stage. Then, we apply a Discrete Fourier transform (DFT), and remove

56

0 50 100 150 200 250
 Freq (Hz)

0

0.5

1

 A
m

pl
itu

de
0 20 40 60 80

 Sample Index

9.5

9.75

10

 A
cc

 Z
 (m

/s
) 80 AccZ Sample

Points

Time Domain
Std Threshold

Resample +
Normalization

Voice Detected

Freq
Domain Amp

Threshold

FFT0 40 80 120 160
 Time (ms)

-3

-1.5

0

1.5

3

 N
or

m
al

iz
ed

Raw AccZ Waveform

Waveform after Resample + Normalization

Freq Amplitude after FFT

Not
detected

Not
detected

Y

Y

N

N

Figure 3.3. Ultra Lightweight Voice Detection Pipeline

those segments that do not contain significant high-frequency components.

Finally, we need to segment the signal buffer associated with an entire voice sequence.

Based on a real-world large scale data set that we collected (Sec. 3.8.1), we found most VUI

responses last 2 s to 8 s. Thus, we choose to keep a signal buffer of 4000 points (8 s duration

at 500 Hz) in the app memory. Within this buffer, we count the number of 80-point segments

that are detected as voice-associated. If the detection is positive in the first 80-point segment

of the buffer and there exist more than k such segments (k = 2 as default), the buffer will be

considered as potentially containing the VUI response and stored in memory. Note that a single

buffer of float type samples only consumes 16 KB (4000×4 Bytes), which means we can save

500 potential segmented buffers with a small 8 MB memory.

3.4.3 Feature Extraction

The feature extraction module first resamples the signal segments to 500 Hz, and then

performs an STFT to obtain the spectrogram. The STFT uses a window length of 80 ms and

57

SampleAm
p

Resample

TimeAm
p

STFT

Remove
Low Freq

Time

Fr
eq

Conv1d

LeakyReLU

BatchNorm
Frame Level

(TDNN
Blocks ×𝐍)

Statistics
Pooling

Linear

Softmax

Voice ID

Feature
Extraction

Utterance
Level

Figure 3.4. Feature Extraction and Speaker Identification

a hop length of 20 ms to guarantee 50 frames per second. This is larger than typical speech

recognition window size (25 ms) and hop length (10 ms) because the sampling rate of MSS

is much lower. Finally, to mitigate the accelerometer signal noise due to motion artifacts, we

remove the frequencies lower than 62.5 Hz following [134, 119], and create 30 frequency bins

within the frequency range of (62.5,250] Hz. The resulting features are 50× 30 scalars per

second, which serve as input to the DNN model in Sec. 3.4.4 and Sec. 3.5.2.

3.4.4 VUI Response Identification

A segment of sound-induced MSS does not always contain a VUI response. It could

originate from other sources such as phone calls. To single out the segments of interest, we

observe that there are only a limited set of voice profiles available for VUIs, e.g., 5 male and

5 female voices on Google Assistant. Thus, we can simply identify if the MSS contain a VUI

response from a specific voice ID. We design a lightweight DNN model (Fig. 3.4), inspired by

XVector [205], to address this problem.

Specifically, the model takes the aforementioned spectrogrm feature as input. The output

contains 11 classes, including 10 different voices from Google Assistant and a class for other

sound sources. We first embed the frame level feature by using TDNN blocks [204], and then

58

Use the right lane to take exit 1b toward B drive then turn left onto C street

{type: navigation|
entities: [{type: intent | filler: take} | {type: name | filler: exit 1b} | {type: road | filler: B drive} | {type: intent | filler: turn left} | {type: name | filler: C street}]}

Figure 3.5. Example to convert the navigation voice text to private intents

apply an attentive statistics pooling layer [172] to convert the variable length frame-level features

into a fixed-dimensional vector, referred to as deep speaker embedding in text-independent

and variable-duration scenarios [162]. Finally, the deep speaker embedding is fed into an

utterance-level feature extractor comprised of fully-connected hidden layers.

To train the VUI response identification model, we use an accelerometer data set collected

on COTS smartphones, which consists of 10 hours of VUI responses for each voice profile, and

35 hours of accelerometer signals when playing Youtube Videos. Our benchmark experiments

(Sec. 3.9.1) show that StealthyIMU achieves 3.41% EER for identifying the targeted VUI voice

by using a lightweight model of less than 2 MB. Our experiments show that StealthyIMU

achieves 3.41% EER for identifying the targeted VUI voice by using a lightweight model of less

than 2 MB.

3.5 Inferring Privacy from a Single VUI Response

In this section, we discuss the problem formulation, DNN model design and training

strategy to infer the private entity list from a singe VUI response.

3.5.1 Problem Statement

Recognizing general speech from the MSS is a highly underdetermined problem, as the

sensor only samples the vibration artifacts and at much lower sampling rate than microphones.

However, two key observations enable StealthyIMU to circumvent the barrier. First, there are

only a limited set of machine-rendered voice profiles and the user rarely switches between them.

So the VUI responses almost always come from the same voice, making the speech recognition

problem user-dependent. Second, the acoustic characteristics of VUI are more deterministic than

natural human speech.

59

Inspired by recent research in speech and natural language processing, we propose to

formulate the StealthyIMU attack as a Spoken Language Understanding (SLU) problem. SLU

systems are widely used in VUIs which recognize the intents and meanings of speech directly,

rather than word-by-word transcription. In comparison, StealthyIMU takes the MSS as input,

and extracts a private entity list within the VUI response, as exemplified in Table 3.1. Since

word-level recognition using MSS is error prone [32], StealthyIMU designs an end-to-end SLU

DNN model to directly interpret the VUI responses.

DNN input, output, and ground-truth generation: The input into our SLU model

is the feature map that has been obtained after the voice response identification and feature

extraction (Sec. 3.4.3 and Sec. 3.4.4). The output is the text of private entity list, which comprises

i) voice response type and ii) private entities. The machine-rendered VUI responses tend to

follow a fixed format. The same type of responses often contain the same number and pattern of

private entities, as shown in Table 3.1. Navigation voice is the most complicated type, where

the sentence structure is consistent but the entity number varies. We thus take the navigation

voice from Google Map as an example to explain the general steps of how we generate the

ground-truth private intent lists.

First, by empirically analyzing the grammar of the real-world navigation voices in our

data set, we summarize the private entities of interest as follows:

i) Intents, i.e.,, the next driving intent. There are mainly 16 intents, i.e.,, “turn left”, “turn

right”, “take the next left”, “take the next right”, “slight left”, “slight right”, “keep left”, “keep

right”, “continue”, “stay”, “take” (highway and exit), “make a u-turn”, “merge”, “follow sign”,

and “arrive at destination”.

ii) Name, i.e.,, road, highway and exit names.

Second, we take the grammar into consideration. Fig. 3.5 shows an example of converting

the navigation text to private intent. We first add the voice response type, i.e.,, navigation. Then,

we identify the private entities including both intent and name. All of the entities except voice

response type are in the text and are added into the private intents in natural spoken order. This

60

Conv2D

MaxPool1D

LeakyReLU

Conv2D

LeakyReLU
CNN Blocks ×	𝑵𝒄

TimePooling

RNN Blocks×𝑵𝒓BLSTM

Linear

LeakyReLU
DNN Blocks×𝑵𝒆𝒓

Encoded Feature

Key-value Attention

GRU

Concat

Linear + Logsoftmax

Detokenizer

{type: navigation | entities:
[{type: city | filler: new york}]}

{type: navigation | entities:
[{type: city | filler: new york}]}

Tokenizer

Token-to-vector
Embedding

Encoder: + +

Decoder: +

Tokenizer:

RNN Att Blocks×𝑵𝒅𝒓

{

<s
os
>

t y p e :

{ p e : nyt

Teacher-forcing:

Time

Fr
eq

Figure 3.6. Model Architecture

workflow of generating the ground-truth also gives the model prior knowledge about the sentence

structure and potential entities’ locations within the sentence.

3.5.2 Model Design

Our end-to-end SLU DNN model is a sequence-to-sequence model, which comprises

3 components, i.e.,, Tokenizer, Encoder, and Decoder. As shown in Fig. 3.6, the input of the

model is represented as a sequence of the frequency spectrum, x = {x1,x2, ..,xt}, where t is the

temporal length of the spectrogram of the voice-associated MSS. The output is a sequence of

61

tokens corresponding to the private entity list, y = {y1,y2, ..,ys}, where s determines the length

of the list.

Tokenizer: To optimize our model towards the ground truth, we need to quantitatively

encode the text of the private entity list. We use a tokenizer to break the raw private entity list

into tokens, which can be word-level, subword-level, or character-level. Since the lexicon of the

private entity is large (> 4000), using word-level token will increase model complexity. Further,

the relationship between the time-frequency (T-F) spectrogram and the word-level tokens is

hard to learn for a DNN model. In comparison, subword-level and character-level tokens are

closer to the phoneme, the basic unit of human voice, which has proven to be suitable for speech

processing [280]. To reduce the model size and improve the recognition rate, we choose to create

character-level tokens using the Google SentencePiece Tokenizer [123]. The corresponding

detokenizer will be used in the inference stage to recover the private entity list from the token

sequence.

Encoder: The input sequence x is fed into the encoder to embed the T-F spectrogram

feature. Fig. 3.6 shows the structure of our encoder, which contains Nc CNN blocks, Nr RNN

blocks, and Ner DNN blocks. We use the “TimePooling” layer in each CNN block to reduce the

length of the input sequence by half. Except for the TimePooling layer, the encoder does not

change the length of the input sequence, resulting in hidden state length t/(2Nc).

Decoder: Our decoder model contains Ndr RNN attention blocks (Fig. 3.6). The em-

bedded feature of the last token is first fed into a GRU layer. To leverage the entire encoded

hidden state from the encoder, we use a key-value self-attention mechanism [234], which takes

the encoder hidden state as the keys and values and the decoder hidden state as the queries for

the self-attention layer. Finally, the hidden state with attention is concatenated with the original

decoder hidden state as the output of the RNN attention block along with the linear and softmax

layer to recognize the output token sequence ŷ.

62

Student Model Teacher Model

Pretrained ASR
Encoder

SLU Encoder

SLU Decoder SLU Encoder

SLU Decoder

Soft
Prediction

Soft Labels

Distillation
Loss

Hard
Prediction

Hard
Labels

Student
Loss

Tokenizer

{type: navigation |
entities: [{type: city
| filler: new york}]}

Total
Loss

𝛼 𝛽

Ground Truth

Time
Fr
eq

Audio Filter Bank

TimeFb
an
k

Accelerometer Spectrum

Figure 3.7. Knowledge Distillation Training Strategy. StealthyIMU proposes to distills the
knowledge from the speech model to guide the training of the motion sensor model. The “Student
Model” corresponds to the model trained by MSS as shown in Fig. 3.5. The “Teacher Model”
has the similar architecture with “Student Model”, but is trained by speech signals.

3.5.3 Training Strategy

Teacher-forcing: We apply the teacher-forcing training strategy to train the decoder,

which uses the ground truth token from a prior output token as input to the decoder, to prevent

error accumulation. We adopt the negative log likelihood loss function

ls = max
θ

∑
i

logP(yi∣x,y∗<i;θ) (3.1)

where y∗<i is the ground truth of the previous tokens.

In the inference process, we replace the teacher-forcing by using the last predicted token

as the input of the decoder. We use beam search [219] with beamwidth 40 to generate the

sequences of tokens with the highest probability globally.

Knowledge Distillation from Speech: To enhance the SLU, we design a teacher-student

cross-modal knowledge distillation DNN, which distills the knowledge from the speech model to

guide the training of the motion sensor model. The rationale behind this design is two-fold. First,

63

the speech model is more feature rich and hence accurate than the motion sensor model. Thus it

can facilitate the motion sensor model to learn reasonable attention across an entire segment of

MSS. Second, due to the massive amount of training data, the speech model is more general than

the motion sensor model, which helps overcome the lack of training data for the MSS.

As shown in Fig. 3.7, we simultaneously collect the speech and accelerometer signals

associated with the voice responses, through the microphone and accelerometer, respectively.

We first train the teacher SLU model by using the speech signals as input. Specifically, we use a

pretrained ASR encoder, trained by the LibriSpeech dataset [176], as a basic encoder. Then, an

SLU encoder and decoder, similar to the model in Sec. 3.5.2, are used to train this speech-based

teacher model.

The student SLU model uses the corresponding accelerometer signals as input and

has been introduced in (Sec. 3.5.2). During the training of the student model, we freeze the

teacher model layers and achieve cross-modal knowledge distillation by narrowing the distance

between the output distribution of the two models. We choose to distill the knowledge from

the decoder output because the outputs of the corresponding speech signals and accelerometer

signals are expected to be the same. We use the Kullback–Leibler (KL) divergence loss [105] as

our knowledge distillation loss function ld =
1
s ∑

s
i=1 KL(Pi

S,P
i
T), where s is the output sequence

length, Pi
S and Pi

T are the output distribution of the student model and teacher model respectively.

Finally, the combined loss function is: ltotal = αls + (1−α)ld . We set α = 1 in the first few

epochs, and then gradually reduce α to increase the weight of knowledge distillation loss and

help convergence.

We note that the teacher-student training strategy is only used in the offline training

process, and does not increase the model size and computation overhead.

64

try
Turn left to A

Intent: Turn left, Road: A

In 1000 feet turn left to A
Intent: Turn left, Road: A

Continue A for three miles
Intent: Continue, Road: A

In 1000 feet turn right to B
Intent: Turn right, Road: B

Continue B for two miles
Intent: Continue, Road: B

Turn right to B
Intent: Turn right, Road: B

Intersection between two roads

Voice command replies location

Figure 3.8. Trace and commands in navigation

3.6 Extracting Permission-protected Privacy

In this section, we explain how to extract permission-protected private information by

extracting and combining the private intents from single or multiple VUI responses. Based on

the availability of contextual information, we categorize the attack model into three different

scenarios.

3.6.1 One-Time Stealing

One-time stealing means that StealthyIMU only takes a single VUI response as the input

to extract privacy information. Voice commands (e.g., set/check calendars and alarms, make

calls and send messages, and search for stock, sports, and music) are usually resolved in a single

response, without any contextual information. The private intents inferred from the response

directly correspond to the private permissions. Such one-time stealing achieves a relatively lower

success rate than the other two scenarios since it fully depends on the SLU from a single voice

response. In Sec. 3.9.2, we demonstrate that StealthyIMU achieves an average 85.28% success

rate across 12 types of voice commands and is also able to identify other 11 types of voice

commands without explicit private information.

65

3.6.2 Short-Term Contextual Inference

Short-term contextual inference represents the scenario where StealthyIMU can infer

the private information by using multiple consecutive (≥ 2) VUI responses. One of the most

frequently-used cases is the navigation app. To direct the user towards the destination, the

navigation app uses a sequence of navigation voices during navigation. Typically, for each

turning point, there exists 1 or few navigation voices, which provide contextual information

continuously, allowing StealthyIMU to track the user’s location and even recover the GPS trace.

In this section, we show how StealthyIMU extracts a sequence of private intents from a navigation

process, combined with the city-scale road map from OpenStreetMap [95], to recover the GPS

trace. Note that 2 consecutive VUI responses are sufficient to infer the GPS location of the

victim. To recover one GPS route trace, the duration of eavesdropping depends on the navigation

time of this route, which ranges from a few minutes to a few hours with 2 ∼> 50 VUI responses.

Fig. 3.8 shows an example. Each “black” mark represents a navigation voice that happens

along the route. StealthyIMU can already extract both the “intent” and “road name” of each

navigation voice following the workflows in Sec. 3.5. The key problem here is to recover the

“blue” trace. To this end, we design a GPS trace recovery algorithm (see Algorithm 1). Our basic

idea is to first identify the intersection between two roads (red dots in Fig. 3.8) by checking the

ordered list of road names that we extracted. Then, we can directly connect each two consecutive

intersection points by using the shortest path algorithm on the road map.

To enable private information extraction, the GPS trace recovery algorithm needs to

address two challenges uniquely related to StealthyIMU. First, the intent recognition is not

perfect while the navigation app itself may also produce occasional incorrect navigation voices

due to poor GPS signals. Therefore, sometimes we cannot find the intersection between two

consecutive roads because of a missing or wrongly recognized road. To improve robustness, we

design a correction mechanism to interpolate/skip a road name to prevent the false recognition

and enable the algorithm to find as many intersections as possible (Line 3 ∼ 10). Further, we

66

Algorithm 1: Trace Recovery Algorithm
Input: N commands stolen in whole navigation
Output: Complete trace

1 Extract (intent, road) pairs that appear at least twice in succession;
2 Preprocess the pairs by cleaning, integrating, and sorting;
3 foreach road in road list do
4 if two disjoint roads have shared road then
5 Interpolate the shared road to the road list;
6 end
7 if two roads intersect by skipping other roads in between then
8 Remove the skipped roads in the road list;
9 end

10 end
11 Find all intersection points for the roads in order;
12 Connect the point sequence to recover the trace with the shortest path;
13 foreach (intent,road,point) in trace do
14 if first intersection point then
15 Infer the direction of the initial path with the intent;
16 Estimate the starting point based on the time interval.
17 end
18 if last intersection point then
19 Infer the direction of the final destination with the intent;
20 Estimate the destination based on the time interval.
21 end
22 Check the direction in the shortest path with the intent;
23 if direction in the shortest path is against the intent then
24 Take the opposite direction of the same road;
25 end
26 end

observe that for each “turning” intent, the navigation app repeats the navigation voice twice,

before the turn and right at the turn. We leverage this redundancy to double-check the road name.

Second, our method can not recover the source or destination points for the route due to a

lack of corresponding intersections. To overcome this problem, we utilize the intent information

to find the names of the first and last road segments. Then, we use the time interval between the

first/last navigation voice and the first/last turn navigation voice to estimate the starting point

and destination (Line 14 ∼ 21). Besides, the intents of each navigation voice can also help check

whether the shortest path follows the correct intent. If they are different, we will add another

point after the turn intent to the intersection list to correct the GPS route (Line 22 ∼ 25).

67

3.6.3 Long-Term Monitoring

Long-term Monitoring represents the scenario where the users repeat the same type

of voice commands in a few days, like check weather, air quality and reminder, etc., while

StealthyIMU runs the intent extraction workflow continuously to steal privacy. Although Sec.

3.6.1 has shown that StealthyIMU can extract the private information with a single VUI response,

the long-term monitoring aims to accumulate its knowledge over time and improve the accuracy

of privacy extraction. Specifically, we first use the SLU model to detect the voice command type

(Sec. 3.5.2). Then, we calculate the probabilities of the top-n private entity list output. Since each

voice response is a single individual event, the final success rate of an attack is the probability of

multiple independent events in the long run.

For a more clear exposition, we take city name extraction as an example. When asked

about the weather, the VUI will report the weather along with the city name. For a single VUI

response, StealthyIMU takes 120 US cities with more than 200,000 population each as the

potential city list. Then, for each potential city name, StealthyIMU takes the specific MSS of

a single VUI response y0 as the input and uses the DNN model in Sec. 3.5 to calculate the

probability P(x∣y0) of the output token sequence of that city, where x is the token sequence

of that potential city. With multiple such queries over a few days, StealthyIMU calculates the

probability of each potential city as P(x∣y) = 1−∏K
1 (1−P(x∣yi)), where x is still the token

sequence of that potential city, K is the number of VUI responses; yi and y denote the MSS

signals of i-th VUI response and the set of K MSS signals respectively. StealthyIMU finally

estimates the victim’s city name by selecting the result with the highest probability to further

improve the attacking success rate of StealthyIMU.

Another example is the home address extraction. Google Map always utters “Welcome

home” when reaching the user’s home as the destination. As discussed in Sec. 3.5, StealthyIMU

first extract the “road name” and “intent” from each navigation voice. Once StealthyIMU

identifies that the “intent” for a specific navigation voice is “Welcome home”, StealthyIMU runs

68

High Pass
Filter

Speech Signals Speech Signals
After Defense

Chirp Signals
with variant

cycle, 𝒇𝟎	and 𝒇𝟏
Duration of

Speech Signals

Time

8 kHz

0 kHz Time

8 kHz

0 kHz

Low Frequency
of Defense Signals

0 Hz

200 Hz

Time

Figure 3.9. Pipeline of the speech predistortion defense.

the GPS trace recovery (Sec. 3.6.2) for the previous consecutive VUI responses to locate the

destination of the GPS trace. Then, with multiple navigation attempts that contain such an intent

to be back “home”, StealthyIMU can calculate multiple potential home addresses. Finally, to

improve the accuracy of home address extraction, we combine these potential home addresses

by first removing the outliers and then calculating the centroid of the remaining GPS points. In

Sec. 3.9.4, we evaluate these examples in the wild to show the threat of long-term monitoring.

3.7 Defense Against StealthyIMU

In this section, we propose two defense mechanisms that can thwart the StealthyIMU

attack.

3.7.1 Predistortion of Speech Signals

Our first defense protects existing smartphones, whose highest MSS sampling rate is

< 500 Hz [39]. Our key insight is that modifying the low-frequency components of speech signals

will significantly impact the MSS, without noticeably affecting the human perceivable speech

quality.

Figure 3.9 shows the pipeline of this approach. First, we use a high-pass filter to

remove the low frequency components in the speech signals with a cut-off frequency fc Hz.

69

We empirically choose fc = 350 Hz based on the measurement in Sec. 3.9.7, to balance the

protection of privacy and reduction of speech quality. Second, we distort the T-F spectrogram of

the MSS by injecting a structured low-frequency interference signal through the smartphone’s

audio interface, more specifically a chirp signal with varying cycle and starting/ending frequency.

The cycle range of the chirp is set to 100 ∼ 200 ms because we aim to distort the spectrogram of

each phoneme which is the basic unit of voice pronunciation and typically lasts less than 200 ms

[211]. The advantage of this approach is that it only needs the VUI app vendors, e.g., Google,

Amazon, Apple, to add a pre-distortion stage in their voice responses, without any hardware

modification.

3.7.2 Redesigning the Permissions

Although existing smartphone firmware and driver limit the MSS sampling rate below

500 Hz, the achievable sampling rate of the motion sensor hardware itself can be much higher.

For example, the InvenSense MPU 6500 motion sensor, used in Samsung S6 and iPhone 6S,

supports up to 4000 Hz. If such high sampling capabilities are unleashed in the future, the

above defense approach may fail. We thus highly recommend the smartphone OS to redefine the

permissions of the motion sensor. Since most of the apps do not need extremely high sampling

rates for motion sensors, the smartphone OS can discriminate the permission levels for different

sampling rate limits, and report the potential threats to the users when an app requests access to

high-rate MSS.

3.8 Dataset and Implementation

3.8.1 StealthyIMU Dataset

To evaluate StealthyIMU, we collect a new benchmark dataset that captures the smart-

phone MSS when the loudspeaker plays voice responses. Meanwhile, we record the correspond-

ing voice commands in order to generate the ground truth labels and facilitate our model training

70

Table 3.2. Types of Voice Command and Dataset Scale.

Type Example Voice Command Privacy #
Weather What’s the weather today? Location 12,527

Sun set&rise What’s the sunset in Chennai Location 1,505
AirCheck AQI for San Francisco Location 1,601

Clock What time is it in London Location 1,595

Reminders
Set a reminder to check my account Todo 2,950

Set a reminder for tomorrow morning Time 2,140

Media Alarms
Set an alarm to go to fedex Todo 2,630
Set a music alarm at 8 PM Time 2,350

Stock Updates Stock price for Apple Search 1,318
Calling Call Sam Contacts 1,120

Navigation Navigate to Los Angeles Location 1,570
Navigation App / GPS 7,885

Fun Tricks What movies are playing? Others 500
Sports Facts What’s the news about the NFL? Others 500

News What’s the news about the covid? Others 500
Calculations What calculation can you do? Others 500

Google Search How tall is the Eiffel Tower? Others 500
Youtube Music Play music on Youtube Music Others 500

Voice Mail Call voicemail Others 500
Youtube Open Youtube Others 500
Chrome Open the Google Trends website Others 500

Youtube TV Play FS1 on Youtube TV Others 500
Broadcast Broadcast a message Others 500
Overall 44,691

(Sec. 3.5.3). The trained model will be used later in our real-world attack evaluation.

Voice response data collection: We adopt a natural language voice command text

dataset [198], and use Google Text-to-Speech to synthesize the corresponding speech along

with the wake word preamble “Hey Google”. To collect the dataset automatically, we use an

additional device, i.e., a Macbook Pro laptop, to playback the voice commands just like a human

user. Meanwhile, a victim’s smartphone hears and responds to the voice commands through its

loudspeaker while the StealthyIMU app captures the accelerometer signals. We use an open-

source test automation framework, called Appium [235], to control the laptop and smartphone

71

and streamline the process. During the data collection, the smartphone is set under two different

real-world scenarios, i.e., on a table and a car phone mount, respectively.

As shown in Tab. 3.2, we collected 23 types of VUI responses by asking Google Assistant

“What can you do?”. Among these, 12 types have fixed structures and explicit permission-

protected private information while the other 11 types are unstructured with arbitrary contents.

We place these voice commands into 5 categories based on the targeted permissions.

• “Access coarse location”: The “Weather”, “Sunset & Sunrise”, “AirCheck” and “Clock”

related responses are to steal the private information from “Access coarse location”, i.e., city

name of the location. We collect a large dataset for “Weather” with 12,527 VUI responses and

relatively small datasets for “Sunset & Sunrise”, “AirCheck” and “Clock” with 1,595 , 1,601,

and 1,595 VUI responses respectively from 120 US cities with more than 200,000 population

each [198]. To generate the training data, we first use the Fake GPS app to change the smartphone

GPS to the city, and then playback the these types of voice commands.

• “Read calendar”: The set/check calendar/reminder/alarm related responses are used

to steal the private information from “Read calendar” permission. We collect 5,031 and 4,980

different reminder and alarm commands respectively with 300 frequently-used TODO entities

and 300 TIME entities. Since we know the corresponding voice command for each response, we

can directly extract the TODO entity and TIME entity and generate the ground-truth entity list.

• “Stock Search”: The stock update check command responses are used to steal the

private information from “Search history” permission. We collect 1,318 different stock update

commands with top 150 companies with the largest capital in NASDAQ.

• “Contacts”: The hands-free calling command responses are used to steal the “Contacts”

permission. We collect 1,120 different calling commands with 200 frequently-used name entities.

• “Others”: There exists other 11 types voice commands which has unstructured VUI

responses with arbitrary contents. StealthyIMU can not easily extract the explicit private

information from these VUI responses. Therefore, we label these VUI responses with “Null”

labels.

72

Finally, we label the ground truth entity list of these voice responses by listening to the

recordings. Note that the VUI responses are highly diverse, totaling more than 150 hours and

containing more than 4000 frequently-used words. The VUI responses are collected over more

than one year.

Navigation app voice data collecting: To collect the navigation app voice with ground

truth GPS traces, we first use OpenStreetMap to open a city map. We randomly select two points

on the map separated by > 6 km, and use Google Map to generate the navigation route. We

export the navigation route to the smartphone, and start the Google Map navigation app to follow

this route. Then we use “MAPS TO GPX” to convert the Google Map navigation route to a

GPX file which contains the GPS point list of this route. The GPX file is imported to a “Mock

Location” app to follow this route by using fake GPS. Finally, Google Map is able to navigate

the smartphone from the start point to the destination by checking the fake GPS positions. And

again, we use Appium to automate this data collecting process.

To annotate the ground truth of the navigation voice, we design an app to listen to each

navigation voice and annotate it based on the potential road name and intent from map and

navigation trace. We collect this dataset from two cities.

• City A: a typical city with a population of > 1.5 million and area approximately 800

km2. We collect 300 routes with 5,091 navigation voices which contain more than 1,800 km

mileage, 419 roads (95% coverage) and 7 highways (100% coverage) and 55 highway (92%

coverage) exits.

• City B: a metropolitan city with a population of > 5 million and area of 800 km2. We

collect 150 routes with 2794 navigation voices which contain more than 900 km mileage, 559

roads (37% coverage) and 8 highways (100% coverage) and 42 highway (84% coverage) exits.

3.8.2 Implementation

DNN Implementation: We implement the voice response identification DNN model

(Figure 3.4) and voice response SLU model (Figure 3.6) in PyTorch. For training, we use the

73

NewBob learning rate strategy [259] at a 3e−4 initial learning rate followed by annealing. The

default training batch size is 8, and the number of epochs is 30. The pretrained models are then

converted into Just-In-Time (JIT) PyTorch model running on smartphones.

Attack Implementation We implement two versions of StealthyIMU, one running

entirely on an Android phone and the other facilitated by a cloud server. Our app can choose to

i) detect voice on the smartphone or stream the signals continuously to the cloud; ii) save the

signals in the memory or local storage; iii) execute the attack either on device or in cloud. We

evaluate the system overhead and permission risks of these different attack surfaces in Sec. 3.9.6.

3.9 Evaluation

The evaluation of StealthyIMU consists of four parts. First, from Sec. 3.9.1 to Sec. 3.9.4,

we use the default large-scale dataset discussed in Sec. 3.8.1 for training. And then, we test

StealthyIMU by collecting specific testing dataset for each attacking mode. Second, in Sec.

3.9.5, we collect additional testing datasets with different real-world scenarios and evaluate

StealthyIMU across different factors to see whether the model can generalize to new scenarios.

Finally, we evaluate the system overhead and defense mechanisms of StealthyIMU in Sec. 3.9.6

and Sec. 3.9.7 respectively.

3.9.1 DNN Model Ablation Study

We first conduct an ablation study to evaluate the accuracy and efficiency of the Stealthy-

IMU DNN models, i.e., VUI response identification (Sec. 3.4) and VUI response private entity

recognition (Sec. 3.5). In this study, we use the dataset containing 23 types of VUI responses, as

discussed in Sec. 3.8.1. We mixed all of the VUI responses and train a single model to extract

the private information from a VUI response across different types of VUI responses. We split

the dataset into training, validation, and testing set with 8 ∶ 1 ∶ 1 ratio.

VUI Response Identification: We use EER, a well-known speaker identification metric,

at which both acceptance and rejection errors are equal [171], to evaluate our VUI response

74

Table 3.3. Impacts of Training Datasets.

of Type # of Training TER SEER SER
1 1,000 0.00% 28.86% 48.53%
1 8,000 0.00% 8.71% 14.81%
3 15,000 0.00% 7.49% 12.73%

23 35,000 0.00% 8.46% 14.45%

Table 3.4. VUI response identification ablation study.

DNN model
Size EER

N Channel Kernel FCN
5 [(512*4),1500] [5,3,3,1,1] 512 4.5MB 2.43%
5 [(512*4),1500] [5,3,3,1,1] 16 2.7MB 3.33%
3 [(512*2),1500] [5,3,1] 16 1.7MB 3.41%
3 [(512*2),1500] [1,2,1] 16 1.4MB 3.81%
3 [(128*2),256] [1,2,1] 16 79.6KB 4.95%
3 [(32*2),64] [1,2,1] 16 6.5KB 8.60%

identification method. Here we aim to identify the 10 voices (5 male and 5 female) on Google

Assistant, along with a class for other non-VUI sound sources. Table 3.4 summarizes the results.

Since a small model degrades the performance significantly while a large model consumes more

system overhead (Sec. 3.9.6), we empirically choose a medium size model of 1.7 MB model

as our default model. As shown in Fig. 3.10, our DNN model is able to accurately identify the

different voice sources, with a maximum EER of less than 6.73% (3.41% on average).

VUI Response Private Entity Recognition: Unlike speech recognition metrics, such as

Word Error Rate (WER) and Character Error Rate (CER), a more reasonable way to evaluate the

private entity recognition within VUI response is to check whether StealthyIMU can understand

the whole entity correctly. Therefore, we use the following 3 metrics: i) Type Error Rate (TER)

which indicates whether StealthyIMU can recognize the type of the VUI response, i.e., weather,

calendar and navigation; ii) Single Entity Error Rate (SEER). There may exist more than one

entities in a single VUI response. SEER mainly takes a single entity as a unit to report the error

75

Ta
bl

e
3.

5.
V

U
IR

es
po

ns
e

Pr
iv

at
e

E
nt

ity
R

ec
og

ni
tio

n
A

bl
at

io
n

St
ud

y.
N

t:
#

of
to

ke
ns

in
to

ke
ni

ze
r;

N
c:

#
of

C
N

N
bl

oc
ks

;K
c:

ke
rn

el
si

ze
;C

c:
C

N
N

ch
an

ne
ls

;N
r:

#
of

R
N

N
la

ye
rs

;H
r:

#
of

R
N

N
ne

ur
on

s;
N

ed
:

#
of

D
N

N
bl

oc
ks

;O
ed

:
#

of
D

N
N

ne
ur

on
s;

N
d
:

#
of

de
co

de
rl

ay
er

s;
H

d
:h

id
de

n
si

ze
of

de
co

de
r;

A
d
:a

tte
nt

io
n

di
m

of
de

co
de

r;
E

d
:#

of
ou

tp
ut

ne
ur

on
s.

To
ke

n
E

nc
od

er
(C

D
R

N
N

)
D

ec
od

er
(G

R
U

+
K

ey
V

al
ue

A
tte

nt
io

n)
M

od
el

Si
ze

T
E

R
SE

E
R

SE
R

C
N

N
B

lo
ck

s
R

N
N

B
lo

ck
s

D
N

N
B

lo
ck

s
N

t
N

c
K

c
C

c
N

r
H

r
N

ed
O

ed
N

d
H

d
A

d
E

d
50

2
3

(1
28

,2
56

)
4

10
24

2
51

2
3

51
2

51
2

12
8

10
6.

4
M

B
0.

00
%

13
.2

2%
21

.3
1%

50
2

3
(6

4,
12

8)
4

25
6

2
25

6
3

25
6

25
6

64
9.

1
M

B
0.

00
%

9.
65

%
15

.3
2%

10
0

2
3

(1
28

,2
56

)
4

25
6

2
25

6
3

25
6

25
6

64
11

.9
M

B
0.

00
%

11
.6

8%
20

.0
1%

50
2

3
(6

4,
12

8)
4

12
8

2
25

6
3

25
6

25
6

64
4.

2
M

B
0.

00
%

10
.8

5%
18

.9
9%

50
2

3
(6

4,
12

8)
4

12
8

2
12

8
3

25
6

25
6

64
4.

1
M

B
0.

00
%

11
.7

3%
19

.9
6%

50
2

3
(6

4,
12

8)
2

12
8

2
12

8
3

25
6

25
6

64
3.

3
M

B
0.

00
%

17
.9

1%
31

.2
7%

50
2

3
(6

4,
12

8)
4

12
8

2
12

8
3

12
8

12
8

64
3.

0
M

B
0.

00
%

26
.0

0%
46

.4
0%

50
1

3
(6

4,
12

8)
4

12
8

2
12

8
3

25
6

25
6

64
3.

9
M

B
0.

00
%

8.
46

%
14

.4
5%

50
1

3
(6

4,
12

8)
4

12
8

1
12

8
3

25
6

25
6

64
3.

8
M

B
0.

00
%

13
.8

0%
24

.6
0%

50
0

/
/

4
12

8
2

12
8

3
25

6
25

6
64

2.
9

M
B

0.
00

%
18

.4
6%

34
.8

5%

76

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

 Google Assistant Voice Type

0

3

6

9

 E
E

R
 (

%
)

0.05

2.65 3.25

5.05

0.93

3.92

6.03

1.98
3.33

6.73

3.70

 Female
 Male
 Others

Figure 3.10. Google Assistant Voice Identification.

Table 3.6. SLU model training approach.

Model Size TER SEER SER
ASR+NLU 26.5 MB 0% 46.45% 77.91%

SLU 3.8 MB 0% 14.76% 25.16%
SLU+KD 3.8 MB 0% 8.46% 14.45%

rate; iii) Sentence Error Rate (SER) which counts an error-free recognition only if all the entities

in a single VUI response are identified correctly.

We compare the performance of 3 different models to resolve the VUI response private

entity recognition task, 1) “ASR+NLU”: a cascaded approach with an ASR model to recognize

the text from the MSS and an NLU model to extract the entity list from the text (Sec. 3.2); 2)

“SLU”: StealthyIMU’s SLU model without speech model knowledge distillation; 3) “SLU+KD”:

StealthyIMU’s SLU model with speech model knowledge distillation. Table 3.6 summarizes

the results. The key problem of “ASR + NLU” is that the ASR model can only achieve 68.16%

WER, which makes it hard for the follow-on NLU to extract the correct private entities. In

contrast, SLU model directly optimizes the target of extracting the private entities from MSS.

With the help of knowledge distillation from the teacher model, it becomes even more accurate.

On average, “SLU+KD” StealthyIMU achieves a 0.00% TER, 8.46% SEER, and 14.45% SER

with a 3.9 MB model size.

Next, we conduct a ablation study on the StealthyIMU SLU model by modifying the

parameters of the Tokenizer, Encoder and Decoder, as shown in Fig. 3.5. We find that: (i)

A subword-level tokenizer (Nt = 50) does not improve performance when the model size is

77

small since it needs more parameters to learn the subword level characteristics. (ii) RNN is the

most important block in our encoder. If we reduce the layers of the RNN blocks, the model

performance will degrade significantly. (iii) The attention and hidden layer size impact the

performance of the decoder. Based on these observations, we choose the model with 3.9 MB

size as default model for VUI response private entity recognition (highlight in Table 3.5).

Finally, we conduct experiments to evaluate the impacts of training and testing dataset.

In Tab. 3.3, we evaluate StealthyIMU in three different settings, i.e., training and testing

StealthyIMU by using (i) single type of voice command; (ii) 3 types of voice command with

large-scale dataset (Weather, Reminders and Navigation App in Tab. 3.2); (iii) all of 23 types

of voice command. We find that (i) training and testing StealthyIMU with 3 types of voice

commands achieve similar results as training/testing with 23 types of voice commands. (ii) if

we use a single type of voice command to train the model, StealthyIMU requires a large-scale

dataset to achieve high performance. In comparison, if we train the model with multiple types of

voice commands, the scale of a specific type of voice command can be small. We believe that

this is because a larger dataset with more diverse voice commands empowers the model to better

generalize, so it is able to recognize the private entities from different formats of VUI responses.

Recognized intersection

Voice Command Reply

(a) Case 1

Recognized intersection

Voice Command Reply

(b) Case 2

Recognized intersection

Voice Command Reply

(c) Case 3

Figure 3.11. GPS trace recovery examples

3.9.2 One-time Stealing

In the one-time stealing experiments, we use the same training and testing setting as in

Sec. 3.9.1. A single model is trained to extract the private entities from a single VUI response

across 23 types of voice commands. We select the model and parameters with the highest

78

Table 3.7. One-time stealing results.

Type Private Entity TER SEER SER
Weather Location 0.00% 3.05% 5.38%

Sunset & Sunrise Location 0.00% 7.14% 13.97%
AirCheck Location 0.00% 1.49% 3.33%

Clock Location 0.00% 2.13% 3.18%

Reminders
Todo 0.00% 7.36% 13.21%
Time 0.00% 15.25% 29.94%

Media Alarms
Todo 0.00% 8.24% 15.29%
Time 0.00% 14.11% 26.50%

Stock Updates Search 0.00% 7.33% 11.54%
Hands Free Calling Contacts 0.00% 12.18% 22.64%

Navigation Location 0.00% 2.19% 3.89%
Navigation App GPS 0.00% 16.2% 26.79%

Others / 0.31% 0.31% 0.31%
Overall 0.00% 8.06% 14.45%

performance in Sec. 3.9.1. For the rest of the evaluation, we use this general DNN model as our

default model to extract the private entities without training any new DNN models.

Tab. 3.7 shows that a single DNN model can accomplish one-time stealing with an

average success rate of 85.28% even without contextual information. Moreover, StealthyIMU

achieve higher performance for structured VUI responses, i.e., “Weather”, “Sunset & Sunrise”,

“AirCheck”, “Clock”, “Stock Update” etc.Although voice commands like “Reminders”, “Media

Alarm”, “Hands Free Calling” and “Navigation App” has complicated response formats resulting

in relatively lower success rate for one-time stealing, they can still achieve > 70% success rate.

We believe that with more training data, they will achieve even higher success rate.

3.9.3 Short-term Contextual Inference

We now proceed to verify the short-term continuous navigation voice and the GPS trace

recovery algorithm. We collect a testing dataset in City A and make sure there is no overlap

with the training dataset in Sec. 3.9.2. Then, we use the DNN model trained in Sec. 3.9.2 to

extract the private entities of each VUI response from the testing dataset. Finally, we apply the

79

GPS trace recovery algorithm to the extracted private entities from consecutive VUI responses

and compare the result with the ground truth GPS trace. To better illustrate our approach, we

first show three examples of GPS trace recovery in Fig. 3.11. Then we evaluate the effectiveness

of our route correction mechanism, and present the results of the end point localization.

In Case 1 of Fig. 3.11, our model only identifies 2 out of 3 intersections, and the shortest

path between these two points deviates from the true path. If we could accurately identify the

3 intersections, then the path would be correct. Case 2 shows that if the final destination is on

an unnamed road, our algorithm can only assign the last named road as the end point. Case 3

shows a perfect example of GPS trace recovery, where all the intersection points are accurately

identified. These examples demonstrate that our recovery algorithm needs to accurately recognize

the road names, based on which it can generate the final route through the shortest path between

consecutive intersections on the map.

In order to quantify the actual performance of the algorithm, we perform a real-world

field test in City A during daily driving and recover over 500-mile real routes. During the

navigation process, we simultaneously record the results with and without the route correction

mechanism. In terms of route coverage, the average route coverage rate without route correction

is 52.46%, and increases to 62.87% after correction. Moreover, as shown in Fig. 3.12, 80% of

the GPS distance errors are within 30 m after correction, in contrast to 63% before correction. In

addition, we count the distance deviation between the recovered destination and the ground truth.

According to our statistics, the min/average/max deviation is 3 m/133 m/420 m. The average

deviation is large, because sometimes the destination is on an unnamed road, and we can only

use the end point of the last named road as a replacement, as shown in Case 2 in Fig. 3.11.

3.9.4 Long-term Monitoring

Our long-term monitoring experiments focus on city name and home address identifica-

tion.

80

0 500 1000 1500 2000

 GPS Distance Error (m)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 W/ correction mechanism
 W/o correction mechanism

Figure 3.12. Short-term GPS distance error

1 2 3 4 5

 Num of Responses

65

70

75

80

85

90

95

100

 P
ro

b
ab

ili
ty

 (
%

)

71.70

91.98

97.70
99.34 99.81

Figure 3.13. Long-term attack results

Figure 3.14. Long-term home address inference.

For the city name extraction, we collect a testing dataset including “Weather”, “Sunset &

Sunrise”, “AirCheck”, “Clock” and “Navigation” voice commands over one months. Then, we

perform private entity recognition on each VUI response in the testing set by using the default

DNN model in Sec. 3.9.2. Then, we combine the results from multiple VUI responses by using

the methods discussed in Sec. 3.6.3 to demonstrate the scenario where StealthyIMU keeps

monitoring the VUI responses over a few days. As shown in Fig. 3.13, as the victim repeats the

inquiries over time, the probability that StealthyIMU correctly identifies the city name increases

from 70% (1 inquiry) to above 98% (3+ inquiries).

For the home address identification, we collect a testing dataset containing 10-day routes

back to home. Then, we follow the steps in Sec. 3.9.3 to recover the GPS trace of these 10 routes,

and mark the destination of the recovered GPS trace as the home address. Fig. 3.14 visualizes

81

Table 3.8. Navigation voice for different cities.

Routes Roads Seg SEER SER
City A 300 419/441 5091 9.31% 19.77%
City B 150 559/1511 2794 16.25% 32.41%

Table 3.9. Generalization across different smartphones and sampling rate

Phone
OS

Version
Sampling

Rate SER SEER

OnePlus Android 11 440 Hz 13.85% 8.99%
Samsung S8 Android 9 400 Hz 13.39% 8.65%
Samsung S8 Android 9 200 Hz 62.69% 38.30%
Samsung S8 Android 9 100 Hz 84.01% 52.50%

Huawei Mate 20 Android 9 500 Hz 17.20% 10.07%
Samsung S7 Android 8 420 Hz 15.57% 9.17%

the results of home address inference. The represent the results of repeated attempts on home

address inference, and ▲ represent the remaining GPS points after removing outliers. Finally,

we use the centroid of these remaining GPS points as the address estimation. In this example,

the deviation between the StealthyIMU estimation and the ground truth home destination is only

11 meters by combining 10 attempts of address estimation.

3.9.5 Generalization

In this section, we evaluate StealthyIMU generalization across different factors to see

whether the model can work on a new scenario. By default, we use the model trained in Sec.

3.9.2 as our baseline model, and collect additional testing datasets with different real-world

scenarios.

Generalization across different sound volumes, smartphone models and sampling

rate settings: Loudspeaker volume determines the vibration magnitude of the smartphone during

a VUI response, and hence affects the SNR of the MSS. We evaluate 5 different volume levels as

82

shown in Fig. 3.15(a). When the volume exceeds the default level of our experiments (80%),

StealthyIMU achieves > 10 dB SNR, and the SER (SEER) is smaller than 10% (15%). When

the volume falls below 40%, the SER (SEER) is > 80% (95%).

We further run StealthyIMU on 5 different smartphones, equipped with IMU sensors

from different vendors and different sampling rate (100 ∼ 500 Hz). As shown in Fig. 3.15(a),

smartphones released within 5 years, i.e., OnePlus, Samsung S7, S8, Huawei Mate20, all support

> 400 Hz sampling rate which suffices for the StealthyIMU attack. Although the layout of the

IMU sensor on the smartphone motherboard may vary, the signal SNR is similar among these

smartphones. When the volume level is higher than 80%, StealthyIMU DNN model achieves an

15.39% SEER and 9.30% SER on average when trained with the mixed dataset collected from

these three smartphones. On the other hand, the StealthyIMU attack becomes less effective when

the MSS sampling rate falls below 200 Hz.

Generalization under different motion artifacts: We measure the impacts of interfer-

ence from 3 motion artifacts: holding the smartphone in hand, walking, and driving with the

smartphone on a car phone mount. Most of the noise introduced by human motion, like holding

and walking, is low-frequency [119]. Thus, after applying a high-pass filter, the signal SNR

remains high, while the SEER and SER are 10.3% and 16.8%–only slightly higher than the static

case.

In the driving scenario, the main vibration interference comes from the car’s body. The

dominant noise frequency can be estimated by fn(t) = R(t)
60 ∗(Nc/2), where R(t) is the rotational

speed of engine in revolutions per minute (RPM) and Nc is the cylinder number of the engine.

For example, a car with a 4-cylinder engine generate the vibration noise of less than 100 Hz

even at 3000 RPM (the RPM for normal driving is 1500 ∼ 2500 [37]). Therefore, to isolate

the driving noise, we simply apply a high-pass filter with 100 Hz cut-off frequency and use 24

frequency bins within the frequency range of (100,250] Hz as the input features to retrain the

DNN model. StealthyIMU maintains a high signal SNR of 12.56 dB, and low SER (SEER) of

25.10% (11.93%), when the victim smartphone is in a car with a 4-cylinder engine and speed

83

100% 80% 60% 40% 20%

 Volume Level

0

3

6

9

12

15

18

21

 S
N

R
 (

d
B

)
 Samsung S8
 Samsung S7
 Huawei Mate20
 LG G4
 Handhold
 Walking
 Driving

(a) SNR

13.39

8.65

15.57

9.17

17.20

10.07

14.25

8.90

14.50

8.95

25.10

11.93

S8 S7 Mate20 Hold Walk Drive

 Voice Command Type

0

5

10

15

20

25

30

 S
E

R
 &

 S
E

E
R

 (
%

) SER
 SEER

(b) SER & SEER

Figure 3.15. Generalization across different smartphones, volume levels, and motion artifacts.
“Driving” achieves higher performance because it is evaluated by navigation data set only while
others are evaluated by general dataset.

ranging from 30 to 110 km/h.

Generalization across different cities: We perform a fake GPS test of StealthyIMU

in two cities with different geographical layout (Sec. 3.8.1). Note that StealthyIMU can only

extract the GPS location for a specific city with the training dataset, and the DNN model needs

to have the capability to extract the road names in a specific city. Therefore, we train the private

entity recognition DNN models for city A and B respectively and evaluate the performance by

using the corresponding model. This procedure is practical in real-world because the attacker can

easily extract the city name of the victim’s location by using long-term monitoring (Sec. 3.6.3)

and select the corresponding model for further attack. As shown in Table 3.8, although our

dataset only covers 37% of the roads in City B, the SEER and SER of City B is still reasonably

low (16.25% and 32.41% respectively), because even with such a small dataset, StealthyIMU

can already recognize the main roads in the city, which will be frequently passed by users.

By enriching our dataset, the accuracy can be further improved. We leave such incremental

refinement for future work.

84

Table 3.10. Voice detection and segmentation overhead.

Mobile
Data

Segment
Storage

Segment
Memory

Peak
CPU

Power

1 100 KB/min / / / /
2 16 KB/Seg 16 KB/Seg / 5% 36 mW
3 16 KB/Seg / 16 KB/Seg 5% 35 mW
4 / / 16 KB/Seg 5% 35 mW

Table 3.11. On-device DNN overhead. ID: VUI response identification model; SLU: VUI
response private entity recognition model.

Model
Size

Peak
CPU

APP
Memory

Time
(s/Seg)

Energy
(mAh/Seg)

ID 79.6 KB 5% 4.1 MB 9.8e−3 6.5e−3
ID 1.7 MB 5% 7.4 MB 53.3e−3 1.1e−3

SLU 9.1 MB 13% 54.5 MB 4.60 0.65
SLU 3.9 MB 12% 34.5 MB 1.19 0.17

3.9.6 System Overhead Evaluation

We evaluate the system overhead and required permissions when processing StealthyIMU

in cloud or on device. Based on our threat model (Sec. 3.3), we summarize 4 deployment models

of StealthyIMU: 1. The malicious app steams the MSS to the cloud for processing; 2. The

malicious app detects the voice-associated signals on device and saves the segments in local

storage, and then the segments will be uploaded to the adversaries’ cloud for further processing; 3.

The process is similar to 2 except that the segments will be saved in app memory; 4. StealthyIMU

attack is deployed fully on device.

To compare the 4 options, we deploy the StealthyIMU attack on Samsung Galaxy S8

with Qualcomm Snapdragon 835 CPU, assuming that StealthyIMU is not able to access the

GPU resources. We use Android Profiler [21] and app power monitor to measure the on-device

overhead in terms of energy, CPU, memory, storage, and mobile data usage. Table 3.10 shows

85

the results. Option 1 requires the “network” permission when the StealthyIMU app is running

in the background and consumes 100 KB/min mobile data. In comparison, both option 2 and

3 need to upload the data to the cloud only when the voice is detected. The difference is that

option 2 needs the “storage” permission whereas option 3 does not. Option 4 executes the entire

StealthyIMU on device with zero permission. The peak CPU usage and power consumption of

voice detection and segmentation are less than 5% and 46 mW respectively, which means that it

only consumes 5.6% battery for 24 hours on a typical smartphone (3000 mAh, 3.7 V).

Table 3.11 shows the on-device DNN overhead. The input of our DNN is the voice-

associated MSS segments, so we use seconds per segment and mAh per segment to measure the

time and energy consumption of our models. Medium sized DNN models, i.e., identification

model with 1.7 MB model size and SLU with 3.9 MB model size, are more feasible for the

on-device attack because the performance is close to the large models (Sec. 3.9.1) while the

overhead is significantly lower. The app memory consumption is less than 42 MB in total and

the peak CPU usage is less than 13%. These DNN models can recognize 176 voice-associated

segments with less than 1% battery consumption. Overall, the behavior of the zero-permission

on-device StealthyIMU is unlikely to be distinguishable from an innocuous app.

3.9.7 Defense Evaluation

We use three metrics to evaluate the defense capability of the proposed speech predistor-

tion defense: 1) SNR, 2) PSNR, and 3) DNN model SEER and SER. As shown in Fig. 3.16(a),

the high pass filter mechanism can reduce the SNR of the MSS by 12.7 dB. When the cut-off

frequency fc exceeds 350 Hz, the SNR will not decrease significantly anymore since this is close

to the highest sampling rate (500 Hz) and the harmonics of higher frequencies start to emerge.

Further augmented with chirp distortion, our defense mechanism reduces the PSNR down to 16

when the chirp frequency is set to 100 ∼125 Hz and amplitude 0.1. This implies the structural

features within the spectrogram are substantially corrupted, since intelligible speech requires

25 ∼ 30 PSNR [289].

86

Raw200 250 300 350 400

 Cut-off Frequency (Hz)

0

4

8

12

16

20

 S
N

R
 (

d
B

)

16.17

6.27

5.17

3.75 3.42 3.47

(a) fc v.s. SNR

0.1 0.2 0.3 0.4

 Chirp Amp

12

14

16

18

20

22

 P
S

N
R

 (
0

10
0)

 SNR: 50~75Hz

 SNR: 75~100Hz

 SNR: 100~125Hz

(b) PSNR

0.1 0.2 0.3 0.4

 Chirp Amplitude

-2

0

2

4

6

8

10

12

14

 S
N

R
 (

d
B

)

1

2

3

4

5

6

 S
p

ee
ch

 Q
u

al
it

y
S

co
re

 SNR: 50~75Hz

 SNR: 75~100Hz

 SNR: 100~125Hz

 Score: 50~75Hz

 Score: 75~100Hz

 Score: 100~125Hz

 Score: W/o Defense

(c) SNR v.s. Speech Quality

Figure 3.16. Predistortion Speech Defense

Table 3.12. Defense Speech Quality Subjective Assessment

Chirp freq (Hz) Amp Comfort Intelligibility Noise Overall
/ 0 5.5 5.17 4.83 5.17

50∼75 0.1 5.33 6.00 5.17 5.50
50∼75 0.2 4.83 5.83 5.00 5.22
50∼75 0.3 5.17 6.00 5.00 5.39
50∼75 0.4 5.17 5.67 5.33 5.39

75∼100 0.1 4.67 6.00 4.83 5.17
75∼100 0.2 4.83 5.67 5.33 5.28
75∼100 0.3 5.17 5.83 4.67 5.22
75∼100 0.4 3.83 5.17 3.33 4.11

100∼125 0.1 4.67 5.50 5.17 5.11
100∼125 0.2 4.33 5.33 3.83 4.50
100∼125 0.3 2.50 3.83 2.33 2.89
100∼125 0.4 1.83 3.33 2.00 2.39

87

Next, we investigate the trade-off between defense capability and speech quality. We

conducted a subjective assessment to evaluate the speech quality after our speech predistortion

defense. We recruited 30 volunteers (23 males and 7 female with ages in the range of 19 to

27) to assess the speech quality. In each study, we first randomly select a speech signal with a

single VUI response with 12 different predistortion defense parameters and a raw signal without

predistortion defense. And then the volunteers are asked to listen to the selected speech signals

transmitted by 15 different smartphones without any prior knowledge of the signals. After

listening to the speech signals, three metrics are assessed through a questionnaire with 1 ∼ 7

rating [155] for each question: (i) Comfort: Do you feel comfortable with that speech? (ii)

Intelligibility: Can you understand that speech? (iii) Quality: Can you hear noise in that speech

signals? Each volunteer will assess all of 13 different speech signals. Table 3.12 shows the

results of our subjective assessment. Fig. 3.16(c) shows the mean values of the subjective metrics.

We observe that, with the high pass filter and the default chirp frequency band 100 ∼ 125 Hz and

chirp amplitude 0.1 in the predistortion, the speech quality score is 5.11–close to that without

predistortion (5.17), whereas the attacker’s SNR and PSNR drop sharply (2.78 dB and 15.81)

below the threshold for intelligible speech.

We further verify whether an attacker can circumvent the predistortion defense by using

the predistorted MSS to train its SLU model. We first apply predistortion to our MSS dataset,

and then use the SLU model configurations with the best performance to train and test the dataset.

The result shows 95.06% SER and 89.17% SEER, which means that the predistortion defense is

sufficient to prevent the StealthyIMU from recognizing the private intents. The attacker cannot

reverse the speech predistortion from the MSS, even if it knows how the predistortion is applied.

3.10 Conclusion

We have demonstrated the feasibility and effectiveness of StealthyIMU, a new threat that

allows a zero-permission app to steal private information from VUI responses on a smartphone.

88

The attack surface lies in a side channel, where in a motion sensor “overhears” the low-frequency

vibration from the co-located loudspeaker. Although word-by-word transcription of general

speech is challenging [32], we leverage the deterministic features of the machine-rendered

VUI responses, and design a speech detection and understanding model to extract the private

information. We further optimize the model and limit its resource usage, so it is indistinguishable

from an innocuous app. Our case studies show that StealthyIMU can accurately steal crucial

permission-protected private information, such as contacts, search history, calendar, home ad-

dress, and GPS routes, from popular VUIs such as Google Assistant and Google Map. We further

develop effective defense mechanisms which can help VUI vendors remove the vulnerability.

3.11 Acknowledgments

This chapter contains material from “StealthyIMU: Extracting Permission-protected

Private Information from Smartphone Voice Assistant using Zero-Permission Sensors”, by Ke

Sun, Chunyu Xia, Songlin Xu, and Xinyu Zhang, which appears in the 30th edition of the

Network and Distributed System Security Symposium, 2023 [213]. The dissertation author was

the primary investigator and author of this paper.

89

Chapter 4

Single-Channel Speech Enhancement Us-
ing Ultrasound on a Smartphone

4.1 Introduction

Human auditory system is remarkably capable of singling out a speech source amid

a mixture of interfering speakers and noises, which remains a key challenge for machine

hearing. The problem has witnessed a surge in today’s digital communication systems for

human-human and human-machine interaction. Examples include mobile VoIP, voice commands,

post-production of live speech, etc. The related research problem of speech separation and

enhancement (SSE) is often considered as the holy grail of audio processing.

Since the problem is inherently ill-posed, classical solutions need to rely on prior knowl-

edge (i.e., per-speaker feature engineering) [244] or directional microphone arrays [73] to isolate

the desired source from ambient sounds. In the past several years, deep learning techniques

have proliferated and significantly advanced the field, enabling single-microphone speaker-

independent SSE [241]. State-of-the-art solutions have demonstrated around 10 dB improvement

in average audio quality, in separating a mixture of 2 clean speeches [146]. However, the chal-

lenging scenario of more than 2 speakers mixed with background noise received little attention

[257]. A very recent preliminary test [71] revealed that existing deep learning models often

underperform in such cases, because the unstructured background noise compromises their

ability to identify separable structures in the speech streams. In addition, existing audio-only

90

Speaker
Mic

Articulatory
gesture sensed
by Ultrasound

Noisy Speech

UltraSE
DNN

Enhanced
Speech

Targeted SourceNoise Sources Noisy Speech Enhanced speech+ =

Figure 4.1. UltraSE targets the scenario where the user holds the smartphone to record the
speech in a noisy environment. UltraSE uses ultrasound sensing as a complementary modality to
separate the desired speaker’s voice from interferences.

approaches cannot solve the label permutation problem, i.e., associating the model outputs to the

desired speaker. Audio-visual algorithms [71] leverage video recordings of the speakers’ faces

to simultaneously solve the SSE and permutation problems. However, the need for a camera at

specific view angle and under amenable lighting condition limits their practical usability [24].

In this paper, we propose to utilize ultrasound sensing as a complementary modality to

separate the desired speaker voice from noises and interferences. Our method, called UltraSE, is

applicable to commodity mobile devices (e.g., smartphones) equipped with a single microphone

and loudspeaker. Figure 4.1 illustrates our basic idea. During the voice recording, UltraSE

continuously emits an inaudible ultrasound wave, which is modulated by the speaker’s articulatory

gestures (lip movement in particular) close to the smartphone. The signals recorded by the

microphone thus contain both the audible sounds and inaudible reflections. As illustrated in

Figure 4.1, whereas the audible sounds (“Green”) mix the targeted clean speech (“Black”) and

other interferences plus background noise (“Blue”), the inaudible reflections (“Orange”) only

capture the targeted user’s articulatory gesture motion which is correlated with the clean speech.

UltraSE employs a DNN framework to capture such correlation and denoise the audible sounds.

UltraSE faces 3 core design challenges. i) How to characterize the articulatory gestures

by ultrasound despite interference? It is challenging to capture the fine-grained articulatory

gestures since they are fast (−80 ∼ 80 cm/s) and subtle (< 5 cm displacement). Moreover, mutual

interference exists between the speech and ultrasound due to harmonics and hardware artifacts.

91

To address the challenge, we fully exploit the advantages of ultrasound, i.e., high sampling rate

and perfect alignment with the clean speech in the time domain. We design the transmitted

ultrasonic waveform to capture the short-term high-resolution Doppler spectrogram, and apply a

one-time transmission volume calibration to reduce the cross-modality interference.

ii) How to design a DNN model to fuse the two modalities and represent their correlation?

Since the physical feature characteristics of the two modalities are different, we design a two-

stream DNN architecture to process each and a self-attention mechanism to fuse them. Further,

no existing method has addressed the cross-modal noise reduction problem which is fundamental

to UltraSE, i.e., using one modality (ultrasound) to reconstruct another modality (speech) which

is polluted by noise/interference. We thus propose a conditional GAN (cGAN) based training

model, with a novel cross-modal similarity measurement network, to enable this capability.

(iii) How to improve both intelligibility and quality for the enhanced speech? It is known

that the amplitude of time-frequency (T-F) spectrogram is critical for speech intelligibility,

whereas the phase determines the speech quality [261]. We thus expand UltraSE into a two-stage

multi-domain DNN architecture, which prioritizes the optimization of intelligibility in the T-F

domain, and then reconstructs phase in the T domain to improve speech quality. We place the

multi-modal fusion network inside the T-F domain, based on the empirical observation that the

articulatory gestures are more related to the speech intelligibility.

To evaluate UltraSE, we develop an Android app to collect a new speech dataset called

UltraSpeech, which contains 22.2 hours of clean speech and corresponding ultrasound sensing

signals from 20 users. We then combine UltraSpeech with the DARPA TIMIT speech corpus

[81] and AudioSet ambient noise dataset [82] to create a 300 hours noisy speech dataset. Our

evaluation results show that UltraSE can separate the targeted speech in a sophisticated en-

vironment with multiple speakers and ambient noise , improving SNR by 10.65 to 17.25 dB.

UltraSE achieves an SNR gain of 6.04 dB on average over state-of-the-art single-channel speech

enhancement methods, across various interference/noise settings. Its performance gain is even

comparable to multi-channel (audio-visual) solutions.

92

UltraSE represents the first audio-only method to bring the SSE performance close to

multi-channel solutions, while overcoming the label permutation issue. Through the UltraSE

design, we make the following technical contributions:

• We design a multi-modal multi-domain DNN framework for single-channel speech en-

hancement which fuses the ultrasound and speech features, and simultaneously improves

speech intelligibility and quality.

• We design a cGAN-based cross-modal training model which effectively captures the

correlation between ultrasound and speech for multi-modal denoising.

• We collect a new speech dataset—UltraSpeech, and verify UltraSE’s performance in

comparison with state-of-the-art solutions.

4.2 Related Work

4.2.1 Audio-only Speech Enhancement

Despite decades of research, speech enhancement remains a challenging open problem

that attracts extensive research today [71, 140, 274, 225]. Classical model-driven solutions [69,

44, 70] typically build on various assumptions, such as stationarity of signals, uncorrelated clean-

speech and noise, independence of speech and noise in the time-frequency domain, etc.Thus, they

often lack robustness in real-world environment [241]. More recent solutions adopt supervised

learning instead [241], and can be categorized by their domain of feature processing.

T-F domain methods: Time-Frequency (T-F) domain methods aim to learn a spectro-

gram mask, i.e., a weighting matrix that can be multiplied with the noisy speech spectrogram to

recover the desired clean speech [274]. The key problem lies in i) what type of mask should be

used, and ii) how to use DNN to predict such a mask. Early stage solutions only estimate the

amplitudes of a spectrogram by using real-valued Ideal Binary Mask (IBM) [106], Ideal Ratio

Mask (IRM) [167] or Spectral Magnitude Mask (SMM) [253]. They then directly apply the

93

original noisy phase on each T-F bin to generate the enhanced speech. Although these amplitude

masking methods benefit speech intelligibility, they suffer from poor speech perceptual quality

due to the unavoidable phase error. Complex Ideal Ratio Mask (cIRM) [262] and Phase-Sensitive

Mask (PSM) [72] are then proposed to incorporate phase information. Recently, PHASEN

[274] and Ni et al. [170] found that the estimated cIRM tends to downgrade to IRM, since the

T-F domain phase is close to white noise especially for low-amplitude T-F bins. Thus, they

proposed two-stream [274] or two-stage [170] networks to take both the IRM and cIRM and

derive a combined training loss. For the model design, most T-F domain methods deem the

T-F spectrogram as an image, and design DNN/CNN-based models [262, 178] to minimize the

MSE/MAE loss between the estimated mask and ground truth. PHASEN [274] and Ouyang et

al. [174] observed that the fundamental frequencies and speech harmonics are separated afar,

and the correlation cannot be fully captured by CNN. So they adopt dilated convolution and

frequency-domain attention instead. Unlike the hand-crafted MSE/MAE loss function, Soni et

al. [206] further used GAN to discriminate whether the enhanced results are clean or noisy.

T domain methods: Time (T) domain methods divert around the error-prone phase

prediction problem by processing the waveform directly. For example, Rethage et al. [188]

modified the WaveNet; TCNN [177] proposed an encoder-decoder architecture with an additional

temporal convolutional net; SEGAN [179] utilized a GAN-based network to generate the 1D

waveform of clean speech. Yet the performance of such methods is not among the top tier, since

the speech auditory patterns, such as proximity in time/frequency, harmonics, and common

amplitude/frequency modulation, are more prominent on a T-F spectrogram [241].

Multi-domain methods: In recent concurrent work TFTNet [225], a learnable decoder

replaces the iSTFT in the T-F domain to realize a joint T-F and T domain model for speech

enhancement. Unlike TFTNet, our key insight is that the speech intelligibility is much more

important than speech quality for speech enhancement. We thus design a two-stage multi-domain

DNN network to prioritize the optimization of speech intelligibility in the T-F domain, and then

reconstruct phase in the T domain to improve the speech quality.

94

Speech source separation: Although most of the aforementioned approaches demon-

strated acceptable performance for non-speech noise, they still can not handle the cocktail party

scenario involving multiple interfering speakers. To resolve such speech separation problems,

Deep clustering [104] trained speech embedding for each source and then uses clustering al-

gorithms to separate them. PIT [276] iteratively changed the permutation of sources in the

training process to train a permutation invariant speech separation model. These methods still

need to know the number of speakers a priori, and do not work well for the case with more

than 3 speakers plus noise [221]. Further, the label permutation problem persists—They can

separate multiple sources of speech, but cannot automatically identify which is from the targeted

speaker, which may hinder certain machine-operated back-end tasks (e.g., voice assistant on a

smartphone). UltraSE overcomes all these deficiencies.

4.2.2 Multi-modal Speech Enhancement

To tackle the permutation issue, audio-visual (AV) methods use a video recording of

the subject’s face as a hint for the audio [103, 189]. Specifically, Ephart et al. [71] trained

a speaker-independent speech separation model based on a large set of YouTube videos [71].

Afourasl et al. [24] found that even partially occluded videos of lip motion can assist speech

separation. Nonetheless, AV approaches bear many drawbacks. Besides microphone, they need

an additional camera pointing to the subject’s face under good lighting conditions, which is

inconvenient and even infeasible in many typical use cases. Moreover, camera is unusable in

many privacy-sensitive locations.

The idea of using ultrasound as a complementary modality to enhance speech has been

explored by previous works [129, 40]. However, these works [129, 40] all require special ultra-

sonic hardware. In comparison, UltraSE only needs the single audio channel on the smartphone

and overcomes practical challenges such as mutual interference between modalities. Besides,

they use traditional methods, i.e., non-negative matrix factorisation [40] and nonlinear regres-

sion [129], and only show the performance of speech enhancement on ambient noise rather

95

than speech interference. UltraSE further pushes the limits of this idea by designing a multi-

modal multi-domain DNN framework to achieve similar performance for speech separation and

enhancement with the audio-visual methods.

4.2.3 Device-free Ultrasonic Sensing

Device-free ultrasonic sensing techniques can leverage the loudspeakers and microphones

on commodity mobile devices to track the distance/direction changes of nearby objects [248].

State-of-the-art ultrasonic gesture tracking schemes [248, 278, 212, 216, 149] can achieve mm-

level accuracy. Besides location and hand gesture tracking, recent studies also attempted to use

ultrasonic sensing for lip reading [222]. However, due to insufficient spatial resolution, they

only fit coarse sensing applications, e.g., liveness detection [283, 131]. SilentTalk [222] uses a

model-based method to classify the Doppler shift features caused by 12 basic mouth motions

and recognize specific short sentences. SilentKey [223], EchoPrint [287], LipPass [143], and

VocalLock [144] use the ultrasounic sensing features introduced by mouth motion for biometric

authentication. In contrast, UltraSE is the first to demonstrate that ultrasonic sensing can serve

as a complementary modality to solve the cocktail party problem and bring speech enhancement

to the next level.

4.3 Sensing the Articulatory Gestures

In this section, we first provide a primer on the relationship between speech and artic-

ulatory gestures. Then we introduce UltraSE’s ultrasound sensing signal design, along with

mechanisms to mitigate the mutual interference between speech and ultrasound.

Human speech generation involves multiple articulators, e.g., tongue, lips, jaw, vocal

cords, and other speech organs [283]. Coordinated movement of such articulators, including

lip protrusion and closure, tongue stretch and constriction, jaw angle change, etc., is used to

define the phonological units, i.e., phoneme in phonology and linguistics [45]. Thus, assuming

that we can fully capture and interpret the articulatory gestures, it would be possible to recover

96

Air
Blowing

Speech
Harmonics Doppler

Shift

(a) Speech harmonics create interference within the ultrasound band.

17.90

17.95

18.00

18.05

18.10 F
re

q
(k

H
z)

Don’t ask me to carry an oily rag like that.

(b) Doppler shift spectrogram of a single-tone 18 kHz transmitted signal and the correspond-
ing T-F spectrogram of speech w/o interference.

Figure 4.2. T-F domain features of an example speech segment: “Don’t ask me to carry an oily
rage like that.”

the speech signals. However, it is challenging to capture the fine-grained gesture motion of

all articulators by using a single microphone [222]. First, the articulators are close to each

other. Some are inside the mouth/throat. So it is hard to discriminate their motion. Second, the

articulatory gestures are always fast and subtle. Each typically lasts 100 ∼ 700 ms and involves

< 5 cm moving distance for lip and jaw [226]. Thus, state-of-the-art sensing methods can only

recognize a limited number of words or phrases by using COTS microphones [222], and the

accuracy in the wild is typically quite low [56]. In UltraSE, we do not expect that the captured

articulatory gesture features can directly synthesize the speech signals. We propose to take these

features as coarse complementary information to facilitate the SSE.

97

4.3.1 Transmitted Ultrasound Signals Design

Modality advantages: Compared to other approaches such as camera, ultrasound

possesses two advantages in sensing articulatory gestures. First, the ultrasound sensing signals

are captured by using the same sensor (i.e., microphone) as the speech signals. This introduces

an automatic “feature alignment” in the time domain, which means the captured ultrasound

sensing features are well synchronized and matched with the clean speech signals. Second, the

sampling rate of the ultrasound sensing (typically 48 kHz or 96 kHz) is much higher than vision-

based methods (typically 24 ∼ 120 fps), which enables finer time resolution when capturing the

articulatory gestures.

Design goals: Compared to previous works on ultrasound based gesture sensing es-

pecially hand gestures [248, 278, 216, 165], UltraSE needs to satisfy the following additional

design goals to fully exploit the modality advantages: (i) The extracted features require high

sampling rate to achieve high T-F resolution. The velocity of users’ articulatory gestures ranges

from −80 ∼ 80 cm/s (−160 ∼ 160 cm/s for propagation path change) [226], which will introduce

−100 ∼ 100 Hz Doppler shift when the transmitted signal’s frequency is 20 kHz. Meanwhile,

each articulatory gesture corresponds to a single phoneme lasting 100 ∼ 700 ms [283], which

is approximately 5 times shorter than hand gestures [250]. Therefore, to characterize the artic-

ulatory gestures, the ideal way is to characterize the short-term high-resolution Doppler shift.

(ii) The extracted features need to be robust to different kinds of noises introduced by multipath

and frequency-selective fading. UltraSE thus needs to remove the reflections from static objects,

mitigate the multipath from moving objects (e.g., body parts), and extract the signal features

from articulatory gestures alone.

Ultrasonic sensing signal design: To satisfy these requirements, we choose multiple

single-tone continuous waves (CWs) with linearly spaced frequencies as our transmitted signals.

Although modulated CW signals, such as FMCW [148], OFDM [165] and Pseudo-Noise (PN)

sequences [278, 216], can measure the impulse response to resolve multipath, they all suffer

98

from the aforementioned low sampling rate problem. The fundamental reason is that the

modulation processes signal in segments (i.e., chirp period or symbol period). Thus, each feature

point of the modulated CW signal characterizes the motion within a whole segment, which is

typically longer than 10 ms (960 samples) at a sampling rate of 96 kHz. Thus, only 10 ∼ 70

feature points can be output for each articulatory gesture with typical duration of 100 ∼ 700 ms

[283], which can hardly represent the fine-grained instantaneous velocity of gesture motion. In

comparison, each sampling point of the single-tone CW can generate one feature point (Doppler

shift estimation) to represent the micro motion with duration of 0.01 ms (1
96000) at a sampling rate

of 96 kHz. To further resolve the multipath effect and frequency selective fading, we combine

multiple single-tone CWs with equal frequency spacing, resulting in a transmitted waveform

T(t) = ∑N
i=1 Ai cos2π fit, where N, Ai and fi denote the number of tones, the amplitude and

frequency of the ith tone, respectively.

To alleviate the spectral leakage across different tones when generating the spectrogram

in later stage, we ensure that the STFT window size (1024 points) is a full cycle of all the

transmitted tones at the maximum sampling rate (48 or 96 kHz allowable by COTS microphones).

We empirically set the first frequency f0 = 17.25 kHz, the frequency interval ∆ f = 750 Hz, and

the number of tones N = 8. We decrease the amplitude Ai of the sub-20kHz frequencies to make

sure that the transmitted signals will not disturb users.

4.3.2 Mitigating Sensing Interference

Despite the orthogonality in frequency, mutual interference exists between speech and

ultrasound in the following two cases, which causes ambiguity of Doppler features.

First, the speech harmonics may interfere the Doppler features due to non-linearity of

microphone hardware. The speech and ultrasound signals generated in UltraSE are combined in

the air, resulting in Sin(t)= v(t)+∑N
i=1 Ai cos2π fit, where v(t) represents the speech signals, and

∑N
i=1 Ai cos2π fit is the high-frequency ultrasound sensing signals. Due to the microphone non-

linearity [191, 193, 211], the captured signals can be modeled as Sout ≃A1Sin+A2S2
in [191], which

99

contains speech harmonics on the inaudible ultrasonic band, i.e., Snoise =∑N
i=1 A2

i v(t)cos2π fit.

As shown in Figure 4.2(a), these speech harmonics often leak into the ultrasonic band, and will

corrupt the articulatory gestures’ Doppler features. Fortunately, when we decrease the amplitude

of the ultrasound Ai, the second order term (harmonics’ amplitude A2) decreases faster than the

first order term (Doppler shift amplitude A1). Our empirical experiments reveal that, when the

total amplitude of transmitted ultrasound is set to < 80 dBz (flat weighting) sound pressure level

(measured at 5 cm away from the speaker), the interference effect becomes negligible. We thus

always use this setting as the default ultrasound amplitude in UltraSE. It is worth noting that

previous ultrasound based hand gesture sensing schemes [248, 278, 216] did not address this

interference issue because they are typically tested without strong close-by speech interference.

Second, when a user speaks close to the microphone, some phonemes, e.g., /p/ and /t/, may

blow air flow into the microphone which generates high-volume noise. As an example, Figure

4.2(a) shows the T-F spectrogram introduced by the phoneme /t/. Amid the high-volume air flow,

the microphone has to prevent saturation by calling on its auto gain control (AGC), which scales

down all incoming signals and consequently renders the Doppler features negligible. In UltraSE,

instead of removing the corrupted samples, we harness them as part of the ultrasonic sensing

features, which helps characterize the sampling period corresponding to specific phonemes

(e.g., the /t/).

4.4 An Overview of UltraSE DNN Model

For ease of exposition, we will first introduce the basic DNN architecture of UltraSE,

and then discuss the challenges and design principles of each design component in the following

sections. Our first step is to create the DNN input features from the raw signals (Section 4.5).

Then, we design a two-stage, multi-modal, multi-domain DNN model, which comprises three key

modules, as briefed below.

T-F domain multi-modal amplitude network (Section 4.6). This network module

100

generates the amplitude Ideal Ratio Mask (aIRM), i.e., the ratio between the magnitudes of the

clean and noisy spectrograms, by using both speech and ultrasound as the input. It consists of

two subnetworks.

Subnet (i) Two-stream feature embedding: Our model starts by using the noisy speech’s

T-F spectrogram and the concurrent ultrasound Doppler spectrogram as input (Section 4.5). We

then design a two-stream feature embedding architecture, to transform the different modalities

into the same feature space, while maintaining their time-domain alignment.

Subnet (ii) Speech and ultrasound fusion network: Then, we concatenate the features

of each stream in the frequency dimension. A self-attention mechanism is further applied to

fuse the concatenated feature maps to let the multi-modal information “crosstalk” with each

other. The fused features are subsequently fed into a BiLSTM layer followed by three FC layers.

The resulting output is an amplitude mask which is multiplied with the original noisy amplitude

spectrogram to generate the amplitude-enhanced T-F spectrogram.

cGAN-based cross-modal training (Section 4.7). As shown in Figure 4.7, we design a

cGAN-based training method to further denoise the amplitude-enhanced T-F spectrogram. In

our cGAN model, the generator is the above T-F domain multi-modal amplitude network; the

discriminator is designed to discriminate whether the enhanced spectrogram corresponds to the

ultrasound sensing features.

T domain phase network (Section 4.8). We use the iSTFT (a fixed 1D convolution

layer) [91] to transform the amplitude-enhanced T-F spectrogram into T domain waveform.

To fine-tune the phase of the enhanced signals, we design an encoder-decoder architecture to

reconstruct the phase to be close to the clean speech in the T domain.

4.5 DNN Input Feature Design

In this section, we discuss the preprocessing steps to generate the DNN input features for

the two signal modalities. Figure 4.3 illustrates the workflow.

101

Speech feature extraction: Typical speech sound ranges from approximately 300 Hz to

3.4 kHz [228], and the signals above 8 kHz barely affect the speech intelligibility and human

perception [159]. Thus, we first use a low-pass elliptic filter to extract the signals below 8 kHz.

Then we resample the signals to 16 kHz by using a Fourier method. The final enhanced speech

is also sampled at 16 kHz which suffices to characterize the speech signals. Higher sampling

rate may unnecessarily increase the optimization space and model complexity.

The speech feature input for the DNN model is the T-F domain speech spectrogam,

generated by applying STFT on the time domain waveform. The STFT uses a Hann window

of length 32 ms, hop length of 10 ms, and FFT size of 512 points under 16 kHz sampling rate,

resulting in 100×257×1 complex-valued scalars per second.

Ultrasound sensing features: We first use a high-pass elliptic filter to isolate the signals

above 16 kHz. Then, we create the ultrasound sensing features within the T-F domain, by

extracting the Doppler spectrogram induced by articulatory gestures and aligning it with the

speech spectrogram. The key consideration for this step is to balance the trade-off between

time resolution and frequency resolution of the STFT under the limited sampling rate (96 kHz

maximum). First, to guarantee time alignment between the speech and ultrasound features, their

hop length in the time domain should be the same. The STFT uses a hop length of 10 ms to

guarantee 100 frames per second, resulting in 10 ∼ 70 frames per articulatory gesture which is

enough to characterize the process of an articulatory gesture (Section 4.3). Second, the frequency

resolution, determined by the window length, should be as fine-grained as possible to capture the

micro Doppler effects introduced by the articulatory gestures, under the premise that the time

resolution is sufficient. A window length 85 ms is the longest length for STFT to make it shorter

than the shortest duration of an articulatory gesture (100 ms) [283]. Overall, under the 96 kHz

sampling rate, the STFT is computed using a window length 85 ms, hop length of 10 ms, and

FFT size of 8192 points, resulting in 11.7 Hz (96000
8192) frequency resolution.

In addition, to mitigate the reflections from relatively static objects, we remove the

3 central frequency bins and leave 8× 2 = 16 frequency bins corresponding to Doppler shift

102

Audio Stream

High-pass
elliptic filter

Low-pass
elliptic filter

STFT

Resample
to 16 kHz Fs

Speech Signals Extraction
Ultrasound Sensing Signals Extraction

STFT

Extract Doppler
Shift T-F Bins

T-F Speech Features

T-F Ultrasound Features
498

816
5s duration,
96 kHz Sampling rate

498 1

257

Figure 4.3. DNN input feature design

[−11.7× 8,−11.7) and (11.7,11.7× 8] Hz. Finally, we run a min-max normalization on the

ultrasound Doppler spectrogram. The resulting T-F domain ultrasound features is 100×16×8

scalars per second, where 8 is the number of ultrasonic tones. The reason why we fuse the

ultrasound sensing features in T-F domain instead of T-domain will be evident in the latter

multi-domain design (Section 4.8).

The origin of the ultrasound feature and its correlation with the speech feature:

Figure 4.2(b) uses one example speech segment to visualize the alignment between the ultrasound

Doppler spectrogram and the clean speech spectrogram. The ultrasound sensing features mainly

consist of the −100 ∼ 100 Hz Doppler shift introduced by relatively large motion from the lip,

tongue and jaw. It can not capture the high-frequency micro-vibration motions introduced by the

vocal folds [268], since the vocal vibration displacements (about 20 µm [52]) are much shorter

than the ultrasound wavelength (about 2 cm).

Some obvious characteristics in this example corroborate the correlation between the

ultrasound sensing features and corresponding clean speech features. For example, each word in

the speech signals is well aligned with a burst of Doppler shifts from the articulatory gestures.

Meanwhile, negative Doppler shift is introduced by mouth open gestures slightly before the

onset of each word. Our DNN model is designed to learn such cross-modality correlation for the

purpose of SSE.

103

Conv 96@
1×7

Conv 96@
7×1

TFS-AttConv

TFS-AttConv

TFS-AttConv

Conv 8@
1×1

Conv 96@
1×5

Conv 96@
7×1

TFU-Conv

TFU-Conv

TFU-Conv

Conv 8@
1×1

U-Feature
S-Feature

Self-Att
Fusion

BiLSTM
600

FC 600

FC 600

FC 257

iSTFT

Am
p498

257 1

Noisy T-F
Spectrogram

498

16
8

T-F Ultrasound

T Speech

5×16000

1

Encoder

Decoder

T Speech
1

5×16000

Amplitude Enhanced
T-F Spectrogram

T-F Domain Multi-modal Amplitude Network T Domain Phase Network

498

257 1

Phase

257

498

2

Ultrasound Feature Embedding Speech Feature Embedding Fusion Network T Domain Encoder-Decoder Fixed layer

498

1257

aIRM

T-F to T domain
Transform

Figure 4.4. Overview of UltraSE’s multi-modal multi-domain DNN design. Convolution layer
notation: Channels@Kernel size

4.6 Multi-modal Fusion Design

The multi-modal fusion network aims to first appropriately learn the F domain features of

the two modalities respectively, and then fuse them together to exploit the T-F domain correlation.

The F domain of the ultrasound signal features represents the motion velocity (Doppler shift) of

the articulatory gestures, while that of the speech sound represents the frequency characteristics

such as harmonics and consonants. Meanwhile, the size of the two modalities’ feature maps are

different (Section 4.5). So one cannot straightforwardly concatenate these two feature maps into

a scalar. We thus design a two-stream embedding architecture to transform them into the same

feature space.

4.6.1 Two-stream Feature Embedding

Speech feature embedding: The input of the speech feature embedding subnetwork is

the T-F domain amplitude spectrogram, denoted as Sa
noise ∈R1×T×Fa

. Fa
= 257 is determined by

the STFT window size. The “blue” part in Figure 4.4 shows the architecture of this subnetwork,

which comprises traditional 2D convolution layers and 3 “TFS-Conv” blocks. The “TFS-

AttConv” block, borrowed from PHASEN [274], employs both the ResNet [101] and self-

attention mechanism [107] to learn the global correlation of sound patterns across T-F bins. In

contrast, the small kernels of CNN cannot capture such long-range correlations. Figure 4.5 shows

104

Conv C
"

@
 3×5

Input

Conv C
"

@
 9×1

Conv C
"

@
 3×5

O
utput

TFS-AttConv

Input Conv C
#@

1×1

Reshape

Conv1D C
"

@
9

Conv 96@
1×1

O
utput

Input

CF-Att

Conv C
"

@
 5×5

Conv C
"

@
 25×1

Conv C
"

@
 5×5

CF-Att

O
utput

TFU-Conv
Freq-FC

C
"
×
𝑇
×
𝐹
"

T×
C
#×
𝐹
"

T×
(C

#
)𝐹

"
)

T×
C
"
×
1

C
"
×
𝑇×

𝐹
"

2C
"
×
𝑇×

𝐹
"

C
"
×
𝑇
×
𝐹
"

CF-Att
Figure 4.5. Two-stream feature embedding. Channels@Kernel size in convolution layer.

the structure of a single “TFS-AttConv” block. It contains 2 “CF-Att” blocks at the beginning

and the end to learn the global correlation. In each “CF-Att”, a self-attention mechanism is

used to fuse the channel-wise information following a SENet-based design [107]. Then, the

“Freq-FC” layer applies a learnable frequency transformation matrix to enable frequency-domain

self-attention at each point in the T domain. We omit other details of this block which has been

covered in PHASEN [274].

Ultrasound feature embedding: The input of the ultrasound feature embedding is

U s
∈ RT×Fs×Cs

, where Cs
= 8 is the number of ultrasound tones, and Fs

= 16 is the maximum

number Doppler shift frequency bins introduced by the articulartory gestures (Section 4.5). Since

the motion speed always changes continuously, the F domain ultrasound features are mainly local

Doppler shift features. Small kernels suffice to capture such feature correlation because the size

of the F domain is only 16. Therefore, instead of the “TFS-AttConv”, we design a “TFU-Conv”

block which removes the attention layers and reduces the kernel size of the F domain in all

the 2D convolution layers. To maintain the time alignment of the two modalities after feature

embedding, we keep the T domain kernel size the same as in the “TFS-AttConv” block. For

convenience of concatenating the two modalities’ features, we choose the same output channel

number for all the 2D convolution layers.

105

Finally, after 3 “TFU-Conv” and “TFS-AttConv” blocks respectively, the channel number

of the two streams reduces to Cs
r = 8 and Ca

r = 8 by applying a 1×1 2D convolution.

4.6.2 Speech and Ultrasound Fusion Network

After the feature embedding, we concatenate the feature maps of the two streams:

S f
in = concat(Ma

o ,U
s
o), where S f

in ∈RCr×T×Fas

and Fas
= Fa+Fs. This concatenated feature map

is then fed into the “Self-Att Fusion” to learn the relationship between the two modalities. The

“Self-Att Fusion” block is similar to the “CF-Att” block, but the size of the feature maps differs.

First, since the meaning of channel in ultrasound sensing and speech is different, we first use a

channel self-attention to learn the correlation across different channels. Second, to enable these

two modalities’ features to “crosstalk” with each other in the F domain, the self-attention for the

F domain is realized by using a learnable transformation matrix on the fused features. Third, the

feature after self-attention fusion is concatenated with the original feature and fused by a 1×1

2D convolution.

Finally, the whole feature map is fed into a BiLSTM and 3 fully connected (FC) layers

to predict the aIRM ∈ RT×Fm×1 of the noisy speech. The predicted aIRM is then multiplied

with the original noisy speech’s amplitude spectrogram to generate the amplitude-enhanced T-F

spectrogram.

Note that all the convolutional layers in the multi-modal fusion network use zero padding,

dilation= 1 and stride= 1 to make sure the output feature map size is the same as the input

speech/ultrasound spectrogram. Also, each 2D convolutional layer is followed by batch normal-

ization (BN) and ReLu activation.

4.7 cGAN-based Cross-modal Training

The fundamental problem for UltraSE is multi-modal noise reduction, i.e., using one

modality (ultrasound) to recover another modality (speech) which is polluted by noise/ interfer-

ence. The former modality has low sensing resolution but is interference-free and correlated

106

Ta
bl

e
4.

1.
L

ay
er

s
co

m
pr

is
in

g
ul

tr
as

ou
nd

su
bn

et
w

or
k.

C
on

v1
C

on
v2

C
on

v3
C

on
v4

C
on

v5
C

on
v6

C
on

v7
C

on
v8

C
on

v9
B

L
ST

M
10

FC
11

FC
12

FC
13

N
um

Fi
lte

rs
48

48
48

48
48

48
48

48
8

H
id

de
n

Si
ze

30
0

Fi
lte

rS
iz

e
1
×

7
7
×

1
3
×

3
3
×

3
3
×

3
3
×

3
3
×

3
3
×

3
1
×

1
O

ut
pu

tS
iz

e
60

0
60

0
5

107

Ta
bl

e
4.

2.
L

ay
er

s
co

m
pr

is
in

g
sp

ee
ch

su
bn

et
w

or
k

(B
L

ST
M

an
d

FC
la

ye
rs

pa
ra

m
et

er
s

ar
e

th
e

sa
m

e
as

th
e

ul
tr

as
ou

nd
su

bn
et

w
or

k.
).

C
on

v1
C

on
v2

C
on

v3
C

on
v4

C
on

v5
C

on
v6

C
on

v7
C

on
v8

C
on

v9
C

on
v1

0
C

on
v1

1
C

on
v

12
C

on
v

13
N

um
Fi

lte
rs

48
48

48
48

48
48

48
48

48
48

48
48

8
Fi

lte
rS

iz
e

1
×

7
7
×

1
5
×

5
5
×

5
5
×

5
5
×

5
5
×

5
5
×

5
5
×

5
5
×

5
5
×

5
5
×

5
1
×

1
D

ila
tio

n
1
×

1
1
×

1
1
×

1
1
×

2
1
×

4
1
×

8
1
×

16
1
×

1
2
×

2
4
×

4
8
×

8
16

×
16

1
×

1

108

498

257 1

498

1257

498

16
8

CNN BLSTM FCN

Dilated
CNN BLSTM FCN

Dilated
CNN

Ultrasound Subnetwork

Speech Subnetwork
Triplet
Loss

BLSTM FCN

Share weights

Anchor

Positive

Negative

Real Pair

Fake Pair

T-F Ultrasound

Clean T-F
Spectrogram

Amplitude Enhanced
T-F Spectrogram

Figure 4.6. Architecture of the T-F domain cross-modal similarity measurement network (i.e., the
Discriminator).

with the latter. Although we intentionally maintain the time alignment between the two (Sec-

tion 4.6), it is hard to force the multi-modal fusion network to “understand” such multi-modal

correlation, because a traditional loss function (e.g., MSE) can only train the network to clean up

the T-F spectrum end-to-end. We thus propose a cGAN-based training method, which implicitly

incorporates the maximization of cross-modal correlation itself as a training goal.

4.7.1 Cross-modal Similarity Measurement

A key element in any GAN design is to define the similarity metric used by the discrimi-

nator. Unlike traditional GAN applications (e.g., image generation) which compare between the

same type of features, our cross-modal cGAN needs to discriminate whether the enhanced T-F

speech spectrogram matches the ultrasound Doppler spectrogram (i.e., whether they are a “real”

or “fake” pair). We propose a cross-modal Siemese neural network to meet this challenge.

A Siamese neural network uses shared weights and model architecture while working in

tandem on two different input vectors to compute comparable output vectors. It is traditionally

109

498

168498

257

1

Noisy T-F
Spectrogram T-F Ultrasound

498

257

1

Amplitude-enhanced
T-F Spectrogram 498

168

D

Real or fake pair?

498

168

T-F Ultrasound
Clean T-F

Spectrogram

D

Real or fake pair?

G tries to synthesize amplitude-
enhanced T-F spectrogram that fool D

D tries to identify the fake pairs which
contains amplitude-enhanced T-F
spectrogram and T-F ultrasound

G
T-F Domain Multi-modal

Amplitude Network

Negative ExamplePositive Example

1

498

257

Figure 4.7. Overview of UltraSE’s cGAN-based cross-modal training.

used to measure the similarity between two inputs from the same modality, e.g., two images [121].

To enable a cross-modal Siamese neural network, we create two separate subnetworks (Figure

4.6), aiming to characterize the correspondence between the T-F domain features of the speech

and ultrasound, respectively. The basic architecture for these 2 inputs is a CNN-LSTM model.

Since human speech contains harmonics and spatial relationship in the F domain, the speech CNN

subnetwork uses dilated convolutions for frequency domain context aggregation. The Doppler

shifts from ultrasound sensing mostly encompasses local features. Thus, the ultrasound CNN

subnetwork only contains traditional convolution layers. Following the convolution, a Bi-LSTM

layer is used to learn the long-term time-domain information for both modalities. Finally, three

fully connected (FC) layers are introduced to learn two comparable output vectors respectively.

We emphasize that the architecture and parameters are not shared in this cross-modal design,

which differs from the traditional Sieamese networks.

As shown in Figure 4.6, we use the Triplet loss [94] to train the cross-modal Siamese

network. The triplet loss function accepts 3 inputs, i.e., an anchor input U s is compared to a

110

0 0.2 0.4 0.6 0.8 1

 Similarity Measurement (0~1)

0

0.05

0.1

0.15

0.2

0.25

 P
D

F

Fake pairs
Real pairs

Figure 4.8. PDF of outputs from the cross-modal similarity measurement network.

positive input Sa
gr and a negative input Sa

out . It aims to minimize the distance between “real”

pair U s and Sa
gr, and maximize the distance between “fake” pair U s and Sa

out . In our model, the

anchor input U s is the ultrasound sensing features, the positive input Sa
gr is the corresponding

clean speech amplitude spectrogram, and the negative input Sa
out is the noisy speech amplitude

spectrogram. Thus, our network model minimizes the following Triplet loss:

LTriplet(D) = EU s,Sa
gr,Sa

out∼pdata(U s,Sa
gr,Sa

out)

[(∥ fu(U s)− fs(Sa
gr)∥2

−∥ fu(U s)− fs(Sa
out)∥2

+α,0)]
(4.1)

where fu is the ultrasound subnetwork, fs is the speech subnetwork, and α is a margin distance

between “real” and “fake” pairs.

We use a speech and ultrasound dataset collected on COTS smartphones (Section 4.9.1)

to train the cross-modal Siamese network, and verify its effectiveness in a benchmark experiment.

The training and testing sets contain 3 h and 0.5 h speech corpus for 15 and 5 users, respectively.

The T-F domain speech feature input is a 1×498×257 scalar (5 s segment), and the T-F domain

ultrasound feature input is a 8×498×16 scalar.

Figure 4.8 shows the probability density function (PDF) of outputs, where a smaller

value indicates higher similarity. It is obvious that the output PDFs for the real pairs and

fake pairs are perfectly separated, which means that our similarity measurement network can

effectively discriminate whether a pair of speech and ultrasound inputs are generated by the

111

same articulatory gestures.

4.7.2 cGAN-based Model Training

Now we discuss how to leverage such similarity measurement as a discriminator in a

cGAN to further fuse the multi-modal information. Our cGAN model aims to not only minimize

the MSE of the speech amplitude spectrogram (relative to the ground-truth), but also guarantee

high similarity between the “fake” pair (i.e., the enhanced speech and ultrasound sensing features)

and the “real” pair (i.e., the clean speech and ultrasound sensing features).

cGAN has been widely used to add a conditional goal to guide a generator to automatically

learn a loss function which well approximates the goal [109]. Figure 4.7 shows the structure of the

UltraSE cGAN model. The generator “G(Sa
noise,U

s)” is the aforementioned multi-modal network

(Section 4.6), which takes the noisy speech amplitude spectorgram Sa
noise and ultrasound sensing

spectrogram U s as the input. G(⋅) is trained to output amplitude-enhanced T-F spectrogram

of the speech Sa
out , which not only minimizes the traditional amplitude MSE loss [274], but

also tries to “fool” an adversarially trained discriminator “D(Sa
out ,S

a
gr,U

s)”, which strives to

discriminate the fake pair (Sa
out ,U

s) from the “real” pair (Sa
gr,U

s) under the aforementioned

triplet loss function. More specifically, The “D” loss is LTriplet(D) (see Eq. (4.1)), and the “G”

loss is

L(G) = EU s,Sa
gr,Sa

noise∼pdata(U s,Sa
gr,Sa

noise),z∼pz

[LTriplet(D(G(U s
,Sa

noise),Sa
gr),U s)]+λ∥G(U s

,Sa
noise)−Sa

gr∥2

where λ∥G(U s
,Sa

noise)−Sa
gr∥2 is the traditional MSE amplitude loss. The reason why we use

the amplitude MSE loss here rather than complex-valued loss or combined loss [274] will be

clarified in Section 4.8.

Our cGAN design represents a general model for cross-modal noise reduction, which

may be reused in other sensor fusion problems involving heterogenous sensing modalities.

112

Ta
bl

e
4.

3.
L

ay
er

s
co

m
pr

is
in

g
T

do
m

ai
n

ph
as

e
ne

tw
or

k.
K

er
ne

ls
iz

e
=

32
,S

tr
id

e
=

2,
Pa

dd
in

g
=

15
.

E
nc

1
E

nc
2

E
nc

3
E

nc
4

E
nc

5
E

nc
6

E
nc

7
D

ec
7

D
ec

6
D

ec
5

D
ec

4
D

ec
3

D
ec

2
D

ec
1

N
um

Fi
lte

rs
16

32
32

64
64

12
8

12
8

12
8

64
64

32
32

16
1

113

4.8 Multi-domain Speech Enhancement

In this section, we first investigate the pros and cons of T-F domain vs. T domain speech

enhancement by using statistical analysis and experimental validation. Our key insight is that

improving intelligibility is more critical than enhancing quality, since the top priority for speech

enhancement lies in helping users/machines to understand the speech in noisy environment. This

motivates us to expand the aforementioned T-F domain network into a two-stage multi-domain

model, which first pushes the limits of intelligibility and then refines the speech quality.

4.8.1 Understanding the Pros and Cons of T-F Domains Speech En-
hancement

Speech sounds and interferences usually exhibit rich auditory patterns in the T-F spec-

trogram. In this section, we intend to understand the impact of phase in the T-F spectrogram to

enlighten our multi-domain model design.

How does the T-F spectrogram phase affect the speech intelligibility and quality? We

first conduct an experiment by using the UltraSpeech dataset (detailed in Section 4.9), where

we keep the clean speech’s amplitude in the T-F spectrogram while replacing its phase with the

noisy speech phase, just as in aIRM (Sec. 4.2). We use two metrics to evaluate the impact. (i)

Scale-invariant Signal-To-Noise Ratio (SiSNR) characterizes the speech quality [128]:

LSiSNR = 10log10(
∣∣ ⟨ŝ,s⟩s∣∣s∣∣2 ∣∣

2

∣∣ ⟨ŝ,s⟩s∣∣s∣∣2 − ŝ∣∣2
) (4.2)

where s and ŝ are the T domain clean speech and enhanced speech signals, respectively. (ii)

Word Error Rate (WER), representing speech intelligibility, is the probability that a word cannot

be correctly recognized by an automatic speech recognition (ASR) algorithm [11] and human

perception.

As shown in Figure 4.9(a), when applying the noisy T-F spectrogram phase directly, the

114

0 10 20 30 40 50

 SNR (dB)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 -9 dB
 -6 dB
 -3 dB
 0 dB
 3 dB
 6 dB

(a) SiSNR

24.39

14.50

24.56

14.50

24.65

14.50

24.69

14.50

24.87

14.50

25.00

14.50

-9 -6 -3 0 3 6

 Noisy phase SNR (dB)

0

10

20

30

 W
o

rd
 E

rr
o

r
R

at
e

(%
)

 AWS Transcribe
 Human Ear

(b) WER

0 1 2 3

 Differential phase (0~)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 -9 dB
 -6 dB
 -3 dB
 0 dB
 3 dB
 6 dB

(c) CDF of phase difference between the clean and
noisy T-F domain spectorgram.

0 5 10 15 20

 Epoch

0

4

8

12

16

20

 V
al

id
at

io
n

 A
m

p
 M

S
E

 L
o

ss Amplitude soss
Complex-valued loss
Combined loss

(d) Validation of amplitude loss by using different
training loss functions.

Figure 4.9. Benchmark of the T-F domain methods.

SiSNR degrades slightly. On the other hand, phase does not affect the WER in a noticeable

way. The noisy phase with a very low SNR of −9 dB only decreases the WER by 0.7% when

using AWS Transcribe [11]. Meanwhile, human subjects can clearly understand the speech and

only feel a little jittering effect. In summary, the phase in the T-F spectrogram barely affects the

speech intelligibility and only slightly degrades the speech quality.

What is the appropriate training loss function for recovering the speech intelligibility?

Figure 4.9(c) plots the CDF of phase difference between the clean and noisy speech spectrogram

across the T-F bins. We see that the phase difference is almost uniformly distributed for low-SNR

115

speech. This means the phase values in all the T-F bins are distorted in the spectrogram which

makes the phase recovery challenging. Since phase is not critical to intelligibility, we proceed

to study the performance of different DNN loss functions in recovering the T-F spectrogram

amplitude.

We examine 3 different loss functions. The first is the amplitude MSE loss which only

considers the T-F spectrogram amplitude: La = λ∥G(U s
,Sa

noise)− Sa
gr∥2. The second is the

complex-valued MSE loss which accounts for both the T-F spectrogram amplitude and phase:

Lp = ∥Sc
out −Sc

gt∥2 The third is a combined loss used in PHASEN: Lcombined = 0.5×La +0.5×

Lp, where Sa
out , Sa

gt and Sc
out , Sc

gt are the power-law compressed (A0.3) amplitude spectrogram

and complex-valued spectrogram. We apply these 3 training loss functions to the architecture in

Section 4.6 and 4.7. Figure 4.9(d) shows the validation amplitude MSE loss. Obviously, upon

convergence, training with amplitude MSE loss leads to lower validation error in amplitude MSE,

and hence better speech intelligibility, than the two alternative loss functions.

4.8.2 Two-stage Multi-domain Network Design

Based on the above studies, we derive 3 design principles for our multi-domain archi-

tecture: (i) The T-F spectrogram amplitude contributes to the speech intelligibility whereas

the phase is related to the speech quality. (ii) The T-F spectrogram phase is hard to predict

by using DNN models. (iii) Training DNN models with aIRM MSE loss in the T-F domain

optimizes speech intelligibility. We now elaborate on the detailed design, which follows the flow

in Figure 4.4.

Stage 1: T-F domain multi-modal amplitude speech enhancement. The DNN ar-

chitecture and training model of this stage has been covered in Sec. 4.6 and Sec. 4.7. The

amplitude-enhanced T-F spectrogram output is multiplied with the original noisy phase to gen-

erate a complex-valued T-F spectrogram. Then, the iSTFT [91] is used to transform the T-F

spectrogram to the T domain waveform and output the amplitude-enhanced T-domain waveform.

116

T Speech

5×
16
00
0

1

Conv 1d 16@
32

Conv 1d 32@
32

Conv 1d
32@

32

…

Conv 1d
32@

32

Encoder (7 layers)

Conv 1d 16@
32

Conv 1d 1@
32

T Speech

5×
16
00
0

Decoder (7 layers)

16×
40000

32×
20000

Conv 1d
128@

32

Conv 1d
128@

32

…32×
10000

128×
1250

128×
1250

128×
675

32×
10000

32×
20000

16×
20000

1

Figure 4.10. T domain phase network. Channels@Kernel size in convolution layer.

Stage 2: T domain speech phase enhancement. The goal of this stage is to fine tune

the T-domain waveform to further improve the speech quality, using the SiSNR (Eq. (4.2)) as the

training loss function. Inspired by SEGAN [179], our T domain network is an encoder-decoder

network as shown in Figure 4.10. The encoder contains 7 1D convolution layers to transform

5 s of time domain waveform to a 128×675 scalar. The decoding stage reverses the encoding

operation by means of fractional-strided transposed convolutions. We connect each encoding

layer to its homologous decoding layer to fully capture the low-level details of the original

features. The network parameters are listed in Table 4.3. All the 1D convolutional layers are

followed by parametric rectified linear units (PReLUs) [100]. We also tried a cGAN training

model similar to Section 4.7 in this stage, but observed negligible performance gain. Thus, we

only enforce the cGAN training in the T-F domain.

Notably, the first and second stage output can be used to satisfy different applications,

e.g., for ASR and human listener, since they are trained for speech intelligibility and quality,

respectively.

117

4.9 UltraSE Implementation

4.9.1 UltraSpeech Dataset

Traditional speech datasets only contain raw speech without ultrasound sensing signals

[81, 176]. To evaluate UltraSE, we thus create a new dataset called UltraSpeech which comprises

both.

Data collecting: We recruited 20 fluent English speakers (4 female, 16 male, average age

25) to collect the UltraSpeech dataset. Each participant was asked to say at least 300 sentences

in the TIMIT speech corpus [81] by using 2 typical phone holding styles (“Phone Call” mode

and “Towards Mic” mode, shown in Figure 4.12(b)) in quiet environment. Meanwhile, we use a

custom-built Android app called UltraRecord, to emit the ultrasonic signals and capture the audio

segments at 96 kHz sampling rate, through the bottom speaker and microphone on a smartphone.

Note that we do not constrain the user to hold the smartphone at a specific distance from the

mouth. In total, we collected 8k 5-second clean speech segments for each holding style.

We follow existing SSE work [71, 274] to generate the noisy speech dataset through

synthetic mixture. The interfering speech comes from the TIMIT data set [81], which contains

6300 different English sentences, generated by 630 speakers lasting 3.5 hours in total. The

ambient noise dataset comes from AudioSet [82] which contains more than 1.7 million 10-second

segments of 526 types of noise from real-life, including a wide range of human and animal

sounds, musical instruments and genres, and common everyday environmental sounds.

Training/testing dataset generation: Each segment of training/testing data is synthe-

sized by a linear combination of 3 pieces: ⟨S j,U j,Sinoise⟩, where S j and U j are the clean speech

segment and corresponding ultrasound features from UltraSpeech; Sinoise is the ith noisy sound

segment.

Besides, we generate a training set where the interfering speech and clean speech come

from the same speaker. This is widely recognized as the most challenging case of SSE [77],

since the interference bears the same auditory patterns that are indistinguishable from the desired

118

speech. We add this into the training dataset to force the model to exploit the ultrasound features

in addition to the audible features.

Our training dataset contains 15 participants’ clean speech collected by the Samsung

Galaxy S8 smartphone. Each participant’s clean speech is mixed with 20 different noise settings.

For each noise setting, the number of interfering speakers n is uniformly distributed in [0,4],

and the SNR is uniformly distributed in [−9,6] dB (-1.5 dB average). In total, the training data

contains 120k 5-second segments of noisy speech (300 hours).

4.9.2 UltraSE DNN Implementation

We implement the UltraSE DNN model in Pytorch. The dimension of feature maps and

the parameters of each layer are shown in Figure 4.4, 4.5, 4.10 and Table 4.1, 4.2, 4.3. ReLU

activations follow all layers except for the last layer, where a sigmoid is applied. For training,

we use Adam optimizer with a 1e−04 initial learning rate, dropping by 25% every 5 epochs for

a total of 20 epochs. UltraSE has 15.5 M and 3.1 M parameters for the first and second stage

DNN.

4.10 Experimental Evaluation

We evaluate UltraSE using 4 metrics commonly adopted in SSE research.

• SDR [237]: Signal-to-distortion ratio, which considers not only noise/interference, but also

acoustic artifacts (e.g., burbling sound) as distortion to the ground-truth speech;

• SiSNR [145]: Scale-invariant signal-to-noise ratio (Sec. 4.8.1) which, unlike the classical SNR,

ensures rescaling the estimated signal will not unfairly improve the metric;

• STOI [220]: Short-time objective intelligibility measure (from 0 to 1);

• PESQ [187]: Perceptual evaluation of speech quality, which models the mean opinion score

ranging from 1 (bad) to 5 (excellent);

119

4.10.1 Micro Benchmark Comparison

In this section, our default testing dataset includes another 5 participants’ clean speech

in the “Towards mic” mode, collected using Samsung S8. Our testing environment includes 6

different interference plus noise settings: 1s+a,2s+a,3s+a,> 3s+a,2s (“s” and “a” denotes

interfering speaker and ambient noise) and the hardest case >= 2 same-speaker intererences plus

noise (>= 2ss+a). The SNR level of noisy speech signals is uniformly distributed in [−9,6] dB.

All the results of UltraSE are from a single model generated from the training dataset.

Table 4.4. UltraSE micro benchmark.

Environment Methods SDR SiSNR STOI PESQ

1s+a

UltraSE 17.14 17.25 0.87 3.52
PHASEN 15.63 15.20 0.82 3.05
SEGAN 5.48 5.50 0.64 2.32
AVSPEECH 16.0 / / /
Conv-TasNet 12.23 12.58 0.76 2.48

2s+a

UltraSE 10.55 10.65 0.76 2.80
PHASEN 5.20 5.22 0.65 2.23
SEGAN 2.01 1.96 0.54 1.69
AVSPEECH 10.1 / / /
Conv-TasNet 10.23 10.38 0.74 2.40

3s+a

UltraSE 10.88 10.94 0.76 2.81
PHASEN 5.14 5.15 0.66 2.15
SEGAN 1.74 1.78 0.55 1.68
Conv-TasNet 6.31 6.50 0.71 2.11

> 3s+a

UltraSE 12.10 12.17 0.78 2.66
PHASEN 5.13 5.13 0.67 2.14
SEGAN 0.71 0.72 0.53 1.67
Conv-TasNet 6.23 6.41 0.71 2.15

>= 2ss+a

UltraSE 8.90 8.97 0.72 2.52
PHASEN 5.03 5.05 0.62 2.10
SEGAN 1.27 1.29 0.56 1.69
Conv-TasNet 5.69 5.93 0.73 2.21

2s
UltraSE 14.85 14.86 0.86 3.35
AVSPEECH 10.3 / / /
Conv-TasNet 14.98 15.02 0.85 2.97

120

We compare UltraSE with 4 state-of-the-art SSE methods, PHASEN [274] (T-F domain

method), SEGAN [179] (T domain method), AVSPEECH [71] (Audio-visual method), Conv-

TasNet [146] (Speech separation method). For a fair comparison, we reimplemented PHASEN,

SEGAN and Conv-TasNet and train and test them on the UltraSpeech dataset. PHASEN and

SEGAN only use the 1s+a training set, since they are designed for speech enhancement, not

separation. The results for PHASEN and SEGAN under 1s+a (see Table 4.4) is similar to the

original work, which shows the correctness of our implementation. For the speech separation

method, i.e., Conv-TasNet, we first train and evaluate it in the “2s” environment to check the

correctness of our implementation. Then, we use the “2s+a” dataset to train the model with the

2 speakers’ clean speech as ground truth, and compare the results in other environments in Table

4.4. For AVSPEECH, since our data set does not have the video recordings, we directly use the

results in [71] as baselines.

Compared to the state-of-the-art speech enhancement methods, UltraSE significantly

improves the speech quality and intelligibility in both noisy and multi-speaker environments.

Table 4.4 shows the testing results under all input SNR levels uniformly distributed in [−9,6] dB.

UltraSE outperforms PHASEN and SEGAN across all the 4 metrics. In the 1s+a environment,

UltraSE achieves an average 17.25 SiSNR (18.75 ∆SiSNR) and 3.50 PESQ. In other environ-

ments with multi-speaker interference, the ultrasound sensing modality plays a more prominent

role, improving SiSNR by 6.04 dB and 9.77 dB on average over the 2 baselines respectively.

Even for the hardest case >= 2ss+a, UltraSE still achieves 8.97 dB SiSNR and 2.52 PESQ. In

addition, UltraSE achieves slightly higher performance than AVSPEECH, likely because the

ultrasonic features are sampled at finer time granularity than video frames, and can better align

with the speech signals.

Most of the existing speech separation methods can only work with limited number of

interfering speakers (2 ∼ 3) and without ambient noise [104, 276, 145, 266]. As shown in Table

4.4, when training the Conv-TasNet by using the “2s+a” dataset, Conv-TasNet achieves good

performance in the “2s+a” and “2s” setup, but is not general in other sophisticated environments.

121

-9 -6 -3 0 3 6

 Noisy SiSNR (dB)

-9

-3

3

9

15

21

27

 E
n

h
an

ce
d

 S
iS

N
R

 (
d

B
)

x=y
Average
Median

Figure 4.11. Noisy SiSNR v.s. Enhanced SiSNR

In comparison, UltraSE outperforms Conv-TasNet by around 6 dB of SDR or SiSNR, 10% in

STOI and 24% in PESQ, under the > 3s+a setup.

The scatter plot in Figure 4.11 shows the input and output SiSNR for each sentence

in the testing dataset which includes all 6 environments. UltraSE consistently achieves high

performance across different environments and sentences, with an average 14.75 dB SiSNR

gain. Even in the worst case with −9 dB input, the enhanced speech achieves 8.86 dB SiSNR on

average.

4.10.2 Ablation Study

We conduct an ablation study to better understand the performance of different design

components in UltraSE. The testing dataset here includes all the environments except the

“>= 2ss+a” which is not very common in practice. Table 4.5 summarizes the results.

“No T domain” represents the DNN model without the “T domain waveform speech

enhancement”. The results indicate that this module barely influences the STOI, a metric for

speech intelligibility. But it helps gaining 0.46 dB SDR, 0.58 dB SiSNR, 0.12 PESQ respectively,

which proves it can further improve the perceptual quality of the speech generated from the T-F

domain multi-modal network.

“No cGAN” represents the model without the “cGAN-based cross-modal model training”.

122

All the metrics significantly improves when applying the cGAN, since our cGAN design forces

the network to learn the correlation between the ultrasound and speech, which is the key principle

behind the UltraSE design.

“No Fusion Network” means that the feature maps of ultrasound and speech signals are

directly concatenated in the T-F domain without the fusion block. The performance slightly

decreases, since the fusion block helps the multi-modal features to “cross-talk” with each other.

“No Ultrasound” represents the network without the ultrasound stream at the beginning

of the network. The result becomes close to the traditional speech enhancement method without

ultrasound sensing, e.g., PHASEN.

4.10.3 System Efficiency

Time Consumption: We evaluate the run-time processing latency of UltraSE on 3

platforms, including a NVIDIA GTX 2020 (GPU), an Intel i9-9980 3.00GHz (CPU) and Samsung

Galaxy S8 with Qualcomm Snapdragon 835 CPU (Smartphone). The first two correspond to

the case where UltraSE is offloaded to a trusted cloud or edge server. Table 4.6 summarizes

the results. The GPU server only experiences 14.85 ms latency which is acceptable for VoIP

applications (150 ms maximum [132]). The smartphone case is measured by using Pytorch

Mobile [20] on Samsung Galaxy S8. Note that the latest version of Pytorch Mobile [20] only

supports single-CPU processing without any GPU/NPU support. Thus, the latency is relatively

high (25.08 s to process 5 s speech), which is acceptable only for offline processing applications,

e.g., audio message and audio recording. There exists a rich literature [246] on improving

DNN efficiency on smartphones, which demonstrated more than 50× latency reduction by using

mobile GPU/NPU. We will explore such solutions for our future work. Also note that UltraSE

needs to process the input in segments of 5 s due to the use of Bi-LSTM blocks. This means its

SSE starts taking effect after a 5 s initial bootstraping period.

Energy Consumption: Our experiments show that a typical smartphone (Samsung S8)

can continuously use UltraSE to record speech while emitting ultrasound signals for 60.57 hours

123

Table 4.5. UltraSE ablation study.

SDR SiSNR STOI PESQ
UltraSE (Testing data 96 kHz) 13.10 13.21 0.80 3.01
UltraSE (Testing data 48 kHz) 13.08 13.18 0.79 2.99
- No T domain 12.64 12.63 0.80 2.89
- No cGAN 10.80 10.85 0.77 2.60
- No Fusion Network 9.96 10.00 0.76 2.54
- No Ultrasound 7.78 7.68 0.70 2.39

Table 4.6. Inference time for processing 5 s speech.

Preprocess Stage 1 Stage 2
GPU 0.55 ms 12.02 ms 2.28 ms
CPU 0.05 s 1.38 s 0.26 s
Smartphone 0.25 s 23.02 s 1.81 s

with display off. Our measurement using Android Profiler [21] reveals that UltraSE’s CPU load

is 48.7% on average, and power consumption is at the level of “1” in between the scale of 0 to

3. When offloading to servers, the computational energy consumption becomes negligible. The

only overhead is that UltraSE needs to upload the original 48/96 kHz sampling rate audio stream

with both audible sounds and ultrasounds to the server, and then download the enhanced speech

from the server. Our experiments show that Samsung S8 can continuously run UltraSE and

upload/download the audio streaming via WiFi in the offloading mode for 10.82 hours. Server

offloading may incur additional issues such as security, but this is beyond the scope of our current

work.

4.10.4 Generalization

Sampling Frequency: UltraSE model trained by 96 kHz sampling rate dataset can

be directly used to enhance the testing speech recorded at 48 kHz sampling rate. The feature

resolution at 48 kHz sampling rate is identical to the case at 96 kHz sampling rate as long as

124

the FFT window length and hop length of ultrasound sensing features keep 85 ms and 10 ms

respectively. Table 4.5 shows a negligible performance degradation when testing the 48/96 kHz

sampling rate dataset on the 96 kHz sampling rate trained model.

Holding Styles: In the “Phone call” mode (Figure 4.12(a)), the user’s face partially

occludes the ultrasonic signals, so we train a model which is different from the “Towards mic”

mode (Figure 4.12(c)). UltraSE can automatically select the model using the IMU-based holding

style detection algorithm built into smartphones [83]. Our experiments show that, under −1.5

dB average input SNR, the performance of “Phone call” (12.47 dB SiSNR) is slightly lower than

the “Towards mic” (13.12 dB SiSNR) due to the occlusion.

We further evaluate the sensitivity of each model under different mouth-to-mic distances.

Figure 4.12(b) and Figure 4.12(d) show the average SNR of ultrasound (SNRg) vs. the SiSNR of

enhanced speech. For both holding styles, SNRg well exceeds 10 dB, and speech SiSNR stays

around 12 dB within 20 cm distance. The experiment implies that the UltraSE model performs

consistently as long as the mouth-to-mic distance remains within 20 cm.

Motion interference: We measure the impacts of interference from 3 major motion

artifacts, i.e., respiration, hand gestures and walking. The experiments were conducted when the

mouth is 15 cm and 2 cm away from the microphone in the “Towards mic” and “Phone call” mode,

respectively. (i) The respiration frequency (∼30 bpm) is far less than the articulatory motions

(> 10 Hz), so it creates negligible impacts on UltraSE. (ii) Hand gestures introduce similar

Doppler effect as the articulatory motion [165, 248, 149], which may cause non-negligible

interference. We measure the articulatory gestures’ SNRg under the pushing hand gesture

interference. The SNRg is sampled for each 2 cm in 7 different angles from 0◦ to 90◦, at a step

of 15◦, close to the user’s mouth. Figure 4.13 shows the spatial distribution [68] of SNRg for

the “Towards mic” mode. As long as the hand gesture is > 25 cm away from the mouth (which

is typical in daily usage scenarios), the SNRg remains above 10 dB which suffices for UltraSE

(Figure 4.12). A microphone array can be used to focus on the user’s mouth region to further

mitigate interference [149], but this is beyond the scope of UltraSE. We omit the “Phone call”

125

D

(a) Phone call

2 4 6

 D (cm)

0

5

10

15

20

25

S
en

si
n

g
 S

N
R

g
 (

d
B

)

0

3

6

9

12

15

S
p

ee
ch

 S
iS

N
R

 (
d

B
)

(b) Sensing SNR vs. Speech SiSNR for (a)

D

(c) Towards mic

5 10 15 20 25 30

 D (cm)

0
5

10
15
20
25
30

S
en

si
n

g
 S

N
R

g
 (

d
B

)

0

3

6

9

12

15

S
p

ee
ch

 S
iS

N
R

 (
d

B
)

(d) Sensing SNR vs. Speech SiSNR for (c)

Figure 4.12. SNR of articulatory gestures.

mode since the microphone is much closer to the mouth and the sensing SNRg stays high. (iii)

When other people walk nearby (0.8 m away), we found that SNRg is barely impacted since the

ultrasound volume is relatively low, and the user’s mouth is much closer.

Overall, the articulatory gestures’ SNRg is sufficiently high (> 10 dB), and the UltraSE

model is unaffected by the motion artifacts in daily usage scenarios.

Generalizations across smartphones: Different smartphones may have different speaker

and microphone layout. For example, the distances between the bottom microphone and speaker

are 5 mm, 25 mm and 25 mm for Samsung S8, LG G8S ThinQ and VIVO X20 respectively. The

high-frequency response of the speaker and microphone may also vary across phone models [19].

When applying the DNN model trained by the Samsung S8 dataset directly to LG G8S ThinQ

and VIVO X20, the SiSNR of enhanced speech becomes 9.21 dB and 9.53 dB, respectively.

which is lower than the same-phone case (13.21 dB), but still higher than the SiSNR without

ultrasound sensing (7.68 dB). To maintain the optimal performance, a straightforward way is

126

Hand Gesture Interference

Figure 4.13. SNRg under hand gesture interference

to perform a one-time training data collection for each phone model. Alternatively, we can

enrich the UltraSpeech dataset with a diverse set of smartphones that cover the typical hardware

configurations. This is left for our future work.

Real-world Usage Experiments: We asked the users to use UltraSE across 4 different

real-world environments, i.e., 1). a bathroom environment with exhaust fan and running water

noise (75 dBA on average); 2). a living room environment with television noise (55 dBA on

average); 3). an indoor conference environment with conversation noise (60 dBA on average);

4). an outdoor roadside environment with vehicle noise (60 dBA on average). Unlike synthetic

noisy speech, we can not capture the ground truth clean speech and evaluate the metrics like

SDR, SiSNR, STOI and PESQ in these scenarios. Thus, to evaluate the performance of UltraSE

for real-world usage, we use the ASR Word Error Rate WER =
S+D+I

N as the metric, where

S, D, I, and N are the number of substitutions, deletions, insertions, totals of targeted user’s

spoken words respectively. Specifically, we asked the users to speak at least 50 sentences in

the TIMIT speech corpus [81] across different environments. Figure 4.14 shows the WER

127

23.8024.5028.5024.60

85.60

25.30

105.20

25.8028.3025.20

Quiet
Bathroom

Living Room

Conference
Roadside

 Real-world Environment

0

50

100

150

 W
o

rd
 E

rr
o

r
R

at
e

(%
)

 W/o UltraSE
 W/ UltraSE

(a) Phone call

23.8024.60
35.80

24.50

92.20

26.80

125.30

27.20
32.60

25.00

Quiet
Bathroom

Living Room

Conference
Roadside

 Real-world Environment

0

50

100

150

 W
o

rd
 E

rr
o

r
R

at
e

(%
)

 W/o UltraSE
 W/ UltraSE

(b) Towards mic

Figure 4.14. Real-world Usage WER.

with and without UltraSE across different environments. In non-speech noisy environments,

i.e., bathroom and roadside, UltraSE slightly improve the ASR speech recognition rate since

ASR itself has the ability to mitigate background ambient noise interference. In speech noisy

environments, i.e., living room and conference, WER is higher than 100% since there exists many

word insertions and substitutions introduced by non-targeted user’s speech. UltraSE achieves

significantly improvement in such cases since it is able to separate the desired speaker voice

from noises by using ultrasound sensing.

4.11 Conclusion

We have demonstrated that ultrasonic sensing can serve as a complementary modality

to solve the cocktail party problem. Our UltraSE system introduces general DNN mechanisms

to enable such capabilities, e.g.,multi-modal multi-domain fusion network and cGAN-based

training model based on a novel cross-modal Siamese network. UltraSE points to a novel

direction that fuses wireless sensing capabilities to bring machine perception to a new level.

128

4.12 Acknowledgments

This chapter contains material from “UltraSE: Single-Channel Speech Enhancement

Using Ultrasound”, by Ke Sun, and Xinyu Zhang, which appears in the 30th annual International

Conference on Mobile Computing and Networking (MobiCom), 2021 [215]. The dissertation

author was the primary investigator and author of this paper.

129

Chapter 5

Multimodal Daily-life Logging in Free-
living Environments Using Non-Visual
Egocentric Sensors on a Smartphone

5.1 Introduction

The emerging Internet of Things (IoT) promises to embed a massive population of sensors

in the environment to form an ambient intelligence [97]. Such omnipresent IoT sensors can gen-

erate huge personalized data to enable life-logging and support many activity-aware applications.

In particular, they can monitor a subject’s activities of daily living (ADL), including not only

body motion (e.g., walking, bathing), but also interaction with the physical environment and daily

objects (e.g., kitchen appliances, water cups, faucets). They can transform the healthcare domain

which, to date, has been relying on laborious monitoring and subjective questionnaires/reports for

diagnosis, assessment, and emergent response. Examples include tracking medical compliance,

evaluating rehabilitation (e.g., for stroke patients), detecting onset of chronic diseases (e.g., the

Alzheimers’ disease), etc.

To approach the vision of ubiquitous ADL sensing, substantial research has investigated

the egocentric sensing scenario, where the sensors are co-located with subjects [164]. In

particular, egocentric visual sensing relies on a head-mounted camera or smart glasses to capture

the first-person views [60, 201, 89]. Due to the limited angle of view and constrained wearing

130

Egocentric
Sensor Hub

Audio

Wi-Fi
CSI

(a)

(b)

ADL
LoggingsEgoADL

(a) Take food
from fridge

(b) Chop
vegetablesMotion

Sensor

Self-supervised
CM Clustering (Sec. 6)

MMFWSF
Transformer (Sec. 5)

Figure 5.1. EgoADL is an egocentric ADL sensing system, leveraging an on-body smartphone
as a sensor hub to capture the audio, Wi-Fi CSI, and motion sensor signals simultaneously.
EgoADL employs a self-supervised cross-modal (CM) clustering to encode a general feature
representation from the large-scale unlabeled data (Sec. 5.6) and a supervised Multi-Modal
Frame-Wise Slow-Fast (MMFWSF) transformer model to recognize the ADLs (Sec. 5.5).

style, they can only partially capture the user’s ambulatory activities, leading to low accuracy

[201, 157]. Furthermore, these approaches inherit the limitations of camera sensing–They are

privacy intrusive, energy hungry, and crippling for continuous sensing. On the other hand,

egocentric non-visual sensors such as wearable motion sensors are limited to capturing only

ambulatory actions without the interaction with the physical environments and daily objects

[53]. Therefore, audio [116, 49], and motion sensor [270, 163] are typically used to assist the

egocentric video to improve accuracy.

In this paper, we design EgoADL, a multimodal ADL sensing system that employs

ubiquitous non-visual sensors on an egocentric in-pocket smartphone to log ADL in free-living

environments. Compared with vision-based approaches, EgoADL is less intrusive and better

approximates Mark Weiser’s pioneering definition of ubiquitous intelligence [256], i.e., sensing

technologies that quietly serve human in the background. As shown in Fig. 5.1, a user performs

daily routines with the sensor hub, i.e., an in-pocket smartphone. EgoADL is designed to log

a comprehensive range of basic ADL, which are characterized by open-ended, fine-grained

activities encompassing both body motion and human-object interactions. These activities

include, but are not limited to, routine physical movements (e.g., walking, sitting, bending down),

common household tasks (e.g., cooking, washing dishes, mopping floor), and interactions with

131

various objects in daily life (e.g., using utensils, chopping vegetables, taking food from fridge)

(see Fig. 5.6 and Fig. 5.7 for detailed ADL list). The focus is on detailing these everyday actions

in a manner consistent with the definitions used in computer vision-based ADL recognition

[203, 202, 89, 22].

To realize EgoADL, we resolve three key challenges:

ADL representation–beyond activity classification. Most of the traditional DNN-based

ADL analysis models are designed to perform classification [60, 202], which assigns integer

IDs to various ADL. However, it requires prescribing a known set of ADL, which falls short

of extensibility when new ADL of interest emerge. In contrast, EgoADL is designed to enable

comprehensive daily life logging for humans, covering a wide spectrum of distinct ADLs.

Therefore, we propose to use a transformer-based sequence-to-sequence model to decode these

feature representations as label name semantics using a sequence of words. Moreover, these

ADL representation establishes a connection between sensor data and natural language. This

enables us to harness the semantic information inherent in these natural language labels. By

seamlessly integrating this information with language models, we significantly elevate the overall

performance of EgoADL.

Egocentric multi-modal fusion–overcoming limited resolution of non-visual sensors.

The second major challenge is that the non-visual sensors have much lower resolution than

camera, for sensing both human body motion and interaction with daily objects [217]. To

overcome the challenge, we select and synthesize 3 specific modalities which have already been

embedded in commercial devices, i.e., motion sensor for ambulatory actions of leg; wireless

sensing for full-body motion and interactions with ambient environments; audio recording

for motion and human-object interaction with unique sound events. Our empirical analysis

of real-world ADL data indicates that each sensing modality is amenable to different ADL

patterns, and a judicious combination of them can potentially achieve near-vision resolution.

Therefore, we propose a Multi-Modal Frame-Wise Slow-Fast (MMFWSF) encoder to learn the

feature representation of multi-sensory data, which characterizes multi-modal fast-changing

132

motion, continuous scene sounds, and cross-modal frame-wise alignment. We then use a

transformer-based sequence-to-sequence model to decode these feature representations as label

name semantics using a sequence of words.

Self-supervised ADL learning–achieving generalization with limited labeled data. To

achieve high sensing accuracy, extensibility for non-frequent ADL and generalization (across

different ADL, users and environments), EgoADL needs a massive amount of training data,

which entails exorbitant labeling cost due to the high variability and “invisibility” of the sensing

records. We observe that capturing the data without labeling is relatively easy for EgoADL,

since all the sensors are embedded in an in-pocket smartphone. Thus, we collect large-scale

unlabeled data and adopt a self-supervised learning (SSL) framework to encode a general feature

representation. Specifically, we design a cross-modal deep clustering model that extrapolates two

self-supervisory signals from unlabeled data: i) Audio captures human-object interaction which

can inform the motion sensor and Wi-Fi CSI. ii) Correspondence between different modalities

when observing the same ADL. In addition, we leverage the vast amount of existing labeled

audio datasets [82] to pretrain a feature embedding DNN. These datasets already encompasses

the natural logic of ADL, thus further alleviating the training workload of the self-supervised

ADL learning.

To validate the design principles behind EgoADL, we implement an Android app to

collect the multi-modal data from in-pocket smartphones, when users freely perform daily

activities. Our implementation leads to the first non-visual multimodal dataset for egocentric

ADL. The dataset consists of large-scale unlabeled data, along with a labeled subset for users

who are willing to wear a head-mounted camera to capture the ground truth. We implement a

labeling software that allows the users to playback the audio/video recordings and annotate the

sensor data accordingly.

Using this platform, we have collected 20 hours of labeled data and more than 100 hours

of unlabeled data, which includes 221 different types of ADL involving 70 actions and 91 objects.

The data was collected from 20 different home environments and 30 users who performed an

133

unrestricted set of activities, encompassing both ambulatory motion and interaction with daily

objects. Our evaluation results show that EgoADL achieves 72.5% top-1 and 90.8% top-5 mean

Average Precision (mAP) for recognizing 105 frequently-used ADL, which are 21.0% and 14.7%

higher than the baseline model using traditional modal-wise sensor fusion. When considering the

35 state-based ADL which typically last more than 5 seconds, EgoADL achieves 85.9% top-1

and 94.5% top-5 mAP. Our results suggest that EgoADL can achieve comparable performance

with vision-based egocentric sensing, particularly for non-ambiguous actions and objects using

non-visual sensors.

The main contributions of EgoADL are as follows.

• We introduce a new concept of multi-modal egocentric ADL sensing based on non-visual

sensors on in-pocket smartphones. We build a platform for EgoADL sensor data collection

and labeling, and establish the dataset for multi-modal egocentric ADL sensing by using

non-visual sensors. Both the platform (https://github.com/Samsonsjarkal/EgoADL) and

dataset (https://doi.org/10.5281/zenodo.8248159) are released to facilitate further research.

• We design multi-modal fusion approaches to learn the feature representation of multi-

sensory data by leveraging the complementary advantages of audio, motion sensor and

wireless sensing.

• We propose an SSL framework that extrapolates single-modal and multi-modal supervisory

signals from unlabeled data, in order to boost the model accuracy, generalization and

extensibility.

• We propose to leverage the semantic information from the natural language labels by

distilling knowledge from external text datasets and refining the labels to fit the sensing

capability.

134

https://github.com/Samsonsjarkal/EgoADL
https://doi.org/10.5281/zenodo.8248159

Ta
bl

e
5.

1.
R

ep
re

se
nt

at
iv

e
A

D
L

sy
st

em
s

us
in

g
W

i-
Fi

C
SI

,I
M

U
an

d
A

ud
io

.I
n

“S
ce

na
ri

o”
co

lu
m

n,
E

go
:E

go
ce

nt
ri

c;
D

F:
D

ev
ic

e-
fr

ee
.

In
“T

as
k”

co
lu

m
n,

H
A

:H
um

an
A

ct
iv

iti
es

;
H

O
I:

H
um

an
-O

bj
ec

tI
nt

er
ac

tio
n.

H
PC

:H
um

an
Po

se
C

on
st

ru
ct

io
n;

SE
:S

ou
nd

E
ve

nt
;

SE
D

L
:S

ou
nd

E
ve

nt
D

et
ec

tio
n

an
d

L
oc

al
iz

at
io

n;
In

“M
et

ho
d”

co
lu

m
n,

SM
:S

in
gl

e-
M

od
al

;M
M

:M
ul

ti-
M

od
al

;S
L

:S
up

er
vi

se
d;

SS
L

:
Se

lf
-S

up
er

vi
se

d
L

ea
rn

in
g.

In
“U

se
rS

tu
dy

”
co

lu
m

n,
S:

Su
bj

ec
ts

;E
:E

nv
ir

on
m

en
ts

.T
hi

s
ta

bl
e

fo
cu

se
s

ex
cl

us
iv

el
y

on
A

D
L

sy
st

em
s

em
pl

oy
in

g
W

i-F
iC

SI
,I

M
U

an
d

A
ud

io
.T

he
re

m
ay

ex
is

ta
dd

iti
on

al
se

ns
or

s
ap

pl
ic

ab
le

in
A

D
L

sy
st

em
s,

su
ch

as
PI

R
se

ns
or

s,
m

ag
ne

tic
se

ns
or

s,
so

na
rs

en
so

rs
,e

tc
.[2

17
]

M
od

al
ity

Sc
en

ar
io

R
an

ge
Ta

sk
#

of
A

ct
iv

iti
es

M
et

ho
d

U
se

r
St

ud
y

R
ec

ei
vi

ng
Se

ns
or

s

E
-e

ye
s

[2
51

]

W
iF

iC
SI

D
F

A
pa

rt
m

en
t

H
A

C
la

ss
ifi

ca
tio

n

9
SM

+S
L

1
S,

2
E

1
W

iF
iA

P

C
A

R
M

[2
47

]
Si

ng
le

R
oo

m
9

SM
+S

L
25

S
4

E
1

W
iF

iA
P

E
I[

11
0]

Si
ng

le
R

oo
m

6
SM

+S
L

10
S

3
E

1
W

iF
iA

P

W
iP

os
e

[1
11

]
St

at
ic

H
PC

16
SM

+S
L

10
S

1
E

9
W

iF
iA

P

R
F-

D
ia

ry
[7

4]
FM

C
W

ra
da

r
D

F
Si

ng
le

R
oo

m
H

A
+

H
O

I
C

ap
tio

ni
ng

15
7

A
ct

s,
38

O
bj

s
SM

+S
10

S
10

E
FM

C
W

R
ad

ar
(n

ee
d

flo
or

m
ap

)
D

ee
pS

en
se

[2
72

]
M

ot
io

n
se

ns
or

E
go

/
H

A
C

la
ss

ifi
ca

tio
n

6
SM

+S
L

9
S

W
ea

ra
bl

e
D

ev
ic

es
L

IM
U

[2
69

]
E

go
/

7
SM

+S
SL

73
S

W
ea

ra
bl

e
D

ev
ic

es
D

E
SE

D
[2

31
]

A
ud

io
D

F
/

SE
D

L
10

SM
+S

L
/

M
ic

A
rr

ay

U
bi

co
us

tic
s

[1
26

]
E

go /D
F

/
SE

C
la

ss
ifi

ca
tio

n
30

SM
+S

L
7

S
W

ea
ra

bl
e

de
vi

ce
s

C
os

m
o

[1
73

]
E

go
Fo

rm
ot

io
n

se
ns

or
D

F
Fo

rD
ep

th
C

am
,R

ad
ar

/
H

A
C

la
ss

ifi
ca

tio
n

14
M

M
+S

SL
30

S
1

E
W

ea
ra

bl
e

de
vi

ce
s,

R
ad

ar
,D

ep
th

C
am

er
a

W
ri

st
-A

D
L

[4
1]

A
ud

io
+

M
ot

io
n

se
ns

or
E

go
/

H
A

C
la

ss
ifi

ca
tio

n
23

A
ct

s
M

M
+S

L
15

S
15

E
Sm

ar
tw

at
ch

E
go

A
D

L
W

iF
iC

SI
+

IM
U

+
A

ud
io

E
go

W
ho

le
A

pa
rt

m
en

t
H

A
+

H
O

I
C

ap
tio

ni
ng

22
1

A
ct

s
91

O
bj

s
M

M
+

SS
L

30
S

20
E

Sm
ar

tp
ho

ne

135

5.2 Related work

Egocentric vision-based ADL sensing: The wide availability of head-mounted or body-

worn cameras has resulted in massive first-person vision data, and fueled research in egocentric

ADL analysis [201, 60, 136, 89]. However, egocentric vision approaches still face fundamental

deployment barriers. In particular, wearing a camera is inconvenient and invasive [66]. Besides,

due to the limited field of view (FoV), the egocentric video data are highly heterogeneous and lack

compatibility [60, 201, 89]. For instance, the EPIC-KITCHENS [60] captures the users’ hands

whereas Charades-Ego [201] misses them, causing disparate inference results. Recently, more

egocentric vision research uses additional modalities to assist the egocentric vision including

audio [116, 49] and motion sensor [270, 163]. However, these approaches inherit the limitations

of camera sensing including privacy intrusive, energy hungry, and crippling for continuous

sensing. EgoADL proposes to bring the egocentric ambient intelligence to real life by using

non-visual sensors which are less intrusive and insensitive to the FoV problem, yet achieving

similar performance as the vision-based approaches.

ADL sensing using non-visual sensors: There exist a huge portfolio of non-visual

modalities for ADL sensing, including motion sensor [194, 272, 269], audio [82, 122, 231, 265,

23], RF signals [111, 247, 252] and others [217].

Within this area, motion sensor-based ADL sensing has mostly focused on classifying

a small set of prescribed activities associated with specific body parts [194, 272]. SSL has

been introduced recently to train feature representation models based on motion sensor data

[269, 98, 224, 147]. EgoADL wildly expands this strand of research towards cross-modal SSL,

which fuses multiple modalities to log more complex ADL, similar to a human transcriber.

Sound event detection, as one modality to understand ADL, has been extensively studied

[82, 122, 231, 265, 23]. Existing solutions use an external microphone array, e.g., one equipped

on a voice assistant, to capture the sound. Ubicoustics [126] is the only work that has a

smartphone-based egocentric sound capturing setup similar to EgoADL, but it only classifies

136

30 acoustic activities. Unlike traditional sound event classification, EgoADL is more extensible

due to its SSL architecture, and evades majority of the labeling burden by SSL and distilling

knowledge from existing sound datasets.

Device-free RF sensing has gained major traction, demonstrating abilities to classify a

dozen of prescribed activities [111, 247, 252]. However, due to limited antenna aperture and

hence spatial resolution, commercial RF signals, like Wi-Fi sensing, cannot capture the nuances

of human-object interactions (HOI), unless augmented with dedicated hardware. For example,

LiveTag enables HOI by attaching passive touch-sensitive tags on the objects [79]. RF-Diary

[74] employs a powerful FMCW radar and a floor map of object locations to detect HOI. Besides

the hardware complexity, cost and labeling burdens, the device-free sensing systems bear a few

common limitations. First, the coverage area is typically limited to a single-room. Second,

without dedicated hardware [79, 74], the sensing performance is highly sensitive to environment

and transceiver locations. State-of-the-art device-free WiFi sensing systems can only achieve

< 75% accuracy in recognizing 6 activities, when tested across different environments [110]. In

contrast, EgoADL is the first to explore egocentric Wi-Fi sensing by capturing ambient Wi-Fi

CSI using a in-pocket smartphone, combined with other sensors to overcome such limitations.

SSL for ADL sensing: One of the major challenges for ADL analysis is lack of labelled

data, especially for relatively rare ADL [203]. This challenge exists even for egocentric vision

due to the limited FoV and the complexity of ADL. SSL has proven to be a promising solution

for vision [112], motion sensor [269, 98, 224, 147, 99], and other modalities [173]. In particular,

recent work adopted SSL on unlabeled audio-visual data [28, 27, 51]. By understanding the

video-audio correspondence, such methods achieve the state-of-the-art performance on egocentric

ADL recognition. EgoADL introduces new modeling mechanisms (e.g., joining single- and multi-

modal SSL) to tackle a disparate set of modalities. Furthermore, EgoADL distills knowledge

from external datasets to guide the SSL towards a better cross-modal feature representation.

137

La
be

l
Ac

c
Au

di
o

CS
I

Vi
de

o
Drink Drink Put sth.

on table
Stand

up Walk
Put

Pot sw. Walk Open
fridge

Close
fridge

Open
fridge

Figure 5.2. EgoADL data in the time domain, including Wi-Fi CSI, audio, accelerometer signals,
ground truth labels and egocentric video from a head-mounted GoPro for ground truth labeling.

5.3 EgoADL Setup and Data Collection

EgoADL employs a commodity smartphone as an egocentric sensor hub, which captures

the audio, wireless sensing signals (i.e., Wi-Fi), and motion sensor signals continuously. Users

can perform arbitrary daily routines with the sensor hub, i.e., an in-pocket smartphone, in

free-living environments. EgoADL will recognize ADLs including both human activity and

human-object interaction from the sensor data without human intervention. We will first discuss

EgoADL data collection setup and dataset. Our study was approved by the IRB before all the

data collection.

Smartphone as an egocentric sensor hub: The EgoADL data collection app is imple-

mented by JAVA in Android OS. It simultaneously collects 3 sensing modalities from the user’s

smartphone. (i) Audio capturing: We record the monophonic sound at 48 kHz sampling rate

through the smartphone’s bottom microphone. (ii) Motion sensors: We capture the 3-axis ac-

celerometer signals at 200 Hz sampling rate, and log the per-sample timestamp for later uniform

resampling. (iii) Wi-Fi CSI: We use the Nexmon CSI tool [92, 197] to extract the incoming

138

Wi-Fi packets’ CSI. Our EgoADL prototype uses Nexus 5 for its compatibility with Nexmon

[92, 197]. During the data collection, we employ a commodity 802.11ac Wi-Fi access point (AP)

to transmit data at 400 packets/second. Due to packet losses, the receiving packet rate tends to

be lower. Nevertheless, our data collection consistently maintains a minimum reception rate of

200 Wi-Fi packets/second, ensuring data quality.

Data collection procedure and setup: For our data collection, we recruited 30 partic-

ipants, comprising 8 females and 22 males with an average age of 25.9. The participants had

an average age of 25.9 years. Among them, 10 participants (3 females and 7 males) consented

to provide ground-truth labels for our study. One notable limitation of our current dataset is

the underrepresentation of female and elderly participants. Fig. 5.3 shows the detailed detailed

demographics. We clearly communicated the data collection objectives to the participants. Each

participant was instructed to record data over a week, aiming for at least 5 hours in total. To

guarantee a diverse and sufficient collection of ADL, we advised them to record during routine

activities, excluding stationary periods such as working at a desk or sleeping. We did not impose

any specific ADL types or scripted activities.

2

3

1

2 2

10~20 20~30 30~40 40~50 >50

 Age

0

2

4

 #
 o

f
P

ar
ti

ci
p

an
ts Male

 Female

(a) EgoADL Participants in labeled dataset.

9

13

4

2 2

10~20 20~30 30~40 40~50 >50

 Age

0

2

4

6

8

10

12

14

 #
 o

f
P

ar
ti

ci
p

an
ts Male

 Female

(b) EgoADL Participants in unlabeled dataset.

Figure 5.3. EgoADL demographics of participants.

Participants were provided with necessary devices, including a Wi-Fi AP and a smart-

phone equipped with the EgoADL app, along with instructions for setting up the devices. We

asked participants to deploy the Wi-Fi AP at an arbitrary location in their home and they are

139

required to simply put the smartphone into their left/right trouser pocket, freely performing

daily routines as the data collection app runs in the background. Participants are also allowed to

take the smartphone out of the pocket and use the smartphone freely as usual. Upon reaching

a user-specified time limit (typically 10 to 30 minutes), the app plays a notification sound and

saves the sensor data. For participants who agreed to provide ground-truth labels (7 males and 3

females with an average age of 28.5, Fig. 5.3(a)), the procedure was identical, with an additional

step of wearing a head-mounted GoPro camera. This camera captured egocentric audio and

video at a resolution of 2560×1440, 30 FPS, and with a linear field of view.

WiFi CSI

Motion
Sensor

Audio
(48 kHz)

Extract Data
Frame CSI

Compensate
AGC

Extract Usable
Subcarriers

Resample
To 400 Hz

Gyroscope

Accelerometer

Resample
To 200 Hz

Resample
To 200 Hz

GoPro
Recordings

Label Human
Behavior

Smartphone
Recordings

Audio

Video

Cross-
Correlation

Synchronize Recordings from
Smartphone and GoPro

Synchronize
Time Stamp

from Different
Modalities

Mapping
GoPro Labels

to Smartphone

Data with
Ground Truth

Labels

Data w/o
Ground Truth

Labels

Preprocessing

Labeling

Figure 5.4. Implementation pipeline of the EgoADL preprocessing and labeling.

Data preprocessing: Fig. 5.4 summarizes the preprocessing pipeline. To mitigate the

impact of unstable sample timing on Commercial Off-The-Shelf (COTS) smartphones, we first

resample the motion sensor data uniformly to 200 Hz. For the Wi-Fi CSI data, we normalize the

per-subcarrier magnitude by the corresponding automatic gain control (AGC) values to mitigate

the AGC artifacts, and then resample the CSI sequence to 400 Hz. Specifically, we preprocess the

Wi-Fi CSI data as follows: 1). Discard the frames without < 80 MHz bandwidth, and only keep

the data frames with 80 MHz; 2). Compensate the automatic gain control (AGC) to guarantee

the stable amplitude of Wi-Fi CSI signals in the time domain; 3). Discard the subcarriers without

Wi-Fi CSI; 4). Resample the Wi-Fi CSI uniformly to 400 Hz sampling rate. Afterwards, we

140

synchronize the three sensing modalities based on their sampling timestamp. Afterwards, we

synchronize the three sensing modalities based on their sampling timestamp.

Search for Matched
Human Behavior Labels

Figure 5.5. EgoADL labeling tool

Data labeling: Each ground truth label needs to specify the ADL, i.e., an ambulatory

action or human-object interaction event, along with the start and end timestamps. For instance,

Fig. 5.2 shows 1-min labeled data containing a sequence of ADL. As shown in Fig. 5.5, we

design a labeling tool to allow playback of the GoPro video/audio recordings and annotating the

data using a set of ADL labels created by existing state-of-the-art video/audio based ADL sensing

systems [203, 89, 22, 127]. To ensure accurate labeling, the annotators are exactly the data

collectors, compensating for any limitations in egocentric video field of view (FoV) by using their

memory of the events. They are equipped to segment and label the video footage, either using the

provided predefined ADL labels or by adding new ones as they identify them. This open-ended

approach to data labeling and annotation has yielded a comprehensive dictionary encompassing

1,000 words specifically related to ADL. The maximum allowable duration for each labeled

segment is 10 seconds, aligning with the typical duration of discrete ADL observed in our studies.

We further conduct the user studies with annotators and they empirically separate the ADL into

state-based and event-based ADL [60]. State-based ADL usually last more than 5 s each and

often periodically and continuously, like “walking” and “chopping meat”, etc. Event-based ADL

141

are one-short, like “opening the door” and “sitting down in chair”, etc.

0 10 100 1000

chop fruit
clean

wash rice
type on phone

wash face
talk to someone

beat egg
knead food

use scissors
mop floor
exercise

cut nail
play with phone

run
type on keyboard

watch video on phone
shave beard

wash food
fill water

wipe clean
play vr

brush teeth
use spoon eat

chop meat
operate vacuum

wash hand
chop vegetable
peel vegetable

cook
work play on laptop

eat
wash dish

walk

Figure 5.6. State-based human behaviors in EgoADL dataset.

Dataset Scale: Following the data labeling process, we streamlined the dataset by

reducing the representation of longer-duration event-based ADL, particularly those that span

over 10 consecutive minutes. This process yielded an effectively condensed dataset with an

average duration of approximately 2 hours per participant. For the data without labels, we

selectively refined the data by eliminating segments that lacked significant variation across all

three modalities. Finally, we organized the data into three datasets. (i) Labeled dataset. The

labeled dataset contains 20 hours of records from 10 users across 7 homes, area ranging from

600 to 2000 ft2 with a variety of layouts. It comprises 7,000 ADL samples, including 221

types of ADL involving 70 actions and 91 objects. A detailed list is in Fig. 5.6 and Fig. 5.7,

respectively. This dataset serves as a baseline for preliminary experimentation and few-shot fine

tuning. (ii) Balanced dataset with labels. Remarkably, the uncontrolled user activities manifest

an imbalanced long-tail distribution– more than half of the ADL in EgoADL are infrequent and

only have less than 15 samples. To establish a baseline supervised learning model, we select a

subset from (i), which involves 105 ADL each with 15 to 25 samples (2,500 samples in total),

142

Figure 5.7. Event-based human behaviors in EgoADL dataset.

143

Mic

(a) Device-free au-
dio SNR

TxRx

(b) Device-free
Wi-Fi SNR.

Tx

(c) Egocentric Wi-
Fi SNR.

Tx

Tx

Rx

LoS

NLoS

NLoS
LoS

Device-free

Egocentric
Rx

(d) WiFi Sensing
Model.

Figure 5.8. Egocentric v.s. Device-free Sensing SNR for audio and Wi-Fi. “User squeezing
plastic bootle” sound and “Sit down in chair” motion are used as benchmarks sound event and
human activity for audio SNR and Wi-Fi CSI SNR measurements. The heatmap in (a) represents
the SNR as we vary sound source locations while fixing the mic. The heatmap in (b) and (c)
represents the Wi-Fi CSI sensing SNR of specific location.

referred to as a balanced dataset. (iii) Unlabeled data. To facilitate the SSL (Sec. 5.6), we

collected more than 100 hours of unlabeled egocentric data from 30 users in 20 homes.

5.4 Preliminary Study

In this section, we will discuss the advantages of EgoADL design choices, i.e.,egocentric

sensing and sensing modalities selection.

5.4.1 Advantages of Egocentric Sensing

To better understand the advantages of the egocentric sensing, we conduct controlled

experiments in a 1400 ft2 apartment, and compare EgoADL against the conventional device-

free setup [264] which captures users’ ADL through off-body non-visual sensors, e.g.,voice

assistant [126, 23, 265] and Wi-Fi AP [247, 110]. We only examine the audio and Wi-Fi CSI

modalities here since motion sensors are already widely used in egocentric setup [272, 269],

which characterize a specific body part motion without any interference from other users.

Sensing Space Coverage: To control the audio sensing setup, we use a loudspeaker

to replay a benchmark sound of “user squeezing plastic bottle” at a constant 68 dBA SPL, to

emulate the corresponding user activity. For Wi-Fi CSI sensing, we use “sit down in chair” as

the benchmark activity. In the device-free scenario, we vary the sound source location and the

144

location of human activity while fixing the sensor hub at a specific location (◇ in Fig. 5.8(a) and

Fig. 5.8(b)). In the egocentric scenario, the users put the sensor hub, i.e.,smartphone, in their

trouser pocket. As shown in Fig. 5.8(a), in the device-free setup, the microphone is sensitive

to wall blockage, and can only sense the activity sound at single-room coverage. Meanwhile,

Fig. 5.8(b) shows that, the signal strength of device-free Wi-Fi sensing drops dramatically as

the user moves away from the Tx/Rx or behind the wall. This is because it relies on the NLoS

signals bouncing off the target user’s body, which suffers from severe attenuation, diffraction,

and scattering effects. In contrast, in the egocentric setup, the sensor hub accompanies the user,

so it achieves whole-home coverage with consistently high SNR (> 25 dB) for both audio and

Wi-Fi CSI.

Mic &
User

(a) Audio Egocentric SINR.

Tx
Rx &
User

(b) Wi-Fi Egocentric SINR.

Figure 5.9. Egocentric SINR for the same benchmark sound event and human activity as in
Fig. 5.8. The targeted user with egocentric sensor hub is fixed at the location of ◇. The heatmap
in (a) and (b) represents the SINR of audio and Wi-Fi CSI of the targeted user when there is an
interfering subject performing the benchmark activity at each location.

Resilience to interference: Since the device-free setup achieves low whole-home SNR

even without the interference source, we only examine the resilience to interference under the

egocentric setup. Here the targeted user stays at a fixed location, while another (interfering)

user performs the benchmark activity at arbitrary locations. We measure the SINR, where the

desired signal power equals to the variance of egocentric signals caused by the targeted user’s

145

somew
here

put
ope
n

turn

food
bottle

take

washclose
pou
r

glass

cup

clot
hes

phone

pot

play

stand

cho
p

door

chair

something

move

vegetable

hand

closet

cabinet

sit

plat
e

dish water
stove
use

eat

refrigerator

light

faucet

mouse

box
clea

n
hold

sofa

couch

throwsqu
eezevacuum

window

cut

con
dim
ent

type

garbage
disp

osa
l

rice

lid

spoon
cook

mop

laptop

egg

operate
watch

bed
keyboa

rd

wal
kwork

meat

drink

scrol

video ben
d

shave

bea
rd click

nail

trash

peel

wip
e

brush

teeth

run

fill

blind
rins
e

mouth

floo
r

table
drawer

dry

grab

tissue

soap

vr

knock

coughcrack

kneadpick

face

knife

talk

sprinkl
e

spatula

lie

bea
t

fruit

microwave

bag

boa
rd

blan
ket

adju
st

gop
ro

serv
e

plastic

wrap

scroll

trackpadscrape

pan
fix

yell

glove

hair

cover

toothpaste

tidy

flush

toilet

towel

wear

trim

pack

tableware

sink

cable

organiz
e

oil

back

music

lipstick

paper

blendin
g

sneeze

arrange

trashbin

clap

plug

n

dumpling

air

valve

boil

note
boo
k

spic
e

cooker

hood

chopst
ick

blow

nose

socket

kick

cam
era

item

fridg
e

laugh

curtain

look

outside

(a) Behavior words.

put
open

turn

take

wash
close

pour

play

stand

chop
move
situse eat

clean

hold

throw

squeeze cut

type

cook

mop

operate

watch

walk

work

drink

bend

click

peel wip
e

run

fill

rins
e

dry

pick

talk

sprinkle

lie

beat

adjust

serve

scra
pe

fix
yell

cover

tidy

flush

wear

trimpack

organiz
e

sneeze

arrange

plug
boil

blow

kick

laugh

exercise

shave
brushgrab

knock

cou
gh

crack

knead
scroll

(b) Action words.

mop food
bottle

glass

cup
clothes

phone
pot

doo
r

chair

vegetable

hand
closet

cabinet
platedish

water

stove

refrigerator

light

faucet mouse

box
sofa

couch

vacuum

condiment win
dow

garbage

disposa
l

rice
lid

spoon
laptop

egg

bedkeyboard

trash

meat

video
mouth

bea
rd

teet
h nail

blind

draw
er

table
floor

soa
p

tissue

vr

face

knife

someone

spa
tula

microwave

fruit

board
bag

blanket

wrap

gopro

pan

trackpad

glove

hair

towel

toothpaste

toilet

tabl
ewa

re
cable

sink

music

pap
er

trashbin

lipstick

oil

valv
e

dumpli
ng

camera

soc
ket

nose

chopst
ick

curtain

spice

item

fridge

(c) Object words.

Figure 5.10. EgoADL dataset labels word cloud.

activities, whereas the interference is that from the interfering user. As shown in Fig. 5.9, for

both audio and Wi-Fi CSI sensing, the presence of an interfering user will noticeably impact the

egocentric SINR (from 25 dB to 10 dB) only when it is in close proximity (< 2 m) of the target

user or blocking the LoS path between the Tx and Rx for Wi-Fi CSI sensing.

To sum up, compared to conventional device-free setup, egocentric sensing significantly

improves the operating range and anti-interference ability for both Wi-Fi CSI and audio sensor.

Although close-by interferers may still impact the SINR, we anticipate the motion sensor along

with deep modality fusion can neutralize such impacts. Thus, in EgoADL, we do not restrict

the presence of interference–all the data are collected in daily living settings with multiple

coresidents.

We summarize the insights as follows:

i). Sensing Space Coverage: The signal strength of device-free sensing suffers from

severe attenuation, diffraction, and scattering effects and drops dramatically as the user moves

away from the Tx/Rx or behind the wall. In comparison, in the egocentric setup, the sensor hub

accompanies the user, so it achieves whole-home coverage with consistent signal quality for both

audio, Wi-Fi CSI and motion sensor.

ii). Resilience to interference: Wi-Fi CSI and audio suffer from interference since they

can not distinguish the motion from targeted subject. In contrast, the egocentric sensing setup

makes the presence of an interfering user impact significant only when it is in close proximity of

146

• exercise
• beat
• shave

• put
• fill

• pour
• cough

• talk

• wash

• chop

• wash

• scroll
• crack

• cut

• bend
• throw

• click
• lie

• mop

• knock
• play

Audio Wi-Fi

Motion

• eat
• peel • type

• run

• watch

Audio Wi-Fi

Motion

• teeth

• disposal
• scissors

• vacuum

• spoon

• drawer
• water

• door
• mouse

• egg

• trash
• bed

• video
• meat

• phone
• beard
• nail• veg

• table

• face
• window

• floor• blind

• chair
• sofa

(a) Action top-1 mAP.

• exercise
• beat
• shave

• put
• fill

• pour
• cough

• talk

• wash

• chop

• wash

• scroll
• crack

• cut

• bend
• throw

• click
• lie

• mop

• knock
• play

Audio Wi-Fi

Motion

• eat
• peel • type

• run

• watch

Audio Wi-Fi

Motion

• teeth

• disposal
• scissors

• vacuum

• spoon

• drawer
• water

• door
• mouse

• egg

• trash
• bed

• video
• meat

• phone
• beard
• nail• veg

• table

• face
• window

• floor• blind

• chair
• sofa

(b) Object top-1 mAP.

Figure 5.11. Venn diagram visualizes the advantages of each modality. For each action/object
class, if a modality achieves comparable top-1 mAP (within 15%) with the best modality, we
plot this class in the intersection of two circles representing these two modalities. Since the
results are trained on single-modality data, there may be some overfitting in this visualization
(e.g.,Wi-Fi is good at recognizing “mouse” and “egg”).

the target user.

5.4.2 Sensing Modality Selection

There are mainly two reasons why EgoADL combines 3 modalities, i.e., the motion

sensor signals, wireless sensing signals and audio, to sense users’ ADLs.

i). Availability on existing commodity devices: These 3 non-visual sensors are widely

equipped on mobile/wearable devices, including smartphones and smartwatches, which can be

easily repurposed as an egocentric sensor hub to log ADL. In particular, the Wi-Fi CSI can be

collected on such devices [197] but is heavily underutilized as a potential sensing modality.

ii). Complementary advantages of each modality: To understand the complementary

advantages of different modalities, we conduct experiments to recognize the ADL by using each

single modality data and the DNN model proposed in Sec 5.5. We use the balanced dataset with

labels (Sec. 5.3), with a 7 ∶ 1.5 ∶ 1.5 split among training, validation, and testing set. Fig. 5.11

visualizes the action and object categories with > 60% mAP for at least one single modality. We

summarize our insights as follows:

147

• In-pocket motion sensor easily captures ambulatory actions of the leg, e.g., “sitting

in the chair”, “lying on the bed”, etc., but cannot easily capture whole-body motion or object

interaction.

• Wireless sensing signals, i.e., Wi-Fi CSI, can recognize certain full-body motion and

interactions with ambient environment, like “opening the door”, “opening the window”, etc., but

it falls short in discriminating fine-grained activities.

• Audio sensing can easily recognize ADL with unique sound events, like “coughing”,

“operating vacuum”, “brushing teeth”, etc., but can hardly identify those with weak or similar

sounds.

EgoADL aims to approach near-vision sensing resolution by synergizing the complemen-

tary advantages of the non-visual modalities.

5.5 EgoADL Supervised Learning

5.5.1 Problem Formulation

Most of the traditional DNN-based ADL analysis models are designed to perform

classification [60, 202]. The key limitation is that they have to prescribe a known set of ADL,

which falls short of extensibility when new ADL of interest emerge. Besides, such models only

classify the ADL as integer IDs which do not fully utilize the label semantics from the natural

language level [285].

In contrast, we propose a solution that formulates the problem as a sequence-to-sequence

(seq-2-seq) task. Our approach encodes multi-modal sensory features and decodes them as the

label name semantics using a sequence of words, rather than simple classification labels. This

enables us to capture more nuanced and precise information about ADL. Specifically, our goal is

to translate synchronized signals x = {x(a)
,x(c)

,x(m)}, where x(a), x(c), and x(m) correspond to

audio recordings, Wi-Fi CSI, and motion sensor signals, respectively, into semantic labels y for

ADL in the form of a sequence of words.

148

Audio Wi-Fi CSI Motion

Transformer Encoder Transformer Decoder

$! $# $) $+,!

%$# %$) %$- %$+

…

…$! $# $) $+

Ground truth semantic labels,
i.e., ``Sit in the chair’’

Word-level Tokenizer

… !!"#$!"#

Slow Audio
Encoder &./%!

(")
Fast Audio

Encoder &./%"
(")

Fast CSI
Encoder &./%"

(%)
Fast Motion

Encoder &./%"
(&)

Fast Multimodal
Framewise Encoder &./%"#

(&&)

Linear Projection of Flatten Patches

Linear Projection of Flatten Patches
Time

Freq

Audio Spectrogram "(() CSI Spectrogram "(*) Motion Spectrogram "(+)

'2(") '3
(") '3(%) '3

(&) '34
(&&)

Figure 5.12. EgoADL Multi-Modal Frame-Wise Slow-Fast (MMFWSF) transformer design
with modality-specific encoders and a transformer-based seq-2-seq model for translating sensory
feature into natural language.

5.5.2 Input and Output Design

As shown in Fig. 5.12, we first discuss the input feature design.

Audio Recordings: We extract the T-F log mel spectrograms with a sampling rate of

32 kHz, Hamming window size of 31.25 ms, hop size of 10 ms and 64 mel filter banks [122].

Wi-Fi CSI: We first normalize each CSI subcarrier by mean-std normalization, and then

extract the Doppler spectrogram applying STFT on the time-domain sequence of CSI values

across subcarriers. The STFT uses a Hamming window size of 200 ms, a hop size of 10 ms and

FFT size of 128 at 400 Hz sampling rate. The window size is much larger than audio because

the Doppler feature caused by human motion exhibits lower frequency.

Motion Sensor: We utilize the linear acceleration (excluding the effect of gravitational

force) as the raw input data [232], apply mean-std Z-normalization [224, 99], and then extract

the motion sensor spectrogram via STFT on the time domain output of each sensor channel

[232, 272, 273]. Such a preprocessing pipeline, as recommended by existing studies in human

activity recognition using motion sensors [232, 224, 99, 272, 273], not only enriches the time-

frequency domain representation but also helps to reduces the impact of variations in device

orientation. Note that we use the same hop size of 10 ms for all 3 modalities to ensure feature

149

alignment in the time domain. For each modality, the input of the DNN model is a sequence of

frequency spectrogram, x = {x1,x2, ..,xt}, where t is the length of the spectrogram in the time

domain. For each timestamp i, xi = {x
(a)
i ,x

(c)
i ,x

(m)
i } represent the audio log-mel spectrogram,

Wi-Fi CSI Doppler spectrogram, and motion sensor spectrogram, respectively.

EgoADL outputs a natural language text description of the ADL. As shown in Fig. 5.12,

the output can be represented as a sequence of tokens. Unlike conventional ASR which uses the

subword-level or character-level tokenizer corresponding to the phonological units, we adopt a

word-level tokenizer, corresponding to the basic unit in ADL semantics. For example, for the

“chop vegetables” activity, we expect EgoADL to recognize the action “chop” and the object

“vegetables”, and generate a sequence of tokens “chop vegetables”. Our tokenizer dictionary

contains 1,000 frequently-used words for describing ADL from EgoADL dataset labeling (see

the data labeling discussion in Sec. 5.3). Finally, the output sequence is Y = {y1,y2, ...,yl},

where l denotes the number of words in the output text.

5.5.3 MMFWSF Transformer

Design Principles: Next, we introduce our Multi-Modal Frame-Wise Slow-Fast (MM-

FWSF) transformer. Compared to existing methods that fuse traditional modalities such as

audio, video, and text [78], the multi-modal fusion in EgoADL possesses the following unique

properties which we can leverage:

• Audio, Wi-Fi CSI, and motion sensor data all have complementary advantages when it

comes to capturing fast-changing motion [76], including both one-shot event-based ADL such as

”sit down” and ”stand up”, and periodical state-based ADL such as ”walking” and ”clapping”.

• In contrast to Wi-Fi CSI and motion sensor data, which mainly capture fast-changing

motion, audio data has a distinct advantage in capturing continuous scene sounds with specific

frequencies, such as ”operating a vacuum,” ”shaving bread,” and ”brushing teeth”.

• Another essential aspect of our approach is the use of framewise alignment between

multiple modalities. Since no single modality can fully capture all aspects of ADL, there may

150

always exist modality missing for different behaviors. For instance, in Fig. 5.2, the ”Drinking”

behavior is only captured by Wi-Fi CSI. However, the missing modality can provide additional

supervision, helping us determine whether a specific modality can capture a specific behavior

and what the cross-modal cues are at the frame level.

MMFWSF Transformer design: We design our multi-modal fusion and transformer-

based seq-to-seq model to fully utilize the aforementioned insights.

Table 5.2. EgoADL CNN-based encoders parameters (C: Channel).

Slow-
pathway

Fast-
pathway

Fast-pathway
(Framewise)

Modality Audio Audio Acc CSI Audio Acc CSI

Spectrogram
(t, 64)
C:1

(t, 64)
C:1

(t, 64)
C:3

(t, 64)
C:208

(t, 64)
C:1

(t, 64)
C:3

(t, 64)
C:208

Stride (8,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

CNN
3*3,

C:120
3*3,
C:30

3*3,
C:30

3*3,
C:30

3*3,
C:10

3*3,
C:10

3*3,
C:10

Activation BatchNorm2d+LeakyReLU + Dropout(0.1)
Stride (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

CNN
3*3,

C:240
3*3,
C:60

3*3,
C:60

3*3,
C:60

3*3,
C:20

3*3,
C:20

3*3,
C:20

Activation BatchNorm2d+LeakyReLU + Dropout(0.1)
Stride (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

CNN
3*3,

C:480
3*3,

C:120
3*3,

C:120
3*3,

C:120
3*3,
C:40

3*3,
C:40

3*3,
C:40

Concat / / / / Framewise Concat
Concat Modalwise Concat

First, to leverage the complementary advantages of each modality for capturing fast-

changing motion, we design fast pathway CNN-based encoder G
(a)
enc f , G

(c)
enc f and G

(m)
enc f for audio,

Wi-Fi CSI and motion sensor, respectively, to achieve a fine feature representation along the

temporal dimension. The basic idea is to design CNN encoders with a small temporal stride of

τ , resulting in the length of frequency spectrogram t/τ , to guarantee high temporal resolution.

The default value is τ = 4 in our experiments. Tab. 5.2 shows the design of different CNN-

based encoder parameters. To make sure all the representations after encoders can fit into the

transformer, we intentionally enforce the feature representation of a single frame to be the same

151

size. Therefore, the “Slow-pathway” encoders will have more channels than the “Fast-pathway”

encoders while the “Modalwise” encoders will have more channels than “Framewise” encoders.

Our transformer network architecture is based on [234]. It comprises 12 encoder layers and

6 decoder layers. Positional encoding is employed to capture temporal dynamics in sensory

time-series data. Within the multi-head attention mechanism, we have configured 8 heads, and

the dimensionality of the feedforward network is set at 3072 as default. Finally, with the fast

pathway CNN-based encoder, the feature representations of audio (j = a), Wi-Fi CSI (j = c) and

motion sensor (j = m) are

x(j)
f = {x

(j)
1 f ,x

(j)
2 f , ...,x

(j)
t/τ

f } = G
(j)
enc f (x(j)) (5.1)

where x
(j)
i f ∈ RC×F (i = 1 ∼ t/τ), C is the number of channels, and F is the number of fre-

quency bins after fast pathway CNN-based encoder. The input of the transformer is x(mm)
f =

(x(a)
f ,x(c)

f ,x(s)
f).

Second, we design an additional audio slow pathway with a CNN-based encoder G
(a)
encs to

learn the feature representation for continuous scene sounds. Basically, we use a large temporal

stride of ατ , where α > 1 to focus on learning frequency semantics [117]. We set α = 16 as

default. And the feature representation after the audio slow pathway CNN-based encoder is

x(a)
s = {x

(a)
1s ,x

(a)
2s , ...,x

(a)
t

ατ

s} = G
(a)
encs(x(a)) (5.2)

where x
(a)
is ∈ RC×F (i = 1 ∼

t
ατ

).

Third, to learn the feature representation of framewise alignment between multiple

modalities, we propose to further fuse the multi-modal sensory data at the frame level. Note

that to make sure the final input sequence of feature representation can be the input of the

transformer-based seq-2-seq model, we need to make sure that each feature representation is of

the same size. Therefore, we train another 3 fast pathway CNN-based encoders G
(a)
enc f w , G

(c)
enc f w

and G
(m)
enc f w for each modality with C/3 channels, so that the feature representation of each

152

modality x
(j)
i f w ∈R

C
3 ×F , where i = 1 ∼ t/τ . Finally, the feature representation of frame-wise fusion

is

x(mm)
i f w = concat(G(a)

enc f w(x(a)),G(c)
enc f w(x(c)),G(m)

enc f w(x(m)),dim = i) (5.3)

where x
(mm)
i f w ∈ RC×F , and x(mm)

f w = {x
(mm)
1 f w ,x

(mm)
2 f w , ...,x

(mm)
t/τ

f w}.

Note that to make sure all these representations can fit into the transformer, we inten-

tionally enforce the feature representation of a single frame as RC×F . Thus, inspired by vision

transformer [67] and audio spectrogram transformer [84], our MMFWSF transformer model can

concatenate the sequence of x(a)
s ,x(mm)

f ,x(mm)
f w along the temporal dimension and then use the

linear projection of flatten patches along the channel and frequency dimension to fit into the

transformer model as shown in Fig. 5.12. Our transformer model contains 12 encoder layers and

6 decoder layers.

5.5.4 Training Strategy

Training loss design: We use the seq-to-seq loss based on the autoregressive decoder,

where the previous output is fed back into the input, to decode the input sequence to the output

token sequence. In the testing phase, the predicted word label ŷi and the hidden state hi of the

decoder at step i can be updated as ŷi,hi = Decoder(hi−1, ŷi−1,ci), where ci is the context vector

generate by the encoder. In the training phase, we use teacher forcing methods to train the model,

which means ŷi,hi = Decoder(hi−1,yi−1,ci), where yi−1 is the last token of the ground truth label.

The objective is to minimize the corresponding cross entropy loss lseq2seq.

Beam search during testing: In the testing phase, we use beam search, a widely adopted

method in NLP and ASR [236], to search for the top-K candidate sequences. For each step, we

predict the K most promising next tokens, and then feed these K alternatives into the decoder to

select the best K hypothesis at the next step iteratively.

153

5.6 EgoADL Self-supervised Learning

We have conducted experiments on the supervised model (Sec. 5.5) and identified

limitations and potential pathways towards a self-supervised EgoADL model design. We found

that while the supervised model performed well on a balanced labeled dataset, it struggled with

overfitting and lack of generalization and extensibility, especially for infrequent ADL, due to

limited ground truth labels. Scaling up the dataset requires an enormous amount of labeling

effort, especially for non-visual sensors. On the other hand, in contrast to vision-based setups that

require users to wear multiple devices (e.g., head-mounted or chest-mounted cameras [60, 89]),

collecting large-scale unlabeled data is much easier with EgoADL, as it is non-intrusive and only

requires users to carry a smartphone in pocket. We harness this unique advantage through an SSL

model that can improve (i) accuracy, (ii) extensibility for few-shot ADL with limited labels, and

(iii) generalization across different ADL, users, and environments. Our SSL model trains more

generic encoders (see Fig. 5.12) by leveraging intrinsic supervisory signals within unlabeled

data, and by distilling knowledge of human behavioral logic from external audio datasets.

5.6.1 Single-modal Self-Supervised Deep Clustering

We first introduce a self-supervised clustering method to learn the single-modal encoders

from unlabeled data. Inspired by vision-based SSL [48], our deep clustering method takes the

input feature x(j) from a single modality (j) as input. For each epoch, the training procedure

of the deep clustering method follows the steps 1⃝− 4⃝ in Fig. 5.13(a). First, the single-modal

encoder generates the feature representation Genc(j)(x(j)). Second, an unsuperivsed clustering

method is applied to all the feature representations from EgoADL’s unlabeled training data. Then,

we assign pseudo labels, i.e., the cluster index of each resulting cluster, to the corresponding data.

Finally, we append fully-connected layers to the encoders to classify the feature representations

to their corresponding pseudo labels and use the back propagation training algorithm to update

the parameters in the encoders. The trained single-modal feature representations will be used in

154

FC
Layer

𝒙(")

𝒙!/#
(%)

Classification

Clustering

1

Backprop

2

3
Assign
pseudo
labels

4

Single-modal
Encoder 𝐺'()!/#

(%)

(a) Single-modal SSL. EgoADL uses the deep cluster-
ing to assign pseudo labels for unlabeled training data
to train the encoders G(j)

enc f/s , where “j” here represents
to audio, motion sensor or Wi-Fi CSI.

𝑥(") 𝑥($)

CSI or Motion
Encoder 𝐺!"#!

(%)

Assign pseudo
labels

Clustering Clustering

Assign pseudo
labels

ClassificationClassification

(1 − 	𝜃)𝐿''(
%𝜃𝐿''(

%&* +

Backprop Backprop

Frozen Audio
Encoder 𝐺!"#!

(*)

(b) Single-modal deep clustering via cross-modal
self-supervision. EgoADL utilizes the pseudo la-
bels generated by pretrained audio encoder G(a)

enc f ,

to train the encoders G(j)
enc f , where “j” represents

motion sensor or Wi-Fi CSI.

Concat

Clustering

Assign pseudo labels

Classification

Backprop

1

3

24

𝒙!!"
(##)

Audio Encoder
𝐺!"#!"
(%)

CSI Encoder
𝐺!"#!"
(#)

Motion Encoder
𝐺!"#!"
(')

𝒙(%) 𝒙(&) 𝑥(#)

(c) Cross-modal deep clustering. EgoADL
fuses the modalities and learns their corre-
spondence by training the concatenated rep-
resentations of the 3 modalities encoders
(G(a)

enc f w , G(c)
enc f w and G(m)

enc f w)

Figure 5.13. EgoADL SSL methods.

155

our later cross-modal SSL stage.

In our implementation, we use the entire 100-hour unlabeled EgoADL dataset to train the

encoders for each modality separately, i.e.,G(a)
enc f , G(a)

encs , G
(c)
enc f and G

(m)
enc f . We choose K-means

and 3 fully-connected layers with ReLU activation functions as the default clustering and classi-

fication method, respectively. To optimize the number of clusters k for K-means, we conducted

the end-to-end experiments by varying k on a logarithmic scale during the hyperparameter

tuning phase. These experiments, conducted within the context of the EgoADL dataset, which

encompasses 221 distinct ADL, indicate that a k value within the range of 102 to 103 yielded

near-optimal performance. Consequently, we selected k = 200 as our default configuration.

5.6.2 Cross-Modal Self-Supervised Deep Clustering

Second, we also leverage cross-modal self-supervisory to enhance the single-modal deep

clustering. More specifically, we leverage the external audio dataset, i.e., AudioSet [82], a

massive dataset with more than 5,000 hours of labeled audio recordings for 527 event classes

from YouTube videos, to first train generic audio encoders, i.e.,G(a)
enc f and G(a)

encs [122]. Then,

we use the audio pseudo labels from the same frame to train the Wi-Fi CSI G
(c)
enc f and motion

sensor encoders G
(m)
enc f . The use of audio pseudo labels offers several benefits. First, such labels

from the pre-trained audio feature embeddings help prevent the Wi-Fi CSI and motion sensor

models from overfitting to particular user characteristics, such as Wi-Fi transmission locations

and sensor orientations. Second, they harness the broad sensing capabilities of audio, capturing

both the event-based sound and continuous scene sounds for comprehensive supervision (see

Sec. 5.5.3). Lastly, these labels can accelerate the training of deep clustering models for Wi-Fi

CSI and motion sensor data. Fig. 5.13(b) shows the training procedure of this mechanism. L j&a
SSL

represents the loss when we use the audio pseudo labels to classify the Wi-Fi CSI or motion

sensor feature representations. The final loss L jall
SSL = θL j&a

SSL +(1−θ)L j
SSL. Our evaluation results

show that without using the pre-trained audio feature embeddings will result in reduction in both

accuracy and generalization performance (see Sec. 5.8.2).

156

After training the single-modal encoders for each of the 3 modalities, we employ cross-

modal deep clustering to fuse the modalities and learn their correspondence. As shown in

Fig. 5.13(c), we concatenate the representations of the 3 modalities encoders (G(a)
enc f w , G

(c)
enc f w

and G
(m)
enc f w) from the same frame to perform the training of the cross-modal deep clustering.

The training procedure of the cross-modal deep clustering follows the same steps as the single-

modal case as discussed in Sec. 5.6.1. After finishing cross-modal deep clustering training, the

resulting fast multimodal framewise encoder generates the multi-modal feature representation

x(mm)
i f w . In contrast to training single-modal deep clustering and directly concatenating the feature

representations of 3 modalities, cross-modal deep clustering tries to automatically learn the

co-occurring features from different modalities, which helps the DNN model understand the

correspondence from different modalities.

Finally, after the SSL training, we use the cross-modal SSL models to replace the

supervised encoders (see Fig. 5.12). We then use the small labeled EgoADL dataset to train the

entire model end to end.

5.7 Knowledge Distillation from Natural Language Labels

Given that the output of EgoADL materializes in the form of natural language text,

it opens up opportunities for leveraging the inherent semantics of natural language labels to

enhance performance even further. In this section, we embark on two approaches. First, we

introduce a label refinement mechanism aimed at ensuring that the granularity of labels remains

congruent with the capabilities of the sensors. Subsequently, we put forth the idea of utilizing

pre-existing natural language text to cultivate contextual reasoning for sequences of ADLs.

5.7.1 Label Refinement

To understand the limits of non-visual sensors, we compare EgoADL with egocentric

vision-based methods (see Sec. 5.8.4). While most ADL show reasonable accuracy, we observed

that several ADL had significantly lower accuracy. This is because we annotated and labeled the

157

Utensil

Bottle
Cup
Glass
Plate
Fork
Knife
Dish
Spatula
Pot

Food

Food
Rice
Vegetable
Fruit

Put

Put
Throw
Move
Pick up
Hold

Use
Turn on
Open
UseSomewhere

Sofa
Bed
Desk
Floor
Table

Eat
Eat
Use spoon to eat
Use fork to eat

Fill
Pour
Fill

Figure 5.14. Representative label refinement.

EgoADL dataset by manually observing the egocentric video and audio. Nevertheless, as we

discussed in the previous sections, the non-visual sensors (audio, motion sensor, and wireless

sensing) have limited resolution compared to visual sensors, which may have impacted the

labeling accuracy. To better understand the limits of EgoADL, we propose to refine the labeling

by merging ADL that are difficult to distinguish using EgoADL non-visual sensors. Our label

refinement involves three steps: i) ranking ADL based on mean average precision (mAP), ii)

visualizing the confusion matrix of ADL with less than ε , and iii) merging actions or objects in

ADL based on both the confusion matrix and our knowledge. We have empirically set ε to 30%,

predicated on the observation that EgoADL’s overall system mAP is approximately 60%, and

its discriminative power is significantly reduced for ADL with an mAP below 30%—a scenario

applicable to roughly 30/105 of the ADL. We summarize the representative label refinements

in Fig. 5.14. The refined labels consist of 75 frequently-used ADL, 38 object interactions, 41

actions, 29 state-based ADL, and 46 event-based ADL (see Fig. 5.17). When employing these

labels to assess the performance of EgoADL, the achieved results notably surpass those attained

from labels derived from egocentric video and audio sources. This disparity is attributed to the

fact that the former set of labels encapsulates the intrinsic capacities of the sensors. Note that

our current method requires to refine the labels manually. To further understand the boundary

of EgoADL, we need to design an automatic label refinement solution for each modality and

multimodal fusion, as well as fine-tuning the hyperparameter ε . This will be left as our future

work.

158

faucet

BERT Masked Language Model

turn on , [mask] [mask] , turn off faucet

faucetturn on , , turn off faucet

Input

Output
wash hand, wash face, …

Figure 5.15. BERT-based EgoLM design, which learn the contextual information.

5.7.2 Distilling Contextual Information from Text

The above models only process the short segments of sensor data for single human

behavior (with each segment varying in length but not exceeding 10 seconds, as detailed in Sec.

5.3). Longer segments of input may provide contextual information to boost the performance.

But it will dramatically increase model complexity, and lead to severe overfitting due to the

limited multi-modal dataset. In EgoADL, we harness existing natural language text to learn the

contextual reasoning instead.

Inspired by the language model in NLP [64], our idea is to learn a “contextual language

model” for ADL, referred to as EgoLM. Unlike traditional NLP which calculates the probability

distribution over sequences of words, EgoLM outputs the probability of a given sequence of

ADL via natural language text. As shown in Fig. 5.15, EgoLM is fine tuned from the celebrated

Bidirectional Encoder Representations from Transformers (BERT), a transformer-based NLP

model pre-trained by Google [64]. In the training phase, EgoLM takes the text description of

a sequence of 30 s ADL as input, and uses a comma to mark the end of the last ADL. During

the training phase of EgoLM, we experimented with various masking strategies, including

masking a word-level token or an entire ADL, and then we utilize the contextual information

from surrounding ADLs to predict the masked elements. Unlike the traditional BERT approach

of word-level masking, we choose to mask an entire ADL (as shown in Fig. 5.15), the strategy

that resulted in the most optimal performance (see Sec. 5.8.5).

To make EgoLM more general, we collect the training text corpus from not only the

159

EgoADL dataset but also existing video-based domestic ADL datasets, including Charades [203],

CharadesEgo [201], EPIC-KITCHENS [60] and EGTEA-GAZE [137]. We extract the text

corresponding to the sequence of ADL within a 30 s period from these datasets, which typically

contains 3 ∼ 8 ADL. Note that most of the datasets segment the ADL in 10 s units. However, the

state-based ADL (see Sec. 5.3) typically last for more than 10 s, and the same ADL labels may

appear consecutively. We thus merge these ADL to prevent replication of state-based ADL in

the sequence. Overall, our EgoLM text corpus has 3,000 and 34,000 sequences of ADL from

EgoADL dataset and 4 external datasets. We first use the whole EgoLM text corpus to train the

original BERT model [64], and then fine tune it with the EgoADL dataset.

EgoLM can be applied to any EgoADL models, that we discussed previously, in the

testing phase. We first use EgoADL model to generate the potential prediction of each single

ADL via beam search, and save the score of the loss function from the EgoADL DNN model.

And then, we apply a second round of beam search to combine the EgoADL loss with the

language model loss lall = γlEgoADL + (1− γ)lEgoLM, where lEgoADL learns the information from

the raw data in the current segment, and lEgoLM learns the contextual information in a long period

(30 s) before current segment. Finally, we select the ADL with the lowest score of lall to output

the top-K prediction.

5.8 Implementation and Experimental Evaluation

5.8.1 EgoADL Implementation and Evaluation Metrics

DNN Implementation: The EgoADL DNN model is implemented in PyTorch. For

training, the self-supervised feature embedding DNN models for 3 modalities are first trained

separately using single-modal SSL and then jointly using cross-modal SSL, as discussed in Sec

5.6. Next, we freeze these models and train the end-to-end seq2seq model as discussed in Sec.

5.12. We use the Adam optimizer with a 1e−4 initial learning rate followed by annealing. The

current EgoADL implementation has 421.6 M parameters in total.

160

Evaluation Metrics: We evaluate EgoADL using classwise mAP metrics and captioning

metrics which are adopted in egocentric video-based ADL recognition and captioning [61]. We

measure the mAP for the aforementioned “action” and “object” categories, along with “state-

based ADL” and “event-based ADL” (Sec. 5.3), and an “overall ADL” (aka. “ADL”) which is the

superset of the 4 categories. Our EgoADL dataset contains 35 state-based and 186 event-based

ADL classes, the former typically have more labeled data samples because state-based ADL last

longer. We use two captioning metrics to measure the similarity between predicted and reference

captions [59], i.e., BLEU and SPICE, which are based on n-gram overlapping and scene graph

similarity, respectively.

5.8.2 Micro Benchmark Analysis of EgoADL Supervised Learning
Model

We conduct an ablation study to compare the EgoADL design across different modality

fusions. As shown in Tab. 5.3, we evaluate EgoADL in 7 settings by using a single modality and

combining multiple modalities by using supervised learning models. 5 different methods are

evaluated: (i) “Fast-only” for single modality, (ii) “Modalwise” where the multi-modal features

are fused along the modality dimension (iii) “Framewise” where the multi-modal features are

fused along the frame dimension, (iv) “MMFW” where the multi-modal features are fused

along both modality and frame dimensions without audio slow pathway (see Sec. 5.5.3), (v)

“MMFWSF” represents to “MMFW” with audio slow pathway (Sec. 5.5.3). For a fair comparison,

all the methods are trained using a balanced dataset with 2,500 labeled samples. We employed

an 8 ∶ 2 split between training and validation with 5-fold cross validation. For testing, we use

the remaining unbalanced 2,800 samples. It is important to note that this unbalanced testing set

does not skew our final results, as all outcomes are reported on a classwise basis (average acorss

different ADL). The distribution of samples from all 10 users is balanced across the training,

validation, and testing sets.

Performance gain due to multiple modalities: As shown in Tab. 5.3, “Audio” is the

161

most informative modality among these three modalities. Compared to audio-only solution,

the multi-modal fusion achieves an overall 13.5% and 16.6% improvement for top-1 and top-5

overall ADL mAP, respectively. Fig. 5.18 demonstrates the performance gain introduced by the

EgoADL multi-modal fusion design. With the motion sensor located at users’ trouser pocket,

EgoADL is able to recognize more actions and objects related to lower body, including “Sit in a

chair”, “Bend down”, “Mop the floor”, etc. Wi-Fi CSI further characterizes the full-body motions

with large environment changes. ADL, like “Open/close the door”, “Open/close the window”,

etc., are easily recognized through EgoADL’s multi-modal fusion. Besides, we also find that,

compared to the “Audio” which is effective in identifying event-based ADL, both “Motion” and

“Wi-Fi” have advantages in recognizing state-based ADL, which may involve periodic motions.

As shown in Fig. 5.18, the multi-modal fusion only incurs slightly lower accuracy for few ADL,

like “Dry hand”, “Grab tissue”, etc.

Performance gain due to MMFWSF fusion design: As shown in Tab. 5.3, compared

to traditional modalwise/ framewise fusion algorithms, our MMFWSF fusion achieves better

performance for all kinds of ADL. By utilizing the complementary modalities of different

modalities, EgoADL further pushes the limits to achieve 55.3% and 78.1% top-1 and top-5

overall ADL mAP. Further, the 95% confidence intervals for the mAP across all categories are

within ±2.5%, indicating the consistent performance of EgoADL.

5.8.3 Accuracy, Generalization and Extensibility of EgoADL SSL Model

In this section, we evaluate the EgoADL models using various SSL training methods (Sec.

5.6), focusing on improvements in accuracy, generalization, and extensibility. The EgoADL

models are trained by 3 different training approaches: i).“W/o” for without SSL, ii).“SM” for

single-modal SSL (Sec. 5.6.1), iii). “CM” for cross-modal SSL (Sec. 5.6.2). Initially, models

are pretrained using 100 hours of unlabeled data from 20 additional subjects. This is followed by

fine-tuning the models using a balanced dataset comprising 2,500 samples for training, and an

unbalanced dataset with 2,800 samples for testing, with the same 5-fold cross validation setup

162

Ta
bl

e
5.

3.
Eg

oA
D

L
m

ic
ro

be
nc

hm
ar

k.
W

e
be

nc
hm

ar
k

5
ca

te
go

ri
es

of
A

D
Ls

.“
A

D
L”

,“
A”

,“
O

”,
“S

”,
“E

”
re

pr
es

en
tt

o
“O

ve
ra

ll
A

D
L”

,
“A

ct
io

n”
,“

O
bj

ec
t”

,“
St

at
e”

an
d

“E
ve

nt
”,

re
sp

ec
tiv

el
y

(s
ee

Se
c.

5.
3)

.“
R

efi
ne

”
re

pr
es

en
ts

th
e

ca
se

w
he

re
th

e
no

n-
am

bi
gu

ou
s

la
be

ls
fo

r
no

n-
vi

su
al

se
ns

or
s,

as
di

sc
us

se
d

in
Se

c.
5.

8.
4.

T
he

nu
m

be
rb

el
ow

th
e

m
A

P
re

su
lt

is
th

e
95

%
co

nfi
de

nc
e

in
te

rv
al

fo
rt

he
m

A
P.

M
od

al
M

et
ho

ds
To

p-
1

m
A

P
(%

)
To

p-
5

m
A

P
C

ap
tio

ni
ng

A
D

L
A

O
S

E
A

D
L

A
O

S
E

B
L

E
U

SP
IC

E
A

ud
io

Fa
st

-o
nl

y
44

.1
56

.0
54

.3
71

.3
31

.7
62

.6
75

.3
67

.1
82

.4
53

.5
0.

42
0.

40
W

i-
Fi

Fa
st

-o
nl

y
25

.9
37

.0
36

.1
49

.7
15

.0
51

.6
71

.9
57

.8
80

.4
38

.3
0.

29
0.

28
M

ot
io

n
Fa

st
-o

nl
y

23
.0

32
.8

30
.0

41
.6

14
.5

44
.5

53
.9

51
.2

61
.6

36
.6

0.
28

0.
23

A
ud

io
+ M

ot
io

n

M
od

al
w

is
e

50
.7

61
.1

61
.0

73
.0

40
.5

67
.2

80
.8

81
.7

90
.5

56
.5

0.
48

0.
46

Fr
am

ew
is

e
46

.4
59

.1
55

.8
71

.7
34

.8
67

.1
79

.2
77

.1
87

.0
57

.9
0.

46
0.

44
M

M
FW

51
.5

63
.8

61
.9

73
.8

41
.3

67
.4

80
.7

78
.3

89
.4

57
.3

0.
48

0.
45

M
M

FW
SF

52
.1

64
.0

62
.0

75
.0

41
.6

67
.8

81
.7

78
.5

90
.2

57
.5

0.
49

0.
45

A
ud

io
+ W

i-
Fi

M
od

al
w

is
e

47
.4

58
.5

59
.2

71
.3

36
.4

67
.8

78
.5

81
.3

90
.5

57
.3

0.
46

0.
43

Fr
am

ew
is

e
47

.9
57

.8
56

.3
72

.8
36

.5
64

.0
74

.5
78

.6
86

.5
53

.7
0.

44
0.

43
M

M
FW

48
.6

62
.6

62
.9

73
.1

37
.4

70
.1

82
.3

81
.6

90
.2

60
.8

0.
49

0.
46

M
M

FW
SF

49
.2

62
.9

63
.5

74
.5

37
.5

71
.0

82
.5

81
.9

90
.5

62
.1

0.
49

0.
46

W
i-

Fi
+ M

ot
io

n

M
od

al
w

is
e

40
.2

51
.9

46
.9

66
.2

28
.2

64
.4

78
.1

72
.1

84
.2

55
.2

0.
43

0.
41

Fr
am

ew
is

e
41

.1
50

.6
46

.9
66

.8
29

.3
64

.6
78

.9
72

.6
84

.5
55

.5
0.

43
0.

41
M

M
FW

41
.3

53
.1

48
.0

66
.8

29
.5

65
.0

78
.2

73
.1

83
.9

56
.1

0.
43

0.
41

A
ud

io
+

M
ot

io
n+

W
i-

Fi

M
od

al
w

is
e

51
.5

63
.4

62
.7

73
.8

41
.2

76
.1

85
.2

86
.9

90
.8

68
.3

0.
52

0.
51

Fr
am

ew
is

e
53

.8
66

.7
64

.1
76

.7
43

.2
74

.7
86

.5
87

.1
90

.6
67

.4
0.

53
0.

52

M
M

FW
54

.6
±

2.
1

67
.6

±
1.

8
66

.2
±

1.
7

76
.0

±
1.

5
44

.8
±

2.
8

76
.6

±
1.

9
86

.6
±

1.
2

88
.0

±
1.

5
90

.7
±

1.
2

70
.1

±
2.

5
0.

54
±

0.
02

0.
52

±
0.

02

M
M

FW
SF

55
.3

±
2.

0
68

.1
±

1.
5

65
.8

±
1.

9
77

.0
±

1.
3

45
.3

±
2.

4
78

.1
±

1.
2

87
.8

±
0.

9
88

.4
±

1.
1

92
.5

±
1.

0
71

.5
±

1.
4

0.
56

±
0.

02
0.

52
±

0.
01

R
efi

ne
68

.2
±

1.
5

70
.4

±
1.

6
72

.2
±

1.
4

83
.2

±
0.

8
55

.9
±

2.
0

87
.3

±
1.

3
90

.1
±

1.
9

92
.3

±
1.

4
94

.8
±

1.
0

82
.7

±
2.

2
0.

65
±

0.
01

0.
63

±
0.

01

163

25 50 75 100
 mAP (%)

chop fruit

clean

wash rice

type on phone

wash face

talk to someone

beat egg

knead food

use scissors

mop floor

exercise

cut nail

play with phone

run

type on keyboard

watch video on phone

shave beard

wash food

fill water

wipe clean

play vr

brush teeth

use spoon eat

chop meat

operate vacuum

wash hand

chop vegetable

peel vegetable

cook

work play on laptop

eat

wash dish

walk

Top-1 mAP
Top-5 mAP

(a) State-based human behaviors

25 50 75 100
 mAP (%)

turn off faucet
sit in chair

turn on faucet
open bottle

open closet cabinet
move plate

turn off light
stand up from chair

open refrigerator
open door

bend down
close refrigerator

close door
pour water

hold cup glass bottle of something
close closet cabinet

turn on light
open blind

put pot
open lid

stand up from sofa couch
take cup glass bottle from

throw trash
put food

turn on garbage disposal
put on lid

cough
pick up dish pot

Top-1 mAP
Top-5 mAP

25 50 75 100
 mAP (%)

put pot on stove
pick up dish pot

cough
put on lid

turn on garbage disposal
put food

throw trash
take cup glass bottle from
stand up from sofa couch

open lid
put pot

open blind
turn on light

close closet cabinet
hold cup glass bottle of something

pour water
close door

close refrigerator
bend down
open door

open refrigerator
stand up from chair

turn off light
move plate

open closet cabinet
open bottle

turn on faucet
sit in chair

turn off faucet

Top-1 mAP
Top-5 mAP

(b) Event-based human behaviors

Figure 5.16. EgoADL classwise mAP

164

25 50 75 100
 mAP (%)

fill something

wash utensil

type on phone

wash face

talk to someone

beat egg

knead food

use scissors

mop floor

exercise

cut nail

play with phone

run

type on keyboard

watch video on phone

shave beard

wash food

wipe clean

play vr

brush teeth

chop meat

operate vacuum

wash hand

chop vegetable

peel vegetable

cook

work play on laptop

eat

walk

Top-1 mAP
Top-5 mAP

(a) State-based human behaviors

25 50 75 100
 mAP (%)

crack egg

dry hand

pour rice

take off clothes

open close box

rinse mouth

open close window

pour food

pour condiment

grab tissue

squeeze bottle

put on clothes

drink

scroll mouse

move click mouse

knock door

Top-1 mAP
Top-5 mAP

25 50 75 100
 mAP (%)

move chair

open close bottle

put pot on stove

cough

put on lid

open lid

use garbage disposal

throw trash

open blind

pour water

open close door

open close refrigerator

bend down

stand up from somewhere

put utensil somewhere

sit down somewhere

use faucet

Top-1 mAP
Top-5 mAP

(b) Event-based human behaviors

Figure 5.17. EgoADL classwise mAP with label refinement

165

Audio
Audio+
Motion

Audio+
Motion+
Wi-Fi

• shave
• brush

• exercise
• operate
• run

• knock

• chop

• peel

• squeeze

• dry
• work

• sit

• stand• bend
• mop

• move • eat

• fill
• open

• wipe

• click

• turn
• walk• grab

• take
• put

• pick

• throw

• faucet

• light

• stove• teeth
• vacuum

• phone • vr• bread
• nail • veg

• door
• face

• window
• table

• meat
• sofa

• rice
• tissue

• clothes
• floor

• chair
• window

• blind • egg

• glass• cup
• lid

• fruit • closet• food

Audio+
Motion+
Wi-Fi

Audio+
Motion

Audio

(a) Actions.

Audio
Audio+
Motion

Audio+
Motion+
Wi-Fi

• shave
• brush

• exercise
• operate
• run

• knock

• chop

• peel

• squeeze

• dry
• work

• sit

• stand• bend
• mop

• move • eat

• fill
• open

• wipe

• click

• turn
• walk• grab

• take
• put

• pick

• throw

• faucet

• light

• stove• teeth
• vacuum

• phone • vr• bread
• nail • veg

• door
• face

• window
• table

• meat
• sofa

• rice
• tissue

• clothes
• floor

• chair
• window

• blind • egg

• glass• cup
• lid

• fruit • closet• food

Audio+
Motion+
Wi-Fi

Audio+
Motion

Audio

(b) Objects.

Figure 5.18. Venn diagram visualizes the advantages and limitations of EgoADL multi-modal
fusion. Actions/ objects with > 80% top-1 mAP are in the circle for different modality fusions.

described in the previous section.

Accuracy gain due to SSL: Table 5.6 shows that leveraging SSL into EgoADL yields

a marginal Top-1 mAP enhancement across various ADL categories when compared to the

non-SSL EgoADL models. Notably, the adoption of cross-modal SSL (Sec. 5.6.2) allows

EgoADL to capitalize on audio pseudo labels derived from pre-trained audio feature embeddings,

culminating in a further 2.9% mAP increment for the overall ADL.

Generalization gain due to SSL: For generalization evaluation, the models are trained

and tested using a leave-one-out cross-validation approach, to evaluate on unseen users (UU)

and unseen environments (UE). Table 5.5 shows the top-1 mAP. The baseline model shows poor

generalization, with 35.3%, 27.7% top-1 “ADL” mAP and large 95% confidence interval for UU

and UU+UE respectively. In contrast, with the “Cross-modal SSL” design, EgoADL achieves

47.7% and 47.1% in the same metrics with a smaller 95% confidence interval. Additionally,

when we fine-tune the EgoADL model with 200 labeled samples for a specific user (“Personalized

fine tuning” in Tab. 5.5), the model reaches 77.1% and 91.5% top-1 mAP for “ADL” and “state”

respectively.

Extensibility gain due to SSL: For extensibility assessment, we focus on 116 event-

based “tail” ADL, which refers to the ADL with less than 15 data samples in our labeled dataset.

166

Table 5.4. Accuracy of EgoADL SSL. “W/o”, “SM” , “CM” represent to “W/o SSL”, “Single-
modal SSL”, “Cross-modal SSL”, respectively. “ADL”, “A”, “O”, “S”, “E” represent to “Overall
ADL”, “Action”, “Object”, “State” and “Event”, respectively. The number below the mAP result
is the 95% confidence interval for the mAP.

Top-1 (%) Top-5 (%)
ADL A O S E ADL A O S E

W/o
55.3
± 2.0

68.1
± 1.5

65.8
± 1.9

77.0
± 1.3

45.3
± 2.4

78.1
± 1.2

87.8
± 0.9

88.4
± 1.1

92.5
± 1.0

71.5
± 1.4

SM
56.3
± 1.3

67.5
± 1.0

66.9
± 1.2

77.5
± 0.9

46.6
± 1.6

78.5
± 0.8

87.1
± 1.0

89.5
± 1.3

93.0
± 0.7

71.8
± 1.3

CM
59.2
± 1.0

68.5
± 1.2

68.9
± 1.4

79.5
± 0.8

49.8
± 1.1

79.8
± 1.0

87.6
± 1.1

90.6
± 1.2

92.8
± 0.6

73.8
± 1.3

Training and validation utilize a balanced set of 2,500 labeled samples, supplemented by 1,000

“tail” ADL samples. In total, 3,500 out of 7,000 labeled samples form the training set while the

remaining 3,500 unbalanced labeled samples form the test set. As shown in Tab. 5.6, our SSL

approach yields substantial increases in mAP for these “tail” classes: 39.8% top-1 and 62.3%

top-5. Further fine-tuning with an additional 3 samples per “tail” class significantly boosts these

metrics to 60.2% top-1 and 74.1% top-5.

5.8.4 Evaluating the Limits of Non-Visual Sensors

To understand the limits of non-visual sensors, we compare EgoADL with egocentric

vision-based methods. We reimplemented the SOTA methods, i.e.,Ego-exo [135], on two

egocentric vision datasets, i.e.,Charades-Ego [201] and GTEA-GAZE [157]. The ADL sets

differ across datasets. For a fair comparison, we only consider the classes which have the same

labels in both the egocentric vision and EgoADL datasets (see detailed ADL sets in Fig. 5.19).

For EgoADL, we use the model trained in the previous section. For Ego-exo [135], we employed

models fine-tuned with the Charades-Ego [201] and GTEA-GAZE [157] datasets. The models

are evaluated not only on the egocentric video dataset but also on the egocentric video data from

the EgoADL dataset, which is originally used for labeling. For a fair comparison, all evaluations

are conducted in the ”UU + UE” scenario.

167

Table 5.5. Generalization of EgoADL SSL. “UU” and “UE” represent to “Unseen user” and
“Unseen environment”. “W/o”, “SM” , “CM” represent to “W/o SSL”, “Single-modal SSL”,
“Cross-modal SSL”, respectively. “P” represents to “Personalized fine tuning”. “ADL”, “A”, “O”,
“S”, “E” represent to “Overall ADL”, “Action”, “Object”, “State” and “Event”, respectively. The
number below the mAP result are the 95% confidence interval for the mAP.

UU (Top-1 mAP %) UU + UE (Top-1 mAP %)
ADL A O S E ADL A O S E

W/o
35.3
± 6.3

46.3
± 5.5

36.6
± 6.9

48.5
± 3.3

29.3
± 7.4

27.7
± 6.6

36.6
± 5.8

34.5
± 7.0

41.3
± 4.1

21.5
± 8.0

SM
41.9
± 4.1

52.6
± 3.7

54.5
± 4.0

60.3
± 2.8

33.4
± 4.8

42.8
± 4.4

48.5
± 3.4

52.1
± 4.0

65.5
± 3.5

32.2
± 5.0

CM
47.7
± 3.5

56.1
± 3.3

62.5
± 4.0

69.7
± 2.9

37.6
± 4.5

47.1
± 3.8

55.8
± 3.2

60.9
± 3.9

68.5
± 2.0

37.2
± 4.0

P
77.3
± 2.3

88.2
± 2.1

87.3
± 1.8

93.0
± 1.3

70.1
± 2.7

77.1
± 2.5

87.9
± 2.0

87.5
± 2.4

91.5
± 1.9

70.5
± 3.0

Table 5.6. Extensibility of EgoADL SSL. “W/o”, “SM” , “CM” represent to “W/o SSL”, “Single-
modal SSL”, “Cross-modal SSL”, respectively. “P” represents to “Personalized fine tuning”.
“E”, “A”, “O” represent to “Event”, “Action”, “Object”.

Tail Classes
Top-1 (%) Top-5 (%)

E A O E A O
W/o 22.8 38.5 41.2 43.2 50.2 53.5
SM 35.6 51.9 55.0 58.2 62.3 65.5
CM 39.8 53.5 58.3 62.3 70.9 72.3
P 60.2 69.3 71.2 74.1 80.2 83.1

Tab. 5.7 shows the results compared with egocentric vision. We found that testing on

the egocentric vision data collected by ourselves (see “EgoADL vision” in Tab. 5.7) has much

worse performance than testing on existing egocentric vision datasets. This is because that

egocentric vision datasets require the users to adjust the camera FoV or use specialized cameras

with a larger FoV to capture the subject hand and interaction objects. In contrast, our collected

egocentric vision data will only be used by data labeling. Therefore, we use a commodity camera

with limited FoV. Part of our egocentric vision data is not able to capture the hand motion and

168

Table 5.7. Comparison between EgoADL and egocentric vision. “ADL”, “A”, “O”, “S”, “E”
represent to “Overall ADL”, “Action”, “Object”, “State” and “Event”, respectively. “EgoADL
vision” means that we evaluate egocentric vision models using the testing video data collected
by ourselves, which is originally used for labeling.

of
ADL

Top-1 mAP (%)
ADL A O S E

EgoADL v.s.
Charades-Ego v.s.
EgoADL vision

40 (105)
40 (157)
40 (105)

48.8
39.9
31.1

56.3
41.2
40.5

57.5
34.5
31.3

46.4
25.0
21.1

50.4
46.3
35.3

EgoADL v.s.
EGTEA-GAZE v.s.

EgoADL vision

40 (105)
40 (106)
40 (105)

47.3
46.9
40.0

54.8
57.9
42.6

50.0
56.4
41.8

65.3
67.3
40.3

48.3
42.2
39.8

interaction object of the subject. This does not affect the data labeling as users can remember

what they are doing and label the ADLs based on their memory. However, directly using such

data will unfairly degrade the performance of other datasets. We also evaluate egocentric vision

using their dataset and comprare the results with EgoADL. We found that EgoADL achieves

comparable performance with vision-based methods for the overlapped classes between the

egocentric vision datasets and the EgoADL datasets. The performance of both highly depends

on the label type and granularity (Tab. 5.7), because they both have unique advantages and

limitations, which we summarize as follows:

Adv: EgoADL shows remarkable advantages in recognizing state-based ADL with unique

motion patterns or sound events. It achieves a top-1 ”state” mAP improvement of 21.4% over

Charades-Ego [201], as most state-based ADL cannot be entirely captured by egocentric vision

with limited field of view.

Limit1: EgoADL is limited in recognizing ambiguous actions, i.e.,, actions that are similar

to non-visual sensors but can be described by natural language in different ways. For example,

human actions, i.e.,“grab”, “put”, “take”, “hold”, “pick”, “throw”, all involve humans using their

hands to fetch something. Our classwise detailed experiments in Fig. 5.18(a) and Fig. 5.16 show

that EgoADL can only achieve < 30% mAP on average to distinguish these few actions. Further

169

(a) Overlapping between EgoADL and Charades-
Ego [201]

(b) Overlapping between EgoADL and EGTEA-
GAZE [157]

Figure 5.19. Overlapped ADL labels between EgoADL and egocentric vision

such actions are not only hard to recognize for non-visual sensors, but also for vision-based

methods without detailed contextual information [157].

Limit2: Without vision information, EgoADL is limited to recognize detailed objects.

Although audio can capture the specific sound of human-object interaction to distinguish different

objects, without vision information, non-visual sensors can only recognize the object with coarse

granularity. For instance, when subjects are chopping something in the kitchen, the vision-

based methods will be able to recognize the detailed type of objects, like “carrot”, “potato”,

“watermelon”, “beef”, etc. However, EgoADL can only recognize the “chop” action but not the

type of objects. In EgoADL, we do not label the objects with such granularity. Thus, in Tab. 5.7,

EgoADL even achieves higher performance for “object” mAP as it can recognize many objects

outside camera FoV.

5.8.5 Evaluation on Knowledge Distillation from Natural Language

Label refinement for non-visual sensors: We follow the steps discussed in Sec.

5.7.1. The refined labels consist of 75 frequently-used ADL, 38 object interactions, 41 actions,

29 state-based ADL, and 46 event-based ADL. As shown in Tab. 5.3 and Fig. 5.17, with the label

170

Ta
bl

e
5.

8.
Pe

rf
or

m
an

ce
ga

in
du

e
to

E
go

L
M

.“
A

D
L”

,“
A

”,
“O

”,
“S

”,
“E

”
re

pr
es

en
tt

o
“O

ve
ra

ll
A

D
L”

,“
A

ct
io

n”
,“

O
bj

ec
t”

,“
St

at
e”

an
d

“E
ve

nt
”,

re
sp

ec
tiv

el
y.

M
et

ho
ds

To
p-

1
m

A
P

(%
)

To
p-

5
m

A
P

(%
)

A
D

L
A

O
S

E
A

D
L

A
O

S
E

E
go

A
D

L
w

/o
L

M
68

.2
70

.4
72

.2
83

.2
55

.9
87

.3
90

.1
92

.3
94

.8
82

.7
E

go
A

D
L

w
/L

M
,W

or
d

M
as

ki
ng

69
.9

70
.4

72
.2

83
.8

59
.6

88
.5

90
.9

92
.9

94
.6

83
.2

E
go

A
D

L
w

/L
M

,A
D

L
M

as
ki

ng
72

.5
75

.3
76

.5
85

.9
65

.8
90

.8
92

.1
93

.4
94

.5
83

.9

171

refinement, EgoADL achieves an overall mAP of 68.2%, with 83.2% and 55.9% for state-based

and event-based ADL, respectively. This is significantly higher than the labels obtained from

egocentric video and audio.

Performance gain due to EgoLM: To evaluate the performance gain due to EgoLM, we

need to use continuous testing samples in the time domain since EgoLM takes the prediction

text of EgoADL in a long period (30 s) as the input to learn the contextual information. So

we use 24 continuous recordings, each lasting 5-min, as the EgoLM testing dataset (2 hours in

total). Tab. 5.8 summarizes the results. We evaluate the EgoLM with two different masking

strategies, masking i). a word-level token, and ii). an entire ADL. Tab. 5.8 indicates that masking

an entire ADL led to a notably improved performance compared to merely masking word-level

tokens. This outcome suggests that masking complete ADL is more effective in enabling the

EgoLM model to grasp the contextual relationships integral to ADL. EgoLM gains an additional

4.3% (from 68.2% to 72.5%) top-1 overall ADL mAP for EgoADL, matching the intuition that

EgoLM can better understand the contextual information when the original model performance

is sufficiently high. Besides, EgoLM is proficient in enhancing the mAP of event-based ADL

which tend to have more contextual information.

5.8.6 Energy Consumption

In this section, we evaluate the energy consumption associated with the sensing capabili-

ties of EgoADL, while a detailed discussion on computational resource consumption is provided

in Sec. 5.9. We conduct a preliminary profiling of the EgoADL sensor data capturing app by

using Android’s native battery usage measurement. During the measurement, EgoADL collects

the audio recordings, Wi-Fi CSI and motion sensor signals in the background with the display

off. We found that EgoADL only consumes less than 60 mAh per hour on a Nexus 5 smartphone.

That means EgoADL can work on a Nexus 5 with 2300 mAh battery for about 7.6 days if it

continuously records the multi-modal sensing data for 5 hours a day. All the 3 sensor modalities

are significantly more energy efficient than a camera (more than 600 mAh per hour) [185],

172

making it a promising potential in practical scenarios.

5.9 Discussion and Limitations

Privacy consideration: EgoADL requires capturing the egocentric audio signals,

which may inadvertently include users’ daily conversations. However, thanks to the EgoADL

DNN design, we can separate the audio branch from the whole model, and calculate the audio

feature embedding on-device without uploading raw audio data to the edge/ cloud devices to

protect users’ privacy. To this end, we can employ the model designed to be deployed on

smartphones or edge device [196] as the basic feature embedding network. Another potential

solution is to selectively anonymize or mask the speech data [182] from audio recording. These

privacy enhancement mechanisms are left for our future exploration.

Generalization of EgoADL dataset: Due to the availability of Wi-Fi sensing, one of

the limitations of EgoADL is that the dataset is only collected by a single type of commodity

smartphone (i.e., Nexus 5). However, it will not significantly affect the generalizability of the

dataset because of the following reasons: i). There is no limitation imposed on the placement of

Wi-Fi AP nor on the manner in which users carry the smartphones in their trouser pockets when

collecting the data. Therefore, this leads to greater variability in the data than the type of device

used, owing to the variability in Wi-Fi AP locations, which can vary by several meters, and the

differences in smartphone Wi-Fi antenna positions, which can vary by several centimeters. ii).

We focus on the Wi-Fi CSI Doppler shift induced by human motion and environment factors.

Given that the Wi-Fi signal’s wavelength at a frequency of 5 GHz is approximately 6 cm, the

resultant Doppler shift predominantly reflects motions with displacements on the order of tens

of centimeters. Therefore, such features are not significantly influenced by variations between

different smartphone models. Another limitation of EgoADL dataset is the demographics of

participants (see Sec. 3.8.1). We hope that, by open-sourcing EgoADL, we can encourage a

broader spectrum of participants and researchers to contribute to the EgoADL data collection,

173

thereby enhancing the demographic diversity of our dataset.

Potential Missing Data: Generally, smartphones are capable of continuously capturing

both audio and motion sensor data with minimal data loss. However, due to packet losses, the

receiving packet rate of Wi-Fi CSI tends to be lower, especially when there is significant distance

between the subject and Wi-Fi AP. In our data collection within apartments up to 2000 ft2, and

where the distance between the Wi-Fi AP and the smartphone is impeded by fewer than two

solid walls, we observed negligible loss of Wi-Fi packets. Conversely, in scenarios where the

distance exceeds 15 meters or involves more than three solid walls, we noted a notable decrease

in packet reception, resulting in a lower packet rate for Wi-Fi CSI. To ensure the data quality,

we ensured a minimum packet reception rate of 200 packets per second on smartphones during

data collection, corresponding to a 50 Hz Doppler shift akin to daily human motion maximum

speed (about 3 m/s). In practical scenarios, if reception rates drop below this threshold, we can

alternatively use EgoADL models that operate without Wi-Fi CSI data requirement.

System resource consumption of EgoADL: EgoADL focuses on improve the perfor-

mance of ADL sensing performance, rather than optimizing the system resource usage. Currently,

the computational resource requirement is relatively high. We notice that most of the parameters

(275.5 M) are contributed by the self-supervised feature embedding VGG-like DNN models

(Sec. 5.6). We plan to replace them using more efficient DNN models, like MobileNet [196],

without losing significant accuracy. Further, a full-fledged implementation of EgoADL needs to

carefully split the on-device vs. in-cloud processing, and strikes a balance between computation

and communication energy cost. This is left for our future work.

Applicability for EgoADL device: Currently, smartphones serve as the device for

EgoADL, primarily chosen for their availability to capture Wi-Fi CSI. However, it is noted

that smartphone is not always carried by users, particularly among the elderly population. We

recognize that wearable devices, such as smartwatches, may present a more suitable option for

EgoADL. One promising direction to explore in future work is to include a more diverse set

of wireless sensors, i.e.,low-cost ultrasound sonar, UWB radar or mmWave radar, on wearable

174

devices [249].

Integrating Large Language Model (LLM) into ADL sensing: EgoADL fine-tunes

a language model, i.e.,BERT [64], to extract and distill contextual information pertaining to

human behaviors, as detailed in Section 5.7.2. While the current implementation deals with

computational complexities by fine-tuning a more manageable model size, the approach can

be scaled to accommodate the fine-tuning of a larger language model in the future. Moreover,

given that large language models are designed for general natural language processing tasks, it

may be feasible for EgoADL to bypass fine-tuning altogether. Instead, EgoADL could provide

its generated sequence of words and the corresponding probability distribution and organize

them as the input prompt directly to the LLM. This would allow the LLM to employ its robust

contextual capabilities to refine and correct the word sequence autonomously. We posit that

EgoADL paves the way for a novel integration of sensory data with natural language processing.

Moving forward, our research will explore to leverage LLMs to enhance the perception and

understanding of ADL through different sensing technologies.

5.10 Conclusion

This paper presents the first study that uses a commodity smartphone as an egocentric

multi-modal sensor hub to recognize unrestricted user behaviors in free living environment.

Although the absolute sensing accuracy of the proposed EgoADL system still leaves room for

improvement, its performance is already comparable to state-of-the-art egocentric vision-based

solutions. EgoADL verifies several promising mechanisms, such as a joint design of self-

supervised single-modal and multi-modal clustering, and context distillation from generic data,

which can overcome the fundamental barriers–particularly the generalization and labeling–in

ubiquitous sensor-based behavior analysis. Our EgoADL dataset will be released as open source

to promote research in both ubiquitous computing and machine learning.

175

5.11 Acknowledgments

This chapter contains material from “Multimodal Daily-life Logging in Free-living

Environments Using Non-Visual Egocentric Sensors on a Smartphone”, by Ke Sun, Chuyu Xia,

Xinyu Zhang, Hao Chen, and Charlie Zhang, which appears in the Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), Volume 8, Issue 1, 2024

[214]. The dissertation author was the primary investigator and author of this paper.

176

Chapter 6

Conclusion and Future Work

Acoustic sensors and actuators, such as loudspeakers and microphones, are some of the

most common components in consumer electronic devices and play a crucial role in enabling

ambient intelligence. Traditionally, these components have been used for sound-related tasks

like voice-user interfaces, sound playback, and event detection. However, with the increasing

demand for consumer electronics to provide more advanced, user-friendly, and powerful ambient

intelligence, there is a growing need to unlock the full potential of these components for cross-

modality sensing applications. By repurposing acoustic sensors and actuators, devices can

achieve intelligent, cost-effective, human-centric, and trustworthy ambient intelligence, while

reducing costs, energy consumption, and computational overhead.

6.1 Dissertation Conclusion

In this dissertation, I argue that advanced signal processing techniques and deep learning

models can be used to repurpose acoustic components for cross-modality sensing applications,

achieving resolutions comparable to dedicated sensors. By comprehensively understanding the

strengths and limitations of acoustic sensors and actuators, I design end-to-end cross-modal

sensing systems that span from the application level to the hardware level. This includes

hardware design, sensor placement optimization, advanced signal processing techniques, deep

neural network architectures, and overall system optimization.

177

First, I investigate the speech privacy issue in ubiquitous acoustic devices using cross-

modality sensing. In MicShield, I design a speech privacy protection system that functions as a

companion to voice assistants. It automatically safeguards speech privacy by selectively jamming

unintended private speech while allowing legitimate voice commands to pass through. I propose a

novel speech processing pipeline which leverages the framewise likelihood to detect the onset of

a wake words, thus realizing selective jamming. I employ ultrasound-based inaudible voice gen-

eration, producing sound that is imperceptible to humans but detectable by microphones, thereby

ensuring no impact on the core functionalities of the device. Our evaluation confirms that the

3D-printed shield effectively protects speech privacy for various voice assistants, including those

with microphone arrays. In StealthyIMU, I expose a new threat that enables a zero-permission

app to steal private information from voice user interface (VUI) responses on a smartphone. This

attack exploits a side channel, where a motion sensor “overhears” low-frequency vibrations from

the co-located loudspeaker. Our case studies demonstrate that StealthyIMU can accurately extract

sensitive, permission-protected information—such as contacts, search history, calendar events,

home addresses, and GPS routes—from widely used VUIs like Google Assistant and Google

Maps. Additionally, I propose effective defense mechanisms to help VUI vendors mitigate this

vulnerability. These two works highlight that speech privacy can be compromised not only

by always-on microphones but also by cross-modal side-channel sensors. The risk becomes

even more significant when contextual information is combined with speech leakage. Therefore,

addressing these privacy threats while preserving the functionality of ubiquitous acoustic devices

is a critical challenge moving forward.

Second, I repropose the acoustic sensors and actuators as new sensing modalitiy for

cross-modal sensing applications by developing multi-modal signal processing and deep learning

algorithms. I tackle the open challenge of speech processing, i.e., the single-channel, audio-

only speech separation and enhancement problem, by using a single pair of microphone and

loudspeaker. I propose UltraSE, which leverages ultrasound sensing as a complementary modality

to capture the speaker’s articulatory gestures and separate the desired speaker’s voice from

178

interference and noise. I design a multi-modal multi-domain DNN framework for single-

channel speech enhancement which fuses the ultrasound and speech features, and simultaneously

improves speech intelligibility and quality. I further introduce a cGAN-based cross-modal

training model which effectively captures the correlation between ultrasound and speech for

multi-modal denoising. In EgoADL, I introduce the first egocentric human activities of daily

living (ADL) sensing system that uses an in-pocket smartphone as a multi-modal sensor hub to

capture body motion, interactions with the physical environment and daily objects using non-

visual sensors (audio, wireless sensing, and motion sensors). I designed multi-modal frame-wise

slow-fast encoders to learn feature representations that capture the complementary strengths

of various sensing modalities. Additionally, I adapt a transformer-based sequence-to-sequence

model to decode time-series sensor signals into sequences of words representing ADLs. To

address the challenge of limited labeled data and enhance generalization, we introduced a

self-supervised learning framework that extracts intrinsic supervisory signals from multi-modal

sensor data. These works demonstrate how external sensors and modalities can be leveraged to

unlock the potential of traditional acoustic sensors, enabling novel sensing applications with

enhanced resolution and improved generalization.

Sensor
hub

Semantic information
understandingAmbient

intelligence

Integrated Multi-Modal,
Multi-Device Collaboration

Figure 6.1. Ambient Intelligence Vision

179

6.2 Future Work

My previous work has demonstrated the potential of repurposing acoustic components in

ubiquitous consumer electronic devices for cross-modality sensing. Building on this foundation,

I aim to explore new research challenges centered on designing multi-device and multi-modal

systems that enable intelligent, cost-effective, human-centric, and trustworthy mobile, wearable,

and IoT solutions. Below, I outline four key research directions that I will pursue in the near

future.

6.2.1 Multi-device Multi-modal Sensing on Ubiquitous Acoustic Devices

In this dissertation, my primary focus has been exploring the potential of acoustic sensors

and actuators for cross-modality sensing. A natural extension of this work is to explore multi-

device and multi-modal scenarios. As shown in Fig. 6.1, modern personal smart devices

increasingly act as sensor hubs, integrating a variety of sensors and actuators. My goal is to

unlock the potential of these distributed sensor hubs to realize the vision of ambient intelligence.

For instance, I am working on extending the EgoADL framework to a multi-device setup for

comprehensive daily life logging. By integrating data from personal wearable devices such as

smartphones, smartwatches, and smart earbuds–each attached to different parts of the body–these

systems will have a more holistic understanding of body motion, human-object interactions, and

how the body reacts to different environments and scenarios.

6.2.2 Resource-efficient Cross-Modality Sensing on Ubiquitous Acoustic
Devices

One of the primary challenges in deploying the multi-modal sensing systems developed

in this dissertation is the limited resources available on mobile, wearable, and IoT devices. These

devices are constrained by their small form factor, limiting computational power, battery life,

and communication bandwidth. For example, multi-modal sensing deep neural network models

are computationally intensive and difficult to deploy on resource-constrained platforms like

180

smartwatches and earbuds. Achieving the vision of 24/7 ambient intelligence becomes even

more challenging due to energy consumption constraints.

To address these limitations, my future research will focus on developing resource-

efficient cross-modality sensing techniques for ubiquitous acoustic devices. By gaining a deeper

understanding of the capabilities of different sensors and actuators, I aim to design systems that

dynamically manage sensor usage, communication resources, and computational models. This

approach will enable intelligent sensing applications to be deployed on resource-constrained

platforms, making 24/7 ambient intelligence more feasible and efficient.

6.2.3 Enabling Human-AI-Sensor Interaction for Acoustic Sensing and
Privacy Protection

As sensors on personal devices grow more sophisticated, their ability to capture vast

amounts of data is rapidly expanding. This creates a powerful sensing environment but also

introduces significant privacy challenges, as demonstrated by the MicShield and StealthyIMU.

Cross-modal side channels inadvertently capture sensitive information, blurring the line between

sensor functionality and privacy protection. Currently, sensor privacy models on smart devices are

limited to binary ON/OFF permission settings, which do not adapt to changing user preferences

or situational contexts.

In response to this gap, my future research will focus on creating adaptive, user-centric

privacy systems that build up sensor privacy knowledge bases and leverage large language models

to enable dynamic control over sensor data. This Human-AI-Sensor interaction framework will

allow users to manage their data privacy in real-time, based on personal preferences and the

evolving capabilities of sensors. By advancing this approach, I aim to provide a flexible,

comprehensive solution for safeguarding personal data without sacrificing the functionality of

modern sensing systems.

181

6.2.4 Decoding Semantic Boundaries for Cross-Modality Sensing

Looking forward, I plan to shift focus from simply sensing physical metrics to interpreting

and understanding their semantic meaning. One of the key questions I aim to address is: “How

can ambient intelligence leverage sensing results to meaningfully enhance user experiences?”

Given the varying granularity of different sensors, relying on a single sensor type often limits the

depth of insight that can be achieved.

To overcome this, my research will bridge multi-device, multi-modal sensor data with

natural language understanding, decoding the semantic boundaries from various sensors or

through sensor fusion across multiple devices. EgoADL has taken a pioneering step in this

direction by using language models to understand human daily life through multi-modal sensory

data from smartphones. Moving forward, I will develop a reinforcement learning framework that

integrates Large Language Models (LLMs) and multi-modal foundation AI to better interpret the

granularity and potential of multi-device, multi-modal sensor fusion, unlocking new opportunities

for intelligent, human-centered applications.

182

Bibliography

[1] 20 helpful amazon echo voice commands for you to try. https://www.popsci.com/
20-amazon-echo-voice-commands/.

[2] Alexa privacy and data handling overview. https://d1.awsstatic.com/product-marketing/
A4B/White%20Paper%20-%20Alexa%20Privacy%20and%20Data%20Handling%
20Overview.pdf.

[3] Amazon.com: Echo dot (3rd gen) - smart speaker with alexa - charcoal: Amazon devices.
https://www.amazon.com/Echo-Dot/dp/B07FZ8S74R.

[4] Filterless 3w class-d stereo audio amplifier (datasheet). https://www.diodes.com/assets/
Datasheets/PAM8403.pdf.

[5] Ina 219 zero-drift, bidirectional current/power monitor with i2c interface. http://www.ti.
com/lit/ds/symlink/ina219.pdf.

[6] International standard iec 61672:2003. International Electrotechnical Commission, 2003.

[7] Noise and hearing loss prevention. https://www.asha.org/public/hearing/
Noise-and-Hearing-Loss-Prevention/.

[8] Pimoroni pHAT DAC24-bit/192khz sound card. https://shop.pimoroni.com/products/
phat-dac.

[9] Environmental health criteria – ultrasound, 1982. https://apps.who.int/iris/bitstream/
handle/10665/37263/9241540826-eng.pdf?sequence=1&isAllowed=y.

[10] Amazon Polly, 2019. https://aws.amazon.com/polly/.

[11] Amazon Transcribe, 2019. https://aws.amazon.com/transcribe/.

[12] CMUSphinx, 2019. https://cmusphinx.github.io/.

[13] Google Cloud Speech-to-Text, 2019. https://cloud.google.com/speech-to-text/.

[14] Google Cloud Text-to-Speech, 2019. https://cloud.google.com/text-to-speech/.

[15] IBM Text-to-Speech, 2019. https://www.ibm.com/cloud/watson-text-to-speech.

183

https://www.popsci.com/20-amazon-echo-voice-commands/
https://www.popsci.com/20-amazon-echo-voice-commands/
https://d1.awsstatic.com/product-marketing/A4B/White%20Paper%20-%20Alexa%20Privacy%20and%20Data%20Handling%20Overview.pdf
https://d1.awsstatic.com/product-marketing/A4B/White%20Paper%20-%20Alexa%20Privacy%20and%20Data%20Handling%20Overview.pdf
https://d1.awsstatic.com/product-marketing/A4B/White%20Paper%20-%20Alexa%20Privacy%20and%20Data%20Handling%20Overview.pdf
https://www.amazon.com/Echo-Dot/dp/B07FZ8S74R
https://www.diodes.com/assets/Datasheets/PAM8403.pdf
https://www.diodes.com/assets/Datasheets/PAM8403.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf
https://www.asha.org/public/hearing/Noise-and-Hearing-Loss-Prevention/
https://www.asha.org/public/hearing/Noise-and-Hearing-Loss-Prevention/
https://shop.pimoroni.com/products/phat-dac
https://shop.pimoroni.com/products/phat-dac
https://apps.who.int/iris/bitstream/handle/10665/37263/9241540826-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/37263/9241540826-eng.pdf?sequence=1&isAllowed=y
https://aws.amazon.com/polly/
https://aws.amazon.com/transcribe/
https://cmusphinx.github.io/
https://cloud.google.com/speech-to-text/
https://cloud.google.com/text-to-speech/
https://www.ibm.com/cloud/watson-text-to-speech

[16] The respeaker 6 mic array for raspberry pi, 2019. https://respeaker.io.

[17] The CMU Pronouncing Dictionary, 2019. http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[18] Theano, 2019. https://github.com/Theano/Theano.

[19] Best smartphones for audio, 2020. https://www.soundguys.com/
best-smartphones-for-audio-16373.

[20] Pytorch Mobile, 2020. https://pytorch.org/mobile/home/.

[21] Android Profiler, 2022. https://developer.android.com/studio/profile.

[22] EPIC-KITCHENS-100- 2021 Challenges Report, 2022. https://epic-kitchens.github.io/
Reports/EPIC-KITCHENS-Challenges-2021-Report.pdf.

[23] Rebecca Adaimi, Howard Yong, and Edison Thomaz. Ok google, what am i doing?
acoustic activity recognition bounded by conversational assistant interactions. Proceedings
of ACM IMWUT, 2021.

[24] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. My lips are concealed:
Audio-visual speech enhancement through obstructions. In Proceedings of Interspeech,
2019.

[25] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: Detecting and mitigating privacy
leaks on ios devices using crowdsourcing. In Proceedings of ACM MobiSys, 2013.

[26] Muhammad Ejaz Ahmed, Il-Youp Kwak, Jun Ho Huh, Iljoo Kim, Taekkyung Oh, and
Hyoungshick Kim. Void: A fast and light voice liveness detection system. In Proceedings
of USENIX Security Symposium, 2018.

[27] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui,
and Boqing Gong. Vatt: Transformers for multimodal self-supervised learning from raw
video, audio and text. Proceedings of NeurIPS, 2021.

[28] Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo Torresani, Bernard Ghanem,
and Du Tran. Self-supervised learning by cross-modal audio-video clustering. Proceedings
of NeurIPS, 2020.

[29] Amazon. Alexa, echo devices, and your privacy, amazon help & customer service. https:
//www.amazon.com/gp/help/customer/display.html?nodeId=GVP69FUJ48X9DK8V.

[30] Amazon. Google home mini. https://www.amazon.com/gp/help/customer/display.html?
nodeId=202201630.

[31] Amazon.com. Amazon echo. https://www.amazon.com/echo/.

[32] S Abhishek Anand and Nitesh Saxena. Speechless: Analyzing the threat to speech privacy
from smartphone motion sensors. In Proceedings of IEEE Symposium on Security and
Privacy (S&P), 2018.

184

https://respeaker.io
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://github.com/Theano/Theano
https://www.soundguys.com/best-smartphones-for-audio-16373
https://www.soundguys.com/best-smartphones-for-audio-16373
https://pytorch.org/mobile/home/
https://developer.android.com/studio/profile
https://epic-kitchens.github.io/Reports/EPIC-KITCHENS-Challenges-2021-Report.pdf
https://epic-kitchens.github.io/Reports/EPIC-KITCHENS-Challenges-2021-Report.pdf
https://www.amazon.com/gp/help/customer/display.html?nodeId=GVP69FUJ48X9DK8V
https://www.amazon.com/gp/help/customer/display.html?nodeId=GVP69FUJ48X9DK8V
https://www.amazon.com/gp/help/customer/display.html?nodeId=202201630
https://www.amazon.com/gp/help/customer/display.html?nodeId=202201630
https://www.amazon.com/echo/

[33] S Abhishek Anand, Chen Wang, Jian Liu, Nitesh Saxena, and Yingying Chen. Spear-
phone: A speech privacy exploit via accelerometer-sensed reverberations from smartphone
loudspeakers. arXiv preprint arXiv:1907.05972, 2019.

[34] S Abhishek Anand, Chen Wang, Jian Liu, Nitesh Saxena, and Yingying Chen. Spear-
phone: a lightweight speech privacy exploit via accelerometer-sensed reverberations from
smartphone loudspeakers. In Proceedings of ACM WiSec, 2021.

[35] Amir Anhari. Alexa dataset - build voice-first applications. https://www.kaggle.com/
aanhari/alexa-dataset.

[36] Russakovskii Artem. Google is permanently nerfing all home minis because
mine spied on everything i said 24/7. https://www.androidpolice.com/2017/10/10/
google-nerfing-home-minis-mine-spied-everything-said-247/#1.

[37] autoblog. How to Monitor Your RPM Gauge to Get the Best Perfor-
mance Out of Your Car, 2016. https://www.autoblog.com/2016/04/14/
how-to-monitor-your-rpm-gauge-to-get-the-best-performance-out-of/.

[38] Adam J Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M Smith. Practicality of
accelerometer side channels on smartphones. In Proceedings of ACSAC, 2012.

[39] Zhongjie Ba, Tianhang Zheng, Xinyu Zhang, Zhan Qin, Baochun Li, Xue Liu, and Kui
Ren. Learning-based practical smartphone eavesdropping with built-in accelerometer. In
Proceedings of NDSS, 2020.

[40] Tom Barker, Tuomas Virtanen, and Olivier Delhomme. Ultrasound-coupled semi-
supervised nonnegative matrix factorisation for speech enhancement. In Proceedings of
IEEE ICASSP, 2014.

[41] Sarnab Bhattacharya, Rebecca Adaimi, and Edison Thomaz. Leveraging sound and wrist
motion to detect activities of daily living with commodity smartwatches. Proceedings of
ACM IMWUT, 2022.

[42] Logan Blue, Luis Vargas, and Patrick Traynor. Hello, is it me you’re looking for?
differentiating between human and electronic speakers for voice interface security. In
Proceedings of ACM WiSec, 2018.

[43] Igor Bobriakov. Comparison of top 10 speech processing
APIs. https://medium.com/activewizards-machine-learning-company/
comparison-of-top-10-speech-processing-apis-2293de1d337f.

[44] Steven Boll. Suppression of acoustic noise in speech using spectral subtraction. IEEE
Transactions on acoustics, speech, and signal processing, 1979.

[45] Catherine P Browman and Louis Goldstein. Articulatory gestures as phonological units.
Phonology, 1989.

185

https://www.kaggle.com/aanhari/alexa-dataset
https://www.kaggle.com/aanhari/alexa-dataset
https://www.androidpolice.com/2017/10/10/google-nerfing-home-minis-mine-spied-everything-said-247/#1
https://www.androidpolice.com/2017/10/10/google-nerfing-home-minis-mine-spied-everything-said-247/#1
https://www.autoblog.com/2016/04/14/how-to-monitor-your-rpm-gauge-to-get-the-best-performance-out-of/
https://www.autoblog.com/2016/04/14/how-to-monitor-your-rpm-gauge-to-get-the-best-performance-out-of/
https://medium.com/activewizards-machine-learning-company/comparison-of-top-10-speech-processing-apis-2293de1d337f
https://medium.com/activewizards-machine-learning-company/comparison-of-top-10-speech-processing-apis-2293de1d337f

[46] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr, Clay
Shields, David Wagner, and Wenchao Zhou. Hidden voice commands. In Proceedings of
USENIX Security Symposium, 2016.

[47] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on
speech-to-text. In Proceedings of IEEE Security and Privacy Workshops (SPW), 2018.

[48] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of ECCV, 2018.

[49] Alejandro Cartas, Jordi Luque, Petia Radeva, Carlos Segura, and Mariella Dimiccoli.
Seeing and hearing egocentric actions: How much can we learn? In Proceedings of
IEEE/CVF ICCV Workshop, 2019.

[50] Antoine Caubrière, Sahar Ghannay, Natalia Tomashenko, Renato De Mori, Antoine
Laurent, Emmanuel Morin, and Yannick Estève. Error analysis applied to end-to-end
spoken language understanding. In Proceedings of IEEE ICASSP, 2020.

[51] Brian Chen, Andrew Rouditchenko, Kevin Duarte, Hilde Kuehne, Samuel Thomas, Angie
Boggust, Rameswar Panda, Brian Kingsbury, Rogerio Feris, David Harwath, et al. Mul-
timodal clustering networks for self-supervised learning from unlabeled videos. In
Proceedings of ICCV, 2021.

[52] Fuming Chen, Sheng Li, Yang Zhang, and Jianqi Wang. Detection of the vibration signal
from human vocal folds using a 94-ghz millimeter-wave radar. Sensors, 2017.

[53] Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. Deep learn-
ing for sensor-based human activity recognition: Overview, challenges, and opportunities.
ACM Computing Surveys (CSUR), 2021.

[54] Wei-Han Chen and Kannan Srinivasan. Acoustic eavesdropping from passive vibrations
via mmwave signals. In Proceedings of IEEE GLOBECOM, 2022.

[55] Yuxin Chen, Huiying Li, Steven Nagels, Zhijing Li, Pedro Lopes, Ben Y Zhao, and Haitao
Zheng. Wearable microphone jamming. In Proceedings of ACM CHI, 2020.

[56] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. Lip reading
sentences in the wild. In Proceedings of IEEE CVPR, 2017.

[57] J. Clark and P. C. van Oorschot. Sok: Ssl and https: Revisiting past challenges and
evaluating certificate trust model enhancements. In Proceedings of IEEE Symposium on
Security and Privacy, 2013.

[58] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David
Leroy, Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril,
et al. Snips voice platform: an embedded spoken language understanding system for
private-by-design voice interfaces. arXiv:1805.10190, 2018.

186

[59] Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, and Serge Belongie. Learning to
evaluate image captioning. In Proceedings of IEEE/CVF CVPR, 2018.

[60] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, and Will Price.
Scaling egocentric vision: The epic-kitchens dataset. In Proceedings of ECCV, 2018.

[61] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
The epic-kitchens dataset: Collection, challenges and baselines. IEEE TPAMI, 2021.

[62] Johnson Dave. How to save battery on your samsung galaxy s10 in 4 simple ways.
https://www.businessinsider.com/how-to-save-battery-on-samsung-galaxy-s10.

[63] Abe Davis, Michael Rubinstein, Neal Wadhwa, Gautham J Mysore, Fredo Durand, and
William T Freeman. The visual microphone: Passive recovery of sound from video.
Proceedings of ACM SigGraph, 2014.

[64] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, 2019.

[65] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari Nelakuditi.
Accelprint: Imperfections of accelerometers make smartphones trackable. In NDSS, 2014.

[66] Mariella Dimiccoli, Juan Marı́n, and Edison Thomaz. Mitigating bystander privacy
concerns in egocentric activity recognition with deep learning and intentional image
degradation. Proceedings of ACM IMWUT, 2018.

[67] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

[68] John D’Errico. Surface fitting using gridfit. MathWorks file exchange, 643, 2005. https:
//www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit.

[69] Yariv Ephraim and David Malah. Speech enhancement using a minimum-mean square
error short-time spectral amplitude estimator. IEEE Transactions on acoustics, speech,
and signal processing, 1984.

[70] Yariv Ephraim and Harry L Van Trees. A signal subspace approach for speech enhance-
ment. IEEE Transactions on speech and audio processing, 1995.

[71] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim,
William T Freeman, and Michael Rubinstein. Looking to listen at the cocktail party: A
speaker-independent audio-visual model for speech separation. In Proceedings of ACM
SIGGRAPH, 2018.

187

https://www.businessinsider.com/how-to-save-battery-on-samsung-galaxy-s10
https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit
https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit

[72] Hakan Erdogan, John R Hershey, Shinji Watanabe, and Jonathan Le Roux. Phase-
sensitive and recognition-boosted speech separation using deep recurrent neural networks.
In Proceedings of IEEE ICASSP, 2015.

[73] Hakan Erdogan, John R Hershey, Shinji Watanabe, Michael I Mandel, and Jonathan
Le Roux. Improved mvdr beamforming using single-channel mask prediction networks.
In Proceedings of Interspeech, 2016.

[74] Lijie Fan, Tianhong Li, Yuan Yuan, and Dina Katabi. In-home daily-life captioning using
radio signals. In Proceedings of ECCV, 2020.

[75] Long Fan, Lei Xie, Xinran Lu, Yi Li, Chuyu Wang, and Sanglu Lu. mmmic: Multi-modal
speech recognition based on mmwave radar. In Proceedings of IEEE INFOCOM, 2023.

[76] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks
for video recognition. In Proceedings of IEEE/CVF ICCV, 2019.

[77] Aviv Gabbay, Asaph Shamir, and Shmuel Peleg. Visual speech enhancement. In Proceed-
ings of Interspeech, 2018.

[78] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. Multi-modal trans-
former for video retrieval. In Proceedings of ECCV, 2020.

[79] Chuhan Gao, Yilong Li, and Xinyu Zhang. Livetag: Sensing human-object interaction
through passive chipless wifi tags. In Proceedings of USENIX NSDI, 2018.

[80] Ming Gao, Yajie Liu, Yike Chen, Yimin Li, Zhongjie Ba, Xian Xu, and Jinsong Han.
Inertiear: Automatic and device-independent imu-based eavesdropping on smartphones.
In Proceedings of IEEE INFOCOM, 2022.

[81] John S Garofolo et al. Darpa timit acoustic-phonetic speech database. National Institute
of Standards and Technology (NIST), 15:29–50, 1988.

[82] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
human-labeled dataset for audio events. In Proceedings of IEEE ICASSP, 2017.

[83] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. Gripsense: using built-in sensors to
detect hand posture and pressure on commodity mobile phones. In Proceedings of ACM
UIST, 2012.

[84] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer.
Proceedings of Interspeech, 2021.

[85] Google. Google home. https://store.google.com/product/google home.

[86] Google. Google home mini. https://store.google.com/product/google home mini.

188

https://store.google.com/product/google_home
https://store.google.com/product/google_home_mini

[87] Google. More about data security and privacy on devices that work with assistant.
https://support.google.com/googlenest/answer/7072285?hl=en.

[88] Google. Android permission API reference, 2019. https://developer.android.com/
reference/android/Manifest.permission/.

[89] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari,
Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:
Around the world in 3,000 hours of egocentric video. In Proceedings of IEEE/CVF CVPR,
2022.

[90] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirec-
tional lstm networks. In Proceedings of IEEE International Joint Conference on Neural
Networks, 2005.

[91] Daniel Griffin and Jae Lim. Signal estimation from modified short-time fourier transform.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984.

[92] Francesco Gringoli, Matthias Schulz, Jakob Link, and Matthias Hollick. Free your csi: A
channel state information extraction platform for modern wi-fi chipsets. In Proceedings
of ACM WiNTECH, 2019.

[93] François Grondin and François Michaud. Lightweight and optimized sound source
localization and tracking methods for open and closed microphone array configurations.
Robotics and Autonomous Systems, 2019.

[94] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In Proceedings of IEEE CVPR, 2006.

[95] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE
Pervasive computing, 2008.

[96] Jun Han, Emmanuel Owusu, Le T Nguyen, Adrian Perrig, and Joy Zhang. Accom-
plice: Location inference using accelerometers on smartphones. In Proceedings of IEEE
COMSNETS), 2012.

[97] Albert Haque, Arnold Milstein, and Li Fei-Fei. Illuminating the dark spaces of healthcare
with ambient intelligence. Nature, 2020.

[98] Harish Haresamudram, Irfan Essa, and Thomas Plötz. Contrastive predictive coding for
human activity recognition. Proceedings of ACM IMWUT, 2021.

[99] Harish Haresamudram, Irfan Essa, and Thomas Plötz. Assessing the state of self-
supervised human activity recognition using wearables. Proceedings of ACM IMWUT,
2022.

[100] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of IEEE
ICCV, 2015.

189

https://support.google.com/googlenest/answer/7072285?hl=en
https://developer.android.com/reference/android/Manifest.permission/
https://developer.android.com/reference/android/Manifest.permission/

[101] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of IEEE CVPR, 2016.

[102] Yitao He, Junyu Bian, Xinyu Tong, Zihui Qian, Wei Zhu, Xiaohua Tian, and Xinbing Wang.
Canceling Inaudible Voice Commands Against Voice Control Systems. In Proceedings of
ACM MobiCom, 2019.

[103] John R Hershey and Michael Casey. Audio-visual sound separation via hidden markov
models. In Proceedings of NeurIPS, 2002.

[104] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering:
Discriminative embeddings for segmentation and separation. In Proceedings of IEEE
ICASSP, 2016.

[105] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. In Proceedings of NeurIPS Deep Learning Workshop, 2014.

[106] Guoning Hu and DeLiang Wang. Monaural speech segregation based on pitch tracking
and amplitude modulation. IEEE Transactions on Neural Networks, 2004.

[107] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
IEEE CVPR, 2018.

[108] Jingyu Hua, Zhenyu Shen, and Sheng Zhong. We can track you if you take the metro:
Tracking metro riders using accelerometers on smartphones. IEEE Transactions on
Information Forensics and Security, 2016.

[109] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of IEEE CVPR, 2017.

[110] Wenjun Jiang, Chenglin Miao, Fenglong Ma, Shuochao Yao, Yaqing Wang, Ye Yuan,
Hongfei Xue, Chen Song, Xin Ma, and Dimitrios Koutsonikolas. Towards environment
independent device free human activity recognition. In Proceedings of ACM MobiCom,
2018.

[111] Wenjun Jiang, Hongfei Xue, Chenglin Miao, Shiyang Wang, Sen Lin, Chong Tian,
Srinivasan Murali, Haochen Hu, Zhi Sun, and Lu Su. Towards 3d human pose construction
using wifi. In Proceedings of ACM MobiCom, 2020.

[112] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE TPAMI, 2020.

[113] John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler. Physics. Wiley, 11
edition.

[114] Don H Johnson and Dan E Dudgeon. Array signal processing: concepts and techniques.
PTR Prentice Hall Englewood Cliffs, 1993.

190

[115] Bjørn Karmann. Project Alias, 2019. https://www.instructables.com/id/Project-Alias/.

[116] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Epic-fusion:
Audio-visual temporal binding for egocentric action recognition. In Proceedings of
IEEE/CVF ICCV, 2019.

[117] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Slow-fast
auditory streams for audio recognition. In Proceedings of IEEE ICASSP, 2021.

[118] Heather Kelly. How to make sure your amazon echo doesn’t send secret recordings, 5
2018. https://money.cnn.com/2018/05/25/technology/amazon-alexa-stop-recording/index.
html.

[119] Rinat Khusainov, Djamel Azzi, Ifeyinwa E Achumba, and Sebastian D Bersch. Real-
time human ambulation, activity, and physiological monitoring: Taxonomy of issues,
techniques, applications, challenges and limitations. Sensors, 2013.

[120] Tomi Kinnunen, Evgenia Chernenko, Marko Tuononen, Pasi Fränti, and Haizhou Li.
Voice activity detection using mfcc features and support vector machine. In Int. Conf. on
Speech and Computer (SPECOM07), Moscow, Russia, volume 2, pages 556–561, 2007.

[121] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for
one-shot image recognition. In ICML deep learning workshop, volume 2, 2015.

[122] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumb-
ley. Panns: Large-scale pretrained audio neural networks for audio pattern recognition.
IEEE/ACM TASLP, 2020.

[123] Taku Kudo and John Richardson. In Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing, 2018.

[124] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua Mason,
Adam Bates, and Michael Bailey. Skill squatting attacks on amazon alexa. In Proceedings
of USENIX Security Symposium, 2018.

[125] Andrew Kwong, Wenyuan Xu, and Kevin Fu. Hard drive of hearing: Disks that eavesdrop
with a synthesized microphone. In Proceedings of IEEE S&P, 2019.

[126] Gierad Laput, Karan Ahuja, Mayank Goel, and Chris Harrison. Ubicoustics: Plug-and-
play acoustic activity recognition. In Proceedings of ACM UIST, 2018.

[127] Gierad Laput and Chris Harrison. Sensing fine-grained hand activity with smartwatches.
In Proceedings of ACM CHI, 2019.

[128] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R Hershey. Sdr–half-baked
or well done? In Proceedings of IEEE ICASSP, 2019.

[129] Ki-Seung Lee. Speech enhancement using ultrasonic doppler sonar. Speech Communica-
tion, 2019.

191

https://www.instructables.com/id/Project-Alias/
https://money.cnn.com/2018/05/25/technology/amazon-alexa-stop-recording/index.html
https://money.cnn.com/2018/05/25/technology/amazon-alexa-stop-recording/index.html

[130] Yeonjoon Lee, Yue Zhao, Jiutian Zeng, Kwangwuk Lee, Nan Zhang, Faysal Hossain
Shezan, Yuan Tian, Kai Chen, and XiaoFeng Wang. Using sonar for liveness detection
to protect smart speakers against remote attackers. In Proceedings of ACM IMWUT
(UbiComp), 2020.

[131] Yeonjoon Lee, Yue Zhao, Jiutian Zeng, Kwangwuk Lee, Nan Zhang, Faysal Hossain
Shezan, Yuan Tian, Kai Chen, and XiaoFeng Wang. Using sonar for liveness detection to
protect smart speakers against remote attackers. Proceedings of ACM IMWUT (UbiComp),
2020.

[132] Chris Lewis and Steve Pickavance. Implementing quality of service over cisco mpls vpns.
Selecting MPLS VPN Services, 2006.

[133] Ping Li, Zhenlin An, Lei Yang, and Panlong Yang. Towards physical-layer vibration
sensing with rfids. In Proceedings of IEEE INFOCOM, 2019.

[134] Qiang Li, John A Stankovic, Mark A Hanson, Adam T Barth, John Lach, and Gang Zhou.
Accurate, fast fall detection using gyroscopes and accelerometer-derived posture informa-
tion. In Proceedings of IEEE International Workshop on Wearable and Implantable Body
Sensor Networks, 2009.

[135] Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grauman. Ego-exo: Transfer-
ring visual representations from third-person to first-person videos. In Proceedings of
IEEE/CVF CVPR, 2021.

[136] Yin Li, Miao Liu, and Jame Rehg. In the eye of the beholder: Gaze and actions in first
person video. IEEE TPAMI, 2021.

[137] Yin Li, Miao Liu, and James M Rehg. In the eye of beholder: Joint learning of gaze and
actions in first person video. In Proceedings of ECCV, 2018.

[138] Qianru Liao, Yongzhi Huang, Yandao Huang, Yuheng Zhong, Huitong Jin, and Kaishun
Wu. Magear: Eavesdropping via audio recovery using magnetic side channel. In Proceed-
ings of ACM MobiSys, 2022.

[139] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. When good becomes
evil: Keystroke inference with smartwatch. In Proceedings of ACM CCS, 2015.

[140] Philipos C Loizou. Speech enhancement: theory and practice. CRC press, 2013.

[141] Yan Long, Pirouz Naghavi, Blas Kojusner, Kevin Butler, Sara Rampazzi, and Kevin
Fu. Side eye: Characterizing the limits of pov acoustic eavesdropping from smartphone
cameras with rolling shutters and movable lenses. In Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2023.

[142] Chris Xiaoxuan Lu, Bowen Du, Hongkai Wen, Sen Wang, Andrew Markham, Ivan
Martinovic, Yiran Shen, and Niki Trigoni. Snoopy: Sniffing your smartwatch passwords
via deep sequence learning. Proceedings of ACM IMWUT (UbiComp), 2018.

192

[143] Li Lu, Jiadi Yu, Yingying Chen, Hongbo Liu, Yanmin Zhu, Yunfei Liu, and Minglu
Li. Lippass: Lip reading-based user authentication on smartphones leveraging acoustic
signals. In Proceedings of IEEE INFOCOM, 2018.

[144] Li Lu, Jiadi Yu, Yingying Chen, and Yan Wang. Vocallock: Sensing vocal tract for
passphrase-independent user authentication leveraging acoustic signals on smartphones.
Proceedings of ACM IMWUT (UbiComp), 2020.

[145] Yi Luo and Nima Mesgarani. Tasnet: time-domain audio separation network for real-time,
single-channel speech separation. In Proceedings of IEEE ICASSP, 2018.

[146] Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time–frequency magnitude
masking for speech separation. IEEE/ACM transactions on audio, speech, and language
processing, 2019.

[147] Haojie Ma, Zhijie Zhang, Wenzhong Li, and Sanglu Lu. Unsupervised human activity
representation learning with multi-task deep clustering. Proceedings of ACM IMWUT,
2021.

[148] Wenguang Mao, Jian He, and Lili Qiu. Cat: high-precision acoustic motion tracking. In
Proceedings of ACM MobiCom, 2016.

[149] Wenguang Mao, Mei Wang, Wei Sun, Lili Qiu, Swadhin Pradhan, and Yi-Chao Chen.
Rnn-based room scale hand motion tracking. In Proceedings of ACM MobiCom, 2019.

[150] Wenguang Mao, Zaiwei Zhang, Lili Qiu, Jian He, Yuchen Cui, and Sangki Yun. Indoor
follow me drone. In Proceedings of ACM MobiSys, 2017.

[151] Héctor A Cordourier Maruri, Paulo Lopez-Meyer, Jonathan Huang, Willem Marco Belt-
man, Lama Nachman, and Hong Lu. V-speech: Noise-robust speech capturing glasses
using vibration sensors. Proceedings of ACM IMWUT, 2018.

[152] Matthias R Mehl, Simine Vazire, Nairán Ramı́rez-Esparza, Richard B Slatcher, and
James W Pennebaker. Are women really more talkative than men? Science, 2007.

[153] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Recognizing speech from
gyroscope signals. In Proceedings of USENIX Security Symposium (USENIX Security),
2014.

[154] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan Boneh, and
Gabi Nakibly. Powerspy: Location tracking using mobile device power analysis. In
Proceedings of USENIX Security, 2015.

[155] George A Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 1956.

[156] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy Choud-
hury. Tapprints: your finger taps have fingerprints. In Proceedings of ACM MobiSys,
2012.

193

[157] Kyle Min and Jason J Corso. Integrating human gaze into attention for egocentric activity
recognition. In Proceedings of IEEE WACV, 2021.

[158] Kazunori Miura. Ultrasonic directive speaker. Elektor Magazine, 2011.

[159] Brian B Monson, Eric J Hunter, Andrew J Lotto, and Brad H Story. The perceptual
significance of high-frequency energy in the human voice. Frontiers in psychology, 2014.

[160] James Morra. Ai chip brings always-on alexa to battery-powered devices.
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808470/
ai-chip-brings-alwayson-alexa-to-batterypowered-devices.

[161] Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, and Niraj K Jha. Pinme: Tracking a
smartphone user around the world. IEEE Transactions on Multi-Scale Computing Systems,
2017.

[162] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale speaker
identification dataset. Proceedings of Interspeech, 2017.

[163] Katsuyuki Nakamura, Hiroki Ohashi, and Mitsuhiro Okada. Sensor-augmented egocentric-
video captioning with dynamic modal attention. In Proceedings of ACM MM, 2021.

[164] Katsuyuki Nakamura, Serena Yeung, Alexandre Alahi, and Li Fei-Fei. Jointly learning
energy expenditures and activities using egocentric multimodal signals. In Proceedings of
IEEE CVPR, 2017.

[165] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota. Fingerio:
Using active sonar for fine-grained finger tracking. In Proceedings of ACM CHI, 2016.

[166] Sashank Narain, Triet D Vo-Huu, Kenneth Block, and Guevara Noubir. Inferring user
routes and locations using zero-permission mobile sensors. In 2016 IEEE S&P, pages
397–413. IEEE, 2016.

[167] Arun Narayanan and DeLiang Wang. Ideal ratio mask estimation using deep neural
networks for robust speech recognition. In Proceedings of IEEE ICASSP, 2013.

[168] Ben Nassi, Yaron Pirutin, Tomer Galor, Yuval Elovici, and Boris Zadov. Glowworm
attack: Optical tempest sound recovery via a device’s power indicator led. In Proceedings
of ACM CCS, 2021.

[169] Ben Nassi, Yaron Pirutin, Adi Shamir, Yuval Elovici, and Boris Zadov. Lamphone:
Real-time passive sound recovery from light bulb vibrations. 2022.

[170] Zhaoheng Ni and Michael I Mandel. Mask-dependent phase estimation for monaural
speaker separation. In Proceedings of IEEE ICASSP, 2020.

[171] John Oglesby. What’s in a number? moving beyond the equal error rate. Speech
communication, 1995.

194

https://www.electronicdesign.com/technologies/embedded-revolution/article/21808470/ai-chip-brings-alwayson-alexa-to-batterypowered-devices
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808470/ai-chip-brings-alwayson-alexa-to-batterypowered-devices

[172] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. Attentive statistics pooling for
deep speaker embedding. In Proceedings of Interspeech, 2018.

[173] Xiaomin Ouyang, Xian Shuai, Jiayu Zhou, Ivy Wang Shi, Zhiyuan Xie, Guoliang Xing,
and Jianwei Huang. Cosmo: contrastive fusion learning with small data for multimodal
human activity recognition. In Proceedings of ACM MobiCom, 2022.

[174] Zhiheng Ouyang, Hongjiang Yu, Wei-Ping Zhu, and Benoit Champagne. A fully convo-
lutional neural network for complex spectrogram processing in speech enhancement. In
Proceedings of IEEE ICASSP, 2019.

[175] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. Accessory: pass-
word inference using accelerometers on smartphones. In Proceedings of ACM Workshop
on Mobile Computing Systems & Applications, 2012.

[176] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In Proceedings of IEEE ICASSP, 2015.

[177] Ashutosh Pandey and DeLiang Wang. Tcnn: Temporal convolutional neural network for
real-time speech enhancement in the time domain. In Proceedings of IEEE ICASSP, 2019.

[178] Se Rim Park and Jinwon Lee. A fully convolutional neural network for speech enhance-
ment. In Proceedings of Interspeech, 2017.

[179] Santiago Pascual, Antonio Bonafonte, and Joan Serra. Segan: Speech enhancement
generative adversarial network. In Proceedings of IEEE ICASSP, 2018.

[180] Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin Li, and Kun Tan. Beepbeep: a
high accuracy acoustic ranging system using COTS mobile devices. In Proceedings of
ACM SenSys, 2007.

[181] Jianwei Qian, Haohua Du, Jiahui Hou, Linlin Chen, Taeho Jung, and Xiang-Yang Li. Hide-
behind: Enjoy voice input with voiceprint unclonability and anonymity. In Proceedings of
ACM SenSys, 2018.

[182] Jianwei Qian, Haohua Du, Jiahui Hou, Linlin Chen, Taeho Jung, and Xiang-Yang Li. Hide-
behind: Enjoy voice input with voiceprint unclonability and anonymity. In Proceedings of
ACM SenSys, 2018.

[183] Kun Qian, Chenshu Wu, Fu Xiao, Yue Zheng, Yi Zhang, Zheng Yang, and Yunhao Liu.
Acousticcardiogram: Monitoring heartbeats using acoustic signals on smart devices. In
IEEE INFOCOM 2018-IEEE conference on computer communications, pages 1574–1582.
IEEE, 2018.

[184] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of IEEE, 77(2):257–286, 1989.

195

[185] Swaminathan Vasanth Rajaraman, Matti Siekkinen, and Mohammad A Hoque. Energy
consumption anatomy of live video streaming from a smartphone. In Proceedings of IEEE
PIMRC, 2014.

[186] Ashwin Rao, Justine Sherry, Arnaud Legout, Arvind Krishnamurthy, Walid Dabbous, and
David Choffnes. Meddle: Middleboxes for increased transparency and control of mobile
traffic. 2012.

[187] ITU-T Recommendation. Perceptual evaluation of speech quality (pesq): An objective
method for end-to-end speech quality assessment of narrow-band telephone networks and
speech codecs. Rec. ITU-T P. 862, 2001.

[188] Dario Rethage, Jordi Pons, and Xavier Serra. A wavenet for speech denoising. In
Proceedings of IEEE ICASSP, 2018.

[189] Bertrand Rivet, Wenwu Wang, Syed Mohsen Naqvi, and Jonathon A Chambers. Au-
diovisual speech source separation: An overview of key methodologies. IEEE Signal
Processing Magazine, 2014.

[190] Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual
evaluation of speech quality (pesq)-a new method for speech quality assessment of
telephone networks and codecs. In Proceedings of IEEE ICASSP, 2001.

[191] Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. Backdoor: Making
microphones hear inaudible sounds. In Proceedings of ACM MobiSys. ACM, 2017.

[192] Nirupam Roy and Romit Roy Choudhury. Listening through a vibration motor. In
Proceedings of ACM MobiSys, 2016.

[193] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury. Inaudible
voice commands: The long-range attack and defense. In Proceedings of Usenix NSDI,
2018.

[194] Nirupam Roy, He Wang, and Romit Roy Choudhury. I am a smartphone and i can tell my
user’s walking direction. In Proceedings of MobiSys, 2014.

[195] Sriram Sami, Yimin Dai, Sean Rui Xiang Tan, Nirupam Roy, and Jun Han. Spying with
your robot vacuum cleaner: eavesdropping via lidar sensors. In Proceedings of ACM
SenSys, 2020.

[196] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of IEEE
CVPR, 2018.

[197] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. Nexmon: The c-based firmware
patching framework, 2017. https://nexmon.org.

196

https://nexmon.org

[198] Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. Cross-lingual transfer
learning for multilingual task oriented dialog. Proceedings of NAACL, 2019.

[199] Dmitriy Serdyuk, Yongqiang Wang, Christian Fuegen, Anuj Kumar, Baiyang Liu, and
Yoshua Bengio. Towards end-to-end spoken language understanding. In Proceedings of
IEEE ICASSP, 2018.

[200] Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian Liu, Nitesh Saxena,
Yingying Chen, and Jiadi Yu. Face-mic: inferring live speech and speaker identity
via subtle facial dynamics captured by ar/vr motion sensors. In Proceedings of ACM
MobiCom, 2021.

[201] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari.
Actor and observer: Joint modeling of first and third-person videos. In Proceedings of
CVPR, 2018.

[202] Gunnar A Sigurdsson, Abhinav Gupta, Cordelia Schmid, Ali Farhadi, and Karteek Alahari.
Charades-ego: A large-scale dataset of paired third and first person videos. arXiv preprint
arXiv:1804.09626, 2018.

[203] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav
Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding.
In Proceedings of ECCV, 2016.

[204] David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur. Deep
neural network embeddings for text-independent speaker verification. In Proceedings of
Interspeech, 2017.

[205] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudan-
pur. X-vectors: Robust dnn embeddings for speaker recognition. In Proceedings of IEEE
ICASSP, 2018.

[206] Meet H Soni, Neil Shah, and Hemant A Patil. Time-frequency masking-based speech
enhancement using generative adversarial network. In Proceedings of IEEE ICASSP,
2018.

[207] Gaurav Srivastava, Kunal Bhuwalka, Swarup Kumar Sahoo, Saksham Chitkara, Kevin
Ku, Matt Fredrikson, Jason Hong, and Yuvraj Agarwal. Privacyproxy: Leveraging
crowdsourcing and in situ traffic analysis to detect and mitigate information leakage,
2017.

[208] Greg Sterling. Alexa devices maintain 70% market share
in u.s. according to survey. https://marketingland.com/
alexa-devices-maintain-70-market-share-in-u-s-according-to-survey-265180.

[209] Weigao Su, Daibo Liu, Taiyuan Zhang, and Hongbo Jiang. Towards device independent
eavesdropping on telephone conversations with built-in accelerometer. Proceedings of
ACM IMWUT (UbiComp), 2022.

197

https://marketingland.com/alexa-devices-maintain-70-market-share-in-u-s-according-to-survey-265180
https://marketingland.com/alexa-devices-maintain-70-market-share-in-u-s-according-to-survey-265180

[210] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and Kevin Fu. Light
commands: Laser-based audio injection attacks on voice-controllable systems. 2019.

[211] Ke Sun, Chen Chen, and Xinyu Zhang. “alexa, stop spying on me!” speech privacy
protection against voice assistants. In Proceedings of ACM SenSys, 2020.

[212] Ke Sun, Wei Wang, Alex X. Liu, and Haipeng Dai. Depth aware finger tapping on virutal
displays. In Proceedings of ACM MobiSys, 2018.

[213] Ke Sun, Chunyu Xia, Songlin Xu, and Xinyu Zhang. Stealthyimu: Stealing permission-
protected private information from smartphone voice assistant using zero-permission
sensors. Network and Distributed System Security Symposium (NDSS), 2023.

[214] Ke Sun, Chunyu Xia, Xinyu Zhang, Hao Chen, and Charlie Jianzhong Zhang. Multimodal
daily-life logging in free-living environment using non-visual egocentric sensors on a
smartphone. Proceedings of ACM IMWUT (UbiComp), 2024.

[215] Ke Sun and Xinyu Zhang. Ultrase: single-channel speech enhancement using ultrasound.
In Proceedings of ACM MobiCom, 2021.

[216] Ke Sun, Ting Zhao, Wei Wang, and Lei Xie. Vskin: Sensing touch gestures on surfaces of
mobile devices using acoustic signals. In Proceedings of ACM MobiCom, 2018.

[217] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and
Jun Liu. Human action recognition from various data modalities: A review. IEEE TPAMI,
2022.

[218] Sanjib Sur, Teng Wei, and Xinyu Zhang. Autodirective Audio Capturing through a
Synchronized Smartphone Array. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2014.

[219] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Proceedings of NeurIPS, 2014.

[220] Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. A short-time
objective intelligibility measure for time-frequency weighted noisy speech. In Proceedings
of IEEE ICASSP, 2010.

[221] Naoya Takahashi, Sudarsanam Parthasaarathy, Nabarun Goswami, and Yuki Mitsufuji. Re-
cursive speech separation for unknown number of speakers. In Proceedings of Interspeech,
2019.

[222] Jiayao Tan, Cam-Tu Nguyen, and Xiaoliang Wang. Silenttalk: Lip reading through
ultrasonic sensing on mobile phones. In Proceedings of IEEE INFOCOM, 2017.

[223] Jiayao Tan, Xiaoliang Wang, Cam-Tu Nguyen, and Yu Shi. Silentkey: A new authenti-
cation framework through ultrasonic-based lip reading. Proceedings of ACM IMWUT
(UbiComp), 2018.

198

[224] Chi Ian Tang, Ignacio Perez-Pozuelo, Dimitris Spathis, Soren Brage, Nick Wareham, and
Cecilia Mascolo. Selfhar: Improving human activity recognition through self-training
with unlabeled data. Proceedings of ACM IMWUT, 2021.

[225] Chuanxin Tang, Chong Luo, Zhiyuan Zhao, Wenxuan Xie, and Wenjun Zeng. Joint
time-frequency and time domain learning for speech enhancement. In Proceedings of
IJCAI, 2020.

[226] Kristin J Teplansky, Brian Y Tsang, and Jun Wang. Tongue and lip motion patterns in
voiced, whispered, and silent vowel production. In Proceedings of ASSTA ICPhS.

[227] H Tijdeman. On the propagation of sound waves in cylindrical tubes. Journal of Sound
and Vibration, 1975.

[228] Ingo R Titze and Daniel W Martin. Principles of voice production, 1998.

[229] Yu-Chih Tung and Kang G Shin. Exploiting sound masking for audio privacy in smart-
phones. In Proceedings of ACM AsiaCCS, 2019.

[230] Gokhan Tur and Renato De Mori. Spoken language understanding: Systems for extracting
semantic information from speech. John Wiley & Sons, 2011.

[231] Nicolas Turpault, Romain Serizel, Ankit Parag Shah, and Justin Salamon. Sound event
detection in domestic environments with weakly labeled data and soundscape synthesis.
2019.

[232] Yunus Emre Ustev, Ozlem Durmaz Incel, and Cem Ersoy. User, device and orientation
independent human activity recognition on mobile phones: Challenges and a proposal. In
Proceedings of ACM UbiComp, 2013.

[233] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. Cocaine noodles: exploit-
ing the gap between human and machine speech recognition. In 9th USENIX Workshop
on Offensive Technologies, 2015.

[234] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
NeurIPS, 2017.

[235] Nishant Verma. Mobile Test Automation With Appium. Packt Publishing Ltd, 2017.

[236] Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan
Lee, David Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions
from neural sequence models. In Proceedings of AAAI, 2016.

[237] Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. Performance measurement
in blind audio source separation. IEEE transactions on audio, speech, and language
processing, 2006.

199

[238] Chao Wang, Feng Lin, Zhongjie Ba, Fan Zhang, Wenyao Xu, and Kui Ren. Wavesdrop-
per: Through-wall word detection of human speech via commercial mmwave devices.
Proceedings of ACM IMWUT, 2022.

[239] Chen Wang, Xiaonan Guo, Yan Wang, Yingying Chen, and Bo Liu. Friend or foe? your
wearable devices reveal your personal pin. In Proceedings of ACM AsiaCCS, 2016.

[240] Chuyu Wang, Lei Xie, Yuancan Lin, Wei Wang, Yingying Chen, Yanling Bu, Kai Zhang,
and Sanglu Lu. Thru-the-wall eavesdropping on loudspeakers via rfid by capturing
sub-mm level vibration. Proceedings of ACM IMWUT (UbiComp), 2020.

[241] DeLiang Wang and Jitong Chen. Supervised speech separation based on deep learning:
An overview. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2018.

[242] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. Mole: Motion leaks through
smartwatch sensors. In Proceedings of ACM MobiCom, 2015.

[243] Lei Wang, Wei Li, Ke Sun, Fusang Zhang, Tao Gu, Chenren Xu, and Daqing Zhang.
Loear: Push the range limit of acoustic sensing for vital sign monitoring. Proceedings of
ACM IMWUT (UbiComp), 2022.

[244] Quan Wang, Hannah Muckenhirn, Kevin Wilson, Prashant Sridhar, Zelin Wu, John
Hershey, Rif A Saurous, Ron J Weiss, Ye Jia, and Ignacio Lopez Moreno. Voicefilter:
Targeted voice separation by speaker-conditioned spectrogram masking. In Proceedings
of Interspeech, 2019.

[245] Shiyang Wang, Xingchen Wang, Wenjun Jiang, Chenglin Miao, Qiming Cao, Haoyu
Wang, Ke Sun, Hongfei Xue, and Lu Su. Towards smartphone-based 3d hand pose
reconstruction using acoustic signals. ACM Transactions on Sensor Networks, 2024.

[246] Siqi Wang, Anuj Pathania, and Tulika Mitra. Neural network inference on mobile socs.
IEEE Design & Test, 2020.

[247] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu Lu. Understanding
and modeling of wifi signal based human activity recognition. In Proceedings of ACM
MobiCom, 2015.

[248] Wei Wang, Alex X. Liu, and Ke Sun. Device-free gesture tracking using acoustic signals.
In Proceedings of ACM MobiCom, pages 82–94, 2016.

[249] Wei Wang, Alex X. Liu, and Ke Sun. Device-free gesture tracking using acoustic signals.
In Proceedings of ACM MobiCom, 2016.

[250] Xun Wang, Ke Sun, Ting Zhao, Wei Wang, and Qing Gu. Dynamic speed warping:
Similarity-based one-shot learning for device-free gesture signals. In Proceedings of IEEE
INFOCOM, 2020.

200

[251] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo Liu. E-eyes:
device-free location-oriented activity identification using fine-grained wifi signatures. In
Proceedings of ACM MobiCom, 2014.

[252] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo Liu. E-
eyes: In-home device-free activity identification using fine-grained WiFi signatures. In
Proceedings of ACM MobiCom, 2014.

[253] Yuxuan Wang, Arun Narayanan, and DeLiang Wang. On training targets for supervised
speech separation. IEEE/ACM transactions on audio, speech, and language processing,
2014.

[254] Ziqi Wang, Zhe Chen, Akash Deep Singh, Luis Garcia, Jun Luo, and Mani B Srivastava.
Uwhear: through-wall extraction and separation of audio vibrations using wireless signals.
In Proceedings of ACM SenSys, 2020.

[255] Teng Wei, Shu Wang, Anfu Zhou, and Xinyu Zhang. Acoustic eavesdropping through
wireless vibrometry. In Proceedings of ACM MobiCom, 2015.

[256] Mark Weiser. Some computer science issues in ubiquitous computing. Communications
of the ACM, 1993.

[257] Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu, Emmett McQuinn,
Dwight Crow, Ethan Manilow, and Jonathan Le Roux. WHAM!: Extending Speech
Separation to Noisy Environments. CoRR, abs/1907.01160, 2019.

[258] J Widder and A Morcelli. Basic principles of mems microphones, 2016. https://www.edn.
com/basic-principles-of-mems-microphones/.

[259] Simon Wiesler, Alexander Richard, Ralf Schlüter, and Hermann Ney. Mean-normalized
stochastic gradient for large-scale deep learning. In Proceedings of IEEE ICASSP, 2014.

[260] Robert Williams. Study: Smart speaker ownership surges
36% to 53m US adults. https://www.mobilemarketer.com/news/
study-smart-speaker-ownership-surges-36-to-53m-us-adults/545717/.

[261] Donald S Williamson, Yuxuan Wang, and DeLiang Wang. Complex ratio masking for
monaural speech separation. IEEE/ACM transactions on audio, speech, and language
processing, 2015.

[262] Donald S Williamson, Yuxuan Wang, and DeLiang Wang. Complex ratio masking for
monaural speech separation. IEEE/ACM transactions on audio, speech, and language
processing, 2015.

[263] Zack Wittaker. Amazon says US government demands for customer data went up.
https://techcrunch.com/2019/08/01/amazon-prism-transparency-data/.

201

https://www.edn.com/basic-principles-of-mems-microphones/
https://www.edn.com/basic-principles-of-mems-microphones/
https://www.mobilemarketer.com/news/study-smart-speaker-ownership-surges-36-to-53m-us-adults/545717/
https://www.mobilemarketer.com/news/study-smart-speaker-ownership-surges-36-to-53m-us-adults/545717/
https://techcrunch.com/2019/08/01/amazon-prism-transparency-data/

[264] Dan Wu, Daqing Zhang, Chenren Xu, Hao Wang, and Xiang Li. Device-free wifi
human sensing: From pattern-based to model-based approaches. IEEE Communications
Magazine, 2017.

[265] Jason Wu, Chris Harrison, Jeffrey P Bigham, and Gierad Laput. Automated class discovery
and one-shot interactions for acoustic activity recognition. In Proceedings of ACM CHI,
2020.

[266] Yuan-Kuei Wu, Chao-I Tuan, Hung-yi Lee, and Yu Tsao. Saddel: Joint speech separation
and denoising model based on multitask learning. arXiv:2005.09966, 2020.

[267] A. D. Wyner. The wire-tap channel. The Bell System Technical Journal, 54(8):1355–1387,
Oct 1975.

[268] Chenhan Xu, Zhengxiong Li, Hanbin Zhang, Aditya Singh Rathore, Huining Li, Chen
Song, Kun Wang, and Wenyao Xu. Waveear: Exploring a mmwave-based noise-resistant
speech sensing for voice-user interface. In Proceedings of ACM MobiSys, 2019.

[269] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. Limu-bert: Unleashing the
potential of unlabeled data for imu sensing applications. In Proceedings of ACM SenSys,
2021.

[270] Linfeng Xu, Qingbo Wu, Lili Pan, Fanman Meng, Hongliang Li, Chiyuan He, Hanxin
Wang, Shaoxu Cheng, and Yu Dai. Towards continual egocentric activity recogni-
tion: A multi-modal egocentric activity dataset for continual learning. arXiv preprint
arXiv:2301.10931, 2023.

[271] Panlong Yang, Yuanhao Feng, Jie Xiong, Ziyang Chen, and Xiang-Yang Li. Rf-ear: Con-
tactless multi-device vibration sensing and identification using cots rfid. In Proceedings
of IEEE INFOCOM, 2020.

[272] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. Deepsense:
A unified deep learning framework for time-series mobile sensing data processing. In
Proceedings of WWW, 2017.

[273] Shuochao Yao, Ailing Piao, Wenjun Jiang, Yiran Zhao, Huajie Shao, Shengzhong Liu,
Dongxin Liu, Jinyang Li, Tianshi Wang, Shaohan Hu, et al. Stfnets: Learning sensing
signals from the time-frequency perspective with short-time fourier neural networks. In
Proceedings of WWW, 2019.

[274] Dacheng Yin, Chong Luo, Zhiwei Xiong, and Wenjun Zeng. Phasen: A phase-and-
harmonics-aware speech enhancement network. In Proceedings of AAAI, 2020.

[275] Soo Youn. Alexa is always listening — and so are amazon workers. https://abcnews.go.
com/Technology/alexa-listening-amazon-workers/story?id=62331191.

202

https://abcnews.go.com/Technology/alexa-listening-amazon-workers/story?id=62331191
https://abcnews.go.com/Technology/alexa-listening-amazon-workers/story?id=62331191

[276] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Permutation invariant
training of deep models for speaker-independent multi-talker speech separation. In
Proceedings of IEEE ICASSP, 2017.

[277] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen, Shengzhi
Zhang, Heqing Huang, XiaoFeng Wang, and Carl A Gunter. Commandersong: A sys-
tematic approach for practical adversarial voice recognition. In Proceedings of USENIX
Security Symposium, 2018.

[278] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang Mao. Strata:
Fine-grained acoustic-based device-free tracking. In Proceedings of ACM MobiSys, 2017.

[279] Muhammed Zahid Ozturk, Chenshu Wu, Beibei Wang, and KJ Liu. Radiomic: Sound
sensing via mmwave signals. arXiv e-prints, 2021.

[280] Mohammad Zeineldeen, Albert Zeyer, Wei Zhou, Thomas Ng, Ralf Schlüter, and Hermann
Ney. A systematic comparison of grapheme-based vs. phoneme-based label units for
encoder-decoder-attention models. arXiv:2005.09336, 2020.

[281] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and Wenyuan Xu.
Dolphinattack: Inaudible voice commands. In Proceedings of ACM CCS, 2017.

[282] Li Zhang, Parth H Pathak, Muchen Wu, Yixin Zhao, and Prasant Mohapatra. Accelword:
Energy efficient hotword detection through accelerometer. In Proceedings of ACM
MobiSys, 2015.

[283] Linghan Zhang, Sheng Tan, and Jie Yang. Hearing your voice is not enough: An
articulatory gesture based liveness detection for voice authentication. In Proceedings of
ACM CCS, 2017.

[284] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng Qian.
Dangerous skills: Understanding and mitigating security risks of voice-controlled third-
party functions on virtual personal assistant systems. In Proceedings of IEEE Security
and Privacy, 2019.

[285] Xiyuan Zhang, Ranak Roy Chowdhury, Dezhi Hong, Rajesh K Gupta, and Jingbo Shang.
Modeling label semantics improves activity recognition. arXiv preprint arXiv:2301.03462,
2023.

[286] Yang Zhang, Gierad Laput, and Chris Harrison. Vibrosight: Long-range vibrometry for
smart environment sensing. In Proceedings of ACM UIST, pages 225–236, 2018.

[287] Bing Zhou, Jay Lohokare, Ruipeng Gao, and Fan Ye. Echoprint: Two-factor authentication
using acoustics and vision on smartphones. In Proceedings of ACM MobiCom, 2018.

[288] Yinian Zhou, Awais Ahmad Siddiqi, Jia Zhang, Junchen Guo, Rui Xi, Meng Jin, Zhengang
Zhai, and Yuan He. Voice recovery from human surroundings with millimeter wave radar.
In Proceedings of INFOCOM Workshops, 2021.

203

[289] Shilin Zhu, Chi Zhang, and Xinyu Zhang. Automating Visual Privacy Protection Using a
Smart LED. In Proceedings of ACM MobiCom, 2017.

204

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Opportunities for Repurposing Acoustic Sensors and Actuators in Ubiquitous Devices
	Repurposing Loudspeakers and Microphones for Ultrasonic Sonar
	Repurposing Actuators for Inaudible Sound Generation
	Transforming Various Sensors into Side-channel Microphones
	Repurposing Microphones for Daily-Life Sound Logging

	Dissertation Contributions

	Automatic Speech Privacy Protection Against Voice Assistants
	Introduction
	Related Works
	Hidden Command Attacks and Defenses
	Audio Privacy Leakage and Protection

	Threat Analysis
	Automatic Jamming Control
	A Primer of Selective Jamming
	Jamming Control Pipeline
	Minimizing Wake Word Misdetection
	Maximizing Private Speech Mute Rate
	When to Resume Jamming?

	Practical Jamming Design
	Inaudible Jamming Sound
	Jamming a Single Microphone
	Jamming a Microphone Array

	Implementation
	Hardware
	Software

	Experimental Evaluations
	Micro Benchmarks
	Latency Analysis
	Energy Consumption
	Generalization

	Limitations and Future Work
	Conclusion
	Acknowledgments

	Stealing Permission-protected Private Information From Smartphone Voice Assistant Using Zero-Permission Sensors
	Introduction
	Related Works
	Motion Leakage via Sensors on Smartphone
	Speech Recognition via Motion Sensors
	Spoken Language Understanding

	Threat Analysis
	Motion Sensor Signal (MSS) Preprocessing
	Choosing the Sensor Type and Channel
	Real-time Detection and Segmentation of Voice in MSS
	Feature Extraction
	VUI Response Identification

	Inferring Privacy from a Single VUI Response
	Problem Statement
	Model Design
	Training Strategy

	Extracting Permission-protected Privacy
	One-Time Stealing
	Short-Term Contextual Inference
	Long-Term Monitoring

	Defense Against StealthyIMU
	Predistortion of Speech Signals
	Redesigning the Permissions

	Dataset and Implementation
	StealthyIMU Dataset
	Implementation

	Evaluation
	DNN Model Ablation Study
	One-time Stealing
	Short-term Contextual Inference
	Long-term Monitoring
	Generalization
	System Overhead Evaluation
	Defense Evaluation

	Conclusion
	Acknowledgments

	Single-Channel Speech Enhancement Using Ultrasound on a Smartphone
	Introduction
	Related Work
	Audio-only Speech Enhancement
	Multi-modal Speech Enhancement
	Device-free Ultrasonic Sensing

	Sensing the Articulatory Gestures
	Transmitted Ultrasound Signals Design
	Mitigating Sensing Interference

	An Overview of UltraSE DNN Model
	DNN Input Feature Design
	Multi-modal Fusion Design
	Two-stream Feature Embedding
	Speech and Ultrasound Fusion Network

	cGAN-based Cross-modal Training
	Cross-modal Similarity Measurement
	cGAN-based Model Training

	Multi-domain Speech Enhancement
	Understanding the Pros and Cons of T-F Domains Speech Enhancement
	Two-stage Multi-domain Network Design

	UltraSE Implementation
	UltraSpeech Dataset
	UltraSE DNN Implementation

	Experimental Evaluation
	Micro Benchmark Comparison
	Ablation Study
	System Efficiency
	Generalization

	Conclusion
	Acknowledgments

	Multimodal Daily-life Logging in Free-living Environments Using Non-Visual Egocentric Sensors on a Smartphone
	Introduction
	Related work
	EgoADL Setup and Data Collection
	Preliminary Study
	Advantages of Egocentric Sensing
	Sensing Modality Selection

	EgoADL Supervised Learning
	Problem Formulation
	Input and Output Design
	MMFWSF Transformer
	Training Strategy

	EgoADL Self-supervised Learning
	Single-modal Self-Supervised Deep Clustering
	Cross-Modal Self-Supervised Deep Clustering

	Knowledge Distillation from Natural Language Labels
	Label Refinement
	Distilling Contextual Information from Text

	Implementation and Experimental Evaluation
	EgoADL Implementation and Evaluation Metrics
	Micro Benchmark Analysis of EgoADL Supervised Learning Model
	Accuracy, Generalization and Extensibility of EgoADL SSL Model
	Evaluating the Limits of Non-Visual Sensors
	Evaluation on Knowledge Distillation from Natural Language
	Energy Consumption

	Discussion and Limitations
	Conclusion
	Acknowledgments

	Conclusion and Future Work
	Dissertation Conclusion
	Future Work
	Multi-device Multi-modal Sensing on Ubiquitous Acoustic Devices
	Resource-efficient Cross-Modality Sensing on Ubiquitous Acoustic Devices
	Enabling Human-AI-Sensor Interaction for Acoustic Sensing and Privacy Protection
	Decoding Semantic Boundaries for Cross-Modality Sensing

	Bibliography

