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ABSTRACT

The recent growth in the size of the routing table has led to an

interest in quantitatively understanding both the causes (e.g., multi-

homing) as well as the effects (e.g., impact on router lookup imple-

mentations) of such routing table growth. In this paper, we describe

a new model called ARAM that defines the structure of routing ta-

bles of any given size. Unlike simpler empirical models that work

backwards from effects (e.g., current prefix length distributions),

ARAM approximately models the causes of table growth (alloca-

tion by registries, assignment by ISPs, multihoming and load bal-

ancing). We show that ARAM models with high fidelity three ab-

stract measures (prefix distribution, prefix depth, and number of

nodes in the tree) of the shape of the prefix tree — as validated

against 20 snapshots of backbone routing tables from 1997 to the

present. We then use ARAM for evaluating the scalability of IP

lookup schemes, and studying the effects of multihoming and load

balancing on their scaling behavior. Our results indicate that algo-

rithmic solutions based on multibit tries will provide more prefixes

per chip than TCAMs (as table sizes scale toward a million) unless

TCAMs can be engineered to use 8 transistors per cell. By con-

trast, many of today’s SRAM based TCAMs use 14-16 transistors

per cell.

1. INTRODUCTION
In recent years, Internet measurement and modeling studies have

focused on Internet topologies [4], paths [5], and routing behav-

ior [6, 7]. Only recently has there been an exploration of the struc-

ture and growth of the global routing table. This exploration has

been sparked by dramatic growth in the table size (from 30,000 to

120,000) in the last few years. Growth in table size has become a

popular topic for mailing lists, and in the trade press [8] because of

its alarming implications for router vendors. However, the growth

in the table also leads to two natural research questions. Q1. How is

this growth caused and how will changes in the relative prevalence

of various causes affect table size? Q2. How does growth impact

router implementations?

It is fairly well known that some of the causes of growth are the

failure to aggregate properly, load balancing and multihoming. In

This work was made possible by NSF grant ANI 0074004. Ramesh Govin­
dan was partially funded by the NSF under grant number ANI­0112649.
A shorter version appears in ACM SIGCOMM 2003..

a recent measurement study, Bu et al. [9] provide valuable initial

insight into some of these causes by showing, for example, that

multihoming contributes 20-30% of the prefixes in current rout-

ing tables and that this factor is on the rise. However, they stop

short of exploring the sensitivity of table growth to changes in these

causes. Furthermore, while they provide some link between causes

and the total number of prefixes, they do not explore a link between

causes (e.g., multihoming) and the structure of the routing table.

The structure of the routing table can be thought of as the shape of

the tree (e.g., trie) induced by the set of prefixes in the table.

Why might the structure of the table1 be of interest — as opposed

to merely the size of the table? Table structure is crucial because it

helps to answer question Q2 about the impact on router implemen-

tations. In particular, several router vendors do IP lookups based

on compressed multibit tries [10, 11]. The amount of high speed

memory required by such schemes (which is a first order measure

of the implementation cost) is directly dependent on the structure of

the routing table. Intuitively, if prefixes tend to bunch together (as

opposed to being randomly scattered), multibit tries will result in

very compact and affordable implementations even for large rout-

ing tables.

The issue is becoming particularly pressing because Content Ad-

dressable Memory (CAM) manufacturers are targeting offerings

for large core router forwarding tables. Traditional problems with

ternary CAMs (TCAMs) such as the scaling of the match logic and

power consumption are being surmounted using innovative tech-

niques. However, TCAMs still are much less dense than memories

(14-16 transistor cells for SRAM-based TCAMs as opposed to 6

transistors for an SRAM cell). Thus it appears that for the same

number of transistors, an algorithmic implementation (based, say,

on compressed multibit tries) can handle a larger number of pre-

fixes than a TCAM.

While this is the hypothesis, and some are working to provide

algorithmic solutions for IP lookups as an alternative to TCAM so-

lutions, there is little hard evidence to make a case one way or the

other. The problem is that if the present exponential growth rate

were to continue, one would expect core router tables to reach a

million prefixes in another 6 years or so. Routers shipping today

thus may have to support up to 1 million prefixes to be usable for 5

years, often the minimum period considered for such capital equip-

ment.

Thus to reasonably compare TCAMs versus algorithmic lookup

solutions one needs some way of generating realistic table sizes

that are several times the size of today’s routing tables. More im-

portantly, to accurately model the storage of algorithmic (e.g., trie-

1In this paper, we use the term routing table to mean the collection
of prefixes associated with routing entries, and ignore other route
attributes (AS paths, next hops, BGP communities etc.).



based) solutions, one has to ensure that the generated tables accu-

rately reflect the structure of current (and hopefully future) routing

tables. The upshot of this argument is that router vendors today

need a good model of the structure of current tables that can be

projected to the future.

Note that an accurate model can also help a chip vendor selling

an algorithmic solution predict the amount of memory required to

support a given number of prefixes. A model that reflects underly-

ing causes is also useful in its own right to understand table growth,

which we claim should be as much a phenomenon of independent

interest as is Internet topology or BGP convergence.

1.1 Routing Table Models
In this paper, we introduce a model of routing table structure

called ARAM. ARAM contains recognizable elements of the pro-

cesses which govern routing table structure: the allocation of ad-

dress space from registries to ISPs, and the advertisement of ad-

dress prefixes into the routing system determined by routing prac-

tices such as multi-homing and load balancing. We use ARAM to

study the storage requirement of IP lookup schemes as a function of

table size. Because ARAM has parameters that can control the rela-

tive weight of allocation and routing processes, we can explore the

impact of variations in the degree of multihoming or load balanc-

ing, for example, on the storage requirements of lookup schemes.

We argue that an ideal routing table model should have the fol-

lowing properties:

� Causal: Given there are well known causes of routing table

growth such as multihoming and load balancing [9], a model

should ideally reflect these intuitive driving forces in order to

provide increased understanding. An alternative is to employ

an empirical model which ignores causes, and directly en-

codes chosen measures of current tables such as prefix length

distribution.

� Parameterizable: Merely reflecting the current structure of

the routing table is dangerous because vast increases in some

causes (such as multihoming) can lead to very different rout-

ing tables. Thus, an ideal model should have parameters

(tuning knobs) that can control the effects of various param-

eters to enable a systematic sensitivity analysis.

� Parsimonious: To effectively use and reason with a model,

the model should have as few parameters as possible. In the

limit one could characterize the shape of the current rout-

ing table by providing the prefix length distribution for all

possible initial 8-bit values of prefix bits. While this might

characterize the shape better, it uses 256 * 32 parameters.

� Accurate: The model should match the “shape” of existing

routing tables. Ideally, shape comparisons should use ab-

stract measures that can be used to compare any two prefix

tries, regardless of the particular lookup schemes.

� Predictive: The model should be able to accurately predict

the memory used by various lookup implementations as mea-

sured on existing tables. Unlike the previous goal where val-

idation is done using abstract shape measures, here the goal

is to validate a model using more concrete measures such as

the memory used by a representative IP lookup scheme.

The design of ARAM attempts to satisfy these sometimes con-

flicting goals. It derives representative routing tables in three steps

that model the processes by which prefixes enter the table: first

registries allocate address blocks to ISPs, ISPs advertise their al-

locations into the routing table and assign address space to cus-

tomers, and customer in turn can advertise more-specific prefixes

(i.e., “punch holes”) to effect specialized routing (e.g., backup or

load balancing). The model uses five parameters: one for the num-

ber of allocations in the first step, and two each for the two remain-

ing steps that govern the frequency and extent of ISP and customer

routing practice. While the model can be made more accurate by

using more parameters, we decided to err in the direction of parsi-

mony.

By three abstract measures of tree shape (prefix length distribu-

tion, prefix depth, and number of tree nodes), ARAM’s routing ta-

bles compare well (Section 2.3.2) with twenty routing tables span-

ning the last five years. For example, for the prefix length distri-

bution, ARAM exhibits less than 6% error for each of those twenty

tables. To match a specific routing table, we used the same num-

ber of allocations as an input to ARAM as had been handed out by

the RIRs at the time the routing table was taken. For the other four

parameters, a single set of values was sufficient to produce a match.

Finally, for each of the twenty routing tables we chose, ARAM’s

matching routing tables also closely matched the number of tran-

sistors required for a compressed multibit trie implementation (Sec-

tion 3). Our scheme of choice is the Tree Bitmap algorithm, due to

Eatherton and Dittia [11]. It is less dated than the seminal Lulea

scheme [10], and has fast updates (unlike the Lulea scheme). How-

ever, we believe the results would not change significantly for other

implementations because the underlying abstract property that de-

termines trie storage is the shape (i.e., the relationships between

prefixes) in the routing table.

We make no claim that ARAM captures all the aspects of rout-

ing and allocation practice, that it cannot be further tuned, or that

there are no other effective causal models. However, our valida-

tion of ARAM (Section 2.3.2) gives us some confidence in our

use of ARAM to generate larger table sizes and explore variations

in routing and allocation practice. In particular, we use ARAM
to shed some light on the somewhat acrimonious debate between

TCAMs and algorithmic IP lookup schemes. Leaving aside power

and match scaling, our results indicate that algorithmic schemes

can provide more density (prefixes per unit area) than TCAMs. Of

course, our results are subject to assumptions (e.g., that the cur-

rent growth trends continue), and thus should only be considered

an initial (albeit quantitative) contribution to an ongoing debate.

Section 2 is devoted to the ARAM model and its validation, and

Section 3 is devoted to using ARAM to predict IP lookup perfor-

mance. Finally, Section 4 compares ARAM to previous work, and

Section 5 states our conclusions.

2. ARAM: THE MODEL AND ITS VALIDA­

TION
In this section, we discuss current allocation and routing practice,

and then describe how ARAM generates routing table prefixes. We

then validate ARAM’s routing tables. As well, we validate each

individual aspect of the model, and conclude by discussing the as-

pects of allocation and routing practice that ARAM does not at-

tempt to capture.

2.1 Introduction
In order to allow meaningful extrapolation of routing tables, ARAM

attempts to explicitly model the factors that shape routing tables

and the relationship between prefixes. Broadly speaking, there are

two mechanisms that shape current routing tables: the allocation of

prefixes by registries, and the advertisements of those prefixes (or

more specifics thereof) in BGP tables by ISPs and their customers.

Both these mechanisms are only informally codified, if at all. For

this reason, we use the terms allocation practice and routing prac-



tice respectively to refer to them.

2.1.1 Address Allocation Practice

In this section, we describe the essential details of the hierarchi-

cal allocation of IPv4 addresses and address prefixes. ARAM at-

tempts to capture some, but not all of these details. In Section 2.4,

we discuss local variations in allocation practice that ARAM ig-

nores.

The IPv4 address allocation hierarchy has four levels. The Inter-

net Assigned Numbers Authority (IANA, currently administered by

the Internet Corporation for Assigned Names and Numbers (ICANN))

delegates blocks of addresses to Regional Internet Registries (RIRs).

These, in turn, allocate portions of their address blocks to Local In-

ternet Registries (LIRs). With few exceptions, LIRs correspond to

ISPs. In turn LIRs assign parts of their address space to “end-users”

(organizations or smaller ISPs).

This hierarchy for address allocation has two logical functions.

Decentralization of allocation from IANA to the RIRs and then to

the LIRs promotes manageability of address allocation. Moreover,

the fact that LIRs mostly correspond to ISPs promotes (at least in

theory) the scaling of the routing system by enabling aggregatable

address assignment.

We now describe the various levels of this hierarchy in some

detail.

IANA is the guardian of the entire IPv4 address space. It dele-

gates parts of the space to the RIRs in units of /8 on-demand. IANA

holds 113 /8s [12], of which 35 have currently been delegated to

various RIRs (the rest of the address space is made up of historical

allocations and the class B space). In order to qualify for a new /8,

an RIR has to have used up 80% of its existing /8 or demonstrate

that it cannot meet an allocation request with its current /82.

There are four RIRs (ARIN in North America, RIPE in Europe,

APNIC in Asia-Pacific and LACNIC, the newest RIR responsible

for South America). Each RIR is responsible for address manage-

ment in its designated geographic region. RIRs codify their address

management practices in policy documents [13, 14, 15]. Although

there are minor regional variations in policy (which we discuss in

Section 2.4, the practices of the various RIRs are qualitatively sim-

ilar).

An RIR usually allocates address prefixes (address blocks aligned

on a bit boundary) to an LIR. Address prefixes handed out to the

LIR are called allocations. Though LIRs are usually ISPs, some-

times an RIR will allocate addresses directly to large end-users.

Such allocations from an RIR to an end-user go by various names:

”Direct Assignment”, ”Direct Allocation”, ”Provider Independent

Allocation” or ”Provider Independent Assignment”.

The smallest size of an initial allocation made by an RIR is /20.

Further allocations are made when the LIR has assigned 80% of its

previous allocations to customers. The size of subsequent alloca-

tions is determined by the usage rate of past allocations and the ex-

pected growth rate (ISPs have to make a business case to the RIRs

to demonstrate their expected growth rate). RIRs try to ensure, but

do not guarantee, that an allocation to an LIR is aggregatable with

prior allocations.

The lowest rung of the address allocation hierarchy is that be-

tween ISPs and their customers. Address blocks handed out by

ISPs to their customers are called assignments. The size of these

address blocks depends upon customer demand. It is difficult to

gauge how ISPs manage their allocated space, but we believe that

most ISPs use a first-fit or best-fit algorithm to make assignments [16,

2To reduce administrative load, this policy is currently being
changed so that an RIR may get enough /8s to last for 18 months at
a burn rate that is determined by its recent rate of allocations.

17], regardless of whether the space assigned to an individual cus-

tomer is aggregatable. Our belief is based on the fact that two freely

available software packages for making assignments (FreeIPdb [18]

and NorthStar [19]) both use a best-fit algorithm to choose address

blocks to make assignments.

2.1.2 Elements of Routing Practice

Allocation practice determines how, and to whom, address blocks

are assigned. Routing practice determines which of these address

blocks appears in the routing table, and in what form (either in its

entirety, as sub-blocks, or as more specifics of a block). ARAM at-

tempts to capture the dominant routing practices that we have been

able to infer from the data. It does not incorporate several arcane

routing practices; we discuss these in Section 2.4.

The ideal, espoused by CIDR, is that each allocation to an ISP

has exactly one entry in the routing table, and no assignments ap-

pear in the routing table. That is, each customer advertises its as-

signment as a route in BGP (or perhaps using static routing or shar-

ing an IGP with the ISP, although these practices are probably less

prevalent now), but the ISP aggregates these routes, and advertises

to its peers or its upstream provider the address prefix representing

its allocated space. Reality is far from this.

Deviations from this ideal are caused by a variety of routing

practices. Most of these routing practices result from multihom-

ing. We use this term in a very general sense to include customers

connected to multiple upstream providers and ISPs buying transit

from multiple providers. In the following paragraphs, we describe

these routing practices and their effect on the routing table.

Some ISPs split their allocation, and advertise the split prefixes

separately in BGP. For example, the allocation made to UUNET,

63.64.0.0/10 is sometimes advertised as four /12s rather than

directly as a /10. There are two generic examples of ISPs that may

adopt this practice, both of which are attempts to engineer traffic

flows. A small ISP may split its allocation and advertise differ-

ent split prefixes to different upstream providers, thereby effecting

“load sharing”: i.e., spreading in-bound traffic across different up-

stream providers. A large national ISP may have an internal level

of hierarchy in address allocation. That is, it may split its allocation

into address prefixes, one each for the different geographic regions

where it has infrastructure—customers from a particular region get

address space from the address prefix assigned to that region. The

ISP then advertises these split prefixes without aggregating them;

this allows it to have more fine-grain control of routing. (There are

some other examples where an allocation appears to have been split

in the routing table; we discuss these in Section 2.4).

A similar practice is followed by some large end-users like web-

hosting services, which have obtained a provider independent allo-

cation. Such an end-user might split its allocation and announce the

different sub-blocks from different upstream providers, for load-

sharing reasons.

The previous routing practices described scenarios in which the

original allocation does not appear in the routing table, but sub-

prefixes of that allocation do (this is not always true, since some-

times an ISP will advertise its allocation intact and also advertise

sub-prefixes; we return to this in a later section). These sub-prefixes

may not completely cover the original allocation’s address space.

We label this practice splitting, and refer to the allocation that splits

as a split allocation, and to the products of splitting as split prefixes.

As we discuss later, not all allocations split. Some allocations ap-

pear in their entirety as one prefix in the routing table. We call these

intact allocations, and the corresponding prefixes intact prefixes.

We now describe routing practices that describe how assign-

ments to customers (or sub-prefixes thereof) appear in the routing



table. There are (at least) three qualitatively different routing prac-

tices in this category.

A customer of an ISP might provide for backup connectivity by

advertising its assigned space through an upstream provider (say

ISP B) different from the one it obtained the assignment from (say

ISP A). In this case, A’s allocation appears (either intact or split)

in the routing table and is a less-specific prefix of the customer’s

assignment. A slight variant of this practice is that the customer,

instead of advertising its entire assigned space advertises a part

of it through the upstream, preferentially drawing traffic from its

upstreams. Finally, a customer which gets its addresses from one

ISP might split its assignment into multiple prefixes to perform load

sharing among different providers.

From the perspective of the routing table, these routing practices

result in more-specific prefixes being advertised in BGP. We say

that a prefix spawns more-specifics, and that these routing practices

govern spawning.

2.2 ARAM

A detailed causal model of a routing table might have attempted

to explicitly include all the processes described above: the alloca-

tion of address space to LIRs, the assignment of address prefixes to

customers, and the various routing practices described above. Such

a model, while closer to physical reality, is very difficult to define,

and even harder to validate. As we shall see, the upper-levels of the

address assignment hierarchy (IANA to RIRs and RIRs to LIRs) are

relatively easy to model. Data about assignments is available, and it

may be possible to construct models for this. However, succinctly

capturing the physical processes underlying routing practice seems

to be beyond our reach today. While the kinds of routing practices

that occur today are probably small in number, economic and other

considerations determine which ISPs and which customers follow

what kinds of routing practices. Capturing these considerations is

left for a future generation of models.

ARAM is a less ambitious, but nonetheless very useful, hybrid

model, with three parts. First, it models the allocation of address

prefixes from RIRs to LIRs. Then, it incorporates knobs that deter-

mine how these allocations appear in the routing table—i.e., whether

the allocation is split, or appears intact. Finally, it models the ap-

pearance of customer assignments in the routing table by providing

knobs that determine prefix spawning (Section 2.1.2).

In the rest of this section, we describe these three components

of ARAM, and provide intuitive justification for our design of the

model. In Section 2.3, we validate ARAM’s design, and in Sec-

tion 2.4 we discuss the many variations in allocation and routing

practice that are not captured by ARAM.

Before describing the internals of ARAM, we describe its inputs

and outputs. The output of ARAM is a routing table of a desired

size. More precisely, the output is the collection of address prefixes

that might appear in a routing table of this size, and does not include

other routing attributes that might be associated with these prefixes,

such as AS paths, next hops, or BGP communities. The desired

size of the routing table is not an explicit input to ARAM; rather it

is implicitly defined by five input parameters:

� The number of allocations made by RIRs to LIRs is deter-

mined by a parameter N .

� F

split

is the probability of an allocation splitting and C

split

is the percentage of address space of a split allocation that is

advertised in the routing table

� Finally, F
spawn

is the probability that a split or intact prefix

spawns one or more prefixes, and C

spawn

is the fraction of

address space of a split or intact prefix that is advertised in

the routing table as spawned prefixes (i.e., as more specific

prefixes).

Apart from N , the other parameters encode the aggregate impact

of various routing practices described in Section 2.1.2. Exporting

these knobs allows users of the model to extrapolate how changes

in routing practice might affect the “shape” of routing tables (i.e.,

the relationship between prefixes).

Modeling Allocations

The first step in generating a routing table in ARAM is to generate

N allocations. Following current registry practice, ARAM gener-

ates allocations whose prefix length is between /10 and /20. The

number of prefixes N(x) of length x (more precisely, x is the pre-

fix length minus 9, so that the shortest prefix generated is a /10) is

determined by a function of the formN(x) / x

k for some constant

k.

The intuition for this simple form of allocation distribution arises

from the observation that RIR allocation policy is based on docu-

mented need. To get address space of a certain size, an LIR must

justify the need for that size either by presenting a business case

or by demonstrating an appropriate rate of assignments to cus-

tomers [14]. Thus, a large ISP is (eventually) allocated a large

block of addresses (shorter prefix length), and small ISPs are al-

located smaller blocks (longer prefix length). Since the distribution

of ISPs can plausibly be said to be a power law (following the more

general, and well-established empirical observation that companies

are power-law distributed by size [20]), we can expect that N(x)

follows the form described above.

This model makes one important simplification. In practice, an

LIR is progressively allocated space based on need and, because

these allocations are not guaranteed to be contiguous, an LIR may

have several distinct prefixes allocated to it. ARAM, however, im-

plicitly allocates one prefix to an LIR, and assumes that this prefix

is the aggregated result of several allocation requests. Furthermore,

this version of ARAM hard-codes the value of k = 3:4 into the

model. In principle, of course, we could have exported k to enable

the user of a model to explore how quantitative changes in the allo-

cation distribution affect routing tables. We have left this for future

work.

The mechanics of allocation in ARAM work as follows. ARAM
maintains a pool of /8s from which it makes these allocations. As

a matter of detail, the /8s that ARAM uses are the same ones that

are in use by RIRs, or that have been reserved by IANA for future

use. There are about 113 such /8s. ARAM repeatedly performs

the following steps N times (assuming that the /8s are numerically

ordered):

� It draws a random sample from the distribution N(x) / x

k.

This determines the prefix length of an allocation.

� It allocates this prefix from the first /8 whose current utiliza-

tion is less than 80%.

In this way ARAM sequentially fills up /8s until N allocations have

been made.

Modeling Advertisement of Allocations

The next step in the model determines how allocations appear in

the routing table. As we discussed in Section 2.1.1, although one

might expect an allocation to appear intact in the routing table, a

variety of prevalent routing practices cause allocations to “split”

and appear as a collection of sub-prefixes in the routing table.

Rather than attempt to model these routing practices, ARAM de-

fines the frequency and extent of this practice using two parameters.

F

split

defines the percentage of allocations that split. For each al-



location, ARAM tosses a coin with probability F
split

to determine

whether that allocation is split or intact. When an allocation splits,

in practice, the collection of split prefixes corresponding to that al-

location does not usually cover the allocation’s address space. Intu-

itively, these split prefixes cover only that part of the address space

actually utilized (assigned to customers). To model these, ARAM
uses the C

split

parameter and, for each split allocation, generates

a number of prefixes such that the address space covered by those

prefixes is as close as possible to C
split

times the address space of

the split allocation.

Into what prefixes does an allocation split? From our analysis of

the data, there does not appear to be a dominant pattern of alloca-

tion splitting, nor does there appear to be a rationale (e.g., larger

allocations splitting in a certain way) for the way split allocations

appear in the routing table.

There is one important exception to this. Some web-hosting and

content providers (these are not the only examples of such practice;

the other examples defy classification but are numerous) that obtain

their own allocations from RIRs sometimes split into a large num-

ber of small prefixes (e.g.,/24s). Each such prefix intuitively repre-

sents one data-center or part thereof. ARAM captures this practice

by assuming that a fixed fraction (20%) of split allocations split in

this way.

For the rest of the split allocations, we use a rather ad-hoc split-

ting rule. Two observations guided the design of this rule. First,

in practice, allocations do not split into equal-sized address blocks.

In particular, when splitting is for the purposes of load sharing, one

might expect that skewed traffic distributions to different parts of

the address space will result in size diversity among the split pre-

fixes. Second, for reasons of routing manageability, we suppose

that allocations will split into a relatively small number of prefixes.

The splitting rule we use is:

Split the allocation into prefixes of length /(i+ 2) and

/(i+3), where /i is the length of the original allocation.

The number of /(i + 2)s and /(i+ 3)s are determined

as follows: for every /(i + 2), two /(i + 3)s are also

produced (i.e., equal amounts of address space appear

as /(i+2)s and as /(i+3)s. Finally, as many /(i+3)s

are added as are necessary to cover up to C
split

times

the address space of the allocation.

Modeling More Specifics

In this final step of the model, ARAM determines the prefixes which

are spawned from intact or split prefixes. Essentially, spawned pre-

fixes in a routing table appear as more-specifics of other prefixes,

and represent various routing practices: backup routing and cus-

tomer load sharing among upstreams (Section 2.1.2), or an ISP an-

nouncing its allocation as well as prefixes split from that allocation

(Section 2.1.1).

As with splitting, rather than modeling these routing practices,

ARAM encodes their effect using two parameters: F

spawn

, and

C

spawn

. F
spawn

is the probability that an intact or split prefix ac-

tually spawns at least one more-specific prefix. Intuitively, not all

such prefixes spawn more-specifics. Consider a cable ISP that splits

up its allocation; because such an ISP serves residential customers

or small businesses, the ISP does not have customers who engage

in multi-homing. Similarly, an end-user who receives a direct allo-

cation from the RIR would not need to spawn prefixes if it does not

perform load sharing.

Furthermore, not all the space covered by an intact or split prefix

appears as spawned prefixes. For example, only some of an ISP’s

customers may actually multi-home, resulting in more specifics

in the routing table. Once ARAM has decided, based on a coin

toss with probability F

spawn

whether a given intact or split prefix

spawns some prefixes, it then generates spawned prefixes such that

C

spawn

of the address space of the original prefix is covered by

spawned prefixes.

Finally, as with splitting, our rule for generating spawned pre-

fixes represents a delicate compromise between trying to capture

diversity in routing practice, and keeping the model simple and

understandable. We have two spawning rules. First, all spawned

prefixes are in the range /19-/24. This rule follows from ISP fil-

tering practice which limits the longest prefix that may appear in

backbone routing tables to /24. In addition, very few customers get

blocks larger than /19 from ISPs. Second, to generate spawned pre-

fixes for a given “parent” prefix, ARAM repeats the following two

steps until the fraction C
spawn

of the parent prefix is covered.

� Pick the largest i between 19 and 24 such that one /i, two

/(i+1)s, four /(i+2)s and so on up to 224�i /24s can be gen-

erated within the spawnable address space. (The basic idea

is that equal address space is devoted to each prefix length).

The motivation for this rule is its simplicity. It closely paral-

lels our splitting rule; in that case, however, routing manage-

ability was used as a motivation to keep the number of split

prefixes relatively small. Such a consideration isn’t neces-

sary for spawning since an ISP cannot, in general (of course,

there may be exceptions to this) control what its customers

do with their assignments.

� Assign each prefix, without overlap, to a random location

within the parent prefix’s address space. The intuition behind

this is that from the perspective of an ISP, which customer de-

cides to advertise its assignment for backup or load balancing

is generally uncorrelated with the address space, so that the

more-specifics can be expected to be quite random.

In summary, notice that ARAM models a two-depth routing ta-

ble. By depth of a prefix, we mean the number of its less specific

prefixes or ancestors. All intact and split prefixes appear at depth

zero of the routing table (i.e., they have no less specific routing ta-

ble entries). All spawned prefixes appear at depth one and have

one parent (either an intact or a split prefix) from which they are

spawned. Actual routing tables have a small percentage of prefixes

at other depths, a fact we discuss in Section 2.4.

2.3 Validation of ARAM

In this section, we validate ARAM by comparing actual rout-

ing table snapshots against comparably sized tables generated by

ARAM. We then discuss each aspect of ARAM’s design, and pro-

vide quantitative justification wherever possible.

2.3.1 Data Sources, Assumptions and Methodology

To validate our modeling of allocation practice, we use data from

the three main RIRs (ARIN, RIPE and APNIC)3. Databases of allo-

cations made by the RIRs are publicly available [24, 23, 25]. LIRs

register their assignments in a Whois database; a bulk data dump

of these assignments are also available from the RIRs upon written

request.

We processed the allocation databases, to sanitize them, in two

ways. First, while most allocations are powers of two, some (about

0.5%) cannot be expressed as a single prefix. This may happen

when an RIR makes allocations which are not a power of two [21]

or if two contiguous prefixes of different sizes were allocated to

the same organization [22]. We break up such allocations into the

3A fourth, LACNIC, was established only in Nov 2002 and is not
included in our validations.
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Figure 2: August 1998: Prefix length distributions

smallest possible number of prefixes. Second, occasionally some

ISPs will announce aggregated entries of their allocations. In our

study, we treat the aggregate as the allocation. This processing re-

sults in two invariants; all allocations can be expressed as address

prefixes, and an allocation cannot be covered by a less specific pre-

fix from the routing table.

For validating and understanding routing practice, as well as to

calibrate ARAM’s performance, we used routing tables from Route

Views [26]. We processed the routing tables in two important ways.

First, we removed historic routing table entries (those prefixes that

belonged to address space that had been allocated prior to the es-

tablishment of the registries). ARAM does not attempt to model

these historic prefixes. Since our goal is to extrapolate current allo-

cation and routing practice, we argue that the effect of these histor-

ical prefixes will soon become negligible. Indeed, in 19974 , these

historical prefixes formed almost 45% of the routing table. As of

this writing they account for almost 25% of the number of prefixes.

Second, we removed prefixes longer than /24. Most ISPs filter pre-

fixes longer than /24, although some such prefixes do appear in the

Route Views database (possibly because the Route Views’ peers do

not apply filtering rules to their feeds).

2.3.2 Validating ARAM

In this section, we describe the results of several kinds of valida-

tion tests we performed on ARAM. Recall that the goal of ARAM
is to plausibly capture the relationships between prefixes. This no-

tion is somewhat difficult to precisely define, and we define instead

three indirect metrics that capture various aspects of the relation-

ships.

Our first metric is the normalized RMS error in the prefix length

distribution. This metric computes the root mean square error be-

tween the prefix length distribution generated by a model and the

prefix length distribution in real routing tables. We normalize the

RMS error by the number of prefixes in each table, resulting in a

“normalized RMS error per prefix” metric.

Our second metric is the depth ratio, the ratio of the number of

prefixes at depth zero to that of the number of prefixes at depth one

in a routing table. It attempts to capture a different facet of prefix

relationships than the length distribution—how the less specifics

and more specifics relate to each other.

Our final metric is a slightly more fine-grained measure of pre-

fix relationships. The unibit trie density captures the number of

4While we would have liked to study the evolution of the routing
table soon after the deployment of CIDR, we have been unable to
do so due to the lack of periodic routing table snapshots from that
era.

nodes in the unibit trie [36] per prefix in the routing table. Unibit

trie density is inversely related to prefix density; when prefixes are

more closely clustered together in a routing table, fewer unibit trie

nodes are required per prefix. This metric captures the relationship

between parent prefixes and spawned prefixes. For example, when

the difference in the lengths of a parent prefix and a spawned pre-

fix is large, the number of unibit trie nodes is more than when the

difference is small. Similarly, if of three prefixes, one is the parent

of the other two, the unibit trie is likely to be smaller than a table

where these prefixes were randomly scattered across the address

space.

Using these metrics, we not only compare ARAM to actual rout-

ing tables, but we also calibrate ARAM against5 a random scatter

model. This scatter model simply scales the prefix length distribu-

tion of the current routing table by a constant factor to get the prefix

length distribution of a larger (or smaller) table. It then “scatters”

these prefixes randomly among the 113 /8s that are currently re-

served for use by IANA.

Our performance comparisons use 20 routing tables dating back

to November 1997, approximately6 one every three months.

2.3.2.1 Prefix Length Distribution.
Figure 1 plots the normalized RMS error per prefix for ARAM

and scatter. Notice that ARAM’s RMS error is uniformly low (less

than 6% over the 5-year measurement period). This is remarkable

because ARAM is not explicitly engineered to produce a specific

prefix length distribution (it only has coarse-grained prefix length

ranges encoded in it). What is more remarkable, however, is that

in producing an ARAM table to match a routing table at time T, we

used the number of allocations that had been made by the registries

at T. Furthermore, in generating the matching tables, we used one

set of values for the split and spawn parameters. (This is testament

to the fact that, statistically speaking, the incidence of splitting and

spawning hasn’t changed much over the 5 years.) To give the reader

a visual sense of the closeness of the match, we compare the prefix

length distributions for three months of our measurement period

5Another natural model to compare ARAM to would have been
RTG [27]. For various logistical reasons this hasn’t been possi-
ble. Despite our efforts, the source code for RTG did not run to
completion when asked to generate large tables. Furthermore, the
RTG paper does not include enough details to reproduce the prefix
generation part of the generator. We are working with the authors
of [27] to resolve some of these issues. In the meantime, we resort
to a qualitative comparison between the models (Section 4).
6In one case, incomplete data in the Route Views database pre-
vented us from taking samples exactly three months apart.
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Figure 4: May 2002: Prefix length distributions

(Figures 2, 3 and 4).

Scatter has lower RMS error than ARAM, in general. This is

because scatter, by design, attempts to match the prefix length dis-

tribution. The reason the RMS error is non-zero in some cases is

that we generated all the scatter tables using the prefix length dis-

tribution from one instance of the actual routing table.

2.3.2.2 Depth Ratio.
Figure 5 plots the depth ratio for ARAM, scatter and the routing

table. ARAM clearly matches the depth ratio of each instance of

the routing table, but this is not surprising since ARAM is implic-

itly engineered (given its split and spawn parameters) to generate a

number of prefixes at depth zero and depth one that is comparable

to those in a real routing table.

However, it is important to note that scatter gets the depth dis-

tribution completely wrong, and it is not hard to see why. Because

prefixes are scattered randomly among the /8s, it is less likely that

a prefix will be at depth one (i.e., a more specific) especially for

smaller routing tables. This metric starkly illustrates (as does the

next) how ARAM clearly outperforms scatter.

2.3.2.3 Unibit Trie Density.
Finally, Figure 6 plots the unibit trie density for ARAM, scat-

ter, and the real routing tables for our twenty measurement points.

Scatter grossly overestimates the density, because its prefixes are

essentially uncorrelated with respect to where they are placed in

the address space.

However, a real routing table exhibits significant relationships

between prefixes, resulting in smaller unibit tries for the same pre-

fix length. ARAM performs well; for current routing tables, ARAM
is off by less than 7% in this metric. This is encouraging, especially

considering the simplifications we make in the model (Section 2.2)

and the several allocation and routing practices that our model does

not capture (Section 2.4).

2.3.3 Validating ARAM’s Design Assumptions

Having validated the performance of ARAM, we now quantita-

tively justify many of our design decisions.

2.3.3.1 Allocation Size Distribution.
An important component of ARAM is that the prefix length dis-

tributions of allocations is well modeled by a function of the form

y = x

k (Section 2.2). Figure 7 depicts this fit with the actual

data. The R-squared value for this fit is 0.92. The fit deviates from

the actual data at two prefix lengths: /16 and /19. Pre-CIDR alloca-

tions of class B address space account for the deviation at /16. The

deviation at /19 is essentially a boundary effect; until recently, the

RIRs used /19 as the minimum allocation size
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Figure 7: The allocation size distribution fits y = x

k.

An exponential also fits the data well, although, as we have dis-

cussed before, there is an intuitive justification for the algebraic

form (that larger ISPs get smaller prefixes, and ISP sizes can be

expected to follow a power-law).

There is one caveat to this distribution. ARAM assumes that the

maximum size of an allocation is /10 since currently there are no

allocations whose prefix length is smaller than 10. ARIN allocates

(at a given time) blocks no larger than a /13, and the existing larger

allocations that one sees in the databases are the result of contigu-

ous allocations made over time. We expect this policy to continue,

since a larger maximum allocation size reduces an RIR’s /8 signif-

icantly (at a given time, each RIR only has a small number of /8s

that it allocates from). The other RIRs may change their policies to

have a maximum allocation size too.

ARAM, for simplicity, starts allocating prefixes from a fresh /8

when the current /8’s utilization reaches 80%. In practice, /8s can

have a utilization ranging from 80% to 99%. We learnt from AP-

NIC [29] and RIPE [30] that they use their /8s up to 80% before

asking IANA for more. We also learnt from ARIN [28] that they

do not make fresh allocations from a /8 whose usage has crossed

80%; such a used /8 is only used for growing allocations which

have already been made from it (recall that RIRs try to make con-
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tiguous allocations). This is a practice followed in general, by all

RIRs. However the usage or non-usage of allocations would not

have a major effect on trie properties because only a small percent-

age of prefixes are intact prefixes. ARAM also leaves one partially

used (i.e., with less than 80% utilization) /8 per RIR. In practice,

there may be more than one such /8 per RIR; IANA may some-

times choose to give two new /8s to an RIR at once [28].

2.3.3.2 Modeling Intact and Split Prefixes.
ARAM represents the fraction of prefixes that split using a single

parameter F
split

. This is a simplification. In practice, we see that

the fraction of split allocations varies by prefix length (Figure 8).

We could have used a distribution as an input, but in the absence of

a clearer understanding of why splitting varies with prefix length,

doing this would not have helped us understand how routing prac-

tice contributes to extrapolations. Obtaining this understanding is

left for future work, but a possible explanation for the downward

trend for F
split

is that larger allocations split more frequently be-

cause they need finer grain control over traffic.

We earlier gave some reasons for allocation splitting: geographic

distribution of prefixes, and load sharing. One relatively minor, but

interesting regional variation is caused by a small number of LIRs

in the RIPE region (e.g., the National Institute for R&D in Infor-

matics of Romania) which do not provide Internet connectivity to

their assignees. Their allocations appear as split allocations in the

routing table.

Recall that our splitting rule (Section 2.2) sometimes splits an

allocation of length /i into prefixes of length /(i + 2) and /(i + 3).

Actual routing practice is much less cleaner than our rule would

suggest (details omitted for brevity), and the incidence and extent

of splitting varies with allocation size.

2.3.3.3 Modeling Spawned Prefixes.
In Section 2.2, we assumed that spawned prefixes are in the range

/19 to /24, largely because ISP assignments fall into that range. The

assignment records bear this out. Less than 0.4% of all assignments

registered in the whois databases (Section 2.3.1) are larger than

/19. Even the largest ISPs rarely make assignments larger than /19.

ARIN and APNIC require that they be consulted before any as-

signment larger than a /19 is made. ARIN allows extra-large ISPs

to consult only when an assignment larger than /18 is to be made.

RIPE has no such maximum assignment size. We learnt that there

are few LIRs who would make assignments larger than /19 in the

RIPE region [30].

ARAM also assumes that the spawned prefixes are randomly

scattered within a parent’s address space. We empirically observed

that assignments made by ISPs which appear in the routing table

follow no particular pattern across the ISPs’ address space. This

is consistent with the intuition that customers may generally multi-

home at will, and ISPs generally do not attempt to make multihom-

ing assignments from a separate block (there are some exceptions).

Our choice of single parameters F
spawn

and C
spawn

for the fre-

quency and extent of spawning is clearly a first order approxima-

tion. As Figure 8 shows, F
spawn

actually varies with prefix length,

but without an understanding of the reasons behind this variation,

we were loathe to include a richer parametrization in the model.

Finally, our spawning rule is biased towards producing a larger

number of longer prefixes. Thus, ARAM produces a large number

of /23s and /24s (see Figure 2 for example). The larger number of

/24s produced by ARAM is consistent with the data and is caused

by a boundary effect; ISPs filter their routing tables at /24, and

many small organizations that want to multi-home advertise /24 7.

However, the bias shown by the spawning algorithm towards /23s

is an artifact of the simplistic choice of spawning rule, and deviates

from the data a little. Overall, however, as we have shown above,

the routing tables produced by ARAM qualitatively match several

years’ worth of routing tables.

Finally, ARAM generates prefixes only at depth zero and depth

one (recall that depth of a prefix is the number of less specific pre-

fixes in the routing table). Over the last 5 years, consistently, fewer

7This fact is also recognized in RIR policy. ARIN recently ratified
a policy, which allows multihoming as a justification for a customer
to get a /24 from an LIR (i.e., the requirement that 25% of an as-
signment be used immediately is waived) [31]



that 10% of the routing table prefixes have a depth greater than one

(detailed data omitted for brevity).

2.4 Discussion of ARAM

In our narrative so far, we have described some variations in al-

location and routing practices that our model does not capture. In

this section, we discuss several more known routing and allocation

practices that do not appear in ARAM.

Variations in Allocation Practice

In some geographic regions, there is an added level of hierarchy in

address allocation. For example, in the APNIC region, there are

five National Internet Registries (NIRs) [32]. This practice has,

however, been discontinued (as of Dec 1, 2002 [32]). Future allo-

cations will be made from the APNIC address pool on request by

the NIR. Therefore, we did not consider NIRs and their policies in

the model. We also excluded NIR allocations and prefixes derived

from them in our analyses.

ARAM does not incorporate reallocations and reassignments, whereby

a customer of an LIR may re-assign parts of its address space to its

own customers. This practice has been prevalent for some time

now. Though it was recognized in ARIN’s policy, it has only re-

cently been formally recognized by APNIC and RIPE [33, 34]. We

leave for future work the addition of such features to the model.

In practice, some allocations (around 10%) are not routed i.e.,

they are wasted. Our model does not account for these, primarily

because the causes of this wastage aren’t clear, and our analyses

ignore these.

Variations in Routing Practice

Our model does not generate some entries that might appear in ISP

backbone tables. For example, routers may, in theory, internally

maintain unaggregated customer routes (routes corresponding to

customer assignments) and only aggregate these routes on exter-

nal peering sessions. Such unaggregated customer routes are not

included in ARAM.

In our model, we have assumed that a /24 is the smallest globally

routable prefix. This is generally true, but there are at least two

large ISPs whose route filtering policies are stricter.

Our model assumes that spawned prefixes are uniformly dis-

tributed across their parent prefix’s address space. This captures

multi-homing for backup reasonably well, where a customer adver-

tises its assignment through another upstream provider. It does not,

however, capture load sharing (or load balancing) practice, where

a customer splits its assignment into multiple adjacent prefixes and

announces them through different upstreams. We leave modeling

of load sharing prefixes to future work (a simple way to incor-

porate load sharing would be to have another set of F
spawn

and

C

spawn

parameters for load sharing, together with a slightly differ-

ent spawning rule that clustered prefixes within a parent’s address

space). We do point out, however, that ARAM is conservative in the

following sense—for a given number of prefixes, ARAM overesti-

mates the routing table memory requirement compared to a model

that would include load sharing. This is because load sharing pre-

fixes are adjacent, and many such prefixes can be “compressed”

into a multibit trie node than randomly distributed prefixes such as

the ones ARAM assumes.

2.5 Exploring Routing Table Structure
We have validated ARAM against actual routing tables. In Sec-

tion 3, we show how to use ARAM to evaluate the scaling behavior

of lookup techniques. However, it is also possible to extrapolate

routing table growth behavior and abstractly study the impact of
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spawn

and unibit trie size.

changing various parameters on the structure of routing tables. Be-

cause that is not our focus in this paper, we do not conduct an exten-

sive study of routing table structure, but do present one interesting

result that illustrates how ARAM might be put to use for such a

study.

Figure 9 reports the results of a simple experiment. Consider a

scenario where RIRs froze address space allocations, and all rout-

ing table growth was due to increased multi-homing and load bal-

ancing. Such a scenario, while unlikely, could be explored in ARAM
by fixing N and varying C

spawn

. Figure 9 plots the number of pre-

fixes and the number of unibit trie nodes as a function of C
spawn

(we could have plotted unibit trie density, but chose this represen-

tation for pedagogical reasons). While the number of prefixes in-

creases linearly, the size of the unibit trie (a representation of rout-

ing table structure) falls off noticeably from the linear. This implies

that, given two tables of the same size, the one with more spawned

prefixes is likely to be more compact. In a general sense, ARAM
allows us to quantify behaviors like these and relate them to rout-

ing practice. In a specific sense, this behavior has implications for

certain kinds of routing table structures, which we explore in the

next section.

3. EVALUATING THE SCALABILITY OF

IPV4 LOOKUP TECHNIQUES
In the introduction we said that router vendors need a model that

is able to generate realistic tables of a million or more entries in

order to evaluate the performance of algorithmic solutions for IP

lookup. The validation in the last section provides some confi-

dence that ARAM generates realistic tables. In this section we ap-

ply ARAM to produce larger tables in order to test the scalability of

a specific algorithmic solution when compared to Ternary CAMs.

3.1 TCAMs and Multibit Tries
TCAMs (Ternary Content Addressable Memories) can store the

values 0, 1 and X (a “don’t care” value). The ability to store don’t

care values makes TCAMs apt for IP prefix lookups. Essentially,

TCAMs can compare a given destination address to all stored pre-

fixes in parallel and return the longest match in one memory access.

To store a w bit prefix, a TCAM would use w cells (i.e., each cell

stores one bit of information). For example, IP addresses would re-

quire 32 cells per prefix. Variations in routing table structure have

no effect on the memory requirements of TCAMs.

By contrast, algorithmic solutions are based on storing prefixes

in tries. High-speed algorithmic solutions store tries in SRAM.

Multibit trie algorithms process multiple bits in the trie in a single
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Figure 11: This figure shows what happens if the prefixes
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The external bitmap is 1001 because the the first and the last

child nodes of the root exist. The memory required is 73 bits.

memory access and are therefore faster. However a multibit trie in-

creases the memory required for the lookup structure. To offset this

storage increase, modern implementations that store the forwarding

table in SRAM generally compress multibit trie nodes.

In this paper, we study the scalability of the Tree Bitmap [11]

compression algorithm. While the Tree Bitmap algorithm is basi-

cally a refinement of the seminal Lulea [10] algorithm, it appears

to be more popular because it allows fast updates. CAMs have

very fast updates [45], and, to keep up with the competition, ven-

dors prefer implementing algorithmic solutions with fast updates.

In any case, we believe that similar scaling results will hold for any

compressed multibit trie implementation, of which the Tree Bitmap

algorithm can be considered a representative.

An example of a multibit trie is shown in Figure 10, where the

root node is a multibit node of stride (the number of bits processed

in a single memory access) two. The Tree Bitmap algorithm uses

bitmaps to encode the multibit trie compactly. The bitmaps are of

two kinds internal and external. These two bitmaps are sufficient to

encode a multibit node. The internal bitmap (2stride � 1 bits long)

records the prefixes present in a multibit node. The external bitmap

(2stride bits long) records which child nodes of the multibit node

exist. Thus, each multibit node contributes at most one internal

bitmap and one external bitmap.

Along with the bitmaps, each multibit node maintains up to three

pointers. The child pointer points to the child nodes; since the

child nodes are stored contiguously, one pointer suffices to access

them. The results pointer points to an array of next-hops. The third

pointer is to the internal bitmap - it exists only when the multi-

bit node contains prefixes. Each node also maintains flags that are

associated with details of the algorithm and may vary with imple-

mentations.

For illustrative purposes, consider 8-bit IP addresses and a three

level multibit trie with strides of 2, 3 and 3 (as in Figure 10). The

root node of the multibit trie can have four child nodes since its

stride is two. The external bitmap of the root node in Figure 10 is

1000 because only the first child node (of the four possible chil-

dren) exists. Multibit trie nodes that neither contain a prefix nor

have pointers to lower levels of the trie are assumed to have been

removed.

The child multibit trie node in Figure 10 also has an internal

bitmap of 0001100 which encodes the prefixes it contains. The

bitmap is of length 7 because there are 7 nodes in the subtrie; the

first bit corresponds to the root, the next two bits to the two children

of the root, and the last four bits to the four leaves. The last four

bits are 1100 because only the first two leaves have stored prefixes.

To calculate the memory used in Figure 10, suppose that the

memory is bit addressable. Also assume that 5 bits per node are

required for flags. The memory used by the root node is 17 bits

(8 bits for child pointer, 4 bits for the external bitmap, and 5 bits

for flags). The child node uses 28 bits (8 bits results pointer, 8 bit

pointer to the internal bitmap, 7 bits for the internal bitmap, and 5

bits for the flags)8.

Unlike TCAMs, the memory requirements of multibit tries de-

pends upon the relationship between the various prefixes in the

routing table. To illustrate the importance of trie structure, consider

the slightly different routing table containing 0000*, 1101* in Fig-

ure 11. This small change leads to a fairly big change in the mem-

ory requirement because of the need to create a second child node.

The final result, using similar calculations, is 17 + 28 + 28 = 73

bits. Note that a TCAM would have needed just 2� 8 = 16 bits to

store these two prefixes.

The moral of the examples in Figure 10 and Figure 11 is that the

structure of the trie has a significant effect on the memory required

to store the lookup data structure.

3.2 The Transistor Model
Our metric for comparing lookup techniques is the number of

transistors required to store a given number of prefixes. While there

are other important metrics like power (a typical algorithmic solu-

tion can consume six times less power than a TCAM of the same

size), TCAM vendors have been working to reduce power using

clever banking techniques. Transistor count appears to be a more

fundamental differentiator. Lesser transistors mean more chips per

wafer or higher yield. Transistor count can also act as a product

differentiator in the following sense. For a given chip area and

technology, there is a maximum number of transistors that can be

fit on a chip. If designers can provision transistor counts for storing

prefixes, they can allocate the remaining transistors on the chip for

additional fast-path packet processing functionality.

TCAM product offerings use between 14 and 16 transistors to

store one bit of data (called a cell). To store an IP prefix, TCAMs

will need 32 bits, or between 448 and 512 transistors. By contrast,

six transistors are used to store one bit in SRAM. Therefore, we

calculate the number of transistors taken by a multibit trie solution

by multiplying the number of bits by six. For the example we dis-

cussed in Figures 10 and 11, a 14-transistor per cell TCAM would

have used at least 224 transistors. The Tree Bitmap scheme would

have required 270 (6� 45) or 438 (6� 73) transistors respectively.

Multibit trie algorithms also require a fixed overhead of logic for

implementing the algorithm, and for the overhead of memory al-

location and deallocation. From discussions with a vendor who

has implemented a fully pipelined algorithmic solution, 20 mil-

lion transistors appears to be a fairly conservative estimate for the

lookup logic 9. . This overhead gets amortized over the number

8Some of these overheads may appear large but are actually quite
small for 32 bit addresses; our example used 8 bit addresses for
illustration.
9This overhead is for a programmable processor and 32 pipeline
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Figure 14: The density of the trie has been increasing with time.

of prefixes. Clearly, TCAMs do not require this extra overhead as

their lookup logic is (effectively) distributed in each bit.

3.3 Applying ARAM to Evaluate Scalability
In Section 2.3 we found that by simply varying the number of

allocations while keeping the other parameters fixed, we obtained

a good match with the routing table’s prefix length distribution,

depth distribution and trie density. As another measure of how

well ARAM matches current routing tables, Figure 12 compares the

number of transistors that would be required, using the Tree Bitmap

algorithm, for ARAM’s routing tables, the actual routing table, and

those produced by the scatter model. Note the close match between

ARAM’s tables with the actual routing tables over the entire dura-

tion of our measurement period. By contrast, the scatter model is

significantly inaccurate.

We now embark upon our scaling comparison of TCAMs and

multibit tries. For our baseline comparisons, we fix all ARAM pa-

rameters to be those we used to match existing routing tables, and

only vary the number of allocations N . The transistor counts used

for these larger tables are shown in Figure 13. The number of tran-

sistors taken by TCAMs are shown as straight lines: CAMs-i rep-

resents an i transistor per cell TCAM. We see that unless TCAM

technology advances to the point where it becomes feasible to use 8

or fewer transistors per cell, multibit tries will scale better. DRAM-

based CAMs are viable for high-speed core routers.

So far we have evaluated scaling in transistor counts based on

extrapolating current routing practices as embodied by the ARAM
parameters required to match current routing tables. It is worth ask-

ing what happens to these projections if routing practices change

and the parameters deviate from the values we chose.

If routing practices change in the direction of more prefix spawn-

ing (caused, for example, by significant increase in load-sharing),

we claim that the multibit trie algorithm will do even better. More

prefixes will fit in the same multibit trie node, thereby amortizing

the overhead of flags and bitmaps even better. Figure 16 shows

that as C
spawn

increases, the memory taken by the multibit trie

algorithm increases slower than the size of the routing table. Oth-

ers [37] in the community have been observing, for some time now,

the increase in multihoming practice. Although we used just one

set of values for the parameters—except for the number of alloca-

tions N—to approximately match all past routing tables, we have

observed that the C
spawn

in real routing tables has been steadily in-

stages. A much smaller overhead is reported in [3]. Our overhead
of 20 million transistors is thus very conservative. Smaller over-
heads only slant the comparison further in favor of SRAM-based
algorithmic solutions.
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Figure 15: The size of the routing table is increased by increas-

ing C

spawn

(other parameters are kept constant). We see that

multibit tries scale better.

creasing, although almost imperceptibly. This is evidenced by the

decrease in unibit trie density over time from 3.2 to 2.9 or so, Fig-

ure 14; that is, prefixes have become more “clustered” with time.

A similar behavior is also seen in Figure 17; when F
split

increases,

there are more load shared prefixes at depth zero of the routing ta-

ble. Varying C

split

shows a similar scaling (see Figure 15). In

general, load shared prefixes are clustered together.

On the other hand, with changes in some routing practices, com-

pressibility of multibit tries is not improved with increasing table

size. For example, increasing F
spawn

shows a linear scaling of the

multibit trie algorithm (Figure 18).

An interesting aspect of varying C

spawn

is not apparent in Fig-

ure 16, but does become clearer in Figure 19. Notice that asC
spawn

increases, the shape of the tree, as captured by the unibit trie den-

sity, changes non-monotonically. In particular, we see a peak in

the number of unibit nodes per prefix around C

spawn

=0.1. This

non-monotonicity allows us to compute the worst-case number of

transistors for a given number of allocations. To do this, we use a

value of C
spawn

of nearly 0.1, and set F
spawn

to 1 and F
split

to 0.

For the same number of allocations which contribute to the present

day routing table, we found that the worst case parameters above

generated 85,530 prefixes which required 541 transistors per pre-

fix in the multibit trie algorithm. However the nominal parameters

produced a routing table with 77,817 prefixes which required 206

transistors per prefix. The intuition is that the value of C
spawn

is

low enough not to allow the cost of a multibit node to be amortized

over many prefixes, but is high enough to ensure that all depth zero

prefixes spawn. Since TCAMs require 384-512 transistors per pre-

fix, we can say that TCAMs would have scaled better (at least in

the near term) if there had been no load sharing (and other forms of

splitting) and all allocations spawned multihoming assignments.

We say near term because as the number of allocations increases,

the density of the trie increases enough to allow the multibit trie

to better TCAMs in the number of transistors. For this specific

set of parameters, multibit tries would overtake TCAMs when the

number of allocations grows to thrice their present number (graph

not shown).

4. RELATED WORK
In this section, we briefly survey the literature on IPv4 address

lookup algorithms and on address allocation and routing growth.

IPv4 address lookup techniques have received a fair amount of

attention in recent years [36, 1, 2, 10, 11], and we do not attempt

to be exhaustive in our survey of this sub-field. However, broadly
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speaking, there are two classes of lookup techniques: algorithmic

approaches, exemplified by [11], attempt to cleverly compress for-

warding tables compactly into memory, while hardware approaches

rely on (ternary) content-addressable memories (CAMs) to perform

fast lookup. We have described these schemes in Section 3.1.

Most work to date has evaluated their schemes on current routing

tables. However, as we have just shown, the memory requirements

of some of these lookup schemes can be sensitive to the relationship

between prefixes. To our knowledge, no work has examined how

these algorithms scale with routing table size.

However, to capture prefix relationships, we need to be able to

generate realistic routing tables. One closely related piece of work,

RTG [27], has attempted to generate routing tables for the purpose

of generating realistic BGP updates. RTG does not attempt to ex-

plicitly model prefix relationships in the BGP routing tables that it

generates. Rather, it takes an empirical approach: given a current

routing table, it extracts some statistics from the table, and attempts

to generate tables with comparable statistics. Furthermore, to ex-

trapolate routing table sizes to an order of magnitude larger than

today, it is necessary to explicitly (if only approximately) capture

how allocation and routing practice affects routing table entries.

This enables an examination of how quantitative deviations from

current routing practice affect IPv4 lookup algorithms. ARAM, un-

like RTG, explicitly models address allocation at the RIR level, and

contains parameters that model multihoming and traffic engineer-

ing.

There exists a body of work that has measured or is examin-

ing routing practice. For example, Huston [37] and Gao et al. [9],

have measured the prevalence and time evolution of routing prac-

tices but have not attempted to model these in order to generate

routing tables. More recently, Xu et al. [46] have analyzed address

allocation data and have correlated address allocations with routing

table growth. However, they do not attempt to model, as we do, the

structure of routing tables.

The IETF’s Ptomaine working group [38] seeks to reduce the

number of prefixes in the routing table thereby reducing load on

routing. Various ideas being examined include techniques to con-

trol route propagation by using BGP community attributes [39, 40],

filtering routes on RIR allocation boundaries [41], or multihoming

techniques that can reduce routing load [42]. ARAM is comple-

mentary to these efforts, in that it does not prescribe measures that

would reduce routing table sizes, but could be used to describe the

shape of the resulting routing tables after changes in routing prac-

tice.

Basu and Narlikar [44] seeks to reduce the effect of updates on

throughput of lookups in a pipeline. They do this by balancing

memory among the stages of a pipeline. To make a tradeoff be-

tween the speed of a fixed stride multibit trie dynamic program-

ming algorithm and the efficiency of a variable stride multibit trie,

they selectively increase strides to cover contiguous /24s. As we

have seen this contiguity arises mainly due to load sharing.

Finally, Kohler et al. [43] examine the structure and distribution

of IP addresses found in traffic traces, and point out that the oc-

currence of IP addresses in Internet traffic is multifractal. This is

somewhat orthogonal to our work, which looks at IP address allo-

cation and prefix routing, rather than the traffic levels originated by,

or destined to IP addresses.

5. CONCLUSIONS
This paper describes a model of the structure of Internet routing

tables. ARAM is a parameterizable, parsimonious, accurate and

predictive model of routing table growth. It qualitatively captures

the processes by which address blocks are allocated in the Internet,

and those by which they appear in routing tables. ARAM holds

intrinsic interest in enabling the study of routing table growth in

the abstract (i.e., independent of any particular lookup implemen-

tation). It also applies to the evaluation of lookup schemes, right

down to the transistor level.

Using such an evaluation, we find that, to a first order of approx-

imation, multibit tries scale better than TCAMs with increasing

routing table sizes. Furthermore, we find that the disparity between

multibit tries and TCAMs increases with increased multihoming

and load-balancing. These results have interesting implications for

the choice of lookup technologies in routers. Of course, our conclu-

sions can be negated by CAM designs which have fewer transistors

per cell. There are rumors of such designs, but it unclear as to

whether there is substance behind these rumors.

As an aside, in deriving these results our paper spans several lev-

els of abstraction. Starting with the way addresses are allocated,

incorporating some of the mechanisms by which ISPs advertise

routing information, our paper ends with transistor level models

that quantify the cost of hardware implementation.

As routing practices evolve, it will be interesting to see how

accurately ARAM continues to model the routing table. For ex-

ample, an increasingly popular routing practice is a VPN (Virtual

Private Network) service provided by a backbone ISP. To provide

this service, ISPs need to keep and advertise separate routes to

each of the endpoints of the VPN. If this practice becomes signifi-

cantly more prevalent than it is today, it may be necessary to tweak

ARAM’s splitting and spawning rules to better match routing prac-

tice. VPN prefixes could perhaps be modeled by more clustered

splitting/spawning rules. VPNs can be a potential reason for prefix

tables to grow more than a million. Furthermore, it will be inter-

esting to track the evolution of allocation and routing practices for

IPv6, and to study whether ARAM can be extended to model IPv6

routing tables.

Finally, we do not expect ARAM to be the last word in routing

table modeling; as more accurate data becomes available, it may be

possible to better infer routing practice and therefore design more

accurate models than ARAM.
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