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- THE EEFECT OF CONDEHSATION IN THE BOUNDARY .
JAYER -ON MASS TRANSFER FROM A RUDATING DISK

"Ronald P. Omberg
Inorganic Materials Research Division, Iawrence Radiation ILaboratory,
Department of Nuclear Engineering, College of Engineering

University of California, Berkeley, California

ABSTRACT

The vaporization rate of a hot solid into a cold gas may be increased
above theidiffusion-limifed vilue if condensation occurs in the boundary
layer. . This phenomenon was analyzéd by combining the‘miéroscopic balancé
equatiohé éf nucleation kinetics with the boundary layér conservation
equations; .The eqﬁations were derived for rotatiﬁg'disk hydrodynamiés

and calculations made for the vaporization of iron into -cold argon. The

N

A

‘vaporization rate of the rotating disk was computed, and the sfructure of

the nucleation zone in the boundary layer surrounding the disk was examined.

The vaporization rate was measured experimentally for a hot.rctating

disk of chromium vaporizing into a cold helium enviromment. The data

shared that. ¢ondensation enhancement of the vaporizalion rate does in

fact occur. The vaporization rate proceeded, within the error bounds of

the measurement, from the condensation-free value to the bulk equilibrium

- condensation value as the temperature was increased.

The measured rates were corpared with the theoretical rates calculated

- with the above model. The theoretical rates were always considerably lower

than thé measured rates. It is felt that better agreement between experi-

.

.ment and theory could be obtained with a nucleation kinetic model which

- gives a larger nucleation rate for a given supersaturation.

-
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- NOMENCLATURE

Surface area of a drop of size g (cm?)v

Thermal acéommodation4coeffiéieﬁt~'

Parameter in the evaporation goéfficient.(dyne—cm)
ancentration of dréps of size g (drOps/cﬁ?)
Specific heat at constant pressure‘(cal/cm—°K):

Monomer mass fraction at the wall (pv/p)

- 2
- Binary diffusion coefficient (em /sec)

Bindry diffusion coefficient for a drop of size g (cﬁ?/séc)
Monomexr concenﬁfation (atoms/cm?)
Dimensionless radial gas velocity (u/rw)
Number of atoms per drop | |
Dimensioﬁlessvangular gas velocity'(v/rw)
Dimensionless axial gas velocity'(w/'J;;;f>.

Dimensionless axial gas velocity (p/poo —_— )
: ‘ NV
. N [ve]
Los .. .th
Set of all drops' existing in the 1. group

! .

Droplet current in g-space, i.e., the net rate at which

" drops of size g-1 growfﬁo size g'(drops/cmj—sec)'

Mass flux:of.monomer-(gm/cm?-sec)

Thermal conductivity (cal/cm-sec~°K), or Boltzman's <

constant (1.38 - 10416 ergs/°K)

Thermal diffusion ratio

Average value of théblatent_heat of‘Qaporization pefﬁa
molecﬁle’(efgs/molecule)i |
Mass of a_vaporiégd aﬁom‘(gm>‘ -

Mble¢ﬁlé} welight
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X~

n ‘ - Molar concentration'(moles/cmB)

N : - Atom density'(atoms/cmB) /
o ‘ v__‘Totai pressure of the gas (dyne/cmzj.‘

D, - Partial preésuré.of the monoﬁef in‘the gas (dyne/cm?)
pv;eq -,quilibrium vapor pressure of the monomer (dyne/cﬁg)

P . _‘ ..< - Dimensionless total pressure.(p/uam) |

Pr - Prandtl numﬁer (uvép/kj

T | - - Radial distance from the center ofrfhe disk (cm)

rg o _‘Radius'ofva_drop of size g atoms (cﬁ) |
R | . Dimensionless.value-of a thermal diffusion integral

s | --Supeféaturation (Pv/pv,éq)

8, . --Volumetric source of monomer (atbms/cm?-séc)

Sc 3 - - Schmiat number (v/D)

ch " . - Schmidt rumber for drops éf size g (v/Dg)

Sv o - Volumetric source.of monomer (gm/cm?-sec) |

Sg - —-Volumetrié source of drop of ;ize g (drops/cma-sec)

’i‘ - Temperature (°X)

u " - Radial compdnent of the gas velocity (cm/sec).

U . - Dimensionless monémer concentration'fﬁnc£icn (pwf/pr)
v . - Angular component of the gas velocity (cm/seé) ,é

Vg | -;Dimensionless cpncentration of drops-of size g(DWCg/fWD)
Vi - Average dimensiénless coﬁcentration_of drops in the

ith group |
W : - Axial component of the gas velocity (cm/sec)
x ‘7{ - Dimensionless axial distance

. 1 e 2 e az)
V £ ) 0 (32}



Cexii-
" Mole fraction

qAXial}distance from the disk (cm)



Subscripts

b

®

N

-xiii-

. Dehotes a local property of the inert gas

Denotes a. thermodynsmic equilibrium value

Property evaluated at the £ilm temperature

‘Property of a drop'of'size‘g atoms

 Property of the monomer

Property at the wall, i.e., the disk surface

Property at infinity



Greek Letters

R . . : . " : ‘, w
. -Dimensionless axial dlstance< y %)

-Dimensionless temperature

~Xiv-

JVaporiZation~coefficient for drop of_size-g
, s .
(atoms/cm ™ -sec)
-Dimensionless vaporization coefficient for drops ¢
of size g (A O Jw)
size g (A0

-Thermal diffusion factor

-Rate at which atoms of a gas cross a unit area per

2
cm  per sec
-Dimensionless condensation coefficient for a drbp of

size g (Agﬁg/w)

_Surface tension (dyne/cm)

-Total émissivity

[oe)

T -T
<o
T -T, |
-Dimensionless density viscosity parameter ppﬁ -
’ o ©0

or mean free path in the gas.

-Dynamic viscosity (gm/cm-sec)

.. . . - 2
-Kinematic viscosity (cm™/sec)

( = z :
-Dimensionless axial distance Vm f 5 e d%)
0 O o] .

-Density of the mpnomér (gm/cmB)‘
-Density of the gas (gm/cmB)

) ' : o —12 ’ - 2 o) )4- (‘)
-Stephan-Boltzman constant (1,35’10 cal/sec-em - K ') ¥

-Angular velocity (rad/seq)



PART I - THEORETICAL

“A.  Introduction

The Qaporization rate 6f.é hot surface‘into a cold gas enviromment
nay be‘substantialiy increésed above the diffusion-limited value.if the
&aporizing Species.condenses in the thermal bouhdary iayer. When conden—
sation does occur, ﬁhézdifosing moieculés combine to‘form drops in
accordancé withvthé laws of nucleatiqn kinetiés. The creation of drops
produces a sink in the ordinary convective-diffusion process which def
presses fhe vapor pressure profile and causes an iﬁcréase'in the gradiént
at the wall.‘ Hénce; a largef,Vaporization rate is obtained.

A knowledge of the process of nucleation and condensation in the.
boundary has application in fﬁe area of nuclear eﬁgineering._ For example
if an isotopic power source in outer space'were to refehter a pfanet‘s
atmosphere, it is desirable to havé this.sourcegvaporize completeiy at

the highest possible altitude. An exact éalculation'of the vaporization

rate of the falling body- is possible only if the,effect of condensation in

the boundary layer.is known.
Turkdoganl has investigated this enhancement in the vaporization rate
for molten iron spheres in helium. He used th¢ cdncept of the "critical
supersaturation” from classicai infinite—medium ﬁucleation kinetics to
determine the iron vapor pressure profile in the condensing region ofvthe
boundaryvlayef. The supersaturation is the ratio of the partial‘pressure
of the ir§n vapor to the equilibﬁium vapor pressuré over -a biane Surfaée.
Classical nucleation kinetics show thét:for supersatufations above a -
"eritical value condensation takes place at an exfremely rapid rate "
while for saturétions below the‘criﬁical value condensation takes place

at-an extremely;slow rate.2_8 In Turkdogan's analysis, the boundary
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layer is divided into two diétinct zones: a condensate-free region close
to the vaporizing surface in which the supersaturation is less than the
critical wvalue and an oufer portion in ﬁhich.sufficient condenéation ocecurs
to maintain the supersatufation at the critical value correspondihg to

the local gas temperature. The profile between the condensation zone

and the wall was assumed to be linear, as in the stagnant film model of
ordinary mass transfer. The theoretical results agreed qualitatively

with a limited amgunt of fough experimental data taken by Turkdogan and
Mills,9 which indgcates the enhancement to be approximately a factor of
three,

With the additional assumption that the logarithm of the critical
supersaturation was a linear function of reciprocal tem.perature,'Rosnerl
developed a set of analytical relationships to describe Turkdogan's
model.

The major assumptions of the critical supersaturation approach are:
1) Mass transfer is based upon the stagnant film model.v In particular,
drops formed in the outer condensing region of the bouﬁdary layer are ﬁot
convected into the wall region, which is assumed to be free of drops
larger than the critical size.

é) The location of thevnucleation zone is determined by a critical super-
saturation value\obtained from the infinite-medium solutionlof the nuclea- -
tion Riﬁetics equation for an arbitrarilyvselected nucleatién rate.

3) The drop temperature is equal to the local gas temperature. Thermal
radiation from the hot wall to the drop is neglected.

4) Diffusion of the drops ig negleéted. Only the vapor species (the

"monomer ") difoSes._Elenbaasll has shown that if drops do neot penetrate

the outer edge of the boundary layer, drop diffusion eliminates enhancement
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of the vaporization rate in the stagnant film model.'

Epstein and Rosner12 have examined the validity of thé second assump-

- tion of the critical supersaturation model by simultaneously solving the

classical nucleation equations (the infiﬁmte medium solutions) with the
conéervation equatioﬁs for é stagnant film mass transfervsituation. Their
anaiysis contains a convective term daused.by.the interfacial velqcity:_
which transpoits drops away from the vaporizing surface. As a reéult,
drops leavé‘fhe outer edge ofvthe film and acdeleratioﬁ of the vaporizafion
rate occurs. For this stagnént film model, Epstein and Rdsner suggesﬁ.'
that drop diffusion is unimportant.

‘Epstein and Rosner did find that nuecleation currents in their
10

boundary layer were on the order of 107 to lOlu drops/cm?-sec rather. than

>

1 drop/cmB-sec. The current of 1 drop/ci’ -sec was used to define the.
critical supersaturation in clo'udt'chaunberse'-8 and had previously been used

9,10 g

to define the'critical supersaturatiqn.in boundary layers.
definifion_was used in clqud chambers because 1 drop/cmB-sec ié a drop
current which is‘easily cgunﬁable by &isuai techniqueé. Its use to de-
fine the critical suﬁersaturation in boundary layers ﬁas simply an
ad hoc ° assumption. The actual nucleation cufrént in a boundary layer-is
determined by a mass balance between the drops and the vapdr.

The approach of Epstein ahd Rosner is similar to that used in analy-v

13,14

sis .of condensation in expansion nozzles. " Droplets are nucleated at
rates dependent upon local supersaturation in accordance with classical;

nucleation theory. These embryos are convected along flow streamlines

'and grow by absorbing vapor from the surrounding gas phase. This method

is Lagrangian in flavor, since the charactefistics of the drop population

at any point in the one-dimensional flow field are determined by integration
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of the growth history of the drops from their upstream‘nucleation point.
In mass transfer problems, this approach is convenient if the direction

of mass transfer and the flow streamlines coincide, as is the case in the

stagnant film model analyzed by Epstein and Rosner. However, for many ¥

Tlow geometries, the streamlines may be complicated curves while the
concehtration of'thevtransferring species depends only on one distance
coordinate. Such is the‘case for example for a rotating disk, where the streah-
lines execute spiral motion: of increasing amplitude as the fluid moves towards
the disk. The concentration, however, is a function only of axial location.
In this instance, it is obviously desiréble to avold integrating along
streamlines.

Consequently, the present analysis utilizes an Eulerian approach;
in which mass conservation of the vapor species (termed the "monomer")
and of different size drops 1s applied in a fixed control volume in the
flow fieid; Ih this analysis, the source term in the drop conservation
equations and the sink term in thg monomer equation are derived fromthe
microscobic balance equations éf nucleation kinetics. The effect of
thermal radiation from the wall on drop temperature is included by a heat
balance on the drops. |

With this appfoach,.the final results of classical nucleation kinetics
are not directly uséd to modify the méss transfer problem. Rather,'by
integrating the microscopic (kinetic theory) rate equafions into the drop
“conservation equations, an internally conéistent description of the
drop.convection—diffusion-condensation process is obtailned.

The equations were solved for the rotating disk flow geometry, which
is one of the few fluid-mechaﬁical systems which has an exact‘sélution

15,16

for the continuity, momentum, and the energy equations. This means

<
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that the velocities and temperatuie in the monomer and drép conservation

‘equations can be determined from first principles; the correlations or

approximations needed to solve other hydrddynamic'systéms are not required.

k The. monomer and drop équations for the‘rot@ting disk reduce to one-dimensional

 forms which simplifies numerical solutions. Experimental Vérification-of

the ﬁheory is possible, since rotatiﬁg disks can be operated as high as
2000°K.27 | 1
Tﬁis‘work extends the'previous work in the following manner.
. 1. The diffusion and convection of dropslin the boundary layer
is cansiaered in a rigorous'manner;rthé aésumption of a stagnant~film ;
is not required.

2. The miéfoséopic'rate equations of the.nucleation‘kinetics are

canbihed‘directly‘with the drop conservation equations to cbtain from first

. principles a description of the convection-diffusion-condensation process.

‘5. The nucleationvraﬁe isinot arbitrarily selected but is determined
by a microscopic mass balance between the monomer and the d;ops.
L, The effect of thermal radiation from the hotvwall to the drops .
is considered, | |
5. The experimental data'were.obtained with a rbtéting disk systém
which is known_to'be a precise experimental tool.l6’32;55’58
6. The data taken ih this work show very little scétter;'this
is in contrast  +o previous:data9 which scéttef widely and hence'give

only qualitative estimate of condensation.
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B. Problem Formulation

Consider a hot rotating disk of infinite extent surrounded by a cold
inert gas (Fig. 0). The disk is at constant temperature Tw and rotates
with angular velocity w. The gas faf from the disk is at-tewperature TOO .
Since the disk is spinning, it induces angular and radial velocities
in the boundary layer. The gés adjacent to the surface flows radially
outward and by continuity the gas far above the surface'flows downward.
The molecules of the vaporizing substance diffuse out from the disk into
thé laminar boundary layer, the thickness of which can.be shown to be
the same.at all radial positions. If the conditions in the boundary
layer are conduciVe‘to drop formation, molecules may combine to form a
droplet nuéleds, or mofe probably, may combine with an existing drop by
éolliding with it. The drops thus for;ed are convected with the bulk
fiuid'(énd also diffuse) while groWing or evaporating. It is assumed
in this developmenf that the disk vaporizes monatomically.

- Net ﬁotion of the drops relative to the bulk gas velocity is
‘neglected, i.e.bgravitatiénal and centringal forces on the drops are
assumed'negligible compared to drag forces exerted by the gas flow. This
vassﬁmption is reasonable if very large drops are not formed; the limits
oh drop size required to neglect these forces are shown in Appendix A.

Only "dilute" systems are considered. While no precise concentration
level separating "dilute" and "concentrated” mixtures is possible, the
term ”dilute” implies neglect of: |
1) Interfacial velocity.

2) Property variations due to concentration changes iﬁ the béundary layer.
3) The effect of heat release due to condensation on the boundary layer

’

energy equatioh.



Ty (cold bulk gas)

— Ty (hot surface)

XBL692 — 2124

- Fig. O _
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Most metal—inett gas systems,'becaUSe of the low vapor pressure of
thebmetal, are dilute; the methanol-air mixture considered by Epstein and
Rosner12 is not.

The effect of restrictions (1)-(3) above is to uncouple the momentum
and energy equations frcm the material conservations equations. The momen-
tum_ and energy eugations, hoWever, are still coupled to each other because
of the temperature-induced physical property varilations (viscosity, den-
sity and therma conductivity) in the boundary layer. This problem, however,
‘can be solved independehtly of the material conservation equations.

‘ Figure 1 shows the'difference between the isothermal vaporization case
and the non-isothefmal vaporization case. In the'isothermal case, con-
densation enhancement cannot}occur tecause the vapor pressure in the boun-
dary layer is at all points below the egquilibrium value. In the non-
isothermal case, the decrease in the temperature through the boundary
layer produces a rapid decrease in the eguilibrium vapor pressure. This
1s because the equilibrium vapor pressure is a strong fhnction of tempcra-
ture. The result is that the eqﬁilibrium vapor pressure profile may
fall below the no-condensation vapor préssure profile and so condensation
occurs. The vapor_pressuie profile with condensation must at all times
lie between the no—condenéation profile and the equilibrium profile, |
however, its exact position in this region determined by a mass balance
between the drops and the monomer,

1. The Conservation Equations

The equations describing conservation of mass, energy, and vapor

(or monomer)l5’17 are

B

continuity:

5% (pru) + %Z— (ow) - 0 (1)
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Isothermal ——|

.
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Fig. 1

Non¥ isothermal I
| |

\. /T(z) _ | -
|
|
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r-momentum:
13 | Coa) | (2)
Breo-z)lad [(2e82 (] 7

Z -momentum:

' _dT . ¥ Q (, OT\, k or 9 7™ (5)
p_%(‘l arf‘é’a>= &(k_'a—rfr 5;‘*52@ &‘)

. vapor (mbnomef) :

%% (rup) +2;(pr) = % <pD%I—; (ov/o)>+_p§%;(o /D) +
3 3
+ 5;(0 D5 (e /p)>+ S (6)
with boﬁndary conditions: ‘
at z = 0 _
u=0, ver®e, =0, T=T, p, = 'ov,eq(Tw) - - (M

as:i — v

u =.0? v=20, p =P_»  T = Tm, pv =0
Equafion (1) is the hydrodynamic continuity equation for the flowing gdé;
Egs. (2), (3), and (4) are the hydrodynamic momentumVequatlons for the
r, ¢ and z dlrectlons, respectlvely, Eq.. (5) is the energy equation for
the gas; the Eq. (6) is the convectlve-dlffu51on equation for the monomer.
The'notatidn‘is as folloﬁs: u, v, and w are the ve1001ty components of

the gas in the r,. ¢ and z dlrectlons, respectlvely, £ 1is the gas dens1ty,

Mods the dynamic vlscos1ty; p 1s the total pressure; cp is the specific
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heat at constant pressure; k is the thermal cohductivity; and T is the

: tempefature of the gas . The dens1ty of the monomer in gm/cmj is R - D

is the binary dlffus1on coefflclent for the monomer in the 1nert gas, and

Sv is the volumetric source Of monomer in gm/cmB-sec.

The convective-diffusion equation, Eq. (6), states that the rate at

which monomer is convected out of a unit volume is equal te the rate at

which it diffuses into the unit volume plus the rate at which it is pro-

duced in the unit volume. The source term is, in facf, negative for in

this case monomer is not produced but consumed in the unit volume. = The
monomer conguied is used to produce the drops and the magnitude of the
source term is equal to the total amount of monomer going into drop pfof

duction in the unit volume. The vapqr‘boundary condition in Eq.'(7)
' *
v,eq’

The conservation éguation for drops of size g molecules is:

>+ pD (c/p

utilizes the equilibrium vapor density p

SR
[
o/
A
P
o
w)
@ .
O/‘O/
’-s
—~
e}
~
o}
g

o . ) :
5? (rucg) + .55 (wcg)

5

where cg 1s the concentration of drops of size g in drops/em” ; Dg is the
binary diffusion coefficient for drops of size g through'the inert gas;
and S is the source.of drops of.size g in drops/cm?—sec. Like Eqg. (6)

for the monomer, this equation states that the rate at which drops of 8ize

The mass flux at.the wall, even with condensation enhancement, is °
small compared ‘to the rate at which atoms leave the, surface and condense
upon it. Hence the surface kinetic limitations characterlstlc of vacuum
vaporization are absent since boundary layer diffusion is by far the
slowest step in the overall process and the equlllbrlum vapor pressure
is obtained at the disk surface.
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g are convected out of a unit volume is equal to the rate at which they

diffuse in plus'thé fate at which they are produced. One such.eqﬁation is

‘required for each drop sizerg considefed. : . ‘ o "

Note that the conservafion Egs. (1)-(8) are written in the variable
.propegty form. This is neééésary because the témperature differences~
across a boundary iayer réquired before appreciable condensation occurs
dre greater than 1000°K for metals. -

' . . 18
The droplet diffusion coefficient Dg is given by
kT . '
% = C G, ©)
where rg is the.radius.qf'a drop of size g
‘ 5 1/3 |

g = \wme - (19

with N the atom density of the vaporizing species in its bulk liquid state

in atoms/cm.. The coefficient C is given by

C = 1+ ;5 [1.257 + 0.400 exp (-1.10 rg/x)] (11)
g : ]
with A the mean free path of the metal atom in the gas,. | ‘ ’-
. u 97Tmas o : |
SR - e - 2

. Where mgas is the mass of an inert gas atom. For drops smgiler than thé_
mean free path, Eq. (9) yields the classical molecular diffusion coefficient
and Dg varies as D/g.2/5. For drops larger than the mean free path, Eq.

(9) yields the Stokes—EinS£ein relatioﬁ,iﬁ_which Dg varies as g_l/B. In
the actual calculations, 2/3 power'law was used for all drop sizes. This

simplification was made because the effect of drops larger than the mean

free path on the vaporization rate was very small.
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The source term in the energy equation has beennneglected. This is

because the‘system considered here is dilute in the condensing species

‘while the temperature .gradient across the beundary layer is very large;T

thu~ the quantlty of vapor cendenslng in the boundary is not large enough
to s1gn1flcantly effect the temperature proflle.

2. The Droplet Source Terms

The source term Sg in the droplet Eq. (8) is obtained from the micro-
3,4,6

scopic banace equations of nucleation kinetics. Consider a distri-
bution of'drops of all sizes in a unit volume. Let Ag be the surface

area of a drop of size g, Bg the rate at which vapor atoms in the gas =

-condense upon a unit area of a drop of size g per unit time, and Qé the

rate at which atoms are evaporated fram a drop of size g per unit time.

. . /s
Let Jg be the net rate at which drops pass from size g-1 to size g per .

%

Cem? per secand, i.e. the droplet "current" in g-space. Since the

product Bg-lAg-lcg—l is the rate at which drops of size g-1 grow to s1;e

g per cm5 per second and the product of aéAgcg is the rate at which drops

5

of size g diminish to size g-1 per cm’ per second, the net rate at which

‘drops of size g-1 grow to size g is given by ;

J = A c - A c : 1
_ g Bg-l g-lg-1 ~ggs (13)
The coefficient Bg is given by ' :
B = 7 ' (1)
T +  —a —_
gzka Lo D 2Tm

where the Hertz-Knudsen equation has been modified by the factor

1 .
. r 7
7 +- _g_, kT
_ D VYormm

to give the correct net transfer rate across the drop-vapor interface‘for

large drops, i.e. drops whose growth rate is limited by diffusion rether

* The droplet .current in g-space is analogous to the slow1ng down
density" of neutrons in energy space, a concept which has been of. cons1der-
able utility in nucle%r reactor calculatlons.
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The modification to the Hertz-Knudsen equation is not

fhan kinetios.lg’eo
stfictly accurate fof drops equal in,size'to—the mean free path. However
since few drops of mean free;path size or larger should exist,.this

simplified.formjwas considered adequate. A unit stickinglprobability.was

assumed. The mass of vapor moleeule is m, Py, is the partial pressure of

the diffusing vapor, and k is Boltzman's constant.. The evaporation
3 -5 ' ) /

: 2b -1/3
&, = " : (15)

g A g r
g 'JEﬂka (1+ = ‘J—EE)
g - D 27m

whefe pv,eq‘is the equilibrium vapor preesure at the drop temperature,fTg

and b is the parameter | - 2/3

coefficient ag is glven by:

b = LN

- where 7y 1s the surface tension in dynes/cm and P, eq is theléquilibrium
y :

vapOr pressure over a plane surface. The exponential term accoUnts for the

increase of the vapor pressure due to the finite radius of curvature of
the drop. The .drop temperature Tg is the temperature.of ‘adrop composed
of g molecules. The surface area A 1in terms of g is:

g . ' 2
LM <"'5">2/5 £ <16>

g L,

Note that ag has also been modified to give the corfect net transfer
rﬁﬁ for large drops.

| The net rate Sg at which drooe of size g are formed per cm5 per
second is equal to the net rate at which drops of size g—i grow to sizé
8 mimus the net rate at whlch drops of s1ze g grow to size g+l i.e,

s = J L7 17).
g g gtl ( 7)

*There is Stlll ﬁonéiderable controversy over the proper form for the
coefficient o We use the classical form embodied in Eq. (15) be-
czuse of the agreement between classical nucleation theory and experlment
obtained by Katz and Ostermler.
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=B -a A ¢ (18)

g-1%-1 %1 T % B % T Pg fg % T Ygn Mt e
At fhis point, it ie appropriéte to review the various conditions
under which the concepts of drop current and dr§p soﬁrce have been applied

in other nucleation studies.

1. The balanced equilibrium theory of homogeneocus nucleation. 6 applies

to a system with no gradients, nq’flow, and no means of.removing growing
drops from the systen. Thése éonditionS'afe sﬁmmarized by the_étateménts:
‘Sg = 0 and Jé =.0. .Because balanced eguilibrium theofy requires ébnéf&ally
high cdncentrations of large drops, the condition of no remova.l of growing
drops must be relaxed for nucleatioh theory to be applied to real systems.

- 2. In the unbalanced equilibrium -case

drops are pefmitted to grow
through g-space at a constant rate; large drops ére_assumed'removed ffom
tﬂe system by an ﬁnspecified mechanism and returned to the vapor phase as
monomer. Since this process is considered to be at steady state, and‘since

no concentration gradieﬁts or bulk flow exist, it will be referred to as

the infinite—médium, steady state case.v'It is characterized by the require-
ments: Sg =VO,’Jg = constant. The source-free condition follows from
qu.'(S) if all convective and diffusive terms are set equal to zero. The
‘evaluation of the constant value of J for this case, which is conmonly-.
termed the nucleation rate, has been the subject of many studies.g_%?2
Turkdoganl and Epstein‘and Rosner12 ha?é'utilized‘the nucleation rate

derived from the inifinte-medium, steady state solution in their analyses

of condensation effects on mass transfer in stagnant films.

3. . The infinite-medium transient case has been studied by various

5.’ )4') 6’ 25’26

'authbrs. The governing equation in ﬁhis‘case is acg /Bt‘ =

Sg = Jg - Jg+l’ which is the unsteady state analog of Eg. (8) for an
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infinite medium.

L, The present case may be characterized as the finite-medium steady

. |
/

state because in the finite isystem, eonvection and diffusion of the monomer “
and the drops must be considered.

Using Eq. (18) the drop conservation Eq. (8) becomes:

. : : \ . D - v

19 N d o d

= Y o+ = = D + p L = +
c (rucg) | Bzi(wcg) S5 (é . 52 (Cg>/p) P2 57 (Cg/p)

RS

d _) : : -
pD = (c /p)]+B. c -0 A c -B A c +¢
( g oz ( g/ %JAg-l g-1 g &g 8 g g g . gtl

e
N

"o Ao Cgnn B " | (;9?
for g = gO; go+1, go+2, .k.v. where g, is smallésf d?op size consideréd.‘
..The value of g, in our case Varied between 10 atoms and 150 atoms.
The results were inseﬁsitive to the vaiue-used. A g laféer than unity
must'be useﬁ fér tﬁo reasons. First, a standard nucleatiéﬁ theory assump-
tioh2—8’25_is that the bulk properties of the liquid can be used in the

calculations even though the . drops do not contain many molecules. Clearly
'this‘is untenable for drops approaching atomic size. The normal techﬁique,25
- however, is'to seﬁ gé approximaﬁely equal to ten or twenty‘atoms aﬁd‘fQ
assume that the_bulk liquid.pfoperties apply to all drops greater th&nfthis-
size. -The second re;son go.pould not apprpachvunity in that oﬁr numerical
calculationé became unstable at very small go. Courtney,25 used a vaiue of .
20 for goiin his ﬁumerical solution of the infinite;mgdium;transient.case.
If thé monomer Eq. (6) is divided by the mass of the mohomer atom:m,

the result is an equation similar to Eq. (19) in that it conserves dréps

of size unity. Defining f as the concentration of mondmer*atoms/cmj,

f.= o /n = p /KT o (20)



Eq.(6) becomes

L
T

The source term S

g; (rur) + %Z’ (we)

1

_i7-

]

is in atomé/cm5

O/IO/
N

-SecC.
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Blvahe Monomer Source Term

1

is found as follows. Multiply
Eq.-(8) by g and sum the resulting equations for all g > gy VWnen this y

The monomer equation source term §
sum is added to the monomer conservation Eq. (21) the result is a con-
servation‘sfatementvfor the vaporizing species in any form, drops or

monomer. Since the source term in this total species balance must be zero,

S. = - 3 g8 . (22
g,g - : )

The™ coupling between the monomer‘and_droplet quations can now be
seen. The source term in the monomer balance, §,, depends upon Sg by Eq. (22)
and-Sg depends upo_n'cg via Eqs; (13) and'(l7), The. coefficient Bg depends

on monomer partial pressure by Eq. (1}) which is related to £ by Eq. (20).
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4, Boundary Cbnditions on the Drop COnservation Equations

Iﬁ has been éhéwn By'Zeldévich6 thqt:the'sbufée téfm in Eq.'(l9):can"
be épproximated_by an eﬁpression involving the first‘and seqondrpartial.
derivatives.of cg with respect to g. This is an ihtergétiné ;ituatidn
in which.the basic physiés‘are éxpressed‘in.finité difference‘ fonn'whereaé
'fhe'differeﬁﬁiél'form is an approximation.‘.Since madﬁine computation invari- -
ably'requirés approximatién of_parﬁiél derivatives Ey their finite diffe-
rence analogs, nothing is gained by tfansforming Eq. (19) to differential.
form, HoweVer, the fact that the source term in Eq. (19) is equiValenf to
a second_¢rder partial derivative éuggests that two boundary gonditions'on
Cg in é—sbacg in addition to thg two bdundary éonditioné in z are required
to render the problem completely specified. Moreover, the infinite hédiumv
ﬁroblem also reéuires two boﬁndary conditions in g-space. ’
In the z-direction the boundary coﬁditions ére‘as follows. At the
- disk-vapor interface, the superséturaﬁionvis_uniﬁy and ﬁheAdroplet con-

centrations are assumed to be given by the equilibrium model:

- r b 2fx L |
cg = fwzgxp - W g ‘% at 2z =0, all g (23):

and in the bulk gas, far from the disk |
| cg”—>0 7 és z—o, all g o | n " (2k)
f-'Consider”the'develéﬁment of the g-space boundary éondition fdr thé.'
'infinitefmedium steady state case. Drops of small size spend moét of' their
" time oscillating back aqégforth between large and smaller g while only é
few pass on ?g‘consitutébthe cuffenﬁ Jg.u So for small drops in the |
vstéady—sfate?ihfinite—medium case, Jg’ of Eq. (13) is a'a@all difference
_between tWo large numbers. Thus sitce Bg—l Ag_1 cg;1 >>.Jg, o.(g.Agcg >>

J, thenB _A 'c ~ahc which leads to equilibrium values of ¢ .
g - g-lg-lg-l geg , ' . g
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.Hence, 'in the steady-state-infiniteémediumfanalysis; one boundary
condition is that the solution:must approéch the equilibrium solution as
g ~¥i, Ihe other is that the solution must abproach Zero aé g o>,
In the pfesent ahalysis, the same boundary conditions could in principle
’ﬁg used.l Howéver, at poihts in the boundary layer where the supérsatupation
ié very large, the éritical drop radius of equilibrium theory approacheé
atomic size. Fitting with equlllbrlum theory would require either us1ng
a very small starting value go, Wthh both renders used of Eq. (15) doubt-
ful and makes machlne computation subgect to 1nstab111t1es, or matching on
the rising part éf theveQuilibrium theory curve, which is unyeaiiétic.
Consequently, we have matched our.solutiqn with the physically accéptable
’steady—staté infinité¥medium solution at gy Thié is.equivalent4to assuming
‘that at g = g, Jg >> 'Sé>; Jg+l >>,Sg" sgs o.. Thus by Eq. (17), Jg ~ Jg+l ~
canstant, which is the basis of the infinite medium solution. Thus the
boundary condition for small g is:
c, = #/BgAg, J = Jg = constdﬁt 7 . (25);

. o o
at g = gy, in the nucleation zone where 7

‘ 3 '
. , 1
V2 () JTE S _ vy 1
M £ (kT) my emp( > (@) 2 e
and S is the subersaturation;' S (26)

s o= o /o o (27

v Tv,eq _
Note that given fhe-partial presSure of‘the'monomer.pV and the surface
tensioh Ys ﬁheﬁ J foliOWS. Equation (25) ig the steady-state infinite-medium
solution in a highly su;ersaturated vapor for drops larger than the critical
size; i.e. for dg <§ Bg' :The.matching cqndition is utilized.only in the

nucleation zone, i.e. the region of large supersaturation where the critical
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~ drop size approaches unity;v‘outéide the nucleation zone, the concentration'

of small drops is determined by trans?ort via diffusion and con&ection from

- the nucleation zone rather then by local nucleation. This is because the

local nucleation rate outside the nucleation zone is very small because

of the small supersaturation, and so the concentration of drcops dvue simply

to transport is much greater than the concentration due to local nucleation.

In fac¢t then, the boundafy condition in our problem is determined by solving
the diffusion-convection equation for very small drops with a source term

such that the drop concentration in the nucleation zone is identical to that

 given by the steady staté,infinite‘medium solution in this zone. In

~principle, the drop concentration could be.matched.to the steady state

infinite medium solution at all points in the boundary layer if & could be

‘allowed to approach unity. Since this could not be done, the effect

of diffusion and convection on drops at the initial starting size = had

to be considered in this approximate manner.

The bbundary condition for large drops is:

cg -0 as g-—o® for all 7z » : (28)
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5. Drop Temperature

On1y7the tempeiature of‘a drop Qf size g, Tg; remains to be specified
“for a well-defined problem. ' Since the drop is in a strong thermel_radia—
tion field, it may not be at the temperature of the surrounding gas. A

quasi-static energy'balance upon the drop gives the following transcendental

equatien for Tg'

1k
§0€TW

e ¥ ’Z(Bg ) Oé) Ag = 9T, Ag * ey An Poas (Tg_T> Ay

(29)
.where'ﬁhe first term is the amount of heat radiated from the rotating disk
to the drop, the seeond term is the heat added to the drop by condensation
of the vapor on the drop, the third term is the'heet radiated from ﬁhe'drob
to.the surroundings, and the last term is quanﬁity of heat removed by.inert
gas atoms colliding with the drop. The Stephan-Boltzﬁan constant isvo,fe
is the emiesivity of the disk and the drop, £ is the average value of the
latent heat per etomf, épvis the average value of the augmented specifie

“heat per atem, A, . is the thermal accommodation coefficient, Bgas is the

th

rate at which the inert gas atoms cross a unit area per second, and T'ie the
local temperature of the gas. The augmented specifid:heat is the'average
" specific heat  of a sample of molecules crossing a plane surface and is

higher than the ordinary specific heat per etom by % k,26
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6. Dimensionless Form of the Basic Equaﬁions

The advantage 6f thevrotating disk as a vgporizing éurface is that
the governing equations can be reduced to ohe—diﬁensional forms and éxact
solutioné obtained. Von_Karmaﬁ27 hasfshbwn that the constant-property fopm
of the hydrodynamic Egs. (1)-(4)»can bévreduced to a coupled set of éfdinary
differgntial eqﬁations and Cochran28 solved the set exactly. Using an |
Karman's and Cochran's solutions of the momentum equations, the constant-
property fofm'of the energy Eq. (5) wa.s solved exaétly:by Millsaps aﬁd
Pohlhausan29 and Sparrow and Gregg.zo' The solution. of the constant-.
property source—freéhform of the monomer conservation Eq. (6) then foilows
by énalogy'singe:it is identical in form to thevenérgy equation if the.sys—

tem is dilute and the bulk velocity at the wall is negligible.

A series of transformations can be found which reduce the variable-

property hydrodynamic Eqs. (1)-(4) to von Karman's coupled set. In addi--

tion'the'variablevproperty energy Eq. (5) can be reduced to Sparrow
and Gregg's ordinary differential equation. These.transformations are
similar to those used to reduce the variable;property flat plate boundary

layer problem to a constant-property one_.51 To use them, one must assume

- that the Prandtl number, the Schmidt number, and the product pu are cohj

stant.throughout_the boundary.layef. These, however, are very good aSépmp_
tions; for a 1500°C température drop across‘argbn boundary layer thesex§alues
vary by only.about 60%, énd the solutioﬁ.évéluated at the film teﬁperafﬁre
éhdﬂld be Very close fo the exacf variable—pfoperty solution. |

It will be shown that the variable-prcperty moncmer and dropleﬁ

" equations can be reduced to inhomogeneous ordinary differential equations
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if the solution can be assumed'independent of radius. If the equation$‘
were homdgeﬁeous, the solutions wédld then‘depend oh;z alqne for the solu—‘
tions Qf the rotating disk system must bg similar with respecﬁ ﬁbradiﬁé and -
: match'the boundéry éonditioﬁs at_the wall and at iﬁfinity, both'of which are -
_indepeﬁdent ofvradius.v However, even though the equations are inhomégeneous, ?
the solutions may still depend on z alone because the source terms have no
explicit-f depepdence. The source of one.équétién'is, in fact; detefmined
by the solution of the other equétion; it is difficulﬁ to see how an r- |
dependenéevcould arise, for béth'sélutions ﬁust be gimilar with respebg to
r and botﬁ sets”df 2 boﬁndary conditions are independent of r; It will be
assumed in this development that there is no r-dependence.. |
‘The hydrodynamié and energy Egs. (1)-(5) were reduced to von Karman's

and Millsaps' ordinary differential equationé as follows. Assume, as von

Karman and Millsaps 'did, that the solﬁtion_is similar in the r-direction

with
u = ro¥F(n), v = rocdc(n), w = ng—w H(n)
p = i, OP (n), ..—f;:f;-=‘ G(ﬁ) v (30)

where 1 1s the dimensionless distance.

T] = i Z
v
[20]
 Applying this to Egs. (1)-(5) gives:
20 F + & (pH) = 0 o - (31)
3 dn ) .

o : -
o (F - and o L (Cn & e
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@& a [P ag

p(erg + . =L a4 e
(erG + H 3= = & = | (33)
ko . }
b = 4 w0 .- 46
e Heom=om {— = 3k
°% T o T3 M, dn .<5)

where Eq. (4) has been dropped since jts solution yields only the‘pressqre.,

To eliminate the property effects,vdefine a new dimensionless distance

o= My =gk /Oy | (35) -

and regard A\, the specific heat cp, and the Prandtl number Pr as‘consfente

evaluated at the film temperdture. Then Egs. (31)-(34) become s

ST N A | -
2? * (_pbo H) =0 g - (36) . .
22, b B N &r o 7).
T R G- SR Jo
. . ,p» : i 'dgG-’ o .
2FG +:A.-_p: H -d:,;- = 7\.f ;—gg— i <58) R
2
a6 p e ' ,
w2 e, et , )

where the sﬁbséript'f deriotes evaluation at the film temperature. Again

defining a new dimensionless distance x

£ | | .. : (40>;¢

: A -
and a new dimensionless z velocity H -~ -
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\
H:l

: ' P .
o = 25 | )
. | ..\/_Xf | poo . i ' :
the ordinary differential equations found by von Karman and Millsaps ' .

for constant properties are recovered:

mation”

‘2F+a§=0 - _ (h2)
P R L aE &F | . |
C-orH G =T | ()
dx
A
2FG-&H%}%=9——2§ (bh ).
dx
d29 ~dg ‘ _
—5 - ProH=—=0 . ' ' (45)
ax | -
with boundary conditions:
’ S A
at x =0 - ‘ ' (46)
at x -
Thersoiutibn to this-set of equations is known exactlyli’l6amm_hence we
know the variable-property velocity and temperature profiles in_the‘gas
éurrounding the rotating disk, In employing these solutions the appr0xi—
32 o ‘ . ' _ .

’B(x) =.% %.X . | _ : _ (47); _

was used to calculate the condensation-free vaporization rate and the

approximation

(48)
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given above, that the monomer and droplet concentrations are functions of

27~

was used in the numerical solution. The effect of this simplification is less

than 2% for the Schmidt numbers of this problem.

The reduction of the monomer Eq. (21) and drop Eq. (19) proceed in a
similar manner.. First aésume; in accordance with the similarity arguments
Z alone, l.e.,

f = f(_z)‘ S ey =ey(a) | | __(ug)v_'

‘Then if two cqncentration functions are defined:

Equations_(2l) and (19) Bécome, after differentiating the left-hand sides

by parts and applying the continuity Eq. (1)

al a4 .. df o - I
PR ta ) - oe -éog(%“lAgﬂVg-l " Y%ghTg TPefee 7
¥ %1 fgn Vg+i) . o (1)
a¥ 4 4 . | |

—£ - = _— . Ay 1V - v - V.o+
i z (PO Tg) * P Fetfe-1Vpy - OghgVy BehpVy

+ T, - ' . . - -
1 A1 Vg+1) (52)_

where the source term Si has been written'eXplicitly‘in terms of ﬁé-
usiné Egs. (13.), (17), and (22). Applying the dimensionless pafameters?-
variablés,aﬂdfunctionS'defined-for the hydrodynamic and energy equations

in an identical manner gives:
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—_ 2—
~dU 14U 1
- g(B_ o Vv - AT +
dx ~ Seg d?<2 ® E’o lglg~l g'e g ggeg
Vo1 Agil Vg+l) e - 53
dx"} £T -
T8 .1 g 4. -—-( -~ AT pAT +a . -
7 odx T 8e 2 glglg—l g88 g88 g+l
gp ,dx .
o Aoy Voun) | (510]

where Sc is the Schmidt number .Sec = p/pD based on monomer diffusivity _

and ch = u/p Dg is the Schmidt number based on drop diffusivity. Now .

define a set of dimensionless evaporation and condensation coefficients

(O = Ay 0gfe By Ay B , (%2) -

~and a set of dimensionless concentration functions U and Vg:

pwf' pW -
U= Sf p =F U =_ pV /pVW .
W W . ) .
5 o o (56) .
vV =, Yg 1 F
g fp f g

=
<

'Theh a cbmpletely dimensionless form for the monomer and drop equationgl

"can'be obtained

d“u 24U ® ¥ 4 +
—= - Sc, H=—= Sc,. X \ -0V - v_ -t
i fodax T fgog(Bgl g-1 g '8 " g

+ ag+l Vg#l)?, ' ‘  | | : ' (57)

&
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S ~ v L + 4
—5-- 8, H —/E = -8 (B ,V . -av -BV +
dx &e - ey &l e- geg . g¢g
+ ' : o
v ' 8
0 Vorr) (58)
g = 8y 8 tLg th ...

The dimensionless boundary conditions are

U=1, V =-exp ( - b g /5) at x = 0
. g kT
: W :
" U -0, . Vg -0  as x - o _ (59)
Vg = J,(x)/Bg(x) at g = g, in the nucleation zone
V -0 asg-ow
_ ‘ o+, P, o .
where : J (x) = = J(x) ’ v v (60)

wa

. The transcendental droplet energy Eq. (23) in dimensiorless foim'is

o T
4 T : : + +
(r /T ) +c 5 = 2-¢, (a -g)
AT
A .5+ ® ' '
C
- P th gas ‘ 6
¢y ‘ - ; , o (61)
o € T A
v g
o
C =
In
2 c e T A
W g

: + 0+
and the dimensionless evaporation and condensation coefficients ag and:Bg

are:
B &g/
= a

g g & | , -

- A P U(x) 1

s | | - —
\ kT /T (1+ g J XTI )

S . , _ : D 27m

(6é>;'
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at = A aéﬁn
g g

A Pyeq (T [ 2b -1/3 o G
. _£ ——— 7 exp | 37 8 = T (63)

@ "Eﬂ'ka g 5 g l'+ g e :
) v , D >

The problem of condehsationvin the boundary layer around a hot
rotating disk ié then defined by the éoupled set of ordinary differential
Egs. (57) and (58) with boundary conditioﬁs.(59) and a transcendental
enefgy balance Eq; (61). The coefficients in the source terms are given
~in Egs. (62) and ‘(6.5). The Equ (58)_ is, in fact, an infinite cou‘ple&uvset
of eduations, one for each g greater than or equal to éO;- However, the
equétions need only be solved up to some‘large fut.finite g for the ch;
centrati;n of very large should be very small._ The effect of fhese'very
large drops should be négligible because their growth andvevaporationgrétes

will be diffusion limited.
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For completéness, a list of parémeters which must be specified'tofsolve

Egs. (57) to (63) is shown below. These parameters are sufficient to fix

'.thé'dimensioniéss group associated with the problem. The parameters are:
1. ‘temperature af the wall |
2. temperature at infinity'
3. angulaf velocity of the disk
L, Pran&tl number
'5._chhmidt numbér
- 6. diffﬁsion coefficient
: 7} thermal éonducti%ity of theVgaé
8. starting drop size g,
9. number éf‘grOups
1O.I.appr0ximate boundary layer thickness
Propérfies»of the vaporizing species
11, .moleculaf weight

12. coefficient in the Clausius-Clapeyron equation

s

15. heat of vaporization
1k, surfaée’tension of the bulk liquid
15. density of the bulk liquid

\

16. specific heat of the bulk liquid.
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" 7. Solution Method

The Eqs. (57)-(63) &ere-solved numerically on a CDC '6600. However,
even using a machine as fast as a CEC 6600, the amount of computer ﬁimé
.reQuired is excessive if Eqg..(58) must be sol&ed for a.large number of
drop sizes g. To circumvent this, d multigroupxscheme was formulated. The
dfop size range was brokgn ﬁp into a numbervof smaller‘groups, each con-
sisfing of n+l drop sizes. The initial interval was 10 and each folléwing
intérval was lO:times the precediﬁg one. Equatipn (58) was then averégéd

over these intervals and a single averaged equation obtained for‘the;group.

This was done for each group and the set of group equations then were solved -

“ for thé group-averaged corcentrations. The source term in the monomer
eqﬁation was ther written in terms of thé gﬁoﬁp-averaged céncenfrations'
and hence ﬁhe'whole problem poséd by Eags. (57)—(65) could bé-solved in"
terms of group;averaged valués. bThe'amoﬁnf of éomputing time required‘
was' considerably reduced. |
The flow diagram'of the itefative solution methéd employed is sh@hn
in Fig. 2. The process was continued until the monbmer'concentration'éhcwéd
no fpfther changg upon continﬁed iterétion; The sﬁecific.equatioﬁs obtained
after avéfaging ovér the groups are shown in Apbendix'B; The computér-.

program is shown in Appendix H.

(4
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C.ENHANCEMENT OF THE VAPORIZATION RATE
.vThé change in the vaporization rate from that in an isothermal
system is due ta‘three faétérs:

1) Condensation

2) ?roperty Variations _

3) Thermal biffusion (the Soret effeet)

A1l three of these effects are due to the extremely large temperature
'differencé (up to'1500éC) across the boundary layéf Which is oﬁly‘a ffac-
tion of a centimeter thick. -

Thevmass flux af the wall is related to the concentratioﬁ gradieﬁfs

by

4, = (e D), [('ad; (‘f/p))w + 020 -g(Dg/D) <a§z‘ | .(cg/p))vl .(6l+)v'.:‘ o

gO, 4

or, in terms of the dimensionless parameters utilized in the solution

‘method, by: ‘ § -,
. : o . dU o - . d_Vg B

J,, = =(p D), ‘/;;—— “ [\&h T g, e/ \ =) | - (65).

: Py ‘ V&%‘ V”_

- If non-isothermal effects and thé'source are neglected;.the'flux ét

the wall for the.approximate solution of Eq. (57) based upon a linear axial

velocity profile is (Eq._(h8)): . L |
| | ¥ N w /iéa; . _ ii
RO Tl - BN

where all propérties are'arbiﬁrarily evaluated at the wall.temperature.
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Since the isothermal mass transfer rate in the rotating disk systém
is well known, the effects due to non-isothermal conditions are best pre-

sented by computing the ratio of the mass fluxes in the two caées:

* : - .
JW/JW'F = ¢cond ¢vp ¢td' (67)

where ¢cond is the factor by which the isothermal transfer rate is enhanced

by condensation:

o 'gﬂ_dU‘ - gdv .
Poona = Scp [<&>w+ g@ 8(Pg/?) (Tax'g")J (_68.)

and ¢vp is the fractional increase due to‘tempefature-inducéd property

variations:

(o) 24 J;i o )

\fxf o0

©-
i

vp

= \/(DED)W/gpgD)f

: P . : _ : :
If D ~ T, then since p ~ 1/T, ¢v'becomes unity. For the iron-argon system

this is approximately true since‘D&”*_'lJ"'g5 (see Fig. G-1, Appendix G). “For
tmm reason prcperty variations will be neglected.

The effect of thermal diffusion, ¢, ., can be evaluated independently

td
of the other two,.and willl not be considered here. Appendix C contains
an analysis of thé thermsl diffusion effect ahd_shows_it té'beVSmall for
the iron argon system. o |

Our interest is then only in the factor ¢éond’ which éan'be calcgiated(
by three methodsf : |

| 1. Buik equilibrium gondensation
?. Critical supersaturation Ey the TurkaoganfRoéner method

3. Present theory
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In case 1, condensation is not Kinetically limited and the equilibrium
vapor préssure'is assumed attained at each point in thé boundary layer. The

monomer concentration gradient at'the wall is obﬁained directly from the &

gas temperature profile and drop diffusion and convection rieed not be con-

14

sidered. The partial'pressure'of the vapor in the boundary 1ayervisvgivén‘by
the Clauius-Clapeyron equétion: g
v kT L _

If the energy conservation_Eq.'(M5) is solved using the linear'velociﬁy_
apprbximafion Eq. (h7), the resulting_temperature profile in the boundary
layer is: o : .
o) i m Y e ‘lprf) o | N
| T(x.)-‘; Te " (T, -.Tm)_ erf( T : _(77);
Equation (56) shows that: | o |

‘v o=vrv /R, (78)

‘the gradient at the wall using Egs. (76) and (77) becomes :

ax’w

e - o (U R 0N

. : Vi - .
The gradient at the wall with no condensation is (from solving Eq._(57)“

o (ﬁ_U_ y :v(ag;__._" ,::(pv/‘Rrw)w) .,(dt o ] - (719)

" with no source while using Eq. (47): -

£ S (81)

(L -
dx‘w Ed

The bulk equilibrium condensation facﬁor.is obtained by dividing Eq. _ -

¢ o '—'}4:355'45— (1 -1 /) (825
cond bulk v ’ ng" kTw, v o

equilibriun

(79) by Fa. (81)
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-This derivation heglects the effect of the heat release;due to condensa-

53,37

: ‘ e |
tion. Hills and Sacke and Rosner and Epstein 7 have derived the same

equatioh includiﬁg;heat.release due to condensation for systems with a Lewis
numBer GSd{Pf) of unity. Their results show that the effect the condensaﬁion
.heat release is less than 4% for thé cases'coﬁsidered here., TFor this reason,
it has been néglected; |

The results of the critical supersaturatioh model, case 2, can also be
expressed as a condensation factor, Thé form of the éecker—Dorinngeldovich
équation fof the‘cfitical supefsaturatioh whi;h wa.s recently verified éxperi-
mentally by.Katz and Ostermier7 wa.s used; The_condensatiop facﬁor,'¢ééhd’
was obtained by graphical solution of Tufkdogan’s methéd. -Résner's anéiysis
although more coﬁveient;‘cculd not be used because at the temperatureé in
the iron-argon system‘which are.practically attainable with a‘rdtating disk
apparatus,. the logarithm of the sﬁpefsaturation i; not a linear function
of rgciprocal temperature. A ﬁuqieation éurrent of J = 1012, correspoﬁding

. . . 10 ' .
to the value§which Epstein and Rosner  found to apply in their boundary

layer study Wéé‘used. The properties suéh ?S surface tension-ahd density

N

in the Becker-Ddring—Zeldovich nucleation expression were evaluated at the
filml-temperatﬁfe of the boundaryblayer, The_resﬁlfs for both the
critical supersaturation and the equilibrium cdndénéation.caseé are shown
~in Table I. | | |

TABIE T

. .
Tw ( K) '¢Critical ¢equilibrium'
" " gupersaturation condensation

1500 1.0 20.4
- 1900 e 168

2000 2.2 o 16.0

2100 . 23 . 15.3
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"Th'e' results of the present 'theozjy_', case 3, are presented in the

next section. C R . S ,

. >4
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D. RESULTS

The results obtained.ére)presented in the following sections. The

first section shows the effect of mucleation in the‘boundary layer upon'

the vaporization'rate,'thé second shows the structure of the nucleation

"zone in the boundary layer, and the third indicates the sensitivity of the

results to some parameter variations.

The effect of mucleation upon the vaporization rate was analyzed for

“two different cases. In the first case the diffusion coefficient of the

drops was assumed to be equal to the diffusion coefficient of the monomer.

In the second case the diffusion coefficient of the drops was assumed to

‘Vexy'asrthe monomer diffusion coefficient divided by the drop size to the

two—thirds power. The approximation in the first case makes the drop.con-
servation Eq. (58) much more tractable because the diffusion bou&dary K
layer thickness is the same for all drop sizes. This is important be-

cause the monomer and droplet equations are cbupled'and so they must be

solved over the same axial distanee; The bouhdary layer thickness for the

drop conéervation Eq. (58), varies inversely'with the Schmidt numbér.27
Conséquently,,as the drop size becomes larger the boundary layer thickness
becomes smaller-becausé the diffusion coefficient decreases with drop size
and henée the Schmidt nﬁmber increases. For drop sizes varying from éne
atom to 106 atdms, the boundary layer thickness varies approximately‘byﬁa
factof of one hﬁndred.f This means‘that'the drdplet‘equatiqns must be
sol&ed over a disﬁanée of many bouﬁdaryAlayers, which is-very difficu1£ to
do numeriéaliy,_ Thisvproblem is a?oided if thé;drop and monomer diffusion
coefficients are assumed equal. This approach Wés tried first and‘is dQn-
siderably easier to apply than the pérturbationjtechnique described'%éléw;

the disadvantage of this approach is that mobility of the large drops is

overestimated.
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In the second case, the dGC diffusion ceefficieﬁt.variation with
droﬁ size was assumed equal to D/g /5. To handle the VariatiOH in the._’
drop boundary‘layer thickness with drop sire, the methed of slngalar
perturbafcionsLL5 was used £5 develop expansions in‘the inner and outer
regions of the droplet boundary layer. The-exbansiens were then matched
in a, suiﬁable fashion to give a continﬁous,solutioniﬁ;the entire regien.'
The method still required a-numerical SOlution'over the outer region
butlthe:sblutionvover the inﬁervregionvwaslgiven'analytically; The
advahtage of this was thatvthe-inher regieh was the‘only me involving :ﬁe
the varlable boundary layer thlckness, the outer region was always equal
to the monomer boundary layer thlckness. The technlque ‘and the result1ng
equatlonsvare shown in’ Appendlx_D,

The range‘of_dropseeizes used in’solving‘the‘dreplet-conservation
equation was fran 10 to 1020 atoms. A range ef this,magnitude‘was re—':”
,quired, eveﬁ though dreps ef size greatezrthan 109 made no centribﬁtioni:
to the monomer source terms and thus had no effect on the coupling between
the menomer and.drep equatlons, beeause the boundary condition for larggag
"~ required setting the‘drop concentration equal to zero at seme large droﬁ '

9, an effect upon the

size. Unless this point was considerably beyond 10
drop distribution Was found; even though fhe large drops were not affeeﬁf
.ing the menomer concentratien directly through the souree term, they |
inflﬁenced drop concentrations at other érqp eiZee. For this reaSOH logo
was used for all cases., B |

The results were calculated for a temperature range of l5OO K to -

1900° K for iron vaporlzlng 1nto argon at 300 K.
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" The properties'such-as the surface»tenéioh.andidensity of liquid"

- iron in the nucleation kinetic-parameters, coefficients, an@ expressibns
Wwere evaluated at the film temperature of the boundary 1ajer. lThis is:con—
-éistent with the usual méthod.éf evaluating properties in a non-isothernal
‘boundarj layer. The properties used in ﬁhe solution areAéhqwn in.Appendix.

G.

l.‘ Effect Upon .the Vagorizatidn Rate

The effect of nucleation in.the boundary layer on the vaporization’

‘rate from a rotating disk is shown in Fig. 3. Here the condensation

factor ¢aniis plotted as a function of wall tempefature. The condensation

factor is the ratio of the'vapbrization rate with édndensation to_thatlwith- s

out condensation (Eq. (67)). The effect of drops diffusing back into the

- wall was neglected in calculating the condensation factor because it was

less'than 1% of “the monomer mass flux at the wall in all cases. The résults

~in Fig. 3; are for a rotational speed of l500_rad/sec (the rotational speed

: + 0+
enters the calculation via ag and Bg in the monomer source term). - For

no condensation, ¢C is independent of temperature and has a value of .

ond
unlty. The line labeled Dg = D is obtained by gssuminglthe drob.diffﬁsiyity
eqUal.to the mofiomer diffusivity for all g.. Pigure 3 shows that beléw.a |
wall température of 16QO°K the effect.of condensatioﬁ’is_zero, and abéve

it the_effeét increases Qith temperaturé. At a-wall.temperature,of lQpb?K
the enhaﬁcement is a factor of two and one~half. The line Iabeled Dg <
D/gg/5 is obtained by solving the singhlar pérturbation form of the dréblét
equation. The wall gradient in this case_ihcreases-much faéter with

temperature than the gr@diehtviﬁ the -constant diffusivity case. At a Wail’

temperature of 1900°K the enhancément-isuapproximately-a factor‘df'sixﬁ
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The reason for the greater enhancement in the variable diffusivity

-

case_is that the low aifquivity ofbthe large’drops gives them less mobility.
Ihey then have a greatex tendency tq mové.with the bulk velocity. Thié |
has two effects. First, the‘large drops find it more difficult to diffuse
into the region cloée’to the.wall where the convectlion transport is weak.
This is important becaus e the reéion close to the wall is much hotter than
the outer regions and a drop ﬁhich tended to grow in the coéler oufer
region will tend to evaporéte, or at least grow much less rapidly, near

the wall. The drops -terid to evaporate in this region Eecausé ﬁhe evapéf
ratioq coefficient ag is a very sénsiﬁive function of ﬁemperatugi and -
increases rapidly as the temperature is raiséd. ‘Thus the abilityiof ﬁhe
drops to evaporate is smallerrin the varilable diffusivity case and so

the monomer sink is'lafgér and hence thekwall gradient is increased. vfhé
secoﬁd effect arises from drops leaving the nucleation zone in the direction
bf the outer boundary layer edge. As the diffusion cOefficiént bécomeé
smaller, the ability of the drops to move outwafd against the convectivé
flow is lessened. Thus these drops have moré of a tendency to stay in.that
part.of the‘boundary_layer where their efféct on the monomer sink term is
larger. In thevouter regions of the boundary layer the drops_mﬁy have a
strong tendency to érow because of the low evaporatioﬁ coefficient d;:;
caused by the Low temperafure, but at the samé timé'the monomér concenﬁration
in this fegioh is very small and the efféét of»depréssing'it on the gradien£
at the distant wall is negligible. Thus any drop which: diffuses into this

- region no longer contributes eﬂﬁectively.to the mononef sink; .Thus'the_
smaller diffusioniéoefficient of the variable diffusivity‘casé increasés

the monomer sink and so increases the net evaporation rate.
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Tt can be seen in Fig. % that fhe'effeét of’tﬁeée two actions deséfibed
abo;e is:to increase the condensation factor‘in the variable»diffusivity
case ovef that in the constant difiusivity caée’ﬁy a factér of'two and one-
.half.at 190Q°K°'chwever, the poiﬁt at which nucleétion becoﬁeé'éignifi—
cant is practicaliy‘the same in the tﬁo caées, i.e. 1600°K. This is con-

. s istent bécause a.Variation in thebdrop.diffusioﬁ coéffécienﬁ cannot
affect the wall grddient_uﬁtil a large numBef of drops are formed ij'
nucleafion. | | |
The '.'_I‘urkdOgan—R.osner results froﬁ Table .I-are also shown in Fig. 3.
The‘enhancément in this case is approXimately'equal_to that in the con-
stant diffusivity‘case. | |
Figﬁfe-4 shows the vaporization rate inimilliérams:pef sqﬁare centi-
meter péf houf from an ifon'rotating disk as a functioh of'wall temperature.
The bu1k eqﬁilibri1m condensatidn results from Teble I_are‘also includéﬁ
in Fig. ﬁ.:.Figure L shows that while the no—éoﬁdénsation vaporization fate
inéreaseé rapidly'with temperature, the_rates.for £he nué]éafion'casesv
inérease more rapidly and the rate in.the'variable difquiVity case 1s beginn-
\ L .

ing to approach the bulk equilibfium,condensatioh‘réte{ _At l900°K the.rate
in the variable diffusivity caée is six times the no—condensation‘fate and
only a factor of three below the bulk condensétion rate. The_constantiv
diffusifity yapofization rate is smaller and is approxinately a factor
of ten.bélgw the bulk cqndensatiénvrate.

FigﬁreVS shovs the vaporization rate versus:reciprocal temperatuie.
The no-condensation and bulk condensation cases here are straight lines.
The uniform diffusivity and perturbation cases are not straight iihes
inﬁicating that the procésses are not governed by a constant activation

energy. However, they curve only a little and so a constant activation

ehergy would"be a gobd approximation,
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The calculations could not be extended to very large enhancementS'Where
the vaporizalion rate approaches the bulk equilibrium condensation case. -
_ When this was attemped, the'program‘became’unstable and convergehée could .

not be obtainéd. The reason for_this is indicated in the next section.
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2. Structure of the Nucleation Zone in the Boundary Layer

Flgufe 6 shows a typlcal nucleation rate J proflle as a function of -
axial dlstance through the boundary layer.* Then nucleatlon rate was
calcuLated fran the classical Becker—Dorlng—Zeldoulgh expression, Eq. (26)
The important characteristic of Fig. 6 is the existence of a nucleatlon .
zone," i.e. a region where the huoléation rate is very high, and which is
surrounded on either side by a region with a relativeiy'low nuolaatiou
rate. Such a zone was also found‘by Ronser and'Epsteiu.lQ' It 1is in_this
nuoleation zone that the drops are formed. The maximum.nucieafion rate
in.thé Zone OCCurs at X = 2;25, or a littLe more tuan half-way through;
the boundary layér. The rotating disk'_boundary 'layer is gene_rally con—'
sidered to erd at x = 3.25._ The zone is ékewed toward the outer'region:
of theuboundary 1ayer.aud occupiesvappfoximately 6Fb of it,.'The nuoleauion
rate between x = 0 and x = l,‘ise. in the first 30% of the boundary layer
is essentiélly Zero oompared to the nucleation rate furthér out in the
boundary 1ayer,._The nucleation rate.ih the zoue is appfoximately 10
drops/cmj—sec, which is comparable the maximum nucleation rate of 10lu‘drops/
cm?-sec, in Epstein and Rosner's study.lg' No épecial significance can be
attached to this, however, for there is no bbvious reason why they should
be the same in different systems. |

Figure T shows a typical droplet size distribution in the nucleation
‘zone., The infinite—medium'steady state solution is also plotted for com-
parison. The boundafy layer solution abproaches the infinite medium-solu-
tion for small drop sizes as reguired by the boundary condition. Forllgrge
drops, it falls incfeasingly below the infinite medium solution as drop:

size increases. This is expected behavior because in the

% The mucleation rate is the net rate at which drop of critical size are
produced per cm’ per sec; since the steady state infinite medium droplet
distribution is assumed to exist for all drops smaller than gy the mcleg-
tion rate is also the rate at which drops of slze go are produced per cm
per sec. :
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~infinite mediwn solution the drop current J is constant and hence the same

number of drop; pass through edch size. 1In thé bouhdafy layer case, drops
can.aISO leave an incremental spacé—siie:vbiumé by cén&ectioh apd.diffusioﬁ.;
The infinite medium balanced eqﬁilibriﬁmvdistrubtion is also shovn in Fig.

7.. The minimum.of the cﬁr?é is the criticﬁl drop siée»and thé figufevshowé
tha£ it is approaéhing atémic sizé.- The véiue df'gb; i.e. the match point
between the infinite mediﬁm solution and the boundary layer solut ion, was
ten of this case and is shown in the figupe.q Two ‘dashed lines are alsb
Showp in Fig.‘7. These are the infinité medium and boundary ]ayer solutions
at.x = O.25,-i.e.'far”from the mcleation zome.. They show that the

boundary layéf drcplet concentration is much:largez;thah the infinite medium

'conéentration-at this point; this is because drops‘haﬁe been transparted by

diffusion and convection from fhe nucleation zbne. Also note that the drop
conceﬁtfation for any.particular size g"is higher at x = 0.25 than at x = 2‘25f
This is beéause‘drops fofmed near x = 2.25 aré txéﬁspérted avay fromvthe
regidng and into fhe régioh near x = 0.25.

\'Figure 8 édes the variation of the evapofatidn and condensation coeffi-
cients with axial position in the boundary layer for a typical drop size.
The<aaporatién coefficient a;-is higher than the condensatién coéfficient

Bg near the wall where the temperature is high. This is because the vapor

-pressure is a rapidly increasingly function of temperature and'evaporaﬁion

coefficient is propoftional to the vapor presSuré at the drop temperature.‘
As the temperature decreases through the bouhdary layér the evaporation
coefficient falls rapidly and is considerably smaller‘ﬁhan'thg condensation
coefficiént ﬁﬁroughout'mosf of the boundary layer. The linear scale is
somewhat deceptive at large i, for at x =_h,‘the evdporation coefficient

is orders of magnitude below the condensatiom coefficient. However, the
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ﬂﬁportangmpgint'is'that drops diffusing or convected towards the wall will
tend to evaporaté‘rather fhan grow . | | | | o | _ :

Fiéure 9 shows the monomer Source:térmvversus.éxial distance thfough o
the bQundary léjer for a fypical case. The source is pésitive close:tovthé
wall because Qf the high evaporation coefficiént there. It, however, fapidly
becomnes very negative-ﬁecause ﬁhé evdporatioh coefficient quickly decréases
with akiél'distance while the condensation coefficient remains relatively
high. ‘Thus'drops formed in thé nucleation zore and transported to this |
region grov very rapidly»and in'doing S0 consume monomer, thué-driving:. o 1
_tﬁé monomer.ééurce term to large negative values. Note that Fig. 6 ihdiCateé;
that very few drops were born in the fegion where the large negative spuréé :
ocecurs, and Fig. 9 indicating that little monomer is.coﬁsumed in the nucleatién
zone. The small drops born in theghucleation zZone comsume liftle_monomer ‘
while being - tfahsported,out of it; however at they grow to big drops
nearer the wallvthe amount'of monomer fhey consﬁme_ingreﬁses tremendously.
This 1s consistant with the results of steady-state infinite médium.theory
where it has been found that ﬁheylargef drops cénsume the most monomer.
As xincreases, the monomer éource réturns to zero because thé monémer con;
centration and hence the cbndensafion coefficient, has been depressédi%o
the point where the drops grow‘mﬁch more slowly. Thus théy do not deplete
the monomer as rapidly and the monomer siﬁk term is small, |

The oscillatory nature of “the monomer source caused many numerié@i-

problems in the machine program. It was the principle reason that the .

calculation could not be made for large enhancements in the vaporizatioﬁ

rate, i.e. for vaporization rates approaching the bulkvequilibrium con-
densation rate value. The réason for this is ﬁhaf‘the monomér>source is,‘

in effect, the small difference of two large numberS'(note the large
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positive éﬁd ﬁééative variation in Fig._9)., Thus'ahy efror made in com-
ﬁuting the soﬁfce in the poéitive or négative regioﬁs'has.a largé éffecf on
'imém&mmréqmmmm¢mn.

Figuré'lo showé avschematic of thé pfocessrof.COﬁdensétionénd fevapori;
zation of tﬁe drops in the_boundafyllayer. ‘The casé for an isotﬁermal system.
,is shown in the 1left, Here the gas is at the same temperature as the disk
an& theewaIDrating,speéies simplyvdiffuses out into‘the.boundary layer.

.On the right,”tﬁe non-isothermal system with pondensation and revaporiza—
tion of thé_drops is shown., Hére theudrops are formed out in fhe béundaf&
layer éndvgrow asAfhey proceed toward the disk. As they come close toithe
hot disk;_the:tendency to evaporaté bec anes gfeater than the tendency to
grdw and so*the drops began to.revaporize.

Figurelll shows the dimensionleés cdntpibutibn from the individual
groups to-the monomer source term for é typicai caée; The profile in.gé
space was taken at the position bf thé‘maiimﬁm negative monomer source,

%= 0.25. Plotted on the ordinate is the product :g-s_;(x)-wh_ich is the
neg@ﬁive'of'the contribution to the nohomer source from a group with source
S;(x). The total monomér source S+(x) is.given by fhe sum~ofkthe contri-
bﬁtions fran the individual groups, ise. 'S+(x) = - g g S;(i), and so
S+(x) is.équal to the area under the cﬁrve in Fig.“ll; The figure shows that
dropvsizés betWeen lO5 and.106 are fhe principle contributors to the |
monomer‘séufcé. Drop sizes below lO3 and above 106 have negligiblg contris
butions. .For.drqp sizes below iOS, tﬁé boundary layér droplet concentration
in g-space (see Fig. 7) begins to'appréach fhe iﬁfinifevmedium soiution

for which S;(x) ='O.‘ Thus the qontribﬁtion from groups of sﬁall drop

size must approach zero. TFigure 7T shows that tHe boundary layer droplet
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concentration falls rapidly as the drop size increases. For drop_sizesp
éreater'thanvlo6,_the contribution. to the monomer sQurce term again approaches
_ zero because the droplet concentration becomes 80 small. Thus only inter- -
mediate-drop sizes contribute to the source term.

Figure 12 shows the‘ratio of the drop temperature to wall.temperature
versus drop size for a location in.the.nucleation:zone. For most drop.
sizes the drop temperature is equal:to the-temperature of the'surrounding
gas; only at the large drop sizes does the drop temperature differ from =
the gas temperature. As the drop increases beyond lO'15 atoms in size; the
.drop temperature rises quite rapidly because of thermal radiation and approaches
-the wall temperature at a .size of 1020; The reason the drop temperature L
remained very.élose to the gas temperature over such a large.range is that
the rate.at which heat was removed from the drop by gas atoms colliding
ﬁw1th it was very large, i.e. coefficient of the fourth term in Eq (29)
was Very large. The pressure of the surrounding gas-in our calculations
was .one atmosphere. At this pressure the effect~of radiation fram the
disk to the drops is 1mportant only for very large drops and these do not
exist in appreclable quantites. For nucleation in rarified env1ronments,
however, the effect of radiation would become very important because the
heat removed by gas atoms co]liding with the drops would.be much smaller
and hence the drop temperature would depart from the gas temperature at
_much-smaller drop 51zes.; | |

In summary, the structurelof the nueleation in the houndary layer.i
is such that drops are produced in significant quantites only near the
middle of the boundary layer. Many of the drops formed there are than
transported hy diffusion and convection into the region close to the wall

where they evaporate. This effect produces a cycle because the monomer
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produced‘by the drops evapérafing is transported awéy from the wall and
into the nucleation: zone Whefe some of it must_agéin be formed. into drops.
(see Fig. 10). The efféét thén repeaté itself. Thus a rec§§le is Super;
.imposed upon fhe or&inary outward transport of the vapdrizing species which
normally occurs in the rotating disk boundary layer.. | ,

In additibn, the dr§p concentration in g-space in the npcleation'zdne 
rapidly becanes much smaller than the concenﬁratibn given by the infiﬁite
_médium solution. Since the dropbconcentrations musf be equal for small
size, the behavior éauses only the interﬁediate drop sizésrté éontribute
to the monomer sink. Finally, the effect of thermal fadiatibn;fron the
hot disk to the drops is hegligible if the surfounding gas is ét atmo-

spheric pressure.
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%. Effect of Some Parameter Variations

. The effects of variation of the angulaf.velQCity'bf thevrbtatihg disk,
aﬁd the surface tension of the 1iquid.metai upon the graaient ét the wall
were'eXamined. Fiéure 15 sﬁows the effect ofvgngulai velocity vdriation;
Here the erorization rété is plotted again;t the s@uare;robt of the angulax
velocity.IYEXperimentaily the effect of nafﬁral”convecﬁion would becéme
quite strong below 300 rad/sec and so ﬁhe éalculatioﬁs &ere terminated at
this'speéd; As thevangular velocity“decreased from 2100 rad/sec to 360
rad/séc the gradieﬁt at the wdll(gg)f_ingreased mopotonically.. The gf@dual
increésevin.fhe wall gradient is what wouid‘bé expeéfed because the angular
#elocity éhters the source term through the dimensioniéss evaporation and
condensatign coefficients a;.and B;.- As the angular velocity is decreased,
droplet source terms become lérgez'énd so the moﬁome? sink terms become
larger. Thus the gfadient at fhe wall increases; .The vaporization rate J-
(ﬁhich is proportional to!J& (—%g'w’), howe&er, increases with an incréése
in angular velocity as Fig, 15. shows. This‘is ﬁhe expected behaviér_be—
causé'both ﬁhe no-condensation and bulk equilibrium condehsation limits
behave in this fashion. |

‘Figure lﬁ shows tﬁe effect of a variafion in surface teqsion on
thé gradient at the wall. The gradient incfeases as thé surface tension
decreases; because the evaporation coefficienﬁ.a; decreases., Thus thé
rate at which drops evaporate near the rotating disk wall is lessened aﬁd‘

so the gradient at the wall is increased.
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E. CONCLUSIONS

In conclusion, the calculations indicate the|VaporiZation rate to
be enhanced by nucleation in the boundary layer. The nagnitude of . the
enhancement is affected by the diffusivity assigned to the drops, with
a lower drop diffusivity resulting in a greater enhancement. If the

\ L
drop diffusivity isvassumed equal to the mOnoner diffusivity, the enhance—_
ment for iron is approximatelyla'factor of two at 1800°K. If the drop”
difquivity is given by the more accurate express1on D/g /3, then the'_l
enhancement_is approximately a factor of five at 1800°K., To use this'c
more accurate'expression Which_inplies that thevboundarj layer thiCkness.
varies inversely with drop size, a singular perturbation type of analysis
is required. This method of analygis shows that each drop size has anl.
innervboundary layer region where diffusion and convection are the pre-
.dominant modes of transport, and an outer region where convection and
production predomimate.

The structure of the nucleation in the boundary'layer is such that
drops are produced in significant quantities only near the middle of'the
boundary layer. Many of the drops formed there are then transported by
diffusion and convection into the region close to the wall‘where they evapo—
rate.  This imposes‘a recycle effect upon the ordinary outward_transportv
of the‘vaporiZing species.which normally occurs in the rotating disk
bounda.ry layer; |

The drop concentration in g-space in the nucleation zone of the ,1f
rotating disk is much smaller than the concentration given by the infinite
mediuam solution for large drop sizes. fhis decrease causes only the
intermediate drop sizes to contribute tolthe monomer sink. Fimelly, the
effect of thermal radiation.from the‘hot'disk to the drops is negligible

. ~ -

if the surrounding gas 1is at atmosp eric pressure.
I . -
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CPART TT EXPERIVENTAL

A, Introductim

The effect of condensation in the thernel boundaryjiayer on the mass
trensfer rate from a hotvmetai surface'was measured exoerimentallj. This
was done by measurlng the vapordzatlon rate of a hot lotdtln" disk in a
cold Lnert ga° envrronment Vlth the dlSk opezatrné at temperatures and
angular veloc1t1es calculated to produce nucleetlon in the boundary layer.
It was shown-theoreplcally in the previous section phat the formation of
nuclei should pronote condensation and thus increese{ﬁne vaporizationv’
rate. 'Anﬂekperimental verificafion'of theveffect'of condensation on the
vaporization rete was sought. | |

Turkdogan and MJlls9 measuredkroughiy the vaporization.rate ofA
molfen iron spheres surrounded by hellum and cooled by natural convectlon.
The spheres were heated by an induction coil and were suspended by
levitation within the coil. They measured a veporizefion rate that was
approximately three times the.isofhermal,‘diffusionfiimited, condensatdon
vfrée value calculated fran semi-empirical correlafdons. _This factor.of.
three increase in the vaporizatdcn rate agrees qualitativély‘with the predic-

tions:of a‘"cfitical supersaturation” model proposed by Turkdogan{l Their
experiments, however, were not conducted'uith.the erpress,purpose of

testing the pheory of condensation enhancenent of-fhe vaporization raté;'-.
’Therefore, nobparticular cere was taken to insure that'certain necessary
boundary conditions were attained in the experiment. Thus their experinentel
results should be considered in the qualifative rather then the quantita-
tive senge. Based.on.fhis factor of three increase in the vaporization

rate, and on the gualitalive agrecment between the measured rate and their



66—

"critical supersaturation" model, Tﬁrkdbgan concluded tﬁat condensation in
the’bﬁﬁndary'layer increases the vaporiéation rate.

Elenb‘aast21L9 mea sured the vaporization'rate of a‘resistance—heated
tungsten filament wound in the shape of a coil and surrounded by krypton
gas. The filament was cooled‘by naﬁural convection. He found little.
enhnacement in‘the vaporization rate, aﬁdiin fatt found that the calcu-
lated concentration and thermal diffusion fluxe§ acéount for Ti% of the
mea sured fluxes. The fiuxes were calculaﬁed using stagnant film theofy.
These results agree with a fﬁedry Elenbaas proposed.ll This theory aSSumes ‘
that drops fofmed.by nucleation move by diffusion only in a étagnant boﬁndary
1ayer and that they'do not penetrate the outer edge.of it', With these
assumptions, Elenbaas shows thét the enhancement shoﬁld be zero. Elenbéas
then concluded that pondensation_ih the boundary 1ayervhas little efféét
on the vaporization rate. o

We have attempted to determine tHe efféct‘of condensation in the_‘-
thermal boundary layer.more precisely and so to resolve this contradict ion ‘
between Turkdogan's énd Elenbaaé' conclusions by meésuring the vapOrizaﬁich
rate with condensation using a rotating disk system. The advantage of
the rotating disk system is that the measured rate can be canpared with
‘aﬁ exactly calculated, condensation-free, theoretical rate. _Béth.

Turkdogén and.Elenbaas‘calculated the enhancement by comparing the nmaéufed
»vaporization rate with a theoretical but iﬁexact rate no—condensatioh;fate .
Turkdogan'could-not obtain an exact theoretical rate'beéause semi—empifical
cOrrelations are requiréd to calculate thé tempénature énd concentratiéﬁ
profiles for spheres cooled by matural convection; Likéwise, Elenbaas  
requiréd stagnant'film.theory to describe the coﬁcehtration and temperd—
ture profilesvarouﬁdbhis coil, For the rotating disk system, however,

the concentration and temperature profiles can be determined from first
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principles and hence, the cohdensation'freé vaporization rate calculated

exactly.15’16’5LL

Iﬁ addition, diffﬂsién, convection, and growth of thé‘drops‘
formed by nucleation can be exactl& descfibed,by'a_éef of:ordingry diffefential
equations. The solution of these eqﬁations gives the condénsatibn—énhéﬁcedv
vaporization rote. The measured rate can then be conparéd'with a calculated
rafe assﬁming no nucleétibn aﬁd with a caicﬁiated rate Coﬂsidering-nucléation'
.'Where the calculated rafes are exaét solutioﬁs.

The rétating‘disk also has the advéntage of beiné a precise expérimental

32

tool. = For example, Olander found very good agréément between théoryf

~and eXpefiment while studying the diffusion-limitéd'chemical réaction?;
between iodine and gefmanium ét,moderate temperatureé (approximétely BOO°C). P
Schofill35 found very good:agréement bétweén thepry_aﬁd experiment whiie

studying thé diffusion-limited chemical reaction between axygen énd mély—
bdenum at very high'temperatures (vp  to 2600°K). Other studiesl6’58 have
also shown the .exactness Qf this ﬁooi.' |
.In this experiment, the material'véporized was chromium and thebehvirén-
ment was cool helium.. The disk was heated by induction. fhe vapérization '

rate was méasured over a temperature range of approximately 100°K at

approximately 1700°K.
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B. Description of the Experiment

The rotating disk haé what is called a "uniformly accessable surface."
This is a term which iS'used-tq describe the experimental and theoretical
fact that the mass flux leaVing‘the disk, or the vaporization.ratevasiwe"
ghall call it, is ihdependent-of position on the disk. Because of this
position independence, the vaporization rate is dbtainéd in an experiment
simply by dividing the mass loss of the disk by-its.crosé—sectional'aréa
énd by the time over which the mass loés occurred. - The problem experimentally
then is to obtain a measurable.mass loss reasonably free from error iﬁ;a

reasonable amount of time.

1. Seiection of the Diék Material

' The'materiél used in this éxperiment was chromium.. Chromium wés
chosen becaﬁse it has a‘relatively high vapof pressure neaf its melting
_point‘(apprOXimately 8 mm of mercury of 2120°K) thle at'the_same time
being rélativély inert. The £igh vapor pressure was necessary to obtain
a mass loss large enough to be meésured. The_mate?ial.must be relati&ély‘
inert in order to pfeveht reactions with_other elements in the system .
from obscuring the mass loss caused by vaporizafion. For example, a
chemical reaction between the disk and theﬂcrucible-at the temperaturés
of this experiment could easily prodﬁce‘a largefmass'change in the di§k.
Alsé, simple diffusion of the crucible eleﬁents;iﬁfo the disk can be a:large e

source of error. A reaction can also occur with impurities in the inert

[

gasrstream.’ Any one, or a combination of-ail of thése, can easgily intro- -
duce errors much largef than the value intended to be measured;
Iron was initially tried because the disks could be easily machined

from it by‘conventidnal methods. However, the vapor pressure and melting
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temperature -of iron are lover than those of chromium, and to obtain a
ﬁeasﬁrable mass loss, ﬁﬁedidks had to be run very close to their mélting
point. This was difficult to do EecauSe iron has é,phase transition near its
melting point'and'at the transition the pfoperties; éspeciéliy the specific
heat, change quite rapidly.‘,This-caused the temperature of fhe_disk to charge
quite rapidly for small changes in input poWér from thexinauction heater

with the conseqﬁence that the disks invariably melted. Thus chromium was
chosen, it, héwaver, was considerably nore difficult to fabricate since it
cannot'be_machined But‘musfibe spark—cut. Thié'had thé effect of limiting
“the number of data points whiéh could be taken because of the coﬁsiderable

effort required to make a disk.

2, Equipmenthescription

" The exper iment is sketched in Fig. A., The chromium disk to be Qaporized
was rotated by a synchronous electric motof while heated by ah induction
heater. _The_disk waé cont@ined in a boron nitride:crucibletwhich was:
'attached £o a.tantalumshaft, A thih-tungéten'liner wa s placéd bétween the
chromium and the borbn nitride in order to.pfevent a chemical reaction
‘between them; " The reaction befﬁeen ﬁungstén-and.boron nitride is muéh smaller
.than that_between.chromium and boron nitride. The s&nchronoué motor drd&é
the téntalum shaft through a water-cooled bearing'bloCk. vThe water”cooling.
was requifed to prévent overheating of the bearings and.the_electric‘motor.
) The-shaff was mede long and thin to reduce the amount ofvheat,transferred
from the hot disk down the shaft to the bearings and mogbr, The sﬁaft
wa.s 0;25 inches in diameter and éix inchgéxlong with approkimately three
inches of it extending above the.wuterfcooiedbbearing block. vThe boron
'nitride holder was approximately one centimeter high by sliéhtly more/than

one centimeter in diameter at its top. The motor was driven at constant
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speed by an audioéoscillator connected to a power amplifier., The oscillator

provided a variable frequehcy source to control the motor speed and the,ampli—

- fier provided the power necessary to drive ﬁhe motor. The system was de -

" signed to run at speedé betwen 3000 andvl5,000frpm. The éhromium disk .

along with"the boron nitride holder, tantalum shaft, and synchonous motor
were enclosed in a large quaftz fube; The“induqtion cdils‘outside thev 
.quartz enclosure-encircled the chromiﬁm disk. .The ihteriof of‘the tube 3
during a run was filled with a o6% Hg-h% hydrogen mixture . Thé 4% hydrogen
was added to inhibit the formation of chromium oxide on thevdisk surféce.

The helium-hydrogen mixture was treated prior to entering the appafatus

» by a gas purification system.. This consisted of filtering the gas through

a packed filter of pyrex filterihg fiber and then passing it through

two Drierite dissicators and finally through another packed pyrex‘filter

- to remove dust particles. The gas purification system was constructed

éntirely of stainless steel wﬁich héd been chenﬁoally polished to remove
surface impurities. »All lines leading from the bottled gas supply.to the
quartz enclosure weie also chemically poliéhed stainless steel. .The
only exception was a very‘shérf piece of copper line'where the metal-to-
quartzﬂjoint\was made. The gas purification systeﬁ'and these lines leading
fram the gas supply ﬁathe quartz. enclosure wére.kept‘in an argonvatmosphere
whenever the system‘was’nbt.operating..lThesevprecautions were taken to |
prevent iﬁbu?ities from ~entering the systém and 1a£er depositing on'ﬁhé
hot chromium surface. |

- The apparaﬁus was assembled for cperating by ﬁlacing fhe weighed ;}'

tungsten liner and then the chromium disk into the boroﬁ nitride crucible

and then threading the crucible onto the tantalum shaft. The quart tube was -

placed around the disk assembly and the helium-hydrogen sﬁpply connected. The

g flow.rﬁte was.adjusted'to a value equal to that pumped by the disk plus a
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sma 1l addiﬁional amount; to insure that no back mixing

oc¢urredn. The additional amount was calCulated,busing the results-in ﬁef.

16 to be sﬁall enough not to affect tﬁekveiocity profiles arocund the disk
significéhﬁly;, Upon entering the quartz.tube; the gas mixturé was cooled
wi£h>a‘watergcooled heat exchanger. The:heat exchanger prevented the gas
fromvﬁeing heated by the quartz eﬁéiosure’as it‘travéled toward the.diSk.
The temperature of the quartz-énclosure ﬁas highérvfhén ambient because the
hot disk radiated to it. B& Cobling>the.gas, é precisély known boundary
condition'at the outef edge o the bbﬁndary layer waé ﬁaintained. |

The témperature of the disk was measufed.with~én optical pyrometer"'

which viewed the disk through a right-angle prism and én~optical fiat located
on top of thé quartz encldsﬁre. The temperature correctiénvfor the optical
-flat héd'beeﬁ,previbusly determined by_calibratiﬁg it with a tungsten lamp.
The pyrometer was sighted m thé.disk and also on a small hole lo§ated in
the cénter of theAdisk. uThe hole hdd‘a'lehgth—toédigheter fétio of
approximatély unity, and.though i% was not a perféct block Bédy, it did -
have an emiSsivity considerably higher.than the chromium sﬁrface. This
" hole was used to calculaﬁe the emissivity of the &iék éurface.

The emiésivitonf the disk ﬁas measured by a set of temperature
measurements taken while the disk was being heatéd to and cooled from its
operating temperature for the run. The‘measurements consisted of recording-
the température of the hole drilled in the disk and then the temperaturé
of the surface immediately.édjacent to.the'hole for'a sequenée of diffe-
rent disk'températures. If an axial tcmperature.gradient does not éxist,
the true femperature of the hole should be equal to the true temperature
of the surface. By équating these temperutufes and makiﬁg some approxi-
mtions, as shown in Appendix ¥, the ratio of the emissivity of the hole

to the emissivity of the surface can be calculated. Then using the results
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--ef Sparrow and.é‘xlber’s,j6 the emissivity of the surface of the disk can be

obtained since the ratio of the emissivities is a known function of the

* surface emissivity.and the length—to—diameter'ratio of the hole. The

details of the methed, inciuding‘the effeet_of an axial tempefature gradient,
ere shown in Appendix F. | |

Photographs of the equipment ere shbyn in Fig. B to ¥F. Figure B shows
the entire experir'nentalv setup'. Figure C shows a closeup of the rotating.v
disk system including tne qnertz enclogure. Figure D shows the roteting

disk drive system including the boron nitride crucible inside the quartz

'enclosure. Flgure E ShOWS a v1ew of the gas purlfylng system. Figure F

is a photograph of the rotatlng disk in- operatlon at approx1mately 1500° ¢

and 12,000 rpm. Notlce the 1ntense heat generated by the dlsk Thls

gives an- indication of the dlfflcultles encountered in trylng to operate

at thegse hlgh temperatures and speed
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3. Disk Fabrication

The chromium disks were gpark-cut from electrolytically formed chromium
flakes of UN5 metallic purity and 3N5 desolved gaseous purity. The disks
were approximately one centimeter in diameter by one millimeter thick.
After cutting, the entire disk surface was chemically cleaned with hydro-
chloric acid at 35°C for several mimutes. The surface to be vaporized
wags then polished on a rotary wheel with silicon carbide paper beginning
with 380 grit and proceeding to 600 grit. An attachment held the disk on
the wheel with a uniform pressure and automatically rotated it at the same
time. The disk was finished with six micron diamond powder. The tungsten
liners were cleaned by hand with 400 grit silicon carbide paper. The disk,
liners, and crucible were finally cleaned with acetone and methonal in an
ultrasonic cleaner. They were then stcred in a dissicator under fore-

pump vacuum until they were used.
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C. Experimental Procedure

To begin the experimental run, the synchronous motor and induction
heater were turned on and the diskAspeed and the temperature were adjusted
to the values intended for the run. The runs lasted from twenty minutes
to one hour, and.were calculated so that the total mass loss from the disk
would be between one and ten milligrams. Above ten milligrams the amount
of material vaporized was so large that the upper surface of the disk
receded below the upper surface of the crucible which disturbed the boun-
dary layer to such an extent that chromium condensed in large quantities
on the disk edge between the chromium and the boron nitride crucible. At
mass losses below one milligram the accuracy of the measurement began to
be affected by the small reaction which took place between the tungsten
liner and the borén nitride, and by the small amount of chromium which
always condensed on the disk edge between chromium and the boron nitride
crucible. .The amount of metal vaporized was determined by the difference
between the initial and final weights of the chromium disk and tungsten
liner. The tare wéight of the tungsten liner was considered because after
the run it could not be seperated from the chromium disk because a diffusion
bond always formed between them.

The disk temperature during the run was recorded, and adjusted if
necessary, approximately once every minute. The temperature variation
for any point on the disk during the run was generally held to less than 5
°C by manually adjusting the power applied to the induction coil. Read-
ings were taken at threé different radical positions: the center (r/réaQ),
halfway between the center and the edge (r/rozsl/Q), and at the edge

(r/r ~1). The variation from the center of the disk to the edge was

usually on the order of 15°C. The average temperature at the three
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radial positions for the run was taken as the simple average of all the
temperatures recorded at that position during the run. The mean tempera-
ture of the disk was then calculated from these three time-averaged
temperatures. This was done by first passing a parabola through the three
temperatures T(O), T(l/2) and T(l), to obtain T(r/ro>. The average vapor
pressure §v over the disk surface was then calculated, i.e. ﬁv = (f pv(T)dA)/
(fdA), and the mean temperature takenas the temperature corresponding to
this vapor pressure. This method was used because the mass loss rate is
proportional to the vapor pressure and to the incremental area over which
its exists. The details of this calculation are shown in Appendix E..

Three different sets of runs were made. In the first set, the rotationai
speed of the disk was held constant at 12,000 rpm and the temperature
varied from 1620°K to l7h5°K. This determmined the effect of temperature
upon the vaporization rate at constant rotational speed.

In the second set, the temperature was held constant at 1715°K % 5°K
and the speed varied from 4200 rpm to 12,000 rpm. This set showed the
effect of rotational speed on the vaporization rate at constant tempera-
ture.

The third set consisted of three runs at 12,000 rpm with a resistance
heater replacing the inlet gas heat enchanger. The incoming gas was
heated to approximately 500°K by the heater. This increased the temperature
in the boundary layer and thus increased the equilibrium vapor pressure.
The supersaturation was then reduced and the amount of material condensing
should then also be reduced if nucleation is in fact occurring.

For all the experimental runs, the Grashoff number divided by the Rey-

nolds number squared for the disk was held to less than 0.05. In most

cases 1t was on the order of 0.002. This insured that the effect of natural

conveet.lon was small.
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Photographs of a typical chromium rotating disk and boron nitride crucible
after operation are shown in Figs. G and H. Figure G shows the disk inside
the crucible as it was during operatim and Fig. H shows the disk separation
from the crucible. Notice the reflection of the pennies in the disk. This
ig the most important point in both photographs because it shows that the
disk surface is both shiny and clear. This is very important because
impurities on the disk surface can affect the vaporization rate tremendously.
This clean disk surface was typical of the disk surfaces after the experi-
mental run.

Figures I and J are typical micrographs of the disk surface before
and after the experimental run. Their magnification is 100 times. Figure
I was taken before the run and shows a surface distinguished only by light
polishing scratches. TFigure J was taken after the run and shows the large

grains which grow in the disk at these high temperatures.
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XBB 698-5327

Fig. G
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D.. RésuEEE

'_vA fabulation of'thé fesults_is shown in Table ITI. The experiﬁentally
measuréd vaporization_rate‘of chromium as a function of disk temperature
is’shown in Fig. 15. The function and pdihté on thezgraphidenoted by circles
are for an inlet.éés temperafure-of 290°K. The wallgtemperature for these
points ranges from—l620°K:to l745?K. A total of seven points were takeh in .
fhis range; The figure shows that the vapori;ation réte iﬁéfedseé rapidly
in the viéinity of 1620°K to i655°K and ihgreaseé mdch méré slowly from'i655°K
_ to 17M5°K; The péints show Very little scatter. The two-points denotéd '
by upward triangléé were taken with the inlet gas at éﬁp?oximately SOpéK;3
iThese.points lie below the points taken with the cqoler iniet gas temééré-
ture of 290°K indicating that nucleation waé in fact océurfing in thé E
boﬁndary:layer.” The point dénoted by a ddwnﬁard triangle was»faken with

the heater installed but at Zero pOWef. vThis was done to éeé if the V
A measurement -of the disk temperature was affected simply by the physicai‘
presence df the héater. The proximiﬁy of this point to the line dféWn:

through fhefother coid inlet gas points showé the effect to be small; ;

The chief characteristic.of the data shown in Fig. 15 is the rapid
~increase in the vaporization rate over a small temperature range foiioWed
by a gradual increase in the vaporization rate over a much larger tempéfa;
ture.faﬁge.: The theoretical no—condensation,aﬁd bulk-equiiibfiumvcondénsation
vaporizafion‘rates are also shown in the figure. It Can.be seenfthat-ag
‘the wall temperature is increased, the experiméﬁtal'rate proceeds froﬁftheb
vicinity of the no—cohdensation line to thé vicinity of the bulk equilibrium
condensation line. The véporization fate coﬁld not be measured beloﬁlﬁ_

]620°K, for two reasons. First, the errors in the experiment began to
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TABLE IT

_ Data Summaryr |
~ Run Weight Loss Time Speed Tapp Ty L J o
No. (mg) (min)  (rpm)  (°k) (%K) (nig/cm?-hr)
1 6.61 0 12;000 1667 C1ms - 18.9.
2 0.5 50 . 12,000 1552 1620 - 1.38
3 10.28° 50 12,000 1615 1688 15.2
b C 5,54 60 12,000 = 1584 1655 6.83°
5 8.0k 20 12,000 16k 1718 29.8
6 R TV 60 12,000 1567 1636 5,23
7. 2.06 60 12,000 1556 162k 2,79
8 ks 20 - 9,000 16k 1720 - 16.5
9 . 12.7 45 6,000 1638 171k 20.9
10 15k 60 L,200° 1635 17io 19.0
11 0.2 30 8,400, 1638 1714 25.2
12721 15 - 12,000 1666 17 35.6
13 8.6 L5 .. 12,000 - 1616 1690 - 14,0 -
1k 6.52 . - "eo , 12,000 .1638'” -'171u -V

Nos.. 12 ‘and 13 were run with heater 1nstalled and oh; No. 1k with heater -
1nstalled but no power.

Ta' is the apparent temperature of the dlsk, i.e. the: observed temperature
uncorrected for emlss1v1ty

TJC has been corrected for a surface em1ss1v1ty of 0.55.

‘Area of the disk is 0.81 cm?;
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become a significant fraction of the mass loss due to”yapbrization at these
températures.-vSecondly, the vaporization rate is changing quite rapidly .
with temperature'in this region and so.small errors in temperature measure-
meht become quite important. At the high ﬁempgrature end,‘the data approeaches
the bﬁlk equilibfium condensafion line. Tﬁé agreemént is‘only.within a
factor of two; however, this isvnét ﬂbadkcdbsidéring thé measurea vapofiza4
tim rates rangé over a factor of forty. | |

‘Excellent agreemént between theor&rahd experiment was not anticipated
in.this work. There.are éeverai feasonsvfor'this. Fifst,'the experiméntal
vapor pressure data given in the Iiterature séatters wideiy. ﬁesmeydhov
sSurveys mosé of fhé vapor pressure data avaiiable'for the elements. >Chfomium
has one of the better.knowh vapor ‘pressures and yet the dafa Nesmeyanév
preéeﬁts scatter by x 50%; In adaition, ali thebreliaﬁle dafé that NéSméy—
anov presents fdr'chrominm are at 1550°K énd.belqw.‘ fhué thére is ﬁo vapor
pressﬁre'daté_in the range inbwhich wWe were working;'we were.on the aver-
age of 150°K above the neareSt data, and so were reguired to use.an extfa—.
bolation given by Nesmeyanov. Hultgreh; et. aihB-éiso liéts}recomméﬁded
vapor pressures for the‘elements. For ¢hromium at 1800°K,_hié{rec§mmended
vapor pressure is about two-thirds of Nesmejanov's recommended-vaiue._:This,
however, falls within the scatter of theé dafa shbwn’in Nesmeyanév and so
- Hultgren's data falls‘within the error bandé shown in Fig.'l6. -

The second sourée of error in thiszexperiment is in fhe méasgremeﬁt
of the surface emissivity. As discussed in Appendix F, this is a difficult
measurehent to make. Our measured vélue wis 0.55. ‘The data.prééented'in
Ref. L3 scatter widely tut the most reliable vélué_is indicated to bezé.MBQ
If the surface emissivity were in fact'0}§3 ihsteadvof 6.55, all»the déta
points in Fig. 15 would be'sﬁifte& tqva'température apéroximatély,25°K higher.

'
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The effect of Ehe possible emissivity errof_andvﬁhe effect;of the yapof'
vpressure'errors_are shown in Fig. 16. The éhaded areas around the ﬁo-coh—
densation,aﬁd'bulk eqﬁilibrium condensation lines indicate the uncertainty
in them due to scafter in the literature vabor pressures. The line labeled
eS = 0.4% is the liné which wouid_be drawﬁ through the dataipointé if the
surface emis sivity were O;h},rqther”thah'o.55. The lower emissivi£y improves
. agreemeht befween équilibrium éondensation ﬁheory'and the data. The shadcd:
area between the two iines.indicatés tﬁe‘errorvin the data due to a possiblé
error in thé emissivity. |

Returning to the previous Fig. 15, the constanf diffusivity (Dg = D)
and.variabie diffusiviﬁy‘(Dé = D/gg/g) soiutions are plotted here also.
These definité}yvfall 5elow the bulk‘eéuilibrium'Cbndensation line.and the
‘measured data. This indicqtes that the moromer sink, and likewise the

drop'concéntrations, calculated in the progrém were less than those physi-
cally eXiSting in the boundary layer. The‘droplet concentrations in

the program are directly related to thé expression used.fbf the nucleation'
rate; forrtﬁis expression deterﬁineé.the droplet concentrations at smali
drop sizés and these concentrationé are uséd as the‘Bouhdary cordition.

The Becker—Doriﬁg-Zeldévich expfession fof the nucleation raté was used

in our calculations. This was because of theragreement befween theory
and-experiment which Katz and Ostefmier obtéined whiie-usiﬁg it in their

' diffusion chamber experir_nc—znts.'7 “Despite this agréement, hbﬁever, this ex;
pression is currently in'dtispu’t:é.21'21’L Lothé’and Pound hé#é\deVeioped an
expression for the ﬁucleatioh'rate which ipcludes quantum—meéhanical |
corréctions_to the classical‘expression.?u .These corrections change thé

. 1 v
nucleation rate by a factor of 10 (. This is a considerable change and would
definitely increase the magpnitude of the dropiet concentration and of the

I
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monomer sink term in the program, and hence increase the calculated vapori-

zation rate at the wall. Several runs of the program'weré tried using the

t

. Lothe-Pound expressibn. However, the nucleation rate calculated from_~"

the Lothe -Pound expfession was an extrémély'sensitive fuhc?ion,of fhev
monomer concéntration aﬁd numerical problems‘arQSe because ﬁhe mondmer‘
concentration cOuld not be interpolated between points abcurately enough. .
However,/if the calcﬁlations could be made, the Lothe—Pound expressién
should increase the calculated vaporization rate. This change is in
the correct difeétion because an increase in the calculated nﬁcleatioh.iate‘
Will increase the agreement between theory and eipérimenf. |
Figﬁrevl7 showsthe Same experimental data plotted against inverse
température. -
Figure 18 showé a set of five pointé taken at an approximateiy constant
température of 1715°K with differént angularhvelogitieéf vThé speéds

corresponding to the angular velocities range from 4200 rpm to 12,000 rpm.

.The vaporization rate is plotted against the square root of'the‘angular velo-

city. _The.figuré shows the measured vapbrization rate to be a linear
function of the square root of}the angular vélocity'and to‘haveva zéro inter-
cept. This type of behaviOrvauld be expectéd if vaporization were oceclirring
at the bulkvequilibrium.condensation réte_or at the no—condensétién raté
because then. the theoretical equaﬁions show'the vaporization rate to bé-
directly proportional to the square root of the angular velocity. fiéuré

13 shows a case.where.the vapg;ization rate is not at-either limiting value.
When this.occufs thé'rate canﬂot be propbrtional to the squgré root ofithe
angular velocity because the.angular’velocify occurs in thé‘source term.

Thus -Fig. 18 Shows two things; first, Fig. 18 shows that véporizatibﬁiis
bccuring at fhe bulk equilibrium cohdensation rate -at 1715°K. Second,

Fig. 18 indicates that true rotating disk behavior was being obtained in
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the boﬁndary layer. One ooint in Fig; 17 falléfar Dbelow fhe others; some-
thicg wa.s definitely wrong in this measurenpnt but what it was is not known.

The theoretical lines in the Figs. ]h 16 were calculated neglectinb pro-
perﬁy variations and thermal diffusion.. Property'variations were neg]ected
because the diffusion coefficient of chromium through helium is approxi-
mately proportionai to temperature squared'(see Fig. G-i,.Appendix G) and
' so the‘effect should be small. Thermal diffusion was neglected because the
Lennardeones parameters for chromium-helium and iron-argon are very similar.
For exampie,_hote the smail change in the diffusion coefficientsbin Fig.
G-2, Appendix G. Thus, the effect of thermal diffusion for chromiumushoqld
be fhe seme‘order of magnitude as that ofAiron (see Apoendix c). In 6ddi-
tion, even at the con51derab]y hxgher temperature of 5?00 K Elenbaashg
found the affect of thermal diffu31on for tungsten through kyrpton to be only
18% of the ordinary diffusion current Thus the affecl of thermal diffusion
bshould be small compared to the variations 1nvolved in Eigs. lh 16,

Figure 19 shows the present data and TurPdogan s datal on the same
graph. The results are not strictly comparabie because the-present data
are'for chromium and Turkdogan's are for iron;‘ Hoﬁever ihey ao icdicate
two basic trends. First, et low temperatures, ﬁheIVaporization rate rises

from the no-condensation value to the equilibrium value as-the temperature

increases. Second, at higher temperatures, the vaporization rate again approaches

the no-condensation rate as the temperature is increased because the
heat-generated by the large volume of-condensing vapor lowers the bulk
equilibrium line. The lowering the of fhe bulk equilibrium line becacse
of the latent heat release and the fact that Turkdogan's data in general’

follow this line was pointed out in Refs. 37 and L7.
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E; Coﬁclusiens

In eonclusioe; condensation enhancenept was measured in roteting disk
bcundery:layer with fhe vaporization rate proceediﬁg fran near the ceh;
densation-free value to the bulk equilibrium condensation value over e'smell
temperature range. ‘ |

Comparing - the present data and Turkdogan's data (Fig. 19) shows the "
following. At’lew temperaﬁures no cdndensatioh,enhancement is obtained.
This is reasoneble becausge here the system begins‘to approach the isothermal
state. As the wall temperature is increased, cehdensation enhancementh
occurs and the*%&boriiation rate. proceeds to that value determined by the
equilibrium vépor pressure. As the wall temperature-is inereased fartﬁer,
thevVapofization rate again epproaches the condensation-free rate; this is
because the heat released by the larger amount of Vapor condensiﬁg in the
'boundary layer tends to make the system more isothermal.

Comparlson of the experimental vaporlzatlon rate with the theoretlcally
calculated rate showed that good agreement could not be obtained using:the
clas81cal Becker-Dorlﬂg-ZeldOVlch nucleation express1on. Though calculatlons
could not be carried out using the Lothe-Pound expre351on, it is felt that
the change in the vaporlzatlon:rate which would occur would provide betfer

agreement between expefiment and theory.
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APPENDIX A

FORCES ON A SMALL DROP NEAR A ROTATING DISK

It wae assUmed in.tne formulation of tne dfople£ conserVation problem |
for the rotatlng dlsk that the droplets move- w1th the veloc1ty‘of bulk gas.'
' Tnls nnplles that|the gravntatlonal and centrifugal forces on the drople+
are negllglble compared to the viscous drag force. In thlS Appendlx these
- forces are evaluated for the dropletvsizes which exist in concentrations
large enough ito be important.to.the'solution. Thevanalysis first diVldes L
tne boundary layer into three sections: the "top, the middle, and the}bottom;
_The calculation in each section was then-baeed on.thevforce and'veloclty !
:comnonent charactefistic of fhe sectionfwhile.all other effecte‘werelneg-
lected, The effect of pfoperty variations was neglecteo The buoyancy
force was also neglected since the density of a metal is much greater than .

_that of air. ' - - ‘. v o

Near the Top of the Boundary Layer

Consider.a drop near‘the top of the boundary layer moving at equilibrium
velocity. Since the radial and centrifugal velocities at this position
are small compared to. the axial velocity, the drop will be moving ver£ically.

The gravitational force is given by
F = = 7R ' A-7)
g 7 U P g _ ( )
where R is the radius and p is the density of the drop, and g is the .
acceleration of gravity. The viscous drag force is given by Stokes law
F. o= 6 uR(Vaw) ’ o (a-2)
where u 1is thevviSCosity and w_thevvelocity of the gas, and V. is the;’

velocity of the drop. The gas velocity ig given by



~100-

w = Nov H(x)
. s
and H = 1 near the top of the boundary layer.
Since the drop is in equilibrium
| Fy - F, =0 o (A-3)
tting Egs. (A-1) and (A-2). in Eq. (A-3) and rearranging gives

Vw1 Ry | - T ask)
i 2 N Ve ' ‘

This equation show the departure of the drop velotity from the bulk velocity

as a function of drop radius.

Near the Middle of the Boundary Layer

Near the middle of the boundary layer the radial velocity is at its
maximum. Heré the two important effects are the fadial‘velocity and thel
' gfavitational force.v The axiél and tangenfial_vélocities will be neglééted.
| Assume the drop falls'by gravity while moving outward with the veio;

city of the fluid. Then from Stokes law the viscousvforce on the'drop'is
F = 6TupRYV o (A-5)
where V is vertical velocity at which the drop is falling. Since

Fg - Fv‘ = 0 ‘ ' ' <A;6)

we have after using Eq. (A-1)

2
9 M

22 , : . '
Pig ) (A-7)
This is the'velocity-at'which the drop falls while'moVing fadiaily with the
bulk fluid. The effect of this velocity will be foupd by'computing the

ratio of the distance traveled radially to the distance traveled verti-

cally.
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Let t be the time required to move radially from r. to r with bulk
o .

veiocity u. ©Since
wo= o Fx) ' (4-8)

and F(x) = 1/5 in the center of the bouﬁdary layer, we find t is given by

| ubt = Ar R (A-9):
or
5 To i : .
t = 5£1 < ‘l(A—lO)

() e

Let A z be the loss in height while traversing the radial distance r, <
to r_. Then
. 0

Az = Vit

| -2 EIRY B
. P Rg o) . -
= o lnn(z,,>. _ :(A 13) |

i

If ® is the boundary layer thickness, : _ R
5@:5#1 | . : (Aﬁﬁ)’

then the important parameter té-consider is the ratio of the height

: ' ; . : ,
fallen to the boundary layer thickhess. This is, with ro/ri = 10, .

Az 2 pR - ' ' ‘
5 = 5~ — | )

rh
SRR V¢4
Note that the variables are the same as in case (1), only the coefficiént

has changed.

Near the Bottom of the .Boundary Layer

Near the bottom of the boundary layer the axial and radial velocitiés
-approach zero and the tangential velocity approaches its maximum. So
near the bottom of the boun(_iar_y lay_er only the tangential velocity com-
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pbﬁeht will be‘cdnsideréd.- This compoﬁent indices a centrifugal fofce.fc'
on the drdpzwitﬁ FC g?ven by | . | | | |
where Vt is the tangenﬁial vélocity comfonént. This'assumes that thélarop .
moves tangentially with the'bulk.velocity; assuming this is conservatiﬁe |
 because it gives fhe maximum_fqrce Fé' The centrifugal fprce moves the
drop'radiallyfoutward and this moveménf prqduceé a viscous drag force
given by | . | v :

F = 6 mR(V-) _, . (a-1r)
where'Vbis'thé velocity of the diop and u is the radial velotity cpm—?l

ponent of the bulk gas If the drop 1s mbving in equilibrium

F,-F =0 | | _ - - (A-18)

The radial and tangential velocity cpmponentsv are given by

W= orere . (a19)

ro G(X)

fl

, | Y ) S
and F(x) =~ 1/5, G(x) & 1 near the bottom of the boundary layer. Putting

Egqs. (A-16), (A-17) and (A-19) into Eq. (A-18) gives, after rearranging

V-u - _ PR g o N vw ‘
u " " o ( g > ' (A—QO)

Again the -same combination of variables P R? g/(p.&)) occurs.. In this

case, however, the-géoefficie‘rrt is not a constant but a variable.

Evaluation of the Effect of the Forces

The effect of gravitational forces will be small if the parameter

2 : . .
p R g/(LNww) is small, for if this is true the "velocity defect" given
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by -Eq. (A—ZL) and'thé "distance deféct" given by Eq. (A—l‘j)» are s‘ma'll. The
éffect',ofcentriﬁlgal. forces will be small if in addition f_he parameter
d)\/T/-(I)‘/g is not large for then the "velocity defect” givén_ by Eq. (A-EO)_
~will be small. If these'i "defects_""ar.e srﬁall, then ’;he drops move witfl |
the bulk velocity of the fluid. Fvo"r“a drop of .106 atoms composéd of ifon
we have | . |
n. = 106
o~ T anfom
R’ 10-6 cm
g = 980 cm/secg_
v ,J:,.l cme/sec"

] - gm/cm—seé

B 1
w X 1500 rad/sec
These give R o _ I

2
PR g o 10'6
pNvo

and o

W N VD

g.

=~ 60

Thus all drops Tess than ZLO6 atoms définitely move with the bulk Véloéi.ty
of the fluid, becauvse the velocity and distance defects at the top; middle,

- -6 -6 ;-
and bottom of the bowndary layer are 10 6, 10 ~ and 60 +« 10 respectively.
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APPENDIX B
THE GROUP EQUATIONS
The method used for converting the individual drop co_nsefvation eQuatiOn,
Eq. (58), to a group conservatioh equation is-as follows. Fvirbst sum Eq'.

(58) over the n + 1 drop sizes ir:l the group from g to gi+n’- this givés.

..__G‘l_é. VoOFV Tt etV -
&1 &1 i+n

l.
+ + +
= -Sc- p -, vV, -8, V, to +
g €i.1 8.1 & & i & 8+ Bin/
+ +
+[g" v ...« ¥ -8B ¥ +a v +
& & 8i+1 Bi+l  Bivl Biv1 Bide By
...+ (B-1)
+ + + '
+ |8 - - B v+
C Sitn-1 8i4n-1 Bitn Bitn Bitm Sin

+ \
+ o - Vv
Eitntl  Eitn+l
Where the Schmid%t number V/Dg has been evaluated at the mean drop size-

~gifor the group. The mean Vdrop'size is given by:

L FE o)
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Noting that most -of £he'termé on ﬁhe-right-hand size of the equation

cancel the equation becomés

(v +v. o+ L4y S se  Bx).
g g : g ‘
Tdx i it2 itn i :
. __;i; ( + v + . . . +v > = Sc . (3;3)
o &1 Bit1 itn "85 g
+ + 4 + -
(B A ~a v -B V. +Q A )
81 811 8 By Biapn Bidy Biaptl Biiphl
Now the mean droplet concentration for the group Vé is by définitioh.
1 v o , N
Vr_=.+f;(v T SIS E
&1 n & B+ - By )
S (Boh)
" and hence Eq. (B-3) becomes: o
d2 o . R dVg.w 1 g .
—_—— - - Sc- H(X) — — - —=— Sc- » -
2. - + B~5).
e g; g5 ~dx ntl " g, _( 5)
+ 4 + 4 o :
.<B SV g V- -V +a v
8i-1 8i-1. 8: 81 Bip Bitn Byl Biimt1)

' . -t .
Suppose the group under consideration is called the 1 h group. Then

.physically Bg Vg in the source term belongs to the i-1 group and.
i-1 ®i-1 : : ' : o
is the rate of transfer of drops from the i-1 group into the ith gr oup

by atoms condensing on drops and @& V. is the rate of transfer of drops

. 8.
_ : v i =1 : o
from the ith group into the i-1 group by evaporation: of atoms from drops.
Likewise, B v is the rate of transfer of drops from the ith'group
- €i+n Bi+n . : ;
to the itl group and O v which belongs to the i*l group, is

Eitn+1 Sitntl 0
the rate of transfer of drops from the itl group to the i group. Thus,

+ + _ _ S .
B Vv - -V _ 1is the rate of transfer of drops across the group
g. g g: 8. : v - S
i-1 i-1 1 1 - s . : -l
interface at the low g end and B v o -0 Y . is'the

. €itn Bitn  Bitnt1  Bitntl _
" rate of transfer of drops across the group'interface at the high g end.

-
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The terms:on the right-hand side of Eq. /(345): are'obtained by:in—»
" terpolation, since auring the sdlﬁtiohnbnly the values at the mean fori£he
groups, i.é. at éi, are known. | |

The source term for the monoﬁer-equation in this_muitigroup fbrﬁﬁlaf
tion may be derived in exactly the'samg e nner as,was:Eq. (22), i.e.
by multiplying‘Eq.-(B-5)\ by éi’ and. summing all'such equations‘along
'iwith the monomer equation to obtain a general continuity equation fprv
both drops and moncmer. Ey inépection,of the process Leéding.to Eq; (22)

it can be seen that the monomer source term S in the multigroup formﬁ—

| 1
lation will be: o ' R o
s, = =z g Sy -~ (3-6)
1 . “1 - :
=1

+ o+ .+ 4 N

S T onE (B v, ~-o v -p ¥ ) to v - (B-7)

&1 8i-1 811 81 8 U 8 Bidn o Eiapr1 Eiwmt1)

The moncmer then becomes:

, A - + " -
—5— - Sc, H(x) = = Sc, T g (:f1+l).Sé- - (B-8).

1

The group mean drop size éi.is given in terms of |1 and gy by the equation

g, = g, t1i(ntl) - (1m/2) (B-9)
For completeness, the eﬁtire,set of equations which define the probiém

are listed in the muitigroup-formulation. The boundary conditions are:
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b ' ._‘ 2/5
Uu=1, Vé,: exp \- T g; at x=0
=i CTw
U’*O, V- = 0 as X o w ‘(B-lO)
g5 O
V- = ‘J+(X)/(3f (x) at 1 = 0 in the nucleation zone
Vé. =0 as g7
i .
The transcendental droplet equation.is
A B R S I N
g 8y & 8 )
ﬁ+' . . (B-11)
c _ p th gas . ‘
o1 ) oe T 3 : ' o,
gi
c, = o
2 It
ceI'W A~
- 8
where the area. Aé is
Aéi R EENT/ (3-12)
and the evaporationr and condensatlon coeff1c1ents are;
. A-
s &4 U(x) 1 o
e 7 (B-13)
85 2’Tﬁn.kT WT g [ !
L 5 YVom
-
+ 8y _ =1/3
o= = g: . .
g @ i

(Bflh)
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»j(B=5‘j¥' « (B-14) ' define the pinoble,m in the multigroup ~ =
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- APPENDIX C

THE EFFECT OF THERMAL DIFFUSION

Thé effect ofrfhermal.diffusion'in the boundary layer upon the
vaporization rate is shown below. If cohdensatioﬁ is neglected, the mbnomer

equation including thermal diffusion is from.Eq. (6)

d . o [d 1 4T o
i AVORE S CFICVORRNES 3 - (e

where the radial terms have been dropped.. D, is the thermal diffusion.

T

coefficient, In the dimensionlesé.variables of this problem the equation

becomes
2 o n k o
dU o dyu’ _ gasy 4 T 4T \ - ' _
“—2--S°H<¥>d—x-"<n>‘ a}'<m dx> - (e-2)
dx VvV /W .

where ngas and nv'are the molar concentrations of inert gas and vapor;{

respectively, and Xk, is the thermal diffusion ratio

T
: . pD . ) .
o1 T ' ) SRR
M R ) .
V‘ gas

with Méas and M& the molecular weights of the gas and vapor, respectively,:
5 .

and n the molar concentration in moles/cm” of the mixture.

The thermal diffusion.factor‘aﬁ is defined

’ : o L . 1
and 1s generally considered to be a weak function of temperature.

i
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Since the system is dilute in the vapor, X s 1, Eqguation (C-=2)°

. gas
then becomes
2. : - . Q ‘ S
d'U A dU L d T 4T ‘ e v
-5 - Se H(x) Ix = - <)—(—> = <XV T 535) : o (c-5)
ax v /W I o :

and this equation was SOIVed'assuming o, eonstants Since Eq. (0-5) . must

T

be integrated over the entire boundary layer, the thermal diffusion faector

“ Oy was evaluated at the recommended mean temperature for thermal diffusion

o1
- T'W-.TOO . ' ‘ : 6 s
T o= m 1n (TW/TOO) R : - _.(cf )

With the_sfraight_line approximation to the veloecity pfofiie
H==1/4x (=)
an integrating factor can be found for Eq. {C-5) * and the-equation

solved for the gradient at the wall giving

<§'xg>w ="\"S§c—fr <l"_O‘T ,/£ ‘€Xp (- gféc %) ./O- _exp ( §SC £7) .

; xf. N L ' o

.4 (=) L dL. , o o C
de. <(Xvw> T dx >dE dﬂ) = : '(-078_)
- V= G- om R | (e

where R has simply been defined as the value of the#integral in Eq. (C-8) °
over Pr/m.. A Prandtl number dependence in R is incurred through T and
dT/dx inside the integral and defining R in this way makes the dependence

weaker. R was numerically calculated‘as a function of'temperaturé using

"
!
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the concentration unpefturbed by thérmal diffusion for Xv’ This should no£
be a bad assumption if the effect of thermal diffasion is small,

The thermal diffusion current is defined .

|
[w)
M

Jp =Dy F VI o ﬂi ' (CflO) \

Thus the mass flux at the wall including thermal diffusion is

|

d 1 ar o
j=-(0D) 5= (p/0) +Dy5 55 atz=0 (c-11)

and in the dimensionless variables of this problem iss

.

. w av . 1odr\ |
j == (pD) — ¢ [(——) + O (— —-—) :’ {c-12]
‘ W .VW oW L \ax TW T ax/, : .-( )
where aT must be evaluated at the wall temperature Tw' dew the solution

of the energy Eq. (5) using Eg. (C-T7) can be shown to be

T =T -~ (TW - T ) erf (\}%11 . .X) : - ((1.—‘13). )
1 4T P o0 _ .
(k8- VE (-] e

and hence

W

Thus the mass flux J becomes

g=-(r D)w g u [(dx)w % Y35 (l T T )] : (c-15) .
W W . W : ,
. : . . L
. au oy s :
Using the value of (EE) from Eq. (C-9) . the vaporization rate can
W - .

now be written as

, | o _ N i e
. w Sec . Pr Pr. _ =
SRR DU [ S B e - (1 T ”
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‘The thermal diffusion faetors in Eq. (c=16)" were caleulated from Chapman-

17, bk The Lennard-

'Enskog theory using the Lennard-Jones (6-12) potential.
Jones parameters for iron were calculated from.the'properties‘bf-iron at

the melting point.

If we define

. . y J T - .> '
L Pr o ‘/25 2 ' C-17
Pa =t " Eﬂ"“‘RJ"O‘TW Se <l,"'r > (c-17)

then S
(c-18)
where ¢td gives the effect of thermal diffusion upon the isothermal mass
flux J « The results are shown in Table IIZ, It is seen that the effect
of thermal diffusion is small, on the order of 3% to 4h. For this reason

we have neglected it in the calculations



1k

’ Tabl_e III Effect of thermal diffusion

1500 590 0.052  =-0.0026 3,05 ~ 1.033
1600 605 0.055 ~ =0.0011L 3.10 = 1.036
1700 620 0,057 0,005 3.135 - 1.059

1800 . 635 0,059 0.0017 - 3.16 1.042




-115-

APPENDIX D

THE STNGULAR PRRTURBATTON FORM OF THE DRCPLET EQUATT v

The method oféingulari perturbatidﬁ wa.s applied to the droplét.con—v
servation equation 80 that the effect of diffusion of the drops cQuld-be
considered in.a more exact manner; As noted in the discussion section of
this manuscript, eacﬁ drop size has its.own Schmidt numbér and hence its
own boundary layer fhickness. Thevboundary layer thickness varies inversely
with the one-third power size of the drop. Since we 5re interested iﬁ fhe
effect of the drops on the monomér concentration, éli the equations must
be solved ovef the boundary layer fegion.of the moﬁdmer. This means.that
the droplet problem for‘large drops must be solved over a_region of'many
boundary layers. Howe?er, it 1s in gehéral very diffcult'to solve an equa-
tién numeripallyvover a diétancebof_many boundary iayers. It was fertunate,
in this case, that the droplet equation could be handled by the method
of singularvperturbation.u5 This_method alloﬁs one to perturb the solu-
tion in such a manner that the drop concentration within the droplet boun-
dary layer was given in terms of the‘sblution outside the droplet boundary
1ayer} Outside of the droblet boundény layer the concentration had to be
calculated numerically, but this was relatively easy to do compared to
numericaliy tryihg to handié the pr§blem in both regions.

The technique is as follows. The drop concentration equation ié: 7

2 .
4V ‘A av '
2 : 2 +
———Ea—w - H(x) Scg /3 . = =g /5 Se s _(x) (D+1)
Laxo g B
with boundary conditions
v,oo= v at x = 0 | (D:2)
g g,ed ' : . o

'Vé —>O’ a8 X —®
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v o
-8y eq

~ implies the balanced equilibrium concentration at zero superéaturation
and is given by Eq. (59) in the main section of this report. The following

relationship has also been used:

v v _ 2/3
‘Dg | f (D/gQ/B) - = Sc_g.

" Se =
g

If we define o - .
| b= 1/62/ L (D-3)

- where ug is a smallrparametef because g is in genéral quité large, then

Eq. (D-1) becomes

v an av L . -
poo—E— . Hx) Sc —=-E— = -8c8 (x) (p=k)
& ax® . dx . g AD-

Note that aﬂtegular_pérturbation expansign_about-the smll parameter'ué;'
cannot be'maae begause the‘Zero order*pertgrbaﬁion‘requires settihg ugﬁ=v0
and this eiiminates the second defivativé thus giving a lqwer order
differential ééuatibn then“the original Eq. (D—h); Hence a singﬁlar
pertufbatidn ﬁuSt be USed; This is dbne by constructing.anvinner expan-
sion valid for'small distances X and.an oﬁter'eXpanéion vélid for laréekf
distances x and then matéhing‘them in some ménner;

For the outer expansion, a reguiarvperturbation problem is fOrmuj :
lated in'the usual.faShion.h5 Let Vg be explained in terﬁs of power of

E ' V o= V. +p V. +uy o+, ; IR (D;é)‘
o 8 0 ‘g lg. g ‘e L
Putting:this.expansioh into Eqg. (D-5), cpllecting the coefficients of"
like powers df ué, and.thén rgquiring these coefficients tb-be‘equal tq}
zero because Hg is an arbitrary'parametefy gives the following éeﬁ of.“u

differential equations

1



. (D-4) beéomes_

gives

AN av T+
-H(x) Sc % _ . g Sg(x)
. av dQVO : .
Ase —£ 7 TS (0:)
o av, é%l
H(x) Se =B - . —=B
dx i

In this problem we will be satisfied with only the zero order perturbation,

i.e., we keep only the first equation. ' Thus the solution in the outer region
is given by , ‘ »
_ R a & o -
Hx) —&— - sg) (@)
where.the superscript OF implies outer expansioh.
For the inner expansion a newvdistance T is defined

T= X
iy
where, since Mg is small, T is enlarged interior distance. Then Eq. :
dav : av

& . B se —EB- = - *  0.8)
dTgv “H(x) sc It 'Mg Sc Sg (1) : _ (D:8)

and note that it is now in a form amenable to regular perturbation about
the parameter pgl,aApplying regular pérturbation in the usual fashion _
s v , :
Vo= Vo 4p V. tutvy o+, .. (D-9)
g cg g 1&g & ‘eg. o ( ;9)

and the following set of perturbed equations

d2VO A av,
— =L - H(T) S¢ —FB= = 0
a ’L'2 : v e art o
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av A av. .
+ o

——%5- - H(t) Se —2B. - _gc (1) - (p-10)
at ] .

2 o

&=y ~ av.

28 . H(t) Sc —FB— = o0
. 4T

Again we will keep only the zero order equation
. . 5 .

vVIE . av IE | o
5— - H(7) Sc —~E§-———-—‘ = 0 S (D-11)

where the superscript IE denotes inner expansion.

Equatiqn (D-7) describés the drdplef concentratjon'outside the droblet-
boundary layer and Eq. (D—ll) deécribes the droplet concéntration'ihéide
the droplet boundary layer. .the that Eq..(D—7) says phsycially that fhé
cbncenfratién in.the outer region is determined by a balance between:the
source and the convective term and that diffusion is pf éecqnd order.._bl
Equation (Dell) sayé physig@lly that the concentrafion in the inner =
region is determined by abbalance betwegn the diffusive and cbﬁvective-

- terms and thét the soufﬁe is ofasecomirordef;_ Both,bf these a?e pfeciéély
what would be expectéd. |

The solution of the inner and outer. - Equations (De7); and
(D-11) will be greatly simplified if an appréximaﬁe velocity'profile ;;

can be used. For the outef equation; i.e. Eq.ﬁD—?)lthe normal approxié:~

mation
~ ' E ,
H(x). = 1/hkx 0 <x <x
o ~ < o
H(x) = - H_. X <>; o (p-12)
~ ’ .

H

o

t

0.86  x_ = 3.5%



is certainiy satisfactory. HoWeVer,.for the inner equation this profilé'
will not be valid because all distances x are very small. Sparrow andfGregg5o
have shown that a‘solﬁtion based on the aﬁpréximatién H(x) = -x2/2: for
small x can be fdund, buf the‘solution is in térms of the inéomplete'éamma
function and this function is difficult to generate inside a machiné. »A
?fofile similarvinvform té Eq. (D-12) would be desirable because an analyfic
solution in terms of errof functions.is immediately available. In view

of ﬁhis, the following technique was used. If Eq. (D—ll)»is written in-

terms of the distance x, it can be shown, using the results of Sparrow

and Gregg's paper, that the gradient at the wall is given by .

@ N
g 1 2] e Sc , 7
(‘_“dxv )w . F(A/B)FV 4 : : (D-13)
: , o S , av_\-1 - '
Since the film thickness 8 1is approximately equal to \ —£-
we have- | ' _ -
5 ~ T (43) &[—S o (D-1k)

In géneral‘ 8  is not the boundary layer thickness but abaut fhree-foﬁ}ths
of it.v If at the distance ® an apprdximate vélocity profile ﬁxx) ¥jex,
€ ah'arbitrary parameter, isvmatched to the better approximation ﬁ(x) =
-XE/QT, énd:approximate linear velocity‘profile will be the result. This

turns out to be, in terms of T _ o
, | 3 [6u : (D-15)
= 1/bu T (4/3) 4}—B— : o
g s /™ Hg ( /3) "~ Se ' .
-The inner Eq.'(D—7)-cah,now be sdlved to give

VGIE(X) - Cl"ﬂg—; ert ( J%g'T)"+ Vg éq' : A'(Q;lé)
g g ‘ | ) . : -
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The solution of the outer Eq. (D-11) is’

‘ . 1 L _
= o, * o s man (D17

ngE(i)

‘The éonstant C2 can be found from~£he boundary condition Vg — 0 as

x —» o, This gives
R S S O  (0-18)

The constant Cl can be found only by matching the inner and outer solu-

tions in some fashion. One method which gives a continuous solution-is to

determine the "common part”, i.e. to'require.that'

lim =V OF . 1im v ™ - common part (DQ19)'
x=0 S T 6 ' _ 33
The complete solution Vg is then given by
vo= vy v % _ common part 2 (D-20)
g g g o
Applying this to Egs. (D-16) and (D-17) gives
common part = CE (p-21) -
and : .
b, : B .
¢, -4 —>E— -V -
1 T CR (p-22)
Thus the complete singular perturbation solution becomes
‘ | 25 ' 2/3
Vo=V 1 - erf (Va YY) + ¢, erf (a %)+
g g;ed (T ( g ° x)) * & . ( g © *)
. n | g
: ' 1 + (p-23)
+ = Sg(m) an o
O W (m)
where
¢, = -] Z— s (n)an . (D-2k)
0 H{(y) & . : v Lo



1215
éndAﬁ(xj.is given by Eq. (D—lE),_?
These tWOtequatioﬁs were used fo determin¢ fhé,dfOpiet concehtration
Vg. The parts inﬁo}ving the soirce term S;(Xj'weré detgrmiﬁéa in'thé'bré'f;'

" gram from a previous iteration.
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APPENDIX E

CALCUILATION (F THE EFFECTIVE DISK TEMPERATURE

While thé disk was operating at high temperatufe, a smgll r%dialbl..
témpeiature variation.of'the apprdximately 15°C usually existed across.
it. Becausé of this radial temperature variation, three temperature
measuréménts Were.takeﬁ; tﬁe location of these measurements was at ?/ro:g 0,

r/rogg 1/2, and r/rosz l; where r. is the radius of the chromium_disk.

0

The effective temperature of the disk was then determined fram these1three

measurements in the following fashion.

If the three temperatures are denoted,To, Tl/2 and'Tl; then T(r) can

be approximated by passing a parabola through these three points to-give:

to) - 5 JE D

(5-1)

T :
=+ - +
T)) F (T, - 2T T

0 0

1/2 1/2
Thisvfunction T(r) was used to calculate the vapor pressure at any pOiﬁt
on the disk. The effective temperature caﬁnot be calculated frdn'T(f>
directly %ecause its effect upon the vaporization rate is through fhe"
vapbr pressure. For a disk with a gonstant vapor pressure'across itéi
surfacé, the masé loss m is proportional to the‘vapor pressure and thé:
area, i.e. |

w ~ p(T) A - (e
Forva disk with a small radial variatio in'v&pdr‘pfessuré, ﬁhe maséiioss
should Be appfoxﬂnately proportionél to the iﬁtegrél_of the Vapor”préésure.

|

mo~ [ p(1) dA = p -f_dA | B (E-3)
A i A

over the area

where the last equality is simply the definition of the average pressure

‘D over the disk. The effective témperature of the disk was .then- taken

~
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to be the temperature correspondinglto this average pressure. From the

Clausius-Clapeyron equation

S '
p = Cexp(-iz) - (E-b)
and so C . . - : B
S — | (m-5)
. ki In (C;ff) v : .
Putting Eq. (E-4).into Eq. (E-3) and using the definition Eq. (E-5) gives
e_x/kT = T f e /%I (x) rdr ~ (p-6)
#O 0 B
R . K/kTO | . ' 3 . |
Multiplying both sides by e and approximating the exponential by -
. L ‘ '_ ‘ N o ’ P
exp<~%—— (T-—TO)> N 1+ ——— (T -7)) (E-7)
' kTOT . kTOT : )
gives .
I‘O N
- ) - . .
T = 5 [ T(2). r dr » (E-8)
ro“\ 0 . ‘

“where it has been assumed that 1/Tvz:1/f._'N§te that Eq. (E-8) is simply

the definition of the average’temperature 0ver.the disk.and thét the effect

of the‘vapor pressure has cancelled out. / | |
Using Eq. (E-1) gives |

R R VE LN WY (£-9)

This equation was used to calculate the effective temperature of the disk

from the three readings at different radii.
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APPENDIX F
DETERMENATION.OF THE SURFACE EMISSIVITY

Thé most geherél method bf‘determining the emissivity ofva surface is.’
to measure the true temperatu}e Qf %he'surface with a thenno¢ouple while
- at thé same time measuring'the brightnesé temﬁefaﬁure with an optical-?yro—
meter. Kno&ing the true témperature'and the brightnéss temperature,.the
emissivity of the surface can be calculdted from'Plank'é(radiation law.
HQwever, for a small rotating aisk'systém désigned to run at high tempera-
tures and high speeds such as was used in this experiment;.it ié very difficult
to place a thermocouble in direcf céntact with the disk. Any modifiédﬁion
which is maae in fhe:diSK system to install the thermocouple conprémiées the
.intlegrity of the syétem while dperating and the int égrity :'_Ls_ lma‘rbginal‘ at
best. | |

An-alternatiﬁe_method o% measuring the emissivity is to:drill a black-
body:of the cdrrect 1ength-to-diameter_ratio in the disk and ﬁQ read;tﬁe
tempezaturé' of this holevdir'ect_ly.. Generaily a length—‘po—diémet er ratio
of four is required.'bThis is difficult to do, however, because a rofé%ing
aisk operating at 1500°C is a highly non-isothermal sysﬁem, and»the'bottbmv-
of the hole will probably be at a different true temperature than the
surface, Thé‘calculated emissivity will thﬁs be iﬁ error. |

A third method is to drili a hole of 1/a considérably leés fhan féur :
and to try to calculatevthe'émissivity of the surface from the observed
.temperature of fhe-hélé and of:’the Surface.. This requirés correctiﬂg”féf
the axial temperature.gfadient and for the ﬁon-uﬁity‘emissivity of'thgjf
ﬁole._ This was the procedure followed in this experiment. The ﬁetﬂodvis
outlined below. | o .

Consider a disk with_a hole dr;lléd‘in;it of l/d;<vh. If thé disk is

1
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in an axial temperature gradient, the vobs'erved ’g_emperature at the.bottom
of the hole‘will‘différ from the true temperature of the surface by an
effec# due first to the apparent emissivity of the hole and seéond to the
axial temperature gradient. The observed %empératuzé of the surface will
differ:&om Ehe'trué temperature ofvthe éurface'by an effect due to thév'
emissivity of the surface.

From Plank's radiétion'law; the frue temperature T, is rélated tQ'the

apparent temperature To¢for'a surface with emissivity ¢ at waveléngth = .

N by ) S Cg/K o
T, o= — (F-1)
. 1n [e (eXp(cg/x T, - 1) + 1] '
where Cg,::: 1.4%8 ',]_OLL e 7K and A = 0.655 for an optical pyrohétér;
If To‘is small'enough; ie. o
T << ¢ /n = 10" ok
o) 2 _
then Plank's law cah be approximated by59
A : .
= - —Tl tE—1In e - (F-2)
t o 2

Uniform Temperature

 First consider the case where the hole is not in an axial temperature
gradient; Then the true temperaturé of the hole and surface are the same

and from Eq. (F-2)

= + 2 Ine = + == 1n ¢ v - (F-3)
Ts' 02 s Th 02 ~h o
o : o
- i ‘ € v .
: 2 - A “h -
- o~ T AN — o -
Ty o~ T g— 1n — _ _(F,_h_)
0 o) 0 2 s : : o
where the approximation Th TS ~ T ‘has beén used.
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Frcm'Eq;'(F-h) we can calculate the ratio of the emissivities directly
fr om the observed hole and eurface temperatures. Us1ng the results from a
faper by Sparrow aua.Alber336 the emls<1v1ty of the surface can now be
calculated directly. Sparrow and Albers calculated the apparent emissivity
of a cylindrical hole by eolvﬁng'the associated‘integral'equatieu
numerically. ln Fig. F-1 their results have'been plotted te'give the:emiesi-
vity ratioéeh/gs as a function of emiSsivity'of tﬁé surface € and
length to diameter ratio £/d. From this figure it can be seen that know-
ing the emiésivity ratio and theﬁlength;to;diametér ratio, the emiesivity
of the surface'canfbe‘fqund. o | o

In actual practiee, a series of hole andveurface temperatures can be’
mea sured fer different'valuee of the surface temperature andfthe diffe-r:_
.brencesvof hole aud surface température diviued By the.surface température
squared cau be plotted‘as.a function of surface temperaturélsquared. |
Equation (F-4) says that these results showld plot as a straight line of-_'
zero slope; if they do then the effeet of.temperaﬁure gradiente is small’
and ratlo of the emlss1v1t1eq can be determlned from the average value of
h -7 )/T ; If, havever,. temperature gardlenrs are not negllglble,
' theg the ;oihtcs) (T, - T )/TS versus T_ 2 should_fall on a stralght_ 2

. o o o o
line of non-zero slope.: This will be shown below.

(T

Axial Temperature Gradient

Consider a hole in an ax1a1 temiperature grailent The relatien
between the true temperature of the bottom of the hole and the true
temperature of the surface is given by the solution to the heat-conduction

equation .
5 v | v _
k Vo1 +Q =0 . | _ - (F-5)

Assume that the problem is one-dimensional, i.e. the disk is much wider

than it is deep. Also assume, for simplicity, that the source due to the



.127-

|
s
B [Te]
~ <3
. ~
N
— >
g
-
~ .
°< .
\-
| | N
0 < ™ ~
S5/

0.1




-128-

induction heafing'is constant. - Then

S =
dz - : -
and . . g D
T (1/2k) Qz +0pz + G, ‘ : (F-7)
If we call the temperature atlthe;lqwer edge of the disk (z = 0) To'»
and the temperaturevat,the upper edge (z = £) Tz,.then
1 2 ' X . %L - .
= - = + - Z & £ g+ -
T Zx % Tt (T To)._g_ - <Fv§?

where Ty and T, are unknown at this point and are merely an artiface to

2
.determine the inﬁerior'temperatqre_in térms of the surféce temperatufe;,
At the uppér edge the heat transfer is by r@diation ahd sb |

x(E) = e Tzh - o (7-9)
'and'app1Ying ﬁhié boundaryiqohdition to Eq. (F-8) giveé |

i
T, -T = = (ﬁg-— g e TZ )

(F-10)
Now the heat transfer fran the lower side for the rotatlng disk was by
conduction through several different materials in series. To determlne
the lower_bouﬁdary'condition would be a ve}y difficult problem, Suppose we
assume for simplicity that the lower edge is adiabatic and tiat the heat
generated in the disk always 1eaves through the upper surface_by-radiation.
Then ‘ _ : -
ge T = QL . . : - (P-11)
and so Eq. (F-10) becomes

oe T, : (F-12)

If Eq. (F-8) is evaluated at the hole depth h and Egs. (F-11) and-(F-12)

substituted into it, it will be found that the temperature of the hole
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Th minus the surface ‘temperature Tl’ is proportional %o TO - Tl
(Tl'is identical to TS). ‘The proportionality constant will not be cal-
culated, however, but simply called a. Thus'from-Eqé. (r-8), (F-11) and

(F-12) _ . S o
T, -T, = a(T -T,) o (F-)

and from Eg. (F-12)

The important characteristic of this equafién is that the'differeﬁce_bg;
tween the hoie and.surface_temperatures is difectly proportiqnal tovfheA
fourth powef'of the surféce,temperature. o |

| Now Eq. (F-4) gives the relation betﬁéenvthe true hole and surface
temperaturés énd Eq. (F-2) gives the relation between the:true and obéervéd

temperatures. Rewriting them in the prior mnomenclature gives

al'cfes. . LI- o : .
T. -T = —= T IR ' - (FP-1k)
htz sJG : k St
Th. = T, - Tg T ~%— In e ‘ _ .‘(f;15)
t 0 t o 2 .
T = T -T T c— Ine (r-16)
SJG SO St SO o S

Putting Egs. (F-15) and (F-16) into Eq. (F-1K) gives

. . : SR . afoe ':'
T, -T, 6 = Ty 2 g 1n 'eh _r 2 g— In €  + —-—E—~§—— T *
o %o o 2 So 2 B -5
(E-17)
- ' e e 2 ' .2 o '
where the approximations T, T, =T and T T ~ T have been
h h h s,* 8 s . ,
t o o -t o] o]
used. ‘The variable TS in the last term of Eq. (F-l?)”can be approxi-

mted in. the following mamer. Taking both_Sides‘of‘Eq. (F-16) to the fourth

power:
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o 4 n 5. Lo, > 6
< T, - h.(—c— 1n <-:S)TS + 6 (T 1n es) .TS -
t o 2 e 2 o

=8
]

8

b (2 mme) o Te (X2 me)n (7-18)
C ] s C 8’ .78
o 2 (o] 2 4 o o
Since T~ 0(103), A Ine o(?lo‘5), toe [k ~ 0(10'12) for e =1/2,
s Cy s s s 0
and a ~ O(1), the last. term of Eq.. (A-17) is on the order of
aZoes T L

- T, o~ o(1) + 0(107%) + o(lo’é)v +

+ 0(10'6) + 0(10'8')

and the other two terms on the right-hand side of Eq. (F-17) are seen"

to be of 0(10). Hence a good approximation in Eq. (F-17) is T, = T .
: _ ' . : t -0
If it is also assumed that T ® x T, 2 then Eq. (F-17) becomes ’
: o “o : :
L ‘ e aloe W
2 A h s - T
. - = S —_— ) 4+ B _
Ty T T, 9 In ( 2 )-. ” S,
0 .o o 2 . .8
: 5 \lL-18)
- Dividing by'TS S
. o - T
Tho . Tso N 'eh ' alces_ T 2 o
. = A — + - -
5 z— In ( < ) m s, (F -19)
T 2 o
S
0

: -T )
Then (Th . SO)/TS

2 : 2 S - l
- versus TS should plot as a straight line of slope

o , o
. e
——  and intercept 2 g ( B ).
' : C2 Es

aloe
' S

; k

In practice, this relationship was used as follows. A series of hole
and surface'temperatures were measured fdr_different values of the suf} .
face témperature. A typical set of results is shown in Fig. (F-2). - The

intercept . :> : . €
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was computed bj fitting the points by the least-sqﬁares method to a straight
line. quwihg théh the rafio of the surface aﬁd hole emissivities, the
_surface_emissivity was determined fran Fig. (F-1). The'results’for a -

set of seven different disks is shown in Table (F-1).'

O TABIE F-ol

© Disk No. e e aég €5 (io¢125
I ' 0.57 - 091 33
2 .' 0.48 0.90 2.5
5 10.55 - 0.85 L6
* 0.75 0.95 - b5
5 0.65 0.91 1.35
6 0.h2 . 0,88 -2.2
AR ¢ W <35 N = 0.89 . : _i.g

The average emissivity of the seven disks was found to be'O.55. The'Vﬁriance
of the data was compﬁted using the'ﬁstudentjth distribution. For 5'95%
confidence limit, the emigsivity of the suffacevﬁés'found to.be 0‘55'i 0.11.
This wa.s the value used in correcﬁing the surfaée fempefatureé in this
experiment. It is felt that fhe variamce in fhe emissivityvis not reél
but is due to errors iﬁ tﬂe measurement. The reason.for this is that the
surfaces of the disks were Very identical to éach other both before'éhd
after the run and thus did not indicate an emissivity variation. Aléb,
but less important, the data show mich less scatter when plotted wiﬁhzév_
constant” emissivity. . | | |
The data on the emissivity of chromium as given in Ref. 38 ?aries
from 0.1 +o 6.52'with 0.143 indicated to be the,mbst'likely value.-fTHgs

ranges comprises five points. From the scatter of the data it can be
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assumed ﬁhat'an emissivity measurement_is vefy difficultvto'make. The
value computed in thié experiment is located at the‘top of the range, ise.
0,55 measuredlby ﬁs versus 0:52 ét the top of,the'range in Ref._hB{ How-
ever, the lower range of our‘measuredevalue flor 95%.confidence, i.e..O.hhfz
0.55 - 0.11, ié approximateiy equal to the most likely indicated'malué of
0.43. 'The agreement is probably about as close as céﬁ be'expected-for:a

system that was not specifically designed to méasure emisgivity.
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APPENDTX G

PROPERTIESVUSED_IN THE CALCULATION

The. propertles of argon were obtalned from Ref. 39 and the pro-
perties of hellum were obtalned fran Ref. h? The dlffu31on coeff1c1ents
of iron through argon and chromlum through helium were calculated us1ng the
Lennard-Jones (6 12) potential. L The Lenmard-Jones parameters were
obtalned from the bulk liquid metal propertles at the meltlng point. The-
diffusion coeff1c1ents are plotted in Fig. G-1.

The surface ten31on-and den51ty of the bulk liqﬁid,metals were
obtained from Refs. l; 4o and 41. The ralpes are plotted in Figs. Géé

and 3.
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APPENDIX H

THE MACHINE PROGRAM
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PROGRAM:CONTROL({NPUT.OUTPUT)
/1007 v

COMMON
COMMON _
COMMON
COMMON
COMMON
COMMON _
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
_COMMON
COMMON
COMMON
~“COMMON
. COMMON

7150/ _
1200/
/25907

7300/

7350/
/4007

7430/
/5007

/550/
/7600/
/700/

/1507

7800/
7850/
7900/
/950/
/9757
1T1/

-/RHT/

XNs

VL

ALPHA, BETA

Z

VX
YZ

GB
sQ

GXs GX1
EG .
NSs XS
SS
T 29
u o
GLy
Uls
Vi
s .
IT
RET

XNG
u2

V2s V3

VL{25+50)
V(25450)
V1(25450)s V2(25550)s V3(25+50)

DIMENSION
DIMENSION
DIMENSION

DIMENSION
DIMENSION
* DIMENSION
DIMENS ION
DIMENSTON
DIMENSION
DIMENSTON
DIMENSION
DIMENS ION
DIMENSTON
DIMENSION
DIMENSION
DIMENSION
DIMENSION

XN(500)s SS(500)
ALPHA(50) BETA(50)
vx{50)

2(50)

GB(50)

GX(50)s GX1(50)
XS(25)

U(25)s UL(25)s U2(25)
S(50)

YZ(25450)

5Q(500)

T(50) :

GL{50)s XNG(50) -
EG(50)

LOGICAL RET
PRINT 1
FORMAT (1H1)
PRINT 4
FORMAT ( 1HO)
PRINT 9
FORMAT (1HO * $$$$$$$$$$$$$$$$$$$$$$$SSQS$S$$$$$$$$$$$S$$$$$$$$ * )
PRINT 10
FORMAT(1HO * THIS PROGRAM CALCULATES THE GRADIENT AT THE WALL # /
$ * WITH CONDENSATION IN THE BOUNDARY LAYER * )
PRINT 11
FORMAT (1HO * $$$$$$$$$$$$$555$$$S$$$$$$$$$S$$$$$$$S$S$$$$$$S$$ * )
. PRINT 4
1T 0 :
CALL READIN
CALL CONST
CALL NGF
CALL INITL
CONTINUE
PRINT 25
25 FORMAT (1H1)

4
9

10

11

5
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PRINT 14

14 FORMAT (1HO * $$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$SS$$§SS$$$ *

PRINT 159 IT
15 FORMAT(1HO * ITERATION NUMBER * I5)
PRINT 14 : '
CALL DROP
50 CONTINUE
CALL MONO :
IF (RET) CALL RESET
IF (RET) GO TO 50
CALL TEST
IT = IT + 1
IF (IT oLEs 25) GO TO 5
~ PRINT 20
20 FORMAT(1HO * THE PROCESS DID NOT CONVERGE * )
CALL ABORT
END

'SUBROUT INE READIN
COMMON /AAA/ ‘
COMMON /ABC/ BKTw. XL
COMMON /ACP/ ATH»s CP
COMMON /BRB/ B ~
COMMON /DCK/ DCy TK
COMMON /GRP/ NGROUP
COMMON /MAX/ XMAX
COMMON /NOT/ GNOT
COMMON /MMM/ MW
COMMON /PPP/ HPRINT:
COMMON /PZP/ PVy PVW
COMMON /QQQ/ QXs NAs OMEGA
COMMON /RRR/ TINFs TWs PR -
COMMON /SIG/ SIGMAs DENS
COMMON /SSS/ SCs SC8s SCP
REAL MW
DOUBLE PRECISION HPRINT
"READ 109 TW
READ 10s TINF
READ 10s OMEGA
READ 10s SC
READ 10s PR
READ 20s PV
READ 10+ PVW
READ 55 NGROUP
READ 10s GNOT
READ 15s HPRINT
READ 10s XMAX
READ 10s SIGMA -
READ 10s DENS
READ 20s XL
_READ 10s MW
READ 10s ATH
READ 20s CP
READ 10s DC
READ '10s TK
5 FORMAT (15)
10 FORMAT(F1045)
15 FORMAT(D2045)
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20 FORMAT(E2045) o 5
PRINT 1 .
1 FORMAT(1HO * /-/-/-/-/-/-/-/-/ 1=t=1=1- /%)
PRINT 25
25 FORMAT(1HO # .  THE INPUT DATA IS . * )
PRINT 1 '
PRINT 50s TW
50 FORMAT(1HO * THE TEMPERATURE AT THE WALL IS * 515.5)
PRINT 55» TINF
55 FORMAT(1HO * THE TEMPERATURE AT INFINITY 1S % £15451).
PRINT 60s OMEGA
60 FORMAT(1HO * THE ANGULAR VELOCITY IS * 515.5)
PRINT 65¢ PR
65 FORMAT(1HO * PRANDTL NUMBER % 515.5)
~ PRINT 70, SC
70 FORMAT(1HO * SCHMIDT NUMBER * E15,5)
PRINT 754 PV D .
75 FORMAT(1HO * THE COEFFICIENT IN THE. VAPOUR EQ IS * E15.5)
PRINT 80y PVW. ‘
80 FORMAT(1HO * THE VAPOUR PRESSURE AT THE WALL IS * E154¢5)
PRINT 90s NGROUP ) C »
90 FORMAT(1HO * THE NUMBER OF GROUPS IS # [5)
PRINT 100s GNOT :
100 FORMAT(1HO .* THE VALUE OF GNOT IS % E1545)
PRINT 1054 HPRINT -
105 FORMAT(1HO * THE VALUE OF HPRINT IS * D15,5)
" PRINT 110s XMAX
110 FORMAT(1HO * THE VALUE OF XMAX IS * E15.5)
PRINT 115s SIGMA : s
115 FORMAT({1HO * THE SURFACE TENSION IS * F1545)
PRINT 120, DENS
120 FORMAT(1HO * THE DENSITY IS * E1545)
© PRINT 125 XL
125 FORMAT (1HO * THE LATENT HEAT PER ATOM IS * 515.5)
PRINT 130s MW
130 FORMAT(1HO * THE MOLECULAR WEIGHT IS * E1545)
PRINT 135, ATH
135 FORMAT(1HO * THE THERMAL ACCOMODATION COEFFICIENT 1S * E1545)
-~ PRINT-140s CP
140 FORMAT(1HO * THE SPECIFIC HEAT PER ATOM IS * E1565)
© PRINT 150 DC :
150 FORMAT{(1HO * THE DIFFUSION COEFFICIENT IS * E154¢5)
PRINT 160, TK :
160 FORMAT(1HO * THE THERMAL CONDUCTIVITY IS # E1545)
RETURN v -
END

SUBROUTINE CONST
COMMON /AAA/

COMMON. /ABC/ BKTW’ XL .
COMMON /ACP/ ATHs CP
COMMON /BBB/.BC
COMMON /BRB/ ‘B

COMMON /CCC/ Cls C2
COMMON /C2C/ CZ
COMMON /DCK/ .DCs TK
COMMON /DHF/ DEFs KEF - .
COMMON /KKK/ AC» KTW
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COMMON /MAM/ MA <
COMMON /MMM/ MW : i
COMMON_/PZP/ PVy PVW

COMMON /QQQ/ QXs NAs OMEGA

COMMON /RRR/ TINFs TWs PR

COMMON /SIG/ SIGMAy DENS

COMMON /SKT/ SMKTW

COMMON /SSS5/ SC»s SC8e SCP

COMMON /SuP/ PP

COMMON /wWww/ TCs PRS8 i : :

COMMON /22Z/ CZ1s CZ2s CZ3s CZ&s CZ59 CZ6

REAL NA E o : '

REAL XKTW =

REAL MAs K9 MKTW

REAL MWs NAV

REAL KEF .

DATA X0 /3.53782/ -

DATA HINF /-0.88447/

DATA EMS /0e44/ -

DATA SBC /5467E=05/

DATA K /1438E-16/ » NAYV /6.0255+23/

FORMAT (1H1)

PRINT 2

PRINT 1 .

FORMAT (14O #* /-/*/-/-/*/ ~/=)=/=/~ / /-/-/-/—/'/-/ *.)
PRINT 5 . :
FORMAT(IHO # THE PARAMETERS FROM CONST ARE - *)

SC8 = SQRT{SC / 840}
SCX = SC8 * X0

SCP = SQRT(2,0 * 3.1416 / SC)
Cl = EXP( = SCX#%2)
C1=Cl/A

Cl1 = C1 - SCP * ERF(SCX)

Cl = 14,0 7/ C1

€2 = C1 * EXP( = SCX*%2 )

C2 = C2 * EXP( = A * X0)
c2=C2/A

KTW = K * TW

TC 1,0 - TINF / TW

PR8 = SQRTI(PR 7/ 840)

MA = MW / NAV

MKTW = 2,0 % 341416 * MA % K #* TW
SMKTW = SQRT{MKTW)

BC = PVW / SMKTW

PP = PVW / PV

AC = PV / SMKTW

NA = NAV * DENS / MW

B = %e0 * 3,1416 % SIGMA * (300 / 4.0 / 341416 / NA)##0,66667
QX = B / OMEGA / SIGMA
BKTW = B /7 KTW

C2 = 045

cz1 = BC’

C22 = AC

cZ3 1607 KTW

CZs4 20 # B / 340

CP = ATH / SBC / EMS / TWee3
XL / SBC / EMS / Tw##4

c25
czé

S

(7
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PRINT- 105 As SCBs SCX» SCP
PRINT 11, Cly C2 S
PRINT 125 KTWs TCs» PR8
PRINT 135 MAy MKTWs SMKTW
PRINT 149 BCs PPs AC S
PRINT 159 NAs By BKTWs QX
PRINT. 169 C2ls CZ2s CZ3s CZ&4s CI59 CZ6
10 FORMAT(1IHO # A = * F15459 12Xs * SC8 = #* E1545 /
$ *# SCX = % £15,5s 10Xy # SCP = * E1545)
11 FORMAT(1HO *# C1l = # E15e59 11X» * C2 = # E1545)
12 FORMAT(1HO * KTW = # E1545s 10Xe # TC = % E15.5 /
$-# PR8 = * E15,5) ’
13 FORMAT(1HO * MA.-= # E1545s 11Xs # MKTW = # E15,5 /
$ * SMKTW = * E1545)
14 FORMAT(1HO * BC = * E15459 11Xs * PP = # E1545 /
$ * AC = % E15.5)
" 15 FORMAT(1HO #* NA = * E15.,5» 11X9s *# B = * E15.5 /
$ * BKTW = * E15e59 9X9 * QX = ¥ E1545)
16 FORMAT(1HO * CZ1 = * E1545s 10Xs #* CZ2 = # ElSoS /
$ * CZ3 = % E1545s 10Xye # CZ4 = % E1545 /
©§ * (25 = * E1545s 10Xs # C26 = % E1545)

DEF. = SQRT(KTW / 2.0 7/ 34,1416 / MA) / DC
DEF = DEF * (340 * MA / 440 / 341416 / DENS) #% 0433333
KEF = 1.0E+06 * CP # ATH / SMKTW / TK

KEF = KEF * (3,0 % MA / 440 / 341416 / DENS) #% 0433333
PRINT 179 DEFs KEF -

17 FORMAT(1HO * DEF = #* E1545s 10Xs * KEF = % E15,5)
RETURN o .
END

SUBROUTINE NGF

COMMON /400/ GB _ _ ..
COMMON /5007 GXs GX1 -
COMMON /550/ EG
COMMON /600/ NS» XS
COMMON /850/ GLs XNG
COMMON /GRP/ NGROUP
COMMON /NGN/ NG .. ...
COMMON /NOT/ GNOT
COMMON /PPP/ HPRINT
COMMON /SPN/ SPAN -
COMMON /SSS/ SCs. SC8s SCP

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

DIMENSION _

REAL NG
PRINT 1

1 FORMAT (1HO 4'/-/-/-/-/-/-/ Iml=t=t % )

PRINT 2

2 FORMAT(1HO * THE DATA FROM NGF IS # )

PRINT 1

L = NGROuUP
ML = L - 1.

DO 20 1 =

NG(50)

GB(S50)..
,GX(SO); GXl(SO)

Xs(25) | .
GL({50)s XNG(50)
EG(50)

1sNGROUP

READ 10s NG(1).



ke o _ B

10 FORMAT(ET7.1} _ &
20 CONTINUE .
PRINT 15s (NG{I)s I = 1sNGROUP)
15 FORMAT (1HO * THE NUMBER OF DROPS PER GROUP IS # / (4E1545))
GB(1) = GNOT + (NG(1) = 10) / 240
DO 50 I = 2s9NGROUP )
GB(1} = GB(I=1) + 140 + (NG(I=1) = 1s0) 7/ 2.0 + (NG(I) = 140}
$ / 2.0
50 CONTINUE . .
SPAN = GB(L) + (NG(L) - 1.0) / 240 ,
SPAN = SPAN = (GB(1) = (NG(1) = 140) / 240}
DO 25 I = 1sNGROUP :
GX(1) = GEX(GB(I)) |
GX1(I) = 140 / SQRTIGX(1)) .
25 CONTINUE e
PRINT 39 (GB(I)y I = Ly
3 FORMAT(1HO * THE GROUP MEAN VALUES OF G ARE * /7 (3E15.5))
DO 100 I = 1,L
GLI1) = ALOGIGB(I))
100 CONTINUE
00 200 I = 14ML
XNG(I) = GLII+1l) = GL(1I)
200 CONTINUE o
EX = 140 7/ 640 ‘
DO 75 1 = 1lsL
- EG(I) = SQRT(2+0 * 0.8930) * (640 / GX(I) / SC) % EX
75 CONTINUE
PRINT 125, (EG{1)s I = 14L)
125 FORMAT(1HO * THE COEFFICIENTS OF PERTURBATION ARE 7 {3E1545) )
RETURN
END

SUBROUTINE INITL

COMMON /100/ V

COMMON /150/ VL

COMMON 7200/ ALPHAs BETA
COMMON 7400/ GB

COMMON /600/ NS» XS
COMMON /800/ U

COMMON /DDD/ DUDX
COMMON ' /FST/ FIRST
COMMON /GRP/ NGROUP
COMMON /1IX1/ 1X
COMMON._ /£ JJJ/ JIN

COMMON /LGL/ LG

COMMON /LLL/ L

COMMON /MAX/ XMAX
COMMON /MLM/ ML

COMMON /NGN/ NG

COMMON_ /PPP/ HPRINT
_COMMON /PST/ POST
COMMON /STR/ GSTAR
DIMENSION U(25)s XS(25)
DIMENSION VL(25950)
DIMENSION GB(50)
DIMENSION V(25550)
DIMENSTON ALPHA(50)s BETA(50)
DIMENSION NG(50)
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DOUBLE PRECISION HPRINT : 7
LOGICAL SHIFT . . -
LOGICAL POST .

LOGICAL SHOW
LOGICAL FIRST
"DATA ZET /140E=-290/
DATA SHIFT /+FALSE./
DATA CE /0457
-DATA LG /3/
© REAL JUN
REAL NG
POST = oFALSEs
L = NGROUP
ML = NGROUP - 1
PRINT 1
1 FORMAT(1HO # Ry By Sy ey Ry Ry Ry Y /=1 %)
PRINT 2
2 FORMAT(1HO * THE DATA FROM INITL IS * )
PRINT 1
X = 00
1 =1
5 CONTINUE
XS{Iy = X :
UIy = UIL(xy
" PRINT 10s X» UIlI)
10 FORMAT(2E1545)
NS = 1
1 =1 4+1
X = X + SNGL(HPRINT)
IF (X +GTe XMAX) GO TO 15
GO TO 5
15 CONTINUE
DUDX = (U(2) = U(l)) 7 SNGL(HPRINT)
PRINT 40s DUDX :
40 FORMAT(1HO * THE VALUE OF DUDX IS * E1545)
" READ 3y C
3 FORMAT(F1045)
PRINT 4s C :
4 FORMAT(1HO # C = % E15,45)
SHOW = 4FALSES
IF (C oLTe 040) SHOW = oTRUEs
PRINT 8
8 FORMAT (1HO) )
DO 35 1 = 1sNS
X = XS(I) —
IF (SHOW) READ 7s U(I) N
7 FORMAT(E741)
IF ( «NOTe SHOW ) U(I) = U(I) * {140 = ERF(X / XMAX)) ** C
PRINT 10s XS(I)s U(I) )
35 CONTINUE :
DUDX = (U(2) - U(l)) / SNGL(HPRINT)
PRINT 40¢ DUDX .
DO 900 I = 1laNS
IF (U(I) oGTe 140€=03) GO TO 900 ~

‘ GO TO 950 -

900 CONTINUE
GO TO 975

950 CONTINUE
XMAX = XS(1)
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60

75
20

150
200

90
91
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NS = I S ' £
CONTINUE ' o

X = 0e0

IX = 1

PRINT 60

FORMAT (1HO) .

PRINT 75 : .

FORMAT (1HO #* THE INITIAL VALUES OF VX ARE * )

CONTINUE R ' .

CALL DIMEN(X) '

DO 150 I = 1lsL

G = GB(I} ‘

IF(G oLEe GSTAR) V({IXsI} = VXINF(XsG)

IF (G «GTe GSTAR) V(IXsI) = UN / BETA(1) B

CONTINUE o : R

CONTINUE

PRINT 90y X

FORMAT(1HO * X = # E1545). oo

PRINT 91s GSTARs JUNs (VI(IXsI)p I = 1sL)}

FORMAT{1HO * GSTAR = # E15.,5s 10Xs # UN = # E1545 // (7E1545))
X. = X + SNGL(HPRINT) ' '
IX = IX + 1

IF (X «GTe XMAX) GO TO 50

GO TO 20

50

500
520

550

590

600

CONTINUE

FIRST = oFALSE.

X = 00 .

IX = 1 -

PRINT 60 ) )
PRINT 500. [ .

FORMAT (1HO * THE STARTING VALUES OF VX ARE * )
CONTINUE" )

CALL DIMEN(X)

DO 550 I = 1lsL .

IF (I «LEs LG) GO TO 550

TQ = BETA(I-1) - ALPHA(I-1)

TR = BETA(I) = ALPHAL(I)

TQ = ABS(TQ)

TR = ABS(TR) )

VIIXsI') = TQ /7 (TR + CE # NG(I)) # V{IXsI-1)
CONTINUE

PRINT 5909 Xy (V(IXsI)s I = 1sL)
FORMAT(1HO * X = * E15¢5 // (7E155}))
X = X + SNGL(HPRINT) :

IX = IX + 1 :

IF (X «GTe XMAX) GO TO 600

GO TO 520 '

CONTINUE

RETURN

. END

SUBROUTINE DROP o
COMMON /100/ V : :
COMMON /200/ ALPHA, BETA

COMMON /400/ GB .

COMMON /500/ GXs GX1

COMMON /550/ EG

COMMON /600/ NSy XS
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COMMON - /T00/ XNs_ SS - . , 2
COMMON 7950/ V1 V2s V3 : .
COMMON /ACY/ ARCY x

COMMON /CIC/ IC .

COMMON_ /CQC/ CQ

COMMON /GRP/ NGROUP

COMMON /HPH/ WP

COMMON /IP1/ 1P

COMMON /IX1/ 1X

COMMON /ITI7 1IT

COMMON /LLL/ L.

COMMON /MAX/ XMAX

COMMON /MLM/ ML

COMMON /NLN/ N”

COMMON. /NOT/ GNOT o

COMMON /PPP/ HPRINT .

COMMON /PST/ POST '

COMMON /SET/ SETUP

COMMON /SPR/ SWPR

COMMON /5557 SCy 5C8s SCP

COMMON /YYY/ IM - -

DIMENSION Y(100)» F{100)s T(800)

DIMENSION ALPHA(50)s BETA(50)

DIMENSION XN{500)s 55(500)

DIMENSION XS{25)

DIMENSION CQ(50)

DIMENSION GB({50)

DIMENSION V(25550)

DIMENSION V1({25+50)s v2(25,50). v3(25.50)-

DIMENSION EG(50) '

DIMENSION GX{50)s GX1(50)

DOUBLE PRECISION Ts HPRINT

DOUBLE PRECISION HPDP

DOUBLE PRECISION XDP

LOGICAL SWPR
LOGICAL POST
LOGICAL PRINT

LOGICAL ARCY

~ LOGICAL SETUP

DATA XI /040/

DATA 1P s2/.

DATA IS /1/

DATA SETUP /.FALSE./

EXTERNAL DERIV2

ARCY = oFALSE. .

SWPR = 4TRUE,

POST = «FALSE.

N = NGROUP

_HPDP = HPRINT./ DBLE(FLOAT(IP))

HP = SNGL(HPDP)

SETUP = oFALSEs

CALL SORT

SETUP = 4TRUE,

PRINT 1 ‘ '

FORMAT (1HO = /-/-/-/-/-/-/-/-/ [/ /‘/ I=t =t =t =t =t =) ===~ %)
PRINT & ,

FORMAT (1HO % o THE DATA FROM DROP IS ' * )
PRINT 1 ' ' :

DO 150 I = 1yNGROUP
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Y(I) = 060
150 CONTINUE
IF (IT «NEe 0} GO TO 500
DO 300 IX = 1eNS
DO 200 IG = 1L
EZ = ERF({EG(IG) * sC8 * SQRT(GX(IG)) * XS(IX))
V2(IXs1G) = VXI(GBIIG)) # (1le0 - E2)
VA(IXeIG) = EZ
200 CONTINUE :
300 CONTINUE
500 CONTINUE
NC =0 '
IX =1
X = XI
. PRINT 6
6 FORMAT (1HO)
PRINT 100
100 FORMAT{1HO . * $-%- $“$—$-$-$ Pef-b=f=5-% * )
PRINT 101y X
101 FORMAT(1HO * X IS NOW # -E1545)
PRINT 100
POST = +TRUE
SETUP = o TRUE.
IC = NC + 1
XDP = DOBLE(XI)
CXN(IC) = SNGL(XDP)
CALL DIMEN(X)
CALL SRCDRP(X)
CALL SORC(IC)
POST = «FALSEs
 SETUP = oFALSE. '
CALL INTO(NvXoDERIVZ’YoFoTvHPDP)
. 10 CONTINUE = -
: IF (SWPR) GO TO 75
GO TO 575
75 CONTINUE
NL = MOD(NCs1P) -
~IF (NL «NEs 0) GO TO 110
DO 650 I = 1oL . .
VI(IXs1) = Y(I) 7/ CQ(I)
650 CONTINUE ’

PRINT 12 , :
12 FORMAT(]HO # =zzsssSz=sssSzSaTsSIzsSsEsanzIsIzzss * )
PRINT 14
14 FORMAT(1HO * THE VALUES. OF VI(IXoI) ARE * )
PRINT 12
PRINT 159 Xs (V1(IXsI)s I = 1lel)
IF (1T +«GTe 0) GO TO 110
PRINT 15s Xs» (V2(IXsl)s I 1sL)

. PRINT 15¢ Xo (V3(IXeI)y I = 1sl)} :
15 FORMAT{1HO .* X = * F1545 // (3E1545}))
110 CONTINUE )

NC = NC + 1

X = X + HP

IF (X «GTe XMAX) GO TO 50
IC = NC + 1 :

XDP = XDP + HPDP
XN({IC) = SNGL(XDP)
SETUP = ¢TRUE,
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N

CALL DIMEN(X) ‘ Vi
CALL SRCDRP(X) , _ :
CALL SORC(IC)

SETUP = oFALSE..

CONTINUE

NL = MODINCsIP) .

IF (NL- «NEs 0) GO TO 575

IX = IX + 1

PRINT 100

PRINT 101y X .

PRINT 100

CONTINUE

POST = +TRUE,

SETUP = oFALSE,

CALL DIMEN(X)

- CALL SRCDRP(X)

990
575

50

90

95

925
1000

CALL SORC(IC)

POST = «FALSEs

SETUP = oTRUE.

CALL SECOND(TIME)

PRINT 990s TIME ' : B
FORMAT (1HO * THE CENTRAL PROCESSER TIMLZ IS * F1545)
CONTINUE

CALL INT(Xs DERIVZo Ys Fe Te SWPR)

GO TO 10

CONTINUE

CALL SOLV

PRINT 90 B .
FORMAT{1HO # =====zs===zs=sgzcszz=asszSSaTnIag=ssa # H
PRINT 95

FORMAT ({ 1HO * THE MONOMER EQ SOURCE TERMS ARE * )
PRINT 90

SETUP = «FALSE,

POST = oFALSEs -

IR = IC

DO 1000 I = 1sIRsIS
1Ic =1

IX = IC / IP + 1

X = XN(I) "~

CALL DIMEN(X)

CALL SRCDRP(X)

CALL SORC(I)

PRINT 925s XN(I)s SS{I)
FORMAT (2E1545)

CONTINUE

RETURN

END

SUBROUTINE MONO
COMMON /100/ V
COMMON ./400/ GB :
COMMON /500/ GXs GX1
COMMON /550/ EG

COMMON /600/ NSs XS
COMMON /800/ U
COMMON /900/ Uls U2
COMMON /950/ V1y V2s V3

- COMMON /ACY/ ARCY
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COMMON
COMMON

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
DIMENSTON

.DIMENSION

DIMENSION
DIMENSION

DIMENSION

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

/DDDY
/1117
7IT1/
/LGL/
/LLL/ L
/MAX/
/NGN/
/PPP/
/SRT/
/8S8s/
7YYY/
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’z

SCs S5C8s SCP
M

Y(2)s F(2)s T(26)
Ul(25)s U2(25)
u(25)

GB(50)

V{25+50)
uz(2s)

DVDX(50)

NG(50)

GX(50) s GXI(SO)

XS(25)

EG(50)

V1(25950), V2(25950)9 V3(25+50)

DOUBLE PRECISION T» HPRINT
LOGICAL SWPR
LOGICAL ARCY
LOGICAL START

REAL NG

EXTERNAL DERIVl
DATA Z1IP /1.0E-03/
DATA START /eTRUE./

ARCY =
IM =1
Y1l = 160
Y2 = 040

GO T0 9

10

15

25

50

CONTINUE
Y1l = 0,0
Y2 = 140
CONT INUE
N =2

X = 0.0
SWPR =

1¢ =0
Y(l) =
Y(2) =
CALL
CONTINUE
IF (SWPR)
GO.T0 25

CONTINUE

IC = IC +
yzIic) =

X =

Y2

INTO(N>s

«TRUE

.TRUE. o .

Xs DERIVLs Ys Fs T HPRINT)

GO TO 15

1

Y(l)
X + SNGL (HPRINT)

IF (X «GTe XMAX) GO TO 50

CALL INT(Xs DERIV19 Ys

GO TO 10
CONTINUE
X = 00

Fs Ts SWPR)
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PRINT 5
5 FORMAT(1HO * /-/‘/-/-/-/-/-/-/-/-/-/-/ * )
PRINT 6 .
6 FORMAT(1HO * THE ‘DATA FROM MONO IS * ) h
PRINT 5

IF (IM +EQe 2) GO TO 60
DO 75 1 = 14I1C
Ul(I)y = yz(I)
PRINT 30s X» ULl(I)
30 FORMAT(2€1545)
X = X *+ SNGL(HPRINT)
75 CONTINUE
m =2
GO TO 7
60 CONTINUE
X = 040
DO 95 I.= 1,IC
u2(I) = vz(1)
PRINT 309 Xs U2(I}
X = X + SNGL(HPRINT)
95 CONTINUE
‘100 CONTINUE
IF (START) CALL SOLN
DUDX = (U(2) = U(1l))./ SNGL(HPRINT)
) PRINT 20s DUDX
20 FORMAT(1HO # THE VALUE OF DUDX IS # E1545)
SUM = 0.0 )
DO 150 1 = 1yl
DVDX(1) = 0.0
IF (I +LEe LG) GO TO 150
XNG = NG(I)
DVDX(I) = XNG * SQRT(GX(I))
DVDX{I) = DVDX(I) * (V(Z.I) - V(I’I)) / SNGL (HPRINT)
SUM = SUM + DVDX(1)
150 CONTINUE
PRINT .200s (DVDOX(I)s I = 1,L)
200 FORMAT{1HO * THE DVDX{1) ARE #* / (4515 5))
PRINT 2255 SUM )
225 FORMAT(1HO * THE SUM OF THE DVDX{I) 1S # E1545)
DUDX = DUDX + SUM:
~ PRINT 250s DUDX
250 FORMAT({1HO # THE NEW VALUE OF DUDX 1S * 515.5)
DO 400 I = 14NS
- IF (I ¢EQe NS) GO TO 700
IF (U(D) oLTe Z1P) GO TO 600
400 CONTINUE
600 NS = 1
XMAX = XS({NS) .
IF (NS oLEe 2) CALL ABORT
700 CONTINUE
RETURN -
END

SUBROUTINE RESET

COMMON /CIC/ IC

COMMON 7450/ SQ . .

COMMON /700/ XN» ‘SS -
DIMENSION XN(500)s S$S(500)



10
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60

75

- 100

15
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DIMENSION SQ(500)

DO 101 = 1,1C '
SS{I) = 045 # (SS{1) + SQ(I)}
CONT INUE

RETURN.

END .

SUBROUTINE TEST
COMMON /CICs 1IE
COMMON /DDD/ DUDX
COMMON /DRG/ DRAG
COMMON /ITI1/ IT
COMMON /SMS/ SUM
COMMON /SLW/ SLOW
COMMON /SRT/ START
COMMON /TST/ XXX
LOGICAL QUIT
LOGICAL START

DATA INQ 77/

DATA EPSLN /140E-03/
DATA TEN /1.0€E=-02/
DATA QQQ 7040/ _
DATA TEXIT /250407
DATA.ND 720/

DATA SUM /1.0/ -
DATA XXX /0407
DATA 1JK./0/

LOGICAL DRAG
LOGICAL SLOW

PRINT 1

FORMAT (1HO % +4+++4++tbtitiddststtdtttdbbssttd &)

PRINT .5 :

FORMAT(1HO * THE DATA FROM SUBROUTINE TEST IS # )

PRINT 1 o

PRINT 509 SUM

FORMAT(1HO * SUM = * E1545)
XXX = SQRT(XXX) / FLOAT(IC)
IF (IT «EQe 0) XXX = 140
PRINT 609 XXX -
FORMAT (1HO * XXX = * E1545)
T = sUM

QUIT = oFALSE.

IF (IT oNEe 0) QQQ = ABS({ (DUDX = QQQ)
“ PRINT 759 QQQ

FORMAT(1HO * QQQ = * E1545)

IF (QQQ «GEe TEN) IJUK = O

IF (QQQ +LTe TEN) IUK = IUK +1
IF ( «NOT. START) GO TO 100 )

IF ((T oLTe EPSLN) «ANDe (IT 4GEe INQ‘) QuIT
IF ( (QUIT) <ANDe (XXX oLEe TEN) ) GO TO 15

CONTINUE
CALL SECOND(TIME)

/ QQQ )

¢TRUE.

IF { (IT «GEe ND) +ORs (IIﬂE +GEe TEXIT) ) GO TO 15

QQQ = DUDX . .
IF (IJK +EQe 5) GO TO 15
RETURN
CONTINUE

PRINT 20

4d
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20 FORMAT(1HO * /-/4/*/-/-/-/-/-/;/‘/-/-/-/-/-/ *)
)

25

50

55

20

s

PRINT 25
FORMAT ( 1HO *
PRINT 20
CALL EXIT
END

NORMAL EXIT

SUBROUTINE SORT
COMMON /9757 S
COMMON /CIC/ IC

COMMON /CQC/ CQ

COMMON /GRP/ NGROUP
COMMON /HPH/ HP

COMMON /1P1/ IP

COMMON /ITI/ IT

COMMON /IX1/ IX

COMMON /MAX/ XMAX
COMMON /NGN/ NG

COMMON /PPP/ HPRINT
COMMON /ROP/ ROPE
DIMENSION CQ(50)
DIMENSTION AQ(50)
DIMENSION NG(50)
DIMENSION S(50)
DIMENSION CQN(50)
LOGICAL ROPE

REAL NG

DOUBLE PRECISION HPRINT

DATA (CQUI)s I = 1,50) /50 * 1.0/

PRINT 50. _ o
FORMAT(1HO * 0=0=0~0=0=~0=0=0=0~0=0 * )
PRINT 55 . . . .. . .

FORMAT (1HO * THE DATA FROM SORT IS * )
PRINT 50

L = NGROUP

DO 20 I = 1ol _ . ... _._.__

AQ(I) = 040

CCQN(I) .= CQUI) |

CQII) = 140
CONTINYE . .
IC =1

SIX =}

X = 00
CONTINVE . ... ..
ROPE = +TRUE,

CALL DIMENIX) . ...

CALL SRCDRPIUX)

" ROPE_=_oFALSEe ... ..

DO 4 I = 1sL

AQL .= AQLI) . - . ...

cer = s ’

AQ(I) = AMAX1(AQI» CQI}
CONTINUE v .

X =X + SNGL(HPRINT) .

IC IC + [P
IX= X+ X ..
IF (X +GTe XMAX) GO TO 75
GO T0.3. - - :

*

e
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© 75 CONTINUE ,
DO 150 I = 14NGROUP
IF (AQ(I) oFEQe 0e0) AQ(I}) = 1.0E=290
CQUI). = 140 /7 AQ(I) :
150 CONTINUE |
PRINT 25 (CQI)s I = 1L} .
2 FORMAT(1HO # THE CQ(I) ARE ¥ / (3E15+5))
RETURN =~ ¢ : :
END

FUNCTION UL{X)
COMMON /AAA/ A
COMMON /CCC/ Cly C2
COMMON /SSS/ SCs SCBs SCP
DATA XO /3.53782/ '
IF (X «GTe X0) GO TO 5
UL = 140 + C1 ® SCP * ERF(SCB8 * X)
RETURN . o )

5 yl = C2 ® EXP({ A * X)
RETURN o
END

SUBROUTINE SOLV.

COMMON 7100/ V .

COMMON /150/ VL

COMMON ' 7400/ GB. :
COMMON /500/ GXs GX1
COMMON /9507 V1 V2s V3
COMMON /AAA/ A )
COMMON /CRL/ CRAWL
COMMON /DDD/ DUDX
COMMON /DRG/ DRAG
COMMON /GRP/ NGROUP
COMMON /HNG/ HANG
COMMON /1IX1/ 1IX

COMMON /1IT1/ IT

COMMON /LGL/ LG

COMMON 7/MAX/ XMAX
COMMON /MLM/ ML
COMMON /PPP/ HPRINT
COMMON /SLW/ . SLOW
"COMMON - /WHT/ WAIT
DIMENSION VL(25950)
DIMENSION V(25450)
DIMENSION VS(25450)
DIMENSTION V1(25550)s V2(25450)s V3(25+50}
DIMENSION C(50})
DIMENSION GB(50)
DIMENSION GX(50)s GX1(50)
DIMENSION VV(50) . ,
DOUBLE PRECISION HPRINT
LOGICAL SET :
LOGICAL NET

LOGICAL SLOW

LOGICAL DRAG

LOGICAL CRAWL

LOGICAL WAIT
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LOGICAL HANG ' 17
DATA SLOW /+TRUE./
DATA DRAG /.TRUE./ .
DATA CRAWL /eFALSE./
DATA WAIT /eFALSE./
DATA HANG /<FALSEs/
DATA ZET /1.0E~-290/
DATA EX /0433333/
DATA XO /34537827
CRAWL = #FALSE, o :
IF - {ABS(DUDX) +GTe 045) CRAWL = o+TRUEe
‘WAIT = +FALSEs i
IF (ABS(DUDX) +GTe 0e6) WAIT
HANG = oFALSEs
IF (ABS(DUDX) «GTe Oe7) HANG -
PRINT 10
10 FORMAT(1HO # =zs=z=z==szsss=g==xzzZzz=zaxzs # )
PRINT 15
15 FORMAT(1HO *. THE DATA FROM SOLV 1S * )
PRINT 10
PRINT 190
190 FORMAT(1HO * THE CONSTANTS FROM SOLV ARE * )
SET .= +FALSE,
NET = +FALSE,.
X = 00
. DO 100 I = 1sIX
IF (1 «EQe 1) GO TO 95
DO 90 IG = 1sNGROUP
ON- = V(Is1G) i
2Q =V2(1,1G) = VI{IXs1G) * V3(Is1G) + VI1(Is1G)
IF (2Q oLTe 2ET) 2@ = ZET
V(IsIGY = 2ZQ
90 CONTINUE _
95 CONTINUE . : .
PRINT 1505 Xs (V(1sIG)s IG = 1sNGROUP)
150 FORMAT(1HO * THE V(IXsIG) AT X = * E15e5 % ARE # / (451505))
X = X + SNGL{HPRINT)
100 CONTINUE
RETURN
END .

¢ TRUE «

¢ TRUE »

un

SUBROUTINE DERIV2(XsYsF)
COMMON /2007 ALPHAs BETA
‘COMMON /400/.GB _ .
COMMON /500/ GX»s GX1
"COMMON /750/ T
COMMON 7975/ S
COMMON /GRP/ NGROUP
. COMMON /LLL/ L
COMMON /MLM/ ML
COMMON -/NGN/ NG
COMMON /NLN/ N. -
COMMON /PST/ POST
COMMON /SPR/ SWPR )
COMMON /5SS/ SCs SC8s SCP
COMMON /YYY/ IM .
DIMENSION Y(1)s F(1)
DIMENSTON ALPHA(50), BETA(50)
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DIMENSION GB(50) :
DIMENSTON GX{50)s GX1{50)
DIMENSION S(50) :
DIMENSION NG(50)
DIMENSION T(50)

LOGICAL SWPR

LOGICAL FLAG

LOGICAL POST

REAL NG S

IF (POST) FLAG = «TRUE.
FLAG = JFALSEs

IF (FLAG) 30s 75

CONTINUE _
PRINT 45 “

FORMAT (1HQ # ===z==z=z=zsalzsaz=az=z33s # )

PRINT 50

FORMAT (1HO # THE'DATA FROM DERIV2 1S #* )

PRINT -45 -
CONTINUE

HX = H({X)

FORMAT (5E1545)
FORMAT ( 1HO)

DO 250 I = 1sNGROUP
FII) = S(I) / HX
GO TO 250

CONTINUE

IF (FLAG) 2604 270
CONTINUE _
PRINT 95

PRINT. 909 (S(I)s I
PRINT 95 -
PRINT: 909 (Y(I)s I
PRINT 95

PRINT 90, (F(I)s I

lsL)

1oL}

"

1sL)

. PRINT 95~

Ll =L + 1

PRINT 90s (F(I)s I
CONTINUE

RETURN

END

H

Lloyl)

SUBROUTINE SRCDRP(X)
COMMON /1007 V

"COMMON /1507 VL

COMMON /200/ ALPHA, BETA
COMMON /400/ GB

COMMON 7500/ GX» GX1
COMMON /600/ NS» XS

COMMON /7507 T '
COMMON /850/ GLs "XNG
COMMON /975/ .S

. COMMON /ABT/ ATs BTs VT

COMMON /C1C/ IC
COMMON /CQC/ CQ
COMMON /GRP/ NGROUP
COMMON. /HPH/ HP
COMMON. /ITI/ IT
COMMON /IX1/ IX

/P



COMMON
COMMON
COMMON
COMMON’
COMMON
COMMON
COMMON
COMMON
COMMON’
COMMON
COMMON’
COMMON
COMMON
COMMON
COMMON
COMMON

79347
/73QJ4/
/LGL/
/LLL/
/MAX/
/MLM/
/NGN/
/PPP/
/PST/
/ROP/
/SET/
/8Js/
/SPN/
/SPR/
/STR/
/YYY/
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™

DIMENSION

DIMENSION
DIMENSTON
DIMENSTON
DIMENSION
DIMENSION
DIMENS ION
DIMENSION
DIMENS ION
DIMENSION
DIMENSION
DIMENSTON
DIMENSION
DIMENS ION
DIMENSION
DIMENSION
DIMENSION

Y(50)

GX(50)s GX1(50)
V(25550)

NG(50)
ALPHA(50)s BETA(50)
VL(25450)
D(5450)

GB(50)

€Qa(50)

XS(25)

5(50)

Ja(s50).

$Z(50950)

T(50) -

A(50)s B(50)
GL(50)s XNG(50)
$J(50) ,

DATA C /043/

DATA SQ 7040/

REAL JN

REAL JQ

DOUBLE PRECISION HPRINT

LOGICAL SWPR

LOGICAL FLAG

LOGICAL POST

DATA ZET /1.0E-285/

LOGICAL ROPE

LOGICAL KEEL

LOGICAL SETUP

REAL NG

FLAG = oFALSE.

IF (POST) FLAG = «TRUE,

IF (ROPE) FLAG = «TRUE,

1G = IFIX(X / SNGL(HPRINT)) + 1
IF (1Q «GEe NS) IQ = NS = 1
IR = 10 + 1

X1 = (X = XS(1Q)) / SNGL(HPRINT)
DO 10 I = 1sL

F = VIIQeI) + X1 * (V(IRyI) = V(IQoI))
IF (F oLEs ZET) F = 2ET

FA = ALPHA(I) * F.

FB = BETA(I) * F

IF (FA oLTe ZET) FA = ZET

/7



10

150

50

250

-158-

IF (FB JLT. Z2ET) .FB = ZET

A(I) = ALOGI(FA)

B(I) = ALOG(FB)

Y(I) = ALOG(F)

CONT INUE

DO 150 1 = 1.ML ) ’
GBIIY + (NG(I) = 1e0). / 240

Ja1l) = BQ = AQ ,

IF ( ABS(JQ(I)) «LEe ZET) JQ(I) =
CONTINUE

JalL) = 040

JIL = IC

S(1) = JN 7/ BETA(1)
S(1).= C # S(1)
SJ(1) = S(1) -

([}

IF (IT oNEe O) S(1) = 05 * {S(1)
IF (IT oNEs 0) S(1) = 045 % (S(1)
IF (IT oNEe 0) 5(1) = 0e5 * (S(1)

IF (SETUP) SZ(ILsl)
DO 250 1 = 24ML

IF (1 «GEs LG) GO TO 50
S(I) = UN / BETA(I) -

si1)

S(I) C *» S(I)

SJII) 2 (JQ(I=1) = JQI(1)) 7/ NG(I)
IF (IT oNEe O) S(I) = 045 % {(S(I)
IF (IT «NEe 0) S{I}) = 0e5 * (S(I)
IF (IT oNEe O0) S(I) = 0e5 * (S(ID
IF (SETUP) SZ(ILsI) = S(I)

GO TO 250

CONTINUE

S(I) = (JQ(I=1) = JQ(I}) / NG(I)
SJtly = s(1)

IF (IT oNEe 0) S(I) = 0e5 * (S(I)
IF (IT oNEe 0) S(I) = Oe5 * (S(I)
‘IF (IT oNEe 0) S(I) = 0e5 * (S(I)
IF (SETUP) SZ(ILsl) = S(I)

CONTINVE
S(L) = {JQlL=1) = JQiL)) / NG(L)
SJ(L) = S(L)

IF (IT oNEe O0) S(L)
IF (1T .NEe 0) S(L)
IF (IT «NEe 0) S{L}
IF (SETUP) SZ(ILsL)
IF { +NOT. FLAG) GO

0e5 * (SI(L)
Oe5 # (S(L)
0e5 * (SI(L)
s{L)
0 300

—l nuun

"PRINT 75» (S(I)s I = 1L} :
FORMAT(1HO * THE GROUP SOURCES ARE * /{TE1545) )

75

175

400

1F (ROPE) GO TO 300

PRINT 175s (JQ{I)s I = 1,L)
FORMAT (1HD % JQ({I) %'/ (TE1545))
PRINT 400y (A(I)s I = 1sL)

* (B(I+1) = B(I})
* (AUI+1) = A(I))

Gl =

G2 = GB(I+1) = (NG(I+1) = 140) 7/ 240
‘Gl = ALOG(G1) :

G2 = ALOG(G2)

BQ = 8(I) + (Gl - GL(I)) / XNG(ID)

AQ = A(I) + (G2 = GL(I)) / XNG(I)

AQ = EXP(AQ)

BQ@ = EXP(BQ)

040

SZ(ILs1))
SZ(ILs1))
+ SZ(ILs1))

+ +

SZ(ILsIN)
SZUILsI))
SZ(ILsI))

+ 4+ +

+ SZITLsINY
SZ(ILsI))
SZ(ILeI))

+ +

+ SZ{ILsL))
SZ{ILsL))
+ SZ(ILsL))

+

FORMAT (1HO * THE A(I1) ARE * / (7E15e5}}

PRINT 450y (B{I)s I = 1lsL)

2 -
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450 FORMAT(1HO.* THE B(I) ARE # / (TE1545))
300 CONTINUE
DO 2001 = 1ok ——
S(I) = CQ(I) * s(1)
200 CONTINUE _
RETURN
END

SUBROUTINE DIMENUX)
COMMON /200/ ALPHAs BETA
COMMON /3807 Y2

. COMMON /400/ GB

COMMON /5007 GXs GX1
COMMON /6007 NS» XS

COMMON /ABT/7 ATs BTy VT
COMMON /88B/ BC

COMMON /BRB/ B

COMMON /FFF/ FLAG

COMMON /FST/ FIRST
COMMON /GRP/ NGROUP
COMMON 7IXT/7 Ix ~ ° '
COMMON /1T1/ IT

COMMON /JJJ/ IN

COMMON /JQJ/ 4@ .

COMMON /PPP/ HPRINT

COMMON /PST/ POST .
COMMON /QQQ/ QXs NAs OMEGA
COMMON /SPR/ SWPR

COMMON /WZW/ Wls W2s W3s W4
COMMON /ZZZ/ CZ1s CZ2s C23s Cl4s C25s CZ6
DIMENSION ALPHA(50)s BETA(50)
DIMENSION GB(50)

DIMENSION GX(50)s GX1(50)
DIMENSION JQ{50)

DIMENSION XS(25)

DIMENSION YZ(25450)

REAL JN

REAL JQ

LOGICAL SWPR

LOGICAL FLAG

LOGICAL POST

LOGICAL FIRST

DOUBLE PRECISION HPRINT
DATA FIRST. /_«TRUEs /.

FLAG = +FALSEs
IF (POST) FLAG = «TRUEe

Wl = WX(X)

CALL JZERO(X)

DO 25 I = 1sNGROUP

IF (FIRST) GO TO 500

YT = YZEIXsI) + (X = XSU{IX)) # (YZ(IX+le1) = YZ(IXs1))
$ / SNGL(HPRINT) )
GO TO 550

500 CONTINUE

YT = w1 -

YT = ZERO(XsYTs1)}
YZ(IXsI) = YT

550 CONTINUE
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ALP = ALPHAL(XsYTolI) .
BTA = BETAL(XsYToI) .
BETA(I) = QX * GX(I) * BTA
ALPHA(I) = QX * GX(I) * ALP
25 CONTINUE o
IF (POST) FLAG = +TRUE,
1F {FLAG) GO T0 50
RETURN
50 CONTINUE
PRINT 1
1 FORMAT{1HO * /-/—/-/-/-/—/—/-/—/-/-/ *)
PRINT § .
5 FORMAT(1HO * THE DATA FROM DIMEN IS #* )
PRINT 1 '
PRINT 104 X .
10 FORMAT(1HO * X = # E15.5)
PRINT 759 JN
75 FORMAT(1HOs 15Xs # UN = % E1545)
PRINT 159 (BETA({I)y I = 1¢NGROUP)
15 FORMAT(1HO * BETA(I) * / (7E1545))
IF (IT oNEe 0) GO TO 150
PRINT 90y W1 '
. 90 FORMAT(1HO * THE GAS TEMPERATURE IS # E1545)
PRINT 1004 (YZ(IXsI)s I = 1sNGROUP)
100 FORMAT(1HO * THE DROP TEMPERATURES ARE # /(7515.5))
PRINT 20 (ALPHA(I)s I = 1,NGROUP)
20 FORMAT(1HO * ALPHA(I) # / (7E1545))
150 CONTINUE
RETURN
END

SUBROUTINE JZERO(X)
COMMON /ABC/ BKTWs XL

. COMMON /JJJ/ IN
COMMON /KKK/ ACs KTW
COMMON /MAM/ MA
COMMON /QQQ/ QX» NAs» OMEGA
COMMON /S1G/ SIGMA,s DENS
COMMON /STR/ GSTAR
COMMON /WZW/ W1ls W2y W3y W4
‘REAL KTw
REAL NA
REAL JN
REAL MA .
DATA H /6.635 -27/7
IF (X «GTe 040) GO TO 5

1 CONTINUE
JN = 040 .
GSTAR = 1,0E+290
RETURN . :

5 CONTINUE -

R 1 =1

YT = Wil
BTA = BETAL(X»sYTsl)
S = SUPSAT(X)
IF (S sLEs . 1640) GO T0 1 |
WL = H / SQRT (240 * 3,1416 * MA * KTW * W1)
GSTAR = {20 / 340 * BKTW / W1 / ALOG(S))%#3

N
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GZ = GEX(GSTAR) )

GZ = = 1e0 /7 340 # BKTW / W1l * GZ

USTAR = UX(X) * EXP(GZ)

JN = 2,0 % BTA / OMEGA / NA * SQRT(SIGMA / KTW / W1) * USTAR
RETURN

END

'SUBROUTINE DERIV1(Xs Ys F)

COMMON /SSS/ SCs SC8s SCP

COMMON /YYY/ IM

DIMENSION Y(2)s F(2)

FI1) = Y(2) :

GO TO (1s5) IM

CONTINUE ,
F(2) = SC-% (HIX) * Y(2) = Y(1) * QX{X) / UX(X)) .
RETURN

CONTINUE

Fl2) = SC % (H(X) % Y(2) = Y(1) # QX{X)} / UX(X))
RETURN : :
END .

FUNCTION QXx(X)

COMMON /CIC/ IC

COMMON /700/ XNs SS
DIMENSION XN(500)s SS(500)

" DATA MM /5/

10
20

z = x :
CALL LAGINT(ICs XNs» SS» MMy Ke 29 F)

oX = F _

IF (K +EQs 0) GO TO 10

RETURN

PRINT 20

FORMAT{1HOs # THE TABLE IN LAGINT HAS BEEN Excseoeo *)
CALL ABORT

RETURN

END

SUBROUTINE SOLN
COMMON /8007 U - ,
COMMON 7900/ Uls U2
COMMON /AAA/ A
COMMON /CRL/ CRAWL
COMMON /DDD/ DUDX
COMMON /DRG/ DRAG
COMMON. /HNG/ HANG
COMMON /1117 IC
COMMON /IT1/ 1IT
COMMON /MAX/ -XMAX

. COMMON /PPP/ HPRINT

COMMON " /RHT/ RET

COMMON /5MS/ SUM

- COMMON /SLW/ SLOW

COMMON /WHT/ WAIT

DIMENSION U1({25)s U2(25)s U(25)
DIMENSION US(25)
DOUBLE PRECISION HPRINT
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LOGICAL SLOW
LOGICAL DRAG
LOGICAL CRAWL
LOGICAL WAIT
LOGICAL HANG
LOGICAL RET

DATA ZER /1.0E-06/
DATA XO /3453782/

TPRINT 1
1 FORMAT(1HO * /-/—/—/-/-/-/—/ ~/=/=l=/ % )
PRINT 2
"2 FORMAT(1HO # THE DATA FROM SUBROUTINE SOLN IS * )
PRINT 1 °~

IF (XMAX oLTe X0) GO TO 75
S1 = 13740 # UL(IC) ~ 30060 # ULI(IC=1) + 30040 » Ul(IC =2)
$ = 20040 * UL(IC-3) 4+ 75,0 * Ul(IC-Q) =~ 1240 * UL(IC~-5)

S1 = S1 / 6040 / SNGL(HMPRINT)
S1 = 51 = A # UL(IC) :
$2 = 13740 * U2(IC) = 30040 # U2{IC=1) + 30040 # U2(IC=2)

$ =200.0 # U2(IC=3) + 7540 * U2{IC=4) = 1240 * UY2(IC=5)
$2 = S2 / 6040 / SNGL(HPRINT)
§2 .= 52 = A *» U2(IQ)
C2 = - 81 / S2
GO TO.100

75 CONTINUE :
C2 = = UIICY 7 w2(1C)

100 CONTINUE
RET = oFALSE.
DO 10 I = 1s1C
Q = Y1 ‘
us(Iy = (1)
Uty = Ul(I) + C2 * U2(Iy
IF (U(1l) oLTe ZER) U(I) = ZER
IF (U(l) oLEe 040) RET = «TRUES

10 CONTINUE i
PRINT 50s RET )

50 FORMAT(1HO * RET = * L5)
X = 060 S
SUM = 00 .
DO 40 1 = 1,1C
PRINT 15» X» U(I)

15 FORMAT(2E1545) .
Q@ = uUs(
SUM = SUM + ( (U(I) = Q) 7 Q) #x 2
X = X + SNGL(HPRINT)

40 CONTINUE :
SUM = SQRT(SUM) / FLOAT(1C)
RETURN
END

FUNCTION uXx(X)
COMMON /6007 NS» XS
COMMON /8007 U
DIMENSION XS5(25)s U(25)
MM = 3
1 CONTINUE .
23X
CALL LAGINTINSs XSs Us MMy Ks Z9» F)
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IF (K «EQs 0) GO TO 10

IF (F oLTe 0e0) GO TO 5.
RETURN

CONTINVE . = = e
IF. (MM +EQs 1) CALL ABORT
MM- = 1 : .

GO 70 1

PRINT 20 __.
FORMAT (1HO * THE TABLE IN LAGINT 1S EXCEEDED # )

CALL ABORT
RETURN
END

" SUBROUTINE -SORC(IX)

COMMON /400/ GB
COMMON /450/ SQ
COMMON /600/ NSs XS
COMMON /700/ XNy SS
COMMON /975/. S .
COMMON /¢QC/ Ca’
COMMON /DDD/ DUDX
COMMON /GRP/ NGROUP
COMMON /HNG/ HANG .
COMMON /ITI/ IT
COMMON /JQJ/ JQ .
COMMON /LGL/ LG
COMMON /LLL/ L

COMMON /NGN/ NG
COMMON /PST/ POST

- COMMON /SJS/ SJ

COMMON /TST/ XXX
COMMON /WHT/ WAIT

DIMENSION XN(500)s $5(500) "
DIMENSION §(50)

DIMENSION SV{50)

DIMENSION CQ{50)

DIMENSION NG(50)

DIMENSTON GB(50)

DIMENSION $Q(500)

DIMENSION JQ(50)

DIMENSTON SJ(50)

DIMENSION XS({25)
LOGICAL POST .. .

LOGICAL WAILT

LOGICAL HANG

REAL NG

DATA LV 72/

DATA ZEN /140E=25/

IF ( (POST) +ANDs (IX oNEe« 1) ) GO TO 20
"SUM = 040 S

DO 5 1 = 1L

SV(1) = GB(I) * NG(I) * SJ(I)
IF (I oLEe LV) SVII} = 0,0
SUM = SUM + SV(I)

CONTINUE - o

IF (ABS(SUM) oEQs 0s0) SUM = 140E=290

SM = = SUM

25
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IF (IT «EQs 0) SS{IX) = SM E : : - : 24
IF (IT «EQ. 0) GO TO 10 ' , :
IF (IX «EQe .1) XXX = 040"

" ABC = SS(IX)

10

20

15

sSQ(Ix) = ABC

SS(IX) = SM

IF (ABS{SM} +LTe ZEN) GO TO 10

XXX = XXX + ( (SS(IX) = ABC) 7/ SS{IX) ) #*% 2

"CONTINUE

IF (4NOTe POST) RETURN

CONTINUE

PRINT 1s SS(IX)

FORMAT (1HO # THE MONOMER EQUATION SOURCE TERM IS #* E15.5)

PRINT 159 (SVI(I)s I = 1sL)

FORMAT(1HO * THE CONTRIBUTIONS FROM THE GROUPS ARE * / (7E€1%45))

. RETURN

END

FUNCTION BETA1(X»sYTs1) _

COMMON /WZW/ Wls W2s W3s W4

COMMON /BBB/ BC

COMMON /DHF/ DEFs KEF

COMMON 7500/ GXs GX1

DIMENSION GX(50)s GX1(50)

B = BC # UX(X) / SQRT(YT)

AB = W1 + SQRT(GX(I)) # KEF # SQRT(Oe¢5 % (W1 + YT)) * YT
AB = AB / (140 + SQRT(GX(I)) # KEF # SQRT(0.5 * (W1 + YT)))
BETAL = B / (1.0 + SGRT(GX(I)) * DEF * SQRT(AB))

RETURN

END

FUNCTION VXI(G)
COMMON. / ABC/ BKTW » XL

GX = GEX(GY

VXI = EXP( = BKTW * GX)
RETURN

END -

FUNCTION ALPHAL(Xs YTy I)
COMMON 7500/ GX» GX1

COMMON /ABC/ BKTWs XL
COMMON /BRB/ B

COMMON /DHF/ DEF»s KEF
COMMON. /KKK/ ACs KTW

COMMON /WZW/ Wls W2s W3y Wo
DIMENSION GX(50)s GX1(50)
REAL KTW

IF (I oNEe 0) GJ = GX1(I)

Al = 140 /7 XKTW / YT
A2 = 0466667 * B * GJ = XL
AL = AC * SQRT(1.0 / YT)

A = AL # EXP(Al * A2) ’
ALPHAL = A / (1.0 + SQRT(GX(I)) * DEF * SQRT(045 * (W1 + YT)))
RETURN

END.
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FUNCTION ZERO(XsYTs1)
COMMON 7500/ GX»s GX1

COMMON /ABC/ BKTWs XL
COMMON /BBB/ BC

COMMON /C2C/ CZ

COMMON /FFF/ FLAG

COMMON /ITI1/ IT

COMMON /PST/ POST

COMMON /SPR/ SWPR

COMMON /TTT/ BTA

COMMON /WZW/ Wls W2s> W39 W4
COMMON /22Z/ C21s CZ2s C23s CZ4s CZ59 CZ6
DIMENSION GX(50%s GX1(50)
DIMENSION E(2) .

DATA EPSLN /1+0E~05/

DATA E(1) /140E=05/s E(2) /040/
LOGICAL SWPR .

LOGICAL FLAG

LOGICAL MAST

LOGICAL POLE

LOGICAL POST

EXTERNAL PX .

IF (POST) MAST = +TRUE.
MAST = oFALSE.

IF (POST) POLE = +TRUE,
POLE = oFALSE.

IF (MAST) GO TO 50

IF (FLAG) 504 75

CONTINUE ) _
IF (1T «NEs 0) GO -TO 75

PRINT 1

FORMAT(1HO % /=/~/=/=/f=)=f=f=)~/=)=/=]~] %)
PRINT 2 :

FORMAT(1HO * THE DATA FROM ZERO IS * )
PRINT 1 ' ,
FLAG = +FALSE.

CONTINUE

N =0

TES = 040

IF (1 oJNE. 0) XGX = GX1(1I)

W2 = CZ3 # (C24 * XGX = XL)

~IF (MAST) PRINT 109 Ns YTs TESTs W1

FORMAT (1109 4E15.5)
CONTINUE

W4 = BETA1(XsYTsI)
P = PX{YTsI)

DP = DPX(YTsI)

. YTO = YT

40

YT = Y70.- P /7 DP

TEST = (YT - YTO ) 7 YTO
TEST = ABS(TEST) )

N.= N + 1 o . '

IF (MAST) PRINT:10:s Ns YTs TESTs W1
IF (N-eGTe 20) GO'TO 40

IF . { TEST oLTe EPSLN ) GO TO. 25

a1

GO T0.5
"CONTINUE

 CALLSZET(ZsYTOsYT+EsPX)

7
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IF (2 «EQe 040) GO TO. 15 . , 28
Yr =2 : :
GO TO 25

PRINT 20

FORMAT (1HO * ZERO HAS FAILED TO CONVERGE # )

CALL ABORT

2ERO = YT

IF (IT «NEe 0) RETURN ’

IF (POST 4ANDs {(«NOT. MAST)) POLE = «TRUE.

IF (POLE} PRINT 10y Ns YTs TESTs W1

RETURN

END

FUNCTION PX(YTs1)

COMMON /ALA/ ALPHA

COMMON /C2C/ CZ )

COMMON /DHF/ DEFs KEF
COMMON /SKT/ SMKTW

COMMON /WZW/ Wls W2s W3y W4
COMMON /2227 CZl»s Cl2s CZ3» CZ4’ CZ5% CZ6
COMMON 7500/ GXs GX1

REAL KEF ) ’
DIMENSION GX(50)» GXI(SO)
AZ = W2 / YT

ALPHA = CZ2 / SQRT(YT}):

ALPHA = ALPHA * EXP(AZ)

ALPHA = ALPHA / (1,0 + SQRT(GX(I}) * DEF # SQRT(0.5 * (w1 + YT)))
AB = W1 + SQRT(GX{I)) # KEF * SQRT(0.5 #* (Wl + YT)) # YT

AB = AB / (140 + SQRT(GX(I)}) # KEF * SQRT(O.S * (W1 + YT)))

BETGS = 1.0E+06 / SMKTW / SQRT(AB)

BETGS = BETGS / (1.0 + SQRT(GX{I}) # KEF / SQRT(AB))
W3 = CZ5 % BETGS

P = YTex4

P =P + W3 * (YT = W1)

P =P = CZ + CZ6 * (ALPHA - W4)
PX = P

RETURN

END

FUNCTION DPX(YTs1)

COMMON /ALA/ ALPHA

COMMON /DHF/ DEFs KEF

COMMON /WZW/ Wls W2s W3s W4 :
COMMON /ZZZ/ CZ1ls CZ2s CZ3y C24y CZS5» C26
COMMON /500/ GXs GX1

"DIMENSION GX(50)s GX1(50)

AZ = W2 / YT
DALPHA = = ALPHA /7 YT
DALPHA = DALPHA * (045 + AZ)

DP = 4,0 % YT*%3

DP = DP + W3

DP = DP + CZ6 * DALPHA
DPX = DP

RETURN

END

| 5]
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FUNCTION ANOT(X) _ .
‘COMMON /WZW/ Wls W2s W3y W4

"COMMON_  /QQQ/_ QXs NA» OMEGA .

I =0
Wl.= WX(X) _ . _
YT = Wl

ALPHA = ALPHAL(XsYToelI)
ANOT = QX * Gl * ALPHA
RETURN"
END

FUNCTION BNOT(X)
COMMON JWZW/ Wle W2 W3y W4
COMMON /QQQ/ QXs NAs OMEGA

1=0
Wl = WX(X)
YT = Wl

BETA = BETAL(XsYToI) _
BNOT = QX * Gl * BETA -
RETURN _ __
END

FUNCTION WX(X)

COMMON /WwWW/ TCs PR8

WX = 140 = TC * ERF(PR8 * X)

RETURN : ' S
END T C -

FUNCTION SUPSAT(X)

COMMON /ABC/ BKTWs XL

COMMON 7KKK/ ACs KTW

COMMON /SUP/ PP

REAL KTW

Wl = WX(X) ]

SUPSAT = UX{X) * EXP(XL / KTW * (1,0 / W1 = 1,0))
RETURN L :

END

FUNCTION VXNOT({X)-
COMMON /ABC/ BKTWs XL
VXNOT = VXINF(X»GQ) .
RETURN

END

FUNCTION VXINF{XsG)

COMMON /ABC/. BKTWs XL

COMMON /KKK/ ACy KTW

COMMON  /MAM/ MA -
COMMON /QQQ/ QXs NAs QMEGA .
COMMON /STR/ GSTAR g,
COMMON /WZW/ Wls W2
REAL MA '
REAL NA
REAL KTW.

t

z%
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DATA H /6463E=27/ ' 70
IF (X oNEs 0,0) GO TO 5 '

GSTAR = 140E+290 :

VXINF = VXEQ(X»G)

RETURN .

CONTINUE .

WL = H / SQRT(240 * 341416 * MA * KTW * W1)

S = SUPSATI(X)

GSTAR = 240 / 3.0 * BKTW / W1 / ALOG(S)

GSTAR = GSTAR*#3 ‘ ‘

CHI =.140 / 940 % BKTW / W1 / GSTAR *¥ 1433333,
CONTINUE ‘

-Z = SQRT(CHI) * (G - GSTAR)

IF (Z +GTe 340) GO TO 25
GO TO 15
CONTINUE
GX = GEX(G) B S
G # ALOGIS) — CHI * (G - GSTAR) #* 2 ~ BKTW * GX / Wl

Vv =

vV = EXP(V) .

V = 0e5 # UX{X) * V / SQRT(341416 # CHI) / (G = GSTAR)
GO TO 20

CONTINUE

V = VXEQ(XsG)

ZA = ABS(Z)

IF (Z oLTe J40) E-= = ERF(ZA)

IF (Z +GEe 040) E = ERF(ZA)

V = 0e5 *# V # (1,0 - E)
CONTINUE

VXINF = V

RETURN:

END

FUNCTION VXEQ(Xs G)

COMMON /ABC/ BKTWs. XL
COMMON /KKK/ AC» KTW .
COMMON /MAM/ MA S :
COMMON /QQQ/ QXs NA» OMEGA
COMMON /WZW/ Wls W2s W3y W4
REAL MA :
REAL. NA

REAL KTW

DATA H /6463E~27/

-5 = SUPSATI(X) )

WL = H / SGRT(2+0 % 341416 * MA * KTW * W1)

"V = G * ALOG(S)

GX = GEX(G)
V=V - BKTW * GX / Wl
VXEQ = UXI{X) * EXP(V)
RETURN
END -

FUNCTION GEX(G)

GEX = G%%#0466667
RETURN .

END e
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FUNCTION H(X)

DATA X0 / 3.53782 /
DATA HINF / =0.88447 /
DATA EPS /14DE=06/

IF (X «GTe X0) GO TO 10
H = = EPS = 0425 # X
RETURN |

H = HINF

'RETURN

END

FUNCTION DHDX(X)

"DATA X0 /34537827

IF (X ¢GTe X0) GO TO 5

DHDX = = 0425
RETURN

DHDX = 040
RETURN

END

SUBROUTINE ZET(ZsAlsB1lsERsF)
DIMENSION ER(1)

A=Al

B=81 _

RE=ABS(ER(1))

AE=ABS(ER(2))

FA=F({A)

FB=F(8B)

IF ((FA*FB oLTe 0e0) «ANDe (AMAX1(RESAE)} «GTe 040}) GO TO 70

H=040

GO 7O 110
C=A

FC=FA

§=C

FS=FC

CONTINUE

H=045% (B4C)

T=ABS (H¥RE ) +AE

IF(ABS(H-B) «LEs T) GO TO 110 .
IF (ABS(FB) aLEe ABS(FC)) GO TO 15
v=8

FysFB .

=8

FG=F8

$=C

FS=FC

GO TO 20

y=s
FY=Fs

G=C

FG=FC

$=8

Fs=FB
CONTINVE .. ... ... . .
IF (FY «NE. FS) GO TO 21
B=H . -

7’

2ER00002
ZER00003
ZERO0004
ZER00005
ZERO00O6
ZER00007
ZER00008
ZERO0009
2ER00010
ZEROOO11
ZER00012
ZER00013
ZEROOO14
ZERO0015
ZERO0016
ZERO0O17
ZER00018
. ZERO0O19
ZER00020
ZER00021
ZER00022
ZER00023
2ER00024
ZERO0O025
ZER00026
ZER00027
ZERD0028
ZER00029
ZER00030
ZERO0031
ZERO0032
ZERO0033
ZER00034
ZER00035
ZER00036"
2ER00037

ot
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GO TO 29 : : ) N -
21 CONTINUE .- ' v
" E=(SHFY=-Y*#FS)/(FY-FS) Co
IF . (ABS(E=S) «LEe T) E=S+SIGN(T»G-S)
IF ((E=~H)*(S=E) «LTe 040) GO TO 28
B=E :
GO TO 29
28 B=H - :
29 FB=F(8B)
30 CONTINUE -
IF (FG%FB .oLTe 0.0) GO TO 35
Cc=§ _ . :
FC=Fs_ oL - : -
GO TO 10 : ' o .
35 CONTINUVE
C=6
FC=FG
GO TO 10
110 'Z=H :
RETURN
END

FUNCTION ERF(X)

ERF=2/SQRT (PI)*INTEGRAL OF EXP(=T*T) FROM O fO Xe
USING AN APPROXIMATION DUE TO HASTINGS GOOD TO SEVEN SI
USING AN APPROXIMATION DUE TO HASTINGS. AbSOLUTE -ERROR ABOUT 3g- 7

DIMENSION A(6)
DATA A/« 0000430638,.00027656729.0001520143c.0092705272o.0422820123
"1940705230784 /
T=A(1)#*X
DO 10 I=2,6
T=(T+A( L)) *X
10 CONTINUE
T=le/(T+14)
ERF=1e=T#%16
RETURN
END

SUBROUTINE LAGINT( N As F» Mo Ko X Y )
DIMENSION A(1l)s F(1)
DETERMINE INDEX OF TABLE VALUE NEAREST THE INTERPOLATE.
CALL BAINS( As N» Xs 1) :
IF{ 1+EQe0 ) GO TO 10
IF{ XeEQeA(I) ) GO TO 9
DETERMINE INDEX OF THE FIRST POINT TO BE USED IN THE INTERPOLATXON.
J = MINO( MAXO( I = M/2s 1 )9 N =M
IF( MeEQeleANDeIoLEGN=1eANDsXsLTeA(I) ) J = J =1
CALL LAGRNG( A{J)s F(J)s Ms Xs Y )
10 K = 1 : '
RETURN
9 Y = F(l)
GO T0 10
END

$IBFTC LAGRNG

SUBROUTINE LAGRNG( As Fs My Xo' Y )

ZEROOO38
ZER00039
ZEROO040
ZEROOQO41
ZEROOO42
ZERQ0043
2ER00044
ZEROQO4S5
ZEROOQ46
ZERO0Q47
ZERO0048
ZEROQOO049
ZEROOOS50
ZERO0OS51
ZERO0QO52
ZER0O0053
ZERQ0054
ZEROOO0S55
2ER00056
ZEROOOS57

Ly
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DIMENSION A(11)s F(11)s DA(11)s D(11s11)
CH%94 . .
-DATA.(DQIIJLELJIZlQJZJ /. 11%1,0 /
| CHR94 .
15 L =M + 1
C FORM TABLES.
FN = 1. .
DO 1 KK = 1y L .
DA(KK) = A(KK) = X
IF( DA(KK)sEQeOoO ) GO TO0 7
FN = FN*DA(KK)
1 CONTINUE
KK =1
LL = 2
2 00 3 JJ = LLe L
DI(KKsJJ) = DA(KK) - DA(JJ)

3 D(JJ9KK) = =D(KK»JJ)
KK = KK + 1 :
LL = KK + 1

IF{ LLoLEJL ) GO TO 2
C COMPUTE INTERPOLATED VALUE.

Y=0.
DO 6 KK = 1’ L
FD = 1.
D0 5 JJ = 1s L
S FD = FO*D(JJ9KK) S, . ‘
6Y =Y + ( FN*F(KK) )1/( DAIKK)*FD )
RETURN '
7Y = FIKK)
. RETURN
END

$IBFTC BAINS
: SUBROUTINE BAINS( SLISTs MMs 25 K )
DIMENSION SLIST(1)
SLIST=TABLEs WHICH MUST BE MONOTONICALLY INCREASING
M= NUMBER OF ENTRIES IN SLIST
2=VALUE TO BE FOUND IN TABLE
K=SUBSCRIPT OF VALUE IN TABLE NEAREST TO Z
PROGRAM RETURNS K = O IF Z IF OFF TABLF.
M=MM
L1=1
L2=M
K=1 . L
IF(Z=-SLIST(1)) 1515+3
3 K=M . .
IF(SLISTIMI=Z) 191559
9 K=M/2
IF(Z=SLIST(K)) 20s 155 29
20 L2=K
GO TO 23
29 L1=K
23 IF(L2-L1=1) 1#14s25
25 M=L1+L2
. 60 TO 9 :
14 IF(2,%2- SLIST(LI)-SLIST(LZ)) 30915931
30 K=L1 .
GO ‘TO 15
31 K=L2
GO TO 15

aXaXaXala
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K=o0

15 RETURN

END

i

FORTRAN IV SUBROUTiNE.INTO(NOcX9DERI »YsF s ToHPRO)

COMMON /ACY/ ARCY

COMMON /INTC/ IPMXsAREFSEMAXsSSSReHFACY SWAMs SWEX
COMMON /INTP/ HPRsXX#Ns EUBoELBoIPoIT’NRKS’SWIN
COMMON /YYY/ M-

DIMENSTON Y(1)sF(1)sT(8Bs1)

LOGICAL SWAM’SWEX’SWIN

LOGICAL ARCY

INTEGER HFAC

DOUBLE PRECISION T9HPRO’HPR0XX

DATA IPMX’AREF’EMAX’SSSR’HFACQSWAM’SWEX
$ /1024914091e0E=6510040929eTRUE 49 TRUES/

IPMX = 2 %% 45 _

IF (ARCY) EMAX = 1.0E=-05

IF (oNOTs ARCY) EMAX = 140E-02
HPR=HPRO

XX=DBLE(X) -

N=NO

EUB=EMAX

ELB=EMAX/SSSR

1P=1

S IT=0

6000

100

NRKS=0

SWIN=SWEX

CALL DERI (XsYsF)

DO 9 I=19N

T(591)=DBLE(Y(I))

CONTINUE

RETURN

END o

SUBROUTINE INT(XsDERI sYsFeTsSWPR -

X )

COMMON /INTC/ IPMXsAREFSEMAX9»SSSReHFACY SWAMsSWEX
COMMON /INTP/ HPRoXXsNSEUBSELBsIPs ITosNRKSySWIN

DIMENSION Y(1)sF(1)sT(8s1)
LOGICAL SWAM3sSWEXsSWIN
LOGICAL SWPR
INTEGER HFAC

DOUBLE PRECISION ToHPRaXX

DOUBLE PRECISION DsH

CONTINUE

SWPR=,FALSE.

TEST=040

H= HPR/DBLE(FLOAT(IP*Z#)) : :

IF ((NRKS «LTe 3) «ORe (eNOTe SWAM)) GO TO 200

ADAMS-MOULTON STEP.
CONTINUE.

DO 109 I=1sN
D=DBLE(F(I))

FORMAT (36H0 CANNOT DECREASE H BECAUSE OF HMIN.

o

+1PE1648+120)

ZAM
ZAM
ZAM

ZAM
ZAM

ZAM
ZAM
ZAM
ZAM

“ZAM

ZAM
ZAM

L ZAM
" ZAM

ZAM
ZAM
ZAM
ZAM

ZAM

ZAM

- ZAM

ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM

ZAM

ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM

ZAM.

0001

0002
0003

0004
0005

0006

0007
0008
0009
0010

0011
0012
0013
0014
0015
0016
0017
0018
0019

0020

0021

0022.

0023
0024
0025
0026
0027
0028

0029

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

0046

0047
0048
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209

© 219

. 229

239

X =16.0D0#T (41
X =128.0D0#D )

- Tl4s1)=0

Y(I)=SNGLUT(591)+H*(

CONTINUE
X=SNGL{ XX+2440D0%*H)

CALL DERI (XsYsF) 1

DO 119 I=1sN
D=DBLE(F{(I})

D=l TU{5sI)+H*#( : '
9e0DO*D+194IDO*T(4s1)= 5,0D0%T(391)+

Tt6sI)=D

E=ABS{SNGL(D)=Y(1)1/1440
TEST= AMAXI(E/AMAXllAREFqABS(SNGL(DD));TEST)

CONTINUE
GO TO 300

ZONNEVELD STEP,
CONTINUE

DO 209 I=1sN
D=DBLE(F(I))
T(491)=D

1

Y(1})= SNGL(T(501)+H*(
12.0D0*D

CONTINUE

" X=SNGL(XX+1240D0%H)
CALL DERI (XsYsF)
DO 219 I=1»N

D=DBLE(F(I))

T(6s1)=D
2

YOI)=SNGLIT(5e1)+H*(
12.0D0%D
CONTINUE.

CALL DERI {XsYsF)
DO 229 I=1sN_

D=DBLE(F(I))
T(7s1)=D
3 .

Y(I)=SNGLIT(5sl)+H®(

24+0D0%#D
CONTINUE

o X= SNGL(XX+2A.ODO*H)V
CALL. DERL (XaY»F)

DO 239 I=1sN

" D=DBLE(F(1)). .

T(8s1)=D
4
Y(I) SNGL(T(591)+H*(

3+ 73D0%T(4s1)+5. 2500*T(6’I)+9-7500*T(7ol)-0-7500*0

CONTINUE
X= SNGL(XX+18.0DO*H)

CALL DERI (XsYsF)

DO 249 I=1sN_.
D=DBLE(F(I))
E=ABS (SNGLIH*{
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X 55.ODO*D-59oODO*T(3QI)+37¢ODO*T(201)- 9.0D0*T(1s1)

))

Yy

Vo

oo

1"

1 +48, ODO*T(69I)+4BoODO*T(7OI)+480000*T(8o1)

s

ZAM
L ZAM

ZAM

i AMY

ZAM

=2 AM
“ZAM

‘ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM

ZAM

2AM

ZAM:

ZAM
ZAM
ZAM

‘ZAM

ZAM
ZAM

ZAM:
ZAM
ZAM

ZAM

“ZAM

ZAM
‘ZAM
ZAM
2AM

ZAM

ZAM

ZAM

ZAM,
ZAM
- ZAM

ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM
ZAM

. ZAM
- ZAM

ZAM.
‘0100

ZAM
ZAM
Z2AM
ZAM
ZAM
ZAM
ZAM
ZAM

0049
0050
0051
0052°
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

0067

0068
0069

0070
0071

0072
0073
0074

0075

0076
0077
0078
0079
0080
0081
0082
0083

0084

0085

0086
0o87
0088
0089

0090
0091
0092
0093
0094
0095
0096
2097
0098
0099

0101
0102

0103
0104

0105
0106
0107
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