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'l'Im m'ECT OF CONDEiTSATION TIl[ 'i'EE: BCill'ffiARY 
III. YE.:RON MASS TRr'\.I'TSFER FHO;'! A ·RCfL'A'i.'ING DISK 

. Rona Id P. Omber g 

Inorganic' Hate rials Research Division, L:"..iE'encc Radiation T../lboratory, 
Departr!lcnt of Nucleqr Engineedng, CollegC:!of Eng~.neering 

Univers ity of California, Berkeley, California 

ABSTRACT 

The vaporization rate of a hot solid into a cold gas m3.Y be increctsed 

above the diffusion-limited value if condensation occurs in the bwndary 
, 

layer. This phenomenon '.;as analyzed by combining the microscopic h:1.1ance 

equations of nucleation kin,etics with trie bOLmc1'3.ry layer conservation 

equations.· The equations "rere de:rived for rotating disk hydrody.flamics 

and calculations nnde for the vaporization of iron into cold argon. '1'he 

vaporization rate of the rotating disk "Tas computed, and the structure of 

the nucleation zone in the boundary layer surrounding the disk ,,;as examined. 

The vaporization rote "Ta,s measured experimentally for a hotrctating 

disk of chromium. vaporizing. into a cold heliUlH environment. The data 

shq.·red that. cmdensation enhancement of the vaporization rate does in 

fact occur. The vaporization rate proceeded, l·rUhin the error bounds of 

the measurement, from the condensation-free value to the bulk equilibrium 

condensatton value as the temperature ,ias inc reased. 

'1'he measured rates I·rere compared '\dth the theoretical rates calculated 

with the above model. The theoretical rates "rere ahra.ys considerably lOi·rer 

than the measured rates. It is felt that better agreement behreen expcri-

ment ancl theory could be obtained ,{ith a nucleation kinet ic model which 

gives a larger nucl~at ion rate for a given strpersaturat ion. 
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NOMENCLATURE 

Surface area of a drop of size g (cm
2

) 

- Thermal accommodation coefficient 

- Parameter in the evaporation coefficient (dyne-cm) 

- Concentration of drops of size g (drops/c~) 

- Specific heat at constant pressure (cal/cm-OK) 

- Monomer mass fraction at the wall (p / p) 
v 

-' Binary diffusion coefficient 
2 

(cm /sec) 

2 ' 
Binary diffusion coefficient for a drop of size g (cm /sec) 

- Monomer concent;atioh (atoms/cm3) 

- Dimensionless radial gas velocity (u/rro) 

- Number of atoms per drop 

- Dimensionless angular gas velocity (v/rro) 

- Dimensionless axial gas velocity ( w / .rv-;;-) 
00 

- Dimensionless axial velocity ( pip w ) gas 
00 

~AV ro 
00 

Set of ,all drops! existing in the ith group 
I 

- Droplet ,current in g-space', i;. e., the net rate at which 

drops of size g-l grow' to size g(drops/cm3-sec) 

2 
- Mass flux, of monomer (gm/cm -sec) 

- Thermal conductivity,(cal/cm-sec-OK), or Boltznian's 

( 8 ~16 /0) constant 1.3 . 10 ergs K 

- Thermal diffusion ratio 

- Average value of the latent heat of vaporization per 
:".\ 

molecule (ergs/molecule) 

- Mass of a _vaporiz~d atom (gm) 

- Molec'Ular we ight 

:'-' 
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-Molar concentration (moles/cm3) 

- Atom density (atoms/cm3) 
2 

- Total pressure of the gas (dyne/cm ) 

- Partial pressure of the monomer in the gas (dyne/cm
2

) 

2 
-Equilibrium vapor pressure of the monomer (dyne/cm ) 

- Dimensionless total pressure. (P/flooCO) 

- Prandt 1 number (fl c /k) 
p 

-Radial distance from the center of the disk (cm) 

-Radius of a drop of size g atoms (cm) 

- Dimensionless value of a thermal diffusion integral 

- Supersaturation (p /p ) 
v v,eq 

-Volumetric source of monomer Catoms/cm3 -sec) 

-Schmidt number (V/D) 

- Schmidt number for. drops of s iz e g (v ID ) . g 

- ·Volumetric source of monomer (gm/c~-sec) 

-Volumetric source of drop of size g (drops/cm3-sec) 

Tempera ture (0 K) 

Radial component of the gas velocity (cm/sec). 

- ·Dimensionless monomer concentration function (Pw~/fwP) 

- Angular component of the gas velocity (cm/sec) 

- ·Dimensionless concentration of drops of size g(p c /f p) 
w g w 

- Average dimensionless concentrat ion of drops in the 

.th 
l group 

- Axial component of the gas velocity (cm/sec) 

- ·Dimensionless axial distance 

=H .. (1,) v 
f co 

z 

J 
o 

p 
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x -Mole fraction 

z -Axial distance from the disk (cm) 

1 • 

,:!"':: 
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Subscripts 

b 

eq 

f 

g 

v 

w 

co 

-xiii-

- Denotes a local property of the inert gas 

- Denotes a thermodynamic equilibrium value 

- Property evaluated at the film temperature 

- Property of a d.rop of size g at ems 

- Property of the monomer 

- Property at the wall, i.e., the disk surface 

Property at infinity 

I } 

, i 
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Greek Letters 

ex 
g 

+ ex 
g 

+ 
f3g 

E 

T) 

e 

V· 

P 

0-

-xiv-

-Vaporization -coefficient for drop of sizeg 
. . 2 

(atoms/cm -sec) 

-Dimensionless vaporization coeffic ient for drops 

of size g (A ex /m) 
g g 

-Thermal diffus ion factor 

-Rate at which atoms of a gas cross a unit area per 

2 
cm per sec 

-Dimensionless condensation coefficient for a drop of 

siz e g (A f3 1m) 
. g g 

-Surface tension (dyne/cm) 

-Total emissivity 

-Dimensionless axial distance(" v: z) 
-Dimensionless temperature 

T - T 
co 

T - T w (Xl 

-Dimensionless density viscosity parameter ~. 
Poof.l.(Xl • 

or mean free path in the gas ~ 

-Dynamic viscosity (gin/cm-sec) 

-Kinematic viscosity (cm
2
/sec) 

-Dimensionless axial distanc~ v:· 6" PooP dZ) 

-Density of the monome; (gm/cm3) 

-Density of the gas (gm/cm3) 

( . -12 / 2 0 4) -Stephan-Boltzman constant 1.35-10 cal sec-cm - K 

-Angular velocity (rad/sec) 
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PART I - THEORETICAL 

A. Introduction 

The vaporization rate of a hot surface into a cold gas environment 

may be substantially increased above the diffusion-limited value if the 

vaporizing species condenses in the thermal boundary layer. 'When conden-

sation does occur, the diffusing molecules combine to form drops in 

accordance with the laws of nucleation kinetics. The creation of arops 

produces a sink in the ordinary convective-diffusion process which de-

presses the vapor pressure profile arid causes an increase in the gradient 

at the wall. Hence, a larger vaporization rate is obtained. 

A knowledge of the process of nucleation and condensation in the 

boundary has application in the area of nuclear engineering. For example 
I 

I if an isotopic power source in outer space wecre to re-enter a planet's 

atmosphere, it is desirable to have this source vaporize completely at 

the highest possible altitude. An exact calculation of the vaporization 

rate of the falling body is possible only if the effect of condensation in 

the boundary layer is known. 

1 
Turkdogan has investigated this enhancement in the vaporization rate 

for molten iron spheres in helium. He used the concept of the "critical 

supersaturation" from classical infinite..,medium nucleation kinetics to 

determine the iron vapor pressure profile in the condensing region of the 

boundary layer. The supersaturation is the ratio of the partial pressure 

of the iron vapor to the equi~ibrium vapor pressure over a plane surface. 

Classical nucleation kinetics show that, for supersaturations above a 

"critical" value condensation takes place at an extremely rapid rate 

while for saturations below the critical value condensation takes place 

2-8 at :.in E'xtremelyslow rate. In Turkd.ogan's analysis, the boundary 
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layer is divided into two distinct zones: a condensate-free region close 

to the vaporizing surface in which the supersaturation is less than the 

critical value and an outer portion in which sufficient condensation occurs 

to maintain the supersaturation at the critical value corresponding to 

the local gas temperature. The profile between the condensation zone 

and the wall was assumed to be linear, as in the stagnant film model of 

ordinary mass transfer. The theoretical results agreed qualitatively 

with a limited amount of rough experimental data taken by Turkdogan and 

Mills,9 which indicates the enhancement to be approximately a factor of 

three. 

With the additional assumption that the logarithm of the critical 

supersaturation was a linear function of reciprocal temperature, RosnerlO 

developed a set of analytical relationships to describe Turkdogan's 

model. 

The major assumptions of the critical supersaturation approach are: 

1) Mass transfer is based upon the stagnant film model. In particular, 

drops formed in the outer condensing region of the boundary layer are not 

convected into the wall region, which is assumed to be free of drops 

larger than the critical size. 

2) The location of the nucleation zone is determined by a critical super-

, I 

~ 

saturation value obtained from the infinite-medium solution of the nuclea- ~ 

tion kinetics equation for an arbitrarily selected nucleation rate. 

3) The drop temperature is equal to the local gas temperature. Thermal 

radiation from the hot wall to the drop is neglected. 

4) Diffusion of the drops is neglected. Only the vapor species (the 

"monomer") diffuses. Elenbaas
ll 

has shown that if drops do nG1t penetrate 

the outer edge of the boundary layer, drop diffusion eliminates enhancement 
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of the vaporization rate in the stagnant film model. 

Epstein and Rosner12 have examined the validity of the second assump-

tionof the critical supersaturation model by simultaneously solving the 

classical nucleation equations (the infinfute medium solutions) with the 

conservation equations for a stagnant film mass transfer situation. Their 

analysis contains a convective term c'aused by the interfacial velocity· 

which transports drops away from the ;vaporizing surface. As a result, 

drops leave the outer edge of the film and acceleration of the vaporization 

rate occurs. For this stagnant film model, Epstein and Rosner suggest 

that drop diffusion is unimportant. 

Epstein and Rosner did find that nucleation currents in their 

boundary layer were on the order of 10
10 

to 10
14 drops/c~-sec rather than 

1 drop/cm3-sec. The current of 1 drop/cm3-sec was used to define the 

critical supersaturation in cloud chambers
2

-
8 and had previously been used 

to define the critical supersaturation in boundary layers. 9,10 This 

definition was used in cloud chambers because 1 drop/c~-sec is a drop 

current which is easily countable by visual techniques. Its use to de-

fine the critical supersaturation in boundary layers was simply an 

ad .hoc . assumption. The actual nucleation current in a boundary layer ·is 

determined by a mass balance between the drops and the vapor. 

The approach of Epstein and Rosner is similar to that used in analy-

. 13 14 
sis of condensation in expansion nozzles.' Droplets are nucleated at 

rates dependent upon local supersaturation in accordance with classical 

nucleation theory. These embryos are convected along flow streamlines 

and grow by absorbing vapor from the surrounding gas phase. This method 

is Lagrangian in flavor, since the characteristics of the drop population 

at any point in the one-dimensional flow field are determined by integration 
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of the growth history of the drops from their upstream nucleation point. 

In mass transfer problems, this approach is convenient if the direction 

of mass transfer and the flow streamlines coincide, as is the case in the 

stagnant film model analyzed by Epstein and Rosner. However, for many 

flow geometries, the streamlines may be complicated curves while the 

concentration of the transferring species depends only on one distance 

coordinate. Such is the case for example for a rotat ing disk, where the stream-

lines execute spiral motion of increasing amplitude as the fluid moves towards 

the disk. The conce.ntration, however, is a function only of axial location. 

In this instance, it is obviously desirable to avoid integrating along 

streamlines. 

Consequently, the present analysis utilizes an Eulerian approach, 

in which mass conservation of the vapor species (termed the "monomer") 

and of different size drops is applied in a fixed control volume in the 

flow field. In this analysiS, the source term in the drop conservation 

equations and the sink term in the monomer equation are derived from the 

microscopic balance equations of nucleation kinetics. The effect of 

thermal radiation from the wall on drop temperature is included by a heat 

balance on the drops. 

With this approach, the final results of classical nucleation kinetics 

are not directly used to modify the mass transfer problem. Rather, by 

integrating the microscopic (kinetic theory) rate equations into the drop 

conservation equations, an internally consistent description of the 

drop convection-diffusion-condensation process is obtained. 

The equations were solved for the rotating disk flow geometry, which 

is one of the few fluid-mechanical systems which has an exact solution 

for the continuity, momentum, and the energy equations. 15 ,16 This means 
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that the velocities and te~erature in the monomer and drop conservation 

equations can be determined from first principles; the correlations or 

approximations needed to solve other hydrodynamic systems are not required. 

The monomer and drop equations for the rotating disk reduce to one-dimensional 

forms which simplifies numerical solutions. Experimental verification of 

the theory is possible, since rotating disks can be operated as high as 

2000
o
K. 35 

This work extends the previous work in the following manner. 

L The d iffus ion and convect ion of drops in the boundary layer 

is considered in a rigorou s manner; the a ssumption of a stagnant film 

is· not required. 

2. The microscopic rate equations of the nucleation kinetics are 

canbineddirectly with the drop conservation equations to obtain from first 

principles a description of the convection-diffusion-condensat ion process • 

3. The nucleation rate is not arbitrarily selected but is determined 

by a microscopic mass balance between the monomer and the drops. 

4. The effect of thermal radiation from the hot wall to the drops 

is considered. 

5.. The experimental data were obtained wi th a rotating disk system 

. 16 32 35 38 whi ch is known to be a precise experlmental tool. ' , , 

6. The data taken ~n this work show very little scatter; this 

is in contrast topreviou~data9 which scatter widely and hence give 

only qualitative estimate- of condensation. 
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B. Problem Formulation 

Consider a hot rotating disk of infinite extent surrounded by a cold 

inert gas (Fig. 0). The disk is at constant temperature T and rotates 
w 

with angular velocity ill. The gas far from the disk is at temperature T 

Since the disk is spinning, it induces angular and radial velocities 

in the boundary layer. The gas adjacent to the surface flows radially 

outward and by continuity the gas far above the surface flows downward. 

00 

The molecules of the vaporizing substance diffuse out from the disk into 

the laminar boundary layer, the thickness of which can be shown to be 

the same at all radial posi~ions. If the conditions in the boundary 

layer are conducive to drop formation, molecules may combine to form a 

droplet nucleus, or more probably, may combine with an existing drop by 

colliding with it. The drops thus formed are convected with the bulk 

fluid (and also diffuse) while growing or evaporating. It is assumed 

in this development that the disk vaporizes monatomically. 

Net motion of the drops relative to the bulk gas velocity is 

neglected, i.e. gravitational and centrifugal forces on the drops are 

assumed negligible compared to drag forces exerted by the gas flow. This 

assumption is reasonable if very large dro~s are not formed; the limits 

on drop size required to neglect these forces are shown in Appendix A. 

Only "dilute" systems are considered. While no precise concentration 

level separating "dilute" and "concentrated" m:j.xtures is possible, the 

term "dilute" implies neglect of: 

1) Interfacial velocity. 

2) Property variations due to concentration changes in the boundary layer. 

3) The effect of heat release due to condensation on the boundary layer 

energy equation. 
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T ro (cold bulk gas) 

z 

r~ 
T w (hot surface) 

, I, 

XBL692-2124 

Fig. 0 
'. 

'. 
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Most metal-inert gas systems, because of the low vapor pressure of 

the metal, are dilute; the methanol-air mixture considered by Epstein and 

12 
Rosner is not. 

The effect of restrictions (1)-(3) above is to uncouple the momentum 

and energy equations from the material conservations equations. The momen-

tum and energy euqations, however, are still coupled to each other because 

of the temperature -inducedphysicalpro'perty variations (viscosit y, den-

sity and therma conductivity) in the boundary layer. This problem, however, 

mn be solved independently of the material conservat ion equat ions. 

Figure 1 shows the difference between the isothermal vaporizat ion case 

and the non-isothermal vaporization case. In the isothermal case, con-

densation enhancement cannot occur because the vapor pressure in the boun-

dary layer is at all points below the equilibrium value. In the non-

isothermal case, the decrease in the temperature through the boundary 

layer produces a ra:pid decrease in the equilibrium vapor pressure. This 

is because the equilibrium va'por pressure is a strong function of tempera-

ture. The resul tis that the equilibrium vapor pressure profile may 

fall below the no-condensation va:por pressure profile and so condensation 

occurs. The vapor pressure profile with condensation must at all times 

lie betvreen the no-condensation profile and the equili brrr.umprofile, 

however, its exact position in this region determined by a mass balance 

between the drops and the monomer. 

1. The Conservation Equations 

The equations describing conservation of mass, energy, and vapor 

(or monomer) 15, 17 are 

continuity: 1 
r 

(Pru) + d 
dz (pw) = o (1) 

~, ' 
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r-momentum: 

, p (u ~ _ V: + w ~) _ ~ + ~ { " [2 ~> ~ 
( ~ ~ (",) + ~ )J}+ f. [( :~ + ~)+;" (~- ~ )] (2) 

¢-momentum: 

p(u ~;+~V+W~) ~H~-~)+ ~ ("~+ 
+ ;" (~_ ~ ) ] (3 ) 

z.,.momentum: 

p(u ~+w~)= -~+~d"[2~-~U ~(ru)+ 
+ ;)J}+~ ~ ~ (~+~)J (4) • 

energy: 

p cp (u ~; +W ~) = fr (k ~)+ ~ (5) 

vapor (monomer): 

1. ~ (r u Ql + d (wp) 
r . or V' dz v 

with boundary conditions: 

at z = ° 

as z ~ 00 

u =0, v = 0, p =Poo' 

~ (p D .~ (Pv/p~+ D d ' 
p - '" (p Jp) + r Or v 

+ '~(p D.~ (p/P))+ Sv (6) 

T=T, P =0 
00 v· 

(7)· 

Equation (1) is the hydrodynamic continuity equation for the flowing gas; 

Eqs. (2), (3), and (4) are the hydrodynamic momentum equations for the 

r, ¢ and z directions, respectively; Eq. (5) is the energy equation for 

the gas; the Eq. (6) is the convective-diffusion equation for the monomer. 

The notation is as follows: u, v, and ware the velocity components of 

the gas in the r, ¢ and z directions, respectively; p is the gas density; 

I-l is the dynamic viscosity; p is the total·pressure; cp is the speci~ic 
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heat at constant pressure; k is the thermal conductivity; and T is the 

tempera ture of the gas. The density of the monomer in gm/cm3 is P , D 
v 

is the binary diffusion coefficient for the monomer in the inert gas, and 

S is the volumetric source 'of monomer in gm/cm3 -sec. 
v 

The convective-diffusion equation, Eq.' (6), states that the rate at 

which monomer is convected out of a unit volume is equal to the rate at 

which it diffuses into the unit volume plus the rate at which it is pro-

duced in the unit volume. The source term is,' in fact, negative for in 

this case monomer is not produced but, consumed in the unit volume. The 

monomer consumed is used to produce the drops and the rragnitude of the 

source term is equal to the total amount of monomer going into drop pro~ 

duction in the unit volume. The vapor boundary condition in Eq. (7) 

* utilizes the equilibrium vapor density P • 
V,eq 

The conservation equation for drops of size g molecules is: 

1 
r 

+ 

~(p Dg ~ (cg/P)) + 

d 
~ P(D:~ (c /p)' 

g- Oz g ~ + S 
g 

where c is the concentration of drops of size g in drops/cm3 ; D is the 
g g 

binary diffusion coefficient for drops of size g through-the inert gas; 

and S is the source-of drops of size g in drops/cm3-sec. Like Eq. (6) 
g 

for the monomer, this equation states that the rate at which drops of size 

* The mass flux at the wall, even with condensation enhancelJ'Ent, is 
small compared to the rate at which atans leave the, surface and condense 
upon it. Hence the surface kinetic limitations cha~acteristic of vacuum 
vaporization are absent since boundary layer diffusion is by far the 
slowest step in the overall process and the equilibrium vapor pressure 
is obtained at the disk surface. 
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g are convected out of a unit volume is equal to the rate at which they 

diffuse in plus the rate at which they are produced. One such equation is 

required for each drop size g cons idered. 

Note that the conservation Eqs. (l)-(S) are written in the variable 

. property form. This is necessary because the temperature differences 

across a boundary layer required before appreciable condensation occ~s 

are greater than 10000K for metals. 

where 

The droplet diffusion coefficient D 
g 

C 
kT 

D 67Tf-L r g 
g. 

r is the radius of a drop of siz e g g 

is given bylS ' 

r (4~ gy/3 
g 

(10) 

with N the atom density of the vaporizing species in its bulk liquid state 

in atoms/cm3 •• The coefficient C is given by 

C 1 + 
r 

g 
[1.257 + 0.400 exp (-1.10 r Ii\.)] 

g 

with i\. the mean free path of the metal atom in the gas, 

i\. 
~ ~ 9 7T mg~S 
p . SkT 

(12). 

where m is the mass of an inert gas atom. For drops smaller than the 
gas 

mean free path, Eq. (9) yields the cl.assical molecular diffusion coefficient 

and D varies as D/g 2/3. For drops larger than the mean free path, Eq. 
g 

(9) yields the Stokes-Einstein relationinwhich Dvaries as g-1/3. In 
g 

the actual calculations, 2/3 power law was used for all drop sizes. This 

simplification was rrade becaus e the effect of drops larger than the mean 

free pat.h on t.he vaporization rate was very small. 
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The source term in the energy equation tas been neglected. This is 

because the system considered here is dilu tein the condensing specie", 

while the temperature gradient across the boundary layer. is very large;,· 

thus the quantity of vapor condensing in.the boundary is not large enough 

to signif'icantly effect the temperature profile. 

2. The Droplet Source Terms 

The source term S in the droplet Eq. (8) is obtained from the micro­
g 

, b t' of 1 ·t' k' t" 3,4,6 C 'd d' t ' SCOplC anace equa lons nuc ea lon me lCS. onSl er a lS rl-

but ion of drops of all sizes in a unit volume. Let A be the surface 
g 

area of a drop of size g, i3
g 

the rate at which vapor atoms in the gas 

condense upon a unit area of a drop of size g 'per unit time, and ex the 
g 

rate at which atoms are evaporated fran a drop of size g per unit time. 

/ 

Let J be the net rate at which drops pass from size g-l to size g per. 
g 

3 * . cm per seccnd, ioe. the droplet "current" in g-space. Since the 

product i3 lA lC 1 is the rate at which drops of size g-l grow to size· 
g- g- g-

g per cm3 per second and the product of ex A c is the rate at which drqJs 
g g g 

of size g diminish to size g-l per cm3 per second, the net rat eat wh ich 

drops of size g-l grow to size g is given by 

J 
g 

The coefficient i3g is given by 

i3 := 
g 

i3 A c 
g-l g-l g-l 

ex A c 
g g g 

p 
v 

r 
-iL 

D 
JkT) 127Till 

where the Hertz-Knudsen equation has been modified by the factor 

1 ---- ----
1 + ~.~ kT 

D. 27Tm 

(14) 

to give the correct net transfer rate across the drop-vapor interface for 

large drops, i.e. drops whose growth rate is limited by diffusion rather 

)( The droplet current in g-spac e is· analogous to the tt slowing down 
density" of neutrons in energy space, a concept which has been of consider­
abJ e utility in nuclear reactor calculations. 
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h k o to- 19,20 t an lne lCS. The modification to the Hertz -Knudsen equation is not 

strictly accurate for drops equal in size to the mean free pa th. However 

since few drops of mean free-path size or larger should e:x;ist, this 

simplified form was considered adequate. A unit sticking probability was 

assumed. The mass of vapor molecule is m, Pv is the 'Partial 'Pressure of 

the diffusing Vapor, and k is Boltzman's constant. The eva'P0ration 

coefficient a is given by:3-5 (/3\ 

a == g A
g

_
l 

'Pv,eq~(:T_g_)_ exp_3~,,- g-lJ ___ _ 

g Ag ~21TrrlkTg (1 + f ~ 2~~ ) 
where 'P . is the equilibrium vapor 'Pressure at tpe drop tem'Perature T 

v,eq g 

and b is the paramet er 

b 

where ~ is the sUrface tension in dynes/cm and 'P is the equilibrium 
v,eq 

va'P0r 'Pressure over a 'Plane surface. The exponent ial term accounts for the 

increase of the vapor pressure due to the. finite radius of curvature of 

* the drop. Thedro'P temperature T is the temperature ofa drop composed . g 

of g molecules. The surface area A in terms of: g is: 

. g ( 3) 
2 

/3 2/3 A == 47T -4 g g mn . 

Note that a has also been modified to give the correct . g 

rate for large dr0'Ps. 

(16) 

net transfer 

The net rate S at which dro'Ps of size g are formed 'Per cm3 'Per 
g 

second is equal to the net rate at which drops of size g-l grdw to size. 

g mims the net rate at which dro'Ps of size g grow to size g+l, i.e, 

S 
g 

J 
g 

r', 

*There is still ~onsiderable controversy over the 'Pro'Perform for the 
coefficient a g • 21-2 We use the classical form embodied in Eq. (15) be.., 
C2.use of the agreement between classical nucleation theory and experiment 
obtained by Katz and Ostermier. 
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At tbis point, it is appropriate to review the various conditions 

under 'which the concepts of drop current and drop source have been applied 

in other nucleation studies. 

1. The balanced equilibrium 
2-6 

theory of homogeneous nucleation applies 

to a system with no gradients, no flow, and no means of removing growing 

drops from the system. These conditions are summarized by the statements: 

S ° and J =0. Because balanced equilibrium theory requires abnormally 
g g 

high concentrations of large drops, the condition of no removal of growing 

drops Tmlst be relaxed for nucleation 

2. In the unbalanced equilibrium 

theory to be applied to real systems. 

2-6 
case drops are permitted to grow 

through g-space at a constant rate; large drops are assumed removed from 

the system by an unspecified mechanism and returned to the vapor phase as 

monomer. Since this process is considered to be at steady state, and since 

no concentration gradients or bulk flow exist, it will be referred to as 

the infinite-medium, steady state case. It is characterized by the require-

ment s : S = 0, J 
g g 

constant. The source-free condition follows from 

Eq. (8) if all convective and diffusive terms are set equal to zero. The 

evaluation of the constant value of J for this case, wh ich is c onmonly 

1 t ha 
. . 2-7,22 termed the nuc eation ra e, s been the subJect of many studles. 

Turkdogan
l 

and Epstein and Rosner 12 ha.Je utilized the nucleation rate 

derived fran the inifinte-medium, steady state solution in their analyses 

of condensation effects on mass transfer in stagnant films. 

3. The infinite-medium transient ~ has been studied by various 

. th 3,4,6,25,26 au ors. . The governing equation in t'his case is dc /dt 
g 

s 
g 

J 
g J g+l , which is the unsteady state analog of Eq. (8) for an 
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infinite medium. 

4. The present case may be characterized as the finite-medium steady 

state because in the finite system, convection and diffusion of the monomer 

and the drops must be considered. 

1 
r 

Using Eq. (18) the drop conservation Eq. (8) becomes: 

d 
dr (ruc ) 

. g 

d 
dr 

D d 
p -; dr (c /p) + 

g 

~ A c +0: 
g g g g+l 

• where go is smallest drop size considered. 

The value of go in our case varied between 10 atoms and 150 atoms. 

The results were insensitive to the value used. A go larger than unity 

must be used for two reasons. First, a standard nucleation theory assump­

tion
2

-8,25 is that the bulk. properties of the liquid can be used in the 

calculations even thoughHthe drops do not contain many molecules. Clearly 

, 25 
this is untenable for drops approaching atomic size. The normal technique, 

hcwever, is to set go approximately equal to ten or twenty atoms and to 

assume that the bulk. liquid properties apply to all drops greater than this 

size. The second reason go could not approach unity in that our numerical 

25 . 
calculations became unstable at very small gO. Courtney, used a value of 

20 for go in his numerical solution of the infinite'medium transient case. 

If the monomer Eq. (6) is divided by the mass of the monomer atom m, 

the result is an equation similar to Eq. (19) in that it conserves drops 

cif size' unity. Defining f as the concentration of monomer'atoms/crrf, 

f == (20) 
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Eg. (6) becomes 

" 

(
p D d (f /p )) + 8 

dz 1 
(21) 

The source term 81 is in atoms/cm3-sec • 

.. 
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3 • The Monomer Source Term 

The monomer equation source term Sl is found as follows. Iv[ultiply 

Eq., (8) by g and sum the resulting eqmtions for all g ~ gO' When this 

sum is added to the monomer conservation Eq. (21) the result is a con-

servation statement for the vaporizing species in any form, drops or 

monomer. Since the source term in this total species balance must be zero, 

gS 
g 

(22) 

The- coupling betw~en the monomer and droplet eq1,lations can nOVl be . . 

seen. The source term in the monomer balance, Sl' depends upon Sg by Eq.· (22) 

and S g depends upon C g via Eqs. (13) and (17Y ~ The coeffic ient t3 g depellds 

on monomer partial pressure by Eq. (lh) which is related to f by Eq. (20) • 

. 11 
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4. Bou:.r1dary Conditions on the Drop Conservation Equations 

., . 6 
It has been sho\m by Zc1dovich that· the source term in Eq. (19) can 

be approximated by an expresdon involving the first and second partial 

derivatives of c with respect to g. This is an interesting situation 
g 

in which the basic physics are expressed in finite difference fonn whereas 

the differential form is an approximat ion., Since machine computat ion invari-

ably requires approximation of partial derivatives by their finite diffe-

rence analogs, nothing is ga;i1:led by transforming Eq. (19) to differential 

form. However, the fact that the source term in Eqo (19) is equivalent to 

a second order partial derivative suggests that two boundary conditions on 

c in g-space in addition to the two boundary conditions in z are required 
g 

to render the problem completely spe cified. Moreover, the infin ite medium 

bl 1 " b "t"" 4,6 pro em a so requlres tv~ oundary condl lons ln g-space. 

In the z-direction the boundary conditions are as follows. At the 

disk-vapor interface, the supersaturation is unity and the droplet con-

centrations are assumed to be given b,y the equilibrium model: 

f exp (_.b g2/"1 
w kT 

w 

and in the bulk gas, far from the disk 

c ~O 
g 

as z~oo, all g 

at z == 0, all g 

(24) 

. Consider the development of the g-space boundary condition for the 

infinite-medium steady state case. Drops of small size spend most Qf their 

time oscillating back an/i".forth between large and smallerg ,vhile only a 
..... 

few pass on to cpnsitute the current J •
4 

So for small drops in the 
g 

steady-state 'infinite-medium case, J , of Eq.(13) is a small difference 
g 

b et"rcen two large numbers. Thus sL~ce ~ A c »J, aA c » 
g-l g-l g-l gg g g 

J then ~ lA lC 1 ~ a A c which leads to equilibrium values of c • 'e' g- g- g- gg g g 
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. Hence,in the steady-state infin{te-mediumanalysis; one boundary 

condition is that the solution must approach the equilibrium solution.as 

g ~ 1. The other is that the solution must approach zero as g ~oo. 

In the present analysis, the saine bcundary conditions could in principle 

be used. However, at points in the boundary layer where the supersat~a tion 

is very large, the critical drop radius of equilibrium theory approaches 

atomic siz e. Fitting with equilibrium theory would require either usirg 

a very small starting value go' which both renders used of Eq. (15) doubt-

ful and makes rrachine computation subject to instabilities, or matching on 

the rising part of the equilibrium theory curve, which is unrealistic. 

Consequently, we have matched our solution with the physically acceptable 

. steady-state infinite-medium solution at gO. This is equivalent to assuming 

. that at g = go' J g »Sg" J g+l » Sg' Sg"'" O. Thus by Eq. (17), J g "'" J g+l "'" 

constant, which is the basis of the infinite medium solution. Thus tre 

boundary condition for small g is: 

c 
g 

J/f3 A, J = J = constant 
g g g 

- 4 7 
at g = go in the nucleation zone where' 

2 3 

J = ~; (p~;Cl) {!-~ 82 
( 

16rr 'Y 
exp - T (kT ) 

and S is the supersaturation: 

S .= p /p 
v v,eq 

(25) -

(26) 

Note that given the partial pressure of the monomer p and the surface 
. v 

tension 'Y, then J follows. Equation (25) is the steady-state infin-ite-medium 
:',' 

solution in a highly supersaturated vapor for drops larger than the critical 

size, i.e. for eX «f3. 
g g 

The matching condition is utilized only in the 

nucleation zone, i.e. the region of large supersaturation where the critical 
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drop size approaches unity. Outside the nucleation zone, the concentration 

of small drops is determined by transport via diffus ion and convection from 

the nucleation zone rather then by local nucleat ion. This is because .the 

local nucleation rate outside the nucleation zone is very small because 

of the small supersaturation, and so the concentration of drops due simply 

to transport is much greater than the concentration .due to local nucleation. 

In fact then, the boundary condition in our problem is determined by solving 

the diffusion-convection equation for very small drops with a source term 

such that the drop concentration in the nucleation zone is identical to that 

given by the steady state infinite medium solution in this zone. In 

principle, the drop concentration could be matched to the steady state 

infinite medium solution'at all points in the boundary layer if go could be 

allowed to approach unity. Since this could not be done, the effect 

of diffusion and convection on drops at the initial starting size go had 

to be cons idered in this approximate manner. 

The boundary condition for large drops is: 

c ~ 0 as g ~ co 
g 

for all z (28) 
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5. Drop Temperature 

Only the temperature of a drop of size g, T , remains to be specified 
g 

. for a well-defined probLLem. Since the drop is in a strong thermal radia-

tion field, it may not be at the temperature of the surrounding gas. A 

quasi-static energy balance upon the drop gives the following transcen~ental 

equation for T : 
g 

~ 0 E Tw 
4 

Ag + !f ((3 g - cxg ) Ag (T -T) A 
g g 

(29) 

where the first term is the amount of heat radiated from the rotating disk 

to the drop, the second term is the heat added to the drop by condensation 

of the vapor on the drop, the third term is the heat radiated from the drop 

to the surroundings, and the last term is quantity of heat removed by inert 

gas atoms colliding with the drop. The Stephan-Boltzman constant is 0,' E 

is the emissivity of the disk and the drop, f is the average value of the 

latent heat per atom:'" c . p is the average value of the augmented specific 

heat per atom, Ath is the therma I a cc ommoda t ion c oe ff i cie nt, (3 is the 
gas 

rate at which the inert gas atoms cross a unit area per second, and T is the 

local temperature of the gas. The augmented specific' heat is the average 

specific heat of a sample of molecules crossing a plane surface and is 

higher than the ordinary specific heat per atom by ~ k.
26 

... 
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6. Dimensionless Form of the Basic Equations 

The advantage of the rotating disk as a vaporizing surface is that 

the governing equations can be reduced to one-dimensional forms and exact 

solutions obtained. Von Karman
27 

has. shown that the constant-property form 

of the hydrodynamic Eqs. (1)-(4) can be reduced to a coupled set of ordinary 

differential equations and Cochran
28 

solved the set exactly. Using Von 

Karman's and Cochran's solutions of the momentum equations, the constant-

property form of the energy Eq. (5) was solved exactly by Millsa·ps and 

Pohlhausan29 and Sparrow and Gregg)O. The solution of the constant-

property source-free,form of the monomer conservation Eq. (6) then follows 

by analogy since it is identical in form to the energy equation if the sys-

tem is dilute and the bulk velocity at the wall is negligible. 

A series of transformations can be found which reduce the variable-

property hydrodynahlic Eqs. (1)-(4) to von Karman's coupled set. In addi­

tion the 'variable property energy Eq. (5) can be reduced to Sparrow 

and Gregg's ordinary differential equation. These transformations are 

similar to those used to reduce the variable-property fla tpla te boundary 

31 
layer problem to a constant -property one. To Use them, one must assume 

that the Prandtl number, the Schmidt number, and the product PJJ. are con-

stant throughout the boundary layer. These, however, are very good assump-

tions; for a 1500
0
C temperature drop across argon boundary layer these Values 

vary by only, about 60%, and the solution evaluated at the film temperature 

should be very close to the exact variable-property solution. 

It will be shown that the variable-property monomer and droplet 

equations can be reduced to inhomogeneous ordinary differential equations 
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if the solution can be assumed independent of radius. If the equations 

were homogeneous, the solutions would then depend on z alone for the solu-' 

tions of the rotating disk system must be similar with respect toradius and 

match the boundary conditions at the wall and at infinity, both of whi ch are 

independent of radQUs. However, even though the equations are inhomogeneous, 

the solutions may still depend on z alone because the source terms have no 

explicit r dependence. The source of one equation is, in fact, determined 

by the solut ion of the other equation; it is difficult to see hew an r-

dependence could arise, for both' solutions must be similar with respect to 

r and both sets of z boundary conditions are independent of r. It will be 

assumed in this development that there is no r-dependence. 

The hydrodynamic and energy Eqs. (1)-(5) were reduced to von Karman's 

and Millsaps' ordinary differential equations as follows. Assume, as von 

Karman and Millsaps did, that the solutionis similar in ther-direction 

with 

u v 

p 

where Tj is the dimensionless distance 

r en G(Tj), w 

T-T 
00 

T -T w 00 

n _~' en " 
'I - -- Z 

v 
00 

Applying this to Eqs. (1)-(5) gives: 

2p F + d 
dTj 

( PH) o 

e(Tj) 

d 
dTj 

flPoo -dF 
(- d n ) 

floo 'I 

(30) 

(31) 

(32) 

.. 
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p(2FG + H dG 
. dT] 

(34 ) 

where Eq~ (4) has been dropped since its solution yields only the pressure. 

To eliminate the property effects, define' a new dimensionless distance 

pPdT] , XI' = Pfl-lf/Pool-loo (35) 
00 

and regard 'A., the specific heat c , and the Prandtl number Pr as constants. 
p 

evaluated at the film temperature. Then Eqs. (31)-(34) become: 

where the subscript f denotes evaluation at the film temperature. Again 

defining a new dimensionless distance x 

1 x =- ~ .n:; 
"'­

and a new dimensionless z velocity H 

(40). 



p 
p 

00 

-26-

H (41) 

the ordinary differential equations found by von Karman and Millsaps 

for constant properties are recovered: 

A 

2F + dH 0 dX"= 

---2 2 A ~dF 
.l!~ - G + H dX 

le P.r "li';de = 0 
dx2 - f dx 

with boundary conditions: 

F 0, G == 1, 

at x 

F== 0, G == 0; 

A 
H 

= 0 

e 

at x ~ 00 

0, 

= 0 

(42 ) 

(43 ) 

(44) 

(45) 

e = 1 

(46) 

The solution to this set of equations is known exactlyl5.,.16 and hence we 

know the variable-property velocity and temperature profiles in the gas 

surrounding the rotating disk. In employing these solutions the approxi-

mation 32 

A 1 ( 47) H(x) = - Ij:' x 

was used to calculate the condensation-free vaporization rate and the ' 

approximation 

A 1 
H == - Ij:'x 0 <x < x, 

0 

)I(x) 
(48 ) 

= MH x <x <00 
co 0 

H 0.866 x == 3.544 
c.:' n 

~" 

.. 
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was used in the numerical solution. The effect of this simplification is less' 

than 2% for the Schmidt numbers of this problem. 

The reduction of the monomer Eq .• (21) and drop Eq .. (19) proceed ina 

similar manner. First assume, in accordance with the similarity arguments 

given above, that the monomer and droplet concentrations are functions of 

Z alone, i.e., 

f :::: f(z) C :::: C (z) 
g g 

.( 49) 

.Then if two concentration functions are defined! 

... 
U = f/P . v :::: C /p 

g g 

Equations (21) and (19) become, after differentiating the left-hand sides 

by parts and applying the continuity Eq. (1): 

dU d ( D dU ) io g (~-lAgc:l Vg _l 
-cxAV - t3gA V + pw 

dz dz P dz P g g g g g 

+ cx 1 g+ Ag+l Yg+l ) (51) 

dV d 
(p D dd y ) -.£ r:g A - -CXAV -13 A V + pw ::::- + P ~l g-lVg _l dz dz g z g g g g g g g 

where the source term Sl has been written explicitly in terms of Vg 

using Eqs. (13-), (17), and (22). Applying the dimensionless parameters, 

variables, and fundi'ons defined for the hydrodynamic and energy equatio;ns 

in an identical manner gives: 
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- 1 2- 1 00 . II dU = _ d U ~ (13 A V - ex A V -13 A 'if + 
dx SC

f 
dx2 - ill eo g 'g-l g-I g-l g g g g g g 

+ ex A' 'if ) 
g+l g+l g+l 

(53) 

- 2-
'" dV 1 d VI. _ . _ 
H .J = - ---...£ + - (13 11 V - ex A V 

dx Sc dx2 ' m g-Ig-l g-l g g g 
gf I 

-13 A 'if + ex g g g g+l 

where Sc is the Schmidt number Sc = IJ./pD based on monomer diffusivity 

and Sc ~ tJ../p D is the Schmidt number based on drop diffusivity. Now 
g g 

define a set of dimensionless evaporation and condensation coefficients 

+ ex = A ex 1m . g g g 
13+ = A 13 1m 

g g g 

and a set of dimensionless concentration functions U and V : 
g 

P f Pw 
U= 

W u /p f =r = p P v vw 
W w 

p c Pw 
V ~ =r 'if 

g f .p g 
W' W 

(56) 

Then a completely dimensionless form for the monomer and drop equations 

can he obtained: 

iu AdU 
"2 - SC f H dX = 
dx 
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+ + + 
Sc (~ v - a V - ~V + 

gf g-l' g-l g g g g 

g 

The dimensionless boundary conditions are 

U = 11' V ( b g2/3) at x = 0 = exp - kT g 
w 

U ~ 0, V ~o as x ~oo 
g 

+ + 
V J (x)/~g(x) at g = go in the nucleation 

g 

V ~o as g ~ 00 

g 

+ P 
J (x) w J(x) where Pf co 

w 

(59) 

zone 

(60) 

The transcendental droplet energy Eq. (23) in dimensionless form; is 

(T IT )4 + c (~- TT--) = 2 - C2 (a+ - ~+) 
g w 1 T' g g 

w. w 

c A ~+ ro 
--IL. th gas 

(J E T 3 k 
W g 

(J 

Pro 

E T 4 A 
W g 

( 61) 

+ . + 
and the dimensionless evaporation and condensation coefficient s a and ~ 

g g 

are: 
+ 

~ = 
g 

A ~ 1m 
g g 
Ap 

-1L vw 1 

.~)' 
,,~ 

(62) 
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(

2b -1/3) exp 3kT
g 

g 

The problem of condensation in the boundary 

1 

t l::) 
layer around a hot 

rotating disk is then defined by the coupled set of ordinary differential 

Eqs. (57) and (58) with boundary conditions (59) and a transcendental 

energy balance Eq. (61). The coefficients in the source terms are given 

in Eqs. (62) and (63). The Eq. (58) is, in fact, an infinite coupled set 

of equations, one for each g greater than or equal to gO' However, the 

equations need only be solved up to some large but finite g for the con­
l 

centration of very large should be very small. The effect of these very 

large drops should be negligible because their growth and evapor ationra tes 

will be diffusion limited. 
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For completeneBs, a list of parameters which must be specified· to solve 

Eqs. (57) to (63) is shown below. These parameters are sufficient to fix 

the dimensionles s group associated with the. problem. The parameters are: 

1. temperature at the wall 

2. temperature at infinity· 

3. angular velocity of the disk 

4. Prandtl number 

5 .. Schmidt number 

6 0 diffusion coefficient 

7. thermal conductivity of the gas 

8. starting drop size go 

9. number of groups 

10. approximate boundary layer thickness 

Properties of the vaporizing species 

11. molecular weight 

12. coefficient in the Clausius-Clapeyron equation 

13. heat of vaporization 

14. surface tension of the bulk liquid 

. 
15. density of the bulk liquid 

16. specific heat of the bulk liquid. 

\" 

".'\. 
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7. Solution Met hod 

The Eqs. (57)-(63) Were solved numerically on a CDC '6600. However, 

even us ing a machine as fast as a ere 6600, the amount of computer time 

required is excessive if Eq~·(58) must be solved for a large number of 

drop sizes g. To circumvent this, a nrultigroup scheme was formulated. The 

drop size range was broken up into a number of smalJer groups, each con­

sisting of n+l drop sizes. The initial interval was 10 and each following 

interval was 10,times the preceding one. Equation (58) was then averaged 

over these intervals g.nd a single averaged equation obtained for the group. 

This was done for each grcup and the set of group equations then were solved 

for the group-averaged concentrations,. The source term in the monomer 

6:J.uation was then written in terms of the group-averaged concentrations' 

ani hence the whole problem posed by Eqs. (57)-(63) could be solved in 

terms of group-averaged values. The amount of computing time required 

was considerably reduced. 

The flow diagram 'of the iterative solution methcd employed is sham 

in Fig. 2 • The process was continued until the monomerconcentrationshcwed 

no further change upon continued iteration. The specific equations obtained 

after averaging over the groups are shown in Appendix' B. 

program is shown in Appendix H. 

The computer ' 
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(T /l\r) , c nmpu i:',p d fp)In Ii r- rnC)i lUr;j~:! I,' (:'lllccnt ration 
lIl()]1lC~lltl.Ull and enerr.ry eqs. 
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Flow Diagram for the Computtir Solution 
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Co ENHANCEME:NT OF THE VAPORIZATION RATE 

The change in the vaporization rate from that in an isothermal 

system is due to three factorst 

1) Condensation 

2) Property Variations 

3) Thermal Diffusion (the Boret effect) 

All three of these effects are due to the extremely large temperature 

difference (up to 15000C) across the boundary layer which is only a frac-

tion of a cent imeter thick. 

The mass flux at the wall is related to the concentration gradients 

by: 

or, in terms of the dimensionless parameters utilized in the solution 

method, by: 

-(p D)w ~ v: Cw [(:)w + ~o g(Dg!D) e~)w ] 

[(~:) A r[] 
(65) 

If non-isothermal effects and the source are neglected, the· flux at 

the wall for the approximate soltition of Eqo (57) based upon a linear axial 

velocity profile is (Eqo(48)): 

* . it j = (PD) -w w v 
w 

r~ 
c 'ti ~ 

w .. 2ir . 
(66) 

where all properties are arbitrarily evaluated at the walL tempera ture 0 
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Since the isothermal IlR.ss transfer rate in the rotating disk systEm 

is well known, the effects due to non-isothermal conditions are best pre-

sented by computing the ratio of the mass fluxes in the two cases: 

= ¢cond 
¢ 

vp 

where ¢ d is the factor by which the isothermal transfer rate is enhanced 
con 

by condensa t ion: 

¢ 
cond PE· 2Tr r(dU) co - (- dV ) ] -. _. -. + L:. g(D ID) ...-JL_ 

SC f dx w . g dx w go . 
(68) 

and ¢ is the fractional: increase due to temperature-induced property 
vp 

variat ions: 

~_SCf i . 

Sc W . 

If D ~ T2, then since p ~ liT, ¢V becomes unity. For the iron-argon system 

this is approximately true since D".".jl-·95 (see Fig. G-l, Appendix G). For 

thfu reason property variations will be neglected. 

The effect of thermal diffusion, ¢td' can be evaluated independently 

of the other two, and will not be considered here. Appendix C contains 

an analysis of the thermal diffusion effect and shows it to be small for 

the iron argon system. 

Our interest is then only in the factor ¢ ,which can be calculated 
cond ~ . 

by three methods: 

1. Bulk equilibrium condensation 

2. Crit ical supersaturation by the Turkdogan-Rosner method 

3 •. Present theory 

.i 
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In cas e 1, condensation is not kinetical1y limit ed and the equilib.rium 

vapor pressure 'is assumed attained at each point LYl the boundary layer. The 

monomer concentration gradient at the "Tall is obtained directly from the ~ 

gas temperature 'profile and. drop diffusion and convection need not. be con-

sidered. The partial pressure of the vapor in the boundary layer is given by 

the Clauius-Clapeyron equation: 

p v == . C exp' ( -' k~ ) 

If the energy conservation Eg. (45) is solved using the linear velocity 

approxiiJ1ation Eq. (47), the resulting temperature profile in the boundary 

layer is: 

Tw - (Tw - T) erf(~ x) T(x) = 

Equation (56) shows that: 

the gradient at the wall using Eqs. 

== ~
pr . 
.. f 

- . 27f 
P. 

kT 
w 

(76) and (77) 

(77) 

(78) . 
L 

becomes: 

(80) 

.,~ 

The gradient at the wall "lith no condensation is (from soJ~ving Eq. (57) 

wi th no sourc e vThi Ie us ing Eq .• 

(81) 

The bulk equilibrium condensation factor is obtained by dividing Eq. 

(79) by Eq. (81). 

¢ 
cond bulk 

{;tPr . f £ 
== 1. -" (1 - T IT ) 

. SC
f

' kTw 00 w 
(82) 

equilibri un 
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This derivation neglects the effect 

tion. Hills and Sackely33,37 and Rosner 

of the heat release I due to condensa-

Ep ° 47 "0 

and steln have derlved the same 

equation including heat release due to condensation for systems with a Lewis 

number Cs /Pr) of unity. Their results show that the effect the condensation 
" c;'" 

heat release is less than 4% for the cases cons idered here. For this reason, 

it has been neglected. 

The results of the critical supersaturation model, case 2, can also be 

expressed as a condensation factor'. The form of the Becker-Doring Zeldovich 

equation for the crit ical supersaturation which was recently verified experi-

mentally by Katz and Ostermier 7 was used. The condensation factor, ¢ 
cond' 

was obtained by graphical solution of Turkdogan! s method. Rosner! s analysis 

.~~ 

although more conveient, could not be used because at'the temperatures in 

the iron-argon system which are practically attainable with a rot ating disk 

apparatus" the logarithm of the supersaturation is not a linear function 

of reciprocal temperature. 
12 

A nucleation current of J = 10 , corresponding 

12 
to the value.

t 
which Epstein and Rosner found to apply in their boundary 

, 
layer study was used. Thepraperties such as surface tension and density 

in the Becker-Doring-Zeldovich nucleation expression were evaluated at the 

film) temperature of the boundary layer. The results for both the 

critical supersaturation and the equilibrium condensation cas es are shown 

in Table 1. 

TABIE I 

T (0 K) ¢ °t ° 1 ¢ equilibrium w crl lca 
""" supersatura t ion condensat ion --"---"~4. 

1500 1.0 20.4 

1800 1.9 17.4 .. 
~ " 

1900 2.1 16.6 

2000 2.2 16.0 

2100 2.3 15.3 
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The results of the present theory, case 3, are presented in the 

next section. 

!. 

'. " 
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D. RESULTS 

I 
The results obtained are presented in the following sections. The 

first section shows the effect of nucleation in the bcundary layer upon 

the vaporization rate, the second shows the structure of the nucleation 

zone in the boundary layer, and the third indicates the sensitivity of the 

results to some parameter variations. 

The effect of nucleation upon the vaporizat ion rate was analyzed for 

'two different cases. In the first case the diffusion coefficient of the 

drops was assumed to be equal to the diffusion coefficient of the monomer. 

In the second case the diffusion coefficient of the drops was assumed to 

vary as the monomer diffusion coefficient divided by the drop size to the 

two-thirds power. The approximation in the fir$t case makes the drop con­

servation Eq. (58) much more tractable because the diffusion bouhdary 

layer thickness is the same for all drop sizes. This is important be-

cause the monomer and droplet equations are coupled and so they must be 

solved over the same axial dis tance. The boundary layer thickness for the 

drop conservation Eq. (58), varies inversely with the Schmidt number.
27 

Consequently, as the drop size becomes larger the bcundary layer thickness 

becomes smaller because the diffusion coefficient decreases with drop size 

and hence the Schmidt number increases. For drop sizes varying from one 

6 
atom to 10 atoms, the boundary layer thickness varies approximately bya 

factor of one hundred. This means that the droplet equations must be 

solved over a distance of many boundary layers, which is very difficult to 

do numerically. This problem is avoided if the drop and monomer diffusion 

coefficients are assumed equal. ,This approach was tried first and is cbn-

siderably easier to apply than the perturbation technique described below; 

the disadvantage of this approach is that mobility of the large drops is 

overestimated. 
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drop 

In the second. case, the drop diffusion coefficient variation with 

size was assumed equal to D/g
2

/ 3 • To handle ,the variation in the 

drop boundary layer thickness with drop size, the method of singular 

perturbations 45 was used to develop expansions in the :i,.nner and outer 

regions of the droplet boundary layer. The expansions were then mat ched 

in a suitable fashion to give a continuous solutionih:the entire region. 

The method still required a numerica~ solution over the outer region 

but the solution over the inner region was given analytically. The 

advantage of this was that the inner region was the only one involving ., .. 

the variable boundary layer thickness; the outer region was always equal. 

to the monomer boundary layer thickne ss • The technique and the resulting 

equations are shown in Appendix D. 

The range of drops sizes used in solving the droplet conservation 

equation was fran 10 to 10
20 

atoms. A range of this .magnitude was re­

quired, even though drops of size greater than 109 made no contribution 

to the monomer source terms and thus had no effect on the coupling between 

the monomer and drop equations, because the boundary condition for large is 

required setting the drop concentration equal to zero at some large drop 

size. Unles s this point was considerably beyond 109, an effect upon the 

drop distribution was found; even though the large drops were not affect-

ing the monomer concentration directly through the source term, they 

influenced drop concentrations at other drop sizes. 

was used for all cases. 

20· 
For this reason 10 

The results were calculated for a temperature range of 1500
0

K to 

1900
0

K for iron vaporizjng intoa.rgon at 300
o

K. 
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The properties such as the surface tension and density of liquid 

iron in the nucleation kinetic parameters, coefficients, and expressicms 

were evaluated at the filin temperature of the boundary layer. This is con-

sis tent with the usual method of evaluating properties in a non-isothermal 

boundary layer. The properties used in the solution are shown in Appendix 

G. 

The effect of nucleation in the boundary layer on the vaporization 

rate from a rotating disk is shown in Fig. :3. Here: the condensation 

factor ¢ coni is plotted as a function of wall temperature. The condensat ion 

factor is the ratio of the vaporization rate with condensation to that with-

out condensation (Eq. (67)). The effect of drops diffusing back into the 

wall was neglected in calculating the condensation factor because it was 

less than 1% of'the monomer mass flux at the wall in all cases. The results 

in Fig. 3. are for a rotational speed of 1500 rad/sec (the rotational speed 

+ + 
enters the calculation via a and ~ 

g g 
in the monomer source term). For 

no condensation, ¢ d is independent of temperature and has a value of 
con 

unity. The line labeled Dg = D is obtained by assuming the drop diffusi-vity 

equal to the mo~omer diffusivity for all g. ~igure 3 shows tlat below a 

'Hall tempera tureof 1600° K the effect of condensat ion is zero, and above 

it the effect increases with temperature. At a wall temperature of 19000K 

the enhancement is a factor of tHo and one-half. The line labeled D g 

D/g
2

/ 3 is obtained by solving the singular perturbation form of the droplet 

equation. The "rall gradient in this case increases much faster with 

temperature tban the gr~dient in the constant diffusiVity case. At a wall 

temperature of 1900
0

K the enhancement is approximately a factor of six. 
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ROTATIONAL SPEED: 

1500 RAD/SEC 

Og= 0 
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ROSNER 
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Fig. 3 
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The reason for the greater enhancement in the variable diffusivity 

case is that the low diffus ivity of the large drops gives them less mobility. 

They then have a greater tendency to move with the bulk velocity. This 

has two effects • First, the large drops find it more difficult to diffuse 

into the region c lose to the wall where the convection transport is weak. 

This is important becaus ethe region close to the wall is much hotter than 

the outer regions and a drop which tended to grow in the cooler outer 

region will tend to evaporate, or at least grow much less rapidly, near 

the wall. The drops tend to evaporat e in this region because the evapo-

ra tion coefficient a: is a very sensit ive function of temperature and 
g 

increases rapidly as the temperature is raised. Thus the ability.of the 

drops to evaporate is smaller in the variable diffusivity case and so 

the monomer sink is larger and hence the wall gradient is increased. The 

second effect arises from drqJs leaving the nucleation zone in the direction 

of the outer boundary layer edge. As the diffusion coefficient becomes 

smaller, the ability of the drops to move outward against the convective 

flow is lessened. Thus these drops have more of a tendency to stay in that 

part of the boundary layer where their effect on the monomer sink term is 

larger. In the outer regions of the boundary layer the drops may have a 

+ 
strong tendency to grow because of the low evaporation coefficient a: . g 

caused by the low temperature, but at the same time the monomer concentrat ion 

in this region is very small and the effect of depressing it on the gradient 

at the distant wall is l1egligible. Thus arw drop which diffuses into this 

region no longer contributes effectively to the monorrer sink. Thusthe 

smaller diffusion coefficient of the variable diffusivity case increases 

the monomer s ink and so inc rea ses the net evaporat ion rate. 



It can be seen in Fig. 3 that the effect of these two actions described 

above is to increase the condensa-L ion factor in the variable diffusivity 

case over that in the constant diff'usivity case' by a factor of two and one-

° lRlf at 1900 Ko He,wever, the point at which nucleation becorrcs signifi-

cant is practically the same in the bro cases, i.~ .. l6oo
o
K. This is con-

s istent because a variation in the drop diffusion coefficient cannot 
,. 

affect the vTa11 gradient unt il a large nwnber of drops are formed by 

nucleation. 

The Turkdogan-Rosner results from Table I are also shOlm in Fig. 3. 

The enhancement in this case is approximately equal to that in the con-

stant diffusivity casco 

Figure 4 shows the vaporization rate in milligrams per square centi-· 

meter per hour from an iron rotating disk as a function of wall temperature. 

The bulk equilibrmm condensation results from Table I are also included 

iry Fig. 4. Figure 4 shows that 1,orhile the no-condensation vaporization rate 

increases rapidly· with temperature, the rates for the nucleation cases 
, . 

increase more rapidly and the rate in the ·variable diffusivity case is beginn-

ing to approach the bulk equilibrjum condensation rate. At 1900
0 K the rate 

in the variable diffusivity case is six times the no-condensation rate and 

only a factor of three belovr the bulk condensation rate. The constant· 

diffusivity vaporization rate is smaller and is approxirrately a factor· 

of ten belou the bulk condensation rate. 

Figure 5 shavs the vaporization rate versus reciprocal temperature. 

The no-condensation and bulk condensation cases here are straight lines. 

The uniform diffusi vity and perturbat ion cases are not straight lines 

indicating that the processes are not governed by a constant activation 

energy. HOIvever, they curve only a little and so a constant activation 

energy would be a good approximation. 
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The calcula,tions could not be extended to very large enhancements where 

the vapo:dzation rate approaches the bulk equilibrium condensa:t;ion case. 

When this was attemped, the program became unstable and convergence could 

not be obtained. 'l'he reason for this is indicated in the next section • 

. \ 
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2. Structure of the Nucleation Zone in the Boundary Layer 

Figure 6 shows a typical nucleation rate J profile as a function of 

* axial distance through the boundary layer. Then ,nuclea ti on rate was 
I 

Calculated fran the classical Becker-Doring:"'Zeldovichexpression, Eq •. (26). 

The important characteristic of Fig. 6 is the existence of a i'nucleat ion 

zone," i. e. a region where the nuoleation rate is very high, and whi ch' is 

surrounded on either side by a region with a relatively' low nucleation 

rate. Such a zone vlaS also found by Ronser and Epstein.
12 

It is in this 

nucleation zone that the drops are formed. The rraximum nucleation rate 

in the zone occurs at x=:2 .25, or a littl,e more than half-way through 

the boundary layer. The rotating disk boundary layer is generalLy con-

sidered to end at x 3.25. The zone is skewed toward the outer region 

of the boundary layer and occupies approximately 6% of it. The nucleat,ion 

rate between x = 0 and x = 1, i.e. in the first 30% of the boundary layer 

is essentially zero cc:mpared to the nucleation rate further out in the 

boundary layer •. The nucleation rate in the zone is approximately 10
14 

drops/cm!-sec, which is comparable the maximum nucleation rate of 10
14 

drops/ 

3 . 12 
cm -sec, in Epstein and Rosner's study. No special significance can be 

attached to this, however, for there is nobbvious reason why they should 

be the same in different systems. 

Figure 7 shows a typical droplet size distribution in the nucleation 

zone. The infinite-medium steady state solution is also plotted for com-

parison. The boundary layer solution approaches the infinite medium solu-

tion for small drop sizes as required by the boundary condition. For large 

drops, it falls increasingly below the infinite medium solution as drop 

size increases. This is expected behavior because in the 

-)(- The nuc1eat~on rate is the net rate at which drop of critical size are 
produced per cm) per sec; since the steady state infinite medium droplet 
distribution is assumed to exist for all drops smaller than go the mclea­
tion rate is also the rate at which drops of size go are produced per cm3 

per sec. 
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infinite medium solution the drop current J is constant and hence the same 

number of drops pass through e3.ch size. In the boundary layer case, drops 

can also leave an increrrental space-size volume by convection a:ld diffusion. 

The infinite medium balanced equilibritun distrubtion is also sham in Fig. 

7. The minimum of the curve is the critical drop size and the figure shews 

that it is approaching atomic size. The vallie of. go' i.e. the match point 

between the infinite medium solution and the boundary layer solut ion, was 

ten of this case arid is shOlm in the figure., 'I\w dashed lines are also 

shewn in Fig. 7. These are the infinite medium and boundary ]ayer solutions 

at x = 0.25, i.e. far from the nucleation zone. They shovl that the 

boundary layer droplet concentrat ion is much larger than the infinite medium 

concentration at this point; this is because drops have been transparted by 

diffusion and convection from the nucleation zone. Also note that the drop 

concentration for any particular size g is higher at x = 0.25 than at x == 2.25. 

This is because drops formed near x = 2.25 are transported avlay from the 

region and into the region near x = 0.25. 

\ Figure 8 ShOl'78 the variation of the evaporat ion and condensat ion coeffi-

eients with a.xial position in the boundary layer for a typical drop, size. 

+ 
The~poration coefficient a is higher than the condensation coefficient 

g 

f3; near the wall 'tThere the temperature is high. This is because the vapor 

pressure is a raI)idly increasingly function of temperature and evaporation 

coefficient is proportional to the vap or pres sure at the drop temp era ture • 

As the temperature decreases through the boundary layer the evaporation 

coefficient falls rapidly and is considerably sm.1.11er than the condensation 

coefficient throughout most of the boundary layer. 'l'he linear scale is 

somewhat deceptive at large x, for at x O~ 4, the evaporation coefficient 

is orders of' rno{:nitude below the c:ondens3.tim coefficient. HOvlever, the 
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important point is that drops diffus ing or convected towards the wall will 

tend to evaporate rather than grow. 

Figure 9 shows the monomer source term versus axial distance through 

the boundary layer for a typical case. The source is positive close to the 

wall because of the high eva'poration coefficient there. It, hOW"ever, ra'pidlY 

beccmes very negative 15ecause the eva:porat ion coefficient quickly decreases 

with axial distance while the condensation coefficient remains relatively 

high. Thus drops formed in the nucleation zone and transported to this 

region grOW" very rapidly and in doing so consume monomer, thus driving 

the monomer source term to large negative values. Note that Fig. 6 indicateS 

that very few drops were born in the region where the large negative source 

occurs., and Fig. 9 indicating that little monomer is consumed in the nucleation 

zone. The small drops born in the nucleation zone comsume little monomer 

while being' transported. out of it; however at they grow to big drops 

nearer the wall -:;he amount of monomer they consume increases tremendoilsly. 

This is consistant with the results of steady-state infinite medium theory 

4 
where it has been found that the larger drops consume the most monomer. 

As x· increases, the monomer source returns to zero because the monomer con-

centration and hence the condensation coefficient, has been depressed to 

the 'point where the drops grow much more s'lowly. Thus they do not deplete 

the monomer as rapidly and the monomer s ink term is small. 

The oscillatory nature of the monomer source caused many numerical 

problems in the lffichine program. It was the principle reason that the 

calculation could not be made for large 'enhancements in the vaporizat ion 

rate, Le. for vaporization rates a:pproachingthe bulk equilibrium con-

densation rate value. The reason for this is tlat the monomer source is, 

in effect, the small difference of two large numbers (note the large 
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positive and nee;ative variation :irl Fig. 9). Thus any error made in com-

puting the source in the positive or negative regions has a large effect on 

the monomer concentration. 

Figure 10 shows a schematic of the process afcandensatian and revapari-

zatian af the drops in the baundary layer. 'The case for an isathermal system. 

is shawn in the left. Here the gas is at the same temperature as the disk 

and the evarorating species simply diffuses aut into the baundary layer. 

On the right, the nan-isothermal system vlith condensatian and revaporiza-

t ion of the drops is shown. Here the drops are formed out in the boundary 

layer and grovl as they proceed tovlard the disk. As they come close to the 

hot disk, the tendency to evaporate bec ones greater than the tendency to 

grOIN and so the dral)s began to' revaparize. 

Figure 11 shows the dimensionless cantributian from the individual 

graups to' the monamer saurce tenn far a typical case. The prafile in g-

space was taken at the position of the maximum negat ive manomer source, 
. . +. 

x == ,0.25. Plotted on the ordinate is the product g.Sgex) which is the 

neg~tive of the contribution to the monomer source from a group with source 

+ '+ 
Sex). The total monomer source S ex) is given by the sum of the contri­

g 
+ 

butions fran the individual groups, Le. Sex) == 2:: 
g. 

+ 
g S ex), and so 

g . 
+ . 

S ex) is equal to the area under the curve in Fig. 11. The figure shOlNs that 

d · ':3 1 6 ropSlzes between 10 and ° are the principle contributors to the 

monomer source. Drop sizes below 103 and above 10
6 

have negligib~e contri .. 

butions. For drop sizes below ~03, the baundary layer droplet concentration 

in g-space (see Fig. 7) begins to approach the infinlte medium solution 

+ 
for which Sex) == 0. Thus the c,antributian fram group's af small drap 

g 

size must apllrO:1.ch zero. Figure 7 ShOVlS that the baundary layer droplet 
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concentration falls rapidly as the drop size increases. For drop sizes 

6 
greater than 10, the contribution. to the monomer source term again appl'oacres 

zero because the droplet concentration becorr.8s so small. Thus only inter-

mediate drop sizes contribute to the source term. 

Figure 12 ShOVlS the ratio of the drop temperature to "Wall temperature 

versus drop size for a location in the nucleation zone. For most drop 

sizes the drop temperature is equal to the temperature of the surrounding 

gas; only at the large drop sizes does the drop ten~eraturc differ from 

t . . b 1015 .. th the gas empera ture. As the drop 1ncreases eyond atoms 1n slze,e. 

drop temperature rises quite rapidly because of thermal radiation and approaches 

the "Wall temperature at a size of 10
20

• The reason the drop temperature ! ! 

remained very close to the gas temperature over such a large range is that 

the rate at vlhich heat "Was removed from the drop by gas atoms colliding 

. "With it "Was very large, i.e. coeffi,cient of the fourth term in Eq. (29) 

vTaS very large. The pressure of the surrounding gas in our calculations 

"Was.one atmosphere. At this pressure the effect of radiation fran the 

disk to the drops is important only for very large drops and these do not 

exist in appreciable quantites. For nuclffition in rarified environments, 

ho"Wever, the effect of radiat ion "Would become very important because the 

heat removed by gas atoms colliding ,,,iththe drops "Would be much sma"ller 

and hence the drop temperature "Would depart from the gas temperature at 

much smaller drop sizes. 

In summary, the structure· of the nucleat ion in the boundary layer. 

is such that drops are produced in significant quanti tes only near the 

middle of the boundary layer. Many of the drops formed there are than 

transported by diffusion and convection into the region close to the "Wall 

"Where they evaporate. This effect produces a cycle because the monomer 
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produced by the drops evaporating is transported away from the wall and 

into the nucleation zone where some of it must again be formed into drops, 

(see Fig. 10). The effect then repeats itself. 'Thus a recycle is super­

imposed upon the ordinary outward transport of the vaporizing species which 

normally occurs in the rotating disk boundary layer. 

In addition, the drop concentration in g-space in the nucleation zone 

rapidly becanes much smaller than the concentration given by the infinite 

medium solution. Since the drop concentrations must be equal for small 

size, the behavior causes only the intermediate drop sizes to contribute 

to the monomer sink. Finally, the effect of thermal radiation fran the 

hot disk to the drops is negligible if the surrounding gas is at atmo­

s'pheric 'pressure. 
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3. Effect of Some Parameter Val'iations 

The effects of variation of the angular velocity of the rotating disk, 

and the surface tension of the liquid metal upon the gradient at the vTall 

were examined. }'igure 13 shOYTS the effect of angular velocity variation. 

Here the vaporizat ion rate is plotted against the square root of the angular 

velocity. ExperirIlentally the effect of natural convection vrould become 

quite strong belOi-T JOO r8.d/sec and so the calcuhtions ~~ere tel'minated at 

this speed. As the arrgular veloc ity decreased from 2100 rad/sec to 300 

- dU, 
rad/sec the gradient at the viall (dx)' increased mo,notonically. The gradual 

increase in the "Tall gradient is ',rha t 1,vould be e:x;pected because the angular 

velocity enters the source terra through the djmensionless evaporation and 

+ + 
cmdensation coefficients a and i3 • As the angular velocity is decreased, 

g g 

droplet source terms become larger and so the monoma- sink terms become 

larger. Thus the gradient at the wall increases.. The vaporizat ion rate j 

(which is proportional to Jro (:Z)w)' hOl-rever, increases with an increase 

in r-ngular velocity as Fig. 13, shows. This is the expected behaviqrbe-

cause both the no-condensat ion and bulk equilibrium condensation limits 

behave in this fashion. 

Figure 14 shoyrs the effect of a variation in surface tension on 
\ 

the gradient at the wall. 'l'he gradient increases as the surface ten:;don 

+ 
decreases, because the evaporation coefficient,a decreases. Thus t:he 

g 

rate at which drops evaporate near the rotating disk wall is lessened and 

so the gradient at the wall is increased. 
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E. CONCLUSIONS 

In conclusion, the calculations indicate the vaporization rate to 
, , ,. I 

be enhanced by nucleation in the boundary layer. The magnitude of the 

enhancement is affected by the diffusivity assigned to the drops, with 

a lower drop diffusivity resulting in a greater e.nhancement. If the 

drop diffusivity is assumed equal to the monomer diffusivity, the enhance-

ment for iron is approximately a factor of two at 18oo
o

K. If the drop 

diffusivity is given by the more accurate expression D/l/3, then the 

enhancement is approximately a factor of five at l8oo
o

K. To use this 

more accurate expression which ,implies that the boundary layer thickness 

varies inversely with drop size, a singular perturbation type of analys is 

is required. This method of analysiS shCMs that each drop size has an 

inner boundary layer region where diffusion and convection are the pre-

dominant modes of tranSport, and an outer region where convection and 

production 'predomim,te. 

The structure of the nucleation in the boundary layer is such that 

drops are produced in significant quantities only near the middle of the 

boUndary layer. Many of the drops formed there are then trans'ported by 

diffusion and convection into the region close to the wall where they evapo-

rate. This imposes a recycle effect upon the ordinary outward transport 

of the vaporizing species which normally occurs in the rotating disk 

boundary layer. 

The drop concentration in g-space in the nucleation zone of the ) 

rotating disk is much smaller than the c oncerrtration given by the infinite 

llediwn solution for large drop sizes. This decrease causes only the 

intennediate drop sizes to contribute to the monomer sink. Fiml~, the 

effect of thermal radiation from the 'h at disk to the drops is negligible 

if the surrounding gas is at atmospheric pres sure. 

.-



PAnT II EXPERn.~HI'AL 

A. Introductim 

The effect of condensation in the thermal boundary layer on the rrfl.SS 

transfer rate from a hot metal surface was measured experimentally. This 

viaS done by measuring the vaporizat ion rate of a hot l'ota-ting disk in a 

cold ~i..nert gas environment vIith the disk operating at temperatures and 

angular velocities calculated to produce nucleation in the boundary layer. 

It was shmmtheoretically in the previou...c; section that the formation of 

nuclei should promote condensation and thus increase the vaporization 

rate. An experimental verification of the effect of condensation on the 

vaporization rate vlaS sought. 

Turkdogan and Mills9 measured roughly the vaporization rate of 

molten iron spheres surrounded by helium and cooled by natural convecti on. 

The spheres were heated by an induction coil and were susp.ended by 

levitation within the coil. They measured a vaporization rate that vTaS 

\ .. 

approximately three times the isothermal, diffusion-limited, condensation 

free value calcul~ted fran semi-empirical correla ti ODS. This factor of 

three increase in the vaporizatim rate agrees qualitatively with the predic­

. ·1 
tions of a "critical supersaturation" model proposed by Turkdogan. Their 

experiments, however, were not conducted wi th the expres s. purpose of 

testing the theory of condensation enhancerrient of the vaporization rate. 

'I'herefor~, no particular care was taken to insure that certain necessary 

boundary conditions l.;rere attained in the experiment. Thus their experiment al 

results should. be considered in the qualitative rather tha.n the quantita-

tive sense. Based on this factor of three inc rea se in the vaporizat ion 

1'0. te, and on the qualitat ive agreement behreen the measm'ed rate and their 



-66-

"critical supersaturat ion" model, Turkdogan concluded that condensation in 

the' boundary layer increases the vaporizat ion rate. 

. 49 
Elenbaas llleasured the vaporization rate of a resistance-heated 

tungsten filament wound in the shape of a coil and surrounded by krypton 

gas. The filament was cooled by natural convection. He found little 

enhnacementin the vaporization rate, and in fuct found that the calcu-

lated concentrat ion and thermal diffus ion fluxes account for 77% of the 

IlEa sured fluxes. The fluxes were calculat ed us ing stagnant fi 1m theory. 

11 
These results agree with a theory Elenbaas proposed. This theory assumes 

tha t drops formed by nucleation move by diffus ion only in a stagnant boUndary 

layer and that they do not penetrate the outer edge of it. With these 

assumptions, Elenbaas shows that the enhancement should be zero. Elenbaas 

then concluded that condensat ion in the boundary layer has little effect 

on the vaporization rate. 

We have attempted to determine the effect of condensation in the 

thermal boundary layer more precisely and so to resolve this contradict ion 

between Turkdogan I s and Elenbaas IC mclus ions by measuring the vaporizat ion 

rate "lith condensation using a rot at ing disk system. The advantage of 

the rotating disk system is that the measured rate can be canpared with 

an exactly calculated, condensation-free, theoretical rate. Both 

Turkdogan and Elenbaas calcuJat cd the enhanc ement by comparirg the mea.sured 

vaporization rate with a theoretical but inexact rate nb-condensation rate. 

Turkdogan could not obtain an exact theoretical rate because semi-empirical 

correlations are required to calculate the temperature and concentration 

profiles for spheres cooled by mtural convection. Likewise, Elenbaas' 

required stagnant film theory to describe the concentration and tempera-

ture profiles around his coil. For the rotating disk system, however, 

the concentration and temperature profiles can be determine<i fran first 
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principles and hence, the condensation free vaporization rate calculated 

1 15,16,34 , . . , t' d f exact y. In additlon, diffuslon, convec lOn, an growth 0 the drops 

formed by nucleation can be exactly described. by a set of ordinary differential 

equations. The solution of these equations gives the condensation-enhanced 

vaporization rate. The measured rate can then be canpared with a calculated 

rate assuming no nucleation and with a calculated rate considering nucleation 

where the calculated rates are exact solutions. 

The rotating disk also has the advantage of being a precise experimental 

tool. For example, Olander32 found very good agreement between theory 

and experiment while studying the diffusion-limited chemical reaction 

between iodine and germanium at moderate temperatures (approximately 300°C). 

Schofil1
35 

found very good agreement between theory and experiment while 

studying the diffusion-limited chemical reaction between OKygen qnd moly­

bdenum at very high temperatures (up to 2000
0

K). Other studies
16,38 

have 

also shown the exactness of this tool • 

. In this experiment, the material vaporized was chromium and the environ-

merIt was cool helium. The disk was heated by induction. The vaporizat ion 

rate ,>las measured over a temperature range of approximately lOOoK at 

approximately 1700
o

K. 
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B. Descr~tion of the Experiment 

The rotating disk has what is called a truniformly accessable surface. If 

This is a term which is used to describe the experimental and theoretical 

fact that the mass flux. leaving the disk, or the vaporizatlon rate as we" 

shall call it, is independent of pos'ition on the disk. Because of this 

position independence, the vaporization rate is obtained in an experiment 

simply by dividing the mass loss of the disk by its cross-sectional area 

and by the time over which the mass loss occurred. The problem experimentally 

then is to obtain a measurable mass loss reasonably free from error in a 

reasonable amount of time. 

1. Selection of the Disk Material 

The material used in this experiment was chromium. Chromium was 

chosen because it has a relatively high vapor pressure near its melting 

point (approximately 8 mm of mercury of 2120
0

K) while at the same time 

being relatively inert. The high vapor pressure was necessary to obtain 

a mass loss large enough to be measured. The material must be relatively 

inert in order to prevent reactions with other elements in the system 

from obscuring the mass loss caUSed by vaporization. For example, a 

chemical reaction between the disk and the. crucible at the temperatures 

of this experiment could easily produce a large mass change in the disk. 

Also, simple diffus ion of the crucible elements int 0 the disk can be a large 

source of error. A reaction can also occur with impurities in the inert 

gas stream. Anyone, or a combination of all of these, can easily intro­

duce errors much larger than the value intended to be measured. 

Iron was initially triedbecaus e .the . disks cou.ld be easily machined 

from it by conventional methods. However, the vapor pressure and melting 
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temperature of iron are lo:rer than those of chromium, and to obtain a 

measurable mass los s, the dis."ks had to be run very close to their melting 

point. This was difficult to do because iron has a phase transition nea.r its 

melting point and at the trans it ion the properties, espe cially the specific 

heat, cbange quite rapidly. This caus ed the temperature ·of the disk to charge 

quite rapidly for small changes in input povrer from the induction heater 

vri th the consequence that the disks invariably melted. Thus chromium vras 

chosen. It, however, was considerably more difficult to fabricate since it 

cannot be m'1chined but must be spark-cut. This had the effect of limitine; 

the number of data points which could be taken because of the considerable 

effort required to make a disk. 

2. Equipment Description 

The experiment is sketched in, Fig. A... The chromiwn disk to be vaporized 

was rotated by a synchronous electric motor while heated by an induction 

heater. The disk \\ras cont~ined in a boron nitride crucible which was. 

attached to a tantalum shaft. A thfn tungsten liner was placed between the 

chro'mium and the boron nitride in order to prevent a chemical reaction 

betvleen them;· The reaction between tungsten and boron nitride is much smaller 

than that between chromiwn and boron nitride. The synchronous motor drove 

the tantalum shaft through a vrater-cooled bearing block. The water cooling 

was required to prevent overheating of the bearings and the electric motor. 

The shaft was made long and thin to reduce the amount of heat, transferred 

from the hot disk down the shaft to the bearings and motor. The shaft 

was 0.25 inches in diameter and sjx inches lorg with approximately three 

jncltl.'G of' it extend :LnG above the vt.l Ler-coolcd bearing block. The b01'0n 

nitride holder vras approxinn tely one centimeter high by slightly more than 

one centimeter in diameter at its top. ·The motor was driven at constant 
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speed by an audio-oscillator connected to a power amplifier. The oscillator 

provided a variable frecpency source to control the motor s'peed a.nd theampli-

fier 'provided the power necessary to drive the motor. The system was de-

signed to run at speeds betwen 300~ and 15,000 rpm. The chromium disk 

along with-the boron nit'ride holder, tantalum shaft, and synchonous motor 

were enclosed in a large quartz tube. The induction coils outside the 

quartz enclosure encircled the chromium disk •. The interior of the tube 

during a run was filled with a 96% He-4% hydrogen mixture. The 4% hydrogen 

was added to inhibit the formation of chranium oxide on the disk sUI'face. 

The helium-hydrogen mixture was treated prior to entering t lE apparatus 

by a gas purification system. This consisted of filtering the gas through 

a packed filter of pyrex filtering fiber and then passing it throug;h 

two Drierite dissicators and finally through another packed pyrex filter 

to remove dust particles. The gas purification system was constructed 

entirely of stainless steel whi ch had been chemically polished to. remove 

surface impurities. All lines leading from the bottled gas supply to the 

quartz enclosure were also chemica,lly polished stainless steel. The 

only exceptj.on was a very short piece of copper line where the metal-to-

quartz joint was made. The gas purification system and these lines leading 

fran the gas supply in the quartz enclosure were kept in an argon atmosphere 

whenever the system was not. operating. These precautions were taken to 
\ 

prevent impurities from .~entering the system and later depositing on the 

hot chromium surface. 

The apparatus was assembled for operating by placing the weighed 

tungsten liner and then the chromium disk into the boron nitride crucible 

:,"nd then threading the crucible onto the tantalum shaft. The quart tube was 

vlal~ed :.1.l'ound the disk assembly and the helium-hydrogen supply connecte'd. The 

ga;.~ flow. l'rL te WB,S adjusted to a value equal to that pumped by the disk plus a 
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small addi tiom~l amount to insure that no back mixing 

occurred., 'l'he additional amount was calculated, us ing the remIts in Ref. 

16 to be small enough not to affect the velocity profiles around the disk 

significantly. Upon entering the quartz tube, the gas mixture was cooled 

with a water-cooled heat excnanger. The heat exchanger prevented the gas 

from being heated by.the quartz enclosure as it traveled tOI'lard the disk. 

The temperature of the quartz enclosure "laS higher than amb ient bemuse the 

hot disk radiated to it. By cooling the gas, a pre cisely knO\Vl1 boundary 

condition at the outer edge of' the boundary layer was nk1.illt~'1.ined. 

The tern.perature of the disk "laS measured "rith ·an optical pyrometer· 

"rhich vie~redthe disk through a right-angle prism and an opt ical fiat located 

on top of the quartz enclosure. The temperature correction for the optical 

fJa t had been, previously determined by calibrating it with a tungsten lamp • 

The pyrometer "lUS sighted m the disk and also on a small hole. located in 

the center of the disk. The hole had a length-to-diameter ratio of 

approximately unity, and though it "laS not a perfect block body, it did 

have an emis'sivity considerably higher than the chromium surface. This 

hole "laS used to calculate the emissivity of the disk surface. 

The emissivity of the disk "ra. s measured by a set of tempera ture 

measUrements take~ while the disk was being heated to and cooled from its 

opera ting temperature for the run. 'l'he measurements consisted of recording 

the temperature of the hole drilled in the disk and then the temperature 

of the surface immediately ci,djacent to the hole for a sequence of diffe­

rent. disk temperatures. If an axial temperature gradient does not exi st, 

the true temperature of the hole should be equal to the true temp era ture 

of t.he surface. By equat.inc; these tempemtures and making some approxi­

llrtU.oW:, (t:.: ~.:1,,)\'.'1l :in AjlP(~lld;". }t', Ute l'at:i.o of the cm:issivity of the bole 

to the emiss).vity of the surface can be calculated. Then using the results 
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36 of Sparrow and Albers, the emissivity of the surface of the disk can be 

obtained since the ratio of the emissivities is a known function of the 

'. surface emissivity and the length-to-diameter ratio of the hole. The 

details of the method, including the effect of an axial temperature gradient, 

are shown in Appendix F. 

Photographs of the equipment are shown in Fig. B to F. Figure B shows 

the entire experimental setup. FigureC shows a closeup of the rotating 

disk system including the quartz enclosure. Figure D shows the rot at ing 

disk drive system including the boron nitride crucible inside the quartz 

enclosure. Figure E shows a view of the gas purifying system. Figure F 

is a photograph of the rotating disk in operation at approximately 1500° C 

and 12,000 rpm. Notice the intense heat generated by the disk. This 

gives an indication of the difficulties encountered in trying to operate 

at these high temperatures and speed. 
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Fig. C 
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3.0 Disk Fabricat ion 

The chromium disks were spark-cut from electrolytically formed chromium 

flakes of 4NS metallic purity and 3NS desolved gaseous purity . The disks 

were approximately one centimeter in diameter by one millimeter thick . 

After cutting, the entire disk surface was chemically cleaned wit h hydro ­

chloric acid at 3SoC for several minutes . The surface to be vaporized -

vlaS then polished on a rotary wheel with silicon carbide paper beginning 

with 380 grit and proceeding to 600 grit . An attachment held the disk on 

the wheel with a uniform pressure and automatica lly rotated it at the same 

time . The disk wasfimished with six micron diamond powder . The tungsten 

liners were cleaned by hand with 400 grit sil icon carbide paper . The disk , 

liners, and crucible were finally cleaned with acetone and methonal in an 

ultrasonic cleaner . They were then stored in a dissicator under fore -

pump vacuum until they were used. 
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C '" Experimental Procedure 

To begin the experimental run, the synchronous motor and induction 

heater '<Jere turned on a nd the disk spe ed and the temperature were adju sted 

to the values intended for the run . The runs lasted from twenty minutes 

to one hour, and were calculated so that the total mass loss from the disk 

woul d be between one and ten milligrams . Above ten mi l ligrams the amount 

of rna terial vaporized -was so large that the upper surface of the disk 

receded below the upper surface of the crucible which disturbed the boun -

dary layer to suc h an extent that chromium condensed in large quantities 

on the disk edge between the chromium and the boron nitride crucible . At 

mas s l os ses below one milligram the accuracy of the measurement began to 

be affected by the small reaction which took place between t he tungst en 

liner and the boron nitride, and by the small amount of chromium which 

a lways condensed on the disk edge between chromium and the boron nitride 

cl'uci ble . . The amount of metal vaporiz ed was determined by the difference 

between the initial and final weights of the chromium di sk and tungsten 

liner . The tare weight of the tungsten liner was considered because after 

the run it could not be seperated from the chromium disk because a diffu s ion 

bond a l ways formed between them. 

The disk temperature during the run was recorded, and adjust ed if 

necessary, approximately once every minute . The temperature variation 

for any point on the disk during the run was genera lly hel d to less than ±5 

o C by manua lly adjusting the power applied to the induction coil . Read -

ings were taken at three different radica l positions : the center (r /r rf" ')) ' 

ha l fway between the center and the edge (r/r ';::::. 1/2 ) , and at th e edge 
o 

(r/r ';::::. 1) . The variation from the cent er of the disk to th e edge "ras 

usua lly on the order of 15° C. The aver age t emperature at the three 
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radial positions for the run was taken as the simple average of all the 

temperatures recorded at that position during the run . The mean tempera -

ture of the disk was then calculated from these three time -averaged 

temperatures . This was done by first passing a parabola through the three 

temperatures T(O), T(1!2) and T(l) , to obtain T(r/ro). The average vapor 

pressure Pv over the disk surface was then calculated, i . e . p = (J p (T)dA)/ v v 

(J dA), and the mean temperature taken as the temperature corresponding to 

this vapor pressure. This method was used because the mass loss rate is 

proportional to the vapor pressure and to the incremental area over which 

its exists . The details of this calculation are shown in Appendix E . 

Three different sets of runs were made. In the first set, the rotational 

speed of the disk was held constant at 12,000 rpm and the temperature 

varied from 16200 K to l745°K . This determined the effect of temperature 

upon the vaporization rate at constant rotational speed . 

I n the second set , the temperature was he ld constant at l7l5°K ± 5°K 

and the speed varied from 4200 rpm to 12,000 rpm. This set showed the 

effect of r otational speed on the vaporization rate at constant tempera -

ture . 

The third set consisted of thIee runs at 12, 000 rpm with a resistance 

heater repla cing the inlet gas heat enchanger . The incoming gas was 

heated to approximately 500
0

K by the heater . This increased the temperature 

in the boundary layer and thus increased the equilibrium vapor pressure . 

The supersaturation was then reduced and the amount of material condensing 

should then als o be reduced if nucleation is in fact occurring . 

F::>r all the cxper imental runs , the Grashoff numher divided by the Rey-

l l '-.l ldo; numbe r squared f or t he disk l>Jas held t o less t han 0 .05 . In mos t 

,:anes it W~18 on the order of 0 . 002 . This insured thaJ the effect of natural 
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Photog raphs of a t ypica l chromium rotating disk and boron ni t ride cruc ible 

after operation a re sh own in Figs. d and H. Figure G shows the disk inside 

the crucible as it was during aperatim and Fig . H shows the disk separation 

from the crucible . Notice the reflection of the pennies in the disk . This 

i s the most important point in both photographs because it shows that the 

disk surface is both shiny and clear . This is very important becau se 

impurities on t he disk surface can affect the vaporization rate tremendously . 

This clean disk surface was typical of the disk ·surfaces after t he experi ­

mental run. 

Figures I and J are typical micrographs of the disk surface befo re 

and a fter the experimental run. Their magnification is 100 times . }'igure 

I was taken before the run and shows a surface distinguished only by light 

polishing scra tches . Figure J was taken after the run and shows the large 

grains which grow in the disk at these high temperatures. 
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D. Results 

A tabulation of the results is shown in Table ILThe experimentally 

measured vaporization rate of chromium as a function of disk temperature 

is shown in Fig. 15. _ The function and points on the graph denoted by circles 

are for an inlet gas temperature of 290
o

K. The wall temperature for these 

Roints ranges from1620oK to 1745°K. A total of seven points were taken in 

this range. The figure shows that the vaporization rate increases rapidly 

in the vicinity of 1620
0

K to 1635°K and increases much more slowly from 1635°K 

to 1745°K. The points show very little scatter. The two points denoted­

by upward triangles were taken with the inlet gas at approximately 500
o

K. 

These points lie below the points taken with the cooler inlet gas tempera-

ture of 290
0

K indicating that nucleation was in fact occurring in the 

boundary layer. The point denoted by a downward triangle was taken with 

the heater installed but at zero power. This was done to see if the 

measurement -of the disk temperature was affected simply by the physical' 

presence of the heater. The proximity of this point to the line drawn 

through the:- other cold inlet gas points shows the effect to be small. 

The chief characteristic of the data shown in Fig. 15 is the rapid 

increase in the vaporization rate over a small temperature range followed 

by a gradual increase in the vaporization rate over a much larger tempera-

tUre range. ; The theoretical no-condensation and bulk equilibri urn condensation 

vaporization rates are also shown in the figure. It can be seen that as 

the wall temperature is increased, the exper imental rate proceeds from the 

vicinity of the no-condensation line to the vicinity of the bulk equilibrium 

condensation line. The vaporization rate could not be measured below -

1620
o

K. for two reasons. First, the errors in the experiment began to 
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TABLE II 

Data Summary 

Run Weight Loss Time Speed 
T T j app t 

No. (rng) (min) (rpm) (OK) (OX) (nig!cin2-hr) 

1 6.61 10 12,000 1667 1745 48.9 

2 0.93 50 12,000 1552 1620 1.38 

3 10.28· 50 12,000 1615 1688 15.2 

4 5.54 60 12,000 1584 1655 6.83 . 

5 8.04 20 12,000 1642 1718 29.8 

6 4.24 60 12,000 1567 1636 5.23 

7- 2.26 60 12,000 1556 1624 2.79 

8 4.45 20 9,000 1644 1720 16.5 

9 12.7 45 6,000 1638 1714 20·9 

10 15.4 60 4,200 1635 1710 19·0 

11 10.2 30 8,400 1638 1714 25.2 

12 .7.21 15 12,000 1666 1744 35.6 

13 8.46 45 12,000 1616 1690 14.0 , 
14 6.52 20 12,000 .1638 1714 24.1 

----:~ 

Nos. 12 and 13 were run with heater installed and on; No. 14 with heater 
installed but no power. 

Tapp is the apparent temperature of the disk, i.e. the observed temperature 
uncorrect.ed for emissivity. ' 

" 

" Tthas been corrected for a surface emissivity of 0.55. 

Area of the disk is 0.81 cm
2

• .. 
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become 'a significant fraction of the mass loss due tO'vaporization at these 

tempera tures .' Secondly, the vaporization rate is changing quite rapidly 

wi th temperature in this region and so small errors in temperature measure-

ment become quite important. At the high temperature end, the data approaches 
/ ' 

the bulk equilibrium condensation line. The agreement is ,only within a 

factor of two; however, this is not bad considering the measured vaporiza-

tim rates range over a factor of forty. 

Excellent agreement between theory and experiment was not antic,ipated 

in this work. There are several reasons for thi s. First, the experimental 

vapor pressure data given in the literature scatters widely. 
42 

Nesmeyanov 

surveys most of the vapor pressure data available for the elements. Chromium 

has one of the better known vapor 'pressures and yet the data Nesmeyanov 

presents scatter by ± 5CJ{o. In addition, all the re liable data that Nesmey-

anov presents for' chromi)irn are at 1550
0

K and below. Thus there is no vapor 

pressure data in the range in which we were working; we were, on the aver-

age of 150
0

K above the nearest data, and so were required to use,an extra­

polation given by Nesmeyanov. Hultgren, et. al
48

also lists re,commended 

vapor pressures for the elements. For chromium at 1800
o

K, his,recommended 

vapor pressure is about two-thirds of Nesmeyanov's recommended value • -This, 

however, falls within the scatter of the data shown in Nesmeyanov and so 

Hultgren's data falls within the error bands shown in Fig. 16. 

The second source of error in this experiment is in the measurement 

of the surface emissivity. As discussed in Appendix F, this is a difficult 

measurement to make. Our measured value 'was 0.55. The data presented in 

Ref. 43 scatter widely but the most reliable value is indicated to be 0.43. 

If the surface emissivity were in fact 0.43 instead of 0.55, all the data 

points in Fig. 15 would be shifted toa temperature approxinately, 25°K higher. 
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The effect (,f the pos sible emis si vity error andt he effect of the vapor 

pressure errors are shm-lD in Fig. 16. The shaded areas around the no-con-

d.ensation and bulk equilibrium condensation lines indicate the uncertainty 

in them due to scatter in the literature vapor pressures. The line labeled 

E = 0.43 is thelin~ i'lhieh i'lould be dnn-m through the data points if the 
s . 

surface emjs si.vi.ty were 0~43 rather than 0.55. The 1m-leI' emissivity improves 

agreement bebleen equilibrium condensation theory and the data. The shaded· 

area behreen the hfO lines indi ca tes the error i.n the data due to a possible 

error in the emissivity. 

and 

Returning to the previous Fig. 15, the const.ant d.iffusivity (D "" D) 
g 

variable diff'usivity (D = D/g
2

/ 3) solutions are plotted here also. 
g 

Tl1ese definite1y fall belOl{ the bulk equilibrium condensatj on line and the 

measured data. This indicates that. the monomer sink, and likei'rise the 

drop concentrations, calculated in the program ,'Jere less than those physi-

cally existing in the boundary layer. The droplet concentrations in 

the program are directly related to the expression used for the nucleaUon 

rate~ for this expression determines.the droplet concentrations at small 

drop sizes and these concentrations are used as the boundary condition. 

The Becll:.er-Doring-Zeldovich expression for the nucleation rate ,vas used 

in our calculations. '1'his was because of the agreeID2nt between theory 

and experiment which Katz and Ostermier obtained i'lhileusing it in their 

diffusion chamber experiments. 7 Despite this agreement, hovlever, this ex-

.. i·l· ·d· t 21-24 ·Lth dP dh '~d 1 d pressJ.on lS curren; y In lSpU e.o· e an oun ave eve ope an 

expression for the nucleation rate i'lhich includes quantum-mechanical 

t · th la . 1 . 24 Th t . h th c orrec -lons to e c SSlca. exprCSSlon. ese correc Ions c ange e 

, 17 
nucleation rate by a factor of 10 • This is a considerable change and would 

definitely increase the magpitude of the droplet concentration and of the 
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monomer sink term in the program, and hence increase the calculated vapori-

zation rate at the wall. Several runs of the program were tried using the 

. Lothe-Pound expression. However, the nucleation rate calculated from 

the Lathe -Pound expression was an extremely sensitive function of the 
, , 

monomer concentration and numerical problems arose because the monomer 

concentration could not be interpolated between points accurately enc:ugh. 

However, if the calculations could be made, the Lothe-Pound expression 

should increas,e the calculated vaporization rate. This change is in 

the correct di~ection because an increase in the calculated nucleation rate 

will increas e the agreement between theory and exper iment • 

Figure 17 shows the same experimental data plotted against inverse 

temperature. 

Figure 18 shews a set of five points taken at an approxinately constant 

tempera ture of 1715°K with different angular velocitIes. The speeds 

corresponding to the angular velocit ies range from 4200 rpm to 12,000 rpm. 

The vaporization rate is plotted against the square root of the angular velo-

city. The figure shoYJ"sthe measured vaporization rate to be a linear 

function of the square root of 'the angular velocity and to have a zero inter-

cept. This type of behavior would be expected if vaporization were occurring 

at the bulk equilibrium condensation rate or at the no-condensation rate 

because then the theoretical equations show the vaporization rate to be 

directly proportional to the square root of the angular velocity. Figure 

13 shows a case where the vaporization rate is not at either limiting value. 

When this occurs the rate cannot be proportional to the square root of the 

angular velocity because the a~ular velocity occurs in the source term. 

Thus Fig. 18 shows two things; first, Fig. 18 shows that Vaporizationls 

occuring at the bulk equilibrium condensat ion rate at 1715°K. Second, 

Fig. 18 indicates that true rotating disk behavior was Being obtained in 
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the boundary la.yer. One point in Fig. 17 falls /ar belol-! the otbers; some-

thing was definitely wrong in this measur~n~nt but what it Vias is not knmm. 

The theoretical lines in the Figs. 14~16-vTere calculated neglecting pro-

per/ty variations and thermal diffusion. Property variations were neglected 

because the diffusion coefficient of chromium through helium is approxi-

mate ly proportional to temperature squared (see Fig. G-l, Appendix G) and 

so the effect should be small. Thermal diffusion was neglected because the 

Lennard-:Jones parameters for chromium-helium and iron-argon are very similar. 

For example,note the small change in the diffus ion coefficient s in Fig. 

G-2, Appendix G. Thus, the effect of thermal diffusion for chromium should 

be the same order of magnitude as that of iron (see Appendix C). In addi-

, 0 49 
tion, even at the considerably higher temperature of 3200 K, Elenbaas, 

found the affect of thermal diffusion for tungsten through kyrpton to be only 

18% of the ordinary diffusion current. Thus the affect of thermal diffus ion 

should be small compared to the variations involved. in Figs. 147"16. 
. ,1 

Figure 19 shows the present data and Turkdogan IS c1:t ta on the same 

graph. The results are not strictly comparable because the present data 

are'for chrorhillln and Turkd0G:an's are for iron. Hovlever they do ind:Lcate 

two basic trends. First, at lOVl temperatures, the vaporization rate rises 

from the no.,condensation value to the equilibrium value as· the temperature 

increases. Second; at higher temperatures, the va.porization rate again approaches 

the no~condensation rate as the temperature is increased because the 

heat generated by the large volume of condensing vapor lowers the, bulk 

equilibrium line. The lowering the of the bulk equilibrium line because I 
.. ! 

of the latent heat release and the fact that Tlirkdogan' s data in general 

folloW this line vlas pointed out in Refs. 37.and 47. 
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E. Conclusions 

In conclusion, condensation enhancement was measured in rotating disk 

boundary layer with the va'porization rate proceeding fran near the con-

densation-free value to the bulk equilibrium condensation value over a' small 

temperature rangeo 

Comparing the present data and Turkdogan's data (Fig. 19) shows the 

following. At'low temperatures no condensation enhancement is obtained. 

This is reasonable because here the system begins to approach the isothermal 

state. As the wall temperature is increased, condensation enhancement 
'.',j 

occurs and the'vaporization rate proceeds to thit value determined by the 

,equilibrium vapor pressure. As the wall temperature is increased further, 

the vaporization rate again approaches the condensation-free rate; this is 

because the heat released by the larger amount of vapor condensing in the 

boundary layer tends to make the system more isothermal. 

Comparison of the experimental vaporizat ion ra te with the theoretically 

calculated rate showed that good agreemerrt could not be obtained using the 

classical Becker-Doring-Zeldovich nucleation expression. Though calculations 

could not be carried out using the Lothe-Pound expression, it is felt that 

the change in the vaporization rate wh ich would occur would provide better 

agreement between experiment and theory. 
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APPENDIX A 

FORCES ON A SMALL DROP NEAR A RarATING DISK 

It was assilmed in the formulation of the droplet conservation problem 

for the rotating disk that the droplets move with the velocity, of tulk gas. 
i 

'J 

This :implies that ithe gravitational and centrifugal forces on ~he droplet 
: 

are negligible compared to the viscous drag force. In this Appendix these 

forces are evaluated for the droplet sizes which exist in concentrations 

large enough ;tobe important to the solution. The analysis first divides 

the boundary layer into three sections: the top, the middle, and the bottom. 

The calculation in each section was then based on the force and velocity 

component characteristic of the section while all other effects were neg-

lected. The effect of property variations was neglected. The buoyancy' 

force was also neglected since the density of a metal is much greater than 

that of air. 

Near the Top of t he Boundary Layer 

Consider a drop near the top of the boundary layer moving at equilibrium 

velocity. Since the radial and centrifugal velocities at this position 

are small compared to the axial velocity, the drop will be moving vertically. 

The gravitational force is given by 

F 
g 

(A-I) 

where R is the radius andp is the density of the drop, and g is the 

, 17 
acceleration of gravity. The viscous drag force is given by Stokes law 

F = 6n ~(V-w) 
v 

(A-2) 

where fJ. is the viscosity and w the velocity cif the gas, and, V is the 

velocity of the drop. The gas velocity is given by 
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w = ~ H(x) 

and H ~ 1 near the top of the boundary layer. 15 

Since the drop is in equilibrium 

F - F 0 
g v 

Putting Eqs. (A-I) a:r'ld (A-2) in Eq. (A-3) and. rearranging gives 

V.;.w 
w 

1 
~ 

5 

2 
pR €L 

~ 

(A-3). 

(A-4) 

This equation shaw the departure of the drop velocity from the bulk velocity 

as a function of drop radius • 
. ,'~ 

Near the Middle of the Boundary Layer 

Near the middle of the boundary layer the radial velocity is at its 

maximum. Here the t~o important effects are the radial velocity and the 

gravitational force. The axial and tangential velocities will be neglected. 

Assume the drop falls by gravity while moving outward with the velo-

city of the fluid 0 Then from Stokes law the viscous force on the drop is 

F 
v 

67T f-L R V 

where V is vertical velocity at which the drop is falling. Since 

F - F 
g . v 

we have after using Eq. (A-I) 

V 
2 

9 

o 

2 
pR g 

f-L 

(A-5) 

(A-6) 

(A-7) 

This is the velocity at which the drop falls while moving radially with the 

bulk fluid. The effect of this velocity will be found by computing the 

ratio of the distance traveled radially to the distance traveled verti-

cally. 
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Let t be the time required to move radially from r. to I' with bulk 
1 0 

velocity u. Since 

u reo F(x) 

and F(x) ~ 1/5 in the center of the boundary layer, we find t is given by 
i ' 

u ,6 t ,6 I' (A-9) 

or 

~ 
ro 

dr 
t = r (l) r 

(A-10 ) 
1 

= ~ 
In (:~) ill 

(A-ll) 

Let ,6 z be the loss in height while traversing the radial distance r .. '. 
1 

to r. Then 
, 0 

,6 z V t 

~R:g In (::) 

Ito is tne boundary layer thicikness, 

_Iv 
o ,~ 3l~ 

then the important parameter to consider is the ratio of the height 

i 
fallen to the boUndary layer th ickhess. 

,6 z 
-0-' 

2 
3 

2 
p R g 

r--
1-1" V(l) 

This is, with I' /r. = 10" 
" 0 1 , 

(A-13 ) 

(A-14) 

(A-15) 

Note that the variables are the same as in case (1), only the coefficient 

has changed. 

Near the Bottom of the Boundary Layer 

Near the bottom of the boundary layer the axial and radial velocities 

approach zero and the tangential velocity approaches its maximum. So 

near the bottom of the boundary layer only the tangential velocity com-
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ponent will be considered. This component induces a centrifugal force F 
c 

on the drop with F given by 
c 

F 
c 

4 3 = 7TR 
3 

V
2 

p-L 
2 

where V t is the tangential velocity component. This as sumes that the drop 

moves tangentially with the bulk velocity; assuming this is conservative 

because it gives the maximum force F. The centrifugal force moves the 
c 

drop radially outward and this movement produces a viscous drag force 

given by 

F v 6 7Tf./.R(V-U) 

where V is the velocity of the drop and u is the radial velocity com-

ponent of the. bulk gas. If the drop is moving in equilibrium 

F - F c v o 

The radial and tangential velocity components are given by 

u = r CD F(x) 

V
t 

r.CD G(x) 

(A-18) 

(A-19) 

and F(x) ~ 1/5, G(x) ~ 1 near the bottom of the boundary layer. Putt ing 

Eqs. (A-16), (A-17) and (A-19) into Eq. (A-18) gives, after rearranging 

V-u 
u 

(A-20) 

Againthe,.s:ame combination of variables p R2 g/(IJ. 'JWn) occurs. In this 
:-~~:>~>::~\, . -<~.:;;.~~.-' 

case, however, the'{coefficierrt is not a constant but a 'variable. 

Evaluation of the Effect of .the Forces 
.:,-;. 

The effect of gravitational forces will be small if the parameter.· 

P R2 g/(fJ.~) is small, for if this is true the Tlvelocity defectTlgiven 
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by.Eq. (A-4) and the "distance defect" given by Eq. (A-15) are small. The 

effect of centrifugal forces will be small if in addition the parameter 

(!) .JV(!)/g is not large for then the Hvelocity defect" given by Eq. (A-20) 

will be small. If these "defects" are small, then the drops move with 

6 
the bulk velocity of the fluid. For a drop of 10 atoms composed of iron 

we have 

These give 

and 

n == 

p ~ 7 gm/crr? 

. -6 
R ~'10 cm 

2 
g= 980 cm/sec . 

. 2/ v ~ 1 cm sec 

-3 . / 
fl ~ 10 gm cm-:-sec 

(!) ~ 1500 rad/ sec 

(!) .r;;; 
---- .~ 60 

g 

Thus all drops less than 10
6 

atoms definitely move with the bulk velocity 

of the fluid .. because the velocity and distance defects at the top, middle, 

-6 -6 6 -6 . . 
and bot tom of the boundary layer. are 10 ,10 and O· 10 resp ecti vely. 
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APPENDIX B 

'rm:: GROUP EQUATIONS 

The method used for converting the individual drop conservation equation, 

Eq. (58), to a group conservation equation is as fbllows. First sum Eq. 

(58) over the n + 1 drop sizes i~ the group from gi to gi+n' this gives 

2 
d 

dx
2 .+V ) , gi+n 

-Sc­g. 
l 

~ 

H(x) d 
dx 

+ 
- 0: -Sc- . t3 V 

[( 

+ 
g. g. 1 g. 1 

l l- l-
, g. 

l 

+ . 

+ t3 ' V -0: 
( 

+ ' + 

" gi+n-l gi+n-l gi+n 

+ a:i+n+l Vgi+n+J)] 

+ 

Where the Schmidt number v /D has been evaluated at the mean drop size 
g 

.... g. for the group. The mean drop size is given by: 
l 

g. 
l 

( B.;.2) 
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Noting that most of the termS on the right-hand size of the equation 

cancel the eq~ation becomes 

d --
dx 

t3. V 
( 

+ 
g. 1 g. 1 1- 1-

+ ;.. 0: 
g. 

1 

A. 
H(x). 

Sc 
(g . 

. 1 

+ ) +0: V 
gi+n+l gi+n+l 

Now the mean droplet concentration for the group V- is by definition. 
gi· 

and hence Eq ..(B-3) becomes: 

Sc- 'H'(x) 
g. 

1 

1 

1 
- -- Sc- • 

n+l g. 
1 

+V ) .. 
gi+n . 

Suppose the group under consideration is called the ith group. Then 

+ 
physically t3 V in the source term belongs to the i-I group ahd. 

gi-l gi-l 
is the rate of transfer of drops from the i-l group into the i th gr cup 

+ 
by atoms condensing on drops and ex V is the rate of transfer of drops 

. . gi gi 

from the i th group into the i.:.l group by ~vaporati6n: of atoms from dr,?ps. 

+ . lli 
Likewise, t3 V is the rate of transfer of drops from the i ··group 

gi+n gi+n 
+ 

to the i+l group and ex V. which belongs to the i+1 group, is 
gi +n+l gi +n+l . th 100 

the rate of transfer of drops from the i+l group to the i group. Thus, 

+ + 
t3 V - 0: V is the rate of transfer of drops across the grcup 
gi-l gi-l gi gi + + 

interface at the low g end and t3 V - ex V is the 
. gi+n gi+n gi+n+l gi+n+l 

rate of transfer of drops across the group interface at the . high g end. 
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The terms on the right -hand side of Eq. '(B:"'5) are obtained by in-

. terpolation, since during the solution only the values at the mean for the 

groups, i.e. at g., are known. 
1 

The source term for the monomer equation in thismultigroup formula-

tion may be derived in exactly the same mnner as was Eq. (22), i.e. 

bymultiplyingEq. (,B-5) , by g., and summing all such equations along 
1 

with the monomer equation to obtain a general continuity equation for 

both drops and monomer. By inspection of the process leading to Eq. C22)' 

it can be seen that the monomer source term Sl in the multigroup formu-

lation will be: 

= 

1 (+ .-- t3 V 
n+l g. 1 g. 1 

l- l-

The monomer then becomes: 

00 

L: 
i=l 

g. 
·1 

c/ V - t3 V I 
gi gi : gi+n gi:n 

I 

2 
d U --2 
dx 

00 I 

- SCf 'i«x) ~ = SCf L: gl 
i=l I 

The group mean drop size gi is given in terms of Ii 

(B-6) . 

(B-8) . 

and go by the equation 

g. 
1 

go + i (n+l) -I (1+n/2) ( B-9) 

For completeness, the entire. set of equations WhJch define the problem 
. I 

are listed in the multigroup formulation. The boundary conditions are: 



u = 1, V- ~ -b 
- exp 

kT gi w 

u ~ b, V - ~ 0 as x ~ 00 

gi 
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gi 2/3) at x = 0 

( B-10) 

V - J+(x) /f3::: (x) at i = 0 in the nucleation zone 
gi . gi' 

-V - ~ 0 as g. ~ 00 
gi l .. 

The transcendental droplet equation is 

(T- / T)4 + C 
g. w 1 

l 

GE T 3 A­
w gi 

where the area A~ is 
gi 

(T- /T - T/T ) g. w W 
l 

= 

= 2 - C (ex.:!" - f3.:!" ) .. 2 g. . g 
- l i 

(B-ll) 

(B-12) 

and the evaporat-ion~and condensation coefficients are: 

ex::: 
g. 
l. 

= 
A­
gi 
(1) 

u(x) 

//Tw 

1 

r-~ g.. kT l . . 

+-D- 2m-·. 

1 

g: 
l 

':'1/3). _. 

(B-14) 

,.,. 
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The Eqs. . (B"5) '" (13-HO 'define the problem in the multigroup 

formulation. 
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APPENDIX G 

TEE EFFECT OF TEERMAL DIFFUSION 

The effect of thermal diffusion in the boundary layer upon, the 

vaporization rate is shown below. If condensation is neglected, the monomer 

equation including thermal diffusion is from,.Eq •. (6) 

where the radial terms have been dropped. DT is the thermal diffusion 

coefficient... In the dimensionless variables of this problem the equation 

'i?ecomes 

d 
dx 

(C-2) '. 

where nand nare the molar concentrations of inert gas and vapor, gas v 

respectively, and kT is the thermal diffusion ratio 

1 

M M v gas 
2 

n 
'(c -}) '. 

with M and M the molecular weights of the gas and vapor, respectively, gas v 

and n the molar concentration in mOles/cm3 of the mixture. 

The thermal diffusion factor aT is defined 

(c-4) 

. 17 
and is generally considered to be a weak function of temperature.' . 
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Since the system is dilute in the vapor, X III 1. Equation (C-2) , 
gas 

then becomes 

iu A dU '( 1) , d 
dx2 - Sc H(x) dX = - Xv w dx ~ CXT dT) X - -

VT, dx 
, (C-5) 

and this equation was solved assuming CXT ,constant. Since Eq. (C-5) , must 

be integrated over the entire boundary layer, the thermal diffusion factor 

CXT was evaluated at the reconnnended mean temperature for thermal diffusion 

-17 
T. 

T -T 
- w co T = TT 

In (T IT ) w 00 
(c-6) 

w 00 

With the straight line approximation to the velocity profile 

1\ 
H = - 1/4 x 

an integrating factor can be found for Eq. (C.,.5) , and the ,equation 

solved for the gradient at the wall giving 

00 

(:)w "-K ~ .£~ 1a 1, .,2) exp .( 
1 2 

- cxT 'exp (- ITt Sc - Sc "~~' ) 
8 

d (C~) 1 dT )d~ d~ '(c_8) , 
d~ T dx 

-~~ Pr (1 - CXT21r R) 

where R has simply been defined as the value of the integral in Eq. (c~8) 

over Pr /rzrr.. A Prandtl number dependence in R is incurred through T and 

dT/dx inside the integral and defining R in this way makes the dependence 

weaker. R was numerically calculated as a function of temperature using 

. 
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the concentration unperturbed by thermal diffusion for X. This should not , v 

be a bad assumption if the effect of thermal d,iffusion is small. 

The thermal diffusion current is defined 

Thus the mass flux at the wall including thermal diffusion is 

j = - (p D) d 
dZ at z = 0 

and in the dimensionle,ssvariables of this' problem is-: 

j __ (p D) ~ ill c 
W V W 

W 

(C ... 1o) 

( c-li) 

(C-i2) 

where aT must be evaluated at the wall temperature Tw. Now the solution 

of the energy Eq. (5) using Eq. (C..:7) can be shown to be 

and hence 

Thus the mass flux j becomes 

j = 

Using the value of (dU \ from Eq. (C-9) 
dY:. Jw 

now be written as 

(C~l3), 

(c-14 ) 

the vaporization rate can 

j ~ (pp lw ~ :w Cw ~ ~ [ 1 "aT {i R + aTw ~ ~ ( 1 ~: ) ] 

( c-:16) 
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The thermal diffusion factors in Eq. :Cc;'16)\ were calculated from Chapman­

Enskog t~eory using the Lennard-Jones (6-12) potential. 17,44 The Lennard-

Jones parameters for iron were calculated from the properties of iron at 

the melting point. 

If we define 

(C-17) .. 

then 
* j = j <Ptd (C-1S) : 

where ¢td gives the effect of thermal diffusion upon the isothermal mass 

* flux j. The results are shown in Table III. It is seen that the effect 

of thermal diffusion is small, on the order of3% to 4%. For this reason 

we have neglected it in the caloulat ions 
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Table IIL. Effect of thermal diffusion 

' .. 
( OK) - (OK) T T aT 'a R ¢td w ,T 

·W 

1500 590 0.052 .. 0.0026 3.05 1.033 

1600 605 0 .. 055 -0.0011 3.10 1 .. 036 

1700 620 0.057 .0.0003 3.13 1.039 

1800 635 . 0.059 0.0017 3.16 1.042 
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APPENDIX D 

THE SINGULAR PERTURBATION FORM OF THE DROPLET EQUATICN 

The method of singular perturbation wa s applied to the droplet con-

servation equation so that the effect of diffus ion of the drops c,ouldbe 

considered in a more exact manner. As noted in the discussion section of 

this manuscript, each drop size has its· own Schmidt number and hepce its 

own boundary layer thickness. The boundary layer thickness vari esinversely 

with the one-third power size of the drop. Since we are interested in the 

effect of the drops on the monomer c oncent rat ion, all the equations must 

be solved over the boundary layer region of the monomer. This means that 

the droplet problem for large drops must be solved over a region of many 

boundary layerso However, it is in general very diffcult to solve an equa-

tion numerically over a distance of many boundary layers. It was fortunate, 

in this case, that the droplet equation could be handled by the method 

of singular perturbation. 45 This method allows one to perturb the solu-

tion in such a mannel,thatthe drop concentration within the droplet boun-

dary layer was given in terms of the solution outside the droplet boundary 

layer. Outside of the droplet boundary layer the concentration had to be 

calculated numerically, but this was relatively easy to do compared to 

numerically trying to handle the problem in both regions. 

The technique is as follows. The drop concentrat ion equation is ." 

with boundary conditions 

v 
g 

2/3 dV 
Sc g df-

V at x 
g,eq 

v ~ 0 as x ~ 00 
g 

2/3 + 
-g' Sc S (x) 

g 
(D-l) 

(D~2) 
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Y. imnlies the balanced equilibrium concentration at zero supersaturat ion g, eq U<1:' 

and is given by Eq. (59) in the min sectiori of this report. The following 

relationship has also been used: 

If we define 

Sc = 
g 

fl 
g 

(D-3 ) 

. where fl is a small parameter because g is in general qu ite large, then 
g 

Eq. (D-l) becomes 

d2y 
g A 

- H(x) Sc 
dY 

g 
d:x 

+ = - Sc S (x) (D-4) 
g 

Note that a, regular perturbation expansion about the smll parameter fl g. 

cannot be made because the zero order perturbation requires setting fl= 0 
g 

and this eliminates the second derivative thus giving a lower order 

differential equation than:·,the original Eq. (D-4). Hence a singular 

perturbation must be used. This is done by constructing an inner expan-

sion valid for small distances x and an outer expansion valid for large 

distances x and then matching them in some manner. 

For the outer expansion, a: regular ·perturbationproblem is formu­

lated in the usual fashion. 45 Let V be explained in terms of power of 
g. . . 

V 
g 

+ . • . (D-5) 

Putting this expansion into Eq. (D-5), collecting the coefficients of 

like powers of fl , and then requ iring these coefficients to be equal to 
g 

zero because fl is an arbitrary parameter,. gives the following set of 
.g 

differential equations 



-ll7-

A dVo 
-H(X) Sc --g 

dx 

-'H(x) Sc 

-Hex)' Sc 

dVlg ::: 

d.x. 

dV 
....,...k 

dx, 2 
dx, 

(D..:6) 

In this problem we will be satisfied with only the zero order perturbation, 

i. e. we keep only the first equat ion. Thus the solution in the outer region 

is given by 

A 
H(X) 

dV OE 
g 
dx, 

+ S (x) 
g 

where the superscript OE implies outer expansion. 

For the inner expansion a new distance T is defined 

T::: x/iJ. 
g 

(D-7) 

where, since iJ.
g 

is small, T is enlarged interior distance. Then Eq. 

(D-4) becomes 

d~ A dV 
S+ __ fL - H(x) Sc ---E. _ 

iJ. Sc ( T) (D-8) 
2 dT g g 

dT 

and note that it is now in a form amenable to regular perturbation about 

the parameter iJ.', . Applying reg1i1.i:a,r perturbation in the usual fashion 
g 

. 45 glves 
, 2 

+ • (D~9) V ::: VOg + iJ. V + iJ. v2g 
. . 

'g g 19 g 

and the following set of perturbed equations 

d~og A dV
O H(T) Sc g ::: 0 

d T 
2 dT 

,'-
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\ 

iv "-
. dV . 

+ l&,.. H(T) Sc . 19 
= ...;Sc S (T) (D-1O) 2 dT dT 

g .. 

d
2

V "-
dV " 

~ H(T) Sc ~- 0 2 2 
d T dT 

. . . . . . . . 

Again we will keep only the zero order equation 

d
2
VIE A dV IE 

g - H(T) Sc g = .0 (D-H) 
d T 

2 dT 

where the superscript IE denotes inner expansion. 

Equation (D-7) descr ibes the droplet conc entratj.on outside the droplet 

boundary layer and Eq. (D-ll) describes the droplet concentration insiae 

the droplet boundary layer. Note that Eq. (D-7) says phsycially that the 

concentration in the outer regioJ;1, is determined by a balance between the 

source and the convective term and that diffusion is of second order. 

Equation (D~ll) says physi~lly that the concentration in the inner 

region is determined by a balance between the diffusive and convective 

terms and that the soune is of second order. Both of these are precisely 
'. 

what would be expected. 

The solut ion of the inner and outer Equations (D-7) , and 

(D-ll) will be greatly simplified if an approximate velocity profile 

can be used. For the outer equation, i.e. Eq.~:b-7) the normal approxL-,' 

mat ion 

"-
H(x) == 1/4x 0 < x < x 

0 

...... "" H(x) H x <x <<Xl 
(D~12) <Xl 0 

'" 0.866 3 .54 H == x -
~0 0 
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is certainly satisfactory. However, for the inner equation this profile 

will not be valid because all distances x are very small. Sparrow and Gregg30 

have shown that a solution based on the approximation B(x) 
2 

= -x /2 for 

small x can be fciund, but the solution is in terms of the incomplete gamma 

function and this function is difficult to generate inside a machine. A 

profile similar in form to Eq. (D-12) would be desirable because .an analytic 

solution in terms of error functions is immediately available. In view 

of this, the following technique was used. If Eq. (D-ll) is written in 

terms of the distance x, it can be shown, using the results of Sparrow 

and Gregg's paper, that the gradient at the wall is given by 

( 
dVg_\ .. 
dx )w (D-13 ) 

Since the film thickness 0 is approximately equal to ( ~\-l dx -) w' 

we have-

o ~. r (4/3) (D-14) 

In general 5 is not the boundary layer thickness but about three-fourths 

If at the distance 0 
. A' 

an approximate velocity profile H(x) = :ex, of it. 

E a:n arbitrary parameter, is Iffitched to the better approximation 

2 ' 
-x /2 , and approximate linear velocity profile will be the result. 

turns out to be, in terms of T 

A. 

H( '() 

a 
g 

= -2 a·' T 
g 

1/4 fl r 
g 

V6~g 
(4/3) . Sc 

The inner Eq. (D-7) can now be solved to give 

v IE(x) 
g 

C
l
{4aTI

- erf (J'a T) + V 
. g g, eq 

g 

1\ 
H(x) = 

This 

(D-15) 

I . 
: 1 
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The solution of the outer Eg. (D-ll) is 

The constant C2 can be found from the boundary co ndi tion Vg --70 as 

x --7 00 • This gives 

c = 2 - r 
O· 

(D-17) 

(D-18) 

The constant Cl can be found only by matching the inner and outer solu-

tions in some fashion. One method which gives a continuous solution is to 

determine the II common part II , i.e. to require that 

lim 
x~O 

V OE 
g 

The complete solut ion V is then given by 
g 

V IE = 
g 

common part 

V = V IE + V OE _ common part 
g g g 

Applying this to Eqs. (D-16) and (D-17) gives 

common part = C2 

and 

(C
2 

- V ) 
g,eq 

Thus the complete singular perturbation solution becomes 

(n,...19) 

(D-20) 

(D-21) 

(D-22 ) 

V V (1 - erf (.fag' g2/3 x)) + C
2 

erf ( .fag i/3 x) + g g,eq 

(D-23 ) 

(D-24 ) 

.~ 
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'" and H(x) is given by Eq. (D-12). 

These two ,equations were used to determ:ine thedrbplet concentration 
+ .. . . 

V. The parts involving the source term S (x) were determined in the .pro-g . g . 

gram from a previous iteration •. 

" 

. I 
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APPENDIX E 

CALCULATION OF THE: EFFECTIVE DISK TEMIERA TUBE 

While the disk was operating at high temperature, a small radial 

tEmperature varia tion of the approximately 15°c usually existed across 

it. Because of this radial temperature variation, three temperature 

measurements were taken; the location of these measurements was at r/ro::::::: 0, 

r/ro:::::: 1/2, and r/ro:::::: 1, where rO is t he radius of the chromium disk. 

The effective temperature of the disk was then determined fran trese three 

measurements in the following fashion. 

If the three temperatures are denoted TO' T
l

/ 2 andTl , then T(r) can 

be approximated by passing a parabola through these three points to give : 

T(r) T + 2(T / - T ) o 1 2 0 

(B-1) 

This function T(r) was used to calculate the vapor pressure at any point 

on the disk. The effective temperature cannot be calculated fran T(r) 

directly because its effect upon the vaporization rate is through the 

vapor premmre. For a disk with a constant vapor pressure across its 

surfac e, the mass loss m is proportional to the vapor pressure and the 

area, i.e. 

m - peT) A (E-2) 

For a disk with a small radial variation in vapor pressure, the mass loss 

should be approximately proportional to the integral of the vapor pressure 

over the area 

m J peT) dA == p J dA (E~3 ) 
A A 

where the last equality is simply the definition of the average pressure 

. P over the disk. The effective temperature of the disk was then taken 
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to be the temperature corresponding to this average pres sure. From the 

Clausius-Clapeyron equation 

A. 
P = C exp ( -kT ) (E-4) 

and so 

T 
, A. 

(E-5) k; In (c/-§) 

Putting Eq. (E-4)"into Eq. (E-3) and using the definition Eq. (E-S) gives 

-A/kT(r) d err (D-6) 

Multiplying both sides by eA/kTo and approximating the exponential by 

gives 

T = 2 
2 

rOt 

1 + 

ro 
I T(r).r dr 
o 

(E-7) 

(E,.8) 

where it has been assumed that liT::::: liT. Note that Eq. (E-8) is simply 

the definition of the average temperature bver the disk and that tl1e effect 

of the vapor pressure has cancelled out. 

Using Eq. (E-l) gives 

(E-9) 

This equation was used to calculate the effective temperature of the di::;k 

fran the three readings at different radii • 
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APPENDIX F 

DETERMINATION OF' THE SURFACE EMISSIVl'rY 

The most general method of determinirg the emis'sivity of a surface is.' 

to mffisure the true temperatu-re of the surface with a thermocouple vlhile 

at the same time measuring the brightness temperature with an opticalpyro-

meter. Knowing the true temperature and the brightness temperature, the 

. 46 
emissivity of the surface can be calculated from Plank's radiation law. 

However, for a small rotating disk system designed to run at high tempera-

tures and high speeds such as was used in this experiment, it is very difficult 

to place a thermocouple in direct contact with the disk. Any modification 

which is nnde in the disk system to install the thermocouple c anpromises the 

integrity of the system while operating and the integrity is marginal at 

best. 

An alternative method of measuring the emissivity is to drill a black-

body of the correct length-to-diameter ratio in the disk and to read the 

temperature of this hole directly. Generally a length-to-diameter ratio 

of four is required. This is difficult to do, however, because a rotating 

disk operating at 1500
0

C isa highly non-isothermal system, and the bottom 

of the hole will probably be at a different true temperature than the 

surfaceo The calculated emis sivity will thus be in error. 

A third method is to drill a hole of 2/d considerably les~ than four 

and to try to calculate the emissivity of the surface from tre observed 

temperature of the hole and oLthe surface. This requires correcting for 

the axial temperature gradient and for the non-unity emissivity of the 

hole. This was the procedure followed in this experiment. The method is 

(mtlined below. 

Consider a disk with a hole drilled in, .it of2/d < 4. If the disk ~s 

... 

., 
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in an axial temperature gradient, the observed temperature at the bottom 

of the hole will differ from the true temperature of the surface by an 

effect due first to the apparent emissivity of the hole and second to the 

axial temperature gradient 0 The observed temperature of the surface will 

differ from the true temperature of the surface by an effect due to the 

emissivity of the surface. 

From Plank! s radiation law, the true temperature T
t 

is related to the 

apparent temperature T for a surface with emissivity E at wavelength 
o 

A by 
C IA 

2 

In [~ (exp(c2/A To - 1) + 1] 
(F-l) 

where C2 1.438 • 104 " • q. 6 ,.. -K and A == o. 55 I.l for an optical pyrometer. 

If T is small enough, i.e. 
o 

T « C IA ::::: 104 
OK 

o 2 

then Plank! s law can be approximated by39 

Uniform Temperature 

1 
T

t 

1 
T 

o 

A 
+ -- In E C2 

(F-2) 

,First consider the case where the hole is not in an axial temperature 

gradient. Then the true temperature, of the hole and surface are t he same 

and from Eq. (F-2) 

1 + A 
In _1_+ A 

In E == -- Eh T C2 s T C2 s h 
0 0 

or 

- ':R, T 
2 A Eh 

Th :::::: --In 
s s C

2 
E 

0 0 0 s 

where the a ppr oxima t ion Th T T 
2 ,.... has been ,!+sedo 

s 
,.... 

s 
0 0 0 



From Eq. (F-)+) ltre can calcuJate the ratio of the emissivities directly 

from the observed hole and surface temperatures. Using the results from a 
\ 

. 36 
paper by SparrOlv and Albers the. emissivity of the surface cannol-l be 

calculated directly. Sparrow and Albers calculated the apparent emissivity 

of a cylindrical hole by solvi ng the associated integral equation 

numerically. In Fig. 1"-1 their results have been plotted to give the emissi-

vity ratio, Eh/~s as a function of emissivity 'of the surface ES and 

length to diameter ratio lid. From this figure it can be seen that knovr:-­

ing the emissivity ratio and the length~to':diamete'r ratio, th-e 'emissivity 

of the surface can' be found. 

In actual practice, a series of hole and surface temperatures can be' 

mro.sured for different values of the surface temperature and the diffe-

rences of hole and surface temperature divided by the .surface temperature 

squared can be plotted as a function of surface temperature squared. 

Equa tion (F-4) says that thes e results should plot, as a straight, line of 

zero slape; if they do then the effect of temperature gradients is small 

and ratio of the emissivities can be determined from the average value.of 

(T
h 

- T )/T 2. 
s s 

If, ha-rever" temperature gardients are not negligible, 
o 0 0 

. then the point s (T
h 

- T ) IT 2 ve rsus T 2 should fall 
So So So o 

line of non-zero slape. This will be shown below. 

Axial Temperature Gradient 

on a straight. 

Cons ider a hole in an axial temi'peraturegradient. The relation 

between the true temperature of the bottom of the hole and the true 

temperature of the surface is given by the solution to the heat conduct ion 

equation 
, 2 

kV 'l'+Q =0 (F-5) 

Assume that the problem is one-dimensional, i.e. the disk is much wider 

than it is deep. Also assume, for simplicity, that the source due to the 



Fig. F-l 

.. ~ ". " ,- '. ~,: , 
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induct ibn heating is constant. Then 

and 

2 
d T 

--2-
dz . 

If 'we call the temperature at the lower edge of the disk (z 

and the temperature at the upper edge (z =: £) ~£' then 

T 1 Q,2+( T)x+ 
- 2k z T £ - 0 . I 

0) T . o 

(F-6) 

(F-7) 

(F-8) 

where TO and,T£ are unknown at this point and are merely an artiface to 

determine the interior temperature in terms of the surface temperature • 

At the upper edge the heat transfer is by radiation and so 

. (dT) 
-k dz £ er E 

S 

T 4 
£ 

and applying this boundary condition to Eq.(F-8) gives 

£ 
k 

£Q, 4 
(--erET) 

2 s £ 

(F-9) 

(F-10) 

Now the heat transfer frc:m the lower side for the rotating disk was by 

conduction through several different materials in serie s. To determine 

the lowerbc:undary condition would be a very difficult problem. Suppose we 

assume for simplicity that the lower edge is adiabatic and tmt the hret 

generated in the disk always leaves through the upper surface by radiat ion. 

Then 
4 Q,£ (F-ll) (JE l£ =: 

and so Eq. (F-10) becomes 

£ erE T' 4 (F..;12) TO - T £ =: 

k s £. 

If Eq.(F-8) is evaluated at the hole depth hand Eqs.(F-ll) and (F-12) 

substituted into it, it will be found that the temperature of tte hole 

.~ 
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T minus the surface 
h 

temperature T£, ispraportional to To - T£ 

(T.£ is identical to T s) • . The proportionality constant will not be cal-

culated, however, but simply called a. Thus from Eqs. (F-8), (F-ll) and 

(F-12) 

Th - T a(To-T£) (F -13) .. £ 

and: frOm Eq. (F-12) 
a£crE 4 

- T£ 
s 

Th k T£ 

The llilportant characteristic of this equation is that the difference be-

tween the hole and surface temperatures is directly proportional to the 

fourth power of the surface te~erature. 

Now Eq.· (F-4) gives the relation between the true hole and surface 

temperatures and Eq. (F-2) gives the relation between the true and observed 

temperatures. Rewriting them in the prior.nomenclature giv83 

a£crE 
4 

T T s T 
ht' St k St 

(F-14) 

Th T T T A. 
ln Eh = 

hO ht h C
2 ·t 0 

(F-1S) 

T T T 
A. 

ln T C
2 

E 
St s St s s 

0 0 

(F-16) 

Putting Eqs. (F-1S) and (F-16) into Eci'. (F-14) gives 

2 A. 2 A. 
af crE 4 

Th T Th ln T ln + s T = E - E 
s C

2 
h s C

2 
s k St 0 ·0 0 0 

(F-17) 

where 
2 2 

the approxllilations ThTh ~ Th and Ts ,Ts ~ Ts have been 
4t 0 0 . too 

'The variable T in the last term of Eq. (:F-17) can be approxi-
St 

used. 

rrated in the following manner. Taking both Sides of Eq. (F-16) to the fourth 

power: 
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= 

4 ( 'A. €)3 T 7 + ( 1\ In E )4 T 8 (F-18) -. In 
C

2 
C2 

s . s s _ s 
0 0 

~ 0(103 ), 'A. 1 . 0(10-5) , 
. 12 

fo/ E ~ 1/2, Since T - n € l (JE /k ~ 0 ( 10 - ) 
s C· s s s 

2 
and a ~. o( 1), the last term of Eq. (A-17) is on the order of 

al (JE: 
s 

k 
4 -2 . ...,4 

0(1) + 0(10 ) + 0(10 ) + 

and the other two terms on the right -hand s ide of Eq. (F -17) are seen 

to be of 0(10). Hence a good approximation in Eq. (F -17) is T 
St 

2 2 
If it is also assumed that Th 

Dividing byT 2 . . s 
o 

T 
s 

o 

- T 

2 

s 
o 

- T 
s 

o 

o 

= 

~ T then Eq. (F-17} becomes 
s 

T 
s· 

o 

o 

2 

Eh 
In ( ) + 

E 
S 

al(JE 
s ----

k 

al(JE 
s 

T 

k 

s o 

2 

4 4 
~ T 

T 
s 

o 

4 

s o 

(F.-18) 

(F -19) 

Then (T
h 

o 
- T )/T.2 versus T 2 should plot as a straight line of slope 

s s s 

al (JE 
S 

;k 

000 

'A.Eh 
and int ercept - In ( - ). 

C2 ES 

In practice, this relationship was used as follows. A series of hole 

and surface temperatures were measured for different values of the sur-
_ .. 

face temperature. A typical set of result s is shown in F~g. (F-2). The 

intercept 

. 
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was computed by fitting the po:ints by the least-squares method to astra ight 

line. Knowing then the ratio of the surface and hole emissivitie:s, the 

surface emissivity was determined fran Fig. (F-l). The results for a 

set of seven different disks is shawn in Table (F-l).· 

TABLE F':"l 

Disk Noo E E . ala ES ( -12) 
s h k""""' 10 . 

1 0.57 0.91 3.3 

2 0.48 0.90 -2.5 

3 0.35 0.85 -4.6 

4 0.75 0.9·;; 4.5 

5 0.63 0.91 1.35 

6 0.42 0088 -2.2 

7 O~B5 ·0.89 -1.2 

The average emissivity of the seven disks was found to be 0.55. The variance 

of the data was computed using the Itstudent-tlt distribution. For a9'Y/o 

confidence limit,· the emissivity of the surface was found to be 0.55 ± 0.11. 

This was the value used in correcting the surface temperatures in this 

experiment. It is felt that the variance in the emissivity is not real 

but is due to errors in the measurement. The reason for this is that the 

surfaces of the disks were very identical to each other both before and 

after the run and thus did not indicate an emissivity variation. Also, 

but less :important, the data show much less scatter when plotted with·a 

constant emissivity. 

The data on the emissivity of chromium as given in Ref. 38 varies 

from 0.1 to 0.52 with 0.43 indicated to be the .most likely value. This 

ranges comprises five points. From the scatt·er of the data it can be 
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assumed that an emis si vi ty measurement is very difficult to make. The 

value computed in this experiment is located at the top of the range, h'e. 

0.55 meas ured by us vers us o. 52 at the top of, the range in Ref. 43. How­

ever, the lower range of our measured value :Bor 9'5fo confidence, Le.O.44 

0.55 - 0.11, is approximately equal to the most likely indicated value of 

0.43. The agreement is probably about as close as can be expected for a 

system that was not specifically designed to measure emissivity. 
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APPENDIX G 

PROPERTIES USED IN THE CALCUIATION 

The.'Jproperties of argon were obtained from Ref. 39 and tre pro­

perties of helium were obtained fram Ref. 47. The diffusion coefficients 

of iron through argon and chromium through helium were calculated using the 

Lennard-Jones (6-12) potential.
17 

The. Lennard-Jones parameters were 

obtained from the bulk liquid metal properties at the melting point •. The 

diffus.ion coefficients are plotted in Fig. G-l. 

The surface tension and density of the bulk liquid metals were 

obtained from Refs 0 1, 40 and 41. The values are plotted in Figs. G..,.2 

and 3. 

I ! 
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APPENDIX H 

THE MACHINE PROGRAM 
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PROGRAM CONTROL.( INPUT,OUTPUT) .1 
COMMON 11001 V 
CO,M""ON IUO.(_~t., __ , __ .. __ _ 
COMMON 12001 ALPHA, BETA 
COMMON 12S01 Z 
COMMON - /3001--Vi. 
COMMON 13S01 YZ 
COMMON 140biGB 
COMMON 14S01 SO 
COMMON-/s'OOiGX, GXI 
COMMON 15S01 EG 
COMMON 16001 ~S, XS 
COMMON 17001 ~N, 55 
COMMON1750i t ' 
COMMON 18001 U 
COMMON 18S01 GL, XNG 
COMMON 19001 UI, U2 
COMMON 19S01 VI, V2. V3 
COMMON 19751 5 
COMMON I I T II It 
COMMON IRHTI RET 

-D I MENS IONVCTz 5~561 
DIMENSION V125.501 
DIMENSION ii1l2S.501. V2125.501. V3125,501 
DIMENSION XN15001. SSISOOI 
DIMENSION ALPHAISOIt BETAISOI 
DIMENSION VX(501 
DIMENSION ZISOI 
DIMENSION G8(SOI 
DIMENSION GX(501. GX11501 
DIMENSION XSI2S.I 
DIMENSION UI2SI. U112SI. U21251 
DIMENSION SISOI 
DIMENSION YZI2S.S01 
DIMENSION SO(SOOI 
DIMENSION TC 50 I 
DIMENSION GL1501. XNGISOI 
DIMENSION EGI501 
LOGICAL RET 
PRINT 1 

1 FORMATIIHII 
PRINT 4 

4 FORMAT! lHO I 
PRINT 9 

9 FORMATIIHO * ~$$$$$$$$$$$S$$$$S$$$S$$$~$$$$$$$$$$$S$$$$$$$$$$$ * I 
PRINT 10 

10 FORMAT/IHO * THIS PROGRAM CALCULATES THE GRADIENT AT THE WALL • I 
$ * WITH CONDENSATION IN THE BOUNDARY LAYER * ) 

PRINT 11 
11 FORMAT/IHO * $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ * I 

PRINT 4 
IT = 0 
CALL REAOIN 
CAl-L CONST 
CAl-L NGF 
CAl-L INITL 

5 CONTINUE 
PRINT 25 

2S FORMATIIHII 
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PRINT 14 
14 FORMAT(lHO * $$$$$$$$$$$$$$$$$$$$$$$$$$S$$S$$$$$$$$$$~S$SSS$ * ) 

PRINT 15. IT 
15 FORMAT(lHO * ITERATION NUMBER * 15) 

PRINT 14 
CALL DROP 

50 CONTINUE 
CALL MONO 
IF (RET) ~ALL RESET 
IF (RET) GO TO 50 
CAI.L T!:ST 
IT = IT + 1 
IF (IT .I.E. 25) GO TO 5 
PRINT 20--

20 FORMAT! 1HO * .J"HE .PROCESS DID NOT CONVERGE * ) 
CALL ABORT 
END 

SUBROUTINE READIN 
COMMON IAAAI A 
COMMON IABCI BKTW. XL 
COMMON IAePI ATH. CP 
COMMON IBRB/B 
COMMON IDCKI DC. TK 
COMMON IGRPI NGROUP 
COMMON IMAXI XMAX 
COMMON INOTI GNriT 
COMMON IMMMI MW 
COMMON IPPPI HPRINT· 
COMMON IPZPI PV. PVW 
COMMON 10001 OX. NA. OMEGA 
COMMON IRRRI TINF. TW. PR 
COMMON ISIGI SIGMA. DENS 
COMMON ISSSI se. Scat SCP 
REAL .MW 
DOUBLE PRECISION HPRINT 
READ 10. TW 
READ 10. TINF 
READ 10. OMEGA 
READ 10. SC 
READ 10. PR 
READ 20, PV 
READ 10. PVW 
READ 5. NGROUP 
READ 10. GNOT 
READ 15. HPRtNT 
READ 10. XMAX 
READ 10. SIGMA 
READ 10. DENS 
READ 20. XL 
READ 10. MW 
READ 10. ATH 
READ 20. CP 
READ 10. DC 
READ 10. TK 

5 FORMAT(I5) 
10 FORMATCFIO.5) 
15 FORMATCD20.5) 
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20 FORMATIE20.5) j 
PRINT 1 

1 FORMATflHO it 1-1-1-1-1-1-1-1-1-1-/-1-1-1 * ) 
PRINT 25 

25 FORMAT(IHO * THE INPUT DATA IS * ) 
PR INT 1 
PRINT 50, TW 

50 FORMAT(lHO * THE TEMPERATURE AT THE WALL IS * EI5.SI 
PRINT 55, TINF 

55 FORMATflHO * THE TEMPERATURE AT INFINITV IS * EI5.5) 
PRINT 60, OMEGA 

60 FORMAT(IHO * THE ANGULAR VELOCITY IS * ElS.51 
PRINT 65, PR 

65 FORMATflHO * PRANDTL NUMBER * EI5.S) 
PRINT 70, SC 

70 FORMATI1HO * SCHMIDT NUMBER * E15.5) 
PRINT 75, PV 

75 FORMATflHO * THE COEFFICIENT IN THE VAPOUR EQ IS * ElS.51 
PRINT 80. PVW . 

80 FORMAT(lHO * THE VAPOUR PRESSURE AT THE WALL IS * E15.5) 
PRINT 90, NGROUP 

90 FORMAT/lHO * THE NUMBER OF GROUPS IS it 151 
PRINT 100. GNOT 

100 FORMAT(lHO.* THE VALUE OF GNOT IS * E1S.5) 
PRINT 105~ HPRINT 

105 FORMATI1HO * THE VALUE OF HPRINT IS * DlS.51 
PRINT 110, XMAX 

110 FORMAT(lHO * THE VALUE OF XMAX IS * E1S.5) 
PRINT lIS. SIGMA 

115 FORMAT(lHO * THE SURFACE TENSION IS * FI5.S) . 
PRINT 120. DENS 

120 FORMAT(lHO * THE D~NSITY IS * EI5.S) 
PRINT 125. XL 

125 FORMAT(lHO * THE LATENT HEAT PER ATOM IS * EI5.SI 
PRINT 130. MW 

130 FORMAT(lHO * THE MOLECULAR WEIGHT IS * E1S.51 
PRINT 135, ATH 

135 FORMATC1HO * THE ~HERM~L ACCOMODATION COEFFICIE~T IS * E15.51 
PRINT 140. CP 

140 FORMATC1HO * THE SPECIFIC HEAT PER ATOM IS * E1S.SI 
PRINT ISO. DC 

150 FORMATC1HO * THE DIFFUSION COEFFICIENT IS * E1S.S) 
PRINT 160. TI( 

160 FORMATCIHO * THE THERMAL CONDUCTIVITY IS * EIS.5) 
RETURN 
END 

SUBROUTINE CONST 
COMMON IMAI A 
COMMON IABCI BKTW. XL 
COMMON IACPI ATH, CP 
COMMON IBBB/.BC 
COMMON IBRSI 's 
COMMON ICCCI CI, C2 
COMMON IClCl Cl 
CO,MMON IDCK/ .. DC •. TK 
COMMON IDHFI DEF. KEF 
COMMON IKKKI AC. KTW 



COMMON I"'AMI MA 
COMMON IMMMI MW 
COMMON IPlPI PV, PVW 
COMMON IQQQI QX, NA, OMEGA 
COMMON IRRRI TINF, TW; PR 
COMMON ISIGI SIGMA, DENS 
COMMON 15KTI SMKTW 
COMMON 15551 SC, SC8, SCP 
COMMON ISUPI PP 
COMMON IWWW/ Te, PR8 

-142-

COMMON IZlZI CZ1' Cl2, Cl3, CZ4, CZ5, CZ6 
REAL NA 
REAL KTW 
REAL MA, K, MKTW 
REAL MW, NAV 
REAL KEF 
DATA xo 13.537821 
DATA HINF 1-0.884471 
DATA EMS 10.41 
DATA SBC 15.67E-051 
DATA K Il.38E-161 , NAV 16.025E+231 

2 FORMAT IlHlI 
PRINT 2 
PRINT 1 

1 FORMATtlHO * 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 * 
PRINT 5 

5 FORMAT(IHO * THE PARAMETERS FROM ~ONST ARE *1 
PRINT 1 
A :: HINF * SC 
sca = SQRT(SC I a.ol 
scx :: SC8 * XO 
SCP = SQRT(2.0 * 3.1416 I SCI 
Cl EXP( - SCX**21 
C1 :: Cl I A 
Cl ci - sCP * ERF(SCXI 
Cl 1.0 I Cl 
C2 Cl * EXP( - SCX**2 I 
C2 = C2 * EXP( - A * XOI 
C2 C2 I A 
KTW = K * TW 
TC = 1.0 - TINF I TW 
PR8 = SQRT(PR I 8.01 
MA = MW I NAV 
MKTW = 2.0 * 3.1416 * MA * K * TW 
SMKTW = SQRT(MKTWI 
BC = PVW I SMKTW 
PP = PVW I PV 
AC .= PV I SMKTW 
NA = NAV * DENS I MW 
B = •• 0 * 3.1416 * SIGMA * (3~0 I 4.0 I 3.1416 I NAI**0.66667 
QX .. B IOMEGA I SIGMA 
BKTW = B I KTW 
CZ = 0.5 
CZl .. BC 
CZ2 .. AC 
CZ3 = 1.0 I KTW 
CZ4 = 2.0 * B I 3.0 
CZ5 - CP * ATH I sac I EMS I TW**3 
CZ6 =XL I sac I EMS I TW**4 



PRINT 10, A. se8. sex. scp 
PRINT 11, C1. C2 
PRINT 12 .•. J<.TW.t. ... H:-'. PFt8 .... 
PRINT 13. MA, MKTW. SMKTW 
PRINT 14. BC.,.PP, AC. 
PRINT IS. NA, B, BKTW. ax 
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PRINT 16. Cll. Cl2. el3, Cl4, elS. Cl6 
10 FORMAT(lHO *.~ ~ ~ ElS.5. l2X. * SC8 = * ElS.S I 

$ * SCX = * ElS.S. lOX. * SCP = * ElS.S) 
11 FORMAi'It"HO·iI-·cT=·* EIS.S, llX. * C2 = * ElS.S) 
12 FORMAT(lHO * KTW = * ElS.S. lOX. * TC = * ElS.S I 

$* PR8 =* Eis.s) 
13 FORMATClHO * .MA = * ElS.S, llX. * MKTw = * ElS.S I 

$ * 5MKTW =* ·Els.s I 
14 FORMATClHO * BC = * ElS.S. llX. * pp = * ElS.S I 

$ * AC '" *·-E·15·~51 ....... . 
IS FORMATClHO * NA ~ * ElS.S, llX. * B = * ElS.S I 

$ * BKTW = *·Els.5, 9X. * ax '" * ElS.S) 
16 FORMATClHO * Cll = * E1S.S. lOX, * Cl2 '" * ElS.S I 

$ * elj ~ ~ E15.~, l6x. * Cl4 = * ElS.S / 
$ * ClS = * EIS.S. lOX. * Cl6 = * EIS.S) 

DEF. SQR-i'TiTW 1·2.<fT3.14l6 I MAl/DC 
DEF = DEF * C3.0 * MA I 4.0 I 3.1416 / DENSI ** 0.33333 
KEF = 1~6E~b~ * CP * ATH / SMKTW / TK 
KEF = ~EF *C3.0 * MA / 4.0 / 3.1416 I DENS) ** 0.33333 
PRINT 17, DEF. KEF 

17 FORMATUH.D * ... DEf.':= "!': ~.lS.5. lOX. * KEF = * ElS.S) 
RETURN 
END 

SUBROUTINE NGF 
COMMON /4001 . . GB 
COMMON 15001 GX. GXl 
COMMON ,1550/ E'<; 
COMMON /6001 NS. xs 
COMMON /8501 GL .• xNG 
COMMON IGRPj NGROUP 
COMMON /NGNI JiG .. 
COMMON /NOTI GNOT 
COMMON IPPP I. HPRJN.T . 
COMMON ISPNI SPAN 
COMMON 15S5/ s.c,.se8 •. sep 
DIMENSION NGCSO) 
01 MENSION.GB (501. .. 
DIMENSION GXCSO). GXlCSO) 
DIMENSION XS(25) 
DIMENSION GL(SO). XNG(SO) 
DIMENSION.EGI SO) 
REAL NG 
PRINT 1 

1 FORMAT/IHO * /-1-/-1-1-1-1-1-1-/-/ * ) 
PRINT 2 

2 FORMAT/lHO * THE DArA F~OM NG~ IS * ) 
PRINT 1 
L = NGROUP 
ML = L - 1 
DO 20 t = 1.NGROUP 
READ 10. NGCI). 
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10 FORMATIE7.1) d 
20 CONTINUE 

PRINT 15, INGll),-1 = l,NGROUP) 
15 FORMATllHO * THE NUMBER OF DROPS PER GROUP IS * 114El5.5)) 

GBl11 = GNOT + INGl11 ~ 1.0) I 2.0 
DO ~O I = 2,NGROUP 
GB(II '" GBII-lI + 1.0 + (NGll-1) - 1.0) / 2.0 + (NG(I) - laO) 

S I 2.0 
50 CONTINUE 

SPAN = GBI~) + ING(LI - 1.0} I 2.0 
SPAN = SPAN - (G8Il) - INGIl) - 1.0) I 2.0) 
DO 25 I = l,NGROUP 
G~II) = GEXIGBII)J 
GX1II) = 1.0 I SQRT(GX(I)I 

25 CONTINUE ..... 
PRINT 3, IGB(l). I = 1.L) 

3 FORMATI1HO * THE GROUP MEAN VALUES OF G ARE * II 13E15.5)) 
DO 100 I = l,L 
GUll '" ALOG(GB(I)) 

100 CONTINUE . 
DO 200 I '" l,ML 
XNGIII " GLiI+iJ ~ (;LII) 

200 CONTINUE 
EX = 1.0 I 6.0 
DO 75 I '" 1.L 
EGIII = Sb~TI2.0 * 0~89301 * 16.0 I G~III I SCI ** EX 

75 CONTINUE 
~RI~t'li~, IEG(I). I = 1.L) 

125 FORMAT<lHO* THE CO.EFFICIENTS OF PERTU~BATION ARE * 1/ 13E15.51) 
RETURN 
END 

SUBROUTINEi~ITL 
COMMON 11001 V 
COMMON 11501 VL 
COMMON 12001 ALPHA,.BETA 
COMMON 1400j GB .. 
COMMON 16001 NS, XS 
COMMON 18001 U 
COMMON IDDDI DUDX 
COMMON'/FSTI FIRST 
COMMON IGRPI NGROUP 
COMMON II X II I X 
COMMON .. UJ,J/ . .,IN. 
COMMON ILGLI LG 
COMMON II.LLI l. 
COMMON IMAXI XMAX 
COMMON IlI1lMI Ml. 
COMMON INGNI NG 
COMMON IPPPI HPRI~T 
COMMON IPSTI POST 
COMMON ISTRI GSTAR 
DIMENSION UI251, XS(25) 
DIMENSION VL(25.50) 
DIMENSION GB(50) 
DIMENSION VI25,501 
DIMENSION ALPHA(50), BETA(50) 
DIMENSION NG(501 

, 



DOUBLE PRECISION HPRINT 
LOGICAL SHIFT 
LOGICAL POST 
LOGICAL SHOW 
LOGICAL FIRST 
DATA lET 11.0E-2901 
DATA SHIFT I.FALSE.I 
DATA CE /0.51 
DATA LG /3.' 
REAL IN 
REAL NG 
POST = .FALSE. 
L = NGROUP 
ML :: NGROUP - 1 
PRINT 1 
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1 FO.RMAT I 1HO * 1-1-1-1-1-/-1-/-1-1-/-/-/ * 
PRINT Z 

2 FORMATI1HO * THE DATA FROM INITL IS *1 
PRINT 1 
X = 0.0 
I = 1 

5 CONTINUE 
XSIlI = X 
UIII = UIIXI 
PRINT 10, X, UIII 

10 FORMATIZEI5.51 
NS= I 
I = I + 1 
X = X + SNGLIHPRINTI 
IF IX .GT. XMAXI GO TO 15 
GO TO 5 

15 CONTINUE 
DUDX = IUIZI~ UIl)1 ISNGLIHPRINTI 
PRINT 40, DUDX 

40 FORMATIIHO * THE VALUE OF DUDX 15* E15.51 
READ 3, C 

3 FORMAT I FlO.5) 
PRINT 4, C 

4 FORMAT(IHO * .. C_~* E15.51 
SHOW = .FALSE. 
IF IC .LT. 0.01. SHOW.= .TRUE. 
PRINT 8 

8 FORMAT! IHO I 
DO 35 I = I,NS 
X= XS( II 
IF ISHOW) READ 7, UIII 

7 FORMATIE7.1) _ 

7 

\ 

IF I .NOT. SHOW I UIII = UIII * 11.0 - ERFIX I XMAXII ** C 
PRINT 10, XSIII, UIII 

35 CONTINUE 
DUD X = (ut2l..- UOl! I SNGL(HPRINTI 
PRINT 40. DUDX 
DO 900 I = I.NS 
IF IUIII .GT. 1.0E-031 GO ~O 900 
GO TO 950 

900 CONTINUE 
GO TO en5 

950 CONTINUE 
XMAX = XS( I I. 



NS .. I 
975 CONTINUE 

X '" 0.0 
IX .. 1 
PRINT 60 

60 FORMATIIHO) 
PRINT 75 
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75 FORMATIIHO * THE INITIAL VALUES OF VX ARE * I 
20 C.ONTI NUE 

CALL DIMENIXI 
DO 150 I ;. 1,L 
G .. G13 I I, 
IFIG .LE. GSTAR) V(IX.I) = VXINFIX,GI 
IF IG .GT. GSTAR) Y(IX,I) = IN I BETAII) 

150 CONTINUE 
200 CONTINUE 

PRINT 90, X 
90 FORMAT(IHO * X = * EI5.5) 

PRINT 91, GSTAR, IN. IVIIX,II, I • 1,LI 
91 FORMATIIHO * GSTAR = * E15.5, lOX, * JN = * E15.5 II (7EI5.5" 

X = X + SNGLIHPRINTI 
IX " IX + 1 
IF IX .GT. XMAX, GO TO 50 
GO TO 20 

50 CONTINUE 
FIRST = .FALSE. 
X = 0.0 
IX .. 1 
PRINT 60 
PRINT 500 

500 FORMA"r I IHO * THE STARTING VALUES OF VX ARE * ) 
520 CONTINUE 

CAl.L DIMENCXI 
DO 550 I = I,L 
IF (I .LE. LG' GO TO 550 
TQ = BETAII-ll - ALPHA(I-l' 
TR = BETAII) - ALPHAII, 
TQ = ABSCTQI 
TR = ABSITR) 
V(IX,I) = TQ I !TR + CE * NGCIII * VCIX,I-ll 

550 CONTI"'WE 
PRINT 590, X, IVIIX.I). I = l,LI 

590 FORMATIIHO * X .. * E15.5 II 17EI5.5" 
X = X + SNGLIHPRINT) 
IX = IX + 1 
IF IX .GT. XMAX) GO TO 600 
GO TO 520 

600 CONTINUE 
RETURN 
END 

SUBROUTINE ·DROP 
COMMON 11001 V 
COMMON 12001 ALPHA, 
COMMON 14001 GB 
COMMON 15001 GX, GXl 
COMMON 15501 EG 
COMMON 16001 NS, XS 

BETA 
io, 

.. 



COMMON 17001 _XN,_ SS 
COMMON 19501 VI. V2, V3 
COMM9,1II JAn!. .A~~y 
COMMON ICIC! IC 
COMMON ICQc! CQ 
COMMON iGRPj'NGROUP 
COMMON IHPHI HP 
COMMON 'I I PI i Ii> 
COMMON lixI I 'IX 
CoMMOr:.i'7fi'Trrr' 
COMMON II.LLI L 
COMMO~ IM~~i-iMAX 
COMMON IMLMI ML 
COMMON INi..NIN' 
COMMON INOll GNOT 
COMMON IPPPTHPIHNT 
COMMON IPSTI POST 
COMMON ISET/-SETUP 
COMMON ISPRI SWPR 
COMMON ISSSI sc ,-se8, SCP 
COMMON IYYYI 1M 
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D I MENSI ON ''In oOj,' -Fit 00). T 1 800) 
DIMENSION ALPHAISO), BETAISO)' 
DIMENSIO~~Nl~Oo). SS15(0) 
DIMENSION XS(25) . 
DIMENSION CQISO) 
DIMENSION GB(50) 
DIMENS ION V"iS'5-6-) 
DIMENSION VI12S.S0), V212S,50), V312S,SO) 
DIMENSION EG(50) 
DIMENSION GXISOI~ GX1(50) 
DOUBLE PRECISIONf;' HPRINT 
DOUBI.E PRECISION HPDP 
DOUBLE PRECIsfori'XDP 
LOGICAL SWPR 
LOGICAl. POST 
LOGICAL PRINT 
LOGICAl. ARCY' 
LOGICAL SETl)f) 
DATA XI 10.01 
DATA I P /2/ 
DATA IS III 
DATA SETU~ I.F~LSE.I 
EXTERNAL DERIV2 
ARCY = .FALSE. 
SWPR = .TRUE. 
POST " .FALSE. 
N " NGROUP 
HPDP = HPRINT / DBLEIFLOATIIP» 
HP = SNGLIHPDP) 
SETUP = .FALSE. 
CALL SORT 
SETUP = .TRUE. 
PRINT 1 

I FORMATCIHO * 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 * 
PRINT 5 

S FORMAT 1 IHO * THE DATA FROM DROP IS * ) 
PRINT 1 
DO 150 I = 1.NGROUP 



Y(II = 0.0 
150 CONTINUE 

IF CIT .NE. 01 GO TO 500 
DO 300 IX = 1,NS 
DO 200 IG = lJL 
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EZ = ERF(EGCIGI * SC8 * SQRT(GX(IGII * XSCIXII 
V2IIX.IG) = VXICGBCIG)I * 11.0 -EZ) 
V3( IX. IG) = EZ 

200 CONTINUE 
300 CONTINUE 
500 CONTINUE 

NC = 0 
IX = 1 
X ,. XI 
PRINT 6 

6 FORMAT(lHO) 
PRINT 100 

100 FORMAT(lHO * $-$-$-$-$-$-$-$-$-$-$~$-$ * I 
PRINT 101. X 

101 FORMAT(lHO * X IS NOW * ~15.51 
PRINT 100 
POST = .TRUE. 
SETUP:: .TRUE. 
IC = NC + 1 
XDP = DBLE(XII 
XNIIC) = SNGLIXDP) 
CALL DIMEN(X) 
CALL SRCDRP(X) 
CALL SORCIIC) 
POST = .FALSE. 
SETUP ,. .FALSE. 
CALL INTOiN,X.DERIV2,y,F,T.HPDPI 

10 CONTINUE. 
IF (SWPRI GO TO 75 
GO TO 575 

75 CONTINUE' 
NL= MOD(NC.IPI. 
IF INL .NE. 0) GO TO 110 
DO 650 I = 1,1. 
V 11 I x. l). :: Y ( I) I CQ I I ) 

650 CONTINUE 
PR INT 12 

12 FORMATI1HO *,.===================_===a===== * I 
PRINT 14 

14 FORMATClHO*l}fl; VALUES OF VIIIX,II ARE * I 
PRINT 12 
PRINT 15, X. (VIIIX.I). I = 1.LI 
IF lIT .GT. 01 GO TO 110 
PRINT 15, X, (V2CIX,II, I = 1,L") 
PRINT 15, X. (V3(IX,I), I = I,Ll 

15 FORMATClHO*X:;: * .El5 .• 5 II (3E15.5) I 
110 CONTINUE 

NC= NC + 1 
X = X + HP 
IF IX .GT. XMAXl .GO TO 50 
Ie = NC + 1 
XDP = XDP+ HenF 
XN(ICI = SNGUXDPI 
SETUP = .TRUE. 

/tJ 

'w 
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CA~L DIMENIX) // 
CALL SRCDRPIX) 
CALL SORC(IC) 
SETUP = .FALSE. 

30 CONTINUE 
NL = MOD(NC.IPI 
IF !NL .NE. 0) GO TO 575 
IX = IX + 1 
PRINT 100 
PRINT 101. X 
PRINT 100 

25 CONTINUE 
POST:: .TRUE. 
SETlW :: .FALSE. 
CALL DIMENIX) 
CALL SRCDRPIX) 
CALL SORC!IC) 
POST :: .FALSE. 
SETUP:: .TRUE. 
CALL SECONO!TIME) 
PRINT 990. TIME 

990 FORMAT!IHO * THE CENTRAL PROCESSER TIM~ 1S * F15.5.) 
575 CONTINUE 

CALL INTIX. DERIV2. Y. F. T. SWPR) 
GO TO 10 

50 CONTINUE 
CALL SOLV 
PRINT 90 

90 FORMATIIHO * ::::===::::===::=====::=a::===:m=a=::==== * 
PRINT 95 

95 FORMATIIHO * THE MONOMER EQ SOURCE TERMS ARE * 
PRINT 90 
SETUp·=.FALSE. 
POST = .FALSE. 
IR :: IC 
DO 1000 I = 1,IR.IS 
IC :: I 
IX = IC I IP + 1 
X = .XN I I) 
CALL DtMENIX) 
CALL SRCDRPIX) 
CALL SORCI I) 
PRINT 925, XNII), SSII) 

925 FORMAT(2E15.5) 
1000 (ONU NUE 

RETURN 
END 

SUBROUTINE MONO 
COMMON /lOOl 'L 
COMMON 14001 GB 
COMMON 15001 GX. GXl 
COMMON 15501 EG 
COMMON 16001 NS. XS 
COMMON 1800i U 
CQ.MM9N /900{ Ulf l,IL 
COMMON 19501 VI. V2. V3 
COMMON IACYI ARCY 



COMMON 10001 DUDX 
COMMON I I II I I C 
COMMON lIT I I IT 
COMMON IlGll lG 
COMMON ILLLI l 
COMMON IMAXI XMAX 
COMMON INGNI NG 
COMMON IPPPI HPRINT 
COMMON ISRTI START 
COMMON ISSSI SC. Scat SCP 
COMMON !VYY I 1M 
DIMENSION Y(2). F(2), T(26) 
.DIMENSION U1(25). U2(25) 
DIMENSION U(25) 
DIMENSION GB(50) 
,DIMENSltiN ~!2§.50) 
DIMENSION UZ(25) 
DIMENSION DVDX(50) 
DIMENSION NG(50) 
DIMENSION dX(50). GX1(501 
DIMENSION XS(25), ' 
DIMENSION EG(50) 
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DIMENSION V1!25.50). V2!25.50). V3!25.50) 
DOUBLE PR~~I~ION T. HPRINT 
LOGICAL SWPR 
LOGICAL ARCV 
lOGICAL START 
REAL NG 
EXTERNAL DERIY1 
DATA lIP Il.OE-031 
DATA START I.TRUE.I 
ARCY = .TRUE. 
1M 1 
Yl :: 1.0 
Y2 = 0.0 
GO TO 9 

7 CONTINUE 
Yl'= 0.0 
Y2 = 1.0 

9 CONTINUE 
N = 2 
X = 0.0 
SWPR = .TRUE. 
IC = 0 
YIll = VI 
Y(2) = Y2 
CALL INTOIN. X. DERIYl. y. F. T. HPRINT) 

10 CONTINUE 
IF ISWPR) GO TO 15 
GO TO 25 

15 CONTINUE 
IC = IC + 1. 
UlIIC) = YI1I 
X = X + SNGlIHPRINT) 
IF IX .GT. XMAX) GO TO 50 

25 CAll INTIX. DERIVI. Y. F. T. SWPR) 
GO TO 10 

50 CONTINUE 
X = 0.0 

" 
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PRINT 5 
5 FORMATClHO * /-/-/-/-1-1-1-1-/-/-/-/-/ * ) 

PRINT C! .. 
6 FORMATClHO * THE DATA FROM MONO IS * ) 

PRINT .5 
IF CIM .EQ. 2) GO TO 60 
DO 75 I = 1.IC 
UICI) = UZ(l) 
PRINT 30. X, UlCI) 

30 FORMATC2ElS.5)·· . 
X = X + S~GLCHPRINT) 

75 CONTINUE 
1M = 2' 
GO TO 7 

60 CONTINUE 
X = 0.0 
DO 95 I = 1.IC 
U2 C I I = UZ ( I ) 
PRINT 30. X. U2CI) 
X = X + SN~L(HPRINT) 

95 CONTINUE 
100 CONTI NUE 

IF (START) CALL SOLN 
DUDX = C~i2) ~ U(l» 1 SNGLCHPRINT) 
PRINT 20. DUDX 

20 FORMATClHO * THE VALUE OF DUDX IS * E15.5) 
SUM = 0.0 
DO 150 I': 1.L 
DVDXCI) = 0.0 
IF (I .LE. LG) GO TO 150 
XNG = NGCI) 
DVDXCI) = ~NG * S~RTCGXCI» 
DVDXII) = DVD_X(I) * CVli.I) - V(ltI)) / SNGLlHPRINT) 
SUM = SUM + DVDXCI) 

150 CONTINUE 
PRINT 200. IDVDXCI). I = 1.L) 

200 FORMATIlHO * THE DVDXII) ARE * / C4E15.5» 
PRINT 225. SU'M . ....... . 

225 FORMAT(1HO * THE SUM OF THE DVDX( I) IS * E15.5) 
DUDX = DUDX + SUM 
PRINT 250. DUDX 

250 FORMATClHO * THE NEW VALUE OF DUDX IS * E15.5) 
DO 400 I = 1.NS 
IF II .EQ. NS). GO TO 700 
IF Cl,IIU.\,.I • .zU'). GO TO 600 

400 CONTINUE 
600 NS = I 

XMAX = XSINS) 
IF (NS .L.E.2) CALL ABORT 

700 CONTINUE 
RETURN 
END 

SUBROUTINE RESET 
COMMON ICIC! IC 
COMMON 1450/ SQ 
COMMON 1700/ XN. SS 
DIMENSION XN(500). SS(500) 

/.7 



DIMENSION SQ(5001 
DO 10 I = 1.IC 
55(1) = 0.5 * 155(1) + SQII)) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE TEST 
COMMON ICICI It 
COMMON 10001 DUDX 
COMMON IDRGI DRAG 
COMMON I I T I I IT 
CO~MON ISMSI SUM 
COMMON ISLWI SLOW 
COMMON ISRT/-START 
COMMON ITSTI XXX 
LOGICAL QUIT 
LOGICAL START 
DATAINQ 17/ 
DATA EPSlN li.OE-031 
DATA TEN Il.OE~021 
DATA QQQ 10.01 
DATA TE~IT li5d.01 
DATA NO 1201 
DATA SUM 11.01 
DATA XXX 10.01 
DATA IJI( 101 
LOGICAL DRAG 
LOGICAL SLOW 
PRINT 1 
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1 FORMAT(lHO * +++++++++++++++++++++++++++++++++ * ) 
PRINT 5 

5 FORMATIlHO * THE DATA FROM SUBROUTINE TEST IS * ) 
PRINT 1 
PRINT 50, SUM 

50 FORMAT(lHO * SUM: * E1S.S) 
XXX = SQRT(XXX) I FlOATIIC) 
IF (IT .EQ. 0) XXX 1.0 
PRINT 60, XXX 

60 FORMATI1HO * XXX = * E15.5) 
T = SUM 
QUIT = .FAlSE. 
IF lIT .NE. 0) QQQ = ABS( IDUOX - QQQ) I QQQ ) 
PR.I NT 75, QQQ 

75 FORMATI1HO * QQQ = * E15.5) 
IF IQQQ .GE. TEN) IJK = 0 
IF IQQQ .LT. TEN) IJK = IJK + 1 
IF I .NOT. START) GO TO 100 
IF I IT .IT. EPSlN) .AND. I IT .GE. INQ)) QUIT = .TRUE. 
IF I CQUIT) .AND. (XXX .LE. TEN) ) GO TO 15 

100 CONTINUE 
CALL SECONDITIME) 
IF I I IT .GE •. NO) .OR. (JIME .GE. TEXIT) ) GO TO 15 
QQQ = DUOX 
IF IIJK .EQ. 5) GO TO 15 
RETURN 

15 CONTINUE 
PRINT 20 
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20 FORMAT(lHO * 
PRINT 25 

1-1-1-1-1-1-1-1-1-1-1-1-/-/-/-1 * 
25 FORMATI1HO * 

PRINT 20 
CAl.L EX I.T 
END 

SUBROUTINE SORT 
COMMON /9751 S 
COMMON I CI C/ I C 
COMMON ICGCI CO 
COMMO~ /GRPI NGROUP 
COMMON IHPHI HP 
COMMON II P I I I P 
COMMON I IT I / IT 
COMMON I I X II I X 
COMMON /MAXI XMAX 
COMMON INGNI NG 
COMMON jPP~1 HPRINT 
COMMON /ROPI ROPE 
D LMENS ION CO·C 50) 
DIMENSION AO(50) 
DIMENSION NG(50) 
DIMENSION S(50) 
D1MENSION CONI5b) 
LOGICAL ROPE 
REAL NG . 

NORMAl. EXIT 

DOUBLE PRECISION .HPRINT 
DATA (CO(I), I = 1,501 150 * 1.0/ 
PRINT 50 

50 FORMATI1HO * O-O-O-O-O-O~O-O-O-O-O * 
PRINT 55 

55 FORMATI1HO * THE DATA FROM SORT IS * 
PRINT 50 
L = NGROUo 
DO 20 I = 1,L 
AOI I I = 0.0 

. CQNI 11.:= COJ I ) 
COl II :. 1.0 

20 CONTINuE ._ 
IC = 1 
IX '" 1 
X = 0.0 

3 CONI I.NU.E _. _____ ._ 
ROPE = .TRUE. 
CAl.L D I M.E.N I.XL ... 
CAl.L SRCDRP(XI 
ROf>E .. = .. t FAl.SE •...... 
DO 4 I = 1,L· 
AQI :;AQJ1L .. ___ .. 
cor", Sill 
AQCI) ... =. AMAX1{AQI, CQII 

4 CONTINUE 
x=.x .-foSNGLCl:tPR I NT) 
IC = IC + IP 
I x.==_ tX_+.L ... _.... .. 
IF IX .GT. XMAX) GO TO 75 
GO. TO 3 

* I 

/.5" 
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75 CONTINUE 
DO 150 .1 = 1.NGROUP 
IF (AQ(I) .EQ. 0.0) AQII) = 1.0E-290 
CQ (I, = 1.0 I AQ ( I ) 

150 CONTINUE 
PRINT 2, (CQIII, I = 1.L) 

2 FORMATI1HO * THE CQII) ARE * I 13E15.51' 
RETURN ..... 
END 

FUNCTI ON U I I X ) 
COMMON IAAAI A 
COMMON ICCCI c1. C2 
COMMON/SSSI SC~ SC8. SCP 
DATA XO 13.537821 
IF IX .Gr. XPI GO TO 5 
UI= 1.0 + C1 * SCP * ERF(SC8 * X) 
RETURN 

5 UI·= C2 * EX;:' I A *·X) 
RETURN 
END 

SUBROUTINE SOLV 
COMMON 1100i it 
COMMON 11501 VL 
COMMON 14001 GB 
COMMON 15001 GX. GX1 
COMMON 19501 VI. V2. V3 
COMMON lAAAI A 
COMMON ICRLI CRAWL 
COMMON IDDDI DUDX 
COMMON IDRGI DRAG 
COMMON IGRPI NGROUP 
COMMON IHNGI HANG 
COMMON IIXII IX 
COMMON I IT I I IT 
COMMON ILGLI .LG 
COMMON IMAXI XMAX 
COMMON I"'1LMI ML 
COMMON IPPPI HPRINT 
COMMON ISLW/SLOW 
COMMON IWHTI WAIT 
DIMENSION VLI25.50) 
DIMENSION VI25,50) 
DIMENSION VS(25.50) 
DIMENSioN V1(25,50), V2(25,50), V3125,50, 
DIMENSION C(50) 
DIMENSION GB(50) 
DIMENSION GX(SO), GX1(50) 
DIMENSION VV(50) 
DOUBLE PRECISION HPRINT 
LOGICAL SET 
LOGICAL NET 
LOGICAL SLOW 
LOGICAL DRAG 
LOGICAL CRAWL 
LOGICAL WA IT 



LOGICAL HANG 
DATA SLOW I.TRUE.I 
DATA DRAG I.TRUE.I 
DATA· cR-iiwi.- -/~FALSE~ I 
DATA WAIT I.FALSE.I 
DATA HANG·I.FALSE.I 
DATA. lET 11.0E-2901 
DATA E~ 10.333331 
DATA XO 13.537821 
CRAWL ~ -.FALSE. ~-
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IF IABSIDUDX) .GT. O.§) CRAWL = .TRUE. 
WAIT = .FALSE. 
IF IABSIDUDX) .GT. 0.6) WAIT = .TRUE. 
HANG'; .FALSE. 
IF IABSlbUDX) .GT. 0.7) HANG·= .TRUE. 
PRINT 10 . 

10 FORMAT(IHO * ==================_:a=== * 
PRINT 15 

15 FORMATI1HO * THE DATA FROM SOLV IS * 
PRINT 10 
PRINT 190 

190 FORMATIIHO * THE CONSTANTS FROM SOLV ARE * ) 
SET = .FALSE. 
NET = .FALSE. 
X = 0.0 
DO 100 1= ltJX 
IF II .EQ. II GO TO 95 
DO 90 IG = 1,NGROUP 
QN = V(I,IG) 
lQ = V2II.IG) - VIIIX.JG) * V311.IG) + Vlll.JG, 
IF. IlQ .LT. ZET) ZQ = ZET 
V(I.JG) = lQ 

90 CONTINUE 
95 CONT.INUE 

PRINT 150! X, IV(I.IG), IG = 1.NGROUP) 
150 FORMAT(lHO * THE VIIX.IG) AT X = * E15.5 * ARE * I 14E15.5)1 

X = X + SNGLIHPRINT) 
100 CONT I.NUE 

RETURN 
END 

SUBROUTINE DERIV2IX.V.FI 
COMMON 12001 ALPHA. BETA 
COMMON 14001 .. G.6 ___ . 
COMMON 15001 GX. GXl 
COMMON /7501 T 
COMMON 19751 S 
COMMON IGRP 1 NGROUP 
COMMON ILLLI L 
COMMON IMLMI ML 
COMMON INGNI NG 
COMMON INLNI N 
COMMON (PSTI POST 
COMMON IsoRI SWPR 
COMMON ISSSI SC, SC8. SCP 
COMMON IYYYI 1M 
DIMENSION Yll)~ F(1) 
DIMENSION ALPHA(50). BETA(50) 



DIMENSION G8(50) 
DIMENSrON GX(50). GX1(50) 
DIMENSION 5(50) 
DIMENSION NG·(50) 
DIMENSION T(50) 
LOGICAL SWPR 
LOGICAL FLAG 
LOGICAL POST 
REAL NG 
IF (POST) FLAG = .TRUE. 
FLAG = .FALSE. 
IF (FLAG) 30, 15 

30 CONTINUE 
PRINT 45 
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45 FORMAT(l~O * ===========2======.====== * 
PRINT 50 

50 FORMAT(lHO * THE DATA FROM DERIV2 IS * 
PRINT 45 

15 CONTINUE 
HX = HIXI 

90 FORMATC5E15.5) 
95 FORMAT(IHO)- . 

DO 250 I = I.NGROUP 
F(I) =·SIIliHX· 
GO TO 250 

250 CONTINUE 
IF (FLAG) 260~. 210 

260 CONTINUE 
PRINT 95 
PRINT 90, (SCI). I.L) 
PRINT 95 
PRINT 90. (YCI" = I,Ll 
PRINT 95 
PRINT 90. IFII). = 1.L1 
PRINT 95 
LI = L + 1 
PRINT 90. CFII). = L1.LI) 

210 CONTINUE 
RETURN 
END 

SUBROUTINE SRCDRP(XI 
COMMON 11001 V 
COMMON 11501 VL 
COMMON 12001 ALPHA. BETA 
COMMON 14001 GB 
COMMON 15001 GX. GXI 
COMMON 16001 NS. XS 
COMMON 11501 T 
COMMON 18501 GL. ·XNG 
COMMON 1915/5 
COMMON IABTI AT. BT. VT 
COMMON ICICI IC 
COMMON ICQCI CQ 
COMMON IGRPI NGROUP 
COMMON IHPHI HP 
COMMON I I TI I IT 
COMMON IIXII IX .. 



COMMON IJJJI IN 
COMMON IJOJI JO 
COMMON IloGLI loG 
COMMON' IloloLI L 
COMMON IMAXI XMAX 
COMMON IMLMI ML 
COMMON INGNI NG 
COMMON IPPPI HPRINT 
COMMON IPSTI POST 
COMMON IROPI ROPE 
COMMON ISETI SETUP 
COMMON ISJSI SJ 
COMMON ISPNI SPAN 
COMMON ISPRI SWPR 
COMMON ISTRI GSTAR 
COMMON IYYVI 1M 
DIMENSION Y(50) 
DIMENSION GX(50). GXl(SO) 
DIMENSION V(2S,50) 
DIMENSION NGISO) 
DIMENSION ALPHA(SO), BETAISO) 
DI~ENSION VLI2S,SO) 
DIMENSItiN D(S,50) 
DI~ENSION GBI.SO) 
DIMENSION COl SO) 
DIMENSION XS(25) 
DIMENSION S(SO) 
DIMENSioN- J<)(SO) 
DIMENSION SlISO.SO) 
DIMENSION T(50) 
DIMENSION A(SO), B(SO) 
DIMENSION GLISO). XNG(SO) 
DIMENSIONSJISO) 
DATA C 10.31 
DATA SO 10.01 
REAL IN 
REAL JO 
DOUBLE PRECISION HPRINT 
LOGICAL SWPR 
LOGICAL FLAG 
LOGICAL POST 
DATA lET 11.0E-28S1 
LOGICAL ROPE 
LOGICAL KEEL 
LOGICAL SETUP 
REAL NG 
FLAG = .FALSE. 
IF (POST) FLAG = .TRUE. 
IF (ROPE) FLAG = ~TRUE. 
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IQ = IFIXIX I SNGLIHPRINT» + 1 
IF (IQ .GE. NS) IQ = NS - 1 
IR = IQ + 1 
Xl = IX - XSIIQ» I SNGLIHPRINT) 
DO 10 I = I.L 
F = V ( I Q, 1) + .X 1* (V I I R , I) - V ( I Q , I ) ) 
IF IF .LE. lET) F = lET 
FA = ALPHAII) *_F 
FB = BETAII) * F 
IF IFA- .LT. lET) FA = ZET 



IF I FB .LT. lET! FB 
AlII:: AL.OGIFAI 
BI I I = AL.OGIFBI 
Y I I I = ALOG IF) 
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lET 

10 CONTINUE 

ISO 

DO ISO I = ltMl 
G1 = GBIII + INGII) - 1.0) /2.0 
G2 GBII+lI - ING(f+l) - 1.0) / 2.0 
G1 AL.OGIGl) 
G2 = AL.OGIG2) 
BQ BII) + IG1 - GlII)) / XNGII) * leII+1) - BII)I 
AQ All) + IG2 - GUI)) / XNGIII * IAlI+lI - All)) 
AQ :: EXPIAQ) 
BQ = EXPIBQ) 
JQ(I)=8Q-AQ 
IF I A8S·IJQII)) .LE. lET) JOII) = 0.0 
CONTINUE 
JQI Ll = 0.0 
Il :: IC 
SIll = IN / BETAIll 
5.(1) = C * 51U 
5J(1) = SIll 
IF lIT .NE. 0) 5(1) 
IF lIT .NE. 0) 5(1) 
IF lIT .NE. 0) 5(1) 
IF ISETUP) 5l11L.1I 
DO 2S0 I = 2,Ml 

= 0.5 * 
:: 0.5 * 
= 0.5 * 

5111 

IF II .GE. LG) GO TO SO 
5(1) = jN 1 BETAIII 
5(1) =C * SOl 
SJII) :: IJOIY-ll "" JOII)) / 
IF lIT .NE. 0) SIll = o.s * 
IF lIT .NE. 0) 5(1) = O.S * 
IF lIT • .'<IE. 0) SII) = 0.5 * 
IF ISETUP) 5ZIIl.1) = SIYI 
GO TO 2S0 

C 5 111 + Sl I I l.1I ) 
15(1) + Sllll.l)) 
15(1) + SlCIl.1)) 

NGI I) 
151 I) 
151 I ) 
151 II 

+ Sl I I l. I ) I 
+ Sll Il. I) ) 
+ SlIIl.IH 

50 CONTINUE 

2S0 

5(1) = IJOll-11 - JOII)I 1 NGIII 
SJ I I) :: 5 I I I 
IF lIT .NE. 01 SIll 
IF lIT .NE. 01 5(1) 
IF lIT .NE. 01 SIll 
IF IsETUPI Sll IL.I I 
CONTINUE 

0.5 * 
= 0.5 * 
:: 0.5 * 
= 5(1) 

151 I) + Sl I I l. I ) ) 
15(1) + Sl(Il.I)) 
15(1) + SZIIl,I)) 

SIL.) = IJQIl-l) • JaIL)) / NGll) 
SJ III = 5 III 
IF lIT .NE. 01 SIll :: 0.5 * ISIL) + 5lIIL.,L.)) 
IF lIT .• NE. 0) SIL) = 0.5 * ISlll + SlIIl,L.)) 
IF lIT .NE. 0) SIll = 0.5 *ISIL.) + SlIIl.l)) 
IF ISETUP) SllIL.L.) :: SIll 
IF I .NOT. FL.AG) GO TO 300 
PRINT 7S. ISci). 1= 1,L.) 

75 FORMATIlHO * THE GROUP SOURCES ARE * /C7E1S.S)) 

17S 

400 

IF IROPE) GO TO 300 
PRINT 17S. IJOII), I = 1,l) 
FORMATI1HO * JOII) *1 17ElS.S)1 
PRINT 400, IAII). 1= 1.l) 
FORMATIIHO * THE All) ARE * 1 C7ElS.S)) 
PRINT 4S0. 18(1). I = l,l) 



• 
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450 FORMATIIHO * THE B'I~ ARE * I 17El,.5'! 
300 CONTINUE 

DO 200 J= .. 1.t.J ...... __________ _ 
SII) = CQIII * SIll 

200 CONTINUE: __ 
RETURN 
END 

SUBROUT ntl"E: -Dr MENI)()­
COMMON 12001 ALPHA. BETA 
COMMON J350/YZ-
COMMON 14001 GB 
COMMON 15001GX. GX 1 
COMMON 16001 NS. XS 
COMMON lABtJ-AT. BT;VT 
CO",MON IBBBI BC 
COMMON IBRBI B 
COMMON IFFFI FLAG 
COMMON IFsT I FIRST ----. -
COMMON IGRPI NGROUP 

-COMMON frxfl-rx 
COMMON / IT I I IT 
COMMON lJJJi - jN 
COMMON IJQJ/ JQ 
COMMON )pp~i HP~l~T 
COMMON IPSTI POST 
COMMON IQQQ-' -GiX.NA. OMEGA 
COMMON ISPRI SWPR 
COMMON IWZW/WI. W2, W3. W4 
COMMON IZZZI CZI' CZ2, CZ3, CZ4. CZ5. CZ6 
DIMENSIONALPHAI5b" BETAI501 
DIMENSION GBI501 
DIMENSION ~~(50). GXl1501 
DIMENSION JQ(50) 
DIMENSION XS(25) 
DIMENSION YZ125,501 
REAL IN - --. -
REAL JQ 
LOGICAL SWPR 
LOGICAL FLAG 
LOGICAL POST 
LOGICAL FIRST 
DOUBLE PRECISION HPRINT 
DATA FIRST_ t_.JR!.l.E_" ,_ 
FLAG = .FALSE. 
IF (POST) FLAG = .TRUE. 
WI = WX(X) 
CALL JZERO(XI 
DO 25 I = I.NGROUP 
IF (FIRSTJ GO TO 500 
YT = YZ(IX,I) + (X - XS<IX)) * IYZIIX+l.l) - YZIIX.III 

$ I SNGLIHPRINT) 
GO To" 550 

500 CONTINUE 
YT = WI 
YT = ZEROIX,YT.I) 
YZIIX,I) = YT 

550 CONTINUE 



ALP = ALPHAI!X,VT,II 
BTA = BETAIIX,VT,I) 
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BETAI!) = QX * GXII) * BT~ 
ALPHAII) = QX * tX(I) * ALP 

Z5 CONTINUE 
IF (POST) FLAG = .TRUE. 
IF (FLAG) GO TO 50 
RETURN 

SO CONTINUE 
PRINT I 

1 FORMAT(IHO * 1-1-1-1-1-1-1-1-1-1-1-1 *' I 
PRINT 5 

5 FORMATIIHO * THE DATA FROM DIMEN IS * ) 
PRINT 1 
PRINT 10, X 

10 FORMATIIHO * X = * E15.5) 
PRINT 75. IN 

7S FORMATIlHO, 15X, * IN = * ElS.S) 
PRINT 15, IBETAII)~ I = "l,NGROUP) 

15 FORMAT(lHO * BETAII) * I 17E1S.S)) 
IF (IT .NE. 0) GO TO ISO 
PRINT 90. WI 

90 FORMAT(IHO * THE GAS TEMPERATURE IS * ElS.S) 
PRINT 100. (~Z(IX,I). 1 = 1,NGROUP) 

100 FORMATIlHO * THE DROP TEMPERATURES ARE * 1(7ElS.SI' 
PRINT z6, IALPHA(rl, I = l,NGROUPI 

ZO FORMAT(lHO * ALPHA(I) * 1 17E1S.SI) 
150 CONTINUE . 

RETURN 
END 

SUBROUTINE J~ERO(X) 
COMMON IABClBKTW, Xl. 
COMMON IJJJI IN 
COMMON IKKKI AC, KTW 
COMMON IMAMI MA 
COMMON IQQOI OX. NA, OMEGA 
COMMON ISIGI SIGMA, DENS 
COMMON ISTRI GSTAR 
COMMON ./WZWI WI, WZ, W3, W4 
REAL KTW 
REAL NA 
REAL IN 
REAL MA 
DATA H 16.63E-Z71 
IF (X .GT. 0.01 GO TO S 

1 CONTINUE 
IN = 0.0 
GSTAR = 1.OE+Z90 
RETURN 

5 CONTINuE 
I = 1 
VT = WI 
BTA = BETAlIX,VT,I) 
S = SUPSATlX) 
IF (S .I.E •. 1.0.l .GO TO 1 
WI. ~ H ISORT!2.0 * 3.1416 * MA * KTW ~ W11 
GSTAR = (Z.O I 3.0 * BKTW I WI I AI.OG(S)I**3 



,-

-161-

GZ = GEXIGSTAR) 
GZ= - 1.0 I 3.0 * BKTW I WI * GZ 
USTAR = UXIX) * EXPIGZ) 
IN = Z.O * BTA I OM~GA I NA * SORTISIGMA I KTW I WI) * USTAR 
RETURN 
END 

SUBROUTINE DERIVIIX. v, F) 
COMMON ISSSI SC, SC8. SCP 
COMMON IYYYI 1M 
DIMENSION YIZ). FIZ) 
FIll = YIZ) 
GO TO (1,5) 1M 

1 CONTINUE 
FIZ) = SC * IHIX) * YIZ) - Y(1) * OXIX) I UXIX» 
RETURN 

5 CONTINUE 
F I Z) = SC * (H (X) * Y I Z) - Y ( 1) * OX 1 X) I UX I X) ) 
RETURN 
END 

FUNCTI ON OX 1 X) 
COMMON ICIC! IC 
COMMON 17001 XN, SS 
DIMENSION XN(500), SS1500) 
DATA MM 151 
Z = X 
CALL LAGINT(IC~ XN. SSt MM. K. z. FI 
QX = F 
IF IK .EO. 0) GO TO 10 
RETURN . 

10 PRINT ZO 
ZO FORMAT11HO. * THE TABLE IN LAGINT HAS BEEN EXCEEDED *) 

CALL ABORT 
RETURN 
END 

SUBROUTINE SOLN 
COMMON 18001 U 
COMMON 19001 Ul, UZ 
COMMON IAAAI A 
COMMON ICRLI CRAWL 
COMMON IDDDI DUDX 
COt-1MO~ IDRGI DRAG 
COMMON. IHNGI HANG .' 

COMMON 11111 IC 
COMMON I IT I I IT 
COMMON IMAXI XMAX 

. COMMON IPPPI HPRINT 
COMMON IRHTI RET 
COMMON ISMSI SUM 
COMMON ISLWI SLOW 
COMMON IWHTI WAIT 
DIMENSIoN Yl(Z~). UZ(Z5), U(25J 
DIMENSION US(Z5) 
DOUBLE PRECISION HPRINT 



LOGICAL SLOW 
LOGICAl. DRAG 
LOGICAL CRAWL 
LOGICAL WAIT 
LOGICAL HANG 
LOGICAL RET 
DATA ZER li.OE-061 
DATA XO 13.537821 
PRINT 1 
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1 FORMAT(.lHO * I-I-I-I-I-I-I-I-/~/-I-I * I 
PRINT 2 

2 FORMAT(lHO * THE DATA FROM SUBROUTINE SOLN IS * ) 
PRINT 1 
IF (XMAX .LT. XOI GO TO 75 
51 = 137.0 * U1(ICI - 300.0 * Ul(IC-ll + 300.0 *Ul(IC-21 

s - 200.0 * Ul(IC-31 + 75.0 * Ul(IC-4) -12.0 * UIIIC-51 
51 = 51 I 60.0 I SNGL(HPRINTI 
51 = 51 - A * Ul(IC) 
~2 = 137.0 * U21ICI - 300.0 * U2(IC-l) + 300.0 * U21IC-21 

S -200.0 * U2IIC-3) + 75.0 * U2(It-4) - 12.0 * U21IC-51 
52 = 52 I 60.0 I SNGLrHPRINTJ 
~2 = ~2 - A * U2rIC) 
C2 = - 51 I 52 
GO 10 100 

75 CONTINUE 
C2 = - UI(IC) I U2(ICI 

100 CONTINUE 
RET = .FALSE. 
DO 10 I = 1.IC 
Q ::I U( 1) 

U5nl = Un) 
UIII = Ul(I) + C2 * U2II) 
IF lUll) .LT. ZERI UIII ::I ZER 
IF CU( II .LE. 0.0) RET = .TRUE. 

10 CONTINUE 
PRINT 50. RET 

50 FORMAT(IHO * RET = * LSI 
x ::I 0.0 
SUM = 0.0 
DO 40 I = 1, I C 
PRINT 15. x, UIII 

15 FORMAT(2EI5.5) 
Q = US ( I I 
SUM ::I SUM + ( (U r I) - Q I I Q ) ** 2 
X ~ X + SNGLIHPRINTI 

40 CONTINUE 
5UM = SQRT(SUM) I FLOAT(IC) 
RETURN 
END 

FUNCTI ON UX ( x ) 
COMMON 16001 N5. XS 
COMMON 18001 U ~~ 
DIMENSION XS(25), U(25) 
MM = 3 

1 CONTINUE 
Z = X 
CALL LAGINTCNS. XS, U, MM, K. Z. F) 



• 

IFIK .EO.O) GO TO 10 
IF IF .LT~ 0.0) GO TO 5 
UX " .f __ ... ___ .___. __ .. _ .. 
RETURN 

5 CONTINUE. __ 
IF IMM .EO. 1) CALL ABORT 
MM= 1 
GO TO 1 
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~g~~~~~Tr~HO-·*fHE·TABL-CiN· LAGINT IS EXCEEDED * 
CALL ABORT 
RETURN 
END 

SUBROUTINE-SORCI IX) 
COMMON 14001 GB 
COMMON 14501 SO 
COMMON 16001 NS. XS 
COMMON 1700j X~~ SS 
COMMON 19751 5 
COMMON ·ICQC.-rCQ--
COMMON IDDDI DUDX 
COMMON IGRPI NGROUP 
COMMON IHNGI HANG 
COMMON I IT I I IT 
COMMON IJQJI JQ 
COMMON ILGLIU; 
COMMON ILLLI L 
(OMMON INGNI NG 
COMMON IPSTI POST 
COMMON ISJSI SJ 
COMMON ITSTI XXX 
COMMON IWHTI WAIT 
DIMENSION XN(500). SS(500) 
DIMENSION 5(50) 
DIMENSION SV(50) 
DIMENSION (QI50) 
DIMENSION NG(SO) 
DIMENSION G8(50) 
DIMENSION SQ(500) 
DIMENSION JQ(50) 
DIMENSION SJ(50) 
DIMENSION XS(25) 
LOGICAL POST 
LOGICAL WAIT 
LOGICAL HANG 
REAL NG 
DATA LV 121 
DATA ZEN II.OE-251 
IF I IPOST) .AND. IIX .NE. 1.1 ) GO TO 20 
SUM = 0.0 
DO 5 I = I,L 
SVII) = G8II) * NGII) * SJII) 
IF I I .LE. LV) SV!I) = 0.0 
SUM" SUM + SVII) 

5 CONTINUE 
IF (ABS(SUM) .EQ. 0.0) SUM" 1.OE-290 
SM = - SUM 
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IF ITT .EQ. 0) SSIIX) :: SM .2~ 
IF lIT .EQ. 0) GO TO 10 
IF IIX .EQ. I) ~XX = 0.0 
ABC:: SSIIXI 
SQ(lXI = ABC 
551 IX) = SM 
IF IABSISMI .LT. lENI GO TO 10 
XXX = XXX + I 1551 IX) - ABCI I 551 IX) ) ** 2 

·10 CONTINUE 
IF I.NOT. POST) RETURN 

20 CONTINUE 
PRINT 1, SSIIX) . 

1 FORMATllHO * THE MONOMER EQUATION SOURCE TERM IS * ElS.S) 
PRINT IS, ISVII), I :: 1.l.) 

IS FORMATliHO * THE CONTRIBUTIONS FROM THE GROUPS ARE * I 17E15.S)) 
RETURN 
END 

FUNCTION BETA1IX.YT,II 
COMMON IWlWI WI, W2, W3, W4 
COMMON IBBBI BC 
COMMON IDHFI DEF, KEF 
COMMON ISOOI GX, GXl 
DIMENSION GXISO). GX1(50) 
B = BC * UX~X) I SQRTIYT) 
AB = WI + SQRTlGXI I I I * KEF * SQRTIO.S· * IW1 + YTI I * YT 
AB = AB I 11.0 + SORTIGXIIII * KEF * SORTIO.S * IWI + YT") 
BE TAl :: B I 11.0 + SQRTIGXIIII * DEF * SORTIABI) 
RETURN 
END 

FUNCTION VXIIG) 
COMMON I ABCI BKTW , Xl. 
GX = GEXIG)' 
VXI = EXPI - BKTW * GX) 
RETURN 
END 

FUNCTION Al.PHAIIX, YT, I) 
COMMON /SOOI GX, GX1 
COMMON IABCI BKTW, XL 
COMMON IBRBI B 
COMMON IDHFI DEF. KEF 
COMMON IKKKI AC, KTW 
COMMON IWlWI WI, W2, W3, W4 
DIMENSION GX(50), GXlIS0) 
REAL KTW 
IF II .NE. 0) GJ = .. GXl(l) 
Al = 1.0 I KTW I YT 
A2 = 0.66667 * B * GJ - XL 
AI. = AC * SQRTII.O I YT) 
A = AL * EXP(AI * A2) 
Al.PHAl = A I 11.0 + SQRTIGXII)) * DEF * SORTIO.S * (WI + YT))) 
RETURN 
END 

• 



• 

FUNCTION ZEROIX,YT,I) 
COMMON 15001 GX, GXl 
COMMON IABc/ BKT.W, XL 
COMMON IBBBI BC 
COMMON ICZCI CZ 
COMMON IFFFI FLAG 
COMMON I IT II IT 
COMMON IPSTI POST 
COMMON ISPRI SWPR 
COMMON /TTT I BTA 
COMMON IWZWI WI, WZ. W3, W4 
COMMON IZZZI CZl, ClZ. CZ3, CZ4, CZ5, Ci6 
DIMENSION GX(50), GXI(50) 
DIMENSION EIZ) 
DATA EPSLN II.OE-051 
DATA ECIJ 11.0E-05/, E(Z) 10.01 
LOGICAL SwPR 
LOGICAL FLAG 
LOGICAL MAST 
LOGICAL POLE 
LOGICAL POST 
EXTERNAL PX 
IF CPOST) MAST = .TRUE. 
MAST = .FALSE. 
IF IPOST) POLE = .TRUE. 
POLE = .FALSE. 
IF IMAST) GO TO 50 
IF IFLAG) 50, 75 

50 CONTINUE 
IF lIT .NE. 0) GO TO 75 
PRINT 1 

1 FORMATClHO * 1-1-1-1-1-1-1-1-1-1-1-1-1-1 *) 
PRINT Z 

Z FORMAT(lHO.* THE DATA FROM ZERO IS * ) 
PRINT 1 
FLAG = .FALSE. 

75 CONTINUE 
N = 0 
TEST = 0.0 
IF II .NE. 0) XGX = GXIII) 
W2 = CZ3 * CCZ4 * XGX - XLI 
IF IMASTI PRINT 10, N, YT, TEST, WI 

10 FORMATC lID, 4E15.5) 
5 CONTINUE ' 

W4 = BETAIIX,YT,II 
P = PXIYT,II 
DP= DPX(YT.I) 
YTO = YT 
YT = YTO - P 1 DP 
TEST = IYr - YTO I I YTO 
TEST = ABSITESTI 
N=N+l .{" 
IF IMASTI PRINTjl~, N, YT, TEST, WI 
I FIN· .GT. ZO) GO':;ro 40 
IF C TEST .i..T.EPS·LN )GO TO 25 

40 
GO TO. 5 '. ";:I:i!: 
CONTINUE ;n 
CALL"ZETCZ. YTO, YT, E, PX) . " . >51 



IF IZ .EQ. 0.0) GO TO. IS 
YT = Z 
GO TO 2S 

IS PRINT 20 
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20 FORMATI1HO * ZERO HAS FAI~ED TO CONVERGE * 
CALL ABORT 

2S ZERO = YT 
IF lIT .~E. 0) RETURN 
IF IPOST .AND. I.NOT. MAST)) POLE = .TRUE. 
IF IPOLE) PRINT 10, N. YT. TEST, WI 
RETURN 
END 

FUNCTION PXIYT,I) 
COMMON IALAI ALPHA 
COMMON IClCl Cl 
COMMON IDHFI DEF, KEF 
COMMON ISKTI SMKTW 
COMMON IWZWI WI, W2. W3, W4 
COMMON IllZI Cll, CZ2. CZ3, Cl4, CZS. CZ6 
COMMON ISOOI GX, GXl 
REAL KEF 
DIMENSION GXISO). GX1IS0) 
AZ = '112 I YT 
ALPHA = CZ2 I SORTIYT) 
ALPHA = ALPHA * EXPIAZI 
ALPHA = ALPHA / (1.0 + SORT(GX(I)I * DEF * SORT(O.5 * (WI + YT)II 
AB = WI + SORTIGXIII).* KEF * SORTIO.S * IWI + YT)) * YT 
AB = AB I 11.0 + SORTIGXII)) * KEF * SQRT(O.S * (WI + YTII) 
BETGS = 1.OE+06 I SMKTW I SORTIAB) 
BETGS = BETGS I 11.0 + SQRTIGXlIl) * KEF I SQRTIAB)) 
W3 = CZS * BETGS 
P = YT**4 
P = P + W3 * IYT - WI) 
P = P - CZ + CZ6 * IALPHA - W4) 
PX = P 
RETURN 
END 

FUNCTION DPXIYT,II 
COMMON IALAI ALPHA 
COMMON IDHFI DEF, KEF 
COMMON IWZWI WI, W2. W3' '114 
COMMON IZZZI ClI, Cl2. CZ3. CZ4, CZS. CZ6 
COMMON 15001 GX, GXl 
DIMENSION GX(50), GX1(50) 
AZ = '112 I YT 
DALPHA = - ALPHA I YT 
DALPHA = DALPHA * 10.5 + AZ) 
DP = 4.0 * YT**3 
DP = DP + W3 
DP = DP + CZ6 * DALPHA 
DPX = DP 
RETURN 
END 



FUNCTION ANOTIX, _ _ 
COMMON IWZWI WI. W2. W3. W4 

.COMMON 19QQLJ;J.X.L1:LI\! __ 9}·1.~GA 
1= 0 
WI =.WXIX.) ____ . 
YT = WI 
ALPHA = ALPHAIIX.YT.IJ 
ANOT = QX ~. G1 ~ ALPHA 
RETURN ,. 
END 

FUNCTION BNOTIX) 
COMMON' I'-iizw! WI, W2 ~ W3. W4 
COMMON IQQQ.l_QX .NA, OMEGA 
1=0 
WI = WXIX) 
YT = WI 
BETA = BETAIIX,YT,I) 
BNOT = 6x*-~i~BEiA 
RETURN 
END' . 

. FUNCTION WX(X! ..... 
COMMON IWWW/ TC, PR8 
WX = I~O~!C_* ~R~(?R8 * X) 
RETURN 
END 

FUNCTION SUPSATIX) 
COMMON IABCI.Bi(TW,. XL 
COMMON JKKKI AC, KTW 
COMMON ISUPI PP. 
REAL KTW 
WI = WX(X) 
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SUPSAT UX(X) * EXP(XL I KTW * (1.0 I WI - 1.0» 
RETURN 
END 

FUNCTION VXNOT(X) 
COMMON IABCI BKTW. XL 
VXNOT :: VXINF.! X .~_OJ 
RETURN 
END 

FUNCTION VXINF(X,G) 
COMMON IABCI BKTW. XL 
COMMON IKKKI AC, KTW 
C()~MON IMAMI MA 

1'1 ~g~~g~ ~~~~~ ~~ ~ A~~;~,J~fGA"j' 
COMMON IW.ZWI WI. W,?,j:;;:!J!.~I~ w,'+' 
REAL MA '&-';?)':!:'i' !'.-
REAL NA ,./;<~ r 

REAL KTW 
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DATAH 16.63E-271 .7~ 
IF (X .NE. 0.0) GO TO 5 
GSTAR = 1.0E+290 
VXINF = VXEQ(X,G) 
RETURN 

5 CONTINUE 
WL = H I SQRT(2.0 * 3.1416 * MA * KTW * WI) 
S = SUPSATlX) 
GSTAR = 2.0 I 3.0 * BKTW I WI I ALOG(S) 
GSTAR = GSTAR**~ 
CHI = 1.0 I 9.0 * BKTW .1 WI I GSTAR ** 1.33333 

10 CONTINUE 
Z = SQRTICHI) * IG - GSTAR) 
IF (Z .GT. 3.0) GO TO 25 
GO TO 15 

25 CONTINUE 
GX = GEXIGI 
V = G * ALOGISI - CHI * IG - GSTARI ** 2 - BKTW * GX I WI 
V = EXPIV) 
V = 0.5 * UXIXI * V I SQRT(3.1416 * CHI) I (G- GSTAR) 
GO TO 20 

15 CONTINUE 
V = VXEQIX,G) 
ZA = ABSIZ) 
IF (Z .Lt. 0.0) E = - ERFIZA) 
IF ez .GE. 0.0) E = ERFeZA) 
V ~ 0.5 * V * el.O - El 

20 CONTINUE 
VXINF = V 
RETURN 
END 

FUNCTION VXEQeX. G) 
COMMON IABCI BKTW. XL 
COMMON IKKKI AC. KTW 
COMMON l"'1AMI MA 
COMMON IQQQI QX. NA. OMEGA 
COMMON IWZWI WI. W2. W3. W4 
REAL "'1A 
REAL NA 
REAL KTW 
DATA H 16.63E-271 
5 :; SUPSATeX) 
WL = H I SQRT12.0 * 3.1416 * MA * KTW * WI) 
V = G * ALOGeS) 
GX = GEXeGl 
V = V - BKTW * GX I WI 
VXEQ = UXeX) * EXpeVl 
RETURN 
END 

FUNCTION GEXeG) 
G.EX = G**0.66667 
RETURN 
END 



C 

L: 

FUNCTION HI X) 
DATA XO 1 3.53782 1 
DATA HINF 1 -0.88447 1 
DATA EPS Il.OE-061 
IF IX .GT. XO) GO TO 10 
H = - EPS - 0.25 * X 
RETURN 

10 H = HINF 
RETURN 
END 

FUNCTION DHDX(X) 
DATA XO 13.537821 
IF IX .GT. XO) GO TO 5 
DHDX = - 0.25 
RETURN 

5 DHDX = 0.0 
RETURN 
.END 

SUBROUTINE ZET(Z,Al.Bl.ER.F) 
DIMENSION ERIl) 
A=Al 
B=B1 . 
RE=ABS(ERIl') 
AE=ABSIER(2)) 
FA=FIA) 
FB=FIB) 
IF IIFA*FB .l.T. 0.0) .AND. IAMAXIIRE.AE) .GT. 0.0), GO TO 70 
H=O.O 
GO TO 110 

70 C=A 
FC=FA 
S=C 
FS=FC 

10 CONTINUE 
H=0.5*IB+C) 
T=ABS(H*RE)+AE 
IF(ABS(H-B) .LE. T) GO TO 110 
IF IABS(FB) .LE. ABS(FC)) GO TO 15 
Y=B 
FY=FB 
G=B 
FG=F8 
S=C 
FS=FC 
GO TO 20 

15 Y=S 
FY=FS 
G=C 
FG=FC 
S=B 
FS=FB 

20 CONT.INU~. ________ _ 
IF IFY .NE. FS) GO TO 21 
B=H 

..71 .• 

ZER00002 
ZER00003 
ZER00004 
ZER00005 
ZER00006 
ZER00007 
ZER00008 
ZER00009 
ZEROOOIO 
ZEROOOll 
ZER00012 
ZER00013 
ZER00014 
ZER00015 
ZER00016 
ZER00017 
ZER00018 
ZER00019 
ZER00020 
ZER00021 
ZER00022 
ZER00023 
ZER00024 
ZER00025 
ZER00026 
ZER00027 
ZER00028 
ZER00029 
Z'ER00030 
ZER00031 
ZER00032 
ZER00033 
ZER00034 
ZER00035 
ZER00036' 
ZER00037 



C 

GO TO 29 
21 CONTINUE 

E=IS_FY-Y*FS1/lFY-FSI 

-170-

IF,IABSIE-S) .LE. TI E=S+SIGNIT,G-SI 
IF IIE-HI*IS-EI .LT. 0.01 GO TO 2a 
B=E 
GO TO 29 

28 B=H . 
29 FB=fIBI 
30 CONTI NUE . 

IF IFG*FB .LT. 0.01 GO TO 35 
C=S 
FC=FS. 
GO TO 10 

35 CONTINUE 
C=G 
FC=fG 
GO'TO 10 

110 Z=H 
RETURN 
END 

fUNCTI ON ERF I X I 

C ERF=2/SQRT(PII*INTEGRAL OF EXP(-T*TI FROM 0 TO X. 
C USING AN APPROXIMATION DUE TO HASTINGS GOOD TO SEVEN 51 
C USING AN APPROXIMATION DUE TO HASTINGS. A~SOLUTE ERROR ABOUT 3E-7 
C 

DIMENSION AI61 
DATAA/.0000430638,.0002765672,.OOOI5~0143,.0092705272,.0422820123 

It.0705230784 I 
T=AllI*X 
DO 10 1=2,6 
T=!T+A( III*X 

10 CONTINUE 
T=l./I T+1.) 
ERF=1.-T**16 
RETURN 
END 

SUBROUTINE LAGINTI Nt A, F, M, K, X, Y ) 
DIMENSION All), Fll) 

C DETERMINE INDEX OF TABLE VALUE NEAREST THE INTERPOLATE. 
CALL BAINSI A, N, X, I I 
IFI I.EQ.O ) GO TO 10 
IFI X.EQ.AII)·) GO TO 9 

C DETERMINE INDEX OF THE FIRST POINT TO BE USED IN THE INTERPOLATION. 
J = MINOI MAXOI I - M/2, 1 ), N - M ) 
IF( M.EQ.l.AND.I.LE.N":l.AND.X.LT.AII) ) J = J - 1 
CALL LAGRNGI A(J), FIJ), M, X, Y I 

10 K = I 
RETURN 

9 Y = FIll 
GO TO 10 
END 

SIBFTC LAGRNG 
SUBROUTINE LAGRNGI A,F, M, X, Y ) 

ZER00038 
ZER00039 
ZER00040 
ZER00041 
ZER00042 
ZER00043 
ZER00044 
ZER00045 
ZER00046 
ZER00047 
ZER00048 
ZER00049 
ZER00050 
ZER00051 
ZER00052 
ZER00053 
ZER00054 
ZER00055 
ZER00056 
ZER00057 



" 
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DIMENS10N All11, F(ll'. DAll1,. 0/11.111 

. DATA IOUl.,_t~l..d~l,J.~J / 11*1.0 I 
C**94 

15 L = M + 1 
C FORM TABLES. 

FN = 1. 
DO 1 KK ... I. i.. 
DAIKKi = AIKKI - X. 
IFI DA(Kk.I.EQ.(j~(j-1 GO TO 7 
FN = FN*DAIKKI 

1 CONTINUE 
KK = 1 
LL " 2 

2 DO 3 JJ " LL, L 
DIKK.JJf " DAIKKj- DAIJJI 

3 DIJJ.KK) = -DIKK.JJ) 
KK = KK + 1 
LL = KK + 1 
IFI LL.LE.LI GO TO 2 

C COMPUTE INTERPOLATED VALUE. 
v " O~ 
DO 6 KK = I. L 
FO = 1. 
DO 5 JJ os I. L 

5 FD " FO*DIJJ.KKI 
6 V = V + I FN*FIKKI 1(1 DA~KKI*FO 

RETURN - -_. . 
7 Y = FIKKI 

RETURN 
END 

srBFTC BAINS 

C 
C 
C 
C 
C 

SUBROUTINE BAINSI SLIST. MM. Z. K I 
DIMENSION SLISTl11 . 
SLIST=TABLE. WHICH MUST BE MONOTONICALLV INCREASING 
M= NUMBER OF ENTRIES IN SLIST 
Z=VALUE TO BE F()UND I N TABLE 
K=SUBSCRIPT OF VALU~ IN TABLE NEAREST TO Z 
PROGRAM RETURNS K = 0 IF Z IF OFF TABt.F. 
M=MM 
Ll=1 
L2=M 
.K=1 
IFIZ-SLISTI111 1.15.3 

3 K=M __ _ 
IFISLISTIMI-ZI 1.15.9 

9 K=M/2 
IFIZ-SLISTIKII 20. 15. 29 

20 L2=K 
GO TO 23 

29 Ll=K 
23 IFIL2-Ll-11 1.14.25 
25 M=L.l+L2 

GO TO 9 
14 IFI2.*Z-SLISTILII-SLISTIL2)1 30.15.31 
30 K=Ll 

GO TO 15 
31 K=1.2 

GO TO 15 

.?J 



c 

C 

1 K = 0 
15 RETURN 

END 
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FORTRAN IV SUBROUTINE INTOCNO,X,DERI ,Y,F,T,HPRO) 
COMMON IACYI ARCY 
COMMON I]NTCI IPMX,AREF,EMAX,SSSR,HFAC,SWAM,SWEX 
COMMON IINTPI HPR.XX,N,EUB.E~B,IP,IT,NRKS,SWIN 
COMMON ./YYYI 1M· 
DIMENSION Y(1),F(1),T(8,1) 
LOGICA~ SWAM,SWEX,SWIN 
LOGICA~ ARCY 
INTEGER HFAC 
DOUB~E PRECISION T,HPRO,HPR,XX 
DATA IPMX.AREF,EMAX.SSSR,HFAC.SWAM,SWEX 

S Il024,1.0.1.OE-6,100.0,2 •• TRUE ••• TRUE.1 

IPMX = 2 ** 45 
IF (ARCY) EMAX = 1.0~-05 
IF C.NOT. ARCY) EMAX = 1.OE-02 
HPR=HPRO 
XX=DBLE(X) . 
N=NO 
EUB=EMAX 
ELB=EMAX/.SSSR 
IP=l 
IT=O 
NRKS=O 
SWIN=SWEX 
CA~L DERI (X,y.F) 
DO 9 I =l.N 
T(5.I)=D9LE(Y(I)) 

9 CONTINUE 
RETURN 
END 

SUBROUTINE INT(X,DERI ,Y,F,T.SWPR 
X ) 

COMMON IINTCI IPMX.AREF,EMAX,SSSR,HFAC.SWAM,SWEX 
COMMON IINTPI HPR,XX,N.EUB,ELB,IP.IT,NRKS.SWIN 

DIMENSION Y(1),F(1),T(8,1) 
LOGICAL SWAM,SWEX,SWIN . 
LOGICAL SWPR 
INTEGER HfAC 

DOUBLE PRECISION T.HPR.XX 
DOUB~E PRECISION D,H 

6000 
C 

FORMAT (36HO CANNOT DECREASE H BECAUSE OF HMIN. 

1 

C 

CONTINUE 
SWPR= .• FALSE .• 
TEST=O.O 
H=HPR/DBLE(FLOAT(IP*24)! 
IF (CNRKS .LT. 3) .OR. (.NOT. SWAM!) GO TO 200 

C ADAMS-MOULTON STEP. 
100 CONT I NUE. 

DO 109 I=l.N 
D=DBLE(F(I)) 

lAM 0001 

lAM 0002 
lAM 0003 

lAM 0004 
lAM 0005 

lAM 0006 
lAM 0007 
lAM 0008 
lAM 0009 
lAM 0010 

lAM 0011 
lAM 0012 
lAM 0013 
lAM 0014 
lAM 0015 
lAM 0016 
lAM 0017 
lAM 0018 
lAM 0019 
lAM 0020 
lAM 0021 
lAM 0022. 
lAM 0023 
lAM 0024 
lAM 0025 
lAM 0026 
lAM 0027 
lAM 0028 
lAM 0029 
lAM 0030 
lAM 0031 
lAM 0032 
lAM 0033 
lAM 0034 
lAM 0035 
lAM 0036 

.lPE16~8.120) lAM 0037 
lAM 0038 
lAM 0039 
lAM 0040 
lAM 0041 
lAM 0042 
lAM 0043 
lAM 0044 
lAM 0045 
lAM 0046 
lAM 0047 
lAM 0048 ", 
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TI4,1)=0 ..7.5" lAM 0049 
Y(1)=SNGLfTI5.I)+H*1 . lAM 00.50 

X s 5. 000*D-59. OOO*T 1 3.'I'r+3l. ODO*TI 2'. 1)- 9.000ltT 11. I) II lAM 0051 
(7' .• ,<': 109 CONTINUE ',lAM 0052 

X=SNGLIXX+24.000*H) lAM 0053 
CALL DER I I x.y, Fl "lAM 0054 

DO 119 I=1,1\j .:lAM 00S5 
4,· D=DBLE IFI I) ) !tAM 0056 

0=1 ·.TIS',j)+H*1 ,tAM OOS.7 
X 9.0DO*0+19.300*TI4.I)- 5.0DO*TI3.I)+ Tl2.I·) ) ) lAM 0058 

Tl6,I1=D -lAM 0059 
E=ABSISNGLIOJ-YII)J/14.0 .- lAM 0060 
TEST=AMAX1IE/AMAX1IAREF.A3S(SNGLIOII)iTE~T1 lAM 0061 

119 CONTINUE lA'M 0062 
C lAM 0063 

GO TO 300 lAi" 0064 
C lAM 0065 
C lONNEVELO STEP. lAM 0066 

200 CONTINUE lAM 006.7 
DO 209 I=1'N lAM 0068 
D=DBLEIFI I) 1 lAM 0069 
TI 4, I J =0 lAM 0070 :, ,'~ 

.C 1 lA~ 0071 
YIIJ=SNGLITIS,IJ+H*I lAM 0072 '.' 

X 12.000*D II lAM 0073 
209 CONTINUE lAM 0074 

X=SNGLIXX+12.000*H) lAM 0075 
CALL DERI IX,Y,F) lAM 0076 

DO 219 I=ltN lAM 0077 
O=OBLEIFIIJI lAM 0078 
Tl6,I'=0 LAM 0079 

C: 2 l.~M 0080 
YIII=SNGLITI 5 tI I+H*1 lAM 0081 

X 12.000*0 II l"1M 0082 
, 219 CONTINUE lAM, 0083 '; ,.' 

CALL DERI IX.Y,FJ l:~M 0084 
DO 229 I=1,N. lA,"1 0085 
O=DBLEIFlIll lAM 0086 
Tl7, I) =D lAM 0087 

C 3 lAM 0088 
YIII=SNGL(TI5,Il+H*( lAM .0089 

X 24.0DO*0 II lAM 0090 
229 CONTINUE lAM 0091 

X=SNGLIXX+24.0DO*HI lAM 0092 
CALL .. DEfU. ! .X .. LY.,.fJ lAM 0093 

DO 239 I=1,N lAM 0094 
D=DBLE( FU) L lAM 0095 
Tl8,I J=D lAM 00 96 

,( 4 .. , lAM 00,97 
YII)=SNGLITI5,I)+H*1 l~M 0098 

X 3 ..• 7S[)9!J( 4 '.U.:f:S,' 2 50.o*J 1 6, I ) +9. 75DO*TI 7. I) -0. 7SDO*D II l~M 0099 
239 CONTINUE DAM 0100 

X=SNGL.IXX+18 .900*Hl . lAM 010.1 
vi CALL DERI ex, y, F) lA'M 0102 

DO 249 I=ltN lAM 0103 
o";OBLE I F (I II .. ' lAM 0104 
E=ABSISNGLIH*I lAt;1 0105 

f" ... v X :'i6'.ODO*T~-4; II":4a.o'Do*TI 6, 11+48. ODo*'TI 7, I1+48 .0bO*TI 8, II lAM 0106 
X -128.0DO*0 '" lAM 0107 

.';, 

.~::. 
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