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Abstract

Summary: Analysis of the composition of heterogeneous tissue has been greatly enabled by recent

developments in single-cell transcriptomics. We present SCell, an integrated software tool for qual-

ity filtering, normalization, feature selection, iterative dimensionality reduction, clustering and the

estimation of gene-expression gradients from large ensembles of single-cell RNA-seq datasets.

SCell is open source, and implemented with an intuitive graphical interface. Scripts and protocols

for the high-throughput pre-processing of large ensembles of single-cell, RNA-seq datasets are

provided as an additional resource.

Availability and Implementation: Binary executables for Windows, MacOS and Linux are available

at http://sourceforge.net/projects/scell, source code and pre-processing scripts are available from

https://github.com/diazlab/SCell.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: aaron.diaz@ucsf.edu

1 Introduction

Single-cell sequencing enables heterogeneity assessments at unprece-

dented resolution. At a cost comparable to sequencing a sample in

bulk, hundreds of single-cell datasets can instead be generated. We

present SCell, a software tool to perform outlier filtering, to normal-

ize cell-cycle effects, to select genes for dimensionality reduction and

to estimate inter-sample expression gradients. Several groups have

proposed reconstructing the gene-expression kinetics of develop-

mental processes from transcriptomics data, by summarizing gene

expression along the backbone of a spanning graph of the samples’

PCA coordinates (Bendall et al., 2014; Magwene et al, 2003;

Trapnell et al, 2014). As single-cell sequencing becomes more widely

adopted, the large number of available samples makes direct regres-

sion of gene expression on PCA coordinates an attractive alterna-

tive. SCell can regress/interpolate gene expression on PCA space,

visualize expression gradients, and estimate expression kinetics

along minimum spanning trees and minimum weight paths. These

tools are accessible through an interactive, graphical interface.

2 Results

2.1 Quality control and pre-processing
To identify outlier libraries, we developed a strategy to estimate genes

expressed at background levels in a given sample. We then filter sam-

ples whose background fraction is significantly larger than average.

Our approach builds on previous methods for sequencing data based

on order-statistics (Diaz et al., 2012; Xu et al., 2010) (Supplementary

Materials M1, Supplementary Figure S1A). In our tests, samples that

had a small q-value for our Lorenz-statistic had low complexity, as

measured by Gini-Simpson index, and/or they had low coverage, as

estimated by the Good-Turing statistic (Supplementary Figure S1B).

Moreover, in our data the Lorenz-statistic correlated with the results

of live-dead staining (Pearson-correlation 0.74). SCell displays these

quality metrics, Gini-Simpson index and user’s metadata, including

the number of mapped reads and the results of live-dead staining, in

an interactive expression profiler (Supplementary Figure S1C). SCell

also reports library coverage and marginal-return estimates based on

PRESEQ (Daley and Smith, 2014) (Supplementary Materials M1).
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2.2 Normalization and feature selection
We extend remove-unwanted-variation using control genes (RUVg)

(Risso et al., 2014) to normalize single-cell data for dimensionality

reduction and clustering. RUVg utilizes ordinary-least-squares re-

gression to produce normalized counts, we implement a robust vari-

ant: iteratively reweighted least squares with a bisquare weight

function (Supplementary methods M2). SCell can produce counts

normalized by any combination of: (i) Cyclins and cyclin-dependent

kinase (CDK) expression, which corresponds to cell-cycle state, and

(ii) a user supplied count matrix. Additionally, SCell utilizes canon-

ical-correlation analysis to correlate cell-cycle and gene expression

(Supplementary Materials M2). This estimates the percentage of

genome-wide variance explained by cyclin/CDKs, the specific cyc-

lins/CDKs explaining the most variance and genes correlating with

cyclin/CDs (Supplementary Figure S2A). By default, SCell normal-

izes samples by sequencing depth.

SCell provides statistics for feature selection. We use a score stat-

istic, from a generalized-Poisson model, to test for gene-wise zero-

inflation and identify technical dropouts (Supplementary Materials

M2). We use a power function based on the index-of-dispersion to

prioritize genes by variability (Supplementary Materials M2). SCell

implements an interactive viewer to visualize gene variance versuss

sampling (Supplementary Fig S3), and to select genes based on these

statistics, and their false discovery rates.

2.3 Dimensionality reduction, clustering and expression

kinetics
SCell implements PCA, and optionally varimax-rotation. Two inter-

active windows allow the user to explore samples in PCA space,

with gene-level and sample-level metadata displayed upon mouse-

over (Fig. S4). SCell offers several methods for clustering: k-means,

Minkowski-weighted k-means (de Amorim, 2012), Gaussian mix-

ture model, the clustering ‘with scatter’ algorithm DBSCAN and

user-defined clusters. Genes and samples can be added by cluster or

individually to user-defined gene and sample lists. A PCA can be

recomputed at any time from the user’s sample list, enabling ‘itera-

tive’ PCA learning of population sub-structure. SCell implements

minimum-spanning-tree (MST) and Gabriel graph minimum-cost

paths, for semi-supervised estimation of cell-state transitions

(Supplementary Materials M3). SCell automatically fits loess/lowess

regressions, as well as several interpolation types (linear, cubic

spline, biharmonic and thin-plate spline) on gene expression in PCA

space. This allows users to visualize expression gradients, and evalu-

ate gene-expression kinetics along MST and minimum-cost paths.

To illustrate, we performed quality filtering, feature selection and

clustering on 96 cells sequenced from gestational-week 10 human

fetal neocortex, 258 cells from gestational-weeks 16–18, human

fetal neocortex (Supplementary Materials M4, dbGaP phs000989.

v3.p1), as well as 393 cells previously published from gestational-

week 16-18 human fetal neocortex (Supplementary Figure S4B,

dbGaP phs000989.v1.p1). We identified 501 cells which passed

quality control at a Lorenz-statistic q-value cutoff of q¼0.05. 2169

genes were chosen for dimensionality reduction, based on a zero-in-

flation q-value of 0.1 (to control for under-sampling) and an index-

or-dispersion power of 90% (to enrich for variable genes). We iden-

tified clusters expressing markers of interneurons and these could be

distinguished from cells of the excitatory-neuronal lineage. Iterative

PCA analysis of the interneurons identified sub-clusters expressing

markers of different classes of inhibitory neurons (Supplementary

Figure S4B and C). Lowess regression, along a Gabriel-graph

shortest path of the excitatory-neuronal lineage, predicts a rapid de-

cline in markers of neural stem cells, a gradual increase in neuronal

markers and a transient spike in markers of intermediate-progeni-

tors along pseudo-time (Fig. 1).
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Fig. 1. 747 cells sequenced from human fetal neocortex. Lineage reconstruction,

via a Gabriel-graph shortest distance path and LOWESS regression, models the

kinetics of gene expression during commitment to the excitatory-neuronal lin-

eage (Color version of this figure is available at Bioinformatics online.)
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