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Abstract: To date the literature on quantile regression and least absolute deviation regression has assumed
either explicitly or implicitly that the conditional quantile regresson model is correctly specified. When
the model is misspecified, confidence intervals and hypothesis tests based on the conventional covariance
matrix are invaid. Although misspecification is a generic phenomenon and correct specification israrein
redlity, there has to date been no theory proposed for inference when a conditiona quantile model may be
misspecified. In this paper, we alow for possible misspecification of a linear conditional quantile
regression model. We obtain consistency of the quantile estimator for certain “pseudo-true” parameter
values and asymptotic normality of the quantile estimator when the model is misspecified. In this casg,

the asymptotic covariance matrix has a novel form, not seen in earlier work, and we provide a consistent
estimator of the asymptotic covariance matrix. We also propose a quick and simple test for conditional

quantile misspecification based on the quantile residuals.
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1. Introduction

Since the semina work of Koenker and Bassett (1978) and Bassett and Koenker (1978), the
literature on quantile regression and least absolute deviation (LAD) regression has grown rapidly
in many interesting directions, such as simultaneous equation and two stage estimation
[Amemiya (1982), Powell (1983)], censored regression [Powell (1984), Powell (1986),
Buchinsky and Hahn (1998)], seria correlation and GLS estimation [Weiss (1990)], bootstrap
methods [Hahn (1995), Horowitz (1998)], structural break testing [Bai (1995)], ARCH models
[Koenker and Zhao (1996)], and unit root testing [Herce (1996)].

All these papers, however, assume explicitly or implicitly that the conditional quantile
regression model is correctly specified. When the model is misspecified, confidence intervals
and hypothesis tests based on the conventional covariance matrix are, as we show, invalid. Even
though misspecification is a generic phenomenon and correct specification is rare in redlity, there
has to date been no theory proposed for inference when a conditional quantile model may be
misspecified. In this paper, we allow for possible misspecification of a linear conditional
guantile regression model. We obtain consistercy of the quantile estimator for certain “pseudo-
true” parameter values and asymptotic normality of the quantile estimator when the mode is
misspecified. In this case, the asymptotic covariance matrix has a novel form, not seen in earlier
work, and we provide a consistent estimator of the asymptotic covariance matrix.

Of course, one can estimate the conditional quantile model without assuming correct
specification using various nonparametric methods such as kernel estimation [Sheather and
Marron (1990)], nearest-neighbor estimation [Bhattacharya and Gangopadhyay (1990)], or using
artificial neural networks [White (1992)]. Our results thus provide a convenient parametric
alternative to nonparametric methods when researchers are not sure about correct specification or
when they want to keep a parametric model for reasons of parsimony or interpretability even
though it may not pass a specification test such as the nonparametric kernel based test proposed
by Zheng (1998).



2. Basic Assumptions and Model

Consider a random series (Y,, X{) where t=1,2,..,T, Y, isascdar, X, isa k™1 vector, and

k© k+1. Thefirst element in X, isonefor al t. First, we specify the data generating process.

Assumption 1. The sequence {Y,, X§ isindependent and identically distributed (iid).

The iid assumption is made for clarity and simplicity. It can be straightforwardly relaxed. We

denote the conditional distribution of Y, given X, =x by F,, (x|x). Asisnow standard in the
quantile regression literature, we define the “check” function r, :R® R" for given ql (0,1) as
re(2° 2y (2,
where y ,(2)°q-1,. . Wedefinethe g™ conditional quantile of Y, given X, as
0y (Y [ X,) ©inf{ y: Ry (Y1 X,)%a}.

Next, we impose the following assumption on the joint density of (Y,, X{).

Assumption 2. The random vector (Y,,X,,, X5,..., Xy) is continuously distributed with joint
probability density f, , (x> and conditional probability density f,, (%|x) for Y, given

X, =X.

Under Assumption 2, the conditional quantile g, (Y, |X,) satisfies 5*:“'“ fx (Y]X,)dy
- g =0, which isequivaent to
Ely , (Y - o, (Y [ X)) | X] =0. (21

The condition (2.1) can be used to check if agiven function of X, isthe g™ conditional quantile
of Y, given X, or not.
Itiswell known that
6, (% IX)T argminEfr (¥, - f(X)] (22)



where f belongs to a space of measurable functions defined as F ° {g: R ® R suchthat g
is measurable and E|g(X,)|<¥}. Here, we focus only on the affine space A (I F)
°{g:R*® R such that for some k" 1 vector b, g(X,)=X®b and E|g(X,)|<¥}. Forthe

objective function in (2.2) to be well-defined, we impose some moments conditionson (Y, , X{).

The following conditions are sufficient.
Assumption 3. E|Y, | <¥, and E || X, || <¥, where || X, ||° (X&X)"?.
Now we give a definition of correct model specification.

Definition 1. We say a conditional quantile model {h(:,b)T F, b1 R*}is correctly specified
for a, (Y, | X,) if and only if there exists a vector b, T R* such that h(X,,b,) = q, (Y, | X,)

almost surely, i.e. g, 1 F.
We impose the following quantile version of the orthogonality condition.

Assumption 4. Thereexists b™ such that Efy (Y, - X®")X,) =0.

Given the “pseudo-true parameters’ b™ of Assumption 4, we can define the “error”
e°Y - X® . Assuming that Efy 1(€) | X;) =0, which is stronger than Assumption 4, is
equivalent to assuming that the conditional quantile model is correctly specified. This can be
easily checked using (2.1). Thus, Assumption 4 permits the conditional quantile model to be
misspecified. Let B denote a subset in R* large enough to contain b™. Then, under our
conditions Assumption 4 implicitly defines the parameter of interest b” as the solution to the
minimization problem:
min Efr, (Y, - X,b)],
which is well-defined by Assumption 3. As discussed by White (1994, pp. 74-75), this

optimization problem corresponds to maximiming the expected log likelihood for a particular



density function. The regression quantile parameter estimator BT, obtained by minimizing the

sample analog
.
mins (b)° T3 rq(Y - X,b), (2.3)
t=1

can therefore be viewed as a quasi- maximum likelihood estimator (QMLE).

3. Consistency and Asymptotic Normality

First, we establish the consistency of the quantile estimator 6T for b using Lemmas 2.2 and 2.3
in White (1980a). The consistency result is the first step in deriving the asymptotic normality of

the quantile estimator. The following additional assumptions suffice for the proof of consistency.

Assumption3(. Thereexists d >1 such that E(|| X, ||') <¥ .

Assumption 5. b" T B, where B isa compact subset of R¥.

Assumption 6. For all X, f,,(0[x)>0 where f,, (¥X) is the conditional density of

e °Y - X® given X, =x.
Lemma 1. Suppose that Assumptions 1, 2, 3¢, 4, 5, and 6 hold. Then BT - b’ =0,(1.

All proofs are provided in the Mathematical Appendix.

There are severa techniques available in the literature to derive asymptotic normality for the
quantile and the LAD estimators. Among these are the linear programming method [Koenker
and Bassett (1978), Bassett and Koenker (1978)]; the smoothing method [Bloomfield and Steiger
(1983)]; the convexity method [Pollard (1991)]; ard the generalized Taylor expansion method
[Phillips (1991)]. Here, we follow the method used by Huber (1967), Ruppert and Carroll
(1980), and later extended by Pollard (1985). Huber (1967) gave sufficient conditions that

deliver asymptotic normality for any sequence BT satisfying



T8 (Z0br) =0,(1). (3.

t=1
In our case, | (Zt,BT) =Xy (Y, - Xt¢3T). The condition (3.1) can be viewed as the first order
condition for the quantile estimator 5T because the left hand term is essentially the vector of left
partial derivatives of the objective function in (2.3) evaluated at BT. Because we define the

guantile estimator BT using (2.3) rather than (3.1), we must establish (3.1). For this, we use the

following assumption.

Assumption3t. Thereexistsd >2 such that E(|| X, ||*) <¥ .

Lemma 2. Suppose that Assumptions 2 and3thold. Then,

T ~
TY2Q Xy (Y- X®r)=0,(D-

t=1

Next, we define | (b)° E[Xy , (Y, - Xb)]. Since | (b) can be shown to be continuously

differentiable in b, we have by the mean vaue theorem

| (b)=1(b")-Q (b-b"), (3.2)
where Q" ° E[ f, (I | X)X, X4 and | isbetween 0 and X&b - b"). Notethat | (b") =0

by the definition of b”. We use the expression for | (b) in (3.2) to obtain a variant of the Taylor
expansion of | (b), which will be the key step obtaining the asymptotic distribution of the

quantile estimator. We impose the following conditions.
Assumption3®. E(|| X, |I°) <¥.

Assumption 7. The conditional density f,, (I |x) of e given X, =x is Lipschitz continuous:

e | fox (I [X)- fox (L IX)[E L[l - 1,] for someconstant 0< L, < ¥ and for all x.

Lemma 3. Suppose that Assumption 3« and 7 hold. Then



I1(b)-1 (b )+Qu(b-b")[[=0(b-b"]),
where Q, © E[ f, (O] X)X, X{].

The final step in obtaining asymptotic normality of the quantile estimator BT is to show that

TY9 (BT) converges to some random variable in distribution.  In fact, usng Theorem 3 in

~ g . .
Huber (1967), - T*?l (b;) and T?Q Xy ,(e,) turn out to be asymptotically equivalent. To

t=1

show this, we impose some additional assumptions.

Assumption 8. b” isaninterior point of B.

Assumption 9. Q, is positive definite.

Assumption 10. There existsa constant f, suchthat f (I [x)£ f, forall | and x.

Lemma4. Suppose that Assumptions 1, 2, 3«, 4-6 and 8-10 hold. Then

T ~
T84 Xyq(e)+T" (by) =0,().

t=1

Combining Lemma 3 and Lemma 4 and adding one more assumption permit us to state our main

theorem. We impose
Assumption 11. V © Ey , (e,)*X, X9 ispositive definite.

Theorem 1. Suppose that Assumptions 1, 2, 3«, 4-11 hold. Then,
A d
TY?(b; - b)) ® N(0,C)
where C ° Q;VQ,".



The asymptotic distribution in Theorem 1 includes all previously obtained results as specia
cases. Suppose that the linear conditional quantile model is correctly specified. Then, it can be

shown that V =q(1- q)Q where Q° E(X,X(). This case thus corresponds to Fowell (1984)

~ d
who obtains T"?(b; - b")® N(0,q(1- 9)Q;'QQ;"). Consider the more restricted case where

not only is the linear conditional quantile model correctly specified but aso there is no

conditional heterogeneity in the density f at the origin (no “heterodtitudinality”), that is
fox (01 X,) = f(0). Then, one can show that Q, = f(0)Q aswell as V =q(1-q)Q. This

corresponds to the standard case of Koenker and Bassett (1978), who obtain

1208 Y q@-9) ~1
T%(b; - b")® N(O, (0 Q).

Now consider testing a hypothesis about b :
Hy:Rb™ =r
H,:Rb™1r,
where R isafinite q° k matrix of full row rank and r isafinite q” 1 vector. Then Theorem 1

implies that, for example,
A -~ ~ d
T(Ro; - NERC, 'RE*(Rb; - 1) ® c? (3.3)

~ p
under the null hypothesis, where C; ® C is a covariance matrix estimator, consistent for C
despite the possible misspecification. To implement such tests we require a consistent estimator

C, . Thisisthe focus of our next section.

4. Consistent Covariance Matrix Estimation

In this section, we provide an estimator for the asymptotic covariance matrix C that is consistent
despite possible misspecification. The asymptotic covariance matrix consists of two components:

Q, and V. Powell (1984) suggested the following estimator for Q, without formally proving its

consistency:



~ T
Qor © (26 T) " A L6 o e X X O (4.2)
t=1

where €. may be afunction of thedataand &, ° Y, - Xt¢3T . Weimpose the following conditions

on the sequence {C;} .

Assumption 12. Thereis a stochastic sequence {C;} and a non-stochastic sequence {c,;} such

that
)y Se1
(i) .
(i) ¢ =0Q
(i) c'=o(T).

We can now rigorously establish the consistency of Powell’ s estimator C}OT .

Lemma 5. Suppose that T¥?||b, - b" || = 0,(1) and Assumptions 1, 3«, 7, 10 and 12 hold.

~ P
Then Qi ® Q.

Next, we use the plug-in principle to propose a consistent estimator of V :
~ T
Ve © T 62X X8,
t=1

where G, °y . (8,). Theestimator V. is completely analogous to White's (1980b) estimator, for
t q t T

which U, isthe OLSresidual.

Lemma6. Supposethat T¥? || b, - b" || = O, (1) and Assumptions 1, 3¢, and 10 hold. Then

~ p
V.® V.

We now define our estimator for the asymptotic covariance matrix C as



C; © QuV; Q- (4.2)
~ p
Together, Lemmas 5 and 6 imply C; ® C, ensuring the consistency of the covariance estimator.

This alows us to obtain a computable Wald statistic and its asymptotic distribution as follows.

Theorem 2. Suppose that Assumptions 1, 2, 3«, 4-12 hold. Let the null hypothesis be given by

H,:Rb" =r whereR isagivenfinite q k matrix of full rowrank and r isagiven finite q" 1
vector. Then, under H ,
-~ ~ ~ d
T(Ro; - NERC;'RY*(Rb; - 1)® c,

where C. isdefinedin (4.2).

Although we do not pursue the issue here, we note that just as MacKinnon and White (1985)

found modifications of \7T that afforded improvements in finite sample properties, so also may

there be anal ogous modifications of \7T here. We leave this to subsequent research.

5. A Test for Correct Quantile Specification

As we have seen in Section 3, if the conditional quantile model is correctly specified, then we

have the quantile version of information matrix equality: V =q(1- q)Q. We formaly state this

in the following lemma

Lemma 7. Suppose that Assumptions 2 and3t¢ hold and let u, °y ,(e,). If the conditional
quantile model is correctly specified (i.e. E(u, | X,)=0), then we have V =q(1- q)Q: that is,
EU X, X9 =EU)E(X,X®. Equivalently, this can be written E[(u’ - s 2)X,X§ =0, where

sZ° E(uf)=q(-q).

It is interesting to note that in order to have the same equality asin Lemma 7 in the context of

OLS regression, we require two conditions. (1) the conditional expectation model is correctly

10



specified and (2) that there is no conditional heteroskedasticity in u,. See White (1980b) for
details. However, for quantile regression, correct specification is the only sufficient condition

due to the special structure of u,. According to Lemma 7, any misspecification in the conditional

quantile is a form of conditional heteroskedasticity in u,. In such situations, inference based on
the information equality is invalid.

Zheng (1998) has developed a consistent test for conditional quantile misspecification. That
test is based on a nonparametric kernel estimation and may accordingly be somewhat
cumbersome to implement. We now propose a very easy to use specification testing procedure
that exploits the quantile version of the information matrix equality in Lemma 7. Under the null
hypothesis of correct specification of the conditional quantile function, we have

E[h(X,)(u? -s )] =0, (5.2)
where h(:) is a measurable s” 1 vector function. The information matrix test obtains when

h(X,) selects some elements from the matrix X, X£{. One example is h(X,) =vech(JX,XJ9
with J =[O0 I--]. In this example h(X,) isa k~(k~+1)/2’ 1 vector containing all the

elements in the lower triangle and diagonal of the k~ Kk matrix JIX, X . Using the fact that

u?

=s?Z-(1- 2y)y,(e,), theexpressionin (5.1) can be shown to be equivalent to

E[h(X,y (e)] =0. (5.2)
A scaled sample version of the expectation in (5.2), which is our proposed test statistic for the
null of correct specification, is given by

T 2m(b,),

. I -
where m(b;) =T"& h(X, ) ¢ (¥ - X®-).

t=1
We restrict the space to which the selection function h(:) belongs using the following moment
condition.

Assumption 13. Thereexists d >2 such that E(||h(X,) ") <¥ .

The following lemmais useful in deriving the asymptotic distribution of the proposed statistic.

11



Lemma 8. Suppose that Assumptions 1, 3« and 13 hold. Then,

3p [T [m(b)- m(b")]- T?& h(X,)[F.(b)-F (b )] |=0,(

t=1

where B; °{bT B: T¥?|[b-b" [|£M; and M; =O@},and F,(b)° Fyy (Xb|X,).

The proof easily follows from Andrews (1989) once we show that

TY2[me (b) - me(b )] - T Y& h(X,)[F.(b) -F (b )] =T *4 H(Z,,b)

t=1 t=1
where H(Z,b)° h(Xt){JTY‘EXM-JTYMm*]-[Ft(b)- F(b’)]}. As the indicator functions
Lyvexwr Ly exer, @d the cumulative density functions F (b), F.(b") are functions of bounded

variation, the iid assumption (Assumption 1) and the moment conditions (Assumptions 3« and

.
12) are sufficient to show that T Y23 H(Z,.b) is stochasticaly equicontinuous; that is,

t=1

.
aup |TV?Q H(Z,,b)| £0, (1) using Theorems 1.2 and 1.3 in Andrews (1989).
bi B,

t=1

Theorem 3. Suppose that Assumptions 1, 2, 3«, 4-13 hold.
(i) Suppose that the conditional quantile model is correctly specified. Then

~ d
S,/ T*m(b;) ® N(O,1,)
where S, © (1- 4)(ARQ, 'QQy Ay - AR,"A- AR,A, +D) with
A, ° E[ T, (0] X)X,h(X)q , A° E(X,h(X,)9 and D° E(h(X,)h(X,)9).
(i) Suppose that the conditional quantile model is correctly specified and that there is no
conditional heteroaltitudinality in f. Then
~ d
SYTY’m(b;) ® N(O,1,.)

where S° q(1- q)(D- AQA).

12



It is straightforward to derive consistent estimators for A, A,, and D using the plug-in principle.

For example,

- q
A ° T4 X.h(X,)¢

t=1

. T
Por © (26T) ™ A I.q a5 X:N(X, )8
t=1

~ T
D; © T & h(X)h(X,)¢

t=1

where €, and €, are the same as in the definition of QOT in (4.1). It can be easily shown using

~ p ~ p ~ p
LemmaSthat Ar ® A, A; ® Ay and D; ® D. Therefore, the null of correct specification of
the conditional quantile function can be tested using the fact that under the null
- ~ ~ d
Tm(b,)&*m(b,) ® c?
where S is a consistent estimator for either S, or S as desired, and which can be constructed

using ém, QT, A)T, A,r and 5T.
6. Monte Carlo Simulations

We conduct simulation experiments to investigate the finite sample properties of our new
covariance matrix estimator and to compare it with conventional covariance matrix estimators.

For later reference we label the various estimators as follows:
Q-SEL  q(t-q)f(0)*Q™,
Q-SE2  q(l- )"0,
Q-3 QVQ.
We compare the performance of these alternative estimators in three different set-ups:

[Case 1] the linear conditional quantile model is correctly specified and there is no conditional
heteroaltitudinality in the density f,

[Case 2] the linear conditional quantile model is correctly specified but there is conditional
heteroatitudinality in the density f,

13



[Case 3] the linear conditional quantile mode is misspecified and there is conditional
heteroatitudinality in the density f.

We expect that QSE1 and Q SE2 will achieve the best performance in Case 1 and Case 2
respectively, but Q-SE3 will be the winner in the most gereral case [Case 3]. Bootstrapping the
covariance matrix for quantile regressions has also gradually gained popularity. Hence, we also
include the bootstrap covariance estimator in our simulation study. We use the design matrix
bootstrap covariance estimator used in Buchinsky (1995), defined as

18 ~ A ~ ~

giazll(bi(Q)-b(Q))(bi(q)- b(@))¢
where B(q) is the q-quantile estimator, Ei @) is the i™ bootstrap estimator obtained by
resampling the pair (y,, X and B isthe number of bootstrap samples. Weset B to 500.

When estimating Q-SE2 and Q-SE3, we need to make a choice for the bandwidth parameter

C; . Inour simulations we use three different methods to choose the bandwidth parameter, all of
which are derived and discussed in Silverman (1986): two parametric choices based on the
standard deviation (s >) and the interquartile range (R,) of the underlying density f, (the
expressions are given by 1.06s .T"*® and 0.79R T *° respectively) and one non-parametric

choice based on least-squares cross-validation.
Let F(®) bethe standard normal cumulative density function. We specify the data generating

processes for our cases as follows:

[Casel] vy, =1+ X, + X, +e,
e, ~iid(-F '@),)
[Case2] vy, =1+X,+ X, +e,
e =s (X,)h,
s (X,) =1+ Xg+ XJ,

h, ~iid(- F *@).,1)

Qo

3
[Case 3] Yy =1+ Xy + X, + X5 + é Xtith +€,
i=1

with e, specified asin Case 2.

14



In &l cases the X, 's are drawn from the standard normal distribution with cross correlation 0.5;

the value for the quantile (q) is set to 0.7. The number of observations and the number of
replications are 50 and 1,000 respectively.
For each replication we fit following quantile regression:

Y =bo@)+b, @)X,y +b, @)X, +&(@).

The standard error for each coefficient is calculated using the various methods explained above.

We report simulation means of the coefficient estimates and of the standard errors in Table 1.

The results for Q-SE2 and Q-SE3 in Table 1 are based on the bandwidth choice using the sample
T

standard deviation, that is ¢, =1.065 T ¥ with 2 =T § e(q)?. We obtained quantitatively
t=1

similar results using other bandwidth choices, so these are omitted.

When the quantile regression model is correctly specified and there is no conditional
heteroaltitudinality in the density f [Case 1], all methods to compute standard errors behave

similarly except for the bootstrap method, which yields standard errors dightly larger than the
other methods. In the last column under the heading “True Std. Dev.” we report the simulated
standard deviations of the quantile estimates, which closely approximate the true standard
deviation of the sampling distribution for the quantile estimator. Not surprisingly, the correct
covariance estimator Q-SE1 in Case 1 is smallest and closest to the true standard deviation. It is
interesting to note that the efficiency loss caused by using QSE2 and Q SE3 is practically
negligible.

In Case 2 where Q-SE2 is the valid covariance estimator, both Q-SE2 and Q-SE3 are
reasonably close to the truth. The bootstrap standard errors are giving noticeable over-estimates
and Q-SE1 is giving noticeable under-estimates. Finaly, we turn to Case 3, where Q-SE3 is the
only valid covariance estimator. It is clear from the table that only Q-SE3 is close to the truth.
Again, the bootstrap standard errors provide over-estimates. While the other two covariance
estimators (Q-SE1 and Q-SE2) both provide under-estimates, Q-SE1 is much worse than Q-SE2.
The implication is that, at least in the case considered here, any null hypothesis is more likely to
be regjected than it should be when the test is based on Q-SE1 or Q-SE2.

Our simulation study illustrates that: (i) when the linear conditional quantile model is

misspecified and there is conditional heteroatitudinality in the density f, our new covariance

15



estimator can allow researchers to conduct valid hypothesis tests; (ii) even when these conditions
are not satisfied, using our covariance estimator is not likely to cause a serious efficiency loss;
and (iii) the bootstrap method to calculate standard errors for quantile regressions should be used

with care.

7. Application to Sharpe Style Analysis

In this section, we apply our results to Sharpe style analysis. Following Sharpe’s (1988, 1992)
seminal work, the Sharpe style regression has become a popular tool to analyze the style of an
investment fund. The Sharpe style regression is carried out by regressing fund returns (over a
period of time from a fund manager) on various factors mimicking relevant indices. By
analyzing the coefficients of the factors, one can understand the style of a fund manager (e.g.
style composition, style sensitivity, or style change over time).

As Bassett and Chen (2001) point out, al previous papers have used the method of least
squares and hence have concentrated on the relationship between the fund returns and the style
factors focused on the mean of the return distribution conditional on the factors. Manager style,
however, can be different in different parts of the conditional distribution. For example, a fund
manager can change her style when the fund's performance is very good or bad, which
corresponds to high quantiles or low quantiles of the conditional distribution. Bassett and Chen
(2001) have proposed using the quantile regression method to analyze the style of a fund manager
over the entire conditiona distribution. They used the returns on the Fidelity Magellan Fund
(R) over a 5 year sample period (January 1992 — December 1997) with 60 monthly

observations. The Russell indices are the factors, which can be classified as follows:

Large (L) Small (S
Growth (G) | Russell 1000 Growth ( X®) | Russell 2000 Growth ( X )

Value (V) Russell 1000 Value (X) | Russell 2000 Value (X)

The Sharpe style quantile regression equation is then given by

16



R =a@)+b,@X, “+b, @)X~ +bgs@X,” +bg, @)X,” +e,. (7.2)

On the grounds that for the equity-only funds (e.g. the Magellan Fund or S&P 500 Index),
unconstrained and constrained (nortnegativity and summing-to-one) cases are usualy similar,
Bassett and Chen estimate the equation in (7.1) without the non-negativity and summing-to-one
constraints. Their findings can be summarized as follows: (i) for the conditiona mean, the
Magellan fund has an important Large-Value tilt (coefficient 0.69) and otherwise is equally
divided between Large-Growth (0.14) and Small-Growth (0.20); (ii) the tilt to Large-Value
appears at the other quantiles with an exception being the Quantile g = 0.1, where the coefficient
for Large-Growth is the largest; and (iii) in all the quantile regressions, most coefficients are not
significant due to large standard errors.

We use the same data set with a longer sample period (January 1979 - December 1997),
yielding 228 monthly observations. Figure 1 shows atime-series plot of the Magellan Fund. Our
belief is that the lack of significance encountered by Bassett and Chen is due to the relatively
small number of observations. Since we are not sure about the correctness of the linear
conditional quantile specification in (7.1), but would like to keep the linear specification, we
calculate standard errors using the various methods explained in Section 6.

The results for the least squares and quantile regressions are reported in Table 2. We take
representative values of 0.1, 0.3, 0.5, 0.7 and 0.9 for g in our quantile regressions. For the
conditional mean of the distribution (that is, from the least squares regression), the Magellan fund
appears to be heavily oriented toward Large-Growth (0.40) and also has an important Large-
Vaue tilt (0.30). The remaining share is equally divided between Small-Growth (0.18) and
Small-Vaue (0.21). In contrast to the findings of Bassett and Chen (2001), the Large-Growth
component clearly stands out. This is, however, consistent with their finding that Large-Value
orientation is an important component of the style of the Magellan Fund. Further, it is obvious
from Figure 2 that the stock market crash in 1987 generated a huge outlier in the returns series.
Considering that the least squares estimator is sensitive to outliers, one might like to see how
robust the results are given this circumstance. The least absolute deviations (LAD) estimator is a
potentially less sensitive alternative (but see Sakata and White (1995, 1998)). The LAD results
are reported in the middle of Table 2 (g = 0.5). The coefficient for Large-Growth and Small-
Growth are aimost unchanged, but the coefficient for Large-Value changes from 0.30 to 0.38
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while the coefficient for Small- Value has been reduced by half. As we change the value of q,
the style for Large-Growth (BLG (@)) is adso gradualy decreasing with g while the style for

Large-Value ( BLV () ) becomes more important as g increases except at = 0.9 where thereisa

sudden drop. The style pattern for Small-Growth (6 «(Q)) is aso noticeably changing with Q.

The tilt to Small-Growth is substantially increasing with q, indicating that the fund tends to

invest heavily in Small-Growth stocks when the fund’s performance is good, but reduces its share
to a statistically insignificant point (when q = 0.1, BSG(q) is not significant) when the fund's
performance is poor. The alocation to Small-Value (Bs,(q)) Is decreasing with q except a q

= 0.9 where it is sharply increasing. In order to see the change in the style against g in detail,
we examine a grid of values for q (from 0.1 to 0.9 with 0.1 increment) and plot each quantile
estimate B(q) with its 95% confidence interval (constructed using Q-SE3) against . This plot
isdisplayed in Figure 2. The figure confirms our earlier observations.

The pattern of the quantile style (as afunction of ) we have found is qualitatively similar to
the findings in Bassett and Chen (2001) except for certain large values of ¢, but we can now
provide confidence intervals around the quantile style weights that are robust to the potential
misspecification of the conditional quantile function.

In order to examine the potential for misspecification, we apply our quantile specification test
using the selection function h(X,) =vech(IX,XJ9 with J =[0,, |,,]. Thetest statistics for
the selected values for g and for the three alternatives to compute the bandwidth are given in
Table 3. The results are fairly robust to the choice of the bandwidth. The overall conclusion is
that for most quantiles we do not have evidence strong enough to reject at the 5% level the null
that the linear quantile model in (7.1) is correctly specified. The last row in the table, however,
indicates that when g = 0.9, the linear specification in (7.1) may be misspecified. It isworth
noting again that the standard errors in Table 2 and the confidence intervalsin Figure 2 are still

valid under this potentially misspecified circumstance.
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8. Conclusion

We have obtained the asymptotic normality of the quantile estimator for a possibly misspecified
model and provided a consistent estimator of the asymptotic covariance matrix. This covariance
estimator is misspecification-consistent, that is, it is still valid under misspecification. If
researchers confine themselves to a parametric world, then our results are useful when there is
uncertainty about correct specification or when one wishes to maintain a model that does not pass
a specification test. Although we have restricted our discussion to the linear conditional quantile
model for iid data, our methods extend straightforwardly to nortlinear conditional quantile
models with dependent and possibly heterogeneous data. Investigation of these cases is a
promising direction for future research. White (1994, esp. pp. 74-75) provides some consistency
results for such cases. See Komunjer (2001) for some asymptotic distribution results in this

direction.
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Table 1. Simulation Means of 0.7-Quantile Estimates and Standard Errors.

Quantile Bootstrap | True
Estimates Q-SE1 Q-SE2 Q-SE3 Std. Errors | Std. Dev.
X, 1 0.19 0.21 0.21 0.23 0.20
Casel ['x . 1 0.19 0.21 0.20 0.23 0.19
Congtant 0.99 0.19 0.20 0.20 0.22 0.19
X, 1 0.30 0.42 0.41 0.44 0.40
Case2 ['x, 0.99 0.30 0.41 0.40 0.43 0.37
Constant 0.99 0.29 0.32 0.31 0.34 0.28
X, 1.36 1.04 1.24 1.37 1.59 1.35
Case3 ['x, 1.32 1.04 1.23 1.36 1.60 1.37
Constant 5.25 0.89 1.16 1.18 1.40 1.19
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Table 2. Mean Style and Quantile Style for Fidelity Magellan Fund

Esimation | Std. Err. be@ | by@ | bs@ | by@ | &@
Least 0.40 0.30 0.18 0.21 0.45
Squares LS-SE1 0.07 0.08 0.06 0.08 0.11
LS SE2 0.07 0.08 0.06 0.07 0.11
0.49 0.21 0.01 0.36 -1.43
Quantile Q-SE1 0.11 0.13 0.09 0.12 0.17
q =01 Q-SE2 0.15 0.19 0.10 0.16 0.19
Q-SE3 0.15 0.21 0.10 0.16 0.19
0.45 0.30 0.11 0.19 -0.25
Quantile Q-SE1 0.08 0.09 0.07 0.09 0.13
q =03 Q-SE2 0.10 0.12 0.08 0.08 0.16
Q-SE3 0.10 0.12 0.09 0.08 0.16
0.40 0.38 0.18 0.12 0.44
Quantile Q-SE1 0.08 0.09 0.06 0.09 0.12
q =05 Q-SE2 0.07 0.09 0.08 0.09 0.13
Q-SE3 0.07 0.09 0.08 0.09 0.13
0.35 0.39 0.24 0.10 1.07
Quantile Q-SE1 0.08 0.10 0.07 0.09 0.13
q =07 Q-SE2 0.06 0.08 0.06 0.07 0.14
Q-SE3 0.06 0.08 0.06 0.07 0.13
0.27 0.20 0.32 0.26 2.49
Quantile Q-SE1 0.12 0.14 0.10 0.13 0.19
q =09 Q-SE2 0.15 0.20 0.09 0.12 0.25
Q-SE3 0.13 0.20 0.08 0.11 0.25

Note: LS-SE1 = Conventional standard errors for the least squares estimates.

LS-SE1 = Whit€' s heteroskedasticity-consistent standard errors for the least squares estimates.
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Table 3. Information Matrix Specification Test Statistics

Quantile (g ) | Bandwidth Choice: Bandwidth Choice: Bandwidth Choice:
1.06s T ** 0.79R T */* L east- squares cross-validation
0.1 12.49 15.79 12.40
0.3 14.52 14.42 14.48
0.5 15.62 15.42 15.42
0.7 16.33 16.58 16.58
0.9 22.10 22.13 22.13

Note: The critical value at the 5%-level for the c? distribution with 10 degrees of freedom is
18.31.
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Figure 1. Time-series Plot of Fidelity Magellan Fund Monthly Returns
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Mathematical Appendix

Proof of Lemma 1 We define Q,(b)° S;(b)- S;(b") and Q(b)° E(Q; (b)). Note that

Q(b) doesnot dependon T asaresult of theiid assumption. Since S, (b”) does not depend on

A s : J .
b, b, agminQ,(b)=T"'3 q(Z,,b) where q(Z,,b) °r (Y- Xb)-r (Y, - X,b")
t=1

bl B
and Z, ° (Y, X{). Inorder to apply Lemma 2.2 and Lemma 2.3 in White (1980a), we need to

establish the following:
(1) q(:,b) ismeasurableforeach b1 B.

(2 aq(Z,,% iscontinuouson B almost surely.

(3) There exists ameasurable function m:R*" ® R such that
0] la(z,b)| £ m(z) foral bl B.
(i)  Thereexistsd >0 suchthat E|m(Z,) [ £ M <¥.
(4 Q(b) hasaunique minimumat b".
Conditions (1) and (2) are trivially satisfied by inspection of the functional form of q. Let

mZ)° I X, Idb I+]Ib" )(q+1) where b is a solution to rg%xll b|l. The existence of

such a solution is guaranteed by Assumption 5. It is obvious that m is measurable. It is easily
seenthat | g(z,b)| £ m(z) foral b1 B. Condition (3)(ii) is satisfied by Assumption3(. The

last step is to verify condition (4). Let d°b-b". Since Q(b")=0 by Assumption 4 and
Q(b) =E(¢(Z,,b)) by Assumption 1, it is sufficient to show that E(q(Z,,b)) >0 for any
d?! 0. Note that Assumption 2 and 6 imply that there exists a positive number f, such that
[l < f, P f(l [X)>f, foral x. Using this property, one can show that
’\X{H ~
B(AZ, b)) = EGY (X - 1) T (1 [X)dl ¢

> foAd)
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where A(d)© Eg(‘f’ (I - X@)L (o opd E It is easily checked that A(d) >0 forany d* O

inall possiblecases: (1) Xd <-f,(2) - f,<XWE f, (3) f, <Xd. Therefore, we have the

desired restlt: b, - b" =0,(1). W

T ~
Proof of Lemma 2. It is sufficient to show that T 2§ Xy ,(Y,- X®;)=o0,(1) for

t=1

T ~ T ~
j=12,..k. Let G;(@)° a ro(Y- Xy +X,a) and H,;(a)° a Xy q (Y - X +X,a).
t=1

t=1
Then it can be shown by the definition of BT tha G,(a) achieves its minimum a a=0 and
H,(a) istheleft partial derivative of G,(a). Using these properties, one can show (See Ruppert
and Carroll (1980) or Powell (1984) for details) that

T
o)

| HJ(O)|£ a I th Il[yt_xgﬁT:o]
t=1

which implies that

T T

- [*] ~ - []
IT 22 Xy o (Y- X)) IET A1 X 1Ly x4

t=1 t=1

1EtET

T
-1/2 9

£ T max ” Xt ” a l[yt_ XthZO] '
t=1

.
. -1/ 2 _ . . o] _
Note that (i) T max | X, [|=0,(1 by Assumption3¢ and (ii) e-lJIy[-X&ST =0, (1) by

:O]

Assumption 2 (See Koenker and Bassett (1978) for details). Hence, the proof is complete. H

Proof of Lemma 3 Consider the absolute value of the (i, j)™ component of the difference
between Q" - Q,. Using Assumptions 3« and 7, we have
|EL(fax (10 1 X0) - T OI X)X X$1 | £ LoELI X, IFT1ID - b I,
which impliesthat Q" =Q, +O(||b - b™ |) . Therefore,
I (b)-1(b")=-Qyb-b")+O(lb-Db"[)
=-Qy(b- b )+o(lb- b
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which ddliversthe desired result. l

Proof of Lemma 4. Define u(Z,,b,d)° sup || X[y (Y, - X&)-y, (Y - XD)]||. Inorderto

Ik - bligd
invoke Theorem 3 in Huber (1967), we need to verify the following conditions:
(1) b" isaninterior point of the parameter space B.

(2) Thefirst order condition (3.1) is satisfied.

3 b,-b =0,(1).

(4) Foreach b1 B, XY 4 (Y, - X{b) is measurable and separable in the sense of Doob (1953).
(5) Thereexists b, B suchthat | (b,)=0.

(6) Thereexist a>0 and d, >0 suchthat ||| (b)|| 2 allb-b" || for |b-b" | £d,.

(7) Thereexist b>0 and d, >0 suchthat E[u(Z,,b,d)] £ bd for ||[b-b" ||+ d £ d,.

(8) Thereexist ¢ >0 and d, >0 suchthat E[u(Z,,b,d)?] £ cd for [b-b" ||+d £ d,.

9 EllXy (e)IP<¥.

First, note that condition (1) is just Assumption 8 and conditions (2) and (3) have been proved in

Lemma 1 and Lemma 2 using Assumptions 1, 2, 3¢, 4-6. Condition (4) is easily checked using
the equivalent definition of separability in Billingsley (1986). This condition ensures that the
function u(:,b,d) is measurable. Condition (5) is satisfied given Assumption 4 by letting

b,=b". We now verify condition (6). Let a be the smalest eigenvalue of
Elfgx (I X)X XA.  We can make E[f,, (I, |X, )X, X8 sufficiently close to
E[fx (0] X)X, X{ which is positive-definite by Assumption 9 by choosing a sufficiently small
d, >0. Wechoosesuch d, >0 sothat a ispositive. We have by (3.2)
IT®)I=1Q"(b-b")|[ *allb-b"|for|lb-b" | £d,
which verifies condition (6). Some simple algebra gives the inequality
U(Z b, )£ X M gy e o
which implies by the law of iterated expectations and Assumption 10 that
E[u(Z,,b,d)] £ 2f.E[|| X, |I’]d.
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Let bo 2f E[|| X, |I’)]. Then b is positive and finite by Assumption 3¢ which verifies condition
(7). Condition (8) can be verified in asimilar fashion by letting ¢ © 2f,E[|| X, |I’]1 >0, which is
finite by Assumption 3€. Note that E || Xy ,(e,) |’ = Ely (g )’ X&,] £ E[X®X,] <0 by

Assumption 3¢. All the conditions in Theorem 3 in Huber (1967) are thus satisfied. We

therefore have the desired result:

T ~
T8 Xy o (@) +T (by) =0,(). M
t=1
Proof of Theorem 1. Using the Lindeberg-Levy CLT, Assumptions 1, 3, 4 and 11 imply that
I d
T Xy q(e) ® NOV). (A.D)
t=1
Lemma 3, Lemma4 and (A.1) together imply that
- d
TY?(b; - b)) ® N(0,C)
where C° Q;vQ,;'. l

.
Proof of Lemma5. Consider Q; © (2¢,T)*§ 1. ¢, e sc.1 X X€. Using the mean value theorem,
t=1

LT .
one can show that E(Q;) = EgT‘lé fox X7 | Xt)XtXtﬂtfj where - ¢, £Xx; £¢;. Hence, X; =
e = u

T
[]

o(1) by Assumption 12(ii). Let Q,° Egl"1 foix (0|Xt)Xtth3. Then it is easily checked that
€ = a

t

|E(Q;)- Q| ® 0 by the triangle inequality and Assumptions 3¢ and 7. Using a LLN for
double arrays (e.g. Theorem 2 in Andrews (1989)), we have that Q, ® E(Q,;). Therefore, we

P
havethat Q; ® Q,. Therest of the proof is carried out in two steps:
~ p ~ J
(D) 1Qyr- Q |® 0 where Qy © (ZCTT)-lé 1 ¢ 26,06, X X €
t=1

(2) IQOT_ 60T I@g 0.
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The (i, j)" dement of | Q,; - Q | isgiven by
T
|(20TT)-1a (]-[-6T£é(£ér] - 1[-cT£el£cr])Xtith |
t=1
L4
£ (2¢;T) "a Qe e 10,1 F e crea 1) I Xa [ Xy | °© Uy +U,
t=1

where d; © || X [lllb; - b | +]& - ¢ | (by the fact that 1 Leor = Lyeor | £ L e ey )s

T T
Upr © (26, T) "8 L crpea 1 1Xu 1 Xy [ and Uyp © (26, T) "8 Lae e ap 1 X0 11 X |-
t=1 t=1

p
First, we show that U,; ® 0. For this, let h >0 and consider
PU,r >h)

.
P((ZCTT)_lé Le-ciea 1 1 Xa [ Xy [>h)
t=1

o

.
P(A) (where A°[(2c;T)"Q i, o1 e, 1 1 X4 1] Xy [>h])
t=1

£ P(ACBCC)+P(C°) +P(B°) foranyevents B and C.
Now let BO {c, "||b;- b" ||£ 7} foraconstant z>0and C°{c, *|¢& - ¢, | £ 7. Notethat

as T® ¥, (1) P(B)®0 by Assumption 12(iii) and TY?||b,- b" | =0,(1); and (2
P(C°) ® 0 by Assumption 5(i). Now
P(ACBCC)

18 —aIXd+)ze +er > . .
£ (hc,T) 1ta:‘l Egothnﬂ)zw fox (I 1 X)dl | Xy ] Xy |E (by the Markov inequality)

(IXcll +2)zer +or

.
.19 é\ u .
£ (e, T) el EéQ(”X[”ﬂ)ZCT o (A XX |Q (by Assumption 10)

= 2 Hh B[ X, I+D) [ X, [1X, 1] <¥ (by Assumptions 1 and 3).

p
We can choose z arbitrarily small, so P(U,; >h) ® 0 which mpliesthat U,; ® O because

p
U, 2 0. It can be shown in the same fashion that U, ® 0, which completes the first step. To
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~ ~ O~ ~
show the second step, consider Qg - Q, = % 1:Q,r . Note that Qy =0, (1) and

(%)

5
gz—T - 1==0(1) by Assumption 5(i). Hence, the second step follows, which delivers the desired

2

p

result: Q; ® Q,. M

Proof of Lemma 6. Since the proof is quite similar to the proof of Lemma5, we do not provide

.
the details. Let \; © T 'qy o (€)% X, X¢. By thelaw of large numbers for iid random variables,

t=1
p A P
we have V; ® V by Assumption 1 and 3¢. Next we show that V;-V;® 0. Consider the

(i, j)" element of |V, - V. |:
.13— ~A\2 2
|T a[yq(et) 'yq(et) ]Xtixtjl
t=1

.
-1 90

£@+)°T'a Liereaq | Xa [ Xq |5
t=1

(where d; © | X, [l by - b™ )
by the triangle inequality and the Cauchy-Schwarzinequality.

.
Let U, T Liese a1 | Xa Il Xy |- By the same argument as in the proof of Lemma 5, one
t=1

p A~
can show that U, ® 0 using Assumptions 1, 3, 10, and T*?||b; - b™ [|=O,(1). W
Proof of Lemma 7. First, notethat s 7° q(1- q). Hence, E[(u - s 2)X, X4
= E[(uf - q(1- 9)) X, X4
= E[cE(u, | X,)X, X where c® -1,

which is zero because of correct specification assumption, E(u, | X,)=0. H

Proof of Theorem 3. Since T¥?(b; - b")=0,() , Lemma8 implies that
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TV2m(B, ) = T¥2m(b" )+ T 28, h(X)[Fu(Bs)-Fi(b')] + 0, (D). (A.2)

t=1

It is straightforward to show that

i
TVm(b") =T & h(X.Y ¢ (@)

t=1

T ~ T ~
T2 h(X)IF (b7)-F(b )] =T A fuu (O] X)(X)XFT 207 -b ) +0,(1) -
t=1

t=1

.
= AR T A Xy o (&) +0,(D).
t=1
Plugging these expressions into (A.2) and collecting terms gives

- g
T"’m(b;)=T"2Q ay 4 (&) +0,(), (A.3)

t=1
where a, © AfQ;*X, - h(X,). Under the assumption that the conditional quantile model is

correctly specified, the Lindeberg-Levy CLT delivers that

J d
T2 ay .(e) ® N(O,S?)
t=1

where S, °q(1- q)(ASQ;"QQ,'A, - AR'A- AR),'A, + D), which completes the proof of (i).

Furthermore, if there is no conditiona heterodtitudinality in f, then it can be shown that

A, = f(O)A aswell asthat Q, = f(0)Q. Then the asymptotic variance S, in (i) smplifiesto
S°q(-q)(D- AQA),

which completes the proof of (ii). W
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