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Abstract: To date the literature on quantile regression and least absolute deviation regression has assumed 

either explicitly or implicitly that the conditional quantile regression model is correctly specified.  When 

the model is misspecified, confidence intervals and hypothesis tests based on the conventional covariance 

matrix are invalid.  Although misspecification is a generic phenomenon and correct specification is rare in 

reality, there has to date been no theory proposed for inference when a conditional quantile model may be 

misspecified.  In this paper, we allow for possible misspecification of a linear conditional quantile 

regression model.  We obtain consistency of the quantile estimator for certain “pseudo-true” parameter 

values and asymptotic normality of the quantile estimator when the model is misspecified.  In this case, 

the asymptotic covariance matrix has a novel form, not seen in earlier work, and we provide a consistent 

estimator of the asymptotic covariance matrix.  We also propose a quick and simple test for conditional 

quantile misspecification based on the quantile residuals. 

 

Key Words : Conditional Quantile, Misspecification, Asymptotic Normality, Asymptotic Covariance 
Matrix.   
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1.  Introduction 

 

Since the seminal work of Koenker and Bassett (1978) and Bassett and Koenker (1978), the 

literature on quantile regression and least absolute deviation (LAD) regression has grown rapidly 

in many interesting directions, such as simultaneous equation and two stage estimation 

[Amemiya (1982), Powell (1983)], censored regression [Powell (1984), Powell (1986), 

Buchinsky and Hahn (1998)], serial correlation and GLS estimation [Weiss (1990)], bootstrap 

methods [Hahn (1995), Horowitz (1998)], structural break testing [Bai (1995)], ARCH models 

[Koenker and Zhao (1996)], and unit root testing [Herce (1996)]. 

     All these papers, however, assume explicitly or implicitly that the conditional quantile 

regression model is correctly specified.  When the model is misspecified, confidence intervals 

and hypothesis tests based on the conventional covariance matrix are, as we show, invalid.  Even 

though misspecification is a generic phenomenon and correct specification is rare in reality, there 

has to date been no theory proposed for inference when a conditional quantile model may be 

misspecified.  In this paper, we allow for possible misspecification of a linear conditional 

quantile regression model.  We obtain consistency of the quantile estimator for certain “pseudo-

true” parameter values and asymptotic normality of the quantile estimator when the model is 

misspecified.  In this case, the asymptotic covariance matrix has a novel form, not seen in earlier 

work, and we provide a consistent estimator of the asymptotic covariance matrix.   

     Of course, one can estimate the conditional quantile model without assuming correct 

specification using various non-parametric methods such as kernel estimation [Sheather and 

Marron (1990)], nearest-neighbor estimation [Bhattacharya and Gangopadhyay (1990)], or using 

artificial neural networks [White (1992)].  Our results thus provide a convenient parametric 

alternative to nonparametric methods when researchers are not sure about correct specification or 

when they want to keep a parametric model for reasons of parsimony or interpretability even 

though it may not pass a specification test such as the nonparametric kernel based test proposed 

by Zheng (1998). 
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2.  Basic Assumptions and Model 

 

Consider a random series ),( tt XY ′  where Tt ...,,2,1= , tY  is a scalar,  tX  is a 1×k  vector, and 

1
~

+≡ kk .  The first element in tX  is one for all t .  First, we specify the data generating process. 

 

Assumption 1.  The sequence },{ tt XY ′  is independent and identically distributed (iid). 

 

The iid assumption is made for clarity and simplicity.  It can be straightforwardly relaxed.  We 

denote the conditional distribution of tY  given xX t =  by )|(| xF XY ⋅ .  As is now standard in the 

quantile regression literature, we define the “check” function +→ RR:θρ  for given )1,0(∈θ  as 

          )()( zzz θθ ψρ ≡ , 

where  ]0[1)( ≤−≡ zz θψ θ .  We define the thθ  conditional quantile of tY  given tX  as 

          )|( tt XYqθ  }.)|(:inf{ | θ≥≡ tXY XyFy  

Next, we impose the following assumption on the joint density of ).,( tt XY ′  

 

Assumption 2.  The random vector ),...,,,( 32 tkttt XXXY  is continuously distributed with joint 

probability density ),(, ⋅⋅XYf  and conditional probability density )|(| xf XY ⋅  for tY  given 

xX t = . 

 

Under Assumption 2, the conditional quantile )|( tt XYqθ  satisfies ∫ ∞−

)|(

| )|(tt XYq

tXY dyXyfθ   

,0=−θ  which is equivalent to  

          ]|))|(([ tttt XXYqYE θθψ −  = 0.                                                                                      (2.1) 

The condition (2.1) can be used to check if a given function of tX  is the thθ  conditional quantile 

of tY  given tX  or not. 

     It is well known that  

            ∈)|( tt XYqθ  
f
minarg ))](([ tt XfYE −θρ                                                                       (2.2) 
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where f  belongs to a space of measurable functions defined as  F RRg k →≡ :{  such that g  

is measurable and }|)(| ∞<tXgE .  Here, we focus only on the affine space A ( ⊂  F) 

RRg k →≡ :{  such that for some 1×k  vector β , βtt XXg ′=)( and }|)(| ∞<tXgE .  For the 

objective function in (2.2) to be well-defined, we impose some moments conditions on ),( tt XY ′ .  

The following conditions are sufficient. 

 

Assumption 3. ,|| ∞<tYE  and ,|||| ∞<tXE  where 2/1)(|||| XXX tt ′≡ . 

 

Now we give a definition of correct model specification. 

 

Definition 1.  We say a conditional quantile model ∈⋅ ),({ βh  F, }kR∈β is correctly specified 

for )|( tt XYqθ  if and only if there exists a vector kR∈0β  such that ),( 0βtXh  = )|( tt XYqθ  

almost surely, i.e. θq ∈F. 

 

We impose the following quantile version of the orthogonality condition. 

 

Assumption 4.  There exists *β  such that 0))(( * =′− ttt XXYE βψ θ . 

 

Given the “pseudo-true parameters” *β  of Assumption 4, we can define the “error” 

*βε ttt XY ′−≡ .  Assuming that 0)|)(( =tt XE εψ θ , which is stronger than Assumption 4, is 

equivalent to assuming that the conditional quantile model is correctly specified.  This can be 

easily checked using (2.1).  Thus, Assumption 4 permits the conditional quantile model to be 

misspecified.  Let B  denote a subset in kR  large enough to contain *β .  Then, under our 

conditions Assumption 4 implicitly defines the parameter of interest *β  as the solution to the 

minimization problem: 

          
B∈β

min )]([ βρθ tt XYE − , 

which is well-defined by Assumption 3.  As discussed by White (1994, pp. 74-75), this 

optimization problem corresponds to maximiming the expected log- likelihood for a particular 
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density function.  The regression quantile parameter estimator ,ˆ
Tβ  obtained by minimizing the 

sample analog 

          
B∈β

min ,)()(
1

1 ∑
=

− −≡
T

t
ttT XYTS βρβ θ                                                                                 (2.3) 

can therefore be viewed as a quasi-maximum likelihood estimator (QMLE). 

 

3.  Consistency and Asymptotic Normality 

 

First, we establish the consistency of the quantile estimator Tβ̂  for *β  using Lemmas 2.2 and 2.3 

in White (1980a).  The consistency result is the first step in deriving the asymptotic normality of 

the quantile estimator.  The following additional assumptions suffice for the proof of consistency. 

 

Assumption3′ .  There exists 1>δ  such that ∞<)||(|| δ
tXE . 

 

Assumption 5. B∈*β , where B  is a compact subset of kR . 

 

Assumption 6.  For all x , 0)|0(| >xf Xε  where )|(| xf X ⋅ε  is the conditional density of 

*βε ttt XY ′−≡ given xX t = . 

 

Lemma 1.  Suppose that Assumptions 1, 2, 3′ , 4, 5, and 6 hold.  Then )1(ˆ *
pT o=− ββ . 

 

All proofs are provided in the Mathematical Appendix.   

     There are several techniques available in the literature to derive asymptotic normality for the 

quantile and the LAD estimators.  Among these are the linear programming method [Koenker 

and Bassett (1978), Bassett and Koenker (1978)]; the smoothing method [Bloomfield and Steiger 

(1983)]; the convexity method [Pollard (1991)]; and the generalized Taylor expansion method 

[Phillips (1991)].  Here, we follow the method used by Huber (1967), Ruppert and Carroll 

(1980), and later extended by Pollard (1985).  Huber (1967) gave sufficient conditions that 

deliver asymptotic normality for any sequence  Tβ̂  satisfying            
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          ∑
=

− =
T

t
pTt oZT

1

2/1 )1()ˆ,( βϕ .                                                                                               (3.1) 

In our case, )ˆ()ˆ,( TtttTt XYXZ βψβϕ θ ′−= .  The condition (3.1) can be viewed as the first order 

condition for the quantile estimator Tβ̂  because the left hand term is essentially the vector of left 

partial derivatives of the objective function in (2.3) evaluated at Tβ̂ .  Because we define the 

quantile estimator Tβ̂  using (2.3) rather than (3.1), we must establish (3.1).  For this, we use the 

following assumption. 

 

Assumption3′′ .  There exists 2>δ  such that ∞<)||(|| δ
tXE . 

 

Lemma 2.  Suppose that Assumptions 2 and 3′′ hold.  Then,  

          ∑
=

− =′−
T

t
pTttt oXYXT

1

2/1 )1()ˆ( βψθ . 

 

     Next, we define ≡)(βλ )]([ βψθ ttt XYXE ′− .  Since )(βλ  can be shown to be continuously 

differentiable in β , we have by the mean value theorem 

          ),()()( *** βββλβλ −−= Q                                                                                             (3.2) 

where ])|([ *
|

*
ttttX XXXfEQ ′≡ λε  and *

tλ  is between 0 and )( *ββ −′tX .  Note that 0)( * =βλ  

by the definition of *β .  We use the expression for )(βλ  in (3.2) to obtain a variant of the Taylor 

expansion of )(βλ , which will be the key step obtaining the asymptotic distribution of the 

quantile estimator.  We impose the following conditions.   

 

Assumption3 ′′′ .  ∞<)||(|| 3
tXE . 

 

Assumption 7.  The conditional density )|(| xf X λε  of tε  given xX t =  is Lipschitz continuous: 

i.e. |||)|()|(| 2102|1| λλλλ εε −≤− Lxfxf XX   for some constant ∞<< 00 L  and for all x . 

 

Lemma 3.  Suppose that Assumption 3 ′′′  and 7 hold.  Then 
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          ||),(||||)()()(|| **
0

* βββββλβλ −=−+− oQ  

where ])|0([ |0 tttX XXXfEQ ′≡ ε . 

 

     The final step in obtaining asymptotic normality of the quantile estimator Tβ̂  is to show that 

)ˆ(2/1
TT βλ  converges to some random variable in distribution.   In fact, using Theorem 3 in 

Huber (1967), )ˆ(2/1
TT βλ−  and ∑

=

−
T

t
ttXT

1

2/1 )(εψ θ  turn out to be asymptotically equivalent.  To 

show this, we impose some additional assumptions. 

 

Assumption 8. *β  is an interior point of B . 

 

Assumption 9.  0Q  is positive definite. 

 

Assumption 10.  There exists a constant 1f  such that 1| )|( fxf X ≤λε  for all λ  and x . 

 

Lemma 4.  Suppose that Assumptions 1, 2, 3 ′′′ , 4-6 and 8-10 hold.  Then 

          )1()ˆ()( 2/1

1

2/1
pT

T

t
tt oTXT =+∑

=

− βλεψθ . 

 

Combining Lemma 3 and Lemma 4 and adding one more assumption permit us to state our main 

theorem.  We impose 

 

Assumption 11.  ))(( 2
ttt XXEV ′≡ εψθ  is positive definite. 

 

Theorem 1.  Suppose that Assumptions  1, 2, 3 ′′′ , 4-11 hold.  Then, 

          ),0()ˆ( *2/1 CNT
d

T →− ββ   

where 1
0

1
0

−−≡ VQQC . 
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     The asymptotic distribution in Theorem 1 includes all previously obtained results as special 

cases.  Suppose that the linear conditional quantile model is correctly specified.  Then, it can be 

shown that  QV )1( θθ −=  where )( tt XXEQ ′≡ .  This case thus corresponds to Powell (1984) 

who obtains ))1(,0()ˆ( 1
0

1
0

*2/1 −−−→− QQQNT
d

T θθββ .  Consider the more restricted case where 

not only is the linear conditional quantile model correctly specified but also there is no 

conditional  heterogeneity in the density f  at the origin (no “heteroaltitudinality”), that is 

)|0(| tX Xf ε  = )0(f .  Then, one can show that  QfQ )0(0 =  as well as QV )1( θθ −= .  This 

corresponds to the standard case of Koenker and Bassett (1978), who obtain 

)
)0(

)1(
,0()ˆ( 1

2
*2/1 −−

→− Q
f

NT
d

T
θθ

ββ . 

     Now consider testing a hypothesis about *β : 

          rRH =*
0 : β  

          rRH a ≠*: β , 

where R  is a finite kq ×  matrix of full row rank and r  is a finite 1×q  vector.  Then Theorem 1 

implies that, for example, 

          211 )ˆ(]ˆ[)ˆ( q

d

TTT rRRCRrRT χββ →−′′− −−                                                                         (3.3) 

under the null hypothesis, where CC
p

T →ˆ  is a covariance matrix estimator, consistent for C  

despite the possible misspecification.  To implement such tests we require a consistent estimator 

TĈ .  This is the focus of our next section. 

 

4.  Consistent Covariance Matrix Estimation 

 

In this section, we provide an estimator for the asymptotic covariance matrix C  that is consistent 

despite possible misspecification.  The asymptotic covariance matrix consists of two components: 

0Q  and V .  Powell (1984) suggested the following estimator for 0Q  without formally proving its 

consistency: 
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          ∑
=

≤≤−
− ′≡

T

t
ttccTT XXTcQ

TtT
1

]ˆˆˆ[
1

0 1)ˆ2(ˆ
ε                                                                                     (4.1) 

where Tĉ  may be a function of the data and Tttt XY βε ˆˆ ′−≡ .  We impose the following conditions 

on the sequence }ˆ{ Tc . 

 

Assumption 12.  There is a stochastic sequence }ˆ{ Tc  and a non-stochastic sequence }{ Tc  such 

that 

(i) 1
ˆ p

T

T

c
c

→    

(ii) )1(ocT =  

(iii) )(1 TocT =− . 

 

We can now rigorously establish the consistency of Powell’s estimator TQ0
ˆ . 

 

Lemma 5.  Suppose that )1(||ˆ|| *2/1
pT OT =− ββ  and Assumptions 1, 3 ′′′ , 7, 10 and 12 hold.  

Then 00
ˆ QQ

p

T → . 

 

Next, we use the plug- in principle to propose a consistent estimator of V : 

          ∑
=

− ′≡
T

t
tttT XXuTV

1

21 ˆˆ , 

where )ˆ(ˆ ttu εψ θ≡ .  The estimator TV̂  is completely analogous to White's (1980b) estimator, for 

which  tû  is the OLS residual. 

 

Lemma 6.  Suppose that )1(||ˆ|| *2/1
pT OT =− ββ  and Assumptions 1, 3 ′′′ , and 10 hold.  Then   

          VV
p

T →ˆ . 

 

     We now define our estimator for the asymptotic covariance matrix C  as 



 10

          1
0

1
0

ˆˆˆˆ −−≡ TTTT QVQC .                                                                                                                (4.2) 

Together, Lemmas 5 and 6 imply CC
p

T →ˆ , ensuring the consistency of the covariance estimator.  

This allows us to obtain a computable Wald statistic and its asymptotic distribution as follows. 

 

Theorem 2. Suppose that Assumptions 1, 2, 3 ′′′ , 4-12 hold.  Let the null hypothesis be given by 

rRH =*
0 : β  where R  is a given finite kq ×  matrix of full row rank and r  is a given finite 1×q  

vector.  Then, under 0H , 

          ,)ˆ(]ˆ[)ˆ( 211
q

d

TTT rRRCRrRT χββ →−′′− −−  

where TĈ  is defined in (4.2). 

 

     Although we do not pursue the issue here, we note that just as MacKinnon and White (1985) 

found modifications of TV̂  that afforded improvements in finite sample properties, so also may 

there be analogous modifications of TV̂  here.  We leave this to subsequent research. 

 

5.  A Test for Correct Quantile Specification 

 

As we have seen in Section 3, if the conditional quantile model is correctly specified, then we 

have the quantile version of information matrix equality: QV )1( θθ −= .  We formally state this 

in the following lemma. 

 

Lemma 7.  Suppose that Assumptions 2 and3′′  hold and let )( ttu εψθ≡ .  If the conditional 

quantile model is correctly specified (i.e. 0)|( =tt XuE ), then we have QV )1( θθ −= : that is, 

)()()( 22
tttttt XXEuEXXuE ′=′ .  Equivalently, this can be written 0])[( 22 =′− ttut XXuE σ , where 

)1()( 22 θθσ −=≡ tu uE . 

 

     It is interesting to note that in order to have the same equality as in Lemma 7 in the context of 

OLS regression, we require two conditions: (1) the conditional expectation model is correctly 
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specified and (2) that there is no conditional heteroskedasticity in tu .  See White (1980b) for 

details.  However, for quantile regression, correct specification is the only sufficient condition 

due to the special structure of tu .  According to Lemma 7, any misspecification in the conditional 

quantile is a form of conditional heteroskedasticity in tu .  In such situations, inference based on 

the information equality is invalid.   

     Zheng (1998) has developed a consistent test for conditional quantile misspecification.  That 

test is based on a nonparametric kernel estimation and may accordingly be somewhat 

cumbersome to implement.  We now propose a very easy to use specification testing procedure 

that exploits the quantile version of the information matrix equality in Lemma 7.  Under the null 

hypothesis of correct specification of the conditional quantile function, we have 

          ,0)])(([ 22 =− utt uXhE σ                                                                                                     (5.1) 

where )(⋅h  is a measurable 1×s  vector function.  The information matrix test obtains when 

)( tXh selects some elements from the matrix tt XX ′ .  One example is )()( JXJXvechXh ttt ′′=  

with ]0[ ~~
1

~
kkk

IJ
××

= .  In this example )( tXh  is a 12/)1
~

(
~

×+kk  vector containing all the 

elements in the lower triangle and diagonal of the kk
~~

×  matrix JXJX tt ′′ .  Using the fact that 

),()21(22
tutu εψθσ θ−−=  the expression in (5.1) can be shown to be equivalent to 

          0)]()([ =ttXhE εψ θ .                                                                                                         (5.2) 

     A scaled sample version of the expectation in (5.2), which is our proposed test statistic for the 

null of correct specification, is given by 

          ),ˆ(2/1
TmT β−  

where ∑
=

− ′−=
T

t
TtttT XYXhTm

1

1 )ˆ()()ˆ( βψβ θ . 

We restrict the space to which  the selection function )(⋅h  belongs using the following moment 

condition. 

 

Assumption 13.  There exists 2>δ  such that ∞<)||)((|| δ
tXhE . 

 

The following lemma is useful in deriving the asymptotic distribution of the proposed statistic. 
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Lemma 8.  Suppose that Assumptions 1, 3 ′′′  and 13  hold.  Then,  

          )1(|)]()()[()]()([|sup *

1

2/1*2/1
pt

T

t
tt

B
oFFXhTmmT

T

=−−− ∑
=

−

∈
ββββ

β
 

where TT MTBB ≤−∈≡ ||||:{ *2/1 βββ )}1(OMand T = , and ≡)(βtF )|(| ttXY XXF β′ . 

 

The proof easily follows from Andrews (1989) once we show that 

          ∑∑
=

−

=

− =−−−
T

t
tt

T

t
ttTT ZHTFFXhTmmT

1

2/1*

1

2/1*2/1 ),()]()()[()]()([ βββββ  

where )]}()([11){(),( *
][][ * βββ

ββ ttXYXYtt FFXhZH
tttt

−−−≡
′≤′≤ .  As the indicator functions 

][][ *1,1
ββ tttt XYXY ′≤′≤  and the cumulative density functions )(),( *ββ tt FF  are functions of bounded 

variation, the iid assumption (Assumption 1) and the moment conditions (Assumptions 3 ′′′  and 

12) are sufficient to show that  ∑
=

−
T

t
tZHT

1

2/1 ),( β  is stochastically equicontinuous; that is, 

)1(|),(|sup
1

2/1
p

T

t
t

B
oZHT

T

≤∑
=

−

∈
β

β
 using Theorems II.2 and II.3 in Andrews (1989). 

 

Theorem 3.  Suppose that Assumptions 1, 2, 3 ′′′ , 4-13 hold.  

(i)   Suppose that the conditional quantile model is correctly specified.  Then 

          ),0()ˆ(2/12/1
0 ss

d

T INmT ×
− →Σ β  

      where ))(1( 0
1

0
1

000
1

0
1

000 DAQAAQAAQQQA +′−′−′−≡Σ −−−−θθ  with 

     ])()|0([ |0 ′≡ tttX XhXXfEA ε , ))(( ′≡ tt XhXEA  and ))()(( ′≡ tt XhXhED . 

(ii) Suppose that the conditional quantile model is correctly specified and that there is no 

conditional heteroaltitudinality in .f  Then 

          ),0()ˆ(2/12/1
ss

d

T INmT ×
− →Σ β  

       where ).)(1( QAAD ′−−≡Σ θθ  

 



 13

It is straightforward to derive consistent estimators for A , ,0A  and D  using the plug- in principle.  

For example, 

          )(ˆ
1

1 ′≡ ∑
=

−
t

T

t
tT XhXTA  

          )(1)ˆ2(ˆ
1

]ˆˆˆ[
1

0 ′≡ ∑
=

≤≤−
−

t

T

t
tccTT XhXTcA

TtT ε  

          ∑
=

− ′≡
T

t
ttT XhXhTD

1

1 )()(ˆ  

where Tĉ  and tε̂  are the same as in the definition of TQ0
ˆ  in (4.1).   It can be easily shown using 

Lemma 5 that AA
p

T →ˆ , 00
ˆ AA

p

T →  and DD
p

T →ˆ .  Therefore, the null of correct specification of 

the conditional quantile function can be tested using the fact that under the null 

          21 )ˆ(ˆ)ˆ( s

d

TT mTm χββ →Σ′ −  

where Σ̂  is a consistent estimator for either 0Σ  or Σ  as desired, and which can be constructed 

using TQ0
ˆ , TQ̂ , TA0

ˆ , TÂ  and TD̂ . 

 

6.  Monte Carlo Simulations 

 

We conduct simulation experiments to investigate the finite sample properties of our new 

covariance matrix estimator and to compare it with conventional covariance matrix estimators.  

For later reference we label the various estimators as follows: 

          Q-SE1:     12 ˆ)0(ˆ)1( −−− Qfθθ , 

          Q-SE2:     1
0

1
0

ˆˆˆ)1( −−− QQQθθ , 

          Q-SE3:     1
0

1
0

ˆˆˆ −− QVQ . 

We compare the performance of these alternative estimators in three different set-ups:  

[Case 1] the linear conditional quantile model is correctly specified and there is no conditional 

heteroaltitudinality in the density ,f  

[Case 2] the linear conditional quantile model is correctly specified but there is conditional 

heteroaltitudinality in the density ,f  
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[Case 3] the linear conditional quantile model is misspecified and there is conditional 

heteroaltitudinality in the density .f  

We expect that Q-SE1 and Q-SE2 will achieve the best performance in Case 1 and Case 2 

respectively, but Q-SE3 will be the winner in the most general case [Case 3].  Bootstrapping the 

covariance matrix for quantile regressions has also gradually gained popularity.  Hence, we also 

include the bootstrap covariance estimator in our simulation study.  We use the design matrix 

bootstrap covariance estimator used in Buchinsky (1995), defined as 

          ))(ˆ)(
~

))((ˆ)(
~

(
1

1

′−−∑
=

θβθβθβθβ i

B

i
iB

 

where )(ˆ θβ  is the θ -quantile estimator, )(
~

θβ i  is the thi  bootstrap estimator obtained by 

resampling the pair ),( tt Xy ′  and B  is the number of bootstrap samples.  We set B  to 500.   

     When estimating Q-SE2 and Q-SE3, we need to make a choice for the bandwidth parameter 

Tc .  In our simulations we use three different methods to choose the bandwidth parameter, all of 

which are derived and discussed in Silverman (1986): two parametric choices based on the 

standard deviation ( 2
εσ ) and the interquartile range ( εR ) of the underlying density εf  (the 

expressions are given by 5/106.1 −Tεσ  and 5/179.0 −TRε  respectively) and one non-parametric 

choice based on least-squares cross-validation.   

     Let )( ⋅Φ  be the standard normal cumulative density function.  We specify the data generating 

processes for our cases as follows: 

[Case 1]     tttt XXy ε+++= 211  

                   tε  ∼ )1),(( 1 θ−Φ−iid  

[Case 2]     tttt XXy ε+++= 211  

                   ttt X ησε )(=   

                   2
2

2
11)( ttt XXX ++=σ  

                   tη  ∼ )1),(( 1 θ−Φ−iid  

[Case 3]     t
i j

tjtitttt XXXXXy ε+++++= ∑∑
= =

3

1

3

1
3211  

                   with tε  specified as in Case 2. 
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In all cases  the tiX 's are drawn from the standard normal distribution with cross correlation 0.5; 

the value for the quantile (θ ) is set to 0.7.  The number of observations and the number of 

replications are 50 and 1,000 respectively. 

     For each replication we fit following quantile regression: 

          ).()(ˆ)(ˆ)(ˆ
22110 θθβθβθβ tttt eXXy +++=  

The standard error for each coefficient is calculated using the various methods explained above.  

We report simulation means of the coefficient estimates and of the standard errors in Table 1.  

The results for Q-SE2 and Q-SE3 in Table 1 are based on the bandwidth choice using the sample 

standard deviation, that is 5/1ˆ06.1ˆ −= TcT εσ  with ∑
=

−=
T

t
teT

1

212 )(ˆ θσ ε .  We obtained quantitatively 

similar results using other bandwidth choices, so these are omitted. 

     When the quantile regression model is correctly specified and there is no conditional 

heteroaltitudinality in the density f  [Case 1], all methods to compute standard errors behave 

similarly except for the bootstrap method, which yields standard errors slightly larger than the 

other methods.  In the last column under the heading “True Std. Dev.” we report the simulated 

standard deviations of the quantile estimates, which closely approximate the true standard 

deviation of the sampling distribution for the quantile estimator.  Not surprisingly, the correct 

covariance estimator Q-SE1 in Case 1 is smallest and closest to the true standard deviation.  It is 

interesting to note that the efficiency loss caused by using Q-SE2 and Q-SE3 is practically 

negligible.   

     In Case 2 where Q-SE2 is the valid covariance estimator, both Q-SE2 and Q-SE3 are 

reasonably close to the truth.  The bootstrap standard errors are giving noticeable over-estimates 

and Q-SE1 is giving noticeable under-estimates.  Finally, we turn to Case 3, where Q-SE3 is the 

only valid covariance estimator.  It is clear from the table that only Q-SE3 is close to the truth.  

Again, the bootstrap standard errors provide over-estimates.  While the other two covariance 

estimators (Q-SE1 and Q-SE2) both provide under-estimates, Q-SE1 is much worse than Q-SE2.  

The implication is that, at least in the case considered here, any null hypothesis is more likely to 

be rejected than it should be when the test is based on Q-SE1 or Q-SE2. 

     Our simulation study illustrates that: (i) when the linear conditional quantile model is 

misspecified and there is conditional heteroaltitudinality in the density ,f  our new covariance 
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estimator can allow researchers to conduct valid hypothesis tests; (ii) even when these conditions 

are not satisfied, using our covariance estimator is not likely to cause a serious efficiency loss; 

and (iii) the bootstrap method to calculate standard errors for quantile regressions should be used 

with care. 

 

7.  Application to Sharpe Style Analysis 

 

In this section, we apply our results to Sharpe style analysis.  Following Sharpe’s (1988, 1992) 

seminal work, the Sharpe style regression has become a popular tool to analyze the style of an 

investment fund.  The Sharpe style regression is carried out by regressing fund returns (over a 

period of time from a fund manager) on various factors mimicking relevant indices.  By 

analyzing the coefficients of the factors, one can understand the style of a fund manager (e.g. 

style composition, style sensitivity, or style change over time). 

     As Bassett and Chen (2001) point out, all previous papers have used the method of least 

squares and hence have concentrated on the relationship between the fund returns and the style 

factors focused on the mean of the return distribution conditional on the factors.  Manager style, 

however, can be different in different parts of the conditional distribution.  For example, a fund 

manager can change her style when the fund’s performance is very good or bad, which 

corresponds to high quantiles or low quantiles of the conditional distribution.  Bassett and Chen 

(2001) have proposed using the quantile regression method to analyze the style of a fund manager 

over the entire conditional distribution.  They used the returns on the Fidelity Magellan Fund 

( tR ) over a 5 year sample period (January 1992 – December 1997) with 60 monthly 

observations.  The Russell indices are the factors, which can be classified as follows: 

 

 Large (L) Small (S) 

Growth (G) Russell 1000 Growth ( LG
tX ) Russell 2000 Growth ( SG

tX ) 

Value (V) Russell 1000 Value ( LV
tX ) Russell 2000 Value ( SV

tX ) 

 

The Sharpe style quantile regression equation is then given by 
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          .)()()()()( t
SV

tSV
SG

tSG
LV

tLV
LG

tLGt XXXXR εθβθβθβθβθα +++++=                   (7.1)     

 

On the grounds that for the equity-only funds (e.g. the Magellan Fund or S&P 500 Index), 

unconstrained and constrained (non-negativity and summing-to-one) cases are usually similar, 

Bassett and Chen estimate the equation in (7.1) without the non-negativity and summing- to-one 

constraints.  Their findings can be summarized as follows: (i)  for the conditional mean, the  

Magellan fund has an important Large-Value tilt (coefficient 0.69) and otherwise is equally 

divided between Large-Growth (0.14) and Small-Growth (0.20); (ii)  the tilt to Large-Value 

appears at the other quantiles with an exception being the Quantile θ  = 0.1, where the coefficient 

for Large-Growth is the largest; and (iii)  in all the quantile regressions, most coefficients are not 

significant due to large standard errors. 

     We use the same data set with a longer sample period (January 1979 - December 1997), 

yielding 228 monthly observations.  Figure 1 shows a time-series plot of the Magellan Fund.  Our 

belief is that the lack of significance encountered by Bassett and Chen is due to the relatively 

small number of observations.  Since we are not sure about the correctness of the linear 

conditional quantile specification in (7.1), but would like to keep the linear specification, we 

calculate standard errors using the various methods explained in Section 6.  

     The results for the least squares and quantile regressions are reported in Table 2.  We take 

representative values of 0.1, 0.3, 0.5, 0.7 and 0.9 for θ  in our quantile regressions.  For the 

conditional mean of the distribution (that is, from the least squares regression), the Magellan fund 

appears to be heavily oriented toward Large-Growth (0.40) and also has an important Large-

Value tilt (0.30).  The remaining share is equally divided between Small-Growth (0.18) and 

Small-Value (0.21).  In contrast to the findings of Bassett and Chen (2001), the Large-Growth 

component clearly stands out.  This is, however, consistent with their finding that Large-Value 

orientation is an important component of the style of the Magellan Fund.  Further, it is obvious 

from Figure 2 that the stock market crash in 1987 generated a huge outlier in the returns series.  

Considering that the least squares estimator is sensitive to outliers, one might like to see how 

robust the results are given this circumstance.  The least absolute deviations (LAD) estimator is a 

potentially less sensitive alternative (but see Sakata and White (1995, 1998)).  The LAD results 

are reported in the middle of Table 2 (θ  = 0.5).  The coefficient for Large-Growth and Small-

Growth are almost unchanged, but the coefficient for Large-Value changes from 0.30 to 0.38 
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while the coefficient for Small-Value has been reduced by half.  As we change the value of θ , 

the style for Large-Growth ( )(ˆ θβ LG ) is also gradually decreasing with θ  while the style for 

Large-Value ( )(ˆ θβ LV ) becomes more important as θ  increases except at θ  = 0.9 where there is a 

sudden drop.  The style pattern for Small-Growth ( )(ˆ θβ SG ) is also noticeably changing with θ .  

The tilt to Small-Growth is substantially increasing with θ , indicating that the fund tends to 

invest heavily in Small-Growth stocks when the fund’s performance is good, but reduces its share 

to a statistically insignificant point (when θ  = 0.1, )(ˆ θβ SG  is not significant) when the fund's 

performance is poor.  The allocation to Small-Value ( )(ˆ θβ SV ) is decreasing with θ  except at θ  

= 0.9  where it is sharply increasing.  In order to see the change in the style against θ  in detail, 

we examine a grid of values for θ  (from 0.1 to 0.9 with 0.1 increment) and plot each quantile 

estimate )(ˆ θβ  with its 95% confidence interval (constructed using Q-SE3) against θ .  This plot 

is displayed in Figure 2.  The figure confirms our earlier observations. 

     The pattern of the quantile style (as a function of θ ) we have found is qualitatively similar to 

the findings in Bassett and Chen (2001) except for certain large values of θ , but we can now 

provide confidence intervals around the quantile style weights that are robust to the potential 

misspecification of the conditional quantile function.  

     In order to examine the potential for misspecification, we apply our quantile specification test 

using the selection function )()( JXJXvechXh ttt ′′=  with ]0[ 4414 ××= IJ .  The test statistics for 

the selected values for θ  and for the three alternatives to compute the bandwidth are given in 

Table 3.  The results are fairly robust to the choice of the bandwidth.  The overall conclusion is 

that for most quantiles we do not have evidence strong enough to reject at the 5% level the null 

that the linear quantile model in (7.1) is correctly specified.  The last row in the table, however, 

indicates that when θ  = 0.9, the linear specification in (7.1) may be misspecified.  It is worth 

noting again that the standard errors in Table 2 and the confidence intervals in Figure 2 are still 

valid under this potentially misspecified circumstance. 
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8.  Conclusion 

 

We have obtained the asymptotic normality of the quantile estimator for a possibly misspecified 

model and provided a consistent estimator of the asymptotic covariance matrix.  This covariance 

estimator is misspecification-consistent, that is, it is still valid under misspecification.  If 

researchers confine themselves to a parametric world, then our results are useful when there is 

uncertainty about correct specification or when one wishes to maintain a model that does not pass 

a specification test.  Although we have restricted our discussion to the linear conditional quantile 

model for iid data, our methods extend straightforwardly to non-linear conditional quantile 

models with dependent and possibly heterogeneous data.  Investigation of these cases is a 

promising direction for future research.  White (1994, esp. pp. 74-75) provides some consistency 

results for such cases.  See Komunjer (2001) for some asymptotic distribution results in this 

direction. 
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Table 1.  Simulation Means of 0.7-Quantile Estimates and Standard Errors. 

  Quantile 

Estimates 

 

    Q-SE1 

    

    Q-SE2 

 

    Q-SE3 

Bootstrap 

Std. Errors 

True 

Std. Dev. 

1tX  1 0.19 0.21 0.21 0.23 0.20 

2tX  1 0.19 0.21 0.20 0.23 0.19 

 

Case 1 

Constant 0.99 0.19 0.20 0.20 0.22 0.19 

        

1tX  1 0.30 0.42 0.41 0.44 0.40 

2tX  0.99 0.30 0.41 0.40 0.43 0.37 

 

Case 2 

Constant 0.99 0.29 0.32 0.31 0.34 0.28 

        

1tX  1.36 1.04 1.24 1.37 1.59 1.35 

2tX  1.32 1.04 1.23 1.36 1.60 1.37 

 

Case 3 

Constant 5.25 0.89 1.16 1.18 1.40 1.19 
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Table 2.  Mean Style and Quantile Style for Fidelity Magellan Fund 

Estimation Std. Err.    )(ˆ θβ LG     )(ˆ θβ LV     )(ˆ θβ SG     )(ˆ θβ SV     )(ˆ θα  

 0.40 0.30 0.18 0.21 0.45 

LS-SE1 0.07 0.08 0.06 0.08 0.11 

Least  

Squares 

LS-SE2 0.07 0.08 0.06 0.07 0.11 

       

 0.49 0.21 0.01 0.36 -1.43 

Q-SE1 0.11 0.13 0.09 0.12 0.17 

Q-SE2 0.15 0.19 0.10 0.16 0.19 

 

Quantile  

=θ 0.1 

Q-SE3 0.15 0.21 0.10 0.16 0.19 

       

 0.45 0.30 0.11 0.19 -0.25 

Q-SE1 0.08 0.09 0.07 0.09 0.13 

Q-SE2 0.10 0.12 0.08 0.08 0.16 

 

Quantile  

=θ 0.3 

Q-SE3 0.10 0.12 0.09 0.08 0.16 

       

 0.40 0.38 0.18 0.12 0.44 

Q-SE1 0.08 0.09 0.06 0.09 0.12 

Q-SE2 0.07 0.09 0.08 0.09 0.13 

 

Quantile  

=θ 0.5 

Q-SE3 0.07 0.09 0.08 0.09 0.13 

       

 0.35 0.39 0.24 0.10 1.07 

Q-SE1 0.08 0.10 0.07 0.09 0.13 

Q-SE2 0.06 0.08 0.06 0.07 0.14 

 

Quantile  

=θ 0.7 

Q-SE3 0.06 0.08 0.06 0.07 0.13 

       

 0.27 0.20 0.32 0.26 2.49 

Q-SE1 0.12 0.14 0.10 0.13 0.19 

Q-SE2 0.15 0.20 0.09 0.12 0.25 

 

Quantile  

=θ 0.9 

Q-SE3 0.13 0.20 0.08 0.11 0.25 

Note: LS-SE1 = Conventional standard errors for the least squares estimates. 

          LS-SE1 = White’s heteroskedasticity-consistent standard errors for the least squares estimates. 
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Table 3.  Information Matrix Specification Test Statistics 

 Quantile (θ  ) Bandwidth Choice:  
5/106.1 −Tεσ  

Bandwidth Choice: 
5/179.0 −TRε  

Bandwidth Choice: 

Least-squares cross-validation 

         0.1 12.49 15.79 12.40 

         0.3 14.52 14.42 14.48 

         0.5 15.62 15.42 15.42 

         0.7 16.33 16.58 16.58 

         0.9 22.10 22.13 22.13 

Note: The critical value at the 5%-level for the 2χ  distribution with 10 degrees of freedom is 

18.31. 

 



 23

Figure 1.  Time-series Plot of Fidelity Magellan Fund Monthly Returns 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Quantile Style for Fidelity Magellan Fund 
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Mathematical Appendix 

 

Proof of Lemma 1.   We define )()()( *βββ TTT SSQ −≡  and ))(()( ββ TQEQ ≡ .  Note that 

)(βQ  does not depend on T  as a result of the iid assumption.  Since )( *βTS  does not depend on 

β , Tβ̂
B∈

∈
β

minarg ∑
=

−=
T

t
tT ZqTQ

1

1 ),()( ββ  where ),( βtZq  )( βρθ tt XY −≡ )( *βρθ tt XY −−  

and ),( ttt XYZ ′≡ .  In order to apply Lemma 2.2 and Lemma 2.3 in White (1980a), we need to 

establish the following: 

(1)   ),( β⋅q  is measurable for each B∈β . 

(2)   ),( ⋅tZq  is continuous on B  almost surely. 

(3)   There exists a measurable function  RRm k →+1:  such that   

(i) )(|),(| zmzq ≤β  for all B∈β . 

(ii) There exists 0>δ  such that ∞<≤+ MZmE t
δ1|)(| . 

(4)   )(βQ  has a unique minimum at *β . 

Conditions (1) and (2) are trivially satisfied by inspection of the functional form of q .  Let 

)1||)(||||(||||||)( * ++≡ θββtt XZm  where β  is a solution to ||||max β
β B∈

.  The existence of 

such a solution is guaranteed by Assumption 5.  It is obvious that m  is measurable.  It is easily 

seen that )(|),(| zmzq ≤β  for all B∈β .  Condition (3)(ii) is satisfied by Assumption3′ .  The 

last step is to verify condition (4).  Let *ββδ −≡ .   Since 0)( * =βQ  by Assumption 4 and 

)),(()( ββ tZqEQ =  by Assumption 1, it is sufficient to show that 0)),(( >βtZqE  for any 

0≠δ .  Note that Assumption 2 and 6 imply that there exists a positive number 0f  such that 

⇒< 0|| fλ  0| )|( fxf X >λε  for all x .  Using this property, one can show that  

          =)),(( βtZqE  



 −′∫

′δ

ε λλλδ
tX

tXt dXfXE
0 | )|()(  

                                ≥  )(0 δAf  
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where 



 ′−≡ ∫

′

<<−

δ

λ λδλδ
tX

fft dXEA
0 ][ 00

1)()( .  It is easily checked that 0)( >δA  for any 0≠δ  

in all possible cases: (1) 0fX t −<′δ  (2) 00 fXf t ≤′<− δ   (3) δtXf ′<0 .  Therefore, we have the 

desired result: )1(ˆ *
pT o=− ββ .  n 

 

Proof of Lemma 2.  It is sufficient to show that ∑
=

− =′−
T

t
pTtttj oXYXT

1

2/1 )1()ˆ( βψ θ  for 

kj ...,,2,1= .  Let ∑
=

+′−≡
T

t
tjTttj aXXYaG

1

)ˆ()( βρθ  and ∑
=

+′−≡
T

t
tjTtttj aXXYXaH

1

)ˆ()( βψθ .  

Then it can be shown by the definition of  Tβ̂  that )(aG j  achieves its minimum at 0=a  and 

)(aH j  is the left partial derivative of )(aG j .  Using these properties, one can show (See Ruppert 

and Carroll (1980) or Powell (1984) for details)  that 

          ∑
=

=′−≤
T

t
XYtjj

Ttt
XH

1
]0ˆ[1|||)0(| β
                                                                                     

which implies that  

          ∑∑
=

=′−
−

=

− ≤′−
T

t
XYtj

T

t
Tttt

Ttt
XTXYXT

1
]0ˆ[

2/1

1

2/1 1|||)ˆ(| βθ βψ                                                                                 

                                                      ∑
=

=′−≤≤

−≤
T

t
XYt

Tt Ttt
XT

1
]0ˆ[1

2/1 1||||max β
. 

Note that (i)  )1(||||max
1

2/1
ptTt

oXT =
≤≤

−  by Assumption3′′  and (ii) )1(1 ..
1

]0ˆ[ sa

T

t
Xy

O
Ttt

=∑
=

=′− β
 by 

Assumption 2 (See Koenker and Bassett (1978) for details).  Hence, the proof is complete.  n 

 

Proof of Lemma 3.  Consider the absolute value of the thji ),(  component of the difference 

between 0
* QQ − .  Using Assumptions 3 ′′′  and 7, we have 

          |]))|0()|([(| |
*

| tjtitXttX XXXfXfE ′− εε λ   ||||]||[|| *3
0 ββ −≤ tXEL , 

which implies that ||)(|| *
0

* ββ −+= OQQ .  Therefore, 

          )()( *βλβλ − )||(||)( 2**
0 ββββ −+−−= OQ  

                                 ||)(||)( **
0 ββββ −+−−= oQ  
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which delivers the desired result.  n 

           

Proof of Lemma 4.  Define ||)]()([||sup),,(
||||

βψτψβ θθ
βτ

ttttt
d

t XYXYXdZu ′−−′−≡
≤−

.  In order to 

invoke Theorem 3 in Huber (1967), we need to verify the following conditions: 

(1) *β  is an interior point of the parameter space B . 

(2) The first order condition (3.1) is satisfied. 

(3) )1(ˆ *
pT o=− ββ . 

(4) For each B∈β , )( βψθ ttt XYX ′−  is measurable and separable in the sense of Doob (1953). 

(5) There exists B∈0β  such that 0)( 0 =βλ . 

(6) There exist 0>a  and 00 >d  such that ||||||)(|| *βββλ −≥ a  for 0
* |||| d≤− ββ . 

(7) There exist 0>b  and 00 >d  such that bddZuE t ≤)],,([ β  for 0
* |||| dd ≤+− ββ . 

(8) There exist 0>c  and 00 >d  such that cddZuE t ≤]),,([ 2β  for 0
* |||| dd ≤+− ββ . 

(9) ∞<2||)(|| ttXE εψ θ . 

First, note that condition (1) is just Assumption 8 and conditions (2) and (3) have been proved in 

Lemma 1 and Lemma 2 using Assumptions 1, 2, 3′′ , 4-6.  Condition (4) is easily checked using 

the equivalent definition of separability in Billingsley (1986).  This condition ensures that the 

function ),,( du β⋅  is measurable.  Condition (5) is satisfied given Assumption 4 by letting 

*
0 ββ = .  We now verify condition (6).  Let a  be the smallest eigenvalue of 

])|([ *
| ttttX XXXfE ′λε .  We can make ])|([ *

| ttttX XXXfE ′λε  sufficiently close to 

])|0([ | tttX XXXfE ′ε  which is positive-definite by Assumption 9 by choosing a sufficiently small 

00 >d .  We choose such 00 >d  so that a  is positive.  We have by (3.2) 

          ||)(||||)(|| ** βββλ −= Q  |||| *ββ −≥ a  for 0
* |||| d≤− ββ  

which verifies condition (6).   Some simple algebra gives the inequality 

         ≤),,( dZu t β  
]|||||)([| *1||||

dXXt ttt
X

≤−′− ββε
 

which implies by the law of iterated expectations and Assumption 10 that 

        dXEfdZuE tt ]||[||2)],,([ 2
1≤β . 
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Let ]||[||2 2
1 tXEfb ≡ .  Then b  is positive and finite by Assumption 3′′  which verifies condition 

(7).   Condition (8) can be verified in a similar fashion by le tting ,0]||[||2 3
1 >≡ tXEfc  which is 

finite by Assumption 3 ′′′ .   Note that 0][])([||)(|| 22 <′≤′= ttttttt XXEXXEXE εψεψ θθ  by 

Assumption 3′′ .  All the conditions in Theorem 3 in Huber (1967) are thus satisfied.  We 

therefore have the desired result:  

          )1()ˆ()( 2/1

1

2/1
pT

T

t
tt oTXT =+∑

=

− βλεψθ .  n 

 

Proof of Theorem 1.  Using the Lindeberg-Levy CLT, Assumptions 1, 3, 4 and 11 imply that   

          ∑
=

−
T

t
ttXT

1

2/1 )(εψ θ ),0( VN
d

→ .                                                                                        (A.1) 

Lemma 3, Lemma 4 and (A.1) together imply that  

           ),0()ˆ( *2/1 CNT
d

T →− ββ   

where 1
0

1
0

−−≡ VQQC .  n 

 

Proof of Lemma 5.  Consider ∑
=

≤≤−
− ′≡

T

t
ttccTT XXTcQ

TtT
1

][
1 1)2( ε .  Using the mean value theorem, 

one can show that )( TQE  = 






 ′∑
=

−
T

t
tttTX XXXfTE

1
|

1 )|(ξε  where TTT cc ≤≤− ξ .  Hence, Tξ  = 

)1(o  by Assumption 12(ii).  Let ≡0Q 






 ′∑
=

−
T

t
tttX XXXfTE

1
|

1 )|0(ε .  Then it is easily checked that 

−)(| TQE |0Q  0→  by the triangle inequality and Assumptions 3′′  and 7.   Using a LLN for 

double arrays (e.g. Theorem 2 in Andrews (1989)), we have that )( T

p

T QEQ → .  Therefore, we 

have that 0QQ
p

T → .  The rest of the proof is carried out in two steps: 

(1) −TQ0
~

| |TQ 0
p

→   where ∑
=

≤≤−
− ′≡

T

t
ttccTT XXTcQ

TtT
1

]ˆˆˆ[
1

0 1)2(
~

ε  

(2) −TQ0
ˆ| |

~
0TQ 0

p

→ . 
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The thji ),(  element of −TQ0
~

| |TQ  is given by  

     |)11()2(|
1

][]ˆˆˆ[
1∑

=
≤≤−≤≤−

− −
T

t
tjticcccT XXTc

TtTTtT εε   

     ≤  ∑
=

≤−≤+
− +

T

t
tjtidcdcT XXTc

TTtTTt
1

]|[|]|[|
1 ||||)11()2( εε   ≡  TT UU 21 +  

where |ˆ|||ˆ|||||| *
TTTtT ccXd −+−≡ ββ  (by the fact that |]||[|]0[]0[ 1|11| yxxyx −≤≤≤ ≤− ), 

≡TU1 ∑
=

≤−
−

T

t
tjtidcT XXTc

TTt
1

]|[|
1 ||||1)2( ε , and ≡TU2 ∑

=
≤+

−
T

t
tjtidcT XXTc

TTt
1

]|[|
1 ||||1)2( ε . 

First, we show that 01

p

TU → .  For this, let 0>η  and consider  

     )( 1 η>TUP  

                 =  )||||1)2((
1

]|[|
1 ηε >∑

=
≤−

−
T

t
tjtidcT XXTcP

TTt
 

                 ≡   )(AP    (where ]||||1)2[(
1

]|[|
1 ηε >≡ ∑

=
≤−

−
T

t
tjtidcT XXTcA

TTt
) 

                 ≤   )()()( cc BPCPCBAP ++∩∩   for any events B  and C . 

Now let }||ˆ||{ *1 zcB TT ≤−≡ − ββ  for a constant 0>z  and }|ˆ|{ 1 zcccC TTT ≤−≡ − .  Note that 

as ∞→T , (1) 0)( →cBP  by Assumption 12(iii) and )1(||ˆ|| *2/1
pT OT =− ββ ; and (2) 

0)( →cCP  by Assumption 5(i).  Now 
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1 ||||)|()2( λλη ε  (by the Markov inequality) 
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=
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−
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)1||||( 1
1 ||||)2( λη                   (by Assumption 10) 

          = [ ] ∞<+− ||||)1||||(1
1 tjtit XXXEfz η                                      (by Assumptions 1 and 3 ′′′ ). 

We can choose z  arbitrarily small, so )( 1 η>TUP 0→  which implies that 01

p

TU →  because 

01 ≥TU .  It can be shown in the same fashion that ,02

p

TU →  which completes the first step.  To 
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show the second step, consider  −TQ0
ˆ

TQ0
~

 = T
T

T Q
c
c

0

~
1

ˆ 



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~
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






−  by Assumption 5(i). Hence, the second step follows, which delivers the desired 

result: 00
ˆ QQ

p

T → .  n 

 

Proof of Lemma 6.  Since the proof is quite similar to the proof of Lemma 5, we do not provide 

the details.  Let ∑
=

− ′≡
T

t
tttT XXTV

1

21 )(εψ θ .  By the law of large numbers for iid random variables, 

we have VV
p

T →  by Assumption 1 and 3′′ .  Next we show that 0ˆ
p

TT VV →− .    Consider the 

thji ),(  element of |ˆ| TT VV − : 

     ∑
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− −
T

t
tjtitt XXT

1

221 |])()ˆ([| εψεψ θθ  

          ≤ ∑
=

≤
−+

T

t
tjtid XXT

Tt
1

]|[|
12 ||||1)1( εθ , 

          (where ||ˆ|||||| *ββ −≡ TtT Xd ) 

by the triangle inequality and the Cauchy-Schwarz inequality.   

     Let TU ∑
=

≤
−≡

T

t
tjtid XXT

Tt
1

]|[|
1 ||||1 ε .  By the same argument as in the proof of Lemma 5, one 

can show that 0
p

TU →  using Assumptions 1, 3 ′′′ , 10,  and )1(||ˆ|| *2/1
pT OT =− ββ .  n 

 

Proof of Lemma 7.  First, note that )1(2 θθσ −≡u .  Hence, ])[( 22
ttut XXuE ′− σ  

          ]))1([( 2
ttt XXuE ′−−= θθ  

          ])|([ tttt XXXucEE ′=  where 12 −≡ θc , 

which is zero because of correct specification assumption, 0)|( =tt XuE .  n 

 

Proof of Theorem 3.  Since )1()ˆ( *2/1
pT OT =− ββ , Lemma 8 implies that 
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− ββββ .                               (A.2) 

It is straightforward to show that 
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−− εψθ . 

Plugging these expressions into (A.2) and collecting terms gives 

          ),1()()ˆ(
1

2/12/1
p

T

t
ttT oaTmT += ∑

=

− εψβ θ                                                                           (A.3) 

where )(1
00 ttt XhXQAa −′≡ − .  Under the assumption that the conditional quantile model is 

correctly specified, the Lindeberg-Levy CLT delivers that  

          ∑
=

−
T

t
ttaT

1

2/1 )(εψ θ ),0( 2
a

d
N Σ→                                                                                           

where ))(1( 0
1

0
1

000
1

0
1

000 DAQAAQAAQQQA +′−′−′−≡Σ −−−−θθ , which completes the proof of (i).  

Furthermore, if there is no conditional heteroaltitudinality in ,f  then it can be shown that 

AfA )0(0 =  as well as that QfQ )0(0 = .  Then the asymptotic variance 0Σ  in (i) simplifies to  

         ),)(1( QAAD ′−−≡Σ θθ  

which completes the proof of (ii).  n         
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