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Chloroplast function is largely depen-
dent on its resident proteins, most 

of which are encoded by the nuclear 
genome and are synthesized in cytosol. 
Almost all of these are imported through 
the translocons located in the outer and 
inner chloroplast envelope membranes. 
The motor protein that provides the 
driving force for protein import has been 
proposed to be Hsp93, a member of the 
Hsp100 family of chaperones residing 
in the stroma. Combining in vivo and 
in vitro approaches, recent publications 
have provided multiple lines of evidence 
demonstrating that a stromal Hsp70 sys-
tem is also involved in protein import into 
this organelle. Thus it appears that pro-
tein import into chloroplasts is driven by 
two motor proteins, Hsp93 and Hsp70. 
A perspective on collaboration between 
these two chaperones is discussed.

Chloroplasts are plant and algal specific 
organelles where photosynthesis and 
many other cellular processes take place. 
Chloroplasts contain ~3,000 proteins,1,2 
with about 100 encoded by the chloro-
plast genome. In other words, more than 
90% of chloroplast proteins are encoded 
by nuclear genes, synthesized in the cyto-
sol and post-translationally imported 
into plastids. Most imported proteins are 
synthesized as precursors with a cleav-
able N-terminal signal, called a transit 
peptide. Such precursors are recognized 
by receptors in the outer envelope mem-
brane, translocated through translocons 
in the outer and inner envelope mem-
branes of chloroplasts (Toc and Tic), and 
processed to either their mature- or inter-
mediate-sized forms in the chloroplast 
stroma.3-8 Thylakoid proteins are further 
transported to their final destinations via 
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one of four pathways, the cpSec, cpSRP, 
cpTAT and spontaneous pathways.9-11 It 
is believed that the precursors are trans-
located across the envelope membranes in 
at least partially unfolded conformations 
and that the import machinery possesses 
some degree of unfolding activity.12

Three proteins make up the core Toc 
complex, Toc159, Toc34 and Toc75. The 
Toc159 and Toc34 proteins are receptors 
possessing GTPase activities and recog-
nizing transit peptides. Toc75 is a ß-barrel 
protein that forms the protein-translo-
cating channel across the outer envelope 
membrane.13 The Tic complex is also 
formed from multiple subunits. Tic110, 
Tic21 and Tic20 have each been suggested 
to function as the channel of the Tic com-
plex.14-16 A ternary complex containing the 
stroma-facing domain of Tic110, Tic40 
and a stromal factor, Hsp93 (a member 
of the Hsp100 family, possessing two 
ATPase domains), interacts with incom-
ing precursor proteins.17-26 Hsp93 has been 
proposed to serve as the import motor.27 
Other Tic components include regula-
tory subunits Tic62, Tic55 and Tic32 
that are purported to facilitate redox- and 
calcium/calmodulin-dependent precursor 
translocation across the inner envelope 
membrane (reviewed in ref. 3). Tic22 is 
a peripheral membrane protein associated 
with the inner envelope and exposed to 
the intermembrane space.28 It is suggested 
that Tic22 connects the Toc and Tic 
translocons during protein import.

A Role for Hsp70  
in Chloroplast Protein Import

A central issue concerning protein trans-
location across biological membranes 
is the nature of the required energy 
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a newly generated cpHsc70 antibody cap-
tured an incoming precursor protein, as 
well as stoichiometric amounts of Hsp93 
and Tic110.

In an attempt to discern the relation-
ship between the two stromal motor sys-
tems represented by Hsp70 and Hsp93, 
Su and Li36 generated a double mutant 
of the dominant paralogs of Hsp70 and 
Hsp93 in Arabidopsis, CPHSC70-1 and 
HSP93-V.20,21,36 Chloroplasts isolated 
from this mutant displayed a more severe 
protein import defect than that observed 
with each single mutant. The authors 
proposed from this that the two chaper-
one motor systems, Hsp70 and Hsp93, 
function independently. The lethality 
of another double mutant, cphsp70-1/
tic40, seemingly supported this hypoth-
esis because Tic40 is known to modulate 
the activity of Hsp93,24 making a Tic40 
knock out roughly equivalent to an Hsp93 
knock out.

Taken together, the two papers by Su 
and Li36 and by our group32 make a strong 
and convincing case that the Hsp70 chap-
erone system functions as part of the chlo-
roplast protein import motor.

Interaction of the Two Chloroplast 
Import Motors

To date at least four proteins have been 
proposed to contribute to the driving force 
for chloroplast protein import. First, in 
addition to its role as a precursor receptor, 
Toc159 was shown to be a GTP-dependent 
motor capable of driving proteins across 
the outer envelope membrane.5,37 Second, 
an Hsp70 from pea was found to be tightly 
associated with the outer envelope mem-
brane facing the intermembrane space.30 
Later, an integral outer membrane Hsp70, 
very likely the same chaperone men-
tioned above, was isolated with the import 
machinery.38 Curiously, attempts to iden-
tity this protein in Arabidopsis have thus 
far not been successful.39 Third, a stro-
mal Hsp93 has been repeatedly shown 
to be important for chloroplast protein 
import.17,19-22 Lastly, we32 and the Li labo-
ratory36 have demonstrated that a stromal 
HSP70 system is also involved in the pro-
tein import process, presumably provid-
ing additional force in cooperation with 
the Hsp93 chaperone. It seems likely that 

rescue plasmid, respectively, in which the 
deletion of the chromosomal gene(s) was 
complemented by expression of a rescu-
ing cDNA. These data indicated that a 
stromal Hsp70 system was essential for 
viability. To gain further insight into the 
functions of the stromal Hsp70 system, we 
generated conditional Hsp70-2 mutants 
based on amino acid substitutions in the 
yeast mitochondrial Hsp70 that rendered 
it unstable at elevated temperatures.34,35 
When chloroplasts isolated from these 
putative temperature sensitive mutants 
were subjected to a brief heat shock, sub-
sequent protein import was reduced com-
pared to import reactions in wild type 
chloroplasts. In a second approach, we cre-
ated a CGE1 null and CGE2 knock-down 
mutant (lcge), in which the total stromal 
CGE level was only 10–20% of that in 
wild type. Again, we found that lcge chlo-
roplasts imported precursor proteins at 
significantly lower rates than did wild type 
chloroplasts. Lastly, we observed using the 
lcge mutant, which would be predicted to 
exhibit prolonged association between an 
Hsp70 and its substrates, that incoming 
precursors and the Tic components Tic40 
and Hsp93 could be immunoprecipited 
with Hsp70-2-specific antibodies. These 
three lines of evidence all pointed to a role 
for an Hsp70 system in protein import 
into chloroplasts, most likely as an import 
motor.

Studies on the role of stromal Hsp70s 
in chloroplast protein import into chlo-
roplasts in Arabidopsis were conducted 
independently in the Li laboratory during 
approximately the same period that we 
performed our work.36 This group demon-
strated that knocking out either of the two 
Arabidopsis stromal Hsp70s, cpHsc70-1 
and cpHsc70-2, caused defects in chlo-
roplast protein import provided that the 
plants were not too old. Such defects were 
more severe at early developmental stages, 
and both precursors of photosynthetic 
and non-photosynthetic proteins were 
affected. They found that Hsp70 influ-
enced the translocation step in the import 
reaction sequence, while binding was not 
chaperone dependent, which is consistent 
with our findings in moss.32 This again 
suggests that the stromal Hsp70 serves as 
a motor for chloroplast protein import. 
In addition, immunoprecipitation using 

expenditure.29 In mitochondria and the 
ER, the driving force for post-transla-
tional protein import is thought to be 
derived from ATP hydrolysis by Hsp70s 
chaperones that are located in mito-
chondrial matrix and ER lumen, respec-
tively. Members of the highly conserved 
Hsp70 family of molecular chaperones 
are localized in several additional cellular 
compartments and play crucial roles in 
protein folding and transport processes. 
They operate with specific co-chaperones; 
J-domain proteins (JDPs) which stimulate 
Hsp70s’ ATPase activity, thereby alter-
ing the affinity of the chaperone for its 
substrates, and nucleotide exchange fac-
tors (NEFs, GrpE in bacteria, CGE in 
plastids) which facilitate the exchange of 
ATP for ADP. Three chloroplast-localized 
Hsp70s were identified in pea two decades 
ago,30 one associated with outer envelope 
membrane and two in stroma.

Despite the initial expectation and 
computational analyses31 that the stromal 
Hsp70s would be involved in chloroplast 
protein import, little evidence for such 
a role had been obtained until recently. 
Instead of Hsp70, the stromal Hsp93 
was often found to be stably associated 
with the Tic translocon. This Hsp93 was 
therefore proposed to provide the driving 
force for protein import, playing a role in 
chloroplasts analogous to that of Hsp70s 
in mitochondria and ER.27

We have recently worked to develop 
P. patens as a model system in which to 
investigate the function of the plastid 
stromal Hsp70s.32 This moss is unique 
among green plants in performing homol-
ogous recombination in the nucleus with 
introduced DNA at relatively high rates, 
which makes it an attractive model plant 
for reverse genetic studies. In addition, 
we have shown previously that it imports 
proteins into its chloroplasts in a man-
ner so far indistinguishable from that of 
flowering plants.33 We demonstrated that 
one of the three stromal Hsp70s in moss, 
designated Hsp70-2, was an essential pro-
tein in the moss. Similarly, knock out of 
both stromal co-chaperones, CGE1 and 
CGE2, caused lethality. Null mutants 
of these proteins could be obtained only 
when moss protoplasts were co-trans-
formed with the knockout DNA construct 
together with an Hsp70-2 or CGE cDNA 
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Arabidopsis, import rates in the mutant 
chloroplasts drop to 40–60% of that in 
wild type. If the function of both chaper-
one systems is reduced by genetic manip-
ulation, a more serve defect in protein 
import is observed (At_hsp70-1/hsp93-V ), 

nor moss are viable, indicating that both 
chaperone systems are essential. If one sys-
tem is functionally minimized while the 
other system remains intact, as in the moss 
lcge mutant or the At_hsp70-1, At_hsp93-
V and the At_hsp93-V/IIIb mutants in 

these two chaperones together are respon-
sible for the stromal ATP requirement 
for the import reaction.40,41 Members of 
the Hsp100 family of chaperones are also 
known to influence protein import into 
mitochondria and the ER, but only when 
the Hsp70/BiP system is compromised.42 
What appears to be unique to the chlo-
roplast situation is that plastids appear to 
utilize both of these chaperone motors in 
wild type plants. We would like to know 
the individual roles of the two chaperones. 
What are the roles of Hsp93 and Hsp70 in 
this import process, and do they function 
sequentially or simultaneously, indepen-
dently or synergistically?

In order to better describe the relation-
ship between the two chaperone systems 
based on in vivo studies, we summarized 
some of the genetic data in Table 1. When 
either chaperone system is completely 
knocked out (i.e., the Pp_hsp70-2 single 
and the Pp_cge1/cge2 double knock outs 
in the moss, and the hsp70-1/hsp70-2 
and hsp93-V/hsp93-IIIa) double mutants 
in Arabidopsis,16,30 neither Arabidopsis 

Table 1. Comparison of import defects of mutants from P. patens and Arabidopsis thaliana

Strain Hsp70 system Hsp93 system
Import 

(% of wild type)
Reference

Wild type +++ +++ 100

Pp_hsp70-2 - +++ Lethal 32

Pp_cge1 cge2 - +++ Lethal 32

Pp_lcge + +++ ~50 32

At_hsp70-1 ++ +++ ~60 36

At_hsp93-V +++ ++ 60–75 20–21, 36

At_hsp93-V/IIIa +++ - Lethal 22

At_hsp93-V/IIIb +++ + 40–60 22

At_hsp70-1/hsp93-V ++ + ~40 36

At_tic40 +++ - (?c) 25~40 or ~60 21, 25

At_hsp70-1/tic40 ++ - (?c) Lethal 36
aBoth Hsp93-V and III are knocked out. bHsp93-V is knocked out and Hsp93-III is knocked down. 
cQuestions whether or not the Hsp93 system is completely knocked out when the suggested 
Hsp93 co-chaperone, Tic40 is inactivated. + or -, Indicates the estimated degrees of functional 
Hsp93 and Hsp70 systems in the stroma. +++ is set for wild type, while — for complete knockout.

Figure 1. Concurrent with or after translocating across outer envelope membrane, the precursor protein is engaged in the Tic transport channel. 
While the precursor is in the channel, it interacts with a stromal motor complex that is minimally composed of Tic110, Tic40, Hsp93 and Hsp70. The 
motor pulls the precursor into stromal at expense of ATP hydrolysis. The two ATPases, Hsp93 and Hsp70, may cooperate in two different modes: (A) se-
quentially and independently or (B) simultaneously and synergistically (refer to text for details). Hsp70 associates with and dissociates from the motor 
complex under regulation of its two co-chaperones, CGE and JDP, to complete an ATP hydrolysis cycle. The transit peptide of the importing precursor 
is removed by the stromal processing peptidase (SPP).
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approach is confounded somewhat by the 
presence of multiple copies of the genes 
encoding the two chaperone motors, both 
in Arabidopsis and in moss. This might 
explain the approximate 50% reduction 
in import rates observed in both Hsp70 
and Hsp93 mutants noted in Table 1. 
Reduction of their gene copy numbers, as 
well as the creation of better conditional 
mutants, might lead to a simplification 
of the genetics experiments and ultimate 
clarity on this issue. For these and other 
experiments, we anticipate that P. patens, 
with its facility for the isolation of site-
directed knock outs, will continue to be 
a useful model organism for the study of 
chloroplast protein import in the coming 
years.
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