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Abstract

We characterize the joint dynamics of expected returns, stochastic volatility, and prices. In
particular, with a given dividend process, one of the processes of the expected return, the stock
volatility, or the price-dividend ratio fully determines the other two. For example, the stock
volatility determines the expected return and the price-dividend ratio. By parameterizing one,
or more, of expected returns, volatility, or prices, common empirical specifications place strong,
and sometimes inconsistent, restrictions on the dynamics of the other variables. Our results are
useful for understanding the risk-return trade-off, as well as characterizing the predictability of

stock returns.



1 Introduction

We fully characterize the relationship between expected returns, stock volatility and prices by
using the dividend process of a stock, and derive over-identifying restrictions on the dynamics
of these variables. We show that given the dividend process, it is enough to specify one of
the expected return, the stock return volatility, or the price-dividend ratio. Determining one of
these variables completely determines the other two. These relations are not merely technical
restrictions, but they lend insight into the nature of the risk-return relation and the predictability
of stock returns.

Our method of using the dividend process to characterize the risk-return relation requires
no economic assumptions other than ruling out asset price bubbles. In particular, we do not
require the preferences of agents, equilibrium concepts, or a pricing kernel. This is in contrast
to previous work that requires equilibrium conditions, in particular, the utility function of a
representative agent, to pin down the risk-return relation. For example, in a standard CAPM or
Merton (1973) model, the expected return of the market is a product of the relative risk aversion
coefficient of the representative agent and the variance of the market return.

The intuition behind our risk-return relations is a simple observation that, by definition, re-
turns comprise both capital gain and dividend yield components. Hence, the return is a function
of price-dividend ratios and dividend growth rates. Thus, given the dividend process, if we
specify the expected return process, we can compute price-dividend ratios. The second moment
of the return, or equivalently the approximate volatility process, is also a function of price-
dividend ratios and dividend growth rates. Thus, using dividends and price-dividend ratios, we
can compute the volatility process of the stock. Going in the opposite direction, if dividends
are given and we specify a process for stochastic volatility, we can back out the price-dividend
ratio, because the second moment of returns is a function of price-dividend ratios and dividend
growth. The price-dividend ratio, together with cashflow growth rates, can be used to infer
the process for expected returns. In continuous-time, expected returns, stock volatility, and
price-dividend ratios are linked by a series of differential equations.

Our risk-return relations are empirically relevant because our conditions impose stringent re-
strictions on asset pricing models. Many common empirical applications often directly specify
one of the expected return, risk, or the price-dividend ratio. Often, this is done without consid-
ering the dynamics of the other two variables. Our results show that specifying the expected
return automatically pins down the diffusion term of returns and vice versa. Hence, specifying
one of the expected return, risk, or the price-dividend ratio makes implicit assumptions about



the dynamics of these other variables. Our relations can be used as checks of internal consis-
tency for empirical specifications that usually concentrate on only one of predictable expected
returns, stochastic volatility, or price-dividend ratio dynamics.

We illustrate several applications of our risk-return conditions with popular empirical spec-
ifications from the literatures of predictability of expected returns and time-varying volatility.
First, a large literature beginning with Fama and French (1988a) forecasts expected returns with
dividend yields in a linear regression framework. A large asset allocation literature uses these
empirical specifications and parameterize conditional expected returns as linear functions of
dividend yieldst This specification implies that returns are heteroskedastic, and places strong
restrictions on the price process. In particular, the drift of the dividend yield is non-linear and
generally not stationary. Conversely, if the dividend yield follows a mean-reverting linear pro-
cess, like the AR(1) specifications assumed by Stambaugh (1999), Campbell and Yogo (2003),
and Lewellen (2003), then expected returns cannot be linear functions of the dividend yield, and
linear approximations to the drift of the expected return as a function of the dividend yield can
be highly inaccurate.

Second, we investigate the implications of predictable mean-reverting components of re-
turns on return volatility and prices. Poterba and Summers (1986) and Fama and French (1988b)
find slow mean-reverting components of returns. Even under IID dividend growth, mean-
reverting expected returns implies that the expected return must be a non-linear, increasing
function of the dividend yield. However, the stochastic volatility generated by mean-reverting
expected returns is several orders too small in magnitude to match the time-varying volatility
present in data.

Third, it is well known that volatility is more precisely estimated than first moments (see
Merton, 1980). Since Engle (1982), a wide variety of ARCH or stochastic volatility models
have been used successfully to capture time-varying second moments in asset prices. How-
ever, this literature mostly concentrates on specifying the diffusion components of stock returns
without considering the implications for the expected refurtf.we specify the diffusion of
the stock return, then, assuming a dividend process, stock prices and expected returns are fully
determined.

1 See, among many others, Kandel and Stambaugh (1996), Balduzzi and Lynch (1999), Campbell and Viceira

(1999), Barberis (2000), and Wachter (2004).
2 Exceptions to this are the GARCH, or stochastic volatility, models that parameterize time-varying variances

of an intertemporal asset pricing model. Harvey (1989), Ferson and Harvey (1991), and Scruggs (1998), among
others, estimate models of this type.



The idea of using the dividend process to characterize the relationship between risk and re-
turn goes back to at least Grossman and Shiller (1981) and Shiller (1981), who argue that the
volatility of stock returns is too high compared to the volatility of dividend growth. Campbell
and Shiller (1988a and b) linearize the definition of returns and then iterate to derive an ap-
proximate relation for the log price-dividend ratio. They use this relation to measure the role of
cashflow and discount rates in the variation of price-dividend ratios. Our approach is similar,
in that we use the definition of returns to derive relationships between risk, returns, and prices.
However, our relations tie expected returns, stochastic volatility, and price-dividend ratios more
tightly and rigorously than the linearized price-dividend ratio formula of Campbell and Shiller.
Furthermore, we are able to provide exact characterizations between the conditional second
moments of returns and prices (the stochastic volatility of returns, and the conditional volatility
of expected returns, dividend growth, and price-dividend ratios) that Campbell and Shiller’s
framework cannot easily handle.

Our risk-return conditions are most closely related to He and Leland (1993), who show that
the drift and diffusion term of the price process must satisfy a partial differential equation and
a boundary condition in a pure exchange economy. He and Leland show that the form of the
risk-return relation is a function of the curvature of the representative agent’s utility. Using divi-
dends, rather than preferences, to pin down the risk-return relationship is advantageous because
dividends are observable, allowing a stochastic dividend process to be easily estimated. Indeed,
a convenient assumption made by many models is that dividend growth is IID. In comparison,
there is still no consensus on the precise form that a representative agent’s utility should take.

The remainder of the paper is organized as follows. Section 2 derives the risk-return and
pricing relations for an economy with a set of state variables driving the time-varying investment
opportunity set. In Section 3, we apply these conditions to various empirical specifications in
the literature, covering predictability of expected returns by dividend yields, mean-reverting
expected returns, and models of stochastic volatility. Section 4 concludes. We relegate all
proofs to the Appendix.

2 The Model

Suppose that the state of the economy is described by a single state vayjatitéch follows
the diffusion process:
dzy = pg(xy)dt + o,(x)dBY, (1)



where the driftu, () and diffusiono,(-) are functions ofr;. We assume that there is a risky
asset that pays the dividend streén) which follows the process:

dD 1
D = (aten) + 503w ) dt-+ outenyiz, @

or equivalently:

D t
L —exp (/ pa(zs)ds + O'd(l’s)ng) :
Dy 0

For notational simplicity, we assume that shocks to the state variabded shocks to the
dividend process are orthogonal, that/i8* anddB¢ are independent. However, our results
apply in a similar fashion to the case whéR? andd B¢ are correlated.

By definition, the price of the assé} is related to dividend®); and expected returns. by:

E[dP,] + Dydt o
P B

pirdt. 3)
By iterating equation (3), we can write the price as:
P =E [/T e~Uimdi D ds 4 e wrdu) p | 4)
¢
Our goal is to determine the drift.(-) and diffusiono,.(-) of the return procesgR;:
dR; = p(z¢)dt + o, (x)d By, (5)
under a no-bubble condition:
Assumption 2.1 The transversality condition
lim E, [e U manpl =

T—o0

holds almost surely.

Assumption 2.1 rules out specifications like the Black-Scholes (1973) and Merton (1973)
models, which specify that the stock does not pay dividends. Equivalently, Black, Scholes,
and Merton assume that the capital gain represents the entire stock return, so the stock is a
bubble process in these economies. By assuming transversality, we can express the stock price



in equation (4) as:
t

The following proposition characterizes the relationships between dividend growth, the drift
and diffusion of the return proced#,, and price-dividend ratios, subject to Assumption?2.1:

Proposition 2.1 Suppose the state of the economy is described byhich follows equation
(1), and a stock is a claim to the dividenfls that are described by equation (2). If the price-
dividend ratio P,/ D, is a functionf(z,) of x;, then the cumulative stock return proce&s,
satisfies the following equation:

dR, = (MI +300/"+1
S

Conversely, if the returdk, follows the following diffusion equatioh:

1
+ g + 503) dt 4 o,(In f) dB? + 04 dB. 7)
dRy = p,(z,)dt + 0pp(2)dBE + 0,q()dBY, (8)

and the stock dividend process is given by equation (1), then the price-dividend’raiip =
f(x;) satisfies the following relation:

1 1
paf'+ Sonf" = (ur — a — 503) f=-1 9)
and the diffusion of the stock return is determined from the relations:

Org = Ow(lnf)/ (10)
Ord — O0¢g. (11)

3 An alternative way to compute the stock price is to iterate the definition of rettiRps= (dP; + D;dt)/P;
forward under the transversality conditibmr_, o eXp(—(ftT dR, — 302du))Pr = 0 to obtain:

P - / U2 dRu*%de“)Ds ds.
t

This equation holds path by path. As Campbell (1993) notes, we can take conditional expectations of both the left-
and right-hand sides to obtain:

P, =E, {/ e dR,f%aidu)Ds ds|
t

which can be shown to be equivalent to equation (6).
4 Although Proposition 2.1 is stated for a univariate state variaplehe equations generalize easily to the

case where; is a vector of state variables. In this case, the ordinary differential equation (9) becomes a partial

differential equation, and.., o, tt4, 04, 02, ando,.q represent matrix functions of.
5Sinced Bf anddB¢ are independent, the diffusion tewm(z;) of the return process in equation (5) is given

by \/o—rm(wt)2 + o'rd(xt)z-




There are several implications of Proposition 2.1. Most importantly, given the dividend
process, specifying one of the price-dividend ratio, the expected stock return, and the stock
return volatility, determines the other two. In other words, suppose the dividend cashflows are
given. Then, the dynamics of the price-dividend ratio procés®mpletely determines the
expected return,. and the stock return volatility,., from equation (7). The expected stock
return alone determines both the stock price (through equation (9)) and the volatility of the
return (through equation (10)). Finally, specifying a process for time-varying stock volatility
(c,.) determines the price of the stock (up to a multiplicative constant from equation (10)), and
the expected return of the stock (from equation (9) simgedeterminesf). More generally,
if the dividend process can also be specified, then we can choose two out of the dividend,
expected return, stochastic volatility, and price-dividend ratio, with our two choices completely
determining the dynamics of the other two variables.

The relationships between prices, expected returns, and volatility outlined by Proposition
2.1 arise only through the definition of returns and the imposition of transversality. We have
used no equilibrium conditions, or specified a pricing kernel, to obtain risk-return relations. Nor
do we impose the full structure of an economic asset pricing model, for example, a utility func-
tion with a joint distribution of consumption and asset payoffs, to obtain relations between ex-
pected returns and volatility. The conditions (7)-(11) can be easily applied empirically because
models often assume a process for one or moye. of,.., and f. Proposition 2.1 characterizes
what the functional form of the expected return, stochastic volatility, or stock price must take
after choosing a parameterization of only one of these variables.

There are two effects if we relax the transversality assumption in Proposition 2.1. First,
the transversality Assumption 2.1 ensures that the price-dividend ratio is a functiobyof
Feynman-Kacs. The requirement tliaf D, = f(z,) is not satisfied in economies that assume
geometric Brownian motion processes for the stock process (like Black and Scholes, 1973;
Merton, 1973). Inthese economies, there is no state variable describing time-varying investment
opportunities as the mean and variance are constant and the stock dividend is zero. Second, the
ordinary differential equation defining the price-dividend ratio in equation (9) may now have
additional terms with derivatives with respect to timend an additional boundary condition.
This is due to the fact that when transversality does not hold, the price-dividend ratio is also
potentially a function of time.

While some empirical studies focus on matching the predictability of total returns (see, for
example, Fama and French, 1988a and b; Campbell and Shiller, 1988a) and the volatility of



total returns (see, for example, Lo and MacKinlay, 1988), we often also build economic models
to explain time-varying excess returns, rather than total returns. Time-varying total returns may
be partially driven by stochastic risk-free rates. Proposition 2.1 involves total returns, rather
than excess returns. We can handle excess returns in several ways. First, since Ang and Bekaert
(2003) and Campbell and Yogo (2003) show that interest rates predict excess returns, risk-free
short rates could be included as a state variablg.isecond, it is easy to write down a process

for risk-free rates and then subtract the risk-free process from both sides of equation (7) to
obtain a relation for excess returns, given stock prices and dividends. Third, since the nominal
risk-free rate is known at timeover various horizons, Proposition 2.1 can be adjusted to solve
for conditional excess returns. Empirically, as returns are sampled at higher frequencies, the
effect of risk-free rates diminishes. For example, for daily or weekly returns, there is little
difference between total and excess returns.

Finally, the relations between prices, expected returns, and volatility in Proposition 2.1 must
hold in any equilibrium model. In an equilibrium model, prices, returns, and volatility are
simultaneously determined after specifying a complete joint distribution of state variables, agent
preferences, and technologies. In any equilibrium, the relations in Proposition 2.1 must be
satisfied. Similarly, if a pricing kernel is specified, together with the complete dynamics of the
state variables in the economy, the relations in Proposition 2.1 must also hold.

An advantage of the set-up of Proposition 2.1 is that many empirical specifications in finance
specify models of conditional means or variances of returns (like linear dividend predictability
regressions or stochastic volatility models), without specifying a full underlying equilibrium
framework. In these situations, Proposition 2.1 implicitly pins down the other characteristics of
returns and prices that are not explicitly assumed. In Appendix B, we show that an empirical
specification of a particular conditional mean, variance or a price process does not necessarily
uniquely determine a pricing kernel. However, there exists at least one (and potentially an
infinite number of) pricing kernels that can support the choice of a particular expected return or
volatility process. Once an empirical specification for expected returns, volatility, or prices is
assumed, Proposition 2.1 completely characterizes the dynamics of the other two variables.

3 Empirical Applications

Proposition 2.1 provides practical guidance about useful empirical specifications of prices, ex-
pected returns, or volatility. For example, Campbell and Shiller (1988a), Fama and French



(1988a), Hodrick (1992), and Stambaugh (1999), among others, parameterize the expected (ex-
cess) return of the market to be a linear function of the dividend yield, or the price-dividend
ratio. Proposition 2.1 shows that this places strong restrictions on the dynamics of the stock
price and on the stochastic volatility process of returns. Another example is Merton (1980),
who estimates several specifications of the expected return on the market as a function of the
market variance, because he seeks to avoid taking a stand on the precise functional relation be-
tween expected returns and volatility. According to Proposition 2.1, once a time-series process
for the market volatility is assumed, the expected return of the market is a consequence of the
choice of the volatility process. Our goal in this section is to illustrate how Proposition 2.1
can be applied to various empirical models that have been specified in the literature to produce
sharper predictions of risk-return trade-offs and pricing implications.

We work mainly with the assumption that dividends are 1ID. This assumption is only for
illustrative purposes, and we choose this standard assumption because many papers work with
IID dividend growth, including the textbook expositions by Campbell, Lo and MacKinlay
(1997) and Cochrane (200%).In Section 3.1, we show that time-varying expected returns
and stock return volatility in excess of the dividend volatility are two sides of the same coin.
Section 3.2 analyzes the case of the linear predictability of expected returns by dividend yields.
We consider the more general case of predictable mean-reverting components of expected re-
turns in Section 3.3. Finally, Section 3.4 investigates the implications for expected returns from
various models of stochastic volatility.

3.1 |ID Dividend Growth

The assumption that dividends are 11D is made in many exchange-based economic models with
Lucas (1978) trees. If dividend growth is 11D, then time-varying price-dividend ratios can result
only from time-varying expected returns. This intuition is used by Cochrane (2001) to demon-
strate that small, but persistent, changes in expected returns may result in large price changes.
The following corollary shows that under IID dividend growth, time-varying expected returns,
price-dividend ratios, and time-varying volatility are different ways of viewing a predictable
state variable driving the set of investment opportunities in the economy.

6 Recently Ang (2002), Ang and Bekaert (2003), and Lettau and Ludvigson (2003), show that dividends are not
IID but can be predicted by various state variables including interest rates, dividend yields, and consumption-asset-
labor deviations from trend.



Corollary 3.1 Suppose that dividend growth is IID, so that= i, ando,; = 64 are constant

in equation (2). If the state variable describing the economy satisfies equation (1) and stock
returns are described by the diffusion process in equation (8), wkhgre- 7,4 is a constant,

then the following statements are equivalent:

1. The price-dividend ratigf = f is constant.
2. The expected return, = fi, iS constant.

3. The volatility of stock returns is the same as the volatility of dividend growth, 0= 0
in equation (8).

We can interpret the term,, in equation (8) as the excess volatility of returns that is not
due to fundamental cashflow risk. Grossman and Shiller (1981) and Shiller (1981) make the ar-
gument that volatility of stock returns is too high compared to the volatility of dividend growth
in an environment with constant expected returns. Cochrane (2001) provides a pedagogical dis-
cussion of this issue and claims that excess volatility is equivalent to price-dividend variability,
if cashflows are not predictable. Corollary 3.1 is the mathematical statement of this claim.

3.2 Linear Dividend Yield Predictability of Returns
3.2.1 Implications of Dividend Yields Linearly Predicting Returns

In an environment with no bubbles, time-varying price-dividend ratios must reflect variation in
either discount rates or cashflows, or both. To formally capture this intuition, a large number
of empirical researchers have predicted future returns with price-dividend ratios or dividend
yields using linear regressions.Indeed, if dividend growth is IID, then the only source of
time-variation for stock prices is time-varying discount rates. However, even in the simple case
of IID dividend growth, the non-linearity of the present-value formula (6) implies that linear
regressions may provide an overly simplistic characterization of how dividend yields capture
predictable components of returns.

We show how the assumption of linear predictability of returns by dividend yields imposes
strong assumptions on the dynamics of the price process. This has two main implications for the
standard practice in the predictability and asset allocation literatures. While the predictability

7 See, among others, Fama and French (1988), Campbell and Shiller (1988a and b), Hodrick (1992), Goetzmann
and Jorion (1993), Stambaugh (1999), Ang and Bekaert (2003), Campbell and Yogo (2003), Engstrom (2003),
Goyal and Welch (2003), Lewellen (2003), and Valkanov (2003).

9



literature has used a regression framework to reject the null hypothesis of no predictability of
expected returns, the fact that a linear assumption of predictability implies inconsistent behav-
ior of the price-dividend ratio shows that a linear regression cannot be the most powerful test.
We explore potentially more powerful empirical specifications to pick up dividend yield pre-
dictability below. Second, a large asset allocation literature has taken the linear predictability of
expected returns by dividend yields literally. Our results show that this is a very inappropriate
specification for time-varying conditional means.

We can fully characterize the implicit restrictions made on prices and volatility by specifying
expected returns to be a linear function of dividend yields by applying Proposition 2.1

Corollary 3.2 Assume that dividend growth is IID, $q = iy ando, = G4 are constant in
equation (2).
Case A.Suppose that the dividend yiele)/ P = f~! linearly predicts returns in the predictive
regression:

dR; = (o + Bx)dt + G,,dBf + G4dBY, (12)

where the predictive instrument= 1/ f is the dividend yield ané,,, is a constant. Then, the
dividend yieldr follows the diffusion:

dxy = pip(x)dt + 0, (x¢)d By, (13)

where the driftu, () and diffusiorns,. () are given by:

1
pe(r) = (fat 505+ 05, — @)+ (1= )’

O-x(x) = —0pT. (14)

Case B.If returns are predicted by log dividend yields(D/P), in the predictive regression
(12), thenz = —In f. The process in equation (13) then represents the dynamics of the log
dividend yield, wherg,,(x) ando,(z) now satisfy:

1 1
pa(z) = Jia+ 553+§53x —a—pr+e”

0:(T) = —0pp. (15)

Corollary 3.2 implies that if expected returns are linearly predicted by dividend yields or
log dividend yields, then the dividend yield or log dividend yield process cannot be a linear
process. In particular, the drift of the dividend yield in equation (14) is generally not stationary

10



because it is quadratfc Similarly, the drift of the log dividend yield in equation (15) involves
both a linear and an exponential term and is also generally not stationary. Whereas dividend
yield predictability of returns has often been considered in the context of linear models, such
as the VAR systems of Campbell and Shiller (1988a and b) and Hodrick (1992), Corollary 3.2
demonstrates that (log) dividend yields cannot follow linear processes if expected returns are
linear functions of (log) dividend yields.

The assumption of homoskedastic returns in equation (12) is not restrictive, (if) is
instead a function of rather than being constant at,, thenyu,(z) ando,(z) would inherit
further state-dependence fram,(x). The sign ofo, for both level and log dividend yields
is negative, indicating that returns and dividend yields are conditionally negatively correlated.
Since the relative volatility of dividend shocks,] is small compared to the total variance of
returns, the negative conditional correlation of returns and dividend yields is large in magni-
tude. This prediction is confirmed by empirical estimates of conditional correlations between
dividend yield innovations and innovations in returns. For example, Stambaugh (1999) reports
that this correlation is around -0.9 for US returns.

We calibrate the resulting non-linearities of dividend yields, or log dividend yields, by es-
timating the regression implied from the predictive relation (12). We use aggregate S&P500
market data at a quarterly frequency from 1935 to 2001. This is an updated dataset used by
Lamont (1998) and Ang and Bekaert (2003). In Panel A of Table 1, we report summary statis-
tics of log stock returns, both total stock returns and stock returns in excess of the risk-free rate
(3-month T-bills), together with dividend growth. From Panel A, we set the mean of dividend
growth atii; = 0.05 and dividend growth volatility at; = 0.07. The volatility of dividend
growth is much smaller than the the volatility of total returns and excess returns, which are very
similar, at approximately 18% per annum. This allows us tasggt= (0.18)? — (0.07)?, or
Grq = 0.15.

In Panel B of Table 1, we report linear predictability regressions of continuously com-
pounded returns over the next year on a constant and dividend yields, expressed in levels or
logs. Since the data is at a quarterly frequency, but the regression is run with a 1-year hori-
zon on the LHS, the regression entails the use of overlapping observations that induce moving
average error terms. We report Hodrick (1992) standard errors in parentheses, which Ang and
Bekaert (2003) show to have good small sample properties with the correct size. Ang and

8 Constantinides (1992) and Ahn, Dittmar and Gallant (2002) provide sufficient conditions to ensure some
stationary quadratic drift processes in the context of quadratic term structure models.

11



Bekaert (2003) and Goyal and Welch (2003) document that dividend yield predictability de-
clined substantially during the 1990’s, so we also report results for a data sample that ends in
1990.

The coefficients in the total return regressions are similar to the regressions using excess
returns. For example, over the whole sample, the coefficient for the level dividend yield is 2.97
using total returns, compared to 3.35 using excess returns. In the log dividend yield regressions,
the coefficient on the log dividend yield is 0.10 (0.11) for total returns (excess returns). Hence,
although we perform our calibrations for total returns, similar conditional relationships also hold
for excess returns. The second line of Panel B shows that when the 1990’s are removed from the
sample, the magnitude of the predictive coefficients increases by approximately two, for both
the level and log dividend yield regressions. To emphasize the linear predictive relationship
in equation (12), we focus on calibrations using the sample without the 1990’s. Nevertheless,
we obtain similar qualitative patterns for the implied functional form for the drift of the price
process when we calibrate parameter values using data over the whole sample.

We focus first on predicting returns with dividend yields expressed in levels, similar to Fama
and French (1988a). Since the predictive regressions are at an annual frequency, the estimated
coefficients in Panel B allow us to directly matehand 3, since we can discretize the drift in
equation (12) as approximately + Sz)At. Hence, we set = —0.08 and3 = 4.6. Together
with the calibrated values fqi, = 0.05, 5, = 0.07 andag,4 = 0.15, we compute the implied
drift of the level dividend yields using equation (14), which we plot in Figure 1 in the solid
curved line.

Figure 1 shows that the implied drift of the dividend yield is highly non-linear. It becomes
strongly mean-reverting at high levels of the dividend yield, but at low levels, the dividend yield
behaves as if it is a random walk. For comparison, we plot the linear drift of an approximating
Ornstein-Uhlenbeck process fitted to the level dividend yield, assuming that the dividend yield
1/f = « follows the process:

dxy = k(0 — x)dt + 7,dBy . (16)

In data, the quarterly autocorrelation of the dividend yield is 0.96, so we calibnaseng the
relation0.96 = exp(—rAt), whereAt = 1/4. The unconditional mean of the dividend yield

is 4.4%, so we set = 0.044. The dashed line in Figure 1 represents the approximating linear
drift <(@ — x). For small movements around the unconditional mean of the dividend yield, the
implied drift and the approximating AR(1) are very similar, but the discrepancy becomes very
large for high or low dividend yields.

12



We now repeat the exercise using the log dividend yield as a predictor. In this exercise,
we set the coefficients = 0.81 and$ = 0.22 in equation (12) from the pre-1990’s estimates
of the log dividend yield predictability regressions in Panel B of Table 1. We represent the
implied drift of the log dividend yield process using a solid line in the bottom plot in Figure 1.
The dashed line represents the drift of the AR(1), or Ornstein-Uhlenbeck, process (16) fitted to
the log dividend yield in data, with the calibrated valwe$t = exp(—~x/4) andf = —3.16.

These numbers represent the quarterly autocorrelation of the log dividend yield and the mean
log dividend yield, respectively.

The implied drift of the log dividend yield, if log dividend yields linearly predict returns,
has fewer non-linear features than the level dividend yield case. Nevertheless, the implied
log dividend yield drift is still non-linear. In particular, for high levels of the log dividend
yield, the log dividend yield becomes less mean-reverting. Since dividend growth is IID, high
dividend vyields result from low prices, which implies that prices slowly wander back from
low levels, whereas prices relatively quickly decline from high levels. For comparison, we
overlay the drift of the Ornstein-Uhlenbeck approximation (16) from data to the log dividend
yield. The approximating linear drift is steeper than the implied drift, indicating that the log
transformation eliminates some of the non-linearity, but does not completely remove the non-
linear dependence.

3.2.2 Implications of Mean-Reverting Dividend Yields

So far, we have investigated the implications for the (log) dividend yield process by assuming
that returns are linearly predicted by log or level dividend yields. Now, we reverse the question.
Many studies, like Stambaugh (1999), Campbell and Yogo (2003), and Lewellen (2003) specify
the dividend yield, or log dividend yield, process to be the AR(1) process (16). We now show
that if the (log) dividend yield is an AR(1) process, then expected returns cannot be linear in the
(log) dividend yield.

Corollary 3.3 Assume that dividend growth is IID, $q = [y ando, = G4 are constant in
equation (2).

Case A.Suppose the level dividend yield= 1/f, wheref = P/D, follows the Ornstein-
Uhlenbeck process in equation (16). Then, the drjftz) and diffusiono,.(z) of the return
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processiR in equation (8) satisfy:

(2) b gt 132 '{9+092”+
) = K -0, ——+ =4z
O
rT = T 17
Ore () . (17)

Case B.Ifthe log dividend yield: = — In f follows the Ornstein-Uhlenbeck process in equation
(16), theny, (z) ando,,(z) satisfy:

_ 1_
pe(z) = fia+ §Uc2l + 2
Ore(T) = —0, (18)

o2 — kb + kx + "

Corollary 3.3 implies that if either the level or log dividend yield follows an AR(1), stock
returns are a highly non-linear function of dividend yields. Hence, linear regressions to pick
up predictability of returns by dividend yields may have low power. Various studies like Ang
and Bekaert (2003) demonstrate the low power of various OLS estimators, but Corollary 3.3
emphasizes that it may be the OLS set-up itself that may make dividend yield predictability
hard to find in the data (see also Engstrom, 2003; Menzly, Santos and Veronesi, 2004).

If level dividend yields follow an AR(1) process, Corollary 3.3 shows that returns are het-
eroskedastic as,, = —a,/z. However, when dividend yields are high, stock volatility is
low. This is the opposite to the behavior of these variables in data, since during recessions
or periods of market distress, dividend yields tend to be high, while stock returns tend to be
volatile. In contrast, if log dividend yields are described by an AR(1) process, Corollary 3.3
makes the strong (counter-factual) prediction that stock returns are homoskedastic.

Figure 2 graphs the expected stock return as a function of the level dividend yield (top
panel), or the log dividend yield (bottom panel), in solid lines. We calibrate the level, or log,
dividend yield using the implied quarterly moments from equation (16). For the level dividend
yield, we match the quarterly autocorrelatian96 = exp(—~x/4); the unconditional mean
6 = 0.044; and the unconditional varian©e0132% = ¢2/(2x). For the log dividend yield, the
corresponding numbers ake= 0.24, § = —3.16, ando, = 0.19. For comparison, we graph
the fitted linear regression of total stock returns at an annual horizon regressed onto a constant
and the (log) dividend yield in dashed lines. The approximating linear predictive coefficients
are the same as those reported in Table 1.

The top panel of Figure 2 shows a pronounced non-linear function of dividend yields and
expected stock returns, caused by the interaction of reciprocal and linear functions in equation
(17). In particular, low dividend yields predict extremely high conditional expected returns next

14



period. This result is driven by the Jensen’s teff/z?, which becomes very large at low
dividend yields. The large uncertainty at high prices, or low dividend yields, is similar to the
strong Jensen’s effects in Pastor and Veronesi (2004). This region of increasing expected returns
with lower dividend yields coincides with some empirically relevant ranges for the dividend
yield: expected returns increase with the level dividend yield for dividend yields lower than
2%. Note that during the late 1990’s, dividend yields were very low, sometimes below 1%, and
this is precisely the period where linear dividend yield predictability of returns is hard to detect
(see Ang and Bekaert, 2003; Goyal and Welch, 2003).

If we fit a straight line to the solid curve in the top panel of Figure 2, the highest linear
dividend yield predictability lies around the average dividend yield (4%). The slope of the
drift of the expected return flattens for high dividend yields. Hence, at high dividend yield
levels, there is hardly any linear predictability of expected returns by dividend yields. This also
makes dividend yield predictability hard to detect by OLS regressions during recessions where
dividend yields tend to be high.

In the bottom panel of Figure 2, we plot the implied drift of stock returns assuming that the
log dividend yield follows an AR(1) process. The implied drift has a higher slope than the linear
predictability captured by an OLS regression of stock returns on log dividend yields. Hence,
directly modelling the log dividend yield process may allow sharper estimates of dividend yield
predictability relations than running OLS predictive regressions on returns. Although the func-
tional form of equation (18) exhibits non-linearities, these are not as pronounced as the implied
non-linearities from assuming an AR(1) process for the level dividend yield (shown in the top
panel of Figure 2) because of the small, empirically relevant range of the log dividend yield in
data.

3.2.3 Implications of the Stambaugh (1999) Model

As a final example of linear dividend yield predictability, we examine the dividend growth
process implied by the Stambaugh (1999) model. Stambaugh assumes that the dividend yield
x = D/Pis an AR(1) process following equation (16), and the stock return is a linear function

of the dividend yield:

dR; = (o + Bx)dt + 0,4 (2)dBF + o4(z)dBY. (19)

Stambaugh uses this system to assess the small sample bias in a predictive regression where the
dividend yield is an endogenous regressor.

15



The Stambaugh model specifies two of the expected stock return, dividend yield, and stochas-
tic volatility. Proposition 2.1 implies that only one of these variables determines the other two,
once the dividend process is fixed. Hence, this system is over-parameterized if the dividends are
already specified. However, if we fix the expected stock return and the dividend yield, then this
implies that the dividend process must assume a very specific form. In particular, the dividend
yield can follow an AR(1) process and stock return predictability can be linear in the dividend
yield only if the dividend process itself is predicted by dividend yields. A further application of
Proposition 2.1 implies that the drift @fD;/ D, in equation (2) can be written as a function of
the dividend yieldr:

2
a—n+ie—a—§+(ﬁ—1)x. (20)
x x

Hence, by assuming that dividend yields are mean-reverting, the linear dividend yield pre-
dictability of equation (19) implies that dividend yields must predict dividends.

We graph equation (20) in Figure 3, which shows that dividends are an increasing function
of dividend yields. This is consistent with the positive OLS predictive estimates reported by
Ang and Bekaert (2003) in the post-1952 Treasury Accord sample. This result is the opposite
implied by the intuition of Campbell and Shiller (1988a and b), who claim that high dividend
yields must forecast either high future returns, low future dividends, or both. According to
Campbell and Shiller’s reasoning, since high dividend yields should predict high returns from a
large, positives coefficient in (19), high dividend yields should predict low future dividends, if
dividend yields predict dividends in the first place. This reasoning implies a downward sloping
drift of dividend growth as a function of dividend yields. In contrast, Figure 3 shows a non-
linear, but monotonically increasing drift of dividend growth as a function of dividend yields.

The incomplete reasoning of the Campbell and Shiller intuition is that it takes a static view
of the dividend yield being a function of returns and dividends. A high dividend yield today is
certainly caused by either high future returns, or low future dividend growth, or both. However,
there is an implicit assumption being made that the dividend yield also does not change in the
future. If dividend yields are mean-reverting, like in the Stambaugh model, then high dividend
yields today mean low dividend yields tomorrow. But, low dividend yields are associated with
either low returns or high dividend growth rates. The predictability equation (19) already im-
plies that today’s high dividend yield implies high expected returns. Thus, the only way that
dividend yields can be low next period with high expected returns is by increasing dividends
in the future. Thus, if dividend yields are mean-reverting and expected stock returns are posi-
tively linearly predicted by dividend yields, high dividend yields predict high, not low, dividend
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growth rates.

3.3 Predictable Mean-Reverting Components of Returns

Mean-reversion of asset returns has been investigated by many authors, including Fama and
French (1988b) and Poterba and Summers (1986), and more recently in textbook treatments by
Campbell, Lo and MacKinlay (1997) and Cochrane (2001). Dividend yield predictability of
stock returns is a special case of a mean-reverting expected return. Our goal is to examine the
more general case of the expected stock return being a mean-reverting function of a predictable
state variable. With mean-reverting returns, Proposition 2.1 places strong restrictions on the
dynamics of prices and stock volatility. To characterize these restrictions, we work with 11D
dividend growth, sq.; = fig ando, = G, are constant in equation (2).

We assume that stock returns have a predictable compopent

dR; = zydt + 0, (2)dBF + G4dBY, (21)
where the single mean-reverting state variabléollows an AR(1) process:
dxy = k(0 — xy)dt + 6,.dBy. (22)

Note that) is the unconditional mean of the continuously compounded stock return. The volatil-
ity o,..(z) is endogenously determined since we specify the conditional mean of the stock return.

From Proposition 2.1, the price-dividend rattg D = f(z) satisfies the following ordinary
differential equation:

(0= a4 o (o pa 303) £ = -1 @

which represents a perpetuity security in a Vasicek (1977) model with the short rate given by
x — fiq — 305. Oncef is determinedy,, = ,(In f)’ is given by equation (10). Our goal is to
calibrate how much stochastic volatility of returns can be attributed to mean-reverting expected
returns. Since we assume dividend growth is IID, time-varying expected returns are also the
only source of heteroskedasticity.

Rather than solving equation (23), we can solve ffalirectly using expression (6) for the
price-dividend ratio. We can simplify equation (6) by writing:

PR TR
_ /:O exp (—(9 s+ %a—ds) E, [exp <— /:(xu - Q)duﬂ ds.
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It can be verified that the conditional expectationesf (— [ (z, — #)du) is just the zero-
coupon bond price in a Vasicek (1977) model, with a short-rate process centered around zero,
and is given by:

Eq {exp <—/ (2, — Q)du)}
t
1 — e 58 5.2 1 — e hs 1 — 672/43
= exp (_<xt_9)T+2,jz (3—2 — ))

Hence, we can write the price-dividend ratio’as:

P, o 1
Ei = /t exp (—(9 — [lq)s + §5d5

1 — e K8 =2 1 — e 58 1— —2KS
(- ) 4 e (3—2 c 4-=° ))ds. (24)

K 2k2 K 2K

Equation (24) is a strictly decreasing, concave function of the expected retdrnis im-
plies that the conditional expected return is a strictly increasing, convex function of the dividend
yield. We illustrate this in the top panel of Figure 4, which plots the expected retugrsus the
dividend yield using the values = 0.15, 5, = 0.027, 8 = 0.125, iy = 0.05, anda, = 0.07.
The value fom is set from the average total continuously compounded return reported in Table
1. The values fork anda, imply an annual autocorrelation of 0.86 and a volatility of 0.05 for
the conditional expected return. We expeadb be low (or the persistence ofto be high) be-
cause common instruments for predicting expected returns like dividend yields or interest rates
are persistent variables. Our values foanda, are in line with the implied autocorrelation
and volatilities for latent conditional expected returns reported by Brandt and Kang (2003), and
Johannes and Polson (2003), among others.

The bottom panel of Figure 4 reports the implied stochastic volatility pararagtér) in
equation (21). The sign of,, is negative, implying a negative correlation between shocks
to expected returns and shocks to actual returns. Note that whils upward sloping, the
negative sign o, indicates thato,.| is decreasing. This implies that heteroskedasticity
decreases as expected returns increase. This is counter-factual, as periods of high expected
returns (or market crashes) tend to coincide with periods of very high volatility. However, most
notable in the bottom panel of Figure 4 is that the magnitude.ofs extremely small, around
-0.0013. Hence, the total volatility of returns is effectively the same as the volatility of dividend
growth.

9 Equation (24) can be written q;oc exp(a(s) + b(s)x¢)ds, which falls into the class of affine present value
models developed by Ang and Liu (2001), Bakshi and Chen (2002), and Bekaert and Grenadier (2002).
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The intuition behind this result is that large changed itand consequentlin f) are re-
quired to produce a large amount of stochastic volatility through the relatios ¢, (In f)’ in
equation (10) of Proposition 2.1. When expected returns are mean-reverting, only the terms in
the sum (6) close tochange dramatically whenchanges. One way that large changes ot-
cur from changes in is whenk is close to zero, or expected returns are almost non-stationary.
This corresponds to the case of permanent changes in expected returns. Another alternative for
time-varying expected returns to re-produce the amount of stochastic volatility observed in data
is for the volatility of expected returns to be the same order of magnitude as the volatility of
returns. Since we observe low volatility of dividend growth, these results suggest that we may
need an additional volatility factor to explain the variability of returns.

3.4 Models of Stochastic Volatility

Variances of stock returns vary over time, and their dynamics have been successfully captured
by a number of models of stochastic volatility. If the dividend process is specified, Proposition
2.1 shows that the presence of stochastic volatility implies that stock returns must be predictable.
Since estimating variances is easier than estimating conditional means in small samples, as
Merton (1980) comments, we can use Proposition 2.1 to characterize stock return predictability
by parameterizing the variance process. Given recent econometric advances in inferring the
volatility process from an observed series of realized volatility (see Andersen et al., 2003),
Proposition 2.1 can be used to shed light on the nature of the aggregate risk-return relation, on
which there is no theoretical or empirical consenSughis is an entirely different approach

from the current approaches to estimating risk-return trade-offs, which use different measures of
conditional volatility in predictive regressions involving the conditional mean (see, for example,
Glosten, Jagannathan and Runkle, 1996).

We look at two well-known stochastic volatility models, the Gaussian model of Stein and
Stein (1991) in Section 3.4.1, and the square root model of Heston (1993) in Section 3.4.2.
In both cases, we assume that dividend growth is Wp € 4 andoy; = g, are constant in
equation (2)) to focus on the relations between risk and return.

10For example, in two recent asset allocation applications involving stochastic volatility, Liu (2001) assumes
that the Sharpe ratio is increasing in volatility, following Merton (1973), while Chacko and Viceira (2000) assume
that the Sharpe ratio is a decreasing function of volatility.
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3.4.1 The Stein-Stein (1991) Model

In the Stein and Stein (1991) model, the time-varying stock volatility is parameterized to be an
AR(1) process. The Stein-Stein model in our set-up can be written as:

th = /,LT((,Ut)dt + xtdBf -+ 5'ddB§l
dry = k(0 —x)dt + 6,.dBy. (25)

The variance of the stock returni$ + 52, so the stock return variance comprises a constant
component?, from dividend growth, and a mean-reverting componénEmpirically, shocks
to returns and shocks to volatility dynamics are strongly negatively correlated, which is termed
the leverage effect, s, is negative.

The following corollary details the implicit restrictions are on the expected return of the
stocky, () by assuming that the stochastic volatility process follows the Stein-Stein model:

Corollary 3.4 Suppose that dividend growth is IID, g9 = iy ando, = 74 are constant in
equation (2). If the stock variance is given by, (x) = x in equation (8), andr follows the
mean-reverting process (25) according to the Stein and Stein (1991) model, then the expected
stock returnu,.(x) is given by:

B 1 1 K0 1 K _ 122
Mr<$> = Ha + 503 + 50’35 + O_—xl' + (5 - 5_93) 2’ + O €xp <_§5'_m) ) (26)

where(' is an integration constant’ = f(0), where f(0) is the price-dividend ratio at time
t = 0. Furthermore, we can describe the expected return in terms of the price-dividend ratio
f=P/D as:

K0

1, 1
Hr(f)zﬂd+§0§+§%+6—m 2

7, In (g) + (0, — 2k) In (g) + % (27)

The expected return (26) of the stock is a combination of several functional forms. First, the
expected return has a constant term, which is the case in a standard Lucas (1978) model with 11D
consumption growth. Second, the expected return is proportional to volatilithis specifica-
tion is implied by models of first-order risk aversion, developed by Yaari (1987) and parameter-
ized by Epstein and Zin (1990). Third, the expected stock return is proportional to the variance
z?, which is the case in a Merton (1973) model. Finally, the last t€fmhexp(—32?/5,) can
be shown to be the dividend yield in this economy. Since the price-dividend ratio is only one
component of equation (26), the Stein-Stein model predicts that expected returns may be non-
linear functions of price-dividend ratios or dividend yields. We emphasize that the risk-return
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trade-off (26) is not derived using an equilibrium approach. The only economic assumptions
behind the risk-return trade-off is the 11D dividend growth process and the no-bubble condition
necessary to derive Proposition 2.1.

We illustrate the risk-return relation (26) in the top panel of Figure 5. We graph the expected
return as a function of volatility: using the parametefs= 0.25, k = 8 andag, = —0.2. These
parameter values are meant to be illustrative, and are consistent with stochastic volatility models
estimated by Chernov and Ghysels (2002), among others. These parameter values imply that
the unconditional standard deviation of volatility is 5%. We also chadse 24.5, which
represents the average price-dividend ratio in the data.

The risk-return trade-off in Figure 5 is highly non-linear. Expected returns initially decrease
as a function of volatility for low volatility values. For volatility values higher than 15%, the
expected stock return becomes a sharply increasing function of volatility. Empirically, the risk-
return relation is very hard to pin down. French, Schwert and Stambaugh (1987), Bollerslev,
Engle and Wooldridge (1988), Scruggs (1998) find only weak support for a positive risk-return
trade-off, while Ghysels, Santa-Clara and Valkanov (2003) find a significant and positive re-
lation. On the other hand, Campbell (1987) and Nelson (1991) find a significantly negative
relations. Glosten, Jagannathan and Runkle (1993), Scruggs (1998), and Harvey (2001) report
that the risk-return trade-off is negative, positive, or close to zero, depending on the specifica-
tion employed. The conflicting empirical findings of the risk-return trade-off are not surprising
in light of the decreasing and then increasing expected return as a function of volatility reported
in Figure 5. If the Stein and Stein (1991) volatility model is a reasonable description of the
data, Figure 5 suggests that an alternative appropriate risk-return empirical specification would
be a bi-linear form, so that the risk-return relation can take different slopes over low or high
volatilities.

To understand why the risk-return relation in the top panel of Figure 5 generally slopes up-
wards, consider the following intuition. The price-dividend rafion the Stein-Stein economy
is givenbyf = C~! exp(—%x2/6$), which is a decreasing function of volatilitybecause,
is negative (due to the leverage effect).

If 2 is high (andf is low), because of mean-reversioris likely to be lowerf is likely to be
higher in the next period. The return is composed of a capital gain and a dividend component.
Since the dividend is 11D, the highgt causes the capital gain component to be large for high
enough values of. Hence, high volatility levels correspond to high expected returns. The
opposite intuition occurs for low volatility levels. Whenis low, and f is high, f is more
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likely to be low in the next period because of mean-reversion, and the expected capital loss
causes expected returns to be low or negative for low volatility levels. The non-linearity of the
variance term in (26) is responsible for the non-monotonicity of the risk-return trade-off.

The bottom panel of Figure 5 plots the expected return as a function of the dividend yield
using equation (27). The expected return is an increasing function of the dividend yield. The
kink at the unconditional dividend yield~! is due to the AR(1) formulation for the volatility
dynamics in equation (25), allowing volatility to go negative. This assumption is equivalent to
assuming a reflecting barrier at= 0. An alternative model that restricts the volatility to be
positive and always smooth is the Heston (1993) model, which we examine next.

3.4.2 The Heston (1993) Model

In the Heston (1993) model, the variance follows a square-root process, similar to Cox, Ingersoll
and Ross (1987) that restricts the variance to be always positive. This modest change produces
a large change in the behavior of the risk premium, as the following corollary shows:

Corollary 3.5 Suppose that dividend growth is IID, gg = i, ando, = 7, are constant in
equation (2). Suppose that returns are described by the Heston (1993) model:

dry = k(0 —xp)dt + o/ dBY (28)

Then, the expected stock retyrp(z) is given by:

. 1_, kO 1 k 1 x
,ur(x)—/ld—l-gad—i-;—i— (§—E>x+0 exp <—;>, (29)

whereC' is an integration constant’ = f(0), where f(0) is the price-dividend ratio at time
t = 0. Furthermore, we can describe the expected return in terms of the price-dividend ratio
f=P/D as:

e (f) =ud+%a§+%9+ (5—x)m (é) +% (30)

Like the Stein-Stein (1989) modet,in equation (28) for the Heston (1993) model is neg-
ative empirically reflecting the leverage effect. We can interpret the risk-return trade-off in
equation (29) to have three components: a constant term, a term linear in the variandehe
third term f = C~!exp(—z/0) can be shown to be the dividend yield. Unlike the risk-return

trade-off in the Stein-Stein (1989) model (see equation (26)), there is no term proportional to
volatility /.
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If C—!is set to be the average dividend yield, which is approximately 4.4%, then the ex-
pected stock return in equation (29) is dominated by the linear ¢§rm§)a:. Since empirical
estimates of the mean-reversion of the variangeare large and estimates of the magnitude
of the volatility of the varianceg, are small, the risk-return trade-off is upward sloping, for
empirically relevant parameters. Figure 6 illustrates this.

In the top panel of Figure 6, we plot the expected return (29) as a function of the stock
volatility \/x, to be comparable to the plots of the Stein-Stein (1991) model in Figure 5. We
choose the same calibrated parameters that Hestonfise8:01, x = 2, ando = —0.1. Fig-
ure 6 shows that the risk-return trade-off from a Heston model is always positive! Mechanically,
this is because the expected return in the Heston economy in equation (29) lacks a negative term
proportional to volatility that enters the risk-return trade-off in the Stein-Stein model (equation
(26)). The term proportional to volatility allows the expected return in the Stein-Stein solution
to initially decrease, before increasing. In the Heston model, no such initial decrease can oc-
cur. The bottom panel of Figure 6 shows that the expected return is an increasing function of
dividend yields, and looks remarkably similar to the corresponding picture for the Stein-Stein
model in Figure 5. The expected return as a function of the dividend yield is always smooth
because of the square-root process for variance in the Heston economy.

4 Conclusion

We derive conditions on expected returns, stock volatility, and price-dividend ratios that asset
pricing models must satisfy. In particular, given a dividend process, specifying only one of the
expected return process, the stochastic volatility process, or the price-dividend ratio process,
completely determines the other two processes. For example, the dividend stream allows the
volatility of stock returns to pin down the expected return. We do not need to specify a complete
equilibrium model to characterize these risk-return relations, but instead derive these conditions
using only the definition of returns, together with a transversality assumption.

Our conditions between risk and return are empirically relevant because many popular em-
pirical specifications assume dynamics for one, or a combination of, expected returns, volatility,
or price-dividend ratios, without considering the implicit restrictions on the dynamics of the
other variables. We show that some of these implied restrictions may result in strong, some-
times internally inconsistent, dynamics. Our results point the way to future empirical work that
can exploit our over-identifying conditions to create more powerful tests to investigate the risk-
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return trade-off, the predictability of expected returns, the dynamics of stochastic volatility, and
present value relations in a unifying framework.
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Appendix

A Proof of Proposition 2.1

Equation (7) follows from a straightforward application of Ito’s lemma to the definition of the return:

dP, + D,dt

dRy =
t Pt )

(A-1)

which we rewrite agR; = df;/f; + dD;/D; + 1/ f,dt. Note that we assume théB¢ anddB¥ are uncorrelated
by assumption.

The definition of returns in equation (A-1) allows us to match the drift and diffusion terms in equation (7) for
R;. Hence, the price-dividend ratjfy the expected return,., and the volatility terms-,., ando 4 are determined
by re-arranging the drift, and théB? anddB¢ diffusion terms, respectively. If the expected retury(-) is
determined, equation (9) defines a differential equatioryfarhich determineg. Oncef is determined, we can
solve foro,., from equation (10). If the return volatility.,.. is specified, we can solve fgrfrom equation (10) up
to a multiplicative constant, and this determines the expected rgtuimequation (9)l

B Relation of Proposition 2.1 to Pricing Kernel Formulations

By definition, given the dividend proceg, the price of the stock is given by:

P, =E, { / AyD, ds} , (B-1)
t
under the pricing kernel proceds, together with a transversality assumption. We assume that the pricing kernel
follows:
dA
= rp(@)dt = Eo(e)dBY — Ea)dBY, (8-2)
t

wherer(-) is the risk-free rate process, agd and&,; are prices of risk corresponding to shocks to the state
variablex; and dividend growth, respectively. Using equation (B-1), we can express the price-dividend ratio as:

P o0 s 1
ﬁt =E M exp <—/t (ry + 5(532 +€2))du+ & dB? +§dd35f>

S
X exp (/ tadu + UddB;i> ds} .
t

This can be equivalently written as:

P, o0 N 1
=2 | [ e (= [y - pa yoa—gaP)du) as. (B-3)
Dy ¢ ‘ 2
where the Radon-Nikodym derivative defining the risk-neutral meagusagiven by:
dQ _ ? 1 2 2 x d
aP exXp | — 5(&; +(0q —&a)°) du — & dBy, — (04 — £a)dBy; | - (B-4)
t

Note that equation (B-3) is a functighof x;.
We show how a particular choice of a return procéss, together with assumptions on dividends, places
restrictions on the underlying pricing kernel procéds through the following proposition:

Proposition B.1 Suppose the state of the economy is described byhich follows equation (1), and a stock is

a claim to the dividend®, that are described by equation (2). If the stock return follows equation (7) and the
pricing kernel process follows equation (B-2), then the price-dividend @tid; = f(x;) satisfies the following
relation:

1 1
(Nw - ngl)fl + 70’2 " (Tf — Hd — 503 + Edo-d)f =-1, (B'S)
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which determines the price-dividend ratfo This implies that the expected retyin(z,) and volatility o, (z;) of
the return are given by:

r = Tr§+ fuzo'au(ln f)l + gdo.da
Ory = Oy (ln f)/ (B'G)

Proof: Equation (B-5) is the standard Feynman-Kac pricing equation. Once the price-dividentlisatiotained
from solving equation (B-5), we can derive equation (B-6) by equating terms from the drift tedii; aind the
diffusion term ond BY in equation (7) M

Proposition B.1 states that, given the dividend stream, the pricing kernel completely determines the price-
dividend ratiof, the expected return of the stogk, and the volatility of the stock,.,.. However, if we specify
the price of the stock, the expected return, or the volatility of the stock (each one being sufficient to determine the
other two from Proposition 2.1), the short ratg the prices of riski, and&,, or the pricing kernel, are not
uniquely determined. For example, suppose we speggifyThere are potentially infinitely many pairs of and
¢ = (&, &q) that can produce the samg. For example, one (trivial) choice gfis ¢ = (0, 0) corresponding to
risk neutrality, and the stock return is the same as the risk-free rate. Whereas Proposition 2.1 shows that specifying
I Oz, OF f completely determines the return process, the result from Proposition B.1 implies that a single choice
of ., oo, OF f does not necessarily determine the pricing kernel.

C Proof of Corollary 3.1

Statements (2) and (3) are equivalent from equation (10) of Proposition 2.1. Assunfe=hdtis a constant.
Then, using equation (9), we can show that= f~! + jig + %63, which is a constant. Hence (2) follows from
(2). Finally, to show that (1) follows from (2), suppose that= f,. is a constant. From equation (9) satisfies
the following ODE:

1 1
ol + 5020" — (0 = fa = 593) 7 = 1. (1)
Since the term orf is constant, it follows that the price-dividend rafy D = f = (G, — [iqg — %63)—1 is the

solution. Note that this is just the Gordon formula, expressed in continuous-time. Hence, the price-dividend ratio
is constantll

D Proof of Corollary 3.2

Using equation (10) of Proposition 2.1, we hayg = o, (z)(In f)’ = —1/xz, sincef = 1/xz. Rearranging, we
obtain equatiow,(x) = —&,,2. From equation (9), we have:

) f + L5222 1 1
a+ﬂz:“<)f 2f / +nd+§53. (D-1)
Substitutingf’ = —1/2? and f” = 2/2*, and re-arranging this expression foy(x) yields equation (14). A

similar derivation is used for equation (15), except we employ the transformation-In f,or f = e~ *. l

E Proof of Corollary 3.3
This is a straightforward application of equation (7) of Proposition 2.1, ugiagl /« for the level dividend yield
and f = exp(—z) for the log dividend yield
F Proof of Corollary 3.4

Using equation (10) of Proposition 2.1, we have= 5. (In f)’, which we can solve for the price-dividend rafio
as:
1 22
f=Cexp (T ) : (F-1)

25,
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whereC is the integration constart = f(0). We can derive equation (26) by substituting the expression for
f into equation (9) of Proposition 2.1. To derive equation (27), we use the expressipridaubstituter? =
26, In(f/C), andz = /2|5, In(f/C)|. B

G Proof of Corollary 3.5

The proof is similar to Corollary 3.4, except now the price-dividend réti® given by:

f=Cexp (;) , (G-1)

whereC is the integration constadt = f(0).
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Table 1: Dividend Yield Predictability Regressions

Panel A: Summary Statistics
Total Returns  Excess Returns  Dividend Growth

Mean Stdev Mean Stdev Mean Stdev

1935:Q1-2001:Q4 0.125 0.169 0.070 0.173 0.053 0.066
1935:Q1-1990:Q4 0.121 0.173 0.066 0.178 0.059 0.071
Panel B: Dividend Yield Regressions
Total Returns Excess Returns

Level Log Level Log
Const DivYield Const DivYield Const DivYield Const Div Yield

1935:Q1-2001:Q4 0.005  2.967 0452 0.100 -0.067 3.351 0439  0.113
[0.07] [2.03] [2.41] [1.76] [1.10] [2.37] [2.40] [2.03]

1935:Q1-1990:Q4 -0.082 4591  0.812 0219 -0.157 5041  0.819  0.238
[1.09] [2.71] [3.25] [2.80] [-2.08] [3.06] [3.34] [3.10]

Panel A reports means and standard deviations of total returns, returns in excess of the risk-free rate (3-month T-
bills), and dividend growth. All returns and growth rates are continuously compounded. Panel B reports predictive
regressions of gross (or excess returns) onto a constant and a predictor. The predictor is either the dividend yield
expressed in levels, or the log dividend yield. The regressions are run at an annual horizon of returns on the LHS,
but at a quarterly frequency. Hodrick (1992) t-statistics are reported in parentheses. The stock data is the S&P500
from Standard and Poors and the frequency is quarterly. In Panel A, means and standard deviations for quarterly
returns or growth rates have been annualized.
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Figure 1: Implied Drift of the Level or Log Dividend Yield
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In the top panel, we graph the implied drift of the level dividend yield (equation (14)) using the calibrated parameter
valuesjiy = 0.05, 64 = 0.07, 5.4 = 0.15, « = —0.08, and = 4.6 in the solid line. The dotted line represents

the drift of an AR(1) fitted to the level dividend yield in dat&) — =), where0.96 = exp(—x/4) andd = 0.044

in equation (16). In the bottom panel, we plot the implied drift of the log dividend yield (equation (15)) using
a = 0.81 andj = 0.22. The approximating AR(1) drift is produced by usidg4 = exp(—«/4) andd = —3.16

in equation (16). The calibrations are done using quarterly S&P500 data from 1935 to 1990.
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Figure 2: Expected Returns as a Function of Level or Log Dividend Yields
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In the top panel, we graph the drift of the total stock return (equation (8)) as a function of the level dividend
yield in the solid line, if the level dividend yield follows the Ornstein-Uhlenbeck process in equation (16), using
the calibrated parameter valugg = 0.05 anda, = 0.07. For the level dividend yield process, we match the
quarterly autocorrelation).96 = exp(—~x/4), the long-term mead = 0.044, and the unconditional variance
0.0132%2 = 02/(2k). The dashed line represents the linear regression of total stock returns at an annual horizon
regressed onto a constant and the level dividend yield, using the values from Table 1. In the bottom panel, we
repeat the exercise for total stock returns as a function of the log dividend yield, with the corresponding parameters
arex = 0.24, § = —3.16, ando, = 0.19. The calibrations are done using quarterly S&P500 data from 1935 to

1990.
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Figure 3: Drift of Dividend Growth Implied by the Stambaugh (1999) System
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We graph the drift of dividend growthD, / D, (equation (20)) from the Stambaugh (1999) system, where the level
dividend yieldz is mean-reverting in equation (16), and stock returns are linearly predicted by dividend yields in
equation (19). We use the parameter valdes 0.16, § = 0.044, o, = 0.0075, « = —0.08 and = 4.60. The
calibrations are done using quarterly S&P500 data from 1935 to 1990.
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Figure 4: Implications for Predictability and Stochastic Volatility from Mean-Reverting Ex-
pected Returns
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In the top panel, we graph the conditional expected reiuversus the dividend yield, obtained from inverting
equation (24), using the parameter values 0.15, 5, = 0.027, 8 = 0.125, iy = 0.05, andgy = 0.07. In the

bottom panel, we graph the implied stochastic volatility parametg(-) in equation (21) as a function of To

produce the plots, we use quadrature to solve the price-dividend ratio in equation (24), and then numerically take
derivatives of the log price-dividend ratio to compute.(-).
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Implied Drift of Returns as a Function of Volatility
T

Figure 5: Implied Drift of Returns Implied by the Stein-Stein (1991) Model
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In the top panel, we graph the implied drift of the stock return (equation (26)) as a function of the stock volatility
implied by the Stein and Stein (1991) model in equation (25). We use the parathet&rf5, k = 8, 5,

C = 24.5, which represents the average price-dividend ratjo= 0.05, anda, = 0.07. In the bottom panel, we
graph the implied stock return drift as a function of the dividend yield (equation (27)).
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Figure 6: Implied Drift of Returns Implied by the Heston (1993) Model
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In the top panel, we graph the implied drift of the stock return (equation (29)) as a function of the stock volatility
implied by the Stein and Stein (1991) model in equation (28). We use the parametér9d1, x = 2,0 = —0.1,
which are the parameters used by Heston (1993} 24.5, which represents the average price-dividend ratio,

g = 0.05, andgy = 0.07. In the bottom panel, we graph the implied stock return drift as a function of the
dividend yield (equation (30)).
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