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Abstract

The Marketing/Operations Management Interface:
Toward a Science of Delivering Value

by

Shan Li

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

My thesis research explicitly emphasizes integrating marketing and operations manage-
ment (hereafter OM) perspectives in the formulation of strategy. Shortened product life
cycles, technological advancements in products and processes, globalization of markets, con-
sumerism, and the rapidity of change have only exacerbated the perceived need to link
Marketing/OM strategies. My primary research interest follows the trend and explores the
science of delivering value to customers from an integrated view of marketing and OM with
special emphasis on the timing of introducing product lines (Chapter 1) and the role of social
contagion in forming customer lifetime value (Chapters 2 and 3).

In Chapter 1, we study the problem of when to introduce a line extension of a product with
an existing version in an integrated inventory (supply) and diffusion (demand) framework.
The launch of a new product with successive (and differentiated) versions always commands
a large commitment of resources in production and marketing, thus the introduction strategy
often requires careful planning. A key element in the introduction strategy is the introduc-
tion time. There is yet a formal model to quantify the impact of inventory cost on product
line introduction timing decisions considering the demand dynamics in product life cycle and
substitution among versions. This paper takes a first step towards filling this gap. On the
demand side, we consider the demand dynamics of both versions during product life cycle,
in marketplaces where repeated industry practices are observable to customers. Based on
the Bass model, we propose a splitting Bass-like diffusion model to describe the adoption
processes for the two successive (and differentiated) versions of one product, taking into
account the role of customer expectation in shaping purchase choices. On the supply side,
we model the impact of inventory holding cost that arises from a simple ordering policy.
We show there exists a unique optimal time to introduce the line extension in the planning
horizon. We quantify the optimal launch-time and both versions’ sales trajectories. In con-
trary to the existing optimal policy in the literature (i.e., “Now or Never”), we find that the
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optimal introduction can happen anytime from “Now” to “Never”, depending upon the char-
acteristics of different products. We show that when inventory holding cost is small and the
ordering cycle is short, the optimal introduction time is indeed “Now ” or “Never”. However,
as inventory holding becomes substantial, the firm might choose to delay the introduction
when the line extension is more profitable than the existing version, or to accelerate the
introduction when the existing version generates more profit. Our integrated model sheds
light on the necessity of coordinating marketing and operations management decisions.

In Chapters 2 and 3, we incorporate social contagion into customer lifetime value analy-
sis. Prior research has assumed that a customer’s lifetime value (LV) only depends on her
own purchase history. The rise of Internet and viral marketing casts doubt on this assump-
tion. In the Web 2.0 economy, social contagion is so integral to customer’s shopping process
that purchase behaviors are frequently interdependent. We investigate how social contagion
might influence a customer’s lifetime value beyond her own purchases. We posit that a cus-
tomer’s total lifetime value (LV) is a sum of her total purchase value (PV) (accounting for
others’ influence on her purchases) and her total influence value (IV). Specifically we have:
LV = PV + IV . Consequently a customer can still have a high lifetime value even if she
has a low PV as long as she has a high IV.

Chapter 2 presents a model with homogeneous population. Building on the classical Bass
diffusion model, we show that PV, IV, and LV decrease in the convex manner with adop-
tion time. Hence a customer who adopts earlier is much more valuable than a customer
who adopts later. While PV increases with the innovation parameter, IV decreases with it.
Early adopters have their LV decrease with innovation parameter while later adopters have
their LV increase with it. Interestingly, PV decreases with the imitation parameter and IV
increases with it for early adopters and decreases with it for late adopters. LV increases with
the imitation parameter if the timing of adoption is below a cutoff value and decreases with it
if it is above the cutoff. We then examine how a firm might improve its overall customer LV
by accelerating purchase made possible by offering introductory price discounts to a subset
of customers. We characterize the optimal size of the targeted customers in terms of level
of discount, innovation as well as imitation parameters and demonstrate that the firm can
significantly increase its total customer LV by purchase acceleration. We also analyze the
impact of purchase deceleration in a make-to-stock supply chain environment and a make-
to-order supply chain environment respectively. We show that an out-of-stock phenomenon
that occurs earlier in a product’s life cycle always leads to a significantly greater loss in
total customer LV. We also demonstrate even a small lead time leads to a big loss in total
customer LV.

Chapter 3 presents a model with heterogeneous population. We propose a four-segment
model which considers the ex ante heterogeneity among customers in the tendency to be
in tune with new developments and the tendency to influence (or be influenced by) others.
Specifically, we segment customers into four types: type 1 customers are both innovators
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and global influencers, type 2 customers are both innovators and local influencers, type 3
customers are both imitators and global influencers, and type 4 customers are both imitators
and local influencers. We characterize the closed-form expressions for adoption rate of each
customer type. Based on them, we derive closed-form expressions for the customer PV, IV
and LV as a function of product adoption time. We also investigate how PV, IV and LV
vary with the adoption time and the innovation parameters. Finally, we analyze the impact
of purchase acceleration on customer LV, and propose an algorithm based on the LV of
marginal customers to optimally allocate free samples among customers.
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Chapter 1

Timing Product Line Introductions
Considering Inventory Cost

1.1 Introduction

Many firms introduce new products that are variants of the existing products in a
given category to target different customer segments and satisfy customers’ different desires
(Krishnan and Ulrich 2001, Ramdas 2003). Because the launch of a new product always
commands a large commitment of resources in production and marketing, the introduction
strategy requires careful planning (Dobson and Kalish, 1988). A key element in the introduc-
tion strategy is the introduction time. Depending upon the product category, firms choose
to time the introductions of product line extensions differently. We describe three examples
below:

• In the automobile industry, “Volvo of North America released its 6-cylinder 760 model
in Oct 1983 and the 4-cylinder 740 model 17 months later even though both cars share
the same chassis and the 4-cylinder engine was available earlier.” (Moorthy and Png,
1992)

• In the fashion industry, fashion houses such as Armani first introduce new top-of-the-
line designs at very high price points and only several months later do they introduce
their lower-priced lines (Pesendorfer, 1995).

• In the publishing industry, hardcover books are introduced to the market first, while
paperback versions are released about one year later (McDowell 1989, Shapiro and
Varian 1999).

In all of these examples, firms chose different times for launching line extensions even
though no technology constraints prevented them from making simultaneous releases. On
one hand, as the versions are substitutes, delaying the introduction of one version leads to
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less cannibalization of the existing version. On the other hand, a large body of empirical
marketing research (e.g., Bass, 1969) suggests that demand diffusion begins slowly, speeds
up and slows down after maturity, so if the firm waits too long, sales may have slowed
considerably as the product has already diffused through the market (Druehl et al., 2009).
According to Wilson and Norton (1989), “the timing of the introduction affects sales, the
timing of the sales and profits from both versions,” so the decision of when to introduce a
new variant of an existing product is a critical tactical decision. In this paper, we use the
terms “new variant”, “new version” and “line extension” interchangeably.

Several papers in the marketing literature have addressed the strategy for timing the
release of two successive (and somewhat differentiated) versions of the same product when
both versions could be offered. Yet, most of these papers compare the simultaneous introduc-
tion strategy with the sequential one for a two-period market window, ignoring the inherent
demand dynamics over the product life cycle (e.g. Moorthy and Png 1992, Bhattacharya et
al. 2003). To the best of our knowledge, so far Wilson and Norton (1989) is the only paper
that addresses demand dynamics over the product life cycle in this context, and the optimal
time to introduce the second version is shown to be “now or never” (i.e., the new version
is introduced either immediately or never). However, this result is not consistent with the
industry practices that were cited above. One possible reason for this discrepancy might be
that determinants other than diffusion and substitution, should be considered in the decision
model.

Inventory cost is one of the missing factors in this stream of literature. In practice, firms
tend to manufacture or order products in large batches to achieve efficiency and minimize
cost. In the publishing industry example, new books are often produced in large quantities,
partly due to economies of scale in printing. In industries with relatively short product life
cycles, such as apparel and consumer electronics, where rapidly-changing consumer prefer-
ences and frequent innovations have reduced product life cycles from years to months, a
capacity-constrained business that offers many product variants will produce each variant
only once in the planning horizon to avoid large setup costs associated with changeovers
(Kurawarwala and Matsuo 1996, Bitran et al. 1986). However, there will be non-negligible
inventory holding cost associated with this practice. Firms have to weigh the instantaneous
profit from the new variant against the inventory holding cost resulting from a slowed de-
mand rate of the older version (Bayus and Putsis Jr, 1999). Thus, the decision of when to
release the new version is further complicated by consideration of inventory holding costs,
and this will be the focus of this paper. It is challenging, however, to introduce the inventory
aspect into an integrated model, given that most models accounting for only diffusion and
substitution are very difficult to analyze (Wilson and Norton, 1989).

Another interesting feature of those industry practices that were cited above is customer
expectation arising from repeated observations of firms introducing different versions of the
same product (Prasad et al. 2004). Customers were aware that it was only a matter of
time until Volvo released the 4-cylinder model, that they have to wait for paperback versions
of hardcover books, and that they can purchase fashion goods at lower prices if they wait
long enough (Pesendorfer, 1995). In these cases, customers form expectation about future
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versions, and thus some of them may be inclined to wait for future releases, balking at the
idea of an immediate purchase of the existing one. However, it is all a matter of time and
patience that drives their actual purchases. Would knowing this fact affect a firm’s decision
on the timing of entries? To answer this, we propose an extension to the Bass model (1969),
the splitting Bass-like diffusion model, which considers the feature of word-of-mouth effects
due to customer expectation, to study the role of customer expectation in shaping purchase
choices, and thereby, the optimal introduction timing for the new version.

To account for all the factors discussed above, we propose an integrated model that
considers the S-curve market penetration of new products, substitution between versions,
inventory cost and customer expectation in order to answer the question of when a new
version should be launched to maximize total profits. To the best of our knowledge, this
paper is the first attempt to develop an analytical model that determines the optimal time
to introduce a new product and its line extension accounting for both supply and demand
sides. Our paper belongs to the research stream that tries to coordinate the decisions of
operations management and marketing science (Eliashberg and Steinberg 1987, Ho et al.
2002, Malhotra and Sharma 2002, Hausman et al. 2002, Chopra et al. 2004, Jerath et al.
2007). The motivation for this paper is to take a first step to explore the impact of inventory
cost on the choice of the release time of a new variant of an existing product from a joint
analysis of marketing science and operations management.

Our contributions to the marketing and operations management literature are three-fold.
First, we propose the splitting Bass-like diffusion model to describe the adoption process of
two successive versions of the same product, which also captures the role of customer expec-
tation in shaping purchase choices. Second, we bring an operations management perspective
to the introduction timing decision through a focus on inventory holding cost that arises from
a simple ordering policy, and show that the optimal solution in the literature (e.g., Wilson
and Norton, 1989) does not give the best outcome if inventory cost is accommodated. Our
results illuminate how inventory cost influences the introduction timing decision, and how
a better outcome can be achieved by taking inventory cost into consideration. Third, by
developing an integrated model accounting for both demand and supply sides, we show that
the decisions of marketing and operations management should be coordinated not only at
the operational level, such as the match between demand and supply (Ho and Tang 2004),
but at the tactical level as well, for example the introduction timing decision.

The rest of the chapter is organized as follows. Section 1.2 reviews the relevant literature.
Section 1.3 presents the splitting Bass-like diffusion model. Based on that, section 1.4
presents three models in succession to discuss the effects of substitution and inventory holding
cost from a simple ordering policy. In section 1.5, we present two extensions to the integrated
model and conclude with a summary of key insights and suggestions for future research. To
improve readability, all proofs and mathematical details are relegated to Appendix A.
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1.2 Literature Review

In this section, we first review the literature that centers on the research of introduction
timing of product line extensions, and then review some related work that lies at the interface
between marketing and operations management.

There have been many studies about product line management (e.g., Qnelch and Kenny
1994, Dobson and Kalish 1988, Krishnan and Ulrich 2001), but not enough attention has
been given to considering time dynamics in this process (Ramdas, 2003). We broadly classify
the existing literature on introduction timing into two categories: (1) continuous time models
in the diffusion of innovation context, and (2) two-period models for comparing simultaneous
and sequential strategies.

Research in the continuous-time category often relates to the seminal Bass diffusion
model (Bass, 1969), which initiates the stream of examining demand diffusion for a single
new product. Many studies have extended the Bass model into multi-product diffusion lit-
erature (e.g., Peterson and Mahajan 1978, Bayus et al. 2000). A subset of this group of
work concentrates on modeling the diffusion paths of successive product generations (Nor-
ton and Bass 1987), where most entry timing research arises. Mahajane and Muller (1996)
conclude the optimality of “now or at maturity” rule governing introduction of successive
product generations, where the new generation product is introduced immediately or when
the present generation product has reached sufficient sales. As technology improvement
is a key ingredient of this branch of research, many researchers have addressed dynamic
technology improvement in these kinds of problems. Krankel et al. (2006) incorporate
technology improvement into the multi-generation diffusion demand context and provide
a state-dependent threshold policy governing introduction timing decisions. Krishnan and
Ramachandran (2008) study the trade-offs in timing product launches when the core tech-
nology available is improving rapidly. Druehl et al. (2009) analyze the impact of product
development cost, the rate of margin decline and the cannibalization across generations on
a firm’s time-pacing decision. However, the progression of product technology is not the
demand driver in our model setting. As such, our model is more related to the next subset
of papers centering on the case of releasing two successive (and somewhat differentiated)
versions of the same product in the absence of development constraints.

A model of particular relevance to our work is that of Wilson and Norton (1989).
Proceeding under a demand diffusion framework, they conclude a “now or never” rule that
governs the introduction of the second version, provided both versions are available at all
time from time 0. They show that the timing of introduction depends on the profit margins
and the degree of substitutability between the two versions. However, though they mention,
“almost all paperback books are released about a year later than the hardcover,” the gap
between their theoretical findings and industry practices is left unexplained. Subsequently,
Prasad et al. (2004) study the role of customer expectation on the timing of sequential entries
of line extensions, and show a better outcome can be achieved if customer expectation is
taken into account. However, their model is not directly based upon the diffusion literature,
and the modeling of underlying word-of-mouth communication is not addressed. Besides
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considering inventory cost, our model differs from the above two papers in that we encompass
customer expectation in the diffusion setting by directly modeling its impact on word-of-
mouth communication.

Research of the two-period model category is mainly to address the comparison of
sequential and simultaneous introduction strategies. Moorthy and Png (1992) analyze the
introduction strategy of a high-end product and its low-end variant. Their results suggest
that if the firm can commit in advance to the subsequent prices and product designs, the
introduction of low-end product should be delayed to alleviate cannibalization. In contrast,
Bhattacharya et al. (2003) show that the strategy of introducing a low-end product before
its high-end variant might be optimal if technological improvement is taken into account.
None of the papers we have reviewed consider the impact of inventory on the introduction
timing decisions.

Another relevant stream of literature studies the interface between marketing and op-
erations management. In the literature of operations management, the classic approach
often ignores the nonstationarity in demand inherent in new product diffusion (Shen and
Su, 2007). On the other hand, marketing researchers typically focus on developing accurate
characterizations of the demand process, and they seldom take supply side factors into con-
sideration. Only recently have we seen some attempts to bridge the two areas. For example,
Kurawarwala and Matsto (1998) present a model of procurement in which the demand pro-
cess follows a Bass-type diffusion. Their model corresponds to an extension of a conventional
newsvendor model and provides an example of how procurement policy can be influenced by
new product diffusion dynamics. Ho et al. (2002) provide a joint analysis of demand and
sales dynamics in a constrained new product diffusion context. Their analysis generalizes
the Bass model to include backordering and customer losses, and determines the diffusion
dynamics when the firm actively makes supply-related decisions to influence the diffusion
process. Savin and Terwiesch (2005) present a model describing the demand dynamics of two
new products competing for a limited target market, in which the demand trajectories of the
two products are driven by a market saturation effect and an imitation effect reflecting the
product experience of previous adopters. Schmidt and Druehl (2005) explore the influence
of progressive improvements in product attributes and continual cost reduction on the new
product diffusion process. Hopp and Xu (2005) analyze the cost and revenue trade-off of
choosing optimal product line length and pricing decisions.

As inventory cost has been largely ignored in the introduction timing research, we are
interested in finding out more managerial insights on the stream of introduction timing
research from an integrated model that considers issues from both operations management
and marketing sides.
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1.3 The Splitting Bass-like Diffusion Model

1.3.1 Word-of-Mouth Communication under Customer Expecta-
tion

We consider a monopoly that plans on introducing two versions of a durable product.
The two versions are differentiated along one dimension, for example, engine power in the case
of automobiles, cover type in the case of books, brand franchise in the case of fashions. We
assume the two versions share the same product life cycle, in other words, version 1 will not
be phased out before version 2 is released. Customers belong to one of two segments: High
or Low. High-type customers are more interested in version 1, whereas low-type customers
prefer version 2. A customer obtains at most one product, never both. The firm introduces
version 1 ahead of version 2 as otherwise cannibalization would be aggravated. Without loss
of generality, version 1 is assumed to be introduced at time 0, so the key decision is on timing
the introduction of version 2.

Our demand model is motivated by the classical diffusion model proposed by Bass
(1969), a well-known parametric approach to estimating the demand trajectory of a single
new product over time. We first give a overview of the Bass model. If f(t) is defined as the
probability of adoption at time t, the fundamental premise is that the likelihood of adoption
at time t given that one has not yet occurred is:

f(t) = (p + qF (t))(1− F (t)) (1.1)

The parameter p is called the coefficient of innovation and q the coefficient of imitation. In the
Bass model, customers can be classified into “innovators” and “imitators”. Innovators adopt
an innovation independently of the decisions of other individuals in a social system. Imita-
tors, unlike innovators, are influenced in their adoption timing by previous buyers through
word-of-mouth communication. A similar product line extension model studied by Wilson
and Norton (1989) relies on the same assumption about word-of-mouth communication.

However, in a marketplace where firms repeatedly introduce different versions of the
same product, customers form expectation of the future version prior to it being released,
which subsequently shapes the underlying word-of-mouth communication differently from
situations in which no expectations are formed about the release of the new variants. To
see this, let us look at a situation often seen in daily life: After reading a hardcover copy of
a new book, Annie recommends it to two friends, Betty and Cindy. Betty then buys one,
but Cindy, a college student, wants to wait for the paperback version. During a dinner with
David and Eva, Cindy mentions the endorsement she heard about that book. As a result,
David buys the current hardcover version, while Eva decides to wait for the paperback one.
Figure 1.1 illustrates the above typical interpersonal communication chain.

Shapiro and Varian (1999 p.55) state, “publishers design different versions to emphasize
customer differences. Here, high-type customers are impatient to get the book, while lower-
value customers can more easily wait. The main difference here involves patience. Thus,
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• If the firm commits in advance or the customers are “anticipating

Annie

Cindy

Eva

DavidBetty

purchase

wait

purchase

wait

purchase

Figure 1.1: A Typical Interpersonal Communication Chain

the key to versioning books is to delay offering less expensive versions. This is precisely
what publishers do.” Thus, a customer’s choice between versions is closely tied to her
own valuation for the product and her inherent patience, regardless of her inclination for
spreading word-of-mouth, and thereby it is likely that a low-type customer have influenced
several purchases of version 1 from high-type customers whereas herself is waiting for version
2 patiently. Hence we posit the following assumption about word of mouth: In the adoption of
two successive (and differentiated) versions of the same product, due to customer expectation
of the new version before it being released, word of mouth not only comes from the actual
buyers of the existing version but also from those who intend to purchase the new one.

We use the term “customer” to include anyone that contemplates a purchase. An
individual who is waiting for version 2 is a customer yet a non-buyer. Based on the above
assumption about word of mouth, an individual can be influenced by all previous customers,
rather than just by previous buyers. In the anecdote illustrated before, Cindy contributes
to the diffusion process by exerting a positive influence on David and Eva despite that
herself is a non-buyer. One may argue that the population of actual buyers is a more
credible source than people who are waiting to purchase but have not yet done so. In fact,
imitation is jointly fueled by observations and communications (Zhang 2009). An imitator
may become interested in the product either from observing predecessors’ buying actions,
or through communications with anyone that endorses this product, including those whose
own purchases have not yet realized.

1.3.2 The Demand Model

We continue with our demand model as follows: After version 1 is introduced, at any
given time t, a customer who was previously not ready to buy might decide to purchase. If
she decides to do so, with probability s, she is a high-type customer and will buy version
1 immediately. Note that s can also be interpreted as the market segmentation parameter
and its value captures the sizes of the two customer segments (Moothy and Png, 1992).
With probability 1 − s she is of low type and prefers version 2: she will buy if version 2
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has been released, and will wait otherwise. As customers are not fully aware of the exact
introduction timing before it actually happens, we assume if one decides to wait for version
2, she would wait for at most l units of time (We will address customer heterogeneity in
waiting time in Section 1.5.1). If version 2 becomes available before she loses patience, her
purchase will be made at the time of it being introduced; Otherwise, she will reconsider the
decision after waiting for l units of time, as a consequence, she loses patience switching to
version 1 with probability θ, or decides not to buy anything otherwise. We assume the latter
choice does not mitigate her propensity to spread word of mouth, which is reasonable as we
do not account for outside competition in this model. In fact, her decision of giving up the
purchase is not necessarily a result of lack of interest, but may simply reflect a change of
her budget situation, or other external factors. Figure 1.2 describes customer choices prior
to version 2 being released.

At time t 

Version 1
s

(t<T)

1-s

ltT ��
Version 2 ?

Version 2

Version 1�1-s

ltT �� Demand
Switch

Demand

Version 1�

Lost��1

Figure 1.2: Customer Choices Prior to Version 2 Being Released

From Section 1.3.1 we know that an individual can be influenced by all previous cus-
tomers, before or after version 2 is released. In other words, a unified information flow of
both versions spreads over the entire planning horizon, independent of the introduction time.
This allows us to directly analyze the unified social influence of the product (both versions),
which is assumed to follow the classical Bass diffusion pattern.

According to the empirical justifications in Norton and Bass (1987), the innovation and
imitation coefficients stay the same regardless of whether the new variant has been introduced
or not. Consequently, similar to prior studies in this field (Wilson and Norton 1989, Joshi et
al. 2008), in our model we do not distinguish between the diffusion parameters before and
after the introduction, and use p and q as the respective innovation and imitation parameters
of both versions. As customers’ preferences are segmented according to s, we can think of
the evolution of demand for the two versions as being “split.” We use the term “splitting
Bass-like diffusion model” to refer to this diffusion process.

In the following, T denotes the introduction time of version 2, m denotes the total
potential customers, and Di(t; T ) (i=1,2) denotes the cumulative demand for version i until
time t if version 2 is introduced at T . As version 2 is not available before T , when t < T ,
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D2(t; T ) is the potential yet not realized demand for version 2. We let W (t; T ) be the
population that spreads word-of-mouth at time t if version 2 is introduced at T . Note that
W (t; T ) ≥ D1(t; T )+D2(t; T ), as we will illustrate later. To distinguish the specifications of
actual sales from those of potential demand, we use Si(t; T ) (i=1,2) to denote the cumulative
sales of version i by time t if version 2 is introduced at T .

Next we discuss the demand specifications of the two versions. We use τ to denote the
length of the planning horizon. As version 2 may be introduced at any time T ≥ 0, we
distinguish between the following two cases.
1) If the introduction time T ≤ l:

The demand/sales trajectory of version i (i=1,2) can be written as

dW (t; T )

dt
= [1−W (t; T )][p + qW (t; T )] (1.2)

D1(t; T ) = S1(t; T ) = sW (t; T ) (1.3)

D2(t; T ) = (1− s)W (t; T ) (1.4)

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)W (t; T ) if T ≤ t ≤ τ.

(1.5)

In (1.2) we analyze the entire population interested in the product (both versions), which
follows the Bass dynamics. As version 2 is introduced sooner than any of its customers loses
patience, the demand of the two versions splits, with a fraction s of the instantaneous demand
going to high-type customers (version 1), remaining demand going to low-type customers
(version 2). At any time t, if a version is available, all of its demand at that time turns
into sales. Otherwise, its sales volume remains 0 whereas its potential demand is being
accumulated.

In this case, W (t; T ) = D1(t; T ) + D2(t; T ) as no demand is lost. The assumption
that the version-level demand diffusion model sums up to the Bass product-level model may
look restrictive, but it gives our model a well-founded behavioral basis and indirect validity
because numerous empirical evidence has been found to support the Bass (1969) model.

2) If the introduction time T ≥ l:

The demand/sales trajectory of version i (i=1,2) can be written as

dW (t; T )

dt
= [1−W (t; T )][p + qW (t; T )] (1.6)

D1(t; T ) = S1(t; T ) =

⎧⎨
⎩

sW (t; T ) if 0 ≤ t ≤ l;
sW (t; T ) + θ(1− s)W (t− l; T ) if l < t < T ;
sW (t; T ) + θ(1− s)W (T − l; T ) if T ≤ t ≤ τ.

(1.7)

D2(t; T ) =

⎧⎨
⎩

(1− s)W (t; T ) if 0 ≤ t ≤ l;
(1− s)(W (t; T )−W (t− l; T )) if l < t < T ;
(1− s)(W (t; T )−W (T − l; T )) if T ≤ t ≤ τ.

(1.8)

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)(W (t; T )−W (T − l; T )) if T ≤ t ≤ τ.

(1.9)
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Similar to the previous case, the population interested in the product (both versions) follows
the Bass diffusion dynamics in (1.6). Obviously, demand switches between the two versions
do not take place before l, so D1(t; T ) (t ≤ l) stays the same as in (1.3). By l < t < T ,
those low-type customers who waited for no less than l units of time stopped waiting, as a
consequence, they either have turned to version 1 instead, or wouldn’t buy anything. Simply
put, demand for version 1 comes from two parts: high-type customers who would buy version
1 at the first place (sW (t; T )), as well as a θ fraction of those low-type customers who waited
for version 2 for no less than l units of time (θ(1− s)W (t− l; T )). After version 2 becomes
available at T , neither demand switch nor demand lost occurs, and thus by T ≤ t ≤ τ , the
amount of switchers is bounded by the number of willing-to-switch low-type customers up
to T , stated as θ(1− s)W (T − l; T ).

Similarly, D2(t; T ) (t ≤ l) stays the same as in (1.4). By l < t < T , D2(t; T ) comes
from those low-type customers being informed about the product after t − l, stated as
(1 − s)(W (t; T )−W (t − l; T )), because all low-type customers that started to wait before
t − l either switched to version 1 or would not buy anything after having spent l units of
time waiting. After T , neither demand switch nor demand lost occurs any more. As product
2 is not available before T , S2(t; T ) = 0 if t < T , and S2(t; T ) = D2(t; T ) otherwise.

In contrast to the previous case, we note that W (t; T ) > D1(t; T ) + D2(t; T ) when the
introduction happens later than l. The difference is due to the demand lost from low-type
customers who have lost patience due to a long waiting and would rather go with outside
option. When l and θ are both small, the cost of a later introduction is substantially high.

To simplify notation, we define

F (t) = m
1− e−(p+q)t

1 + q
p
e−(p+q)t

(1.10)

which is the solution of (3.10), known as the cumulative demand specification in the Bass
model. And the Bass instantaneous demand expression

f(t) = m
(p + q)2e−(p+q)t

p( q
p
e−(p+q)t + 1)2

(1.11)

Based on (1.2)-(1.10), we can now establish the demand/sales trajectories of the two
versions in the following proposition.

Proposition 1. 1). If the introduction time T ≤ l, (In fact, in this case, the demand diffu-
sion specifications are not functions of the introduction time T , but we retain Di(t; T )(Si(t; T )), (i =
1, 2) for notational consistency.)

D1(t; T ) = S1(t; T ) = sF (t) (1.12)

D2(t; T ) = (1− s)F (t) (1.13)

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)F (t) if T ≤ t ≤ τ.

(1.14)
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2). If the introduction time T > l,

D1(t; T ) = S1(t; T ) =

⎧⎨
⎩

sF (t) if 0 ≤ t ≤ l;
sF (t) + θ(1− s)F (t− l) if l < t < T ;
sF (t) + θ(1− s)F (T − l) if T ≤ t ≤ τ.

(1.15)

D2(t; T ) =

⎧⎨
⎩

(1− s)F (t) if 0 ≤ t ≤ l;
(1− s)(F (t)− F (t− l)) if l < t ≤ T ;
(1− s)(F (t)− F (T − l)) if T < t ≤ τ.

(1.16)

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)(F (t)− F (T − l)) if T ≤ t ≤ τ.

(1.17)

1.3.3 Discussions on the Demand Model

To relate our demand model to the literature, we compare it with the demand model
discussed in Wilson and Norton (1989), abbreviated as W/N. To the best of our knowledge,
so far W/N is the only paper that addresses demand dynamics over the product life cycle in
the context of introducing a new product with two versions.

In W/N, diffusion dynamics is modeled over the information function I(t; T ), which
denotes the fraction of the population informed about the existence of the available versions
at time t, i.e. about the first version alone if 0 ≤ t ≤ T , and about two versions if t > T .
Before version 2 is introduced (t ≤ T ), W/N models the differential equation for I(t; T ) as

dI(t; T )

dt
= [1− I(t; T )][p + qm1I(t; T )] (1.18)

D1(t; T ) = m1I(t; T ) (1.19)

A fraction m1 of those who become informed about the product at any time t are high-type
customers, who decide to purchase the current high-end version, and the remaining 1 −m1

decide not to buy anything. W/N assumes that only actual buyers can get involved in
communicating product information, so customers spreading WOM at any instant of time t
are exactly those high-type buyers up to t, written as m1I(t; T ) in (1.18) .

In contrast, we model the diffusion dynamics over the desire to buy the product (ei-
ther version). As we demonstrated in Section 1.3.1, due to repeated observations of firms
introducing different versions of the same product, a low-type customer who is interested in
the product at t, will choose to wait for the low-end version if it has not been introduced
to market. However, her propensity of spreading WOM starts from t even though she has
not made the purchase at that time. This leads to the distinction of demand specifications
in our model from those in W/N. In W/N, only those high-type individuals who have made
the purchase will communicate, whereas our model allows for WOM communication from
all customers (both high-type and low-type customers) who desire to buy the basic product,
including those low-type customers that are expecting version 2’s future release. We find
that (1.2), (1.6) are identical to (1.18) except that all interested customers are engaged in
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spreading WOM. If θ = 0, (1.3), (1.7) are the same as (1.19) since s and m1 share the same
interpretation in the two models.

When t > T , in W/N the diffusion dynamics is given by

dI(t; T )

dt
= [1− I(t; T )][p + q(m1I(T ; T ) + m2(I(t; T )− I(T ; T )) + m3(I(t; T )− I(T ; T )))](1.20)

D1(t; T ) = m1I(T ; T ) + m2[I(t; T )− I(T ; T )] (1.21)

D2(t; T ) = m3[I(t; T )− I(T ; T )] (1.22)

m2 is the fraction of population who becomes informed at any instant of time after version
2’s introduction who decides to purchase version 1 (i.e., high-type customers), and m3 is
the fraction of customers who prefer version 2 (i.e., low-type customers). After the low-end
version is released, the WOM influence comes from three sources of customers: the high-type
buyers before version 2’s introduction (m1I(T ; T )), the high-type customers after version 2’s
introduction (m2(I(t; T )−I(T ; T ))) and the low-type customers (m3(I(t; T )−I(T ; T ))) after
the introduction.

If we retain the assumptions in the Bass model that all interested customers will make
the purchase as long as the product is available (so that m2 + m3 = 1), and customers of
different types have consistent choices of preference (m1 = m2) over time, which is often true
if customers have formed complete information set from repeated observations of industry
practices in releasing similar products, equations (1.20) - (1.22) can then be written into

dI(t; T )

dt
= [1− I(t; T )][p + q(I(t; T )− (1−m1)I(T ; T ))] (1.23)

D1(t; T ) = m1I(t; T ) (1.24)

D2(t; T ) = (1−m1)[I(t; T )− I(T ; T )] (1.25)

Now we compare (1.2) - (1.9) with (1.23) - (1.25) in the following steps. First, we
note that m1 in W/N is in fact the market segmentation parameter s in our model, both
capturing the fraction of the high-type customers in the potential population. Second, when
θ = 0 and l = 0, (1.2) - (1.9) are the same as (1.23) - (1.25) except that we accommodate
the WOM influence from all customers in (1.2) - (1.9). This is because we focus on the
marketplaces where repeated industry practices are observable to customers, whereas W/N
studies the case where such practices are not observable to customers so that social influence
is only allowed from actual buyers ((1−m1)I(T ; T ) refers to those who were informed before
T but did not purchase). Finally, we further model the impact of customer expectations
on version-wise demand dynamics, incorporating customer patience and the cross-version
substitution from impatience low-type customers.

Therefore, we can conclude that, our demand model studies the marketplaces where
repeated industry practices are observable to customers, whereas W/N studies the case
where such practices are not observable to customers. Specifically, due to the repeated
industry practices, customers are aware of the low-end line extension before its introduction.
As stated earlier, such information would impact customer expectation and thereby change
their purchase behaviors.
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1.4 Modeling Substitution and Inventory Holding Cost

In this section we successively present three models, all built upon the splitting Bass-
like diffusion model of Section 1.3: the first model (Section 1.4.1) discusses the substitution
effects when one of the two versions is in supply scarcity, the second one (Section 1.4.2)
focuses on the impact of inventory holding cost without taking substitution into account,
and finally in Section 1.4.4 we discuss a general model with both inventory holding cost and
substitution considerations.

1.4.1 Model with Substitution Due to Supply Scarcity

Many studies in marketing find that customers do not always end up empty-handed
when the specific version they wanted to buy is no longer available, in fact, some of them
are willing to settle for a similar one currently in stock instead. In this section we study
this kind of substitution due to supply scarcity and model its impact on the firm’s choice of
introduction timing.

We assume that if the supply of version 2 alone falls short of its demand, an α fraction
of low-type customers who wanted to buy version 2 would settle for version 1 instead, and
neither version is purchased by the remaining 1 − α fraction of low-type customers. When
version 1 alone stocks out, a β fraction of high-type customers who planned on purchasing
version 1 turn to version 2, and the demand from those non-switchers would be lost. Note
that α = 0 or β = 0 if such substitution can only happen one direction-wise. To focus
on decision makings at the tactical level, we do not address the stock-outs resulting from
different ordering policies, instead we concentrate on the overall ordering quantity over the
life-cycle period. Denoting ri (i = 1, 2) as the unit profit margin of version i, ci the unit
ordering cost of version i, and thereby unit price wi = ri+ci. We assume version 1 has a higher
profit margin, i.e., r1 > r2, yet our model is not restricted to it as solutions/arguments can
be easily mirrored when r1 ≤ r2. Last, as we generally consider books or products with short
life cycles (i.e. apparel, toys, consumer electronics, personal computers), retail prices and
ordering costs of both versions are fixed during product life cycle (Kurawarwala and Matsuo
1996, Bitran et al. 1986), and we will discuss an extension that allows prices to change
over time during life-cycle period in Section 1.5.2. Figure 1.3 depicts customer choices after
version 2 being released.

Based on the demand specifications derived in Section 1.3.2, we formulate the problem
of maximizing profit over the planning horizon as follows:

Problem (P S): max
Q1,Q2,T

w1min {D1(τ ; T ), Q1}+ w2min {D2(τ ; T ), Q2} − c1Q1 − c2Q2

+w1min
{
(D2(τ ; T )−Q2)

+α, (Q1 −D1(τ ; T ))+
}

+w2min
{
(D1(τ ; T )−Q1)

+β, (Q2 −D2(τ ; T ))+
}

(1.26)

s.t. Q1 ≥ 0, Q2 ≥ 0 (1.27)

0 ≤ T ≤ τ (1.28)
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Figure 1.3: Customer Choices after Version 2 Being Released

In the objective, wimin
{
D̄i(T ), Qi

}
(i = 1, 2) is the total revenue from version i before

substitution takes place. ciQi is the total ordering cost of version i, (i = 1, 2). The rev-
enue from version 1 contributed by substitution is stated as w1min{(D2(τ ; T ) − Q2)

+α,
(Q1−D1(τ ; T ))+}, where (D2(τ ; T )−Q2)

+ = max{D2(τ ; T )−Q2, 0}and(Q1−D1(τ ; T ))+ =
max{Q1 −D1(τ ; T ), 0}. The first term of the ‘min’ operator is the demand from those low-
type customers who prefer version 2 but do not mind buying version 1 instead, and the
second term is the excessive supply of version 1 over its own demand. Obviously, actual
demand from substitution is the smaller one of those two terms. Similarly, the last term in
the objective comes from substitution the other way around.

Before solving the above optimization problem, we first prove the following lemma,
which will help us reformulate problem (P S).

Lemma 1. Consider the following two problems:

(PL1) z = max
x,y

f(x, y)

s.t. g1(x) ≤ 0

g2(x, y) ≤ 0

(PL2) w = max
x

R(x)

s.t. g1(x) ≤ 0

where R(x) = max
y

f(x, y)

s.t. g2(x, y) ≤ 0

We claim: z = w.

Since constraint (1.28) is a function of T alone, fixing T , the feasible region of (P L)
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can be partitioned into six disjoint areas according to the relations among Di(τ ; T ) and
Qi(i = 1, 2), each of which can be characterized by functions of Q1, Q2 and T , and thus the
objective function of (P S) within each area has a specific form. By Lemma 1, (P S) can be
reformulated as:

Problem (P̂ S): max
0≤T≤τ

R(T )

where R(T ) = max
j=1,...6,

Rj(T )

and R1(T ) = max
0≤Q1≤D1(τ ;T ),0≤Q2≤D2(τ ;T )

r1Q1 + r2Q2

Formulations of Ri(T ), i = 2...6, are presented in Appendix A. The above bi-level opti-
mization problem (P̂ S) shares the same optimal solution as (P S). Therefore, we solve (P̂ S)
instead, and state results in the following propositions.

Proposition 2. The optimal solution to problem R(T ) can be characterized as follows: if
α ≤ r2/r1, Q∗

1 = D1(τ ; T ), Q∗
2 = D2(τ ; T ); Otherwise, Q∗

1 = D1(τ ; T ) + D2(τ ; T )α, Q∗
2 = 0.

The above results do not depend on β, because we have assumed a higher profit margin
of version 1, which implicitly forces the firm to order version 1 more. Proposition 2 is very
intuitive as basically it says that version 2 is better off being substituted if affluent consumers
are willing to turn to version 1 after finding out version 2 stocks out. The substitute/no
substitute decision is determined by the fraction of the willing-to-switch low-type customers
and by the profit margin ratio, both independent of time.

Proposition 3. If the planning horizon is comparable to the life-cycle period, when r2/r1 ≥
max{α, θ}, an immediate introduction is preferable, with Q∗

1 = sF (τ), Q∗
2 = (1 − s)F (τ);

Otherwise, the second version should never be introduced, and the firm should commit the
unavailability of version 2 in advance if θ > max{r2/r1, α}.

Proposition 3 reveals that when the planning horizon is comparable to the life-cycle
period and low-type customers are relatively impatient, version 2 ought to be introduced
either “now” or “never”, consistent with the findings in Wilson and Norton (1989). Besides
that, if α is sufficiently large, the firm is better off informing the customers in advance about
the unavailability of version 2 to prevent their expectation of future releases (Moorthy and
Png 1992). The demand curves are presented in Appendix A. In the following section, we
will present a model that accounts for inventory holding cost, and will draw a comparison
between the results of the two models to address the impact of inventory holding cost on the
decision of introduction timing.

1.4.2 Model with Inventory Holding Cost

Now, we consider the impact of inventory holding cost on the decision of introduction
timing. We ignore the substitution effects in this section by assuming α = β = 0, and
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the discussion of accommodating inventory holding and substitution in a unified model is
deferred to Section 1.4.4.

To illustrate our idea, we consider a simple scheduled ordering policy: fixed interval
ordering (Graves 1996, Cachon 1999). In reality it is often impossible to apply make-to-order
and replenish inventory continuously, and thus the fixed interval ordering policy is motivated
and widely used in practice. Delivery of orders is assumed to be instantaneous. We assume an
exogenous ordering interval L, and to address the effect of inventory holding cost in general,
we assume the inventory holding cost is h per unit item per unit time, same for both versions.
To avoid trivial outcomes, profit margins are presumed to be higher than the cumulative
holding cost in an ordering interval, that is, r1−h min{L, τ} > 0 and r2−h min{L, τ−l} > 0.
As in this section α = β = 0, it is easy to verify that the total ordering quantity equals to
the overall demand/sales over the life-cycle period (Qi = Di(τ ; T ) = Si(τ ; T ) i = 1, 2).

On the demand side, with inventory holding cost included, the firm clearly would not
release the second version before l. When T ≥ l the demand and sales expressions can be
found in (A.4)-(A.6):

D1(t; T ) = S1(t; T ) =

⎧⎨
⎩

sF (t) if 0 ≤ t ≤ l;
sF (t) + θ(1− s)F (t− l) if l < t ≤ T ;
sF (t) + θ(1− s)F (T − l) if T < t ≤ τ.

D2(t; T ) =

⎧⎨
⎩

(1− s)F (t) if 0 ≤ t ≤ l;
(1− s)(F (t)− F (t− l)) if l < t ≤ T ;
(1− s)(F (t)− F (T − l)) if T < t ≤ τ.

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)(F (t)− F (T − l)) if T < t ≤ τ.

With an exogenous ordering cycle L, the problem can then be modeled as follows:

Problem (P H):

max
l≤T≤τ

r1D1(τ ; T ) + r2D2(τ ; T )− h

�τ/L�∑
i=1

∫ iL

(i−1)L

(D1(iL, T )− S1(t, T )) dt

−h

∫ τ

�τ/L�∗L
(D1(τ ; T )− S1(t, T )) dt

−h

�(τ−T )/L�∑
j=1

∫ T+jL

T+(j−1)L

(D2(T + jL, T )− S2(t, T )) dt

−h

∫ τ

�(τ−T )/L�∗L+T

(D2(τ ; T )− S2(t, T )) dt

where D1(iL, T ) is the cumulative ordering quantity of version 1 in the ith ordering interval

and thus h
∫ iL

(i−1)L
(D1(iL, T )− S1(t, T )) dt captures the inventory holding cost in that cycle,

and if the planning horizon is not a multiple of L, the fourth term gives us the holding cost
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in the last ordering interval. Similarly, holding cost of version 2 is captured by the last two
terms, except that its order replenishment starts from T rather than 0.

The complex structure of the cumulative sales function Si(t; T ) (i = 1, 2) along with
the generality of ordering cycle length L, complicates the analysis substantially. In order to
derive additional analytical insights, we now consider a special case of our model where each
version can only be ordered at the time of it being released during the life-cycle period. In
this special case, problem (P H) becomes

Problem (P H
1 ): max

l≤T≤τ
r1D1(τ ; T )− h

∫ τ

0

(D1(τ ; T )− S1(t; T )) dt

+r2D2(τ ; T )− h

∫ τ

T

(D2(τ ; T )− S2(t; T )) dt

In order to characterize the solutions, we first define

A(T ) = h(
1− e−(p+q)τ

1 + q/pe−(p+q)τ
− 1− e−(p+q)T

1 + q/pe−(p+q)T
) (1.29)

B(T ) = −(p + q)(1 + q/p)e−(p+q)(T−l)

(1 + q/pe−(p+q)(T−l))2
(θ(r1 − hT )− r2) (1.30)

h∗(θ) =
p(r2 − θr1)

1− e−(p+q)τ

1 + q/pe−(p+q)τ
− 1− e−(p+q)l

1 + q/pe−(p+q)l
− plθ

(1.31)

and l∗(θ) = {l : l +
1− e−(p+q)l

pθ + qθe−(p+q)l
=

1− e−(p+q)τ

pθ + qθe−(p+q)τ
} (1.32)

We note that l∗(θ) is uniquely determined because l+
1− e−(p+q)l

pθ + qθe−(p+q)l
is strictly increasing in

l. A set of general results characterizing the optimal introduction time T ∗ can be obtained
as outlined below.

Proposition 4. (a) If θ(r1 − hτ) > r2, T ∗ = τ .
(b) Otherwise, let T̄ denote the value of T (T < τ) that satisfies A(T ) = B(T ).

(i) If T̄ ≥ l, T ∗ = T̄ . (ii) Otherwise, T ∗ = l.

When the planning horizon is comparable to the product life cycle, and low-type cus-
tomers are relatively impatient, in contrast to the prior introduction rule of “now or never”
stated in Section 1.4.1, Proposition 4 shows that with inventory holding cost considerations,
the optimal introduction could happen at any time “from now to never”. The introduc-
tion time depends upon the characteristics of different products (See Tables (1.4)-(1.7) in
Appendix A).

Figure 1.4 plots a possible set of instantaneous demand and sales paths where the
optimal introduction occurs later than l but sooner than τ . One can observe from Figure
1.4(b) that when the second version is launched, a new left-truncated diffusion process starts.
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Another interesting observation is that, a “spike” of total sales from both versions occurs
at the time of version 2 being released, which has often been observed in practice. This
happens because low-type customers who have been holding purchases back will buy when
version 2 becomes available.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25 demand for product 1 at time t
demand for product 2 at time t
demand for both products at time t

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25 sales for product 1 at time t
sales for product 2 at time t
sales for both products at time t

(a) Paths of Instantaneous Demand (b) Paths of Instantaneous Sales

Figure 1.4: Instantaneous Demand and Sales Paths
(m = 1000, s = 0.4, p = 0.0163221, q = 0.825044, l = 0.1, w1 = 30, w2 = 15, c1 = 10, c2 =

3, h = 1, τ = 8 months, and θ = 0.5)

Proposition 5. (a) T̄ increases with the profit margin of version 1, r1, and the proportion
of low-type customers who would like to switch to version 1 after experiencing too long a
wait, θ. T̄ decreases with the profit margin of version 2, r2.
(b) T ∗ = T̄ (l < T̄ < τ) if 1

τ

(
r1 − 1

θ
r2

)
< h < 1

l

(
r1 − 1

θ
r2

)
.

As expected, when the optimal introduction should happen between ‘now” and ”never”,
it increases with version 1’s profit margin. A similar effect is observed when the proportion of
willing-to-switch low-type customers, as measured by θ, increases. Increases in profit margin
of version 2, r2, will lead to a sooner introduction of version 2.

Part (b) of Proposition 5 states sufficient conditions in terms of model primitives for
the optimality of a introduction that lies between “now” and “never”. It is interesting to see
that, this condition is independent of diffusion parameters p and q, though T̄ itself relates
to the diffusion process. We note that this sufficient condition can never be satisfied if
θ ≤ r2/r1, and we will elaborate this case in the following proposition.

Proposition 6. When θ ≤ r2/r1,
(a) If h < h∗(θ), T ∗ = l. (b) T ∗ = T̄ otherwise.

Comparing Proposition 6 with Proposition 3, one may find the impact of inventory
holding cost h. Under the same condition, Proposition 3 states that the introduction should
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happen immediately, whereas with inventory holding cost consideration, the firm should
either stick to an immediate introduction, or delay the introduction until T̄ if inventory
holding cost exceeds the threshold. One can observe that the threshold is smaller for a
larger r1, and thereby, the firm is more likely to delay the introduction if version 1 is more
profitable. In addition, as we know from Proposition 5 that, the more profitable version 1
is, the further the release of version 2 should be delayed.

Proposition 7. When θ > r2/r1,
(a) If h < 1

τ

(
r1 − 1

θ
r2

)
, T ∗ = τ .

(b) If h ≥ 1
τ

(
r1 − 1

θ
r2

)
and l ≤ l∗(θ), T ∗ = T̄ .

(c) If h ≥ 1
τ

(
r1 − 1

θ
r2

)
and l > l∗(θ),

(i) If 1
τ

(
r1 − 1

θ
r2

)
< h < h∗(θ), T ∗ = l. (ii) Otherwise, T ∗ = T̄ .

Let us also compare Proposition 7 with Proposition 3. Under the same condition, the
firm should never release version 2 in Proposition 3. Yet the introduction rule is much more
complicated when inventory is taken into account, as stated in Proposition 7. The decision of
introduction timing relies on the cost of carrying inventory, as well as on patience of low-type
customers.

The solutions in Propositions 6 and 7 are best explained using the graphic representation
in Figure 1.5. It depicts the solution as a function of θ, which is the willingness-to-switch
of impatient low-type customers; and the inventory holding cost h. Although the figure
is plotted for a specific set of problem parameters, all insights are not parameter specific
because only the relative size of the regions changes and not the solution structure. The
boundaries between the regions correspond to the closed-form thresholds.

More interesting is the impact of the inventory holding cost on the introduction timing
when customers are impatient and when the planning horizon is comparable to product
life cycle. In that case, we can interpret T ∗ = τ as to introduce version 1 only, T ∗ = l as
simultaneous introduction, and l < T ∗ < τ as sequential introduction. Figure 1.6 depicts the
graphic representation of the optimality of each introduction rules. When θ < r2/r1, the firm
should always introduce two versions, either simultaneously or sequentially, regardless of the
cost of holding inventory. As θ increases beyond r2/r1, a simultaneously introduction is no
longer suitable for the firm, as a consequence, the firm should choose between the strategy
of simultaneous introduction and that of introducing version 1 alone, depending upon the
cost of holding inventory.

Two extreme situations are worth noting. First, when h > r1 − r2, which will happen
when version 1 has slightly larger profit margin than that of version 2 while carrying inventory
is quite costly, the firm should always adopt a sequential introduction strategy. Second, when
θ = r1/r2, this is the situation where the firm is indifferent between releasing version 2 and
not releasing it if only considers the dimension of marginal profit, whereas for any positive
inventory holding cost h, the firm is better off adopting a sequential introduction strategy.
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(a) Low-type customers are impatient (l small) (b) Low-type customers are patient (l large)

Figure 1.5: The Impact of Inventory Holding on the Introduction Timing

1.4.3 Numerical Study

In this section, we present a systematic numerical analysis using the empirical results
from Kurawarwala and Matsuo (1996) where the diffusion dynamics of four short life-cycle
personal computers were estimated. We apply our integrated model discussed in the pre-
vious sections to assess the impact of inventory holding on the introduction timing of line
extensions.

In the numerical study, we choose r1 = 200 and r2 = 100 for all products, such that
the high-end version is twice profitable than the low-end version. We assume the 40% of
potential customers are of high-type, and that low-type costumers can wait for at most 1
month to get the low-end version. Finally, we choose a comment life cycle of 18 months
for all the four PC products M1 - M4. The coefficients of innovation (p), imitation (q) and
market size (m) of each product are obtained from empirical estimation in Kurawarwala
and Matsuo (1996). In the following, we will first apply the analytical solutions for the
optimal introduction time derived in Section 1.4.2 and present the solutions for the case
where inventory of each version is replenished only once in the planning horizon, i.e. order
at the time of its introduction. After that, we will proceed with the numerical study for the
case where the firm can order each version multiple times.

One Replenishment. We choose h = 5 and assume half of the impatient low-type
customers would be willing to purchase version 1 instead (θ = 0.5). We then apply Propo-
sition 4 and compute the optimal time to release the low-end version of each product given
the existence of its high-end variant. We also compare the optimal profit π(T = T ∗) with the
one obtained using “Now or Never” policy (max(π(T = l), π(T = τ))), and use increase% to
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Figure 1.6: The Optimal Product Introduction Strategy

(p, q, m) T ∗ π(T = T ∗) max(π(T = l), π(T = τ)) increase%
M1 (0.0728, 0.1230, 5158) 9.2 565260 549100 2.94%
M2 (0.0242, 0.4434, 5005) 7 598820 575100 4.12%
M3 (0.0152, 0.1937, 6364) 11.7 527570 498800 5.77%
M4 (0.0303, 0.3187, 5439) 8.2 625800 601110 4.11%

Table 1.1: Impact of Inventory Holding Cost on Introduction Timing for Products M1-M4
(r1 = 200, r2 = 100, h = 5, s = 0.4, θ = 0.5, l = 1 month and τ = 18 months)

evaluate the relative improved model performance. Table 1.1 presents the results for prod-
ucts M1-M4. As shown, the optimal introduction should happen at different times of the
product life cycle, depending on different diffusion characteristics of each product. Clearly,
the optimal timing policy derived from our model dominates the “Now or Never” policy,
with a more than 4% profit increase on average over the four PC products.

Multiple Replenishment. For general ordering interval lengths Oi(i = 1, 2), Problem
(P H) is analytically untractable, the results in Table 1.2 shed light on the impact of ordering
interval length Oi(i = 1, 2) on the optimal introduction time (T ∗) and the relative improved
performance from the “Now or Never” policy (increase%). We vary Oi at values of 3, 6, 9
and 18. Note that version 2 will be ordered only at its release time if T ∗ + O2 > τ , so the
last two columns have the same value.

We observe that T ∗ decreases in O1, thus the firm would prefer a sooner introduction if
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O2

3 6 9 18

O1

3 (16.9, 0.11%) (16.9, 0.11%) (16.9, 0.11%) (16.9, 0.11%)
6 (14, 0.35%) (15.8, 0.48%) (15.8, 0.48%) (15.8, 0.48%)
9 (4.3, 0.12%) (14.7, 1.17%) (14.7, 1.17%) (14.7, 1.17%)
18 (4.3, 0.13%) (8.2, 1.15%) (11.7, 5.77%) (11.7, 5.77%)

Table 1.2: (T ∗, increase%) with Different Ordering Cycles (O1, O2) for M3
(p = 0.0152, q = 0.1937, m = 6364, r1 = 200, r2 = 100, h = 5, s = 0.4, θ = 0.5, l = 1, τ = 18

months)

version 1 has a longer ordering cycle. To the contrary, T ∗ increases in O2, so a later release
is preferred if version 2 can not be ordered frequently. Besides, we observe that with a fixed
inventory cost, the difference of model performance appears to be higher if the ordering cycle
becomes longer.

theta=0.6
h (18,18) (9,9) (6,6) (3,3)

0 18 18 18 18
1 18 18 18 18
2 17.5 18 18 18
3 15.1 18 18 18
4 14 17.7 18 18
5 13.4 17 18 18
6 12.9 16.6 17.8 18
7 12.7 16.3 17.5 18
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Figure 1.7: Impacts of Inventory Holding Cost and Ordering Cycles on the Introduction
Timing

(p = 0.0152, q = 0.1937, m = 6364, r1 = 200, r2 = 100, s = 0.4, l = 1, τ = 18 months).

Figure 1.7 shows the importance of re-assessing the rule of determining introduction
timing. The ordering interval for each version Oi(i = 1, 2) and the inventory holding cost h
are varied systematically. When θ = 0.3, the ”Now or Never” solution is ”Now” (because
θ < r1/r2), whereas in the presence of any non-zero inventory holding cost, the optimal
introduction should happen at a time later than it. The delay is higher if the inventory is
more costly to carry or if the orders have to be places less frequent. When θ = 0.6, the
”Now or Never” solution is ”Never” (because θ > r1/r2), whereas with inventory holding,
the optimal introduction should happen at a time prior to it. The difference is again higher
with a higher inventory holding cost and a longer ordering cycle. Thus, firms must adjust
the introduction timing strategy according to its ordering schedule carefully especially in the
situations when inventory is quite costly to carry or orders have to be placed less frequently.

Taken together, our results provide evidence for the necessity of coordinating the deci-
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sions of operations management and marketing sciences and show that firms must accom-
modate both demand and supply sides in the decision of introduction timing. Furthermore,
these two decisions should be synchronized not only on a day-to-day basis, such as the
demand-supply match, but at the tactical level as well. As shown, the introduction timing
must be carefully determined, especially when the product is costly to carry or when orders
can not be placed frequently.

1.4.4 Model with Substitution and Inventory Holding Cost

In this section, we propose a model accommodating the impacts of both substitution
(discussed in Section 1.4.1) and inventory holding cost (discussed in Section 1.4.2). To better
focus on the introduction timing decision without getting into too many operational details
of how to choose a specific ordering policy, we assume each version is only ordered when it
is introduced. Besides, we again assume version 1 is not phased out when version 2 being
released

To proceed with the analysis, we use T1(T2) to denote the time version 1(2) sells out
before substitution happens, and T ′

1(T
′
2) the time version 1(2) sells out after substitution.

For any given Q1 and Q2, T1 can be written as the solution to

Q1 = sF (T1) + θ(1− s)F (T − l) (1.33)

If (1.33) does not have a solution in [l, τ ], we let T1 = τ to retain our focus inside the
planning horizon [l, τ ]. Similarly, from (A.5), T2 is the solution to

Q2 = (1− s)(F (T2)− F (T − l)) (1.34)

If (1.34) does not have a solution in [l, τ ], we let T2 = τ .

If T1 < T2, i.e., version 1 runs out before version 2 does, according to Section 1.4.1, a
fraction β of high-type customers who wanted to buy version 1 would turn to version 2 until
it sells out as well, and thereby in this case, T ′

1 = T1 and T ′
2 is the solution to

Q2 = (1− s)(F (T ′
2)− F (T − l)) + sβ(F (T ′

2)− F (T1)),

where the first term on the right hand side is the sales from low-type customers, and the
second term is the sales from high-type customers due to substitution. Consequently, the
sales paths can be written as follows:

S1(t; T ) =

⎧⎪⎪⎨
⎪⎪⎩

sF (t) if 0 ≤ t ≤ l;
sF (t) + θ(1− s)F (t− l) if l < t ≤ T ;
sF (t) + θ(1− s)F (T − l) if T < t ≤ T ′

1;
0 if T ′

1 < t ≤ τ.

S2(t; T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ t < T ;
(1− s)(F (t)− F (T − l)) if T ≤ t ≤ T ′

1.
(1− s)(F (t)− F (T − l)) + sβ(F (t)− F (T ′

1)) if T ′
1 < t ≤ T ′

2;
0 if T ′

2 < t ≤ τ.
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If version 2 stocks out before version 1 does (T1 ≥ T2), a fraction α of those low-type
customers who wanted to buy version 2 would agree to purchase version 1 instead. As a
consequence, T ′

2 = T2 and T ′
1 is the solution to

Q1 = sF (T ′
1) + θ(1− s)F (T − l) + (1− s)α(F (T ′

1)− F (T2)),

where the first two terms refer to the sales from high-type customers, and the last term is
the sales from low-type customers as a result of substitution. In this case, the sales paths
can be written as follows:

S1(t; T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sF (t) if 0 ≤ t ≤ l;
sF (t) + θ(1− s)F (t− l) if l < t ≤ T ;
sF (t) + θ(1− s)F (T − l) if T < t ≤ T ′

2;
sF (t) + θ(1− s)F (T − l) + (1− s)α(F (t)− F (T ′

2)) if T ′
2 < t ≤ T ′

1;
0 if T ′

1 < t ≤ τ.

S2(t; T ) =

⎧⎨
⎩

0 if t < T ;
(1− s)(F (t)− F (T − l)) if T < t ≤ T ′

2;
0 if T ′

2 < t ≤ τ.

By using the above expressions of Si(t; T ) (i = 1, 2), the optimization model can then be
formulated as follows:

Problem (P SH): max
l≤T≤τ,Q1,Q2

w1S1(T
′
1; T ) + w2S2(T

′
2; T )− c1Q1 − c2Q2

−h

∫ min{τ,T ′
1}

0

(Q1 − S1(t, T )) dt− h

∫ min{τ,T ′
2}

T

(Q2 − S2(t, T )) dt

To get a better understanding of the impacts of inventory holding cost and substitution
on the introduction timing, we compare the solutions obtained from this model with those
from Sections 1.4.1 and 1.4.2. For the ease of explanation, we index the model presented
in Section 1.4.1 “model 1,” the one in Section 1.4.2 “model 2,” and the one Section 1.4.4
“model 3.” The comparisons of the three models are listed in Tables 1.4 - 1.7. Recall that
in model 1, substitution is beneficial in cases 1(a) and 1(b) (The cases are summarized at
the end of the proof of Proposition 3), but not favored in 2(a) and 2(b). As shown, under
the parameter sets 2(a) and 2(b), model 3 is reduced to model 2 and the optimal solutions
obtained in model 3 are the same as the ones in model 2 (The small differences are due
to the computational rounding error), which shows that substitution is not attractive when
inventory holding cost is considered, because the firm has to pay more inventory holding
cost if more units of version 1 are being carried. Under the parameter set 1(b), substitution
seems attractive in model 1, yet as the optimal introduction time turns out to be τ , the
end of the planning horizon, substitution does not actually happen. Therefore, it is not
surprising to realize that models 2 and 3 share the same optimal solution. The reason why
the introduction time shifts from 8 (model 1) to 6.3 (models 2 and 3) is because with holding
cost included in the decision making, the firm would be more likely to order less in order
to carry less inventory of version 1 compared with the situation where holding cost is not
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h L T ∗ π(T = T ∗) π(T = l) π(T = τ) % improvement
1 8 3.6 11415 10131 10206 10.5874
1 4 2.6 12468 12445 11877 0.1851
1 2 0.5 13376 13371 12528 0.033
2 6 4 9790.8 8134.8 8872.1 9.3834
2 4 5.2 11036 10571 10561 4.2139
2 2 0.8 12446 12424 11862 0.1797
3 4 5.5 9765.7 8697.8 9245.2 5.3299
3 2 3 11570 11477 11197 0.806

Table 1.3: Optimal Introduction Timing and Optimal Profit for Different Values of h and L

considered. As a result, we claim that with inventory holding cost included, the gain from
substitution reduces.

Therefore, in the above three cases (cases 1(b), 2(a), 2(b)), the solutions to model 3 are
exactly the same as those to model 2. By applying Proposition 4, we are able to quantify
the optimal introduction time of the product line extension in terms of model primitives.
It has not been addressed in the literature why the existing optimal policies (e.g, “now or
never”, “now or at maturity”) are not consistent with the rules being applied in practice,
and one can observe that by considering the inventory holding cost caused by a constraint
ordering schedule (models 2 and 3), the existing policies are in fact no longer optimal. Our
integrated model considers factors from both demand and supply sides, as a consequence,
our result is closer to the industry practice.

We further observe that only in case 1(a) does model 3 achieve higher profit than model
2, where the cost from inventory holding fail to diminish all gains from substitution so that
substitution is still attractive. Table 1.8 shows that the difference in profit between model
2 and model 3 decreases as per unit holding cost increases. And it should be noticed that
both r1 − hτ > 0 and r2 − hτ > 0 are satisfied in the current parameter setting, so that
the optimal solutions to model 2 are always feasible in model 3. But in fact, model 3 is not
restricted to the cases where r1 − hτ > 0 and r2 − hτ > 0. We use the setting only to make
the results comparable to those from model 2.

1.5 Model Extensions and Future Research

1.5.1 Model Extension: Customer Heterogeneity in Waiting Time

In this section, we relax the assumption of constant waiting time for all low-type cus-
tomers, and instead we capture customer heterogeneity in waiting time by assuming a
stochastic waiting time l, which follows an exponential distribution with parameter λ = 1

l
.

For each low-type customer who becomes interested in version 2 at time x, the probability
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Model obj T Q1 Q1 D1 D2

Model 1 15446 0 772.425 0 376.7927 565.189
Model 2 11415 3.6 454.4581 409.8582 454.4581 409.8582
Model 3 11965 0.1 771 2 376.7927 565.189

Table 1.4: Parameter Set 1(a): θ = 0.5, α = 0.7

Model obj T Q1 Q1 D1 D2

Model 1 16571 8 826.6570 0 826.65 2.8675
Model 2 12895 6.3 751.4277 96.8953 751.4277 96.8953
Model 3 12893 6.3 752 96 751.4277 96.8953

Table 1.5: Parameter Set 1(b): θ = 0.8, α = 0.7

Model obj T Q1 Q1 D1 D2

Model 1 14316 0 376.7927 565.189 376.7927 565.189
Model 2 11415 3.6 454.4581 409.8582 454.4581 409.8582
Model 3 11410 3.6 454 410 454.4581 409.8582

Table 1.6: Parameter Set 2(a): θ = 0.5, α = 0.2

Model obj T Q1 Q1 D1 D2

Model 1 15443 8 770.4178 2.8675 770.4178 2.8675
Model 2 12232 5.2 621.6091 215.4513 621.6091 215.4513
Model 3 12228 5.1 613 228 612.8363 227.9838

Table 1.7: Parameter Set 2(b): θ = 0.7, α = 0.5

Model h=0.1 h=0.3 h=0.5 h=1 h=1.5
Model 2(obj) 13924 13298 12736 11415 10135
Model 3(obj) 15094 14400 13704 11965 10226
Model 3(obj)-Model 2(obj) 1170 1102 968 550 91

Table 1.8: Impact of Inventory Holding Cost on Optimal Profit: θ = 0.5, α = 0.7
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that her demand gets lost by t can be written as:

1− e−λ(t−x) if t ≤ T

1− e−λ(T−x) if t > T

Based on the basic demand processes described in Section 1.3.2, it is easy to verity that the
demand trajectories in this scenario can be defined as:

D1(t; T ) =

{
sF (t) + θ(1− s)

∫ t

0
(1− e−λ(t−x))f(x) dx if t ≤ T ;

sF (t) + θ(1− s)
∫ T

0
(1− e−λ(T−x))f(x) dx if t > T.

(1.35)

D2(t; T ) =

{
(1− s)

∫ t

0
e−λ(t−x)f(x) dx if t ≤ T ;

(1− s) (F (t)− F (T − l)) + (1− s)
∫ T

0
e−λ(T−x)f(x) dx if t > T.

(1.36)

where F (t) and f(t), defined in (1.10) and (1.11), are the respective cumulative and instan-
taneous demand path in the Bass model. (1.35) and (1.36) are similar to (A.4) and (A.5),
except that in the presence of heterogeneity in waiting time, we use the expected demand
loss rather than the actual demand loss from impatient low-type customers.

1.5.2 Model Extension: Changes of Price and Holding Cost over

Product Life Cycle

To model the impact of price changes on customer choices, we let wi(t) (i = 1, 2) denote
the price at time t and hi (i = 1, 2) denote the holding cost at time t of each version i. We
assume the market is dynamically segmented according to the price ratio of the two version,
s(t) = w2(t)/w1(t). Intuitively, if version 1 is charged a higher price, a smaller proportion of
customers would be willing to buy it. In addition, we assume before introduction, w2(t) = r,
∀ 0 ≤ t < T , where r is the price of version 2 expected by low-value customers. Following
the notation defined in in Section 1.4.4, for any given Q1 and Q2, we can express the time
version 1 sells out before substitution happens, T1, as the solution to

Q1 =

∫ T1

0

s(t)f(t) dt + θ

∫ T−l

0

(1− s(t))f(t) dt (1.37)

where f(t) is defined in (1.11). Similarly, the time version 2 sells out before substitution
happens, T2, is the solution to

Q2 =

∫ T2

T−l

(1− s(t))f(t) dt (1.38)

If (1.37) (or (1.38)) does not have a solution in [l, τ ], we let T1 = τ (or T2 = τ) to retain our
focus inside the planning horizon [l, τ ].

If version 1 stocks out before version 2 does (T1 < T2), then β proportion demand from
high-type customers will be substituted by version 2 after version 1 runs out. Obviously,
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T ′
1 = T1 and T ′

2 is the solution to

Q2 =

∫ T ′
2

T−l

(1− s(t))f(t) dt + β

∫ T ′
2

T1

s(t)f(t) dt,

Consequently, the instantaneous sales paths of version i (i = 1, 2) can be written as follows:

s1(t; T ) =

⎧⎪⎪⎨
⎪⎪⎩

s(t)f(t) if 0 ≤ t ≤ l;
s(t)f(t) + θ(1− s(t))f(t− l) if l < t ≤ T ;
s(t)f(t) if T < t ≤ T ′

1;
0 if T ′

1 < t ≤ τ.

s2(t; T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ t < T ;
(1− s(t))f(t) if T ≤ t ≤ T ′

1.
(1− s(t))f(t) + s(t)βf(t) if T ′

1 < t ≤ T ′
2;

0 if T ′
2 < t ≤ τ.

If version 2 stocks out before version 1 does (T1 ≥ T2), then α proportion demand from low-
type customers will be substituted by version 1 after version 2 runs out. As a consequence,
T ′

2 = T2 and T ′
1 is the solution to

Q1 =

∫ T ′
1

0

s(t)f(t) dt + θ

∫ T−l

0

(1− s(t))f(t) dt + α

∫ T ′
1

T2

(1− s(t))f(t) dt,

In this case, the sales paths can be written as follows:

s1(t; T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s(t)f(t) if 0 ≤ t ≤ l;
s(t)f(t) + θ(1− s(t))f(t− l) if l < t ≤ T ;
s(t)f(t) if T < t ≤ T ′

2;
s(t)f(t) + α(1− s(t))f(t) if T ′

2 < t ≤ T ′
1;

0 if T ′
1 < t ≤ τ.

s2(t; T ) =

⎧⎨
⎩

0 if t < T ;
(1− s(t))f(t) if T < t ≤ T ′

2;
0 if T ′

2 < t ≤ τ.

Then we can express the problem of profit maximization over the life-cycle period as

Problem (P SHP ): max
l≤T≤τ,Q1,Q2

∫ min{τ,T ′
1}

0

w1(t)s1(t; T ) dt +

∫ min{τ,T ′
2}

0

w2(t)s2(t; T ) dt− c1Q1 − c2Q2

−
∫ min{τ,T ′

1}

0

h1(t)(Q1 − S1(t, T )) dt− h

∫ min{τ,T ′
2}

T

h2(t)(Q2 − S2(t, T )) dt

where Si(t, T ) =
∫ t

0
si(s; T ) ds is the cumulative sales up to time t.
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1.5.3 Summary and Future Research

This paper complements existing research of determining optimal introduction timing
for a line extension product, which has often been studied within the marketing domain (e.g.
Wilson and Norton 1989, Moorthy and Png 1992). However, as inventory holding is often
unavoidable in most industry practices, this has led to a clear call in the literature to develop
more comprehensive models addressing the timing decisions from both operations manage-
ment and marketing science perspectives, with the hope to design methodologies to improve
a firm’s profit or enhance the supply chain’s overall performance. As a result, we propose an
integrated model that considers important factors from operation management area, includ-
ing substitution in supply scarcity, ordering interval and inventory holding cost, and factors
from marketing area, including diffusion, customer expectation and demand switch. On the
demand side, based on the Bass model (Bass, 1969), we propose the splitting Bass-like diffu-
sion model to describe the adoption process of two successive (and differentiated) versions of
the same product, which also captures the role of customer expectation in shaping purchase
choices. On the supply side, we address the effect of substitution due to supply scarcity and
the impact of inventory holding cost from a simple ordering policy.

In contrast to the existing ”now or never” policy in the literature (Wilson and Norton,
1989), we have shown that, with a constrained ordering schedule, firms should adjust the
decision of introduction timing of line extensions by considering inventory holding of the
products, as the optimal introduction can happen anytime from “now” to “never”. Our result
justifies that an interdisciplinary decision-making approach of both operations management
and marketing science will help a firm achieve an improved profit. These two aspects of a
firm should be synchronized not only at the operational level, but at the tactical level as
well, so managers should understand both sides and then cook a recipe that is right for their
company’s particular situation.

The purpose of this paper is to take a first step towards understanding the implications of
timing introductions of product lines by coordinating decisions of marketing and operations
management. Our analysis opens up several opportunities for future research. For instance,
we can study the relationship between the waiting time of customers and the unit price
of the line extension. Customer’s patience can often be endogenously determined, as the
more benefit she will gain from waiting, the more patient she is willing to be. It would
be interesting to quantify this trade-off and investigate how this relationship will impact
the results in the paper. We also plan to find out the impact of customers’ estimation of
the introduction time on the firm’s timing decision (Prasad et al., 2004). With her own
expectation of the introduction time, a rational customer compares the net present values
between the two products and make the purchase that gives her more utility. We are also
interested in analyzing a more complex operational cost structure, such as fixed production
cost, non-linear ordering cost and multiple-period production (e.g., Ho et al., 2002), and the
asymmetry in the social influence process, i.e., a set of customers have more influential power
(Van den Bulte and Joshi 2007, Joshi et al. 2008). We believe new interesting managerial
insights can be obtained from these research directions.
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Chapter 2

Incorporating Social Contagion into
Customer Value Analysis: A
Homogeneous Population

2.1 Introduction

Customers are assets. Indeed, the health of a customer base is crucial to a firm’s growth
and profitability. A common metric for assessing a customer’s worth is her lifetime value
(LV): the present value of all future profits generated by the customer excluding the cost of
acquiring her (Gupta et al., 2006). Customer LV is also frequently used to segment customers,
which allows the firm to identify customers of high value and appropriately allocate scarce
marketing resources to enhance its customer assets (Rust et al. 2004, Ho et al. 2006).
Hence the importance of having an accurate metric for assessing customer value cannot be
over-emphasized.

Prior models of customer LV assume that the value of a customer depends only on her
own purchase history (e.g. Dwyer 1989, Gupta and Lehmann 2003, Ho et al. 2006, Gupta et
al. 2006). That is, the behaviors and purchase histories of other customers will not influence a
specific customer’s LV. This assumption is valid for traditional purchase contexts where there
is little interaction among customers and each customer may be treated as an independent
buyer. The explosion of instant communication and viral Internet marketing however cast
doubt on this assumption. In the Web 2.0 world, customers interact intensely with each
other during their shopping process (Mayzlin, 2006). Hence, social contagion is likely to
play an active role in shaping the adoption and purchase of new product. Consequently, a
customer’s LV not only derives from how much she buys, but also captures her influence
on others’ timing of adoption through post-purchase interpersonal communication (Gremler
and Brown, 1998). This paper provides a formal approach to model this social phenomenon.
By doing so, we hope to develop a revised metric for customer value that is better suited for
online purchase contexts where social contagion is prevalent.
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Specifically we posit that a customer’s LV is a sum of her purchase value (PV) and
influence value (IV)1. Formally we have:

LV = PV + IV.

Our central premise recognizes the potential and power of social contagion. In fact, some
firms have begun to recognize a customer’s IV by rewarding them in order to reinforce their
positive behavior. For example, BMG Music Service sends free CDs to existing customers
when they bring in new customers (Villanueva et al., 2008). The San Francisco Symphony
offers complimentary concert tickets to customers who refer new customers (Biyalogorsy et
al., 2001). Other examples include fashion house Gilt and online bank ING which reward
customers that help them attract new customers. Although the effect of social contagion
on LV has been emphasized and highlighted by many practitioners and academics (see, e.g.,
Gupta et al. 2006, Kumar et al. 2007, Villanueva et al. 2008, Ovchinnikov and Pfeifer 2009),
there is yet a formal model to quantify its effect on LV and study its influence on marketing
mix activities. This paper is a step towards filling this gap.

Positive social contagion has two benefits. First, it increases the total number of adopters
for a new product. Customers who otherwise would not have bought the product may
now change their minds because of the positive feedback. Second, positive feedback may
dramatically reduce the timing of adoption. Uncertainty about a new product’s benefits
may be reduced by social contagion and as a consequence, potential buyers may speed up
their adoption process. This uncertainty reduction process leads to purchase acceleration
which in effect reduces the new product’s life-cycle. In this paper we focus exclusively on the
second benefit and analyze the effect of social contagion on timing of new product adoption
and customer LV. We will characterize customer PV, IV, and LV in the context of the
classical Bass diffusion model (in which the total number of adopters is fixed).

Under the Bass diffusion model (Bass, 1969), a new product diffusion is described by
both the innovation and imitation processes. Innovation process measures the propensity
of one’s adoption independent of the decisions of other individuals in a social system. On
the other hand, imitation process describes how an individual is influenced by previous
buyers through social influence. We use the Bass model for two reasons: First, it receives
wide empirical support, either in the diffusion of a brand new category (Bass, 1969) or in the
diffusion of a new brand within an established category (e.g., Kurawarwala and Matsuo 1998,
Sawhney and Eliashberg 1996, Mahajan et al. 1993); Second, it has been shown to be a nice
building block for many generalizations including incorporating the effects of marketing-mix
variables (Mahajan et al., 1995). By building on the Bass diffusion model, we hope our
results can either be directly applied or be extended to many practical situations. These
results can be used to predict the dynamics of customer PV, IV and LV for new products
that are well approximated by Bass diffusion curves.

One powerful way to accelerate product purchase is to increase positive social contagion

1Unlike Kumar et al. (2007) and Ovchinnikov and Pfeifer (2009) where IV is treated as separate from
LV, we conceptualize IV as a key component of LV. This is so because IV captures a separate stream of cash
flow a customer brings in the form of others’ purchases.
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by offering introductory discounts (Van Ackere and Reyniers, 1995). Publishers offer intro-
ductory discounts for college textbooks in order to speed up the initial adoption. Similarly,
when Hasbro launched a new handheld video game called POX in 2001, they chose 1,600
kids to be their agents of social contagion, each armed with a backpack filled with samples
of the game to be handed out to their friends (Godes and Mayzlin, 2009). Other examples
include the widespread practice of sending a limited quantity of free CDs when a new CD is
released. These marketing strategies can be nicely analyzed and interpreted using our model
framework. We explain these phenomena from a social influence standpoint and show how
such marketing strategies can actually increase a firm’s total customer LV. We investigate
how a firm should optimally determine the size of the promotion sample in order to maximize
total customer LV.

Sometimes due to operational reasons, customers may not be able to get the product
they ordered right away. Consequently, a customer does not generate social contagion until
her order arrives. This may decelerate social contagion and slow down product diffusion.
In this paper, we specifically examine how the duration of an out-of-stock phenomenon
influences customer LV so that firms can quantify the benefit on a high inventory availability.

The benefit of reducing lead times have been well documented in both operations man-
agement and marketing literature. Most research in those areas typically focuses on internal
pricing during lead time (e.g., Hill and Khosla 1992, Ray and Jewkes 2004) or the impact
of lead-time commitment on customer satisfaction and demand (e.g. Kumar et al. 1997,
Ho and Zheng 2004). The influence of lead time on customer LV has not been explicitly
examined. We show how a lengthy lead time decelerates social contagion, slows down future
sales and decreases customer LV. We explain that even a small lead time will make a big
difference in the firm’s customer assets.

The paper makes the following contributions:

1. We investigate how social contagion influences the value of a customer beyond her pur-
chase history. Our analysis suggests that it is crucial to account for social contagion in
customer LV analysis. Ignoring social influence will greatly underestimate the value of
early adopters and overstate the value of later adopters 2. To the best of our knowledge,
this is the first attempt to provide formal metrics for firms to explicitly apportion the
direct value of a customer’s purchase and the indirect value of the customer’s social
influence over time. We derive closed-form expressions for PV, IV, and LV.

2. We show that a customer who adopts earlier is more valuable than a customer who
adopts later and LV decreases rapidly over time. In addition, we find that PV increases
with the innovation parameter whereas IV decreases with it. Early adopters have their
LV decrease with the innovation parameter while later adopters have their LV increase

2Substantially, this paper augments the traditional CRM literature. To date, few studies have explicitly
addressed the value of the social influence associated with a customer in the CRM literature. Hogan et al.
(2003) suggest that the value of a lost customer goes beyond the loss of the revenue generated directly from
her purchase, but should also include the lost value of her social network. Gupta et al. (2006) find strong
direct and indirect network effects among buyers and sellers in a field dataset involving an auction house.
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with it. Interestingly, PV always decreases with the imitation parameter whereas
IV increases with it for early adopters but decreases with it for late adopters. LV
increases with the imitation parameter if the timing of adoption is below a cutoff value
and decreases with it if it is above the cutoff.

3. We determine the optimal size of the promotion sample and show how purchase ac-
celeration in terms of introductory discounts can lead to significant improvements in
total customer LV. Purchase acceleration works because we dramatically increase the
IV of social contagion agents.

4. We show that an out-of-stock phenomenon that happens earlier in a product’s life cycle
always leads to a greater loss in total customer LV. We find that out-of-stock status
can dramatically slow down social contagion and customer purchases. Consequently,
it can significantly decrease a firm’s customer LV.

The remainder of this chapter is organized as follows. In Section 2.2, we describe
the modeling framework of customer PV, IV and LV. Section 2.3 analyzes the influence of
purchase acceleration on LV. Section 2.4 analyzes the influence of purchase deceleration on
LV. Section 2.5 summarizes the paper and discusses potential directions for future research.
All proofs are presented in Appendix A.

2.2 The Model

Consider a firm that introduces a new durable product to a market of potential adopters.
The customer adoption process is assumed to follow the Bass dynamics (Bass, 1969). At
any time during the product life cycle, a potential adopter’s decision is influenced by two
factors: the external influence (e.g., advertising or mass media communication) and the
internal influence (e.g. social contagion):

f(t)

1− F (t)
= p + qF (t) (2.1)

where f(t) and F (t) are the instantaneous and cumulative proportions of adopters at time t
respectively. Parameters p and q are the coefficients of innovation and imitation. They can
also be interpreted as the coefficients of external influence and internal influence (Mahajan
et al., 1990, Van den Bulte 2000). Equation (3.10) means that an individual’s likelihood of
adopting at time t condition on no adoption in the past is determined by the individual’s
intrinsic motivation and the social influence at that time. If there are no pre-release purchases
(i.e., F (0) = 0), the solutions to (3.10) can be written as:
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F (t) =
1− e−(p+q)t

1 + q
p
e−(p+q)t

(2.2)

f(t) =
(p + q)2/pe−(p+q)t

(1 + q
p
e−(p+q)t)2

(2.3)

In new products with substantial social contagion (e.g., q > p), (3.11) gives a bell-shaped
curve with a single inflection point. The instantaneous adoption rate is small initially because
only a few members of the potential pool adopt the innovation. After a building-up phase,
the instantaneous adoption rate rises sharply until it reaches the peak of the bell-shaped
curve. After that point, the instantaneous adoption rate decreases because the remaining
pool of potential adopters has declined. Consequently, when (2.2) is plotted, one often
observes an S-shaped curve.

2.2.1 The Social Influence Chain

Bass diffusion implies a social influence chain. Consider two potential adopters Amy
and Betty. Suppose Betty buys at time t. Betty plays two roles in this social influence chain.
On the one hand, her purchase might be influenced by a previous buyer, and thereby she
is an influencee. On the other hand, after her purchase, she might exert social influence,
and thus become an influencer of others’ purchases. Consequently she might have her own
influencees. We assume that an individual can have multiple influencees but can only be in-
fluenced by at most one influencer (i.e. she may adopt the product without others’ influence).

Now we move ahead to take a further look at Betty’s role as an influencer. Suppose
Amy buys at s (s > t). Her purchase was either driven by her external influence, such as
advertisement or mass media, or due to the internal influence from previous buyers. From
(3.10), the probability of her being an influencee can be written as:

Pr[Amy is an influencee] =
qF (s)

p + qF (s)
(2.4)

An implicit assumption in the Bass model is that “at any point in the process, all individuals
who are yet to adopt have the same probability of adopting in a given time period, so that
differences in individual adoption times are purely stochastic,” (Chatterjee and Eliashberg,
1990). Therefore, at any moment in time each individual who is buying is equally likely to
be an influencee of any previous buyer, and each previous buyer is equally likely to be the
influencer of any individual that is buying. We observe that (2.4) is increasing in s, so later
buyers are more likely to be influencees.

We use N to denote the size of the potential customers. Since each previous buyer was
equally likely to influence Amy, the probability that she was influenced by Betty is given by
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3

Pr[Amy is Betty’s influencee] =
q/N

p + qF (s)
(2.5)

We have f(s)N independent buyers at time s, so the number of buyers at s who were

influenced by Betty follows a Binomial distribution with parameters f(s)N and
q/N

p + qF (s)
.

It follows that the expected number of customers buying at s that were influenced by Betty
is given by

E[number of Betty’s influencees at time s] =
qf(s)

p + qF (s)
(2.6)

Therefore, during the product life cycle, the expected total number of Betty’s influencees is

E[total number of Betty’s influencees] =
∫∞

t

qf(s)

p + qF (s)
ds (2.7)

2.2.2 Customer Lifetime Value

Without loss of generality, normalize the product profit margin to 1. We characterize
the LV of any customer currently making a purchase as the sum of her PV and IV. We model
LV in the following way. Consider Betty, a buyer at t. She is an innovator with probability

p

p + qF (t)
. In this case, her PV is the present value of her profit discounted by e−rt with rate

r. Otherwise, she is influenced by people who buy before t, so she only earns 1− δ fraction
of the present value of the profit she produces. The remaining δ fraction is credited back to
her influencer. Therefore, Betty’s PV is

PV (t) = e−rt

(
p

p + qF (t)
+

qF (t)

p + qF (t)
(1− δ)

)
(2.8)

=
p + q(1− δ) + qδe−(p+q)t

p + q
e−rt (2.9)

On the other hand, Betty might tell her friends about her purchase. She will earn δ fraction
of the present value of the resulting profit brought in by each new customer. Substituting
(3.10) into (2.7)

IV (t) = δ

∫ ∞

t

e−rsqf(s)

p + qF (s)
ds

= δq

∫ ∞

t

e−rs(1− F (s)) ds (2.10)

3As q < pN always holds empirically, (2.5) is well-defined.
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Her LV is the sum of PV and IV:

LV (t) = PV (t) + IV (t) (2.11)

We compare the PV, IV and LV with and without social contagion in Table 2.1. Without
social contagion, a customer’s LV is the present value of her own purchase independent of
others. With social contagion, her LV depends on past and future purchases.

Table 2.1: Customer LV with/without Social Contagion

Without With
Social Contagion Social Contagion

PV(t) e−rt p + q(1− δ) + qδe−(p+q)t

p + q
e−rt

IV(t) 0 δq
∫∞

t
e−rs(1− F (s)) ds

LV(t) e−rt p + q(1− δ) + qδe−(p+q)t

p + q
e−rt + δq

∫ ∞

t

e−rs(1− F (s)) ds
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Figure 2.1: Customer PV, IV and LV
(p = 0.0163221, q = 0.325044, r = 0.05, δ = 0.3)

Figure 2.1 plots the PV, IV and LV of a customer as a function of the time of purchase.
We use the average coefficient of innovation described in Bass (1969) as the coefficient of
innovation (p). Similarly, the average coefficient of imitation from Bass (1969) is used as the
coefficient of imitation (q). The discounting factor r and the proportion of influential credit
parameter δ are set to 0.05 and 0.3 respectively. The high LV of early adopters is due to
both their less-discounted PV and their post-purchase influence on later adopters. In fact,
IV can be quite crucial for early adopters in a networked economy.

Proposition 8.
∫∞

t=0
LV (t)f(t) dt =

∫∞
t=0

e−rtf(t) dt.
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Proposition 8 states that the total LV of the firm’s customer base is the same in our
framework as it is in traditional customer LV models. Note that in traditional models the
value of a customer only comes from her own purchase. So social contagion is about value
redistribution among the customer base rather than adding value to the customer base.
Our approach enables the firm to directly model the value of interpersonal influence among
customers. Moreover, we directly connect between the value of the firm and individual
customer profitability avoiding double-counting of cash-flows when adding together the LV
of the firm’s customers can help measure the value of the firm (see, e.g., Rust et al. 2000,
Gupta and Lehman 2003, Berger et al. 2006 and Gupta et al. 2006).

The following proposition establishes the existence of a cutoff time in any innovation
diffusion process. All customers prior to the cutoff time are worth more to the firm than
their own cash flow in a networked economy since they help to attract later buyers through
social contagion. Purchases made after the cut-off time are worth less to the firm because
part of the resulting profit is credited back to early adopters to reward their influence.

Proposition 9. Let

t∗ = {t :

∫ ∞

s=t

e−r(s−t)(1− F (s)) ds =
1− e−(p+q)t

p + q
}

When t ≤ t∗, LV (t) ≥ e−rt; When t > t∗, LV (t) < e−rt.
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Figure 2.2: Customer LV with/without Social Contagion
(p = 0.0163221, q = 0.325044, r = 0.05, δ = 0.3)

Figure 2.2 shows how social contagion redistributes value among customers. We shall say
t∗ is the cutoff time. Customers who adopt prior to t∗ have higher value with social contagion
than without it. In other words, ignoring social contagion may lead to an underestimate of
the LV of early adopters and an overstatement of the LV of later adopters. Our model directly
incorporates social influence and can help the firm form strategies to acquire customers over
time.
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Note, we assume a constant profit margin throughout the product life cycle. One might
argue that the product profit margin typically decreases over time for most new durables.
However, our qualitative results would not change. In this case, early customers are more
valuable because they have higher cash flow value, greater influential power over other cus-
tomers and they correspond to a greater profit margin.
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Figure 2.3: Importance of IV
(p = 0.0163221, q = 0.325044, r = 0.05, δ = 0.3)

Figure 2.3 illustrates the significance of IV as a component of LV over time. We observe
that IV is more significant for early adopters than late adopters. Here, the loss of an early
adopter is more costly than the loss of a late adopter. Ho et al. (2002) showed that it may
be beneficial to pre-produce some product before launching the new product to avoid losing
early adopters under certain circumstances. Our result provides an LV perspective on this
result. Also, noting the significant influence of early adopters, firms should increase post-
purchase customer service early in the product life cycle. This strategy increases customer
satisfaction and increases their willingness to spread positive social contagion.

It is worthwhile to discuss half-life customer value. This concept has been adopted
across many marketing sub-fields. In the context of LV, the half-life of a customer is the
length of time she can postpone her purchase before her value is halved. Figure 2.4 shows
how a customer’s LV decays by half as her purchase is delayed. We note that customer
half-life is far less than half of the product life cycle. For a product with a 25-year life cycle,
the LV of a customer who buys at product introduction is more than twice the LV of a
customer who delays her adoption to year four. Further, an early adopter can be four times
more valuable than a buyer in year fifteen.

2.2.3 Comparative Statics

In this section we consider comparative statics. In particular, we want to predict how
the PV, IV and LV of customers change as parameters vary.
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Figure 2.4: LV Curve
p = 0.0163221, q = 0.325044, r = 0.1, δ = 0.3

Proposition 10. PV (t), IV (t) and LV (t) are all decreasing convex in t.

When a customer delays a purchase, her PV decreases because there is a more heavily
discounted profit margin. At the same time, her IV decreases because the pool of poten-
tial adopters shrinks. Hence, a customer’s value goes down rapidly as she waits to buy.
Proposition 10 states that the rate of decrease is smaller as adoption diffuses.

Proposition 11. (1) PV (t) is increasing in p.
(2) IV (t) is decreasing in p.
(3) We define

t1 = {t : e−rt (1− (pt + qt + 1)e−(p+q)t)

(p + q)2
=

∫ ∞

t

e−rs∂F (s)

∂p
ds},

then LV (t) decreases with p for t < t1 and increases thereafter.

All other things being equal, Proposition 11 tells us that at any given time, stronger
external influence increases the PV of customers making purchases. With stronger external
influence, customers are more likely to be innovators who earn all the credit from their own
purchases. However, stronger external influence speeds up the diffusion process, shrinks the
pool of potential adopters, and thus reduces the social influence of all adopters. So, PV and
IV move in opposite directions as external influence increases. As for LV, Proposition 11
proves the existence of an inflection point t1. The LV of adopters prior to t1 decreases and
the LV of buyers after t1 increases.

Proposition 12. (1) PV (t) is decreasing in q.
(2) We define

t2 = {t :

∫ ∞

t

e−rs(1− F (s)− q
∂F (s)

∂q
) ds = 0}
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IV (t) increases with q for t ≤ t2 and decreases thereafter.
(3) We define

t3 = {t :

∫ ∞

t

e−rs(1− F (s)− q
∂F (s)

∂q
) ds =

e−rtp

(p + q)2
(1− (1− qt− q2

p
t)e−(p+q)t)}

LV (t) increases with q for t ≤ t3 and decreases thereafter.

Given fixed potential population and external influence, increased social contagion ef-
fects reduce the PV of customers currently making purchases at any given time. As social
contagion speeds up diffusion, adopters are more likely to be imitators and only earn partial
credit from purchases. However, two opposite forces drive IV. On one hand, a higher internal
influence coefficient indicates that adopters are more likely to be imitators, leading to higher
customer IV. On the other hand, a higher internal influence coefficient speeds up demand, so
the market will be saturated sooner and customer IV will be lower. Part (2) of Proposition
12 addresses this situation. It states that as people become more inclined to spread social
contagion, the IV of early customers (prior to t2) goes up. The IV of late customers (after t2)
rapidly goes down. Part (3) of Proposition 12 specifies that LV changes as IV does, except
LV changes around a different inflection point. It can be shown that t3 is always smaller
than t2.

These results are highly relevant in the era of new media marked by an increase in
“buzz”. As mentioned earlier, ignoring social contagion leads to dramatic underestimation
of the LV of early adopters. We summarize these comparative statics results in Table 2.2.

Table 2.2: Summary of Comparative Statics Results

PV(t) IV(t) LV(t)

decreasing decreasing decreasing
t

convex convex convex

decreasing for t < t1p increasing decreasing
increasing thereafter

increasing for t < t2 increasing for t < t3q decreasing
decreasing thereafter decreasing thereafter

2.2.4 Mean Time until First Influence

In this section, we analyze customer value with a different metric – mean time until first
influence. Mean time until first influence is the average time a customer takes to influence
others for the first time after her purchase. We use this notion to measure how “fast” impacts
are realized for customers that adopt at different times. Instead of analyzing LV directly,
we consider the responsiveness of interpersonal influence. It has been widely acknowledged
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that response time is an effective alternative measurement in value analysis. We proceed as
follows.

Consider Betty who buys at time t. We use N s
t to denote the number of Betty’s in-

fluencees who buy at time s (s > t). Recall (2.5). For each adopter at s, we know the

probability of not being influenced by Betty is 1− q/N

p + qF (s)
. Moreover, f(s)N independent

customers will buy at s (assuming f(s)N is integer.) So, the probability that Betty has
influencees at s is equal to the probability that not all imitators at s are influenced by others
(except Betty.) This probability is

Pr[Betty has influencees at s] = Pr(N s
t ≥ 1)

= 1−
(

1− q/N

p + qF (s)

)f(s)N

= λ(s) (2.12)

Note that (2.12) is independent of t, because each individual who buys before s is equally
likely to influence anyone that is buying at s. We use λ(s) to represent (2.12).

Proposition 13. λ(s) is decreasing in s.

Compare this result with (2.4), which implies a later adopter is more likely to be an
influencee. Proposition 13 shows that it becomes less likely for anyone to have influencees
as the product diffuses in the market over time. The intuition is as follows: before demand
peaks, there is a growing number of instantaneous adopters. As time goes by, each of
these adopters becomes more likely to be an influencee. In the mean time, the number of
previous buyers is increasing, so more buyers are competing to influence the growing number
of instantaneous adopters. The number of previous buyers increases more rapidly than the
number of instantaneous adopters. Thus, the competition effect always outweighs the effect
of the growing number of instantaneous adopters anytime before the demand rate peaks.
After the demand peaks, the number of instantaneous adopters declines as time passes. The
likelihood that any of these adopters are influenced by Betty decreases over time because
of the growing competition among previous buyers. Therefore Betty is less likely to have
influencees after the demand peaks as adoption diffuses.

Let Tt be the duration between the time Betty buys t and the first time Betty influences
others. Proposition 14 gives a closed-form expression for the mean time until first influence
for a customer that purchases at any time t in the product life cycle.

Proposition 14. ETt =
∫∞

0
e−

∫ t+x
t

λ(s) ds dx

Our next proposition studies the mean duration between the time a customer adopts
the product and the first time she influences others.

Proposition 15. ETt is increasing in t.

This result echoes those from previous sections. Late customers have lower IV because
they have less time to influence others, but also because it takes longer for a later adopter
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to influence others on average. A later customer is less valuable to the firm because she
generates less profit (cash flow generated by herself and her influencees.) It also takes her
more time before someone responds to her influence. These results supplement the customer
value analysis.

2.2.5 Empirical Implications

In this section, we appeal to prior empirical studies on the Bass model to study the
dynamics of customer LV for some specific products. Diffusion models have mainly been
applied to consumer durable goods (e.g., Bass 1969, Easingwood et al. 1983, Gatignon et
al. 1989, Sultan et al. 1990). Recently, researchers have found wide empirical evidence for
the Bass model in the field of information technology innovation (e.g., Teng et al. 2002, Chu
et al. 2009). So, we will examine the dynamics of customer LV in two product categories:
consumer durable goods and information technology innovation.

Consumer Durable Goods

We apply the empirical results from Bass (1969) to our LV framework with social conta-
gion. We illustrate two examples: the diffusion of black & white television during 1946-1961
and the diffusion of the clothes dryer during 1948-1961. The coefficients of innovation (p)
and imitation (q) are obtained empirically in Bass (1969). The annual discounting factor r
and the proportion of influential credit parameter δ are set to 0.1 and 0.3 respectively.
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Figure 2.5: Black & White Television (1946 - 1961)
(p = 0.027877, q = 0.25105, r = 0.1, δ = 0.3)

Figure 2.5(a) shows how customer PV, IV and LV change at different adoption times
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for black & white TV during 1946-1961. We observe that for customers who bought black
& white TV in 1946, 1/3 of the LV comes from influence on later buyers. Figure 2.5(b) tells
us that customers who purchased before 1951 have a substantial effect on future customer
acquisition through their ability to influence potential adopters. Also, their LV is higher
than when social contagion is not considered.
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Figure 2.6: Clothes Dryer (1948 - 1961)
(p = 0.017206, q = 0.35688, r = 0.1, δ = 0.3)

Figure 2.6 shows the customer’s PV, IV and LV depend on when the purchase of a clothes
dryer was made during 1948-1961. We observe that the LV of customers who adopted before
1955 is greater considering their social influence.

A comparison of Figure 2.5(a) and Figure 2.6(a) reveals that customers who bought a
clothes dryer at introduction achieve higher IV than customers who adopted the black &
white TV at introduction. The diffusion process of the clothes dryer has a lower coefficient
of innovation and a higher coefficient of imitation compared to the diffusion coefficients of
black & white TV. So, customers were subject to more social influence when adopting clothes
dryers. The IV of customers who purchased at the earliest stages of the clothes dryer product
life cycle is significantly higher.

Information Technology Innovations

Nowadays, information technology innovation has become the main driving force of
innovation generally. The value of customers in adoption of technology innovation is a
pressing management issue. We examine empirical results of the diffusion dynamics of the
mobile telephone in Taiwan (Chu et al., 2009). We use our LV framework to examine the
value of customers at different stages of adoption. Figure 2.7(a) plots the PV, IV and LV
of mobile telephone customers in Taiwan over the past twenty years. We observe that a
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customer who adopts at the earliest stage of the product life cycle has an LV 3.5 times of
the profit resulting from her purchase. Her IV is so substantial that failure to include social
contagion effects would lead to misallocation of scarce marketing resources during the critical
early stages of a new market.
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Figure 2.7: Mobile Telephone in Taiwan (1988 - 2008)
(p = 8.93 ∗ 10−7, q = 1.28, r = 0.1, δ = 0.3)

Figure 2.7(b) compares LV with and without social contagion. Social contagion leads
to significant differences in LV. If one ignores the social influence among customers, then the
value of early adopters is understated.

We apply our model based on the empirical estimation results from Teng et al. (2002).
There, the diffusion pattern of twenty information technology innovations was examined
based on a cross-sectional sample of 313 large American firms. Applying our LV frame-
work4, we measure how much a customer contributes to the diffusion process of information
technology innovations at different stages of buying. We see how much more she is actually
worth considering her social influence versus the direct profit resulting from her purchase.

4The diffusion differential equation in Teng et al. (2002) is slightly different from the one in Bass (1969).
We incorporate the demand saturation level m. So, we modify our LV calculation formula and apply the
following expressions to calculate customer PV, IV and LV.

F (t) = m
1− e−(p+q)t

1 + q
pe−(p+q)t

PV (t) = e−rt

(
p

p + qF (t)
+

qF (t)
p + qF (t)

(1− δ)
)

IV (t) = δq

∫ ∞

t

e−rs(m− F (s)) ds

LV (t) = PV (t) + IV (t)
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Figure 2.8: Large Sale Relational Database in U.S. (1971 - 2001)
(p = 0.0006, q = 0.3074 (saturation level = 87.39%), r = 0.1, δ = 0.3)

Figure 2.8 presents the diffusion of large sale relational databases in U.S. from 1971 to
2001. Figure 2.8(a) shows how customer PV, IV and LV all decrease as customers delay
adoption. Figure 2.8(b) shows that customers who adopted large sale relational databases
before 1989 are more valuable than the resulting profit. Adopters after 1989 are worth less
than the present value of their own adoption.

2.3 Purchase Acceleration

In this section, we examine the effect of purchase acceleration on LV. The practice of
giving introductory offers to accelerate purchase is widespread (e.g. Marks et al., 1988,
Dipak et al., 1995). However, not all of these marketing activities can be easily rationalized
by traditional LV models. Such practice however can be justified if one incorporates social
contagion into customer value analysis.

To make the analysis tractable, we assume that every customer is equally likely to re-
ceive an introductory discount. In other words, we assume that the firm randomly samples a
group of customers and offers them introductory discounts. Consequently, our uniform pur-
chase acceleration scheme should not change the average propensity of internal and external
influence on the potential population (i.e., the coefficients of innovation (p) and imitation (q)
remain unchanged). In addition, we assume that the introductory discount is deep enough
so that all potential customers are willing to adopt the product immediately.

The introductory discount will only be offered to a selected group of potential adopters
at the time of product introduction. On one hand, introductory discounts stimulate more
initial adoptions, and thus accelerate other potential adopters’ purchase behavior. On the
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other hand, introductory discounts reduce the PV of the selected customers. We will study
how the firm should make the offering decisions considering these gains and losses. Let s be
the unit selling price, c is the unit production cost, and d is the unit discount offered to the
selected group of potential adopters whom we shall call invited influencers.

We begin by considering a fraction F0 of customers in the potential population. If no
introductory discount is offered, the total PV of that fraction of customers is

(s− c)

(∫ ∞

0

PV (t; 0)f(t; 0) dt

)
F0

where PV (t; 0) follows from (2.9). It denotes the normalized PV of a customer who buys at
t with unit profit margin when a fraction of 0 customers are given the introductory discount
at time 0 (F (0) = 0). f(t; 0) is the demand rate at time t if F (0) = 0 and follows from
(3.11). Thus (s − c)

∫∞
0

PV (t; 0)f(t; 0) dt is the total PV of the entire potential population
when the profit margin is s− c. The PV of the fraction F0 of customers is F0 times the total
PV if the potential population is normalized to 1.

Similarly, the total IV of the fraction F0 of customers is

(s− c)

(∫ ∞

0

IV (t; 0)f(t; 0) dt

)
F0

The total PV and IV of the remaining fraction 1−F0 of customers are (s−c)
(∫∞

0
PV (t; 0)f(t; 0) dt

)
(1−

F0) and (s− c)
(∫∞

0
IV (t; 0)f(t; 0) dt

)
(1− F0) respectively.

Now suppose that at time 0, the fraction F0 of customers are selected to be invited
influencers and are offered the introductory discount d. The firm earns s− c− d from each
invited influencer, and s− c− d can be negative. When the introductory discount is offered
at time 0, the PV of each invited influencer is the profit (or loss) she brings, s− c−d. When
the population is normalized to 1, the total PV from all invited influencers (those F0 fraction
of customers) is

(s− c− d)F0 (2.13)

The total IV from the fraction F0 of customers is

(s− c)IV (0; F0)F0 (2.14)

where

IV (t; F0) = δq

∫ ∞

t

e−rs(1− F (s; F0)) ds

follows from (2.10) where F (s) is replaced with F (s; F0). Further

F (s; F0) =
p + qF0 − p(1− F0)e

−(p+q)s

p + qF0 + q(1− F0)e−(p+q)s
(2.15)
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is the cumulative sales solution to the Bass differential equation (3.10) with F (0) = F0. The
corresponding sales rate is

f(s; F0) =
(p + qF0)(1− F0)(p + q)2e−(p+q)s

(p + qF0 + q(1− F0)e−(p+q)s)2
(2.16)

The total PV of the remaining 1− F0 fraction of customers is

(s− c)

∫ ∞

0

PV (t; F0)f(t; F0) dt (2.17)

where

PV (t; F0) = e−rt

(
p

p + qF (t; F0)
+

qF (t; F0)

p + qF (t; F0)
(1− δ)

)

follows from (2.8) where F (t) is replaced with F (t; F0) in (3.12). Similarly, the total IV of
the non-invited customers is

(s− c)

∫ ∞

0

IV (t; F0)f(t; F0) dt (2.18)

We summarize these results about PV and IV in Table 2.3.

Table 2.3: Total PV and IV with/without Introductory Discount

Without Introductory Discount Offer Discount to F0 at time 0

Invited Total PV (s− c)
(∫∞

0
PV (t; 0)f(t; 0) dt

)
F0 (s− c− d)F0

Influencers Total IV (s− c)
(∫∞

0
IV (t; 0)f(t; 0) dt

)
F0 (s− c)IV (0; F0)F0

Non-Invited
Total PV (s− c)

(∫∞
0

PV (t; 0)f(t; 0) dt
)
(1− F0) (s− c)

∫∞
0

PV (t; F0)f(t; F0) dt

Total IV (s− c)
(∫∞

0
IV (t; 0)f(t; 0) dt

)
(1− F0) (s− c)

∫∞
0

IV (t; F0)f(t; F0) dt

It is hard to see from Table 2.3 whether or not offering introductory discounts would
benefit the firm. If discounts are beneficial, we want to know the optimal number of people
to invite. So, we formulate the following optimization problem:

π∗
0 = max

0≤F0≤1
(s− c)

∫ ∞

0

e−rtf(t) dt + (s− c− d)F0 (2.19)

s.t. f(t) = (p + qF (t))(1− F (t))

F (0) = F0

The objective of this program is the total profit from all customers (the summation of (2.13),
(2.14), (2.17) and (2.18).) We maximize total profits subject to the Bass diffusion dynamics
with fraction F0 of customers serving as invited influencers5. Proposition 16 characterizes
the optimal solution.

5Dipak et al. (1995) studies a similar problem but does not include closed-form formulae to determine
F0.
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Proposition 16. We let G(t, F0) =
(p + q)2e−(p+q+r)t

(p + qF0 + q(1− F0)e−(p+q)t)2
, then

(1) The optimal F ∗
0 is unique.

(2) F ∗
0 > 0 if and only if

∫∞
0

G(t, 0) dt >
d

(s− c)r
. Otherwise, F ∗

0 = 0.

(3) If F ∗
0 > 0, then F ∗

0 satisfies
∫∞

0
G(t, F0) dt =

d

(s− c)r
.

We conduct a numerical experiment to see what happens to the total PV and IV of
invited influencers and non-invited customers when the optimal number of people are invited.
Applying Table 2.3, the numerical results are presented in Table 2.4.

Table 2.4: Total PV and IV with/without Introductory Discount
(p=0.01, q = 0.33, r = 0.08, s=100, c=60, d=60)

Without Introductory Discount Offer Discount to F ∗
0

Invited Total PV 0.8164 -1.2000
Influencers Total IV 0.2819 1.3211

Non-Invited
Total PV 12.7899 15.5090

Total IV 4.4162 4.5056
Total Total LV 18.30 20.14

Table 2.4 reveals several insights. First, an invited influencer has a negative PV. Second,
simple algebra will show that the LV of each invited influencer is always positive. Thus, the
firm is trading off PV with IV. Note that each invited influencer always has a positive LV.
Third, both the PV and IV of the non-invited group increase, because invited influencers
accelerate product adoption within the non-invited group. Finally, the firm increases its
overall customer LV through this practice. We summarize the losses and gains in the following
2-by-2 matrix: By offering introductory discounts to invited influencers, the firm loses some

of their PV but increases their IV as well as the PV and IV from the non-invited population.
In fact, the optimal F ∗

0 always maximizes the net gain. This result fills an important gap in
the customer value analysis literature where typically only a customer’s PV is used to judge
whether or not to acquire a customer. Our model suggests that the acquisition of a customer
should consider how this person is connected within the firm’s customer social network.
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Let’s illustrate the impact of purchase acceleration on the value of a customer who adopts
at the mean time of adoption. Use T̂ to denote the time when the product is adopted. We
have

ET̂ =

∫ ∞

t=0

tf(t; F0)dt (2.20)

=
1

q
ln

p + q

p + qF0

(2.21)

where (2.21) follows from (2.20) by applying (3.13). Using the same parameter set as before
(p = 0.01, q = 0.33, r = 0.08, s = 100, c = 60, d = 60), we compare the PV, IV and LV at the
mean time of adoption with and without purchase acceleration. Our result shows a boost in
the LV of the customer who adopts at the mean adoption time if the firm adopts purchase
acceleration.

Table 2.5: Comparisons of Customer Value at Mean Time of Purchase
(p=0.01, q = 0.33, r = 0.08, s=100, c=60, d=60)

Original Purchase Acceleration Increase%
F0 0 6.1% –

Profit 14.64 18.90 29.1%

ET̂ 10.69 7.38 –

PV (ET̂ ) 12.19 15.88 30.3%

IV (ET̂ ) 1.91 2.21 15.8%

LV (ET̂ ) 14.10 18.09 28.3%

Finally, Proposition 17 explores sensitivity of the optimal number of invited influencers
to changes in diffusion parameters (innovation and imitation), the level of introductory
discounts offered, the profit margins and the time discount rate.

Proposition 17. (1) F ∗
0 decreases with p;

(2) If
∫∞

0
U(t, F ∗

0 ) dt > 0 (U(t, F ∗
0 ) is defined in closed-form), F ∗

0 increases with q; Otherwise,
F ∗

0 decreases with q;
(3) F ∗

0 decreases with d.
(4) F ∗

0 increases with the profit margin (s− c).
(5)F ∗

0 increases with r.

Part (1) of Proposition 17 suggests that the firm should always invite fewer influencers if
the coefficient of innovation is high. In such cases, there are enough innovators to stimulate
demand and any attempt to acquire more initial adopters may prove unprofitable. Part (2)
gives conditions for which F ∗

0 is increasing (decreasing) in q. Our simulation results show
that we have

∫∞
0

U(t, F ∗
0 ) dt > 0 for almost all products that follow Bass diffusion dynamics.

Thus, the firm should invite more initial influencers when the coefficient of imitation (q)
increases. Part (3) states that fewer people should be invited if the discount is more costly.
Part (4) implies that, for a given introductory discount value, the firm should invite more
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influencers for a product with a higher profit margin. Finally, part (5) states that if the time
discount rate is high, speeding up adoption becomes essential, and the firm should invite
more influencers.

2.4 Purchase Deceleration

In this section, we examine the influence of purchase deceleration on LV. Due to op-
erational constraints, customers may not be able to have their order fulfilled immediately.
Consequently, they will not generate social contagion until they receive their product. This
decrease in social contagion can lead to a significant drop in customer LV. In this section,
we specifically examine two of such operational sources: product out-of-stock and lead time.

2.4.1 Product Out-of-Stock

Suppose an out-of-stock phenomenon occurs at time T and lasts for a duration L.
Consequently, orders from potential adopters who purchase between [T, T + L) have to wait
until T + L in order to be fulfilled. We assume all orders are backlogged.6 After T + L, the
demand will again follow the Bass diffusion dynamics.

The diffusion process goes through three distinct phases when an out-of-stock phe-
nomenon occurs: 1) a pre-out-of-stock phase, 2) an out-of-stock phase, and 3) a post-out-
of-stock phase. Below we provide a detailed analysis of each phase. Our main goal is to
characterize the demand and sales trajectories at the three distinct phases. We use D(t) and
S(t) to denote the cumulative demand and sales at t respectively, and the demand and sales
rate at t are denoted by d(t) and s(t) respectively. The market size is normalized to 1.

During the pre-out-of-stock phase (t < T ), demand follows an unconstrained Bass dif-
fusion pattern. The diffusion dynamics are described by

D(t) = S(t) =
p(1− e−(p+q)t)

p + qe−(p+q)t
(t < T ) (2.22)

d(t) = s(t) =
p(p + q)2e−(p+q)t

(p + qe−(p+q)t)2
(t < T ) (2.23)

Demand and sales are identical during this phase. This phase lasts until T when the
out-of-stock period lasts for a duration L. During the out-of-stock phase (T ≤ t < T + L),
those who place orders will not generate social contagion. Indeed, social contagion only
comes from adopters who purchased the product before T . Thus, when T ≤ t < T + L, the
diffusion dynamics are

6This is a standard assumption in the operations management literature. In practice, some customers
may refuse to wait and abandon the adoption of the new product. Future research can look into generalizing
the proposed model to incorporate this kind of customer loss explicitly.
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dD(t)

dt
= d(t) = (p + qD1)(1−D(t)) (2.24)

s(t) = 0 (2.25)

where

D1 =
p(1− e−(p+q)T )

p + qe−(p+q)T

is the cumulative number of adopters at time T . The solution to (2.24) subject to the initial
condition D(T ) = D1 is given by

D(t) = 1− (1−D1)e
−(p+qD1)(t−T ) (T ≤ t < T + L) (2.26)

d(t) = (p + qD1)(1−D1)e
−(p+qD1)(t−T ) (T ≤ t < T + L) (2.27)

The out-of-stock phase ends and all backorders are fulfilled at t = T + L. During the
post-out-of-stock phase (t ≥ T +L), the diffusion continues to follow Bass diffusion dynamics
as follow:

dD(t)

dt
= d(t) = (p + qD(t))(1−D(t)) (2.28)

S(t) = D(t)

The solution to (2.28) subject to the initial condition

D2 = 1− (1−D1)e
−(p+qD1)L (2.29)

is given by

D(t) = S(t) =
p + qD2 − p(1−D2)e

−(p+q)(t−T−L)

p + qD2 + q(1−D2)e−(p+q)(t−T−L)
(t ≥ T + L) (2.30)

d(t) =
(p + q)2(p + qD2)(1−D2)e

−(p+q)(t−T−L)

(p + qD2 + q(1−D2)e−(p+q)(t−T−L))2
(t ≥ T + L) (2.31)

Note that s(t) is identical to d(t) at all times except T + L, when all backorders turn into
sales. The sales dynamics can be described as

s(T + L) = d(T + L) + D2 −D1

s(t) =
(p + q)2(p + qD2)(1−D2)e

−(p+q)(t−T−L)

(p + qD2 + q(1−D2)e−(p+q)(t−T−L))2
(t > T + L) (2.32)

Formally, we characterize the demand process as follows:
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Proposition 18. Denote by τB =
1

p + q
ln

q

p
the time of the maximum demand rate for Bass

diffusion. Also, define τ1 = T + L +
1

p + q
ln

q(1−D2)

p + qD2
, d1 =

(p + q)2

4q
, and

τ2 = {t : (p + qd(t))L = ln
2q(1− d(t))

p + q
} (2.33)

where d(t) is from (2.23).
The maximum demand rate occurs at

τD
max =

⎧⎨
⎩

τ1, T < τ2;
τB, T > τB;
argmax{t | d(t), t = T, T + L}, o.w.

and is equal to

d(τD
max) =

{
d1, T < τ2 or T > τB;
max{d(t), t = T, T + L}, o.w.

It is interesting to see that if the out-of-stock phenomenon occurs after the original peak
time (i.e., τB ) or the supply chain is recovered early in the product life cycle (before τ1), the
instantaneous peak demand rate always equals d1. Note that the speed of diffusion during
the post-out-of-stock phase is the same as the original unconstrained Bass diffusion. As a
result, backorders do not influence the peak demand rate since the latter is determined only
by the diffusion speed and is independent of the number of initial adopters. Note that the
out-of-stock phenomenon drives the peak demand to a lower level only if it occurs close to
the original peak time.

It can be shown that τ1 < τB. Intuitively, a slowed-down social contagion takes a longer
time for the demand to reach its peak even though the number of instantaneous adoptions
at peak time stays the same. A larger number of initial adopters will make it faster to reach
the peak, while a smaller number will make it slower.

Now we investigate the PV, IV and LV of customers at different adoption times. During
the pre-out-of-stock phase, PV is identical to that in the Bass diffusion described in (2.9):

PV (t) = e−rt

(
p

p + qD(t)
+

qD(t)

p + qD(t)
(1− δ)

)

For a customer adopts at t (t < T ), the calculation of her IV is very complicated. To
illustrate, we consider three distinct cases according to the adoption time of her influncees.
We use IV1(t) to denote her IV during the pre-out-of-stock phase, IV2 to denote her IV
during the out-of-stock phase and IV3 to denote her IV during the post-out-of-stock phase.
Thus, her IV can be expressed as

IV (t) = IV1(t) + IV2(t) + IV3(t)
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In the following, we will analyze IV1(t), IV2(t) and IV3(t) respectively.

IV1(t) is identical to that defined in the Bass diffusion model described in (2.10).

IV1(t) = δ

∫ T

t

e−rsqd(s)

p + qD(s)
ds

Now consider her IV2(t) during the out-of-stock phase.

IV2(t) = δ

∫ T+L

T

e−r(T+L)qd(s)

p + qD1

ds

Finally, IV3(t) is analogous to that defined in the Bass diffusion model:

IV3(t) = δ

∫ ∞

T+L

e−rsqd(s)

p + qD(s)
ds

During the out-of-stock phase, all orders during this phase are backlogged until T + L.
So a customer’s PV is the present value of her profit discounted by e−(T+L) since her purchase
won’t be realized until T + L. Similarly, she will start to generate social contagion only if
she has received the product. So we have

PV (t) = e−r(T+L)

(
p

p + qD1
+

qD1

p + qD1
(1− δ)

)

IV (t) = δ

∫ ∞

T+L

e−rsqd(s)

p + qD(s)
ds

For customers in the post-out-of-stock phase, the PV and IV are identical to those
defined in the Bass demand dynamics.

PV (t) = e−rt

(
p

p + qD(t)
+

qD(t)

p + qD(t)
(1− δ)

)

IV (t) = δ

∫ ∞

t

e−rsqd(s)

p + qD(s)
ds

And at any time,

LV (t) = PV (t) + IV (t)

In the following proposition, we state the difference of total customer LV with and
without the out-of-stock phenomenon. To differentiate the diffusion dynamics in the two
situations, we use dbass(t) to denote the Bass diffusion dynamics (without out-of-stock phe-
nomenon).

Proposition 19.
∫∞

t=0
LV (t)d(t) dt =

∫∞
t=0

e−rts(t) dt ≤ ∫∞
t=0

e−rtdbass(t) dt.
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Figure 2.9: PV, IV under Product Out-of-Stock
(p = 0.0163221, q = 0.325044, r = 0.05, δ = 0.3, T = 5, L = 3)

Proposition 19 states that the total LV of the firm’s customer base is the same in our
framework as it is in traditional customer LV models where the value of a customer comes
only from her own purchase. It also states that the total customer LV is lower in the presence
of the out-of-stock phenomenon.

Figure 2.9 presents the changes on PV and IV when there is an out-of-stock phenomenon.
We label the PV and IV of the Bass model discussed in Section 2.2.2 as PVBass(t) and
IVBass(t), and use them as a benchmark to compare with the PV and IV obtained in this
section, labeled as PV (t) and IV (t) respectively. Figure 2.9 shows that the IV of early
adopters of the pre-out-of-stock phase drops dramatically. This is a striking result. Under
social contagion, the LV of an early adopter greatly decreases if an out-of-stock phenomenon
occurs.

Proposition 20. For any fixed L, an out-of-stock phenomenon that happens earlier in the
product life cycle always leads to a greater loss in total customer LV.

Proposition 20 states that an unconstrained supply flow is crucial in the early stages of a
product’s life cycle. Put differently, if we divide the life cycle into four stages: Introduction,
Growth, Maturity and Decline (Golder and Tellis 2004), an out-of-stock phenomena that
occurs during the first 2 stages is the most detrimental to customer LV. Figure 2.10 shows
the effect of purchase deceleration that occurs at different times across a product’s life cycle.
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2.4.2 Lead Time

Firms have been increasingly improving their responsiveness to customers. We have
seen many firms taking efforts to cut down production lead time in a make-to-order supply
chain environment to reduce customer waiting time (So and Song 1998, Ho and Zheng 2004).
In this section, we examine the influence of lead time on customer LV incorporating social
contagion effects.

Assume the lead time exists all time, for all orders. We model the demand diffusion
process with lead time using the delayed differential equation as follows. L̄ is denoted as the
lead time. We use D(t) and S(t) to denote the cumulative demand and sales at t respectively,
and use d(t) and s(t) to denote the demand and sales rate at t respectively. The market size
is normalized to 1. We have

d(t) = (p + qS(t))(1−D(t)) (2.34)

S(t) =

{
0 if t < L̄;
D(t− L̄) if t ≥ L̄.

(2.35)

s(t) =

{
0 if t < L̄;
d(t− L̄) if t ≥ L̄.

At time t, only those orders placed prior to t− L̄ have been received. Thus only customers
who have received the product, written as S(t), can influence those who have not yet adopted.
While in the Bass diffusion process, all customers who have placed the orders, regardless of
whether the produce is received or not, can influence potential customers. Note that (2.34)
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can be solved in a stepwise fashion. We first solve the initial value problem in the interval
of [0, L̄] by applying (2.35), then continue for the successive intervals by using the solution
to the previous interval.
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Figure 2.11: Rate of Demand and Sales with Lead Time
(p = 0.0163221, q = 0.325044, r = 0.12, δ = 0.3, L̄ = 1)

Figure 2.11 shows the rate of demand and sales in the presence of lead time. We
compare those with the demand rate in the Bass model, labeled as dBass(t). We observe
that the shape of s(t) is identical to that of d(t), and s(t) can be obtained if we horizontally
shift d(t) by L̄ to the right. Another interesting observation is that d(t) has a lower peak
than dBass(t). In the presence of lead time, customers that are waiting for the arrival of their
orders do not generate social contagion, thus the social contagion delays. Even worse, the
delay is successively passed (cascades) among customers. This leads to two outcomes. First,
demand is slowed. Second, the peak is reduced. This is because the delayed information
lessens the diffusion speed, and makes the diffusion process more spread out. Alternatively,

we can see this as a smaller q. Since the peak demand rate is
(p + q)2

4q
increases with q. A

smaller q will lead to a smaller peak.

With the solutions of cumulative and instantaneous demand D(t) and d(t), we now
modify the LV formula in Section 2.2.2 considering lead time. For a customer who orders at
t, her PV is given by

PV (t) = e−rt

(
p

p + qS(t)
+ δ

qS(t)

p + qS(t)

)

= e−rtp + qδS(t)

p + qS(t)
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No Lead Time 10-Day Lead Time Decrease% 1-Month Lead Time Decrease%

ET̂ 9.3294 9.3624 – 9.4836 –
Total PV 0.2884 0.2873 0.38% 0.2843 1.42%
Total IV 0.1371 0.1355 1.17% 0.1346 1.82%
Total LV 0.4255 0.4228 0.63% 0.4189 1.55%

Table 2.6: Comparisons of Customer Value with Different Lead Time
(p = 0.016322, q = 0.325044, r = 12%)

Her IV is given by

IV (t) = δ

∫ ∞

t+L

e−rsqd(s)

p + qS(s)
ds

= δq

∫ ∞

t+L̄

e−rs(1−D(s)) ds

And her LV is the summation of her PV and IV:

LV (t) = PV (t) + IV (t)

To illustrate how lead time will affect customer LV for individuals at different adoption times,
we use the mean value of the coefficients of innovation and imitation across 11 consumer
durable products estimated in Bass (1969) (pavg = 0.0163221, qavg = 0.325044) and a 12%
annual discount rate. Table 2.6 presents the comparison results of PV, IV and LV with
different lead times.

We observe that even for a shipping time as short as 10 days, it will cost the firm more
than 1% loss in its total customer influential value. A longer lead time will hurt the firm to
a greater extent. As illustrated, a 1-month lead time implies that the firm has to give away
more than 1.5% of its annal profit. Noting the essential effect of lead time on customer LV,
we can conclude that even a small lead time will make a big difference.

To see how the impact of lead time varies with respect to different diffusion parameters,
we classify the coefficients of innovation and imitation of 11 products estimated in Bass (1969)
into 4 groups. To do so, we first classify the p values below pavg into the pL group, and then
calculate the mean value of p within that group (pavg

L ), which is being used to represent the
p value in that pL group. In this way, we can calculate pL = 0.007019, pH = 0.021638,
qL = 0.24668 and qH = 0.41908. Thus we identify the 2-by-2 classification as
(pL, qL) = (0.007019, 0.24668); (pL, qH) = (0.007019, 0.41908);
(pH , qL) = (0.021638, 0.24668); (pH , qH) = (0.021638, 0.41908).

Table 2.7 reports the comparison results of various kinds of customer value between no
lead time versus 1-month lead time using different sets of diffusion parameters. As expected,
when p is small and q is large, we observe a greater loss in all customer purchase, influential
and lifetime value due to a lengthy shipping time. This is because in that case, social
contagion is the main driving force for the product to take-off, and a lengthy time will
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(pL, qL) No Lead Time 1-Month Lead Time Decrease%
Total PV 0.1746 0.1715 1.78%
Total IV 0.1022 0.1008 1.37%
Total LV 0.2768 0.2722 1.66%

(pL, qH) No Lead Time 1-Month Lead Time Decrease%
Total PV 0.2524 0.2465 2.34%
Total IV 0.1371 0.1335 2.63%
Total LV 0.3895 0.38 2.44%

(pH , qL) No Lead Time 1-Month Lead Time Decrease%
Total PV 0.2861 0.2833 0.98%
Total IV 0.1241 0.1224 1.37%
Total LV 0.4102 0.4056 1.12%

(pH , qH) No Lead Time 1-Month Lead Time Decrease%
Total PV 0.3515 0.3465 1.42%
Total IV 0.156 0.1527 2.12%
Total LV 0.5074 0.4992 1.62%

Table 2.7: Comparisons of Customer Value with 1-Month Lead Time under Different Diffu-
sion Dynamics

significantly slow future purchases and thereby decrease the firm’s customer assets. On the
contrary, when p is large and q is small, lead time has the least impact on customer LV. This
is because customers are more subject to external influence when adopting an innovation,
and thus the adoption decision is not greatly affected by social contagion, even though it is
still decelerated.

In this section, we have shown that a lengthy lead time decelerates social contagion,
slows future purchases, and decreases total customer LV. Thus, our results suggest a new
reason for firms to reduce lead time in order to accelerate social contagion and demand.

2.5 Conclusion

In this paper, we incorporate social contagion into customer value analysis. By doing so,
we bridge the quantitative customer value analysis research with the social network research.
This link is crucial because social contagion is a significant driver of customer LV, especially
in the Web 2.0 world.

We build on the seminal work of Bass (1969) and derive closed-form expressions for the
customer PV, IV and LV as a function of product adoption time. These formulae reveal that
an early adopter is worth more than the cash flow she generates, while a late adopter is worth
less than the profit she yields. We investigate how PV, IV and LV vary with the innovation
and imitation parameters and illustrate the three value functions with two specific products.
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In addition, we derive an expression for the mean time until first influence and show that
it always takes longer for late adopters to pass on the first influence than it does for early
adopters.

To show how a firm can increase its customer LV, we analyze the impact of purchase
acceleration on LV. We determine the optimal number of customers to whom introductory
discounts should be offered and show that the purchase acceleration can significantly improve
total customer LV. We also investigate the sensitivity of the optimal size with respect to the
innovation and imitation parameters, the level of introductory discount, the product profit
margin, and the time discount rate. On the flip side, we also analyze the influence of
purchase deceleration on LV. We show that an out-of-stock phenomenon that occurs earlier
in the product life cycle always leads to a greater loss in total customer LV.

In the next chapter, we extend the model to include customer heterogeneity because
potential adopters are not always equally affected by adopters (see Van den Bulte and Joshi,
2007).
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Chapter 3

Incorporating Social Contagion into
Customer Value Analysis: A
Heterogeneous Population

3.1 Introduction

Interpersonal influence on purchase is critically important in consumer decision making
and choices. More than 40% Americans actively seek the advices from families and friends
when shop for doctors, lawyers or auto mechanics (Goldenberg et al. 2001). As a conse-
quence, the value of a customer is more than the direct monetary value of her purchase, her
influence on future customers through word of mouth of imitation is nonneglectable (Grem-
ler and Brown, 1998). Recently, as the evolution of internet allows customers to overcome
geographic boundaries and to communicate based on mutual interests, word-of-mouth has
become a good substitute for the advertising for a product (Mayzlin, 2006). It has been
acknowledged that if the firm attracts many “valuable” customers when introducing a new
product, it can efficiently use social networks to increase new product awareness and adop-
tion (e.g. Gladwell 2000). Therefore, there is a clear need that customer lifetime value
should be aggregated to arrive at a strategic metric that can be useful for the firm’s strategic
decision making.

There are at least two reasons why the customer lifetime value perspective has become
important today. First, as discussed before, as online chat rooms and forums become more
popular nowadays, social contagion starts to play a more important role than ever. Firms
have set up different marketing plans to take advantages of the social network expansion,
and some of them even started to establish its own social network to promote its products.
For example, in the two years since Nike launched Nike+, a technology that tracks data of
every run and connects runners around the world at a Web site, it has built millions of fans.
The company is now using this social network to promote its basketball shoes. Second, the
improvement of information technology have made it easier for firms to collect enormous



61

amount customer transaction data. This allows firms to use data on revealed consumer
preferences. Many web-operated businesses have provided reference links for consumers to
invite their friends, which makes it easier for firms to distinguish “evangelists” by collecting
transaction data.

Due to the importance of social contagion in reshaping customer adoptions, we proposed
a normative model in Chapter 2 for customer lifetime value, which consists the value of a
customer’s own purchase (purchase value) and her value from social contagion (influence
value). An important assumption in Chapter 2 is that customers are equal ex ante. But in
real life, often times potential buyers are not ex ante equally affected by previous adopters,
so it would be very interesting to look at the heterogeneity among consumers and analyze
how that heterogeneity would affect the value redistribution among different customers.
Besides, if we could take the impact of customer heterogeneity on customer lifetime value
into account, a natural question is that how should businesses launch market activities to
achieve more profit in the long run targeting different types of customers? This chapter aims
to investigate these unknown area. Our study here will enrich the customer LV literature
by highlighting the role of social contagion along the dimensions of adoption times and the
intrinsic heterogeneity among customers.

To formulate the customer behavior in the adoption of new products, we draw on the
literature of the Bass Model (Bass, 1969). On top of that, we consider the heterogeneity
among customers in the tendency to be in tune with new developments and the tendency
to influence (or be influenced by) others. In a social system, some individuals adopt an
innovation independent of the decisions of others, others are influenced in the timing of
adoption by the decisions of other individuals. Consistent with Bass (1969), we shall refer to
the first group of customers as “innovators”, and the latter is “imitators”. At the same time,
several theories and a large body of empirical research shows that some customers are more
in touch with new developments than others, and often, their adoptions and options have
a disproportionate influence on others’ adoptions (e.g. Gladwell 2000, Moore 1995, Rosen
2000, Slywotzky and Shapiro 1993, Katz and Lazarsfeld 1955, Rogers 2003, Weimann 1994).
Considering the asymmetry in the influence process, Van den Bulte and Joshi (1997) propose
a two-segment diffusion model, with discussions of five theories and frameworks that suggest
the existence of ex ante global influencers and local influencers1. So we call customers who
can reach a large amount of audience “global influencers”, and customer who get in touch
with small number of people “local influencers”. To incorporate the customer heterogeneity
along the two dimensions discussed above, we propose the four-segment diffusion model: type
1 customers are both innovators and global influencers, type 2 customers are both innovators
and local influencers, type 3 customers are both imitators and global influencers, and type
4 customers are both imitators and local influencers. With the four types of customers, we
believe that we can capture a good representation of reality.

The remainder of this chapter is organized as follows. In Section 3.2, we first set up our

1To avoid confusion with the definition of “imitators” in Bass (1969), we label the two customer segments
discussed in Van den Bulte and Joshi (2007) as “global influencers” and “local influencers” instead of “
influentials” and “imitators”.
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four-segment diffusion model and characterize the diffusion path. We then show our model
is a generalization of the classic Bass diffusion model and the two-segment model described
in Van den Bulte and Joshi (2007). In Section 3.3, we characterize the customer lifetime
value in the four-segment model through a focus of each customer’s direct financial effect,
as well as her influence value under social contagion. Section 3.4 shows how a firm can
increase its total customer LV by purchase acceleration, in which we propose an algorithm
to optimally allocate free samples among customers, which looks into the LV of marginal
customers. Finally, we offer concluding remarks in Section 3.5. All proofs are presented in
Appendix A.

3.2 Model Setup

We begin by looking at the heterogeneity among customers discussed in Bass (1969)
and Van den Bulte and Joshi (2007). Bass (1969) considers customer heterogeneity in the
tendency to be in tune with new products, adoptions either from self-motivated innovators,
or from imitators as a result of social contagion, but the influence on imitators are assumed as
homogeneous. On the other hand, Van den Bulte and Joshi (2007) study the heterogeneity in
the influence process, distinguishing global influencers, whose influential powers are stronger,
from local influencers, but innovators are not differentiated from imitators in their model.
Figure 3.1 illustrates the customer segmentations addressed in the above two papers. To

Innovators
(G&L) 

Imitators 
(G&L) 

Global
Influencers 

(I&M) 

Local 
Influencers 

(I&M) 

(a) Bass(1969) (b) Van den Bulte and Joshi (2007)

Figure 3.1: Customer Segmentation in Bass (1969) and Van den Bulte and Joshi (2007)

incorporate customer heterogeneity along the two dimensions discussed above, we consider a
customer segmentation illustrated in Figure 3.2 and propose a four-segment diffusion model
as follows.

The set of potential customers has a constant size N and consists of four a prior different
types of consumers, and we use subscripts 1,..,4 to denote each type of customers according
to the following table.

Global Influencers Local Influencers
Innovators customer type 1 customer type 3
Imitators customer type 2 customer type 4
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Figure 3.2: Customer Segmentation along two dimensions in Four-segment Diffusion Model

We use θi to denote the proportion of type i customers in the population of eventual
adopters (θi ≤ 1 and

∑4
i=1 θi = 1). Fi(t) stands for the cumulative adoption and fi(t) the

instantaneous adoption of type i customers. Following the Bass diffusion model (Bass 1969),
Type i customers’ demand density function is expressed as follows:

Type 1: f1(t) = p1(θ1 − F1(t)) (3.1)

Type 2: f2(t) = q1(F1(t) + F2(t))(θ2 − F2(t)) (3.2)

Type 3: f3(t) = p2(θ3 − F3(t)) (3.3)

Type 4: f4(t) = q2(w(F1(t) + F2(t)) + (1− w)(F3(t) + F4(t)))(θ4 − F4(t)) (3.4)

Type 1 customers are both innovators and global influencers. They are self-motivated
and the instantaneous growth rate of adopting a new product is described as a deterministic
function of the innovation coefficient p1, capturing a type 1 individual’s intrinsic tendency
to purchase, without being influenced by other customers. θ1 − F1(t) describes the market
potential of type 1 consumers at time t.

Type 2 customers are both imitators and global influencers. They will make the purchase
decisions after being influenced by word of mouth of either type 1 or type 2, written as
F1(t) + F2(t). The imitation coefficient, q1, captures a positive force of influence on a type
2 individual by previous adopters. As before, θ2 − F2(t) describes the market potential of
type 2 consumers at time t.

Type 3 customers are both innovators and local influencers. Their adoption behavior is
similar to that of type 1 consumers, except that we use p2 to denote a type 3 individual’s
intrinsic tendency to purchase and θ3 − F3(t) is the market potential of type 3 customers.

Type 4 customers are both imitators and local influencers. We use q2 to denote the
imitation coefficient of type 4, θ4 − F4(t) the market potential of type 4 customers. The
word of mouth power influencing an individual of type 4 is described as w(F1(t) + F2(t)) +
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(1−w)(F3(t)+F4(t)). Here, w denotes the relative importance that type 4 imitators attach
to global influences’ versus local influencer’s behavior (0 ≤ w ≤ 1) (Van den Bulte and Joshi
(2007)).

We seek closed-form solution in the time domain for an innovation’s diffusion path
when the set of ultimate adopters consists of four types of consumers adopting according to
Equations (3.1) to (3.4), as shown in Appendix A,

F1(t) = θ1(1− e−p1t) (3.5)

F2(t) = θ2 + exp

(
−q1θ1t− q1θ2t− q1

p1
e−p1tθ1

)
(3.6)

(
q1

p1

(
q1

p1

θ1)
− q1θ1+q1θ2

p1 (Γ

(
q1θ1 + q1θ2

p1

,
q1

p1

θ1e
−p1t

)

−Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
θ1

)
)− exp(− q1

p1
θ1)

θ2
)−1

F3(t) = θ3(1− e−p2t) (3.7)

F4(t) = θ4 +
R(t)

q2(1− w)
∫ t

0
R(s) ds− 1

θ4

(3.8)

where in (3.6) Γ(η, k) refers to the “upper” incomplete gamma function, that is, Γ(η, k) =∫∞
k

vη−1e−v dv, and in (3.8) R(t) = exp(
∫ t

0
−q2(wF1(s)+wF2(s)+(1−w)F3(s)+(1−w)θ4) ds)

where F1(s), F2(s), F3(s) can be obtained from Equations (3.5) to (3.7).

The expressions of (3.5) to (3.8) are plotted in Figure 3.3(a). We are interested in how
our four-segment diffusion model is related to Bass (1969) and Van den Bulte and Joshi
(2007) mathematically, and we present the comparison results as follows.

Comparison with Bass (1969)
Consider the four-segment diffusion model with θ3 = θ4 = 0, in that case, only type 1 and
type 2 customers exist in the market. Recall from (3.1) and (3.2) that the instantaneous
adoption functions of type 1, 2 customers are :
Type 1: f1(t) = p1(θ1 − F1(t))
Type 2: f2(t) = q1(F1(t) + F2(t))(θ2 − F2(t)), (θ1 + θ2 = 1)
Thus, the instantaneous adoption of the entire market is:

f1(t) + f2(t) = p1(θ1 − F1(t)) + q1(F1(t) + F2(t))(θ2 − F2(t)) (3.9)

The instantaneous adoption in the Bass model (the mixed influence model) is:

f(t)/[1− F (t)] = p + qF (t) (3.10)

The solution to (3.10) is

F (t) =
1− e−(p+q)t

1 + q/pe−(p+q)t
(3.11)
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To see how the Bass model relates to ours, we rewrite equation (3.10) into

f(t) = p(1− F (t)) + qF (t)(1− F (t)) (3.12)

Substituting F (t) = F1(t) + F2(t) into (3.12), we have

f(t) = p(1− F1(t)− F2(t)) + q(F1(t) + F2(t))(1− F1(t)− F2(t)) (3.13)

Comparing (3.13) with (3.9), we find that

p(t) =
(θ1 − F1(t))p1

1− F1(t)− F2(t)
=

p1

1 +
θ2 − F2(t)

θ1 − F1(t)

(3.14)

q(t) =
(θ2 − F2(t))q1

1− F1(t)− F2(t)
=

q1

1 +
θ1 − F1(t)

θ2 − F2(t)

(3.15)
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Equations (3.14) and (3.15) show that our 2-type mixture model generalizes the mixed-
influenced model by relaxing the constant restriction of the innovative and imitative coeffi-
cients and allowing them to be time dependent (Karmeshu and Goswami, 2001), so we shall
use p(t) and q(t) to characterize their time dependent nature. Figure 3.4 shows how the
innovative and imitative coefficients vary with respect to t. We note that the shape of p(t)
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Figure 3.4: Curves of F1(t), F2(t), p(t) and q(t)
(p = 0.1, q = 0.4, θ1 = θ2 = 0.5, τ = 25)

and q(t) curves are parameter dependent. So the trend of the curve changes dramatically
with different parameter sets. For example, we will get the curves with reversed trend at
p = 0.1, q = 0.2, θ1 = 0.2, θ2 = 0.8, τ = 25 comparing with the ones illustrated in Figure 3.4.

Comparison with Van den Bulte and Joshi (2007)
Van den Bulte and Joshi (2007) consider a 2-type mixture process with the 2 customer
segments: global influencers and local influencers. We show how the four-segment diffusion
model is related to theirs by comparing the model structure in Figure 3.1(b) and Figure 3.2.
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It is clear that without distinguishing type 1 from type 2 customers, type 3 from type
4 customers, our model is reduced to Van den Bulte and Joshi (2007). To see this, we
let θ = θ1 + θ2, then 1 − θ = θ3 + θ4. We also define F̂1(t) = F1(t) + F2(t), as well as
F̂2(t) = F3(t) + F4(t). Then our model becomes

Type 1 & 2 : f̂1(t) = (p1 + q1F̂1(t))(θ − F̂1(t))

Type 3 & 4 : f̂2(t) = (p2 + q2(wF̂1(t) + (1− w)F̂2(t)))(1− θ − F̂2(t))

It follows that,

f̂(t) = f̂1(t) + f̂2(t)

= (p1 + q1F̂1(t))(θ − F̂1(t)) + (p2 + q2(wF̂1(t) + (1− w)F̂2(t)))(1− θ − F̂2(t)) (3.16)

In the same time, the mixed adoption density in Van den Bulte and Joshi (2007) is written
as,

fm(t) = θf1(t) + (1− θ)f2(t)

= θ(p1 + q1F1(t))(1− F1(t)) + (1− θ)(p2 + q2(wF1(t) + (1− w)F2(t)))(1− F2(t))(3.17)

Comparing (3.16) with (3.17), it is not hard to see that F̂1(t) = θF1(t) and F̂2(t) = (1 −
θ)F2(t). By expressing the fraction of customers not having adopted yet as θ − F̂1(t) and
(1− θ)− F̂2(t), instead of 1− F1(t) and 1− F2(t), our model resolves the misinterpretation
in Van den Bulte and Joshi (2007), in which the sizes of each segment are ignored.

3.3 Customer Lifetime Value

In this section, we examine customer PV, IV and LV in the four-segment framework.
Consider an individual of type 1, say Jimmy, adopting at t without having been influenced by
anyone else, his purchase value is the present value of the profit (assuming the profit margin
is 1) he generates discounted with rate r, so his PV equals to e−rt. To calculate his IV, we
first notice that he will influence customers of type 2 and type 4 whose purchases happen
during [t, τ ]. For each customer he brings in, he earns δ fraction of the present value of that
purchase. Suppose a type 2 customer, Susan, purchases at time s, t < s ≤ τ . The probability

that she was influenced by Jimmy is
1/N

F1(s) + F2(s)
(N is the total potential customers), as

every type 1 or type 2 customer who bought before s is equally likely to influence her.
Furthermore, there are f2(s)N independent type 2 buyers at s, so the number of Jimmy’s

influencees follows a Binomial distribution with parameters f2(s)N and
1/N

F1(s) + F2(s)
. So

the average number of Jimmy’s type 2 influencees is
∫ τ

t

1

F1(s) + F2(s)
f2(s) ds. Similarly,∫ τ

t

w

w(F1(s) + F2(s)) + (1− w)(F3(s) + F4(s))
f4(s) ds gives us Jimmy’s type 4 influencees at
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time s. Substituting fi(t), i = 1, ..., 4 from (3.1) to (3.4), we have that,

IV1(t) = IV2(t) = q1δ

∫ τ

t

e−rs(θ2 − F2(s)) ds + q2δw

∫ τ

t

e−rs(θ4 − F4(s)) ds(3.18)

IV3(t) = IV4(t) = q2δ(1− w)

∫ τ

t

e−rs(θ4 − F4(s))ds (3.19)

PV1(t) = PV3(t) = e−rt (3.20)

PV2(t) = PV4(t) = (1− δ)e−rt (3.21)

The LV of each customer is the sum of her IV and PV, so LVi(t) = PVi(t) + IVi(t), i =
1, ..., 4, ∀t.

LV1(t) = IV1(t) + PV1(t)

= q1δ

∫ τ

t

e−rs(θ2 − F2(s)) ds + q2δw

∫ τ

t

e−rs(θ4 − F4(s)) ds + e−rt (3.22)

LV2(t) = IV2(t) + PV2(t)

= q1δ

∫ τ

t

e−rs(θ2 − F2(s)) ds + q2δw

∫ τ

t

e−rs(θ4 − F4(s)) ds + (1− δ)e−rt(3.23)

LV3(t) = IV3(t) + PV3(t)

= q2δ(1− w)

∫ τ

t

e−rs(θ4 − F4(s))ds + e−rt (3.24)

LV4(t) = IV4(t) + PV4(t)

= q2δ(1− w)

∫ τ

t

e−rs(θ4 − F4(s))ds + (1− δ)e−rt (3.25)

Figure 3.5 depicts the customer IV and LV curves. We observe that all values of all types
decrease in a convex manner with adoption times.

Proposition 21.
∑4

i=1

∫ τ

t=0
LVi(t)fi(t) dt =

∑4
i=1

∫ τ

t=0
e−rtfi(t) dt.

Proposition 21 states that the total LV of the firm’s customer base is identical with and
without social contagion. This result echoes to the one we obtained in Chapter 2. So our
methodology can be seen as a new accounting matrix, enabling the firm to directly capture
the value of interpersonal influence among customers into customer lifetime value matrix.

Proposition 22. LVi(t) i = 1, ..., 4 decreases with p1; LV3(t) (IV4(t)) decreases with p2.

All other things being equal, Proposition 22 tells us that at any given time, stronger
external influence of the global influencers decreases the LV of all type customers making
purchases. With stronger external influence, customers are more likely to be innovators who
earn all credits from their own purchases. Similarly, stronger external influence of the local
influencers decreases the LV of type 3 and type 4 customers making purchases.

Proposition 23. PVi(t), IVi(t) and LVi(t) i = 1, ..., 4 are all decreasing convex in t.
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When a customer delays a purchase, her PV reduces due to a heavier discount, and her
IV decreases because the pool of potential adopters shrinks. Hence, a customer’s value goes
down rapidly as she waits to buy. Proposition 23 states that the rate of decrease is smaller
as adoption diffuses.

Proposition 24. We have
1) LV1(t) > LV2(t), LV3(t) > LV4(t), ∀ t ∈ [0, τ ].
2) If w ≥ 1/2, LV1(t) ≥ LV3(t), LV2(t) ≥ LV4(t), ∀ t ∈ [0, τ ].
3) a. If w ≥ 1/2, there exists a cutoff time t̂, s.t., ∀t > t̂, LV3(t) > LV2(t).
b. t̂ decreases with p1 and p2.

Proposition 24 states the relations among the LV of customer of different types. Part
(1) tells us that at any purchase times, a type 1 customer is always more valuable than her
type 2 peers, regardless of the behavior of product diffusion processes. At the same time, a
type 3 customer is always worth more than her type 4 peers. Part (2) compares the LV of
a type 1(2) customer with the LV of a type 3(4) customer who purchases at the same time.
Provided that global influencers have more influential power on type 4 customers than local
influencers, type 1(2) customers have greater LV than type 3(4) customers. Finally, part (3)
tells us that if global influencers have more influential power on type 4 customers than local
influencers, at any purchase times prior to a cutoff time, a type 3 customer is less valuable
than a type 2 customer. All type 3 purchases after the cutoff time are worth more than the
type 2 purchases. Moreover, the cutoff time is decreasing in both p1 and p2.

Figure 3.6 shows the ratio between a customer’s IV over her PV as a function of the
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adoption times. Customers of type 1 or type 2, who buy at the same time, have identical IV,
but type 1 customers always have a higher PV that their type 2 peers. So when looking at
the ratio of IV over PV, type 1 customers have a lower IV/PV ratio than type 2 customer.
Similar arguments can be applied to type 3 and type 4 customers. Type 3 customers always
have a lower IV/PV ratio than their type 4 peers.
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3.4 Purchase Acceleration

So far, the firm’s marketing actions has been exogenously specified. Now, suppose
the firm can take marketing actions to affect the diffusion path by sending free samples to
customers at time 0, we are interested in exploring how the firm should make the sampling
decision so as to accelerate purchase. We have studied the sample optimization problem in
the Bass model in Chapter 3, and now let’s draw attention to the four-segment model.

Specifically, we address two questions in this section: 1) What is the optimal sample
size for the firm to balance the gains and losses from such practices? 2) Given the optimal
sample size, how should the firm distribute samples among the four types of customers? To
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answer these questions, we recap the diffusion density expressions from (3.1) to (3.4).

Type 1: f1(t) = p1(θ1 − F1(t))

Type 2: f2(t) = q1(F1(t) + F2(t))(θ2 − F2(t))

Type 3: f3(t) = p2(θ3 − F3(t))

Type 4: f4(t) = q2(w(F1(t) + F2(t)) + (1− w)(F3(t) + F4(t)))(θ4 − F4(t))

We first look at the situation of sending free samples to type 1 customers. The distribution
of free samples reduces the number of paid purchases from type 1 customers, which can be
considered as a negative impact on the profit from type 1 consumers. On the other hand,
sending free samples to type 1 customers accelerates the adoption of type 1 customers, so
F1(t) is greater than in the case without samples. As a consequence, a larger F1(t) accelerates
the purchase penetration rates of type 2 and type 4 customers as stated in Equations (3.2)
and (3.4), so sending free samples to type 1 customers has a positive acceleration impact on
type 2 and type 4 customers. In Table 3.1 we mark this with a positive sign.

When free samples are offered to type 2 consumers, the effects are two-fold. On one
hand, the size of the remaining type 2 customers is reduced. On the other hand, with more
earlier adopters, the diffusion rate among type 2 consumers speeds up. The consequence of
the two contrary forces is regarded as a tradeoff between acceleration and cannibalization. So
the total impact of a free sample promotion on sales may be positive or negative, depending
on the strength of those two forces over time. At the same time, its effect on type 4 consumers
is positive, followed by the same argument as of type 1 consumers.

Similar decision rules can be applied to the cases when free samples are offered to type
3 or type 4 consumers. We collect the analysis results in Table 3.1, where “-” indicates
negative effects, “+” positive, “0” unchanged, and “?” undetermined.

Table 3.1: The Impact of Offering Samples to Type i Customers on Type j Customers

Impact on Customer Type j
Type 1 Type 2 Type 3 Type 4

Type 1 - + 0 +

Offer Samples Type 2 0 ? 0 +
to Type i

Type 3 0 0 - +
Type 4 0 0 0 ?

By obliterations from Equations (3.1) to (3.4), one immediate proposition is stated as
follows:

Proposition 25. If θ1 = θ3, p1 = p2, it’s preferable to distribute gifts to type 1 customers
than to type 3 customers. If θ2 = θ4, q1 = q2, w ≥ 1/2, it’s preferable to distribute gifts to
type 2 customers than to type 4 customers.



72

The above proposition requires restrictive conditions. To generate more rigorous results
with less restrictions, we approach this problem by looking at the LV of a marginal consumer.
Specifically, the firm would have the incentive to offer a free sample to a customer if the
marginal benefit of doing so exceeds the marginal cost. Assuming that the product has a
marginal profit s and a marginal cost c. We propose the following algorithm to optimally
allocate free samples among customers of different types in the steps outlined below:
Step 1: Denote F i

0 as the number of free samples that are distributed to type i customers at
time 0. Initialize F 1

0 = F 2
0 = F 3

0 = F 4
0 = 0.

Step 2: Let

ΔW1 = IV1(0; F 1
0 + 1, F 2

0 , F 3
0 , F 4

0 )−
∫ τ

0

LV1(t; F
1
0 , F 2

0 , F 3
0 , F 4

0 )f1(t; ·) dt (3.26)

ΔW2 = IV2(0; F 1
0 , F 2

0 + 1, F 3
0 , F 4

0 )−
∫ τ

0

LV2(t; F
1
0 , F 2

0 , F 3
0 , F 4

0 )f2(t; ·) dt (3.27)

ΔW3 = IV3(0; F 1
0 , F 2

0 , F 3
0 + 1, F 4

0 )−
∫ τ

0

LV3(t; F
1
0 , F 2

0 , F 3
0 , F 4

0 )f3(t; ·) dt (3.28)

ΔW4 = IV4(0; F 1
0 , F 2

0 , F 3
0 , F 4

0 + 1)−
∫ τ

0

LV4(t; F
1
0 , F 2

0 , F 3
0 , F 4

0 )f4(t; ·) dt (3.29)

where (· stands for the argument of F 1
0 , F 2

0 , F 3
0 , F 4

0 )

IV1(t; ·) = IV2(t; ·) = q1δ
∫ τ

t
e−rs(θ2 − F2(s; ·)) ds + q2δw

∫ τ

t
e−rs(θ4 − F4(s; ·)) ds (3.30)

IV3(t; ·) = IV4(t; ·) = q2δ(1− w)
∫ τ

t
e−rs(θ4 − F4(s; ·))ds (3.31)

and

LV1(t; ·) = IV1(t; ·) + e−rt (3.32)

LV2(t; ·) = IV2(t; ·) + (1− δ)e−rt (3.33)

LV3(t; ·) = IV3(t; ·) + e−rt (3.34)

LV4(t; ·) = IV4(t; ·) + (1− δ)e−rt (3.35)

Equations (3.30) to (3.35) are obtained from (3.22) and (3.25) by replacing Fi(t) with
Fi(t; F

1
0 , F 2

0 , F 3
0 , F 4

0 ), whose closed-form expressions are presented in Appendix A.

Step 3: If ΔWi ≤ c

s
, ∀i, stop. Otherwise, go to Step 4.

Step 4: Let ī = argmax{ΔWi, i = 1, 2, 3, 4}, F ī
0 ← F ī

0 + 1. Go to Step 2.

To see why our algorithm gives the optimal sample distribution levels of different cus-
tomer types, we demonstrate this by illustrating one iteration. Suppose currently the firm
plans to send F i

0 free samples to customers of type i (i = 1, ..4), the firm would like to send
one more sample to a type 1 customer if the benefit of doing so exceeds the cost. The benefit
to the firm is the IV afterwards from that type 1 customer who receives that sample, stated
as sIV1(0; F 1

0 + 1, F 2
0 , F 3

0 , F 4
0 ). The cost for the firm comprises two parts: the marginal cost

of the sample and the expected LV of that type 1 customer who receives that sample, written
as

s

∫ τ

0

LV1(t; F
1
0 , F 2

0 , F 3
0 , F 4

0 )f1(t, ·) dt + c
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Cluster Parameters p1 q1 p2 q2 w θ θ1 θ2 θ3 θ4

Cluster 1 (K=2) 0.181 1.907 0.009 0.195 1.463 0.252 0.05 0.20 0.15 0.60
Cluster 2 (K=2) 0.038 0.386 0.013 1.596 0.166 0.730 0.15 0.58 0.05 0.22
Cluster 1 (K=3) 0.038 0.386 0.013 1.596 0.166 0.730 0.15 0.58 0.05 0.22
Cluster 2 (K=3) 0.092 7.431 0.000 0.051 1.000 0.147 0.03 0.12 0.17 0.68
Cluster 3 (K=3) 0.198 0.802 0.011 0.224 0.355 0.273 0.05 0.22 0.15 0.58

Table 3.2: Cluster Results

This is because if that customer did not receive the sample, she might pay for product at
time t with probability f1(t). So by pushing her adoption to time 0, the firm loses both
her PV and IV resulted from the paid purchase. Since the paid purchase might happen at
anytime during the product life cycle, we use the expected LV to represent the loss from
sending her the sample at time 0.

Consequently, given current sample distribution level F 1
0 , F 2

0 , F 3
0 , F 4

0 , the total impact
of sending one more sample to a type 1 customer is

s

(
IV1(0; F 1

0 + 1, F 2
0 , F 3

0 , F 4
0 )−

∫ τ

0

LV1(t; F
1
0 , F 2

0 , F 3
0 , F 4

0 )f1(t; ·) dt

)
− c

Similar expressions for the total impact hold if the firm chooses to send the (F 1
0 +F 2

0 +F 3
0 +

F 4
0 + 1)th sample gives to a customer of type 2, 3, or 4. Therefore, the firm should compare

the outcome of the four potential choices and then choose to send the (F 1
0 +F 2

0 +F 3
0 +F 4

0 +1)th
sample to the customer segment that has the maximum positive impact. Simulation results
show that the term in the parentheses is generally very small. It tells us giving free samples
can be an effective market strategy only if marginal cost is remarkably less than marginal
profit. This result feature explains why detailing is more widely applied in pharmaceutical
industry (where marginal profit is much higher than marginal cost) than elsewhere.

From the above algorithm, we can obtain some properties about sample distribution in
special cases, described in the two propositions below.

Proposition 26. If w = 1, the firm should never send samples to type 3 or type 4 customers.

Proposition 27. If w = 0, q1 = 0, the firm should never send samples to type 2 customers.

To illustrate how the sample should be distributed for real-world products, we use the
empirical estimation of new product diffusion processes from Van den Bulte and Joshi (2007),
in which 34 data series are analyzed, including the diffusion of the broad-spectrum antibiotic
tetracycline, music CDs and high-technology products. Rather than examine the data series
individually, we classify the 34 sets of results into K clusters and look at the cluster mean.
Table 3.2 summarizes the empirical estimation results of p1, q1, p2, q2, w and θ of cluster
mean with K=2 and K=3, where θi (i = 1, .., 4) are determined according to θ1 = 1/4θ2,
θ3 = 1/4θ4, θ1 + θ2 = θ,

∑4
i=1 θi = 1.
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K=2 K=3
Sample Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3
1 1 3 3 1 3
2 1 3 3 1 3
3 1 3 3 1 3
4 1 3 3 N/A 3
5 1 1 1 N/A 3
6 3 1 1 N/A 3
7 3 1 1 N/A 3
8 3 1 1 N/A 3
9 3 1 1 N/A 3
10 3 1 1 N/A 3

Table 3.3: Sample Assignments

K=2 K=3
Sample Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3
s/c=1/4 4 2 2 2 0
s/c=1/3 4 10 10 2 0
s/c=1/2 5 10 10 3 0
s/c=2/3 5 10 10 3 10
s/c=1 10 10 10 3 10
s/c=2 10 10 10 3 10

Table 3.4: Sample Sizes

In order to determine the sample assignment ordering, we rank the terms inside the
brackets of equations (3.26) - (3.29) without imposing any assumptions on marginal profit
and marginal cost. We set a relatively small number to N (total population) to emphasize
on the marginal effect of each sample. The results of sample assignments are presented in
Table 3.3 using τ = 25, N = 100, δ = 0.3 and r = 0.12. Note that the ratio of the marginal
profit over the marginal cost is crucial in deciding the optimal sample size, however it is
independent of the order of sample distribution. For example, for different s/c ratios, Table
3.4 shows the optimal sample size when 10 samples are available.

The results are interesting. One might conjecture that, a type 1 customer should always
be given a higher priority in the sample distribution ordering, because she is not only the
driver of the diffusion, but also connects with more customers. Table 3.3 shows that this
conjecture is not true. Free samples sent to the most influential person is not always the best
strategy. With a fixed customer base, distributing free samples of a new product consists of
two forces: an acceleration effect and a cannibalization effect (Bawa and Shoemaker, 2004).
On one hand, sending more samples accelerates the spread of social contagion, and thus

2N/A indicates the terms inside the brackets are all negative, thus no sample should be sent to any cluster.
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customers are likely to make purchases earlier than they otherwise would do; On the other
hand, sampling reduces the number of paid purchase, because some customers who have
received the sample would be willing to pay for the product otherwise. Sending a sample to
a type 1 customer might have greater acceleration impact, but its cost of cannibalization can
be even higher. Only by balancing those two forces, can firms decide whether to send one
more sample and whom it should be send to, thus can avoid misdirecting marketing efforts
and can, instead, optimally target to the customer who contribute most with a limited
amount of free samples. For example, using the empirical diffusion results of CD “Smoking
Popes”, the optimal order of distributing 10 samples is type 2, type 3, type 3, type 3, type
3, type 3, type 4, type 2, type 4 and type 4.

3.5 Conclusion

As an extension to the model discussed in Chapter 2, in this chapter we incorporate
social contagion into customer lifetime value analysis in a framework where customers are
heterogeneous. Customer heterogeneity is important because potential adopters are not
always equally affected by adopters (see Van den Bulte and Joshi, 2007).

Building upon the Bass model, we propose a four-segment model which considers the
heterogeneity among customers in the tendency to be in tune with new developments and the
tendency to influence (or be influenced by) others. Specifically, we segment customers into
four types: type 1 customers are both innovators and global influencers, type 2 customers
are both innovators and local influencers, type 3 customers are both imitators and global
influencers, and type 4 customers are both imitators and local influencers. We characterize
the closed-form expressions for adoption rate of each customer type as a function of the
adoption time. Based on them, we derive closed-form expressions for the customer PV, IV
and LV as a function of product adoption time. We investigate how customer PV, IV and
LV vary with the innovation parameters.

To show how a firm can increase its total customer LV, we analyze the impact of purchase
acceleration on LV. We propose an algorithm to optimally allocate free samples among
customers, which looks into the LV of marginal customers. We illustrate the algorithm by
using the empirical results from Van den Bulte and Joshi (2007), in which 34 data series
were analyzed.

Our model paves the way for several new research avenues. First, it will be interesting
to consider purchase deceleration in the four-segment model. Second, it will be worthwhile
to extend our model to capture active rivalry (see for example Savin and Terwiesch, 2005).
Finally, it would be interesting to look at the impact of social contagion in a service adoption
context.



76

Bibliography

[1] Bass, F. M. (1969). A New Product Growth Model for Consumer Durables. Management
Science, 15(5), 215-227.

[2] Bass, F. M., T. V. Krishnan and D. C. Jain (1994). Why the Bass Model Fits without
Decision Variables. Marketing Science, 13(3), 203-223.

[3] Bayus, B. L. and W. P. Putsis Jr (1999). Product Proliferation: An Empirical Analysis of
Product Line Determinants and Market Outcomes. Marketing Science, 18 (2), 137-153.

[4] Bayus, B. L., N. Kim and A. D. Shocker (2000). Growth Models for Multi-Product
Interactions: Current Status and New Directions. in New-product Diffusion Models, V.
Mahajan, E. Muller and J. Wind (eds.) 141-163.

[5] Berger, P. D., N. Eechambadi, M. George, D. R. Lehmann, R. Rizley and R. Venkate-
san (2006). From Customer Lifetime Value to Shareholder Value: Theory, Empirical
Evidence, and Issues for Future Research. Journal of Service Research, 9(2), 156-167.

[6] Bitran, G. R., E. A. Haas and H. Matsuo (1986). Production Planning of Style Goods
with High Setup Costs and Forecast Revisions. Operations Research, 34(2), 226-236.

[7] Biyalogorsky, E., E. Gerstner and B. Libai (2001). Customer Referral Management: Op-
timal Reward Programs. Marketing Science, 20(1), 82-95.

[8] Bhattacharya, S., V. Krishnan and V. Mahajan (2003). Operationalizing Technology Im-
provements in Product Development Decision-making. European Journal of Operational
Research, 149(1), 102-130.

[9] Cachon, G. P. (1999). Managing Supply Chain Demand Variability with Scheduled Or-
dering Policies. Management Science, 45(6), 843-856.

[10] Chatterjee, R. and J. Eliashberg (1990). The Innovation Diffusion Process in a Heteroge-
neous Population: A Micromodeling Approach. Management Science, 36(9), 1057-1079.

[11] Chopra, S., W. Lovejoy and C. Yano (2004). Five Decades of Operations Management
and the Prospects Ahead. Management Science, 50(1), 8-14.

[12] Chu, W. L., F. S. Wu, K. S. Kao and D. C. Yen (2009). Diffusion of Mobile Telephony:
An Empirical Study in Taiwan. Telecommunications Policy, 33, 506-520.



77

[13] Dipak, J., V. Mahajan and E. Muller (1995). An Approach for Determining Optimal
Product Sampling for the Diffusion of a New Product. Journal of Innovation Manage-
ment, 12, 124-135.

[14] Dobson, G. and S. Kalish (1988). Positioning and Pricing a Product Line. Marketing
Science, 7(2), 107-125.

[15] Druehl, C. T., G. M. Schmidt and G. C. Souza (2009). The Optimal Pace of Product
Updates. European Journal of Operational Research, 192, 621-633.

[16] Dwyer, F. R. (1989). Customer Lifetime Valuation to Support Marketing Decision Mak-
ing. Journal of direct marketing, 3(4), 63-71.

[17] Easingwood, C. J, V. Mahajan and E. Muller (1983). A Nonuniform Influence Innovation
Diffusion Model of New Product Acceptance. Marketing Science, 2(Summer), 273-295.

[18] Eliashberg, J. and R. Steinberg (1987). Marketing-Production Decisions in an Industrial
Channel of Distribution. Management Science, 33(8), 981-1000.

[19] Gatignon, H., J. Eliashberg and T. S. Robertson (1989). Determinants of Diffusion
Patterns: A Cross-Country Analysis. Marketing Science, 8(3), 231-247.

[20] Godes, D., and D. Mayzlin (2009). Firm-created Word-of-Mouth Communication: Evi-
dence from a Field Test. Marketing Science, 28(4), 721-739.

[21] Goldenberg, J., B. Libai and E. Muller (2001). Talk of the Network: A Complex Systems
Look at the Underlying Process of Word-of-Mouth. Marketing Letters, 12(3), 211-223.

[22] Golder, P. N., and G. J. Tellis (2004). Growing, Growing, Gone: Cascades, Diffusion,
and Turning Points in the Product Life Cycle Marketing Science, 23(2), 207-218.

[23] Graves, S. C. (1996). A multiechelon inventory model with fixed replenishment intervals.
Management Science, 42(1), 1-18.

[24] Gremler, D. D. and S. W. Brown (1998). Worth Beyond Revenue: the Full Value of
a Loyal Customer, QUIS 6 Pursuing Service Excellence: Practices and Insights, E. E.
Scheuing, S. W. Brown, B. Edvardsson and R. Johnston (eds), New York: International
Service Quality Association Inc ISQA, 119-128.

[25] Grossman, C. and C. Shapiro (1984). Informative Advertising with Differentiated Prod-
ucts. Review of Economic Studies, LI, 63-81.

[26] Gupta, S. and D. R. Lehmann (2003). Customers as Assets. Journal of Interactive
Marketing, 17(1), 9-24.

[27] Gupta, S., D. Hanssens, B. Hardie, W. Kahn, V. Kumar, N. Lin, N. Ravishanker and
S. Sriram (2006). Modeling Customer Lifetime Value. Journal of Service Research, 9(2),
139-155.



78

[28] Gupta, S., C. F. Mela and J. M. Vidal-Sanz (2006). The Value of a “Free” Cusotmer.
Working Paper.

[29] Hausman, W. H., D. B. Montgomery and A. V. Roth (2002). Why Should Marketing
and Manufacturing Work Together? Some Exploratory Empirical Results. Journal of
Operations Managmenet, 20(3), 241-257.

[30] Hill, A. V. and I. S. Khosla (1992). Models for optimal lead time reduction. Production
and Operations Management 1(2), 185-197.

[31] Ho, T. H., S. Savin, and C. Terwiesch (2002). Managing Demand and Sales Dynamics in
New Product Diffusion Under Supply Constriant. Management Science, 48(2), 187-206.

[32] Ho, T. H. and Y. S. Zheng (2004). Modeling Delivery-Time Commitment: An Integrated
Marketing-Operations Perspective. Management science 50(4), 479-488.

[33] Ho, T. H., Y. H. Park and Y. P. Zhou (2006). Incorporating Satisfaction into Customer
Value Analysis: Optimal Investment in Lifetime Value. Marketing science 25(3), 260-277.

[34] Ho, T. H. and C. S. Tang (2004). Introduction to the Special Issue on Marketing and
Operations Management Interfaces and Coordination. Management Science, 50(4), 429-
430.

[35] Hogan, J. E., K. N. Lemon and B. Libai (2003). What Is the True Value of a Lost
Customer? Journal of Service Research, 5(3), 196-208.

[36] Hopp, W. J. and X. Xu (2008). A Static Approximation for Dynamic Demand Substi-
tution with Applications in a Competitive Market. Operations Research, 56(3), 630-645.

[37] Jerath, K., S. Netessine and Z. J. Zhang (2007). Can We All Get Along? Incentive
Contracts to Bridge the Marketing and Operations Divide. Working paper.

[38] Joshi, Y. V., D. J. Reibstein and Z. J. Zhang (2008). Optimal Entry Timing in Markets
with Social Influence. Working paper.

[39] Karmeshu, D. Goswami (2001). Stochastic evolution of innovation diffusion in hetero-
geneous groups: Study of life cycle patterns. IMA Journal of Management Mathematics,
12, 107-126.

[40] Kiss, C. and M. Bichler (2006). Identification of Influencers-Measuring Influence in
Customer Networks. Working paper.

[41] Krankel, R. M., I. Duenyas and R. Kapuscinski (2006). Timing Successive Product
Introductions with Demand Diffusion and Sotchastic Technology Improvement. Manu-
facturing and Service Operations management, 8(2), 119-135.

[42] Krishnan, V. and K. T. Ulrich (2001). Product Development Decisions: A Review of
the Literature. Management Science, 47(1), 1-21.



79

[43] Krishnan, V. and K. Ramachandran (2008). Design Architecture and Introduction Tim-
ing for Rapidly Improving Industrial Products. Manufacturing and Service Operations
Management, Forthcoming.

[44] Kumar, P., M. U. Kalwani and M. Dada (1997). The Impact of Waiting Time Guarantees
on Customers’ Waiting Experiences. Marketing Science, 16(4), 295-314.

[45] Kumar, V, J. A. Pertersen and R. P. Leone (2007). How Valuable Is Word of Mouth?
Harvard Business Review, Oct. 2007, 139-146.

[46] Kurawarwala, A. A. and H. Matsuo (1996). Forecasting and Inventory Management of
Short Life-Cycle Products. Operations Research, 44(1), 131-150.

[47] Malhotra, M. and S. Sharma (2002). Spanning the Continuum between Marketing and
Operations. Journal of Operations Management, 20(5), 209-219.

[48] Mahajan, V. and E. Muller (1996). Timing, Diffusion and Substitution of Successive
Generations of Technology Innovations: The IBM Mainframe Case. Technological Fore-
casting and Social Change, 51, 109-132.

[49] Mahajan, V., E. Muller, and F. M. Bass (1990). New Product Diffusion Models in
Marketing: A Review and Directions for Research. Journal of Marketing, 54(1), 1-26.

[50] Mahajan, V., S. Sharma, and R. Buzzell (1993). Assessing the Impact of Competitive
Entry on Market Expansion and Incumbent Sales. Journal of Marketing, 57(3), 39-52.

[51] Mahajan, V., E. Muller, and F. M. Bass (1995). Diffusion of New Products: Empirical
Generalizations and Managerial Uses. Marketing Science, 14(3), G79-G88.

[52] Marks, L. J. and M. A. Kamins (1988). The Use of Product Sampling and Advertis-
ing: Effects of Sequence of Exposure and Degree of Advertising Claim Exaggeration
on Consumers’ Belief Strength, Belief Confidence, and Attitudes. Journal of Marketing
Research, 25(3), 266-281.

[53] Mayzlin, D. (2006). Promotional Chat on the Internet. Marketing Science, 25(2), 155-
163.

[54] Mcdowell, E. (1989). Publishers Experiment with Lower Prices. New York Times, DIO.

[55] Moorthy, K. S. and I. P. L. Png (1992). Market Segmentation, Cannibalization, and the
Timing of Product Introductions. Management Science, 38(3), 345-359.

[56] Norton, J. and F. M. Bass (1987). A Diffusion Theory Model of Adoption and Sub-
stitution for Successive Generations of High-Technology Products. Management Science,
32(4), 1069-1086.

[57] Ovchinnikov, A. and P. E. Pfiefer (2009). The Role of Customer Lifetime Value in
Determining Marketing Spending for Firms with Limited Capacity. Working Paper.



80

[58] Pesendorfer, W. (1995). Design Innovation and Fashion Cycles. American Economic
Review, 85(4), 771-792.

[59] Peterson, R. A. and V. Mahajan (1978). Multi-product Growth Models. in Research in
Marketing, J. Sheth, ed. Greenwich, CT: JAI Press, Inc., 201-231.

[60] Prasad, A., B. Bronnenberg and V. Mahajan (2004). Product Entry Timing in Dual
Distribution Channels: The Case of the Movie Industry. Review of Marketing Science,
2(4), 352-372.

[61] Quelch, J. and D. Kenny (1994). Extend Profits, Not Product Lines. Harvard Business
Review, 72(5), 153-160.

[62] Ramdas, K. (2003). Managing product variety: An Integrative Review and Research
Directions. Production and Operations Management, 12(1), 79-101.

[63] Ray, S. and E. M. Jewkes (2004). Customer Lead Time Management When Both De-
mand and Price Are Lead Time Sensitive. European Journal of Operational Research,
153(3), 769-781.

[64] Rust, R. T., V. A. Zeithaml and K. N. Lemon (2000). Driving Customer Equity: How
Customer Lifetime Value is Reshaping Corporate Strategy. The Free Press, New York,
NY, USA.

[65] Rust, R. T., K. N. Lemon and V. A. Zeithaml (2004). Return on Marketing: Using
Customer Equity to Focus Marketing Strategy. Journal of Marketing, 68(1), 109-126.

[66] Savin, S. and C. Terwiesch (2005). Optimal Product Launch Times in a Duopoly: Bal-
ancing Life-Cycle Revenues with Product Cost. Operations Research, 53(1), 26-47.

[67] Sawhney, M. and J. Eliashberg (1996). A Parsimonious Model for Forecasting Gross
Box-office Revenues of Motion Pictures. Marketing Science, 15(2), 113-131.

[68] So, K. C. and J. S. Song (1998). Price, Delivery Time Guarantees and Capacity Selec-
tion. European Journal of Operational Research, 111(1), 28-49.

[69] Sultan, F., J. U. Farley, and D. R. Lehmann (1990). A Meta-Analysis of Diffusion Model.
Journal of Marketing Research, 27(1), 70-77.

[70] Savin, S. and C. Terwiesch (2005). Optimal Product Launch Times in a Duopoly: Bal-
anceing Life-Cycle Revenues with Product Cost. Operations Research, 53(1), 26-47.

[71] Schmidt, G. M. and C. T. Druehl (2005). Changes in Product Attributes and Costs as
Drivers of New Product Diffusion and Substitution. Production and Operations Manage-
ment, 14(3), 272-285.

[72] Shapiro, C. and H. R. Varian (1999). Information Rules: A Strategic Guide to the
Network Economy. Harvard Business School Press: Boston, MA.



81

[73] Shen, Z.-J. and X. Su (2007). Customer Behavior Modeling in Revenue Management
and Auctions: A Review and New Research Opportunities. Production and Operations
Management, Forthcoming.

[74] Teng, T. C., V. Grover, and W. Guttler (2002). Information Technology Innovations:
General Diffusion Patterns and Its Relationships to Innovation Characteristics. IEEE
Transactions on Engineering Management, 49(1), 13-27.

[75] Van Ackere, A. and D. J. Reyniers (1995). Trade-ins and Introductory Offers in a
Monopoly. RAND Journal of Economics, 26(1), 58-74.

[76] Van den Bulte, C. (2000). New Product Diffusion Acceleration: Measurement and Anal-
ysis. Marketing Science, 19(4), 366-380.

[77] Van den Bulte, C. and Y. V. Joshi (2007). New Product Diffusion with Independents
and Imitators. Marketing Science, 26(3), 400-421.

[78] Villanueva, J., S. Yoo and D. M. Hanssens (2008). The Impact of Marketing-Induced
Versus Word-of-Mouth Customer Acquisition on Customer Equity Growth. Journal of
Marketing Research, 45(1), 48-59.

[79] Wilson, L. O. and J. Norton (1989). Optimal Entry Timing for a Product-Line Exten-
sion. Marketing Science, 8(1), 1-17.

[80] Zhang, J (2009). The Sound of Silence: Evidence of Observational Learning from the
U.S. Kidney Market. Marketing Science, Forthcoming.



82

Appendix A

Proofs

Lemma 1: Consider the following two problems:

(PL1) z = max
x,y

f(x, y)

s.t. g1(x) ≤ 0

g2(x, y) ≤ 0

(PL2) w = max
x

R(x)

s.t. g1(x) ≤ 0

where R(x) = max
y

f(x, y)

s.t. g2(x, y) ≤ 0

We claim: z = w.
Proof:
Let (x∗, y∗) be the optimal solution for (PL1), and (x̄, ȳ) the optimal solution for (PL2).
On one hand, w = f(x̄, ȳ) ≤ f(x∗, y∗) = z, as (x̄, ȳ) is a feasible solution for (PL1), and
its corresponding objective value cannot be greater than the one achieved by the optimal
solution (x∗, y∗). On the other hand, w ≥ R(x∗) ≥ f(x∗, y∗) = z. The first inequality follows
from the fact that (x∗, y∗) satisfies g1(x

∗) ≤ 0, and the second inequality is because (x∗, y∗)
satisfies g2(x

∗, y∗) ≤ 0. (Note that the constraints are not restricted to be “≤”, and our
proof will still apply when g1(x) ≥ 0 or g2(x, y) ≥ 0.) Q. E. D.

Proposition 1:
1). If the introduction time T ≤ l, (In fact, in this case, the demand diffusion specifications
are not functions of the introduction time T , but we retain Di(t; T )(Si(t; T )), (i = 1, 2) for
notational consistency.)

D1(t; T ) = S1(t; T ) = sF (t) (A.1)

D2(t; T ) = (1− s)F (t) (A.2)

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)F (t) if T ≤ t ≤ τ.

(A.3)
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2). If the introduction time T > l,

D1(t; T ) = S1(t; T ) =

⎧⎨
⎩

sF (t) if 0 ≤ t ≤ l;
sF (t) + θ(1− s)F (t− l) if l < t < T ;
sF (t) + θ(1− s)F (T − l) if T ≤ t ≤ τ.

(A.4)

D2(t; T ) =

⎧⎨
⎩

(1− s)F (t) if 0 ≤ t ≤ l;
(1− s)(F (t)− F (t− l)) if l < t ≤ T ;
(1− s)(F (t)− F (T − l)) if T < t ≤ τ.

(A.5)

S2(t; T ) =

{
0 if 0 ≤ t < T ;
(1− s)(F (t)− F (T − l)) if T ≤ t ≤ τ.

(A.6)

Proof:
The results follows straightforward from (1.2) - (1.10).
Proposition 2:
The optimal solution to problem R(T ) can be characterized as follows: if α ≤ r2/r1, Q∗

1 =
D1(τ ; T ), Q∗

2 = D2(τ ; T ); Otherwise, Q∗
1 = D1(τ ; T ) + D2(τ ; T )α, Q∗

2 = 0.
Proof:
Formulations for Ri(T ):

R1(T ) = max
0≤Q1≤D1(τ,T ),0≤Q2≤D2(τ,T )

r1Q1 + r2Q2

R2(T ) = max
Q1≥D1(τ,T ),0≤Q2≤D2(τ,T )

w1D1(τ, T ) + w2Q2 − c1Q1 − c2Q2 + w1α(D2(τ, T )−Q2)

s.t.: (D2(τ, T )−Q2)α ≤ Q1 −D1(τ, T )

R3(T ) = max
Q1≥D1(τ,T ),0≤Q2≤D2(τ,T )

w1D1(τ, T ) + w2Q2 − c1Q1 − c2Q2 + w1(Q1 −D1(τ, T ))

s.t.: (D2(τ, T )−Q2)α ≥ Q1 −D1(τ, T )

R4(T ) = max
0≤Q1≤D1(τ,T ),Q2≥D2(τ,T )

w1Q1 + w2D2(τ, T )− c1Q1 − c2Q2 + w2β(D1(τ, T )−Q1)

s.t.: (D1(τ, T )−Q1)β ≤ Q2 −D2(τ, T )

R5(T ) = max
0≤Q1≤D1(τ,T ),Q2≥D2(τ,T )

w1Q1 + w2D2(τ, T )− c1Q1 − c2Q2 + w2(Q2 −D2(τ, T ))

s.t.: (D1(τ, T )−Q1)β ≥ Q2 −D2(τ, T )

R6(T ) = max
Q1≥D1(τ,T ),Q2≥D2(τ,T )

w1D1(τ, T ) + w2D2(τ, T )− c1Q1 − c2Q2

We solve the subcase problems R1(T ) − R6(T ) accordingly and we denote πi(T ) to be the
objective of Ri(T ).
1. Problem R1(T ): π1(T ) = r1Q1 + r2Q2, as r1, r2 > 0, Q∗

1 = D1(τ, T ), Q∗
2 = D2(τ, T ).

2. Problem R2(T ): π2(T ) = (r2 − w1α)Q2 − c1Q1 + w1D1(τ, T ) + w1αD2(τ, T )

As Q1 ≥ (D2(τ, T )−Q2)α+D1(τ, T ), π2(T ) ≤ (r2−r1α)Q2 +w1D1(τ, T )+w1αD2(τ, T )

There are three sub-cases:

(a) If r2 − r1α > 0, clearly, Q∗
2 = D2(τ, T ), Q∗

1 = D1(τ, T ).

(b) If r2 − r1α < 0, then Q∗
2 = 0, Q∗

1 = D1(τ, T ) + D2(τ, T )α.
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(c) If r2 − r1α = 0, π2(T ) = c1(αQ2 −Q1) + w1D1(τ, T ) + w1αD2(τ, T ),

and thereby it follows Q∗
2 = D2(τ, T ), Q∗

1 = D1(τ, T ).
3. Problem R3(T ): The results obtained are the same as those in problem R2(T ).
4. Problem R4(T ): π4(T ) = (r1 − w2β)Q1 − c2Q2 + w2D2(τ, T ) + w2βD1(τ, T )

As Q2 ≥ (D1(τ, T )−Q1)β +D2(τ, T ), π4(T ) ≤ (r1−r2β)Q1 +w2D2(τ, T )+w2βD1(τ, T )

Since r1 > r2β, Q∗
1 = D1(τ, T ), Q∗

2 = D2(τ, T ).
5. Problem R5(T ): The results obtained are the same as those in problem R4(T ).
6. Problem R6(T ): π6(T ) = w1D1(τ, T )+w2D2(τ, T )− c1Q1− c2Q2, so Q∗

1 = D1(τ, T ), Q∗
2 =

D2(τ, T ).

To summarize the above 6 cases, we first notice that in R1(T ), R4(T ), R5(T ) and R6(T ),
Q∗

1 = D1(τ, T ), Q∗
2 = D2(τ, T ), but in R2(T ) and R3(T ), the optimal solution varies. so if

r2 ≥ αr1, the optimal solutions in all cases coincide, Q∗
1 = D1(τ, T ), Q∗

2 = D2(τ, T ); other-
wise, in R2(T ) and R3(T ), Q∗

1 = D1(τ, T ) + D2(τ, T )α, Q∗
2 = 0, but Q∗

1 = D1(τ, T ), Q∗
2 =

D2(τ, T ) for others. However, since Q1 = D1(τ, T ), Q2 = D2(τ, T ) is a feasible solution
for R2(T ) and R3(T ) when r2 < αr1, which shows Q∗

1 = D1(τ, T ) + D2(τ, T )α, Q∗
2 = 0

outperforms Q1 = D1(τ, T ), Q2 = D2(τ, T ). Hence, we claim that if r2 < αr1, Q∗
1 =

D1(τ, T ) + D2(τ, T )α, Q∗
2 = 0. Q.E.D.

Proposition 3:
If the planning horizon is comparable to the life-cycle period, when r2/r1 ≥ max{α, θ}, an
immediate introduction is preferable, with Q∗

1 = sF (τ), Q∗
2 = (1 − s)F (τ); Otherwise, the

second version should never be introduced, and the firm should commit the unavailability of
version 2 in advance if θ > max{r2/r1, α}.
Proof:
We consider two cases as outlined below:
Case 1: T > l. The cumulative demand of each version is given by

D1(τ ; T ) = sF (τ) + (1− s)θF (T − l)

D2(τ ; T ) = (1− s)(F (τ)− F (T − l))

Case 2: T ≤ l. The demand paths are given by

D1(τ ; T ) = sF (τ)

D2(τ ; T ) = (1− s)F (τ)

Recall from Proposition 2, it is easy to verify that

1. When α > r2/r1, Q∗
1 = D1(τ ; T ) + D2(τ ; T )α, Q∗

2 = 0.

(a) If θ ≤ α, the firm ought to inform customers that NO line extension will be
introduced, as more low-value customers will buy version 1 if being informed
version 2 will not be introduced at a later time.
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(b) Otherwise, T ∗ = τ .

2. When α ≤ r2/r1, Q∗
1 = D1(τ ; T ), Q∗

2 = D2(τ ; T ).

(a) If θ ≤ r2/r1, the firm ought to introduce immediately.

(b) Otherwise, T ∗ = τ .

Proposition 4:
(a) If θ(r1 − hτ) > r2, T ∗ = τ .
(b) Otherwise, let T̄ denote the value of T (T < τ) that satisfies A(T ) = B(T ).
(i) If T̄ ≥ l, T ∗ = T̄ . (ii) Otherwise, T ∗ = l.
Proof: Denoting by π(T ) the profit given introduction time T . To get the optimal T ∗, we
take the first derivative of π(T ) with respect to T :

dπ(T )

dT
= hm(1−s)(

1− e−aτ

1 + be−aτ
− 1− e−aT

1 + be−aT
)+

a(1 + b)e−a(T−l)

(1 + be−a(T−l))2
m(1−s)(θ(r1−hT )−r2) (A.7)

where a = p + q > 0, b = q/p > 0.
(a) When θ(r1 − hτ) − r2 > 0, then θ(r1 − hT ) − r2 > 0, ∀T ∈ [l, τ ]. At the same time,
1− e−aτ

1 + be−aτ
− 1− e−aT

1 + be−aT
≥ 0, ∀T ∈ [l, τ ]. Thus, dπ(T )

dT
> 0, ∀T ∈ [l, τ ], and thereby T ∗ = τ .

(b) When θ(r1 − hτ)− r2 ≤ 0, we first look at the second order of π(T ):

d2π(T )

dT 2
= hm(1− s)a(1 + b)(− e−aT

(1 + be−aT )2
)− hθm(1− s)

a(1 + b)e−a(T−l)

(1 + be−a(T−l))2

+
a2(1 + b)e−a(T−l)(be−a(T−l) − 1)

(1 + be−a(T−l))3
m(1− s)(θ(r1 − hT )− r2) (A.8)

It is difficult to see from (A.8) whether the objective is concave in T . Alternatively, equate
(A.7) to zero and solve for the corresponding T , denoted as T̄ , then T̄ satisfies:

−h(
1− e−aτ

1 + be−aτ
− 1− e−aT̄

1 + be−aT̄
) =

a(1 + b)e−a(T̄−l)

(1 + be−a(T̄−l))2
(θ(r1 − hT̄ )− r2) (A.9)

Substituting the right hand side of (A.9) with its left hand side expression into (A.8), we
have:

d2π(T )

dT 2
|T=T̄ = hm(1− s)a(1 + b)(− e−aT̄

(1 + be−aT̄ )2
)− hθm(1− s)

a(1 + b)e−a(T̄−l)

(1 + be−a(T̄−l))2

+m(1− s)ha
(be−a(T̄−l) − 1)

1 + be−a(T̄−l)
(

1− e−aT̄

1 + be−aT̄
− 1− e−aτ

1 + be−aτ
) (A.10)

Since

hm(1− s)a(1 + b)(− e−aT̄

(1 + be−aT̄ )2
) < 0,
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−hθm(1− s)
a(1 + b)e−a(T̄−l)

(1 + be−a(T̄−l))2
< 0,

1− e−aT̄

1 + be−aT̄
− 1− e−aτ

1 + be−aτ
< 0

• If be−a(T̄−l) − 1 ≥ 0, then obviously, d2π(T )
dT 2 |T=T̄ is negative.

• Otherwise, let us consider the function f(T̄ ) = − e−aT̄

(1 + be−aT̄ )2
.

Note that
df(T̄ )

dT̄
= −ae−aT̄ (b2e−2aT̄ − 1)

(1 + be−aT̄ )4

Because be−aT̄ < be−a(T̄−l) < 1, we have b2e−2aT̄ − 1 < 0, so f(T̄ ) is increasing in T̄ .
Therefore,

d2π(T )

dT 2
|T=T̄ ≤ hm(1−s)a(1+b)(− e−aT̄

(1 + be−aT̄ )2
)−hθm(1−s)

a(1 + b)e−aT̄

(1 + be−aT̄ )2

+m(1− s)ha
(be−a(T̄−l) − 1)

1 + be−a(T̄−l)
(

1− e−aT̄

1 + be−aT̄
− 1− e−aτ

1 + be−aτ
)

≤ hm(1− s)a(1 + b)(− e−aT̄

(1 + be−aT̄ )2
)− hθm(1− s)

a(1 + b)e−aT̄

(1 + be−aT̄ )2

+m(1− s)ha
(be−a(T̄−l) − 1)

1 + be−aT̄
(

1− e−aT̄

1 + be−aT̄
− 1− e−aτ

1 + be−aτ
)

≤ hm(1− s)a

(1 + be−aT̄ )2
[−(1 + b)e−aT̄ − θ(1 + b)e−aT̄

+(be−a(T̄−l) − 1)(1− e−aT̄ )− (be−a(T̄−l) − 1)(1 + be−aT̄ )]

=
hm(1− s)a

(1 + be−aT̄ )2
[−(1+θ)(1+b)e−aT̄ +(1−be−a(T̄−l))(1+b)(e−aT̄ )]

The first inequality comes from e−a(T̄−l) > e−aT̄ ; the second inequality is the result of
1

1 + be−a(T̄−l)
<

1

1 + be−aT̄
; the last inequality is because

1− e−aτ

1 + be−aτ
≤ 1 and be−a(T̄−l)−

1 < 0.
Since 1− be−a(T̄−l) < 1 < 1 + θ, d2π(T )

dT 2 |T=T̄ < 0.

Thus, it is always true that d2π(T )
dT 2 |T=T̄ < 0, and thereby T̄ is guaranteed to be a local maxi-

mum. Therefore, (i) If T̄ ≥ l, T ∗ = T̄ ; (ii) Otherwise, T ∗ = l. Q. E. D.

Proposition 5:
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(a) T̄ increases with the profit margin of version 1, r1, and the proportion of low-type cus-
tomers who would like to switch to version 1 after experiencing too long a wait, θ. T̄ decreases
with the profit margin of version 2, r2.
(b) T ∗ = T̄ (l < T̄ < τ) if 1

τ

(
r1 − 1

θ
r2

)
< h < 1

l

(
r1 − 1

θ
r2

)
.

Proof: (a) As r1 increases, B(T ) will decrease, and thereby we need a larger T to keep
A(T ) = B(T ) as A(T ) is decreasing in T . Thus, T̄ increases. One can show T̄ increases in
θ and decreases in r2 by a similar proof.
(b) Evaluating (A.7) at T = τ , the first term is 0, and when h > 1

τ

(
r1 − 1

θ
r2

)
, the second

term is negative, and thereby dπ(T )
dT
|T=τ < 0; On the other hand, evaluating (A.7) at T = l,

the first term is positive, and when h < 1
l

(
r1 − 1

θ
r2

)
, the second term is positive as well,

and thereby dπ(T )
dT
|T=l > 0. Consequently, when 1

τ

(
r1 − 1

θ
r2

)
< h < 1

l

(
r1 − 1

θ
r2

)
, we have

dπ(T )
dT
|T=l > 0 and dπ(T )

dT
|T=τ < 0, so there exists a t ∈ [l, τ ], such that dπ(T )

dT
|T=t = 0 due to

continuity of dπ(T )
dT

. From Proposition 4 we know that t = T̄ . Q. E. D.

Proposition 6:
When θ ≤ r2/r1,
(a) If h < h∗(θ), T ∗ = l. (b) T ∗ = T̄ otherwise.
Proof: In the case when r2/r1 ≥ θ, if follows that θ(r1 − hτ) − r2 < 0, and thereby
dπ(T )

dT
|T=τ < 0;

In addition,

(a) If h < h∗(θ), we have
1− e−(p+q)τ

1 + q/pe−(p+q)τ
− 1− e−(p+q)l

1 + q/pe−(p+q)l
<

p

h
(r2 − θ(w1 − c2 − hl)), and

it follows that dπ(T )
dT
|T=l < 0.

We then claim dπ(T )
dT

< 0, ∀T ∈ [l, τ ]. We show this by contradiction. Suppose dπ(T )
dT
|T=t > 0,

for some t ∈ [l, τ ], then due to continuity of dπ(T )
dT

, there exists a t̂ ∈ [l, t] such that
dπ(T )

dT
|T=t̂ = 0 and d2π(T )

dT 2 |T=t̂ > 0. This contradicts Proposition 4, in which we know all
points satisfying first-order condition are local maximum.
Therefore, we have dπ(T )

dT
< 0, ∀T ∈ [l, τ ], and thereby T ∗ = l.

(b) Otherwise, we have dπ(T )
dT
|T=l > 0. Following a similar claim as above, T ∗ = T̄ . Q. E. D.

Proposition 7:
When θ > r2/r1,
(a) If h < 1

τ

(
r1 − 1

θ
r2

)
, T ∗ = τ .

(b) If h ≥ 1
τ

(
r1 − 1

θ
r2

)
and l ≤ l∗(θ), T ∗ = T̄ .

(c) If h ≥ 1
τ

(
r1 − 1

θ
r2

)
and l > l∗(θ),

(i) If 1
τ

(
r1 − 1

θ
r2

)
< h < h∗(θ), T ∗ = l. (ii) Otherwise, T ∗ = T̄ .

Proof: In the case that r2/r1 < θ,

(a) If h < 1
τ

(
r1 − 1

θ
r2

)
, which indicates dπ(T )

dT
> 0, ∀T ∈ [l, τ ], and thereby T ∗ = τ ;

(b) Otherwise,

(i) If 1
τ

(
r1 − 1

θ
r2

)
< h < h∗(θ), dπ(T )

dT
|T=l < 0, dπ(T )

dT
|T=τ < 0, and thus T ∗ = l following

from the proof of Proposition 6.
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(ii) Otherwise, T ∗ = T̄ .
In addition, When l ≤ l∗(θ), we have

l −
(

1− e−(p+q)τ

pθ + qθe−(p+q)τ
− 1− e−(p+q)l

pθ + qθe−(p+q)l

)
< 0

and this guarantees

1

τ
>

1

l −
(

1− e−(p+q)τ

pθ + qθe−(p+q)τ
− 1− e−(p+q)l

pθ + qθe−(p+q)l

)

which in turn leads to 1
τ

(
r1 − 1

θ
r2

)
> h∗(θ), so (i) of case (b) can not happen.

When l > l∗(θ), we have

l −
(

1− e−(p+q)τ

pθ + qθe−(p+q)τ
− 1− e−(p+q)l

pθ + qθe−(p+q)l

)
> 0

Besides, as τ > l, we have

τ > l −
(

1− e−(p+q)τ

pθ + qθe−(p+q)τ
− 1− e−(p+q)l

pθ + qθe−(p+q)l

)
> 0

and thus
1

τ
<

1

l −
(

1− e−(p+q)τ

pθ + qθe−(p+q)τ
− 1− e−(p+q)l

pθ + qθe−(p+q)l

)

which leads to 1
τ

(
r1 − 1

θ
r2

)
< h∗(θ), so all cases can happen. Q. D. E.

Proposition 8:
∫∞

t=0
LV (t)f(t) dt =

∫∞
t=0

e−rtf(t) dt.
Proof:

LHS =

∫ ∞

t=0

PV (t)f(t) dt +

∫ ∞

t=0

IV (t)f(t) dt

=

∫ ∞

t=0

e−rt

(
p

p + qF (t)
+

qF (t)(1− δ)

p + qF (t)

)
(p + qF (t))(1− F (t)) dt +

∫ ∞

t=0

IV (t)f(t) dt

=

∫ ∞

t=0

e−rt(p + qF (t)(1− δ))(1− F (t)) dt + δq

∫ ∞

t=0

∫ ∞

s=t

e−rs(1− F (s))f(t) ds dt

=

∫ ∞

t=0

e−rt(p + qF (t)(1− δ))(1− F (t)) dt + δq

∫ ∞

s=0

∫ s

t=0

f(t) dte−rs(1− F (s)) ds

=

∫ ∞

t=0

e−rt(p + qF (t)(1− δ))(1− F (t)) dt +

∫ ∞

t=0

e−rt(1− F (t))(qδF (t)) dt

=

∫ ∞

t=0

e−rt(1− F (t))(p + qF (t)) dt

= RHS Q.E.D.
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Proposition 9: Let

t∗ = {t :

∫ ∞

s=t

e−r(s−t)(1− F (s)) ds =
1− e−(p+q)t

p + q
}

When t ≤ t∗, LV (t) ≥ e−rt; When t > t∗, LV (t) < e−rt.
Proof:
We define J(t) = LV (t)− e−rt. Take the derivative of J(t) with respect to t and set it equal
to 0

qδ(1 + e−(p+q)t − F (t)) + rPV (t) = r (A.11)

We note that the LHS of (A.11) is decreasing in t. Moreover, we know that LHS > r when
t = 0 and that LHS < r when t → ∞. Hence, there exists a unique t∗ such that (A.11)
holds. Therefore J(t) decreases with t for t < t∗ and increases thereafter.
LV (0) > 1 so we know from Proposition 8 that there must exist a t′ such that LV (t′) < e−rt′ .
Since J(0) > 0, J(t′) < 0 and J(t) decreases with t for t < t∗ and increases thereafter. Thus,
there exists a unique t∗ such that LV (t) > e−rt for all t < t∗ and LV (t) > e−rt thereafter.
Solving LV (t) = e−rt gives us the expression for t∗. Q.E.D.

Proposition 10: PV (t), IV (t) and LV (t) are all decreasing convex in t.
Proof:
We first show that PV (t) and IV (t) are decreasing convex functions of t. The claim for
LV (t) will follow since LV (t) = PV (t) + IV (t). To prove that PV (t) is decreasing convex
in t, we need to show that PV ′(t) < 0 and PV ′′(t) > 0. We have

PV ′(t) = −e−rt
(
qδe−(p+q)t + rPV (t)

)
< 0,

and

PV ′′(t) = re−rt
(
qδe−(p+q)t + rPV (t)

)− e−rt

(
−(p + q)qδe−(p+q)t + r

dPV (t)

dt

)
> 0,

Establishing that PV (t) is decreasing convex in t. Next, we will show that IV (t) is decreasing
convex in t.

IV (t) = δq
∫∞

t
e−rs(1− F (s)) ds

The first derivative is

IV ′(t) = −e−rtδq(1− F (t)) < 0

Also

IV ′′(t) = re−rtδq(1− F (t)) + e−rtδqf(t) > 0
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Thus, IV (t) is decreasing convex in t. Q.E.D.

Proposition 11: (1) PV (t) is increasing in p.
(2) IV (t) is decreasing in p.
(3) We define

t1 = {t : e−rt (1− (pt + qt + 1)e−(p+q)t)

(p + q)2
=

∫ ∞

t

e−rs∂F (s)

∂p
ds},

then LV (t) decreases with p for t < t1 and increases thereafter.
Proof:

1) To show that PV (t) increases with p, it suffices to show that
∂PV (t)

∂p
> 0 for all t. We

know
∂PV (t)

∂p
= e−rt qδR(t)

(p + q)2
, where R(t) = 1 − (pt + qt + 1)e−(p+q)t. Note that R(0) = 0.

Moreover, R′(t) = t(p+ q)2e−(p+q)t > 0 for t > 0. Therefore R(t) > 0, ∀t > 0. It follows that
∂PV (t)

∂p
> 0.

2) Similarly, we show that IV (t) is decreasing in p

∂IV (t)

∂p
= −δq

∫ ∞

t

e−rs ∂F (s)

∂p
ds < 0, (A.12)

3) Let H(t) =
∂LV (t)

∂p
=

∂PV (t)

∂p
+

∂IV (t)

∂p
.

∂PV (t)

∂p
and

∂IV (t)

∂p
are derived in the

proofs of part (1) and (2). By the definition of t1, we must have that H(t1) = 0. Now we
will show that t1 is unique:
From the proofs of part (1) and (2), we know that whenever H(t) = 0 we must have

e−rt (1− (pt + qt + 1)e−(p+q)t)

(p + q)2
=

∫ ∞

t

e−rs ∂F (s)

∂p
ds (A.13)

Now, let R1(t) = e−rt (1− (pt + qt + 1)e−(p+q)t)

(p + q)2
, R2(t) =

∫∞
t

e−rs∂F (s)

∂p
ds.

R′
1(t) = e−rtq

(
te−(p+q)t − r

1− (pt + qt + 1)e−(p+q)t

(p + q)2

)
(A.14)

Now we want to show that R1(t) is unimodal in t and that there exists an interior maximizer.
Set (A.14) to zero

(p + q)(p + q + r)te−(p+q)t + re−(p+q)t = r (A.15)

Use G(t) to denote the LHS of (A.15), i.e. G(t) = (p+q)(p+q+r)te−(p+q)t +re−(p+q)t. Then

G′(t) = (p + q)(p + q − t(p + q + r))e−(p+q)t (A.16)
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Now, G′(t) > 0 for t <
p + q

p + q + r
and G′(t) ≤ 0 thereafter, so G(t) is unimodal in t. More-

over, G(t)|t=0 = r and limt→∞ G(t) < r. Thus (A.15) has exactly one interior solution of t
and it is either a maximizer or a minimizer of R1(t). Since R′

1(t)|t=0 = 0 and R′′
1(t)|t=0 > 0,

we must have that R′
1(t)|t=ε > 0 where ε is a small positive number. It follows that R1(t)

must have one interior maximizer. R1(t) is increasing in t to the left of the maximizer and
decreasing to the right.

Next, we will show that t1 is uniquely determined (i.e. R1(t) = R2(t) has a unique so-
lution in t.) From above, we know that R1 is unimodal in t and has an interior maximizer.

Note that R2 is strictly decreasing in t since
∂F (s)

∂p
> 0. Moreover, because

lim
t→∞

(1− (pt + qt + 1)e−(p+q)t)

(p + q)2
=

1

(p + q)2
> 0,

lim
t→∞

∫ ∞

t

∂F (s)

∂p
ds = 0,

there must exist a t̂, s.t. for all t ≥ t̂,

(1− (pt + qt + 1)e−(p+q)t)

(p + q)2
>

∫ ∞

t

∂F (s)

∂p
ds

Hence,

R1(t̂) > e−rt̂

∫ ∞

t̂

∂F (s)

∂p
ds > R2(t̂)

Moreover, since R1(0) < R2(0) and limt→∞ R1(t) = limt→∞ R2(t) = 0, it follows that t1 is
uniquely determined by R1(t) = R2(t).

Lastly, since H(t)|t=0 < 0 and H(t)|t=t̂ > 0, we must have that H(t) < 0 for t < t1

and H(t) ≥ 0 thereafter. To the left of t1,
∂LV (t)

∂p
is decreasing and to the right,

∂LV (t)

∂p
is

increasing. Q.E.D.

Proposition 12: 1) PV (t) is decreasing in q.
(2) We define

t2 = {t :

∫ ∞

t

e−rs(1− F (s)− q
∂F (s)

∂q
) ds = 0}

IV (t) increases with q for t ≤ t2 and decreases thereafter.
(3) We define

t3 = {t :

∫ ∞

t

e−rs(1− F (s)− q
∂F (s)

∂q
) ds =

e−rtp

(p + q)2
(1− (1− qt− q2

p
t)e−(p+q)t)}



92

LV (t) increases with q for t ≤ t3 and decreases thereafter.
Proof:

1) It suffices to show that
∂PV (t)

∂q
< 0 ∀t > 0.

∂PV (t)

∂q
= e−rtpδ(R(t)− 1)

(p + q)2
,

where R(t) = (1−qt− q2

p
t)e−(p+q)t. Note that

∂PV (t)

∂q
< 0 if and only if R(t) < 1. Moreover,

we have

R′(t) =
1

p
(qt− 1)(p + q)2e−(p+q)t

Now observe that R′(t) < 0 for t <
1

q
and R′(t) ≥ 0 thereafter. Thus R(t) decreases with t

first and then increases, and it has a unique minimizer. Thus R(t) reaches its maximum at
t = 0 or t =∞. Note also that R(0) = 1 and that limt→∞ R(t) < 1. Hence, R(t) < 1 for all

t > 0. It follows that
∂PV (t)

∂q
< 0 ∀t > 0.

2) It suffices to show that
∂IV (t)

∂q
> 0 for t < t2 and

∂IV (t)

∂q
< 0 thereafter.

∂IV (t)

∂q
= δ

∫ ∞

s=t

e−rs(1− F (s)− q
∂F (s)

∂q
) ds (A.17)

Let H(s) = 1− F (s)− q
∂F (s)

∂q
. Equating H(s) to 0 yields

q(p + q)

p2
e−2(p+q)s + (

q

p
+ 1)e−(p+q)s =

q2

p
s + qs (A.18)

Note that the LHS of (A.18) is decreasing in s, while the RHS is increasing in s. Moreover,
when s = 0, the LHS is greater than the RHS (H(s) > 0). When s is large, the RHS exceeds
the LHS (H(s) < 0). Thus H(s) hits 0 exactly once. In (A.17), the term inside the integral
is positive for small s and is negative for large s. Therefore, in (A.17), the integral from t to
∞ is positive for t < t2 and negative for t > t2. t2 is uniquely determined by solving for the

value of t such that
∫∞

t
e−rs(1− F (s)− q

∂F (s)

∂q
) ds = 0.

3) First, from parts (1) and (2), we know that
∂LV (t)

∂q
=

∂PV (t)

∂q
+

∂IV (t)

∂q
< 0 for t > t2.

Now we will show that
∂PV (t)

∂q
first decreases with t and then increases. Look at

∂2PV (t)

∂q∂t
=

pδ

(p + q)2
e−(r+p+q)tG(t) (A.19)
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Clearly G(t) > 0 for all t > 1
q
. Moreover, since G′(t) > 0 and G(0) < 0, we must have

G(t) < 0 for t less than some cutoff and G(t) > 0 thereafter. Hence,
∂PV (t)

∂q
first decreases

with t and then increases.

Next, we note that
∂IV (t)

∂q
is decreasing in t for t < t2. Equivalently, −∂IV (t)

∂q
is in-

creasing in t for t < t2.

We need to show that
∂PV (t)

∂q
has unique intersection with −∂IV (t)

∂q
when t < t2. When

t < t2,
∂PV (t)

∂q
is either decreasing or unimodal in t, and −∂IV (t)

∂q
is increasing in t. It

suffices to compare the values between
∂PV (t)

∂q
and −∂IV (t)

∂q
at t = 0 and t = t2.

∂PV (t)

∂q
|t=0 > −∂IV (t)

∂q
|t=0 and

∂PV (t)

∂q
|t=t2 < −∂IV (t)

∂q
|t=t2 . Hence there must exist a

unique t3 such that
∂PV (t)

∂q
= −∂IV (t)

∂q
(
∂LV (t)

∂q
= 0).

∂LV (t)

∂q
> 0 for t < t3 and

∂LV (t)

∂q
< 0 thereafter. Q.E.D.

Proposition 13: λ(s) is decreasing in s.
Proof:
We first define μ(s) = ln(1− λ(s)). Take the first derivative

dμ(s)

ds
=

N

p
(p + q)3 ln

(
1− q

N(p + q)
(1 +

q

p
e−(p+q)s)

)
( q

p
e−2(p+q)s − e−(p+q)s)

(1 + q
p
e−(p+q)s)3

+
q2(p + q)2

p2

e−2(p+q)s

(1 + q
p
e−(p+q)s)

(
1− q

N(p+q)
(1 + q

p
e−(p+q)s)

) (A.20)

Note that the second term is positive and decreasing in s everywhere. To examine the first

term, define μ1(x) = ln
(
1− q

N(p+q)
(1 + q

p
x)
) ( q

p
x2 − x)

(1 + q
p
x)3

, where x = e−(p+q)s. The sign of the

first term in (A.20) is the same as Sign(μ1(x)). Note also that ln
(
1− q

N(p+q)
(1 + q

p
x)
)

< 0.

There are two cases:

(1) If x ≤ p
q
, μ1(x) ≥ 0, then

dμ(s)

ds
> 0.

(2) If p
q

< x ≤ 1, then μ1(x) ≤ 0. To determine the sign of
dμ(s)

ds
, take derivative of μ1(x)

and write it as

μ′
1(x) =

1

(1 + q
p
x)4

(μ11(x) + μ12(x)),
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where

μ11(x) = ln

(
1− q

N(p + q)
(1 +

q

p
x)

)
(3− (

q

p
x− 2)2),

μ12(x) = −(
q

p
x2 − x)

q2

Np(p + q)

(1 + q
p
x)(

1− q
N(p+q)

(1 + q
p
x)
) .

If p
q

< x < min{1, p
q
(
√

3 + 2)}, then μ11(x) < 0 since 3− ( q
p
x − 2)2 > 0. Moreover, because

p
q

< x ≤ 1, we must have μ12 < 0 and μ′
1(x) < 0.

If min{1, p
q
(
√

3+2)} ≤ x ≤ 1, then μ11(x) ≥ 0. Both 3−( q
p
x−2)2 and ln

(
1− q

N(p+q)
(1 + q

p
x)
)

are nonpositive and decreasing in x, so we know that x = 1 maximizes μ11(x). Moreover, we
see that μ12 < 0 and that x = 1 minimizes μ12(x) since μ′

12(x) < 0. Thus we will show that
μ′

1(x) < 0 if we can show μ11(x) + μ12(x)|x=1 < 0.

μ11(x) + μ12(x)|x=1

= ln

(
1− q

N(p + q)
(1 +

q

p
)

)
(3− (

q

p
− 2)2)− (

q

p
− 1)

q2

Np(p + q)

(1 + q
p
)(

1− q
N(p+q)

(1 + q
p
)
)

< − q

N(p + q)
(1 +

q

p
)(3− (

q

p
− 2)2)− (

q

p
− 1)

q2

Np(p + q)

(1 + q
p
)(

1− q
N(p+q)

(1 + q
p
)
) (A.21)

=
q(1 + q

p
)

N(p + q)

(( q
p
− 2)2 − 3)

(
1− q

N(p+q)
(1 + q

p
x)
)
− q( q

p
− 1)

1− q
N(p+q)

(1 + q
p
x)

<
q(1 + q

p
)

N(p + q)

(( q
p
− 2)2 − 3)− q( q

p
− 1)

1− q
N(p+q)

(1 + q
p
x)

(A.22)

=
q(1 + q

p
)

N(p + q)

− q2

p2 − q2

p
+ 4q

p
+ q − 1

1− q
N(p+q)

(1 + q
p
x)

< 0 (A.23)

(A.21) is because ln(1 − y) < −y for 0 < y < 1. (A.22) is due to ( q
p
− 2)2 − 3 > 0 and

0 < 1− q
N(p+q)

(1+ q
p
x) < 1. (A.23) follows from − q2

p2 + 4q
p

< 0 and − q2

p
+q < 0 as q

p
>
√

3+2.

We have shown that μ′
1(x) < 0 for p

q
< x < 1. Substituting x = e−(p+q)s into the expression

for μ1, we see that μ1(s) is increasing in s. Thus, in this case, s = 0 minimizes μ1(s). μ2(s)

is always positive, so we will show
dμ(s)

ds
> 0 if we can show

dμ(s)

ds
|s=0 > 0.

Plugging in s = 0, (A.20) becomes

dμ(s)

ds
|s=0 =

N

p
(p + q)3 ln

(
1− q

N(p + q)
(1 +

q

p
)

)
( q

p
− 1)

(1 + q
p
)3

+
q2(p + q)2

p2

1

(1 + q
p
)
(
1− q

N(p+q)
(1 + q

p
)
) (A.24)
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Because

ln

(
1− q

m(p + q)
(1 +

q

p
)

)
= ln

Np− q

Np
= − ln

Np

Np− q
= − ln(1 +

q

Np− q
) > − q

Np− q
,(A.25)

Applying (A.25), (A.24) becomes

dμ(s)

ds
|s=0 >

Nq

p(Np− q)
(p3 + pq2) > 0

Thus, in both cases
dμ(s)

ds
> 0 holds, implying μ(s) increases with s. Therefore, λ(s) is

decreasing in s. Q.E.D.

Proposition 14: ETt =
∫∞

0
e−

∫ t+x
t

λ(s) ds dx
Proof:
Let us first look at the discrete-time case. Use pk to denote the probability that Betty influ-
ences someone who buys at k days after Betty.
The probability that Betty influences other people for the first time x or more days after her
purchase is Pr(Tt > x) = Πt+x

k=t+1(1− pk). Divide each day into n time slots. Also, cut each

pk in
1

n
. The probability that Betty’s first influence happens after x days becomes:

Pr(Tt > x) = Πt+x
k=t+1(1−

pk

n
)n (A.26)

To see what happens to (A.26) as n approaches infinity, take the logarithm of the RHS of
(A.26).

log(Πt+x
k=t+1(1−

pk

n
)n) =

t+x∑
k=t+1

(nlog(1− pk

n
)) (A.27)

Using a Taylor expansion, we know that log(1− pk

n
) = −pk

n
as n goes to infinity. Therefore,

Pr(Tt > x) = e−
∑t+x

k=t+1 pk if n approaches infinity.

Now we want to interpolate to cover all points in time. Replace pk with λ(s). The dis-

tribution function is now Pr(Tt > x) = e−
∫ t+x

t λ(s) ds. This quantity is well defined for all real

values of x ≥ 0. Therefore, ETt =
∫∞

0
e−

∫ t+x
t

λ(s) ds dx. Q.E.D.

Proposition 15: ETt is increasing in t.
Proof:
We have

∂ETt

∂t
=

∫ ∞

0

∂e−
∫ t+x

t
λ(s) ds

∂t
dx (A.28)
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Applying Proposition 13, we see that e−
∫ t+x
t λ(s) ds is increasing in t for any fixed x. So

∂ETt

∂t
> 0. Q.E.D.

Proposition 16: Let G(t, F0) =
(p + q)2e−(p+q+r)t

(p + qF0 + q(1− F0)e−(p+q)t)2
, then

(1) The optimal F ∗
0 is unique.

(2) F ∗
0 > 0 if and only if

∫∞
0

G(t, 0) dt >
d

(s− c)r
. Otherwise, F ∗

0 = 0.

(3) If F ∗
0 > 0, F ∗

0 satisfies
∫∞

0
G(t, F0) dt =

d

(s− c)r
.

Proof:
First rewrite (2.19) as

π∗
0 = max

0≤F0≤1
(s− c)(e−rtF (t)|t=∞ − e−rtF (t)|t=0 + r

∫ ∞

0

e−rtF (t) dt) + (s− c− d)F0

= max
0≤F0≤1

(s− c)(r

∫ ∞

0

e−rtF (t) dt− F0) + (s− c− d)F0 (A.29)

where F (t) =
p + qF0 − p(1− F0)e

−(p+q)t

p + qF0 + q(1− F0)e−(p+q)t

The first order condition (the second derivative is negative) is∫ ∞

0

(p + q)2e−(p+q+r)t

(p + qF0 + q(1− F0)e−(p+q)t)2
dt =

d

(s− c)r
(A.30)

Let G(t, F0) =
(p + q)2e−(p+q+r)t

(p + qF0 + q(1− F0)e−(p+q)t)2
, and then (A.30) becomes

∫ ∞

0

G(t, F0) dt =
d

(s− c)r
(A.31)

As G decreases with F0, the LHS of (A.30) is decreasing in F0. Thus there exists a unique
optimal F ∗

0 which can be found by a simple bisection search. Part (1) and part (3) follow.
Part (2) follows as G decreases with F0. Q.E.D.

Proposition 17: (1) F ∗
0 decreases with p;

(2) If
∫∞

0
U(t, F ∗

0 ) dt > 0 (U(t, F ∗
0 ) is defined in closed-form), F ∗

0 increases with q; Otherwise,
F ∗

0 decreases with q;
(3) F ∗

0 decreases with d.
(4) F ∗

0 increases with the profit margin (s− c).
(5)F ∗

0 increases with r.
Proof:

1) First,
∂G(t, 0)

∂p
< 0, so for a larger value of p it is more likely to have

∫ ∞

0

G(t, 0) dt <
d

(s− c)r
,
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leading to F ∗
0 = 0.

To show F ∗
0 decreases with p, we need

dF ∗
0

dp
< 0.

By Proposition 16, we have ∫ ∞

0

G(t, F ∗
0 ) dt − d

(s− c)r
= 0

Let H =
∫∞

0
G(t, F ∗

0 ) dt− d

(s− c)r
, because

∂G(t, F ∗
0 )

∂p
=

q(F ∗
0 − 1)(1− e−(p+q)t)

(p + qF ∗
0 + q(1− F ∗

0 )e−(p+q)t)4
e−rt <

0. Thus
∂H

∂p
< 0.

Similarly,
∂G(t, F ∗

0 )

∂F ∗
0

< 0, so we have
∂H

∂F ∗
0

< 0.

By the Implicit Function Theorem,
dF ∗

0

dp
= −

∂H

∂p
∂H

∂F ∗
0

< 0.

2) We need
dF ∗

0

dq
> 0 if

∫∞
0

U(t, F ∗
0 ) dt > 0 and

dF ∗
0

dq
< 0 otherwise.

Taking the derivative of G(t, F ∗
0 ) with respect to q yields

∂G(t, F ∗
0 )

∂q
= U(t, F ∗

0 )

where U(t, F ∗
0 ) =

(p + q)e−(r+p+q)t

(p + qF ∗
0 + q(1− F ∗

0 )e−(p+q)t)3
(2p− pqt− 2pF ∗

0 − pqtF ∗
0 − q2F ∗

0 t− p2t)−

e−(p+q)t(2p− 2pt− 2pF ∗
0 + pqtF ∗

0 + q2F ∗
0 t− q2t). Hence, if

∫∞
0

U(t, F ∗
0 ) dt > 0,

∂H

∂q
> 0, and

thereby
dF ∗

0

dq
> 0, then F ∗

0 is increasing in q. Otherwise, F ∗
0 is decreasing in q.

3) In (A.31), the RHS is increasing in d. The LHS is decreasing in F0, thus F ∗
0 is decreasing

in d.
4) In (A.31), the RHS is decreasing in s − c. The LHS is decreasing in F0, thus F ∗

0 is in-
creasing in s− c.
5) The RHS of (A.31) is decreasing in r. The LHS is decreasing in F0. So F ∗

0 is increasing
in r.
Q.E.D.

Proposition 18: Denote by τB =
1

p + q
ln

q

p
the time of the maximum demand rate for

Bass diffusion. Also, define τ1 = T + L +
1

p + q
ln

q(1−D2)

p + qD2
, d1 =

(p + q)2

4q
, and

τ2 = {t : (p + qd(t))L = ln
2q(1− d(t))

p + q
} (A.32)
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where d(t) is from (2.23).
The maximum demand rate occurs at

τD
max =

⎧⎨
⎩

τ1, T < τ2;
τB, T > τB;
argmax{t | d(t), t = T, T + L}, o.w.

and is equal to

d(τD
max) =

{
d1, T < τ2 or T > τB;
max{d(t), t = T, T + L}, o.w.

Proof: Taking the first order condition of (2.23), we obtain t = τB. Further, the first order
condition of (2.31) gives us that t = τ1. Thus, if τB is attainable (T > τB), τD

max = τB; or if
τ1 is attainable (T + L < τ1), τD

max = τ1. The condition that T + L < τ1 can be simplified as
q(1−D2) > p + qD2. Plugging in (2.29), we have

(p + qD1)L < ln
2q(1−D1)

p + q
(A.33)

The LHS of (A.33) increases with D1, while the RHS decreases with it. Also note that
LHS < RHS when D1 = 0 and LHS > RHS when D1 = 1. we can claim that (A.32) gives
a unique τ2 as d(t) is strictly increasing in t from (2.23). So (A.33) holds if T < τ2.
Finally, if neither τB nor τ1 is attainable, the maximum demand rate is achieved during
[T, T + L]. Because d(t) decreases with t when T ≤ t < T + L, the maximum demand rate
is achieved at either T or T + L. And the result follows. Q.E.D.

Proposition 19:
∫∞

t=0
LV (t)d(t) dt =

∫∞
t=0

e−rts(t) dt ≤ ∫∞
t=0

e−rtdbass(t) dt.
Proof: We first show that

∫∞
t=0

LV (t)d(t) dt =
∫∞

t=0
e−rts(t) dt.∫ ∞

t=0

LV (t)d(t) dt

=

∫ T

t=0

PV (t)d(t) dt +

∫ T

t=0

IV (t)d(t) dt +

∫ T+L

t=T

PV (t)d(t) dt +

∫ T+L

t=T

IV (t)d(t) dt

+

∫ ∞

t=T+L

PV (t)d(t) dt +

∫ ∞

t=T+L

IV (t)d(t) dt

=

(∫ T

t=0

PV (t)d(t) dt +

∫ T

t=0

IV1(t)d(t) dt

)
+

(∫ T

t=0

IV2(t)d(t) dt +

∫ T+L

t=T

PV (t)d(t) dt

)

+

(∫ T

t=0

IV3(t)d(t) dt +

∫ T+L

t=T

IV (t)d(t) dt +

∫ ∞

t=T+L

PV (t)d(t) dt +

∫ ∞

t=T+L

IV (t)d(t) dt

)
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By some algebra, the terms in the first brackets are∫ T

t=0

PV (t)d(t) dt +

∫ T

t=0

IV1(t)d(t) dt

=

∫ T

t=0

(e−rt(p + qD(t)(1− δ))(1−D(t)) + δqe−rt(1−D(t))D(t)) dt

=

∫ T

t=0

e−rtd(t) dt (A.34)

The terms in the second brackets are∫ T

t=0

IV2(t)d(t) dt +

∫ T+L

t=T

PV (t)d(t) dt

=
δqe−r(T+L)(D2 −D1)D1

p + qD1
+ e−r(T+L)(D2 −D1)(

p

p + qD1
+

qD1(1− δ)

p + qD1
)

= e−r(T+L)(D2 −D1) (A.35)

The terms in the third brackets are∫ T

t=0

IV3(t)d(t) dt +

∫ T+L

t=T

IV (t)d(t) dt +

∫ ∞

t=T+L

PV (t)d(t) dt +

∫ ∞

t=T+L

IV (t)d(t) dt

= D1

∫ ∞

t=T+L

δqe−rt(1−D(t)) dt + (D2 −D1)

∫ ∞

t=T+L

δqe−rt(1−D(t)) dt

+

∫ ∞

t=T+L

e−rt(1−D(t))(p + qD(t)(1− δ)) dt

+

∫ ∞

t=T+L

e−rtqδ(D(t)−D2)(1−D(t))) dt

=

∫ ∞

t=T+L

e−rt(1−D(t))(p + qD(t)) dt (A.36)

=

∫ ∞

t=T+L

e−rtd(t) dt

Therefore,∫ ∞

t=0

LV (t)d(t) dt =

∫ T

t=0

e−rtd(t) dt + e−r(T+L)(D2 −D1) +

∫ ∞

t=T+L

e−rtd(t) dt =

∫ ∞

t=0

e−rts(t) dt

We then show that
∫∞

t=0
e−rts(t) dt ≤ ∫∞

t=0
e−rtdbass(t) dt. To see this, we first note that

for any τ < T , S(τ) = Dbass(τ). For T ≤ τ < T +L, S(τ) < Dbass(τ). Finally, for τ > T +L,
S(τ) ≤ Dbass(τ), because with the same diffusion speed, a diffusion process with a higher
initial converge can not lead to a lower final coverage. Therefore, we have S(τ) ≤ Dbass(τ),
∀τ . This is equivalent to ∫ τ

t=0

s(t) dt ≤
∫ τ

t=0

dbass(t) dt
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Multiplying e−rτ on both sides, we have

e−rτ

∫ τ

t=0

s(t) dt ≤ e−rτ

∫ τ

t=0

dbass(t) dt (A.37)

Since (A.37) is true for all τ , we take integration on both sides,∫ ∞

τ=0

e−rτ

∫ τ

t=0

s(t) dt dτ ≤
∫ ∞

τ=0

e−rτ

∫ τ

t=0

dbass(t) dt dτ

Interchanging integration,∫ ∞

t=0

s(t)

∫ ∞

τ=t

e−rτ dτ dt ≤
∫ ∞

t=0

dbass(t)

∫ ∞

τ=t

e−rτ dτ dt

Simplifying the inner integral gives us∫ ∞

t=0

e−rts(t) dt ≤
∫ ∞

t=0

e−rtdbass(t) dt

This completes the proof. Q.E.D.

Proposition 20: For any fixed L, an out-of-stock phenomenon that happens earlier in
the product life cycle always leads to a greater loss in total customer LV.
Proof: To show this, we use S(t, T ) and s(t, T ) to denote the cumulative sales and sales rate
respectively at t when a product out-of-stock happens at T .
Suppose T1 < T2. For any τ < T1, we have S(τ, T1) = S(τ, T2). For T1 ≤ τ ≤ T2,
S(τ, T1) < S(τ, T2). For τ > T2, S(τ, T1) ≤ S(τ, T2), because with the same diffusion speed,
a higher initial coverage can not lead to lower final coverage.
Therefore, with a fixed L, for T1 < T2, we must have S(t, T1) ≤ S(t, T2) for all t.

∫ τ

t=0

s(t, T1) dt ≤
∫ τ

t=0

s(t, T2) dt

Multiplying e−rτ on both sides, we have

e−rτ

∫ τ

t=0

s(t, T1) dt ≤ e−rτ

∫ τ

t=0

s(t, T2) dt (A.38)

Since (A.38) is true for all τ , we take integration on both sides,∫ ∞

τ=0

e−rτ

∫ τ

t=0

s(t, T1) dt dτ ≤
∫ ∞

τ=0

e−rτ

∫ τ

t=0

s(t, T2) dt dτ

Interchanging integration,∫ ∞

t=0

s(t, T1)

∫ ∞

τ=t

e−rτ dτ dt ≤
∫ ∞

t=0

s(t, T2)

∫ ∞

τ=t

e−rτ dτ dt
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Simplifying the inner integral gives us∫ ∞

t=0

e−rts(t, T1) dt ≤
∫ ∞

t=0

e−rts(t, T2) dt

By Proposition 19, we then claim that the stockout at T1 leads to a lower total customer LV
than the stockout at T2. Q.E.D.

Solutions for Fi(t, ·):
To simplify notation, we omit the time argument from functions and write Fi instead of
Fi(t, F

1
0 , F 2

0 , F 3
0 , F 4

0 ), i = 1, 2, 3, 4.
Solution for F1(t, F

1
0 , F 2

0 , F 3
0 , F 4

0 )

f1 = p1(θ1 − F1), that is,
dF1

θ1 − F1
= p1dt, the solution for this differential equation is

F1 = θ1 − e−p1(t+C). Since F1 =
F 1

0

N
,

F 1
0

N
= θ1 − e−p1C , and C = − 1

p1
lnθ1. Substituting the

value of C, we have F1 = θ1(1− e−p1t) +
F 1

0

N
e−p1t.

Solution for F2(t, F
1
0 , F 2

0 , F 3
0 , F 4

0 )
We have

dF2

dt
= q1(F1 + F2)(θ2 − F2)

= (q1θ1 − q1θ1e
−p1t + q1

F 1
0

N
e−p1t + q1F2)(θ2 − F2)

= (q1θ1 − q1θ1e
−p1t + q1

F 1
0

N
e−p1t)θ2 + (q1θ2 − q1θ1 + q1θ1e

−p1t − q1
F 1

0

N
e−p1t)F2

−q1F
2
2 (A.39)

Equation (A.39) is a Ricatti equation of the general form
dF2

dt
= P (t) + Q(t)F2 + R(t)F 2

2 ,

with

P (t) = θ2θ1q1(1− e−p1t) + q1
F 1

0

N
e−p1t

Q(t) = q1θ2 − q1θ1 + θ1q1e
−p1t − q1

F 1
0

N
e−p1t

R(t) = −q1

We observe that F2 = θ2 is a potential solution, and let z =
1

F2 − θ2

, then F2 = θ2 +
1

z
, and

dF2

dt
= − 1

z2

dz

dt
.
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Equation (A.39) now becomes

− 1

z2

dz

dt
= P (t) + Q(t)

zθ2 + 1

z
− q1

(zθ2 + 1)2

z2

dz

dt
= (−P (t)−Q(t)θ2 + q1θ

2
2)z

2 −Q(t)z + 2q1θ2z + q1

dz

dt
= q1 + q1θ1z − θ1q1e

−p1tz + q1θ2z + q1
F 1

0

N
e−p1t (A.40)

Equation (A.40) is of the form
dz

dt
+ P1(t)z = Q1(t), with

P1(t) = θ1q1e
−p1t − q1θ1 − q1θ2 − q1

F 1
0

N
e−p1t

Q1(t) = q1

For F2 continuous in [0, θ2], z is continuous in (−∞,− 1
θ2

], thus the general solution for
equation (A.40) is

z =

∫
R(s)Q1(s) ds + C

R(t)
(A.41)

where R(t) = exp(
∫

P1(s) ds).∫
P1(s) ds = −q1θ1t− q1θ2t + (θ1 − F 1

0

N
)

∫
q1e

−p1s ds

= −q1θ1t− q1θ2t−
(θ1 − F 1

0

N
)q1

p1

e−p1t

We get

R(t) = exp

(
−q1θ1t− q1θ2t−

(θ1 − F 1
0

N
)q1

p1

e−p1t

)

And hence∫
R(s)Q1(s) ds =

∫ t

−∞
exp

(
−q1θ1s− q1θ2s−

(θ1 − F 1
0

N
)q1

p1
e−p1s

)
q1 ds (A.42)

To solve (A.42), we do another transformation by letting a = e−p1s, thus s = − 1

p1
lna, and

ds = − 1

p1a
da. Equation (A.42) then becomes

∫
R(s)Q1(s) ds = q1

∫ ∞

e−p1t

exp

(
q1

p1
(θ1 − F 1

0

N
)lna +

q1

p1
θ2lna− q1

p1
aθ1

)
(

1

p1a
) da

=
q1

p1

∫ ∞

e−p1t

a
q1θ1+q1θ2

p1
−1

e
− q1(θ1−

F1
0

N
)a

p1 da

=
q1

p1

(
q1

p1
(θ1 − F 1

0

N
)

)− q1θ1+q1θ2
p1

Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
(θ1 − F 1

0

N
)a

)
(A.43)
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Where in (A.43), Γ(η, k) is the “upper” incomplete gamma function, Γ(η, k) =
∫∞

k
vη−1e−v dv.

Substituting a = e−p1t in (A.43) and then back to (A.41), we obtain

z(t) =

q1

p1

(
q1

p1
(θ1 − F 1

0

N
)

)− q1θ1+q1θ2
p1

Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
(θ1 − F 1

0

N
)e−p1t

)
+ C

exp

(
−q1θ1t− q1θ2t− q1

p1
e−p1t(θ1 − F 1

0

N
)

)

Transforming z back to F2, we get

F2 = θ2 +

exp

(
−q1θ1t− q1θ2t− q1

p1
e−p1t(θ1 − F 1

0

N
)

)

q1

p1

(
q1

p1

(θ1 − F 1
0

N
)

)− q1θ1+q1θ2
p1

Γ

(
q1θ1 + q1θ2

p1

,
q1

p1

(θ1 − F 1
0

N
)e−p1t

)
+ C

As F2(0, F
1
0 , F 2

0 , F 3
0 , F 4

0 ) =
F 2

0

N
, we have

F 2
0

N
= θ2 +

exp

(
−q1

p1
(θ1 − F 1

0

N
)

)

q1

p1

(
q1

p1
(θ1 − F 1

0

N
)

)− q1θ1+q1θ2
p1

Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
(θ1 − F 1

0

N
)

)
+ C

Then

C = −
exp

(
− q1

p1
(θ1 − F 1

0

N
)
)

θ2 − F 2
0

N

− q1

p1
(
q1

p1
(θ1 − F 1

0

N
))

− q1θ1+q1θ2
p1 Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
(θ1 − F 1

0

N
)

)

Thus,

F2 = θ2 + exp

(
−q1θ1t− q1θ2t− q1

p1
e−p1t(θ1 − F 1

0

N
)

)

(
q1

p1
(
q1

p1
(θ1 − F 1

0

N
))

− q1θ1+q1θ2
p1 (Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
(θ1 − F 1

0

N
)e−p1t

)

−Γ

(
q1θ1 + q1θ2

p1
,
q1

p1
(θ1 − F 1

0

N
)

)
)− exp(− q1

p1
(θ1 − F 1

0

N
))

θ2 − F 2
0

N

)−1

Solution for F3(t, F
1
0 , F 2

0 , F 3
0 , F 4

0 )
f3 = p2(θ3 − F3), so we perform a similar solution procedure of F1, and obtain F3 =

θ3(1− e−p2t) +
F 3

0

N
e−p2t.
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Solution for F4(t, F
1
0 , F 2

0 , F 3
0 , F 4

0 )
We have

dF4

dt
= q2(w(F1 + F2) + (1− w)(F3 + F4))(θ4 − F4)

= q2(wF1 + wF2 + (1− w)F3)θ4 + (q2(1− w)θ4 − q2(wF1 + wF2 + (1− w)F3))F4

−q2(1− w)F 2
4 (A.44)

Equation (A.44) is a Ricatti equation of the general form
dF4

dt
= P (t) + Q(t)F4 + R(t)F 2

4 ,

with

P (t) = q2θ4(wF1 + wF2 + (1− w)F3)

Q(t) = q2(1− w)θ4 − q2(wF1 + wF2 + (1− w)F3)

R(t) = −q2(1− w)

We observe that F4 = θ4 is a potential solution, and let z =
1

F4 − θ4

, then F4 = θ4 +
1

z
, and

dF4

dt
= − 1

z2

dz

dt
.

Equation (A.44) now becomes

− 1

z2

dz

dt
= P (t) + Q(t)

zθ4 + 1

z
− q2(1− w)

(zθ4 + 1)2

z2

dz

dt
= (2q2θ4(1− w)−Q(t))z + q2(1− w) (A.45)

= q2(wF1 + wF2 + (1− w)F3 + (1− w)θ4)z + q2(1− w) (A.46)

Equation (A.46) is of the form
dz

dt
+ P1(t)z = Q1(t), with

P1(t) = −q2(wF1 + wF2 + (1− w)F3 + (1− w)θ4)

Q1(t) = q2(1− w)

For F4 continuous in [0, θ4], z is continuous in (−∞,− 1
θ4

], thus the general solution for
equation (A.40) is

z =

∫ t

−∞ R(s)Q1(s) ds + C

R(t)
(A.47)

where R(t) = exp(
∫

P1(s) ds).
Transforming z back to F4, we get

F4 = θ4 +
R(t)∫ t

−∞ R(s)Q1(s) ds + C

As F4(0) =
F 4

0

N
, we have

F 4
0

N
= θ4 +

R(0)∫ 0

−∞ R(s)Q1(s) ds + C
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Then

C = − 1

θ4 − F 4
0

N

Thus,

F4 = θ4 +
R(t)

q2(1− w)
∫ t

0
R(s) ds− 1

θ4 − F 4
0

N

(A.48)

where R(t) = exp(
∫ t

0
−q2(wF1(s, ·) + wF2(s, ·) + (1−w)F3(s, ·) + (1−w)θ4) ds) and F1(s, ·),

F2(s, ·), F3(s, ·) can be obtained from previous results.
Equations (3.5) to (3.8) can be obtained as a special case where F i

0 = 0, ∀i.

Proposition 21:
∑4

i=1

∫ τ

t=0
LVi(t)fi(t) dt =

∑4
i=1

∫ τ

t=0
e−rtfi(t) dt.

Proof:
First, let us look at the aggregated customer LV of type 1 customers.∫ τ

t=0

LV1(t)f1(t) dt

= δ

(∫ τ

t=0

∫ τ

s=t

e−rt(
f2(s)

F1(s) + F2(s)
+

wf4(s)

w(F1(s) + F2(s)) + (1− w)(F3(s) + F4(s))
) dsf1(t) dt

)

+

∫ τ

t=0

e−rtf1(t) dt

= δ

(∫ τ

s=0

∫ s

t=0

f1(t) dte−rt(
f2(s)

F1(s) + F2(s)
+

wf4(s)

w(F1(s) + F2(s)) + (1− w)(F3(s) + F4(s))
) ds

)

+

∫ τ

t=0

e−rtf1(t) dt

= δ

(∫ τ

s=0

e−rtF1(s)

F1(s) + F2(s)
f2(s) ds +

∫ τ

s=0

e−rtwF1(s)

w(F1(s) + F2(s)) + (1− w)(F3(s) + F4(s))
f4(s) ds

)

+

∫ τ

t=0

e−rtf1(t) dt

The aggregated customer LV of other types can be written in similar expressions. Summing
them up we conclude that

∑4
i=1

∫ τ

t=0
LVi(t)fi(t) dt =

∑4
i=1

∫ τ

t=0
e−rtfi(t) dt. Q. E. D.

Proposition 22:
LVi(t) i = 1, ..., 4 decreases with p1; LV3(t) and LV4(t) decreases with p2.
Proof: As p1 increases, we know from (3.5) that F1(t) will increase. It follows from (3.2)
and (3.4) that F2(t) and F4(t) will both increase as well. Therefore, all IVi(t) i = 1, ..., 4 will
decrease from (3.18) and (3.19). As PVs are independent of p1, LVi(t) i = 1, ..., 4 decreases
with p1.
As p2 increases, we know from (3.7) that F3(t) will increase. It follows from (3.4) that F4(t)
will increase as well. Therefore, we have that all IV3(t) (IV4(t)) will decrease from (3.19).
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As PV3(t) and PV4(t) are independent of p2, we have LV3(t) and LV4(t) decreases with p2.
Q. E. D.

Proposition 23:
PVi(t), IVi(t) and LVi(t) i = 1, ..., 4 are all decreasing convex in t.
Proof:

dIV3(t)

dt
= −δq2(1− w)(θ4 − F4(t))e

−rt < 0

d2IV3(t)

dt2
= δq2(1− w)(e−rtf4(t) + re−rt(θ4 − F4(t))) > 0

Thus, IV3(t) (IV4(t)) is decreasing convex in t. Similarly, IV1(t) (IV2(t)) is decreasing con-
vex in t. Besides, as PVs are all decreasing convex in t, the above results hold for LVi(t)
i = 1, ..., 4. Q. E. D.

Proposition 24:
We have
1) LV1(t) > LV2(t), LV3(t) > LV4(t), ∀ t ∈ [0, τ ].
2) If w ≥ 1/2, LV1(t) ≥ LV3(t), LV2(t) ≥ LV4(t), ∀ t ∈ [0, τ ].
3) a. If w ≥ 1/2, there exists a cutoff time t̂, s.t., ∀t > t̂, LV3(t) > LV2(t).
b. t̂ decreases with p1 and p2.
Proof: Part (1) and (2) are straightforward from (3.18) and (3.19). To see part (3a), we first
note that LV2(t) > LV3(t) if and only if

q1

∫ τ

t

e−rt(θ2 − F2(s)) ds + q2(2w − 1)

∫ τ

t

e−rt(θ4 − F4(s)) ds > 1 (A.49)

Taking derivative (with respect to t) to the LHS in (A.49), and when w ≥ 1/2 we have

e−rt(−q1(θ2 − F2(t))− q2(2w − 1)(θ4 − F4(t))) < 0

So the LHS of (A.49) decreases with t. Note also that (A.49) does not hold when t = τ . Let
t̂ = {t : q1

∫ τ

t
θ2 − F2(s) ds + q2(2w − 1)

∫ τ

t
θ4 − F4(s) ds = 1}, then ∀t > t̂, LV3(t) > LV2(t).

Part (3b) directly follows from Proposition 22. Q. E. D.

Proposition 25:
If θ1 = θ3, p1 = p2, it’s preferable to distribute gifts to type 1 customers than to type 3
customers. If θ2 = θ4, q1 = q2, w ≥ 1/2, it’s preferable to distribute gifts to type 2 customers
than to type 4 customers.
Proof: This is straightforward from Equations (3.1) to (3.4).

Proposition 26:
If w = 1, the firm should never send samples to type 3 or type 4 customers.
Proof: If w = 1, IV3(0, ·) = 0, as

∫ τ

0
LV3(t, F

1
0 , F 2

0 , F 3
0 , F 4

0 )f3(t, ·) dt ≥ 0, IV3(0, F
1
0 , F 2

0 , F 3
0 +

1, F 4
0 ) − ∫ τ

0
LV3(t, F

1
0 , F 2

0 , F 3
0 , F 4

0 )f3(t, ·) dt ≤ 0. This holds for i = 4 as well. So the firm
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should never send samples to type 3 or type 4 customers. Q. E. D.

Proposition 27:
If w = 0, q1 = 0, the firm should never send samples to type 2 customers.
Proof: If w = 0, q1 = 0, IV2(0, ·) = 0, as

∫ τ

0
LV2(t, F

1
0 , F 2

0 , F 3
0 , F 4

0 )f2(t, ·) dt ≥ 0, IV2(0, F
1
0 , F 2

0 , F 3
0 +

1, F 4
0 ) − ∫ τ

0
LV2(t, F

1
0 , F 2

0 , F 3
0 , F 4

0 )f2(t, ·) dt ≤ 0. So the firm should never send samples to
type 2 customers. Q. E. D.
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Appendix B

A Pharmaceutical Game

Education research shows that playing games is far more engaging than listening to
lectures, as inspiring people to learn new things often requires challenges, curiosity, fantasy
and control. Motivated by this, I have led to design and develop a teaching game on the topic
of new drug development in the pharmaceutical industry. In the game, students working
in teams, act as executives of a pharmaceutical firm. They need to figure out strategies of
planning resource capacity, budgeting capital, managing R&D portfolio, and then apply them
to a simulated pharmaceutical R&D environment to compete for final profit. The first version
of the game was played in the course of Service Operations Design and Analysis in 2007 Fall,
then an improved version was played in 2009 Spring. Students LOVE this game! They
were so enjoyed and the winning team was thrilled when they received the prize - chocolate!
Each year after the game, my email box was filled with excitement and appreciation from
students. They were so amazed that the R&D management in pharmaceutical industry,
which is considered as a very complicated and overwhelming decision process, can become
so crystal-clear after a 1-hour game with a lot of fun. I gave a talk on this teaching game at
INFORMS Annual Conference in 2008 and received many positive feedbacks.
Game Background:
Founded in 1868, Golden Bear Health Care has established itself as one of the biggest
and most successful producers of pharmaceutical products in Bay area. With its consistent
innovation in medicine, Golden Bear now has a steady stream of blockbuster drugs, including
Aekit, Mavoir, Tloea and Nigxx, bringing approximately 20 million profit every year.

To continue its business success, in the next 30 years, Golden Bear is planning to invest
in the development process of several drugs. You are hired as the executive of Golden Bear’s
R&D Planning Department to manage the new product pipeline as well as to develop a
robust strategy to hedge against the risk, in order to sustain the firm’s long term growth.
Before starting the exciting journey, you first go over the inherently complicated structure
of pharmaceutical industry and the challenges you are facing:

1. Process: New drug development in the pharmaceutical industry is regulated and thus,
proceeds along a series of self-defined steps: After going through the basic research,
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drugs are tested on animals at pre-clinical stage, then administered to healthy human
volunteers at Phase I, to small-scale and large-scale patients with target disease or
indication at Phase II and III, and finally released to market if FDA approves. Phar-
maceutical firms make some of the biggest gambles of any industry: no financial benefit
accrues until a drug is marketed, while costs are incurred from the moment when re-
search starts, typically 10-15 years earlier. Figure B.1 shows the various activities
involved in the development of a new drug product.

Figure B.1: New Drug Development Process

2. Patent Protection: The patent protection system by FDA offers exclusive rights to sell
a drug approved by FDA, creating a temporary monopoly position for the pharmaceu-
tical firm in the marketplace with limited competitive pressure. Patents are usually
protected for 20 years, and when they are due to expire, knockoffs will eat deeply into
the market share. However, as patent clock starts ticking from pre-clinical, the longer
a drug remains in the development pipeline, the shorter its patent covered sales period.

3. Uncertainties: High uncertainties at both technical and marketing sides are another big
challenge to Pharmaceutical industry. Because of the low success rate, long and vari-
able development durations, resource requirement, facility capital cost, internal depen-
dencies, it makes the technical of pharmaceutical industry very much unpredictable.
The broad uncertainty in sales estimates along with that in technical side enforces
pharmaceutical firms face the fundamental tradeoffs between risk and revenues.

4. Risk Management:

(a) Risk management for a drug: This refers to the rule that the firm always has
the freedom to invest on more back-up compounds with more pharmacologists
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and patients to increase the success rate, since the more compounds go into a
stage, the higher the probability that there is at least one passes the stage. But
unfortunately, no rule is perfect, even under extremely heavy investment, it won’t
rule out the possibility of losing the gamble.

(b) Risk management across drugs (Resource management): With limited resources,
such as scientists, infrastructure and capitals, all drugs can not be developed
simultaneously. On one hand, resource constraints tend to delay the progress
of these drugs to market introduction. On the other hand, the inherently low
success rates associated with new drug development, along with the uncertain
test duration at each stage, make the demand for resources at different stages
of the development pipeline highly variable and hence very difficult to predict.
Risk management across drugs refers to the investment decision on resources
when a firm wants to develop more than one drug at the same time. If resource is
under-investment, one may see potential drugs waiting for development resources,
leading to more possible revenue lost. But if the firm invests too much, we might
see development resources waiting for drugs, causing resource wastes. Golden
Bear has the option to expand its resources every 5 years, but once expanded,
they can not be reduced back.

5. Dependencies: On the cost side, due to resource sharing, the combined cost of de-
velopment activities for drugs targeting the same disease is less than the sum of the
individual costs. On the financial return side, cannibalization occurs when more than
one drug succeeds in a category, competing each other in the marketplace, making the
combined revenue of successful drugs targeting the same disease less than the sum of
the individual revenues. While synergies occur if products are complement to each
other, and will enhance the total sales.

Golden Bear is planning to invest in the development process of several drugs target-
ing three diseases: obesity, depression and diabetes. Specifically, there are 3 anti-obesity
drugs specially designed for kids (Obesity-A), female adults (Obesity-B) and male adults
(Obesity-C) respectively, 2 drugs with different potency to achieve adequate relief of de-
pressive symptoms (Depression-A, Depression-B) and 3 drugs targeting diabetes of type 1
(Diabetes-A), type 1.5 (Diabetes-B) and type 2 (Diabetes-C) respectively. Information of
each drug candidate is listed as follows:

1. Golden Bear’s objective is to maximize its profit for the next 30 years. Each drug
candidate has to go through preclinical, Phase I, Phase II, Phase III stages and subject
to FDA approval.

2. Developing each drug requires 1 unit of resource, and Golden Bear has the option to
expand resources at each stage every 5 years. Each year it chooses to expand resource
for some stage k, uk units of resources are added to that stage one year later. Note
that once the capacity gets expanded, it cannot be reduced during the horizon. Each
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year at stage k, each unit of existing resource incurs $V k
f fixed cost, each unit of re-

source being occupied incurs $V k
m manufacturing cost, and each unit of resource being

expanded incurs $V k
e expansion cost.

Stage k uk V k
f V k

m V k
e

Pre-Clinic 2 50 10 2000
Phase I 1 50 10 2000
Phase II 1 50 15 2000
Phase III 1 20 40 2000

3. The probability of drug i successfully passing stage k (pi
k) is measured by level “Low

(L),” “MediumLow (ML),” “Medium (M),” “MediumHigh (MH)” or “High (H)”.

Probability Level Prob Value
Low 0.17
MediumLow 0.33
Medium 0.50
MediumHigh 0.67
High 0.85
FDA 0.99

4. Patent clock starts ticking from pre-clinical, and patents are usually protected for 20
years. The yearly revenue for Drug i achieves ri

1 if a successful drug is under protection,
and drops to ri

2 otherwise.

Drug ri
1 ri

2 pi
preclinical pi

phaseI pi
phaseII pi

phaseIII pi
FDA

Obesity-A 2000 400 M M M M FDA
Obesity-B 1500 350 M ML ML ML FDA
Obesity-C 1000 200 ML L L ML FDA
Depression-A 3000 400 ML ML ML L FDA
Depression-B 4000 500 M L L L FDA
Diabetes-A 4000 500 M L L ML FDA
Diabetes-B 2000 200 M M ML ML FDA
Diabetes-C 1000 50 ML M L M FDA

5. The development time for drug i at stage k follows a triangular distribution, with spec-
ified values for parameters of min, middle, max.
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Stage Obe-A Obe-B Obe-C Dep-A Dep-B Dia-A Dia-B Dia-C
Preclinical(min) 1 1 1 1 1 1 1 1
Preclinical(middle) 2 3 2 2 2 2 2 2
Preclinical(max) 3 4 5 5 4 4 3 4
PhaseI(min) 1 1 1 1 1 1 1 1
PhaseI(middle) 4 4 3 2 2 2 3 2
PhaseI(max) 5 5 5 4 4 3 4 3
PhaseII(min) 1 1 1 1 1 1 1 1
PhaseII(middle) 2 2 2 3 3 3 3 3
PhaseII(max) 3 5 3 4 5 4 4 4
PhaseIII(min) 2 2 2 1 1 1 1 1
PhaseIII(middle) 4 3 3 2 2 2 2 3
PhaseIII(max) 5 5 5 4 4 3 3 4

6. At any stage, Golden Bear can choose to invest on the pass rate for a drug by hiring
more scientists or patients. The investment cost is N ∗ 1000 if the pass rate is invested
to be N level up (i.e. N=1, L→ ML, ML→ M, M→MH, MH→ H; N=2, L→ M,...).

7. The manufacturing dependency at each stage is captured by a cost coefficient (Total
cost = Sum of individual costs * Cost coefficient), depending on M , the number of
drugs of the same category being developed in that stage. Similarly, the financial de-
pendency is captured by a revenue coefficient, determined by the number of drugs of
the same category that are being marketed.

Drug Category M Coefficient(cost) Coefficient(revenue)
Obesity 2 0.8 0.8
Obesity 3 0.7 0.7
Depression 2 0.8 0.8
Diabetes 2 0.8 0.8
Diabetes 3 0.7 0.7

Now is your turn! Enjoy the journey and good luck!




