Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

OBSERVATION OF ANOMALOUS REACTION MEAN FREE PATHS OF
NUCLEAR PROJECTILE FRAGMENTS IN RESEARCH EMULSION FROM 2 A
GeV HEAVY ION COLLISIONS

Permalink
https://escholarship.org/uc/item/1rz5w0sd

Author
Karant, Y.J.

Publication Date
1981-07-01

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1rz5w0sd
https://escholarship.org
http://www.cdlib.org/

LBL-13103

DISCLAIER

——

Observation of Anomalous Reaction Mean free Paths

0f Nuclear Projectile Fragments in Research Emulsion

From 2 A GeV H~avy Ion Collisions

Yasha J. Karant

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 9472C

This work was supported by the Director, Office of Energy Research
Division of Nuclear Physics of the Office of High Energy and Muclear
Physics of the U.S. Department of Energy under Contract Number
DE-ACU3-765F00098.



LIST OF ABBREVIATIONS. . . . . . .

I. Introduction and History

II. Underlying

Physics. . . . . .

iii

CONTENTS

II1. Systematics and Method of Observation . . . . .

Iy. Statistical Methods

A. Method
B. Method

A

B ... ..

o s e s e e e

C. Monte Carlo Simultations. . . . . . . .

v. Results
A. Method A . . . ..
B. Method B . . . ..
V1. Conclusions . . . . . .

Acknowledgements . . . . . .

References . . . .

Figure Captions

Figures. . .

12
19
28

33
39
43
50
52
55
57



vi

Observation of Anomalous Reaction Mean Free Paths
of Nuclear Projectile Fragments in Research Emulsion
from 2A GeV Heavy Ion Collisions

Yasha Jack Karant
Ph.D. Thesis
Lawrence Berkeley Laboratory
University of California
Berkeley, California
ABSTRACT

From an analysis of 1460 projectile fragment collisions in nu-
clear research emulsion exposed to 2.1 A GeV 16O and 1.9 A GeV 56Fe
at the Bevalac, evidence is presented for the existence of an anomal-
ously short interaction mean free path of projectile fragments for the

first several cm after emission. The result is significant to beyond

the 3 standard deviation confidence level.



I. Introduction and History

Sporadic observations in nuclear research emulsion evidencing a
short mean free path component among relativistic projectile *ragments
of high energy heavy ions in the cosmic radiation have been reported
since 1954.I'1 Because of limited statistics, possible systematic
uncertainties, and the impossibility of such a component within known
nuclear physics, these observations were never widely accepted. The
aim of this Bevalac experiment was to obtain sufficient statistics un-
der controlled conditions to obtain an answer to the question (signif-
jcant at the level of a few percent component): is there evidence for
a short mfp (mean free path) component among PFs (projectile frag-
ments) at 2 A GeV?

Fortunately, both the validity of the technique and its results
on primary beams are well established. The basic method is the along
the track scan. One simply follows each track until it either inter-
acts or exits the detector. An interaction in such a scan is defined
to be the emission of at least one hadronic track, either from the
‘projectile or a struck nucleus in tre emulsion. Usually, one observes
considerably more than one emitted irack; because of this, interac-
tions in emulsion are called "stars' .

Several preceding experiments had obtained in this fashion the
mfps of primary beam nuclei to a st tistical precision of 3%. Specif-

2 14N, and 160 had been obtained at

As pari ¢ f this experiment, primary 40Ar

ic to this result, mfps of 4He, C

I-2 I-3

(8L12 and 160 at NRC



4He and 56Fe at NRC. In all

and 56Fe mfps were measured at LBL and
cases, the measurements were done at about 2 A GeV, although some were
also done at other energies to obtain energy dependence information.

As will be shown, the 2 A GeV primary beam measurements are in excel-
lent agreement with the measurements on PFs beyond about 5 cm from
their emission point. However, below this distance, one observes sig-
nificant and requiar deviations from both the primary beam measurements
and the “long distance" observations. Further, the results of the two

160 at NRC, are

independent observations, PFs from 56Fe at LBL and
in agreement.

In outline, this work will be organized in six parts. This first
brief part merely sets the stage for what follows. Part Il discusses
what one would expect to observe for PFs based on known nuclear phys-
ics, while Part III discusses the systematics and techniques actually
used in this research. Part IV is a statistical discussion of the
formal methods needed to analyze the data in a cogent fashion, and in-
cludes a section on Monte Carlo simulations to test the formalism and
its physical approximations in 1ight of the material in Parts il and
F11. Part V 1s a s.atement of the results using the methods of Part

Iv, while Fart V] presents the physical conclusions of the investiga-

tion.



II. Underlying Physics

To establish that an observation is anomalous, one first needs
to know what is normal., In this case, one needs to know the normal
interaction behavior of nuclei in emulsion, particularty nuclei of
kinetic energy between 1.5 and 2 A GeV. This is given in its simplest
form by the total (or inclusive) reaction mfp, normally symbolized by
.

One measures mfps, nout cross sections, because emulsion is a

-1 yhite the

known mixture of various elements from H to Ag
measurement techniques and the statistical properties of i shall be
discussed in later sections, the mfp has a simole physical interpreta-
tion in terms of number densities and cross sections, namely:

-1

-i
Ny %8S (11-1)

"MZ

Here N is the number of different nuclides in the emulsion, n;
is the number/unit volume of nuclide "i", and 0585 is the cross
’section for the projectile to interact in an observable fashion with
component "i", 9085 is defined to include the detection efficiency.
Note that i and o are inversely related, so that a large o gives a
short ». It is to be stressed, however, that one measures i, not CEH

nonetheless, a knowledge of the properties of A carries over to infor-

mation about o.



To an excellent approximation, the aOBS‘s in gquestion are just
a constant fraction of the reaction cross section. Two properties of
heavy ion reaction cross sections are of importance to this work:
from about 0.5 A GeV to > 2 A GeV i) opgs are essentially constant
and i) they are w=11 described by a geometrical dependence.”’2
In its simplest approximation, the reaction cross section is ex-

pressed in the Bradt-Peters form,”'3

o1 = wrg (A%’3 + A%” _n)? (11-2)

where ro and n are constants and AI’AZ are the baryon numbers of

target and projectile. If Ai/3 >> A%/3 -n

p2l3

o «

Since A = Z near the valley of staviiity (v0S), one might guess

that
o 7213
This suggests as a first approach, a behavior of the form
r= P (11-3)

with b = 2/3. In fact, this does adequately fit the primary beam

data, with b =~ 0.4.



The equations to be solved for estimating A and b are presented
in Section IV. Using these, one obtains two fits; one for LBL, the

other for NRC.

At NRC: 2" = 28.9 2.5 cm, b" = 0.43 = 0.04

At LBL: A" =32.2 2.5 cm, b" = 0.44 + 0.03
Whiie the consistency of the observations is evident, one must realize
that these are measurements of nuclides limited to the VOS.

Classical nuclear physics predicts that not only VOS nuclides are
present in PFs but also isotopes away from the VGS as well as various
excited states with Jifetimes ¢t > 1 cm. 1o incorporate the devia-
tions these effects might produce in the mfps (which are really a fun-
ction of Z, A and quantum state) one has two alternatives.

The obvious, empirical method would be to measure all these mfps.
It is equally obvious that the logistics of such a measurement would
be intractable. An alternative, albeit somewhat less secure, option
is to obtain calculated values based o realistic models that use
other experimental data, such as form factors and detection effi-

11“4. This is what was done. The results are displayed in

ciency
'fig. 11-1, along with the fits to data and observations. While the
general trend is reproduced, there does appear to be a theoretical
prediction that the Z = 3,4,5 isotopes will fall below the fitted
lines. Additionally, isotopic "noise" is visible. In section VI-C,

dealing with the Monte Carlo simulation, the methodology for dealing

with this will be discussed.



I11. Systematics and Method of Observation

In this section, three main points are discussed: the guantities
which were measu~ed, how the measurements were actually conducted, and
the systematic problems posed by these measurements. This begins with
a consideration of the method of scanning actually adopted.

At both NRC and LBL, an unbiased forward along the track scan was
used. This means that a primary track was picked up on the scan line
as it entered the stack; the scan line was typically 2 mm from and
parallel to the leading milled edge of each pellicle. The track was
examined to insure that it did not interact before the scan line. At
LBL, primaries were followed until they either interacted or left the
pellicle; at NRC, primaries were followed until thc_  interacted or
left the stack. When the primary interacts, any PF produced is class-
ified as a secondary. When a secondary PF interacts, any PF produced
is a tertiary, and so on. All PFs of Z > 3, regardless of generation
(secondary, tertiary,...)}, were followed until they interacted or left
the stack.

, Both stacks were I1ford G-5 emulsion, made up of pellicles nomi-
naliy 600 um thick at exposure. The NRC stack had 50 pellicles 15 x
30 cmz; the LBL stack had 42 pellicles, 7.5 x 12 cm2. The stacks
were processed separately at LBL but using basically the same proce-
dure. A1l mm2 grid was photographed on each pellicle before deing

removed from its respective stack, mounted on glass and processed.



Projectile fragments are nuclei produced by a relativistic heavy
ion collision essentially at the velocity of the projectile. Spec-
trometer studies have shown that the average momentum shift in the
laboratory frame of a PF relative to its parent is on the order of
-150 MeV/c at ~ 3 A GeY/c nuc]eonIII'l; hence, the major cause of
energy loss is ionization. This point shall be examined in the dis-
cussion of the energy spectra of the PFs. At the energies used in
this work, PFs of Z > 3 are confined to a narrow forward cone. 1112
PFs were only accepted within the forward 6° cone; in the processed
pellicles, one must correct for the shrinkage factor in the pellicle
thickness between exposure and scanning.

One myst also be able to measure charge since the mfp is a func-
tion of baryon number A and hence Z. At the time of detection of eacn
PF track, its charge was visaally estimated as light, medium, or
heavy, but actual cnarge determination was done as a separate step of
the measurement after the topology of the event was completed. This
assured a second observation of the vertex.

To determine the reproducibility of the charge measurements, the
method of repeated observations was used at LBL. By this method, a
track was chosen at random which had been first measured to give
charge Zl’ say. Subsequent independent observations were made on
different segments of the same track, yield.ng measurements 22 e ZW
The deviations 21‘22’ 21—23,...21-2N were histogrammed, and since for
the different Z,s the results of Zl'zi were compatible, one fin-

1
al histogram was produced (fig. III-la). This yielded an empirical



charge reproducibility of 1 charge from 6 < Z < 26. These deviations
were obtained at different depths and plates to verify the correction
for development gradients and test the hypothesis of plate-to-plate
uniformity. Further, they were examined for a systematic shift with
distance into the stack; such a shift could indicate a change in track
structure due to a slowing fragment. No such shifts were found, lend-
ing further credence to the assumption that one was in fact dealing
with relativistic PFs.

The procedure used at NRC was comparable, except that a higher
statistical accuracy was obtained, in part because of the smaller
charge range here reported (3 < Z < 8). As can be seen from fig.
111-1b, charges were measured to a statistical accuracy of 1/3 charge
beyond charge 5 and about 1/4 charge for Z = 3 and 4.

An important question is whether or not a systematic error in the
charge measurements would have affected the interpretation of the re-
sults., Obviously, this would make the absolute determination of th:
mfp of PFs of charage Z to be in error. However, if one makes compar
isons internal to the same observations, this systematic effect is
mitigated. In fact, this procedure was tested by several methods.
First, by direct observation, the charge measurements do not depend on
dic:ance from the emission point of a PF. Second, one may assume i
syctematic shift of 1, 2 and 3 charge units and compare the relative
inter-al results; while this does affect the absolute mfp value at a
given charge, it indeed has no significant effect on the relative ar-
swers. (bservatiors that were 3 standard deviations apart remained

S0O.



Since there was no magnetic field of sufficient intensity to
obtain meaningful rigidity measurements with the detectors used, no
direct measurements of momentum were possible. While multiple scat-
tering would be the only technique available here to directly measure
energy,”I'3 it is not nearly sensitive enough under the conditions
of this investigation to provide proof that one is dealing with rela-

III'A. Nonetheless, some multipie scattering measure-

tivistic PFs
ments were done at NRC and were entirely consistent with the calcu-
lated energy spectra.

To calculate the energy spectra, several pieces of information
were utilized. First, the spectrometer measurements on momentum dis-

tributions of PFs were used.III'S

Here, a p shift of about -150
MeV/~ total momentum was observed in the laboratory frame, with an RMS
width of about 450 MeV/c to the P distribution. Consider a mass 10
PF with a parent nucleus of 2.5 A GeV/c or total momentum of 25 GeV/c
assuming the persistence of velocity. At the -3 RMS deviation level,
it would be shifted downward by -1.5 GeV/c or about 6% of its tntal
momentum. In terms of kinetic energy, this is about an 8% degrada-
tion. Hence, ore can conclude that even in & worse case analysis

(-3 RMS deviations), the effect of kinetic energy/nucleon loss at
emission of a PF relative to its parent ic small compared to the
rather larger losses caused by ionization in the emulsion. Assuming
the valugs given in the literature for the specific ionization con-
stant,“l'6 energy spectra for the PFs in the experiment were cal-
culated, displayed in fig. II;—Zab. As can be seen, none of the PFs

would have had an energy below 1 A GeV and few beluw 1.5 A GeV.

)
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[ shall conclude this section with a discussion of the scanning
itself. As mentioned above, an unbiased forward scan was used in both
laboratories. An interaction was defined as the emission of at least
one charged hadronic track at the vertex. Distances were measured by
projected range in 1/10 of a grid coordinate (100 wm) at LBL and oy
stage coordinate at NRC. At LBL, the grid coordinates wera checked
against direct stage measurements.

A1l data at LBL were rescanned by a different observer using a
somewhat different technique from the irnitial scan. Since one could
imagine the potential pitfall of differential scanning efficienc, (a
scanner being more observant immediately following a vertex), the
scanners backscanned all noninteracting PFs and proceeded backward
from all observed interaction vertices. About 3 more stars were
obtained in this fashion, but the distribution of these stars was the
same as the rest, not being confined to long distances (which wouid
have had to be the case if the cause of tne anomalous results was a
distance dependent scanning efficiency). Scanner-—to-scanner compari-
sons likewise vielded consistent results. [n keeping with the fact
‘th.* two separate experiments are involved, no systematic rescan was
done between NRC and LBL; however, several interesting everts were
cross examined without any difficulty being found.

To diminish scanning loss at NRC, the method of multiple cnarge
measurement was used. Charges were periodically measurec 2long th=
track; whenever a charge change was indicated, the preced:ng section

of track was examined for a candidate vertex. Tris naturally increased
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the detection efficiency for certain classes of stars at NRC relative
to LBL, name’y stars with a small charge change to the next generation
PF. In both experiments, the scanning was done under = 500X magnifica-
tion, with questionable vertices examined under higher power., [n this
fashion, spatial resolution to <1 um is obtainable.

1 defe- discussion of certain potential vertex misidentification

and background problems to Section VI.
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IV: Statistical Methods
A. Method A

The most basic concept of this experiment is the mean free path;
hence, one needs a means to estimate this quantity. Assuming a mix-
ture which has a length scale of inhomogeneity small compared to the
distance scale of the interaction, the mean free path appears as the

parameter A in the differential equation

N _ =N (1v-1)

Here, one has a number N of particles incident on a slab of thicknass
dx and some physical process, characterised by a, which removes flux.
The solution to this equation is well known to be the negative expo-

nential; specifically, the probability density is given by

fF(x)dx = e/ 9)\1 (1v-2)

This form of probability density leads to several consequences. Fore-
‘most is the property that the negative exponential "has no memory".
Physically, this means that any infinitesimal slab dx is equivalent to
any other in which the particle may suffer an interacticn, irrespec-
tive of the location of the slab. The fact that a particle has not

interacted up to dx has no influence on its fate in dx.
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Given any sample of tracks in a finite length detector, one may
consider two classes of tracks: i) those that did interact and ii)
those that did not. Further, one may ask whether to use information
regarding only the total numbers that did (and did not) interact or
also the distribution of interaction.distances. The first method of
estimation, which shall be denoted as Method A, uses both a moment of
the interaction distance distribution as well as information about
those tracks that did not interact. The idealized method is this:

1)  Assume x» is a constant.

2) Follow tracks until N interactions are obtained, N > 1.

3)  Sum up the total path length followed of botn the interac-
ting and noninteracting tracks, where the path length of a track of an
interacting particle is the length from its initial observation until
its interaction point. C(Call this sum SN.

4) Define the estimate of the mfp x* = SN/N.

One needs the distribution of x* given N and i; since {N,x») are
fixed, this amounts to the distribution of SN. The simplest case is

that of an infinite detector. Here one wants

Note that this has dimensions (length}-], wnich is correct, since the dif-
ferential dSN has dimensions length. The above is the convolution of
the densities. To obtain insight into the above integral, consider

the case N = 2. One wants
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2
—-Te (1v-4)

Jity for observing $p < X is
X S —Szlx

2
PIO<S, < X) = [ d5,<e (1v-5)
2% }é 22

An examination of class

larity of eqn. Iv-5 to the x

1

P(xCly) = — b /ﬂ"dt o/ 21 g
w2, /v
2 A<?) J

ical distributions reveals a great simi-

2 distribution

2

~t/2 (1%=6)

Let v = 4 =
>(2
P - 21 / gt t e7t/2
2°1(2) J0
Now let
2S
Sh =tz =t =%, dt =£dS,
So Y
) 1 2dS2 252 —52{1
=7 ox ¢
0
J/ﬂ s —52/1 d52
= 2 € v
0 A

Hence, one may profitab

like ¥, with v = 2N DOF.

1y conjecture that ZSN(x is distributed

In fact, it is rather simple to see that
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this must be the case. It is clear by inspection that a single expo-
nential deviate from a distribution with parameter x» (i. e., Sl) is

2 with 2

isomorphic with a variable 2 SI/x which is distributed 71ike X
DOF. Further, it is an elementary property of the xz family that the
sum of any set of XZ deviates is itself a XZ deviate with DOF equal to
the sum of the DOF of each member of the set. By combining the iso-
morphism of the distribution of 51 with the x2 distribution, a~d using
the above mentioned property of the xz Jistribution, the result immedi-
ately follows.

Having established the distribution of SN in an infinite detec-
tor, one can now apply it to the case of a finite detector. As long
as there is an essentially unlimited numher of tracks so that in any
repeat experiment one can go to the Nth interacticn, then the distri-
bution must be the same. To establish this fact physicelly, I invoke
the no-memory property. Simply regard each track length in an infin-
ite detector as made up of noninteracting segments plus the last sey-
ment, which terminates in an interaction. In an infini‘e detector.
each track must interact, causing N to be identical to the number of
tracks; in a finite detector, N is related to the fluence ¢ by the
Binomia] distribution at fixed fluence, so that one in principle re-
quires an arbitrary number of particles to ensure absolutaly in all
cases that one reaches N. In fact, let T be the distance available

T,

for observation and PT =1- ; then N is distributed

(:})p# (1- pT)(q"N)
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As a practical matter, I corsider the distribution of ZSN/x to be
XZ with 2N DOF; one thereby has for use the whole classical armory of
the AZ family. In particular, suppose one has measured AI, with N1
interactions and x; with N2 interactions, both from a population with

supposedly the same .

Let f One sees that f.,, is distributed 1ike the F

_ * *
12 =Ml 12
variance ratio with 2N1 and 2N2 DOFs. Classically,

Fa (xfzul)/(.gzuz) :(——/2\@1//(25 2/2«2}

SNl SNZ .
= NT— —N; =11/X2=F12

Most important, this ratio F is independent of any assumed value of .

(1v-7)

One of the great values of using classical distributions is tha:
their cumulative distribution functions (CDF} are well known and hence
available in standard computational tables and algorithms. The CDF is
normally associated with a probability for a continuous random vari-
able; if one uses the one-sided integral from the lower limit of the

_possible values of the variable to the observed value and the observa-
tions obey the physics used to derive the COF, then one has the very
important result, namely:

“he distribution of probability values is uniform frcm 0 5 1,

In particular, the uniform distribution U(2,1}) has mean = 1/2 argd
RMS deviation = 1//12. If one has N measurements from a distribution
assumed to be U{0,1}, one can construct the sample mean m. A basic

test is to calculate the quantity
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o = (m-1/2) |/TA (1v-8)

if N> 5, o is essentially a gaussian deviate of mean O and variance
1, and tests if the sample mean significantly differs from its expec-
tation value of 1/2.

2 distribution is the use of the

One specific application of the x
method of maximum likelihood to estimate values of (A,b) in a = AZ'b
from a set of X*(Z) measurements, say with Nz stars each. First,
take the logarithm of the probability density of the x2 distribution

[eqn. IV-6],

*
anf =2¢n1/2-en T(N)+(N-1)en N

N2
—Nen A+ NbgnZ-2=%&

A
Taking derivatives with respect to A and b and letting Sz = x*(Z)NZ,

* *
one obtains A, b as solutions of

b” b
; $;1 ‘ZZ S, anl
z
1

- (1v-9a)
N2 7 Nz n Z
*
¥ s
» 71
A= =g {(IX-9b)
7
z

*
Having established that the estimate » = SN/N depends essen-
tially only on the true mfp a and N and is independent of detector size,
*
one can subdivide a data sampie and consider x» (n) with n some var-

jable of which a» has a known theoretical distribution. Likewise, one
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may construct A*(n). In particular,n may profitably be taken to be
the distance after the point of first observation of a track; call this
distance "DF". In this case it is clear that a constant a (or A) is
independent of DF’ and hence x* should also be independent of DF'
One may thus consider »" binned in distance intervals D = D; < Dp < Dy,
which should give a consistent result for \* irrespective of D1 or DZ‘
This method of examining A*(D), and especially A*(D)(for a fixed value
of b), will be termed method A',

To conclude this section, a second, and more conventional, appli-

cation of the XZ G¢istribution is noted. The use of XZ

as the parent
distribution of ZSN/X at fixed 2N stars has already been mentioned.
This use is not in the standard method of a goodness-of-fit test.
However, given a series of observations of SN and N and an assumed val-
ue of », one can construct a test of goodness of fit via xz in its more
typical application. For clarity, term this 92.
Under the null hypothesis that x» is correct, the integral proba-
bility P( xz,ZN) is distributed U{0,1). Hence, to every P ("i" de-
noting the observation number) one may uniquely assign a LFP where o5
As distributed normally with mean O and variance 1. This is done by
finding that 95 such that P(Gi) = P, where P(ci) is calculated from

the gaussian (e.g.,

= 0.84134 <=> oy = 1.00; Pﬁ = 0.15866 <=> o5 =

P
-1.00, etc.). Now o = Zo%, and if the null hypothesis is correct o’
obeys a x2 distribution. The DOF are also directly obtained: if x is
given independent of the observations in question, DOF = rnumber of ob-
servations; if » is extracted from the observations, DOf = number of

observations - 1.
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B. Method 8

Thus far the statistical analysis has been limited to methods
that include both interacting and noninteracting tracks. It is also
necessary to consider other forms of analysis, both for the additional
insight they give into the nature of this effect and because certain
types of information are simply not available in any other way. For
example, if one wishes to compare some statistic on distributions of
tracks with some characteristic (say those that terminate in stars of
multiplicity >N versus those <N), one of necessity must deal with sam-
ples of only those particles which interacted.

For simplicity, convenience, and conformity with physics conven-
tions, 1 shall demand that any statistic claimed to be a continuous
“probability" is distributed U{0,1) if the hypothesis under which it
is calculated is true. While this requirement may seem pedantic or
obvious, many applications in the field of PF mfp's have subtly ig-
nored this. The problem arises as follows. Suppose one has two mani-
festly independent events, say, 1 and 2, and under the hypothesis H,
the other P

.one has probability P where Pi is distributed U(0,1).

1° 2’
Naively, one says that the probability of 1 and 2 is P12 = Pl'PZ. The
difficulty is that while P12 does go from 0 to 1, it is not a priori
uniformly distributed under H; taere is nothing special aboutﬂPl,PZ
and all products of probabilities tnat give P12 sre acceptable. In
this case, where events 1 and 2 are truly independent, there is a sim-
ple procedure to return to the uniform distribution U{0,1). Let Pl'

P . PN e the N independent probabilities, each U(0,1). Then

2
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) N
h® = -2 3 an P, (1v-10)
=1

is distributed 1ike xz with 2N DOF. One now constructs P(h2 < /2‘ 2N)
and this P is distributed U(0,1) if H is true.

To see that this must be the case, one uses the formalism of
methcd A.  For each value of the probabi]iies assumed U(0,1), P; say,
considar Xy = - in Pi- Each of these X3 must be an exponential deviate
from a distribution with parametr. x = 1. It has already been estab-
1ished that

N
: éga X

is distributed 1ike +° with 2N DOF. Of course,
ﬁ% N

X. = - N P, = - 2n T P,

]=1 1 ]z-‘-:]. 1 . 1

Begin with the simplest case: the observation of a single inter-
acting track. Under the null hypothesis, there is a known single mfp
A. One measures two quantities: the length to the interaction, X,
and the potential path, T, which is the maximum length the individual
track could have been observed within the stack (which may change with
each individual track). Start with the differential eguation

dN _ N
dx = T

which has solution
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dx =X /X
N =N0 [ re
L0
or
P(X) =1~ =P (xn) (1v-11)
However, tne maximum P observable is
P(T) = 1-e /. Py(T 3)
hence,
PIXT) = P (XD)/P(TA) 2 Py(X Toa) (1v-12)

Thus, the use af a finite detector necessita.cs the rencimalization of

P(X) by the well-known factor P(T). From this one can construct the
probability density

*I s
— (1v-13)
x(l»e'T/x) ’

F{x T,a) du =
and thus the logari*hmic 1ike’ihood functicn

i L{(xiTp) = 2~ ina - in (1 - e_T/x)
Y

*
Given en individual (X,T}, » 1is the solution of

*
]_e—T/A

In general, one plots en L versus either -, or - = . 70
L
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A1l of the above results shall be called the one-chain formula. This
is 50 named because it addresses only one track at a time.

However, the single track is not the only topology with which one
must deal. Another common topology is the N—hain. The N—hain is
the topology when one has N - (one chaia)s in a row. Consider the
case that will be of particular use here, the two-chain topology. Llet
X be the interaction length of the first link with mfp Ays Y the length
of the second 1ink with mfp xy, and T the potential path from the start

of the first 1ink. The relevart differential equations are

le —N1

.1 (1v-15a)
Hx lx
dN -N N
szﬂ 2,1 [1V-155)
) y )X

where the last equation simply means that the loss in N1 is the in-
crease in N2.

There are several different probability distributions one may
construct from X 27d Y given the mfps and T. One is P(X), another
P{Y), which uses the X and Y information from each two-chain event
‘separately. On the other hand, one may combine all the information
into ore variabie, S =X+ Y, and consider P(S‘T,x!,xy) and the 1like-
1ihood from tnis. Since the charges Zx, Zy are what one actually mea-
y xy = ﬂZ‘D, one may write
PZ(S;T,ZX, Zy, A,b) and examine the likelinood as a function of one pa-

sures, and one then assumes i = ﬁZx

rameter, A, say.
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There are two cases to consider i) A H Ay and ii) M = Ry = A

To derive the S distributions, elementary integration yields:

-/ -2/
i) P(E!,\,x)zl——l-—(xxe xﬂxye 5’) (I1V-16a)

2 x>y xx—xy
i) Py(zla) = 1~ Lot _ ot (1V-16b)
X
>0
i = ' Y . i—17a)
i) P2(51T,xx,xy) = PZ(S;XX, P2(1 xx,xy) (1Vv-17a)
ii) PZ(S§ T,a) = PZ(SM)/PZ(T]A) (1v-17b)
One may similarly construct P-values for % and Y alone.
For Xx = xy
=X/ A =T/x
PolxiTryd 1 = 577 {““T[l‘e v
Y PARN RIS ¥ X
/ “x{1,~1,}
X (1 - e ] (1v~18a)
X"y
whiile for a, = a2 =2
X Yy
_ 1 -x/x X —T/x] . \
PZ(XIT,X) -m[}.—e —-Xe (IV-le}
In either case
=¥/
1-e y

PZ(yIT,x,xy) = _’:{’T‘fﬂ/xy (1v-19)

l-e
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Particularly note that P2x and sz are independent, and a scatter plot

of should populate uniformly the unit plane. One test of

(PZX‘PZy)

this which 1 do use is to calculate

(N - N
<< >>

(N + N
<> ><

C: (1v-20)

Here, N is the number of events for which P, < 1/2 and P,, < 1/2;
<< 2X = Y =
N, P,

>> Zx

nomial distribution with <C> = 0.

> 1/2 and PZY > 1/2 , etc. C is thus a deviate from a multi-

One may ask why a two—cnain formula is needed at all. Using eqn.

[1v-10], it would seem that the quantity 1In Plx + 1n Plys where Py

is just the one—chain formula, egn. [IV-12], for the individual poten-
tial paths associated with each iink (T and T-X, respectively), would
be the starting point. The difficulty here is the difference between
a priori and a posteriori selection. If one considers all topologies
together, irrespective of generation, then either an event-by-event
calculation (where an event is a connected topology) or a track-by-
track calculation will yield probabilities distributed U(0,1) if the
poputation in fact comes from the hypothesis under which these prob--
’abilities are calculated. If the popuiation comes in fact from an
alternate hypothesis, the power of these different formulae to dis-
criminate between a hypothesis and an alternate will diffar. On the
other hand, if one restricts consideration to one particular topology
a posteriori, and reject from consideration all other topologi=s, then
one must use formulae specific to the topology in guestion. This is

what has been done with the two-chains.
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Consider next the question of the number of interactions, that is,
N(x). As already established, N(x) = No(l - e_xlk), or identifying N,

with the fluence ¢

NO <x < X) = o(1-8*) zap (xa). (1v-21)

1

It is obvious that at fixed fluence ¢, N obeys a binomial distribution
from 0 to ¢ with parameter p = Pl(X[A). In particular, consider a
contiguous set of distance intervals, 0 < x € Xy4 X; € % & X5y .ns
Suppose the incident numbers of particles was ¢o’ and one observed Nl

stars in the first interval, N, in the second, up to Nn in the nth.

2

Let

DIEX’ DZ:XZ—XI’ ’Dnzxn—xn-l
Further, let

Pl F % % - Ny - v in 2 inoy “ Nagy

Then, one finds immediately that

N> = $n-1 Pl(Dn 3) (Iy-22a)
with an RMS deviation from the binomial distributior,

RMS(Nn) =V/r;n_1 Pl(Dn uil - PI(Dn A {1v=-22n;

Since % are each independent (as the actual observatior of the flu-
ence is used}, one can obtain the fit of the observaticns interval sy

interval, and thus assign an RMS deviate

N - <N >

n n " o5
p_ = (1y-23)
n RFS Nn_ -

wnich for large enough <Nn> and :n—l - «N,> is normaily Zistrisated.
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In the case of the two-chain formula, the situation is more com-
plicated. The second link depends on the first in that the charge of
the second is not known until the first has interacted. Hence, one

must renormalize. Let
Poylna , xy): Pyln A 00/P) s,

Further, let Z_ » I c2 the numper of iracks 3f generatior n-!
witn charge Zx, which emitted a part'cle {17 generat on =, 0€ charge
dne has thus required that ZX interact and e™°t :«' W TNsut requirang trae

Zy *nteract. One is interested 1n

wnere T o1g the tota’ Dotertta’ satr feov tng eTheggr p3int 2f tne tragd

Z' . Aga'n H1¢. the actua’ fumer 0° *ntar-act crd, 3584% 3 T3n0mc a2l

distribution.
HOow= . =", N any jeer narne’ (i, Z‘ >0, 3r 3rowne rase of

one-cnatns, . at a fixes T, the 00pLi4Tiion My Le 3.0t small, 5

Improve $tat1sT1Cs, DPOO tne data. Assume tnal Ine tesls wilh rapeat

o
©
[o%)
.
3
&
3
o
3
m
ot
o
E)
)
©
154
o

sampies 2¢ tne same tepology and potent
an index tnat denstes potr the topclogs 2ng Dotenttal patn one consid-
ers

Z , f‘i):Z <Mx, ‘i:?"\
. u i -

W o
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Let p = <N>/3%; N obeys a binomial distribution from 0 to ¢ with param-

oter p. Additionally, | will make use of a statistic

R = NJeN>, (1v-25)

which nas an RMS deviatioun abtainea from tne biromial distribution of
N: % has the useful property that <> = 1,

The final topic will be estimation of a _.mponent N witn frac-
tion a. The most events obtain for indivicgual interacting PFs, whicn
of course ara one—chains. Hence, one needs to use a modified one-
cha'n formula to obtain P values and likelinood functions. Assuming
eacr trac« has probavility a of having mfp Ay One immeliately de-

(SR

¥

g

S

< —X/xz\ -1
- y
PLIY Tia o) - el a)l-e

? (1_u)(1~e_mz) . 0(1_{”“’)

From this, *7 1s straightforward to calculate the likelihood as the

a

(1vy-26;

product of tne density

F %) Z a (lv=27)

for each {¥,T) value given the charge Z of the track.



28

C. Monte Carlo Simulations

A1l of the preceeding material in this section is a restriction
to "exact" statistics, "exact" in quotations because they are in a
somewhat idealized world. In all methods depending on the hypothesis
A (Z) = AZ_b, both this form and the assumption that the exponent b is
the same for PFs as VOS occupants is an idealization. 1In the nonpa-
rametric P( F) by laboratory and measured charge, oniy an assumption
of relative homogeneity enters. Finally, one does not in fact con-
struct the Method A results by the rigorous method (total path length
up to but not beyond N stars), since one includes all path length ob-
served, including that beyond the Tast star and one works at finite
fluence.

How should one test whether or not these idealizations have any
physically significant effect on the results? One possiwility 1. to
attempt ever improved analytic approaches. Since the number of phys-
ics effects one wishes to include may grow, this would involve a grow-
ing complexity of the statistical methods without any necessary gain
jn one's physical understanding. Another possibility is to use the
idealized methods and analyze the results of simulations {(which may
violate the idealizatiors) by these methods. In this portion, the
latter approach is elected.

A Monte Carlo simulation computer program was written. The out-
put of this program was data in the identical computer format as the

actual data of the experiment and hence could be analyzed by the same
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programs that were used to otain the results. In addition to testing
physical hypothesis, this method gives an additional check on the in-
tegrity of the data stream.

The basic component in the simulation is the generation of random
interaction distances, assuming that these come from the negative ex-
ponential distribution. This is easily done. Let R be a uniform ran-
dom deviate from 0 to 1 (most FORTRAN compilers have a function to
provide these numbers); then x = -xin R is an interaction distance for
a particle with mfp x». These x's shall be called SID, Simuiated In-
teraction Distances. SID clearly depends on mfp, and the whole point
in the simulation is selecting the mfps (and topologies) in a physiral
fashion.

Since one wants to simulate something close to the actual data
set, the primary interaction distances and topc.agies {i.e., secondary
PF population) actually observed were used. The 'nteraction distances
alone will not generate tertiary and later generations unless a topo!l-
ogy is assigned at the interaction vertex of the secondary PF. To do
this, all observed topologies (actually observed in the experiment,

.e.g., 0>»8B +Li, Ca»0+*C, Ca»0+ 2Li, etc.) wer= stored in the
computer by charge of the parent; given the charge of the interacting
PF, & topolegy was selected at random. The topology PF » no further
PFs (all Z < 3) was also allowed to occur at random with its measured

frequency. In this fashion, simulated events were generated.



30

A PF was deemed to have interacted whenever its SID was less than
its available potential path. SIDs were kept to machine accuracy but
were written on the simulated data file rounded off as the original
observations. Thus, any error induced by rounding was incorporated.
The only remaining question is how to assign mfps to “ndividual tracks.

To incorporate the known systematics into the simulation, the mfp
values used were modified. For each true Z, calculated mfps from a

b

realistic geometrical model were used, not 27 (Ref. IV-1). Within

each true Z, a true mfp was assigned, incorporating isotopic noise;

18O, etc., To get

sometimes Z = 8 was given the mfp of 160, sometimes
the true 7 from the observed Z {the charge on the data file), an error
was selected from the observed Z reproducibility discribution coupled
~ith a systematic bias if so chosen. Thus, both charge misidentifica-
tion and isotopic noise were included. In fact, the isotopic effects
were increased by a faciar of 2 for physical robustness; if isotope
(Z,A') was predicted to have a 3% change from the V0S occupant of
charge Z, a factor of 6. was actually used.

One other feature was incorporated that deserves mention. If one
calculates a priori expected mfps based on geometrical models in emul-
sion, without normalizing to any observed emulsion mfps, (or reaction
cross sections from other technigues) one soon discovers that the pre-
dicted mfps are much shorter than the observed ones, including obser-
vations on primary VOS beams. This is due to detection inefficiencies
for certain channels, particularly quasi-elastic reactions at low mo-

mentum transfer. One can prave mathematically that i1 one misses a
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constant fraction p of mfp A (the theoretical unnormalized mfp}, the
observed mfp » = xT/(l—D) and will obey again an exponential law. This
is because at each individual miss one will have a © distribution, and
the sum of these T distributions weighted by their probability (a po-
issan, since one in principle can have an infinite number of misses),
recovers an exponential of parameter x. To simulate this, P = 0.5 was
actually assumed, i.e., emulsion is 50% efficient. After selecting a
mfp as explained above (includinj charge assignment and isotopic ef-
fects), this value was divided by two and then generated an SI1D. If
this distance were within the stack, another random number was gener-
ated, If it were less than 0.5, a detected interaction was assumed to
have occurred; if not, another SID using the same a/2 was generated
and the program proceeded in like fashion until the “"particle" suf-
fered a detected interaction or left the stack.

In this fashion, many pseudo-copies of the data were generated.
Each copy was fed through the analysis program package and pseudo-re-
sults generated. [ shall briefly present the results of all these put
together, first for Method A and then Method 8.

1)  Method A. The P(<F) distribution by lab, charge, and dis-
tance cut at 2.5 cm is fig. IV-1. P = 0.50  0.02 with an RMS
deviation of 0.296 + 0.012; both are within limits of <P> = 1/Z and
<RMS> = 1/ /2. Similarly, results for A*(D) and A~ (Generation)
agree with expectations.

2) Method B, Here again, things are as expected. For illus-
tration, examine the P,(s) distributions and 1ikelihood curve.

52 = 0.50 £ 0.02; the average 1ikelihood curve is displayed in fig.



1v-2. It peaks at ﬁ = 29.6, with rms deviations as illustrated.

In all cases, a "normal" simulation, using conventional nuclear
physics and the systematics, produces normal physics. It gives re-
sults in accord with the observations (as a fluctuation) with the
probabilities assigned. Hence, one seems compelled to conclude that
the statistical methods presented above are valid for a physical un-

derstanding of the data.
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V. Results
A. Method A

*
The first result to present is the MFP parameter A of secondary
and later generation PFs as a function of distance after emission,
j.e., method A'. These are calculated under the assumption that

D Wwith b = 0.44 for LBL data and b = 0.43 for NRC data. The

A= N
error bars assigned represent one standard deviation assuming the pri-
mary beam value. Thus, if one observes \* = 20 cm with 100 stars and
one supposes A = 30 cm, then (in the approximation to which /N statis-
tics apply) one gquotes . 20 # 3 cm, NOT 2220 % 2 cm. This is be-
cause it is assumed at the outset that all PFs should have the mfp pa-
rameter A as measured on primary beams.

To plot the results of two independent experiments with different

values of A (ALC' = 32.3 em, A 28.9 cm), one must either have the

NRC =
weighted mean value A (to be expected) change as function of distance
(since at different distances after emission the contribution of the

,two experiments changes; e.g., all the data beyond 12 cm are from NRC),
or renormalize to a constant mean value taken as A = 30.4 cm. For sim-
plicity of display purposes, the latter has been done. The result is
fig. v-1.

Note the apparent lowering of I for the first several cm and

the consistency with the primary VOS beams value at distances larger

than 5 cm. One may ask: Is this an artifact caused by the power law
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fit andfor the intermixing of data from the two experiments? To test
whether this result is physically significant, one must circumvent the
possible erroneous conclus;ions induced by the use of the parameiriza-
tion and also view the results independently from the two experiments.
One thus examines the data charge-by-charge from each of the two lab-
oratories separately. To maximize the utilization of the information,

the data are broken into two groups,

* *

Lo s AZ,LAB( D> 2.5 cm)

* _ *
0<Dz25cm, = A2.Lm8 (

The distance of 2.5 cm has been chosen partly for convenience and
partly for physical reasons. Since the maximum 1ikelihood fit to the
data assuming just one short mean free path component predicts that
component to have a mean free path of 2.5 cm, this seems iike a logi-
cal distance at which to divide the data sample.

To perform the test, take FZ,LAB = A:fx:; one knows the numoer
of stars N< and N) observed by charge and 1ab and can thus compute a P
for the observation on the assumption that x: and A: are from the
same population. One then histograms *he resulting P values; recall

’ * *
that if these A X values are from the same population, the P val-

>

ues must be distributed uniformly from O to 1. The observed result is

fig. V-2a. The cross-hatched area represents the six charges from
NRC, and the remaining area is the 24 charn.c fram ! 8! It ic ‘mmedi
ately obvious that the distribution is sloping towards low P values,
the values of P have been calculated such that this corresponds to

*

*
Ao <A As a statistic, the mean P has the value 0.323, calculated
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from the unbinned P values; one expects <P> = 1/2 £ 1//360. Thus, the
observed P is -3.4 standard deviations from <P>, a difference exceeded
with one-sided probability 3 x 10~%.

Based on this result, tnere are fewer than three chances in 104
that the x: values come rrom the same population, charge-by-charge
and lab-by-lab, as t.e x:, values. It is reasonable to conclude
that they are significantly shorter and that the low values of 1* at
short D is not an artifact. More impcrtant for its physical implica-
tions, this result is independent of many systematic problems that po-
tentially plague other methods. [t only assumes relative homogeneity
of the PF flux, as traditional isotopic effects should by no means
cause such an observation. Thus, one seems compelled to conclude tha*
there is something peculiar about the mfps of PFs within the first few
cm after emission.

The simpiest assumption to explain this result is that in addi-
tion to PFs with "normal" mfps, there is another species present with
mfp Xa and with fraction of all PF flux a. One thereby assumes that X,
and a are independent of Z, which may be an oversimplification. By pro-
cedures explained in Sect. IV B, one finds x; = 2.5 ¢cm and a = 0.06 .
To calculate the expected funder this model, one can reasonably re-

place all random variables by their expectations. Thus,

a A A b
; ¢ [(l-u)Pz A, *aP) xa]Z
< =

: ; 5 [-01pd o 8]

where a4 is the interval Dl <0< 02, ¢% is ¢ population of charge

(v-1)
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-D./x =D,/
PFs of Z incident on &, A =A Z'b, P = e 1z _ e 27 ang
0., D, Lo BEM 2
P: = e 1 -e © 3 The result for <> '3 denicted as the smooth

curve in fig, V-1; as can be seen it agrees well with the observations.
The reason this effect has been termed anomalous is first seen here,
If one attempts to increase Ay to, say, iU cm, there is no value of a
that will well reproduce the observations. They seem to require the
existence of a component of the PFs produced with a few per cent prob-
ability, with mfps outrageously shorter than any of the primary beams
employed. A value of 10 cm is already ludicrous, considering that
this implies a charge in the calcium range among PFs from oxygen: A
2.5 cm component is probably a shorter mip {i.e., larg:~ Zross section)
than that of uranium. This suspectec component of PFs has been dubbed
"anomalons",

If the short mfp is due to the cooperative effect of a few bary-
ons (a "damaged zone") bound to a normal nuclear fragment, one could
understand the approximate independence o+ Ny from charge.

Suppose the "ix" of the damaged zone were A then

1
Xi ’ta-ﬁ:—r—mz-)- If Xw= 3.5 cm and XZ:?G = 7 cm,

. ~ . 3 _ - Q
then Aa 2.3 cm; while for XZ=3 = 18 cm and the same Ao xa = 2.9 cm.
T1us, for nuclides from Fe to Li, the equivalent anomalon Xa would
caange from 2.3 cm to 2.9 c¢m, a difference which is undetectable with
tie present data. While the assumption of a damaged zone and a one-

¢ mponent anomalcn is probably too crude in everv detail, it does re-

r -oduce the overall observations.
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Anather way to examine the data is to pool them within some charge
bin and not use Zb as a length weighting factor. This has been done
for 3 < 7 < 8, where both laborator' 2s contribute, and also 9 < Z < 16
and 17 < Z < 26, where only L3L data are available. One obtains.;:
and number of stars and simi]ar1y'X:, as jndicated in Table V-1. For

-0.44 cm is presented, this be-

comparison, the prediction from 30.4 Z
ing the average fit to both NRC and LBL primary VYOS beam data. The
pooling was done by summing total path length observed within the dis-~
tance interval and charge interval and dividing this by the number of
stars. Again, inspection of Table V-1 reveals that at distances with-
in 2.5 cm of emission PFs have short mfps, while at longer distances,
primary beam expectations are essentially fulfilled. Comparing the
,-0.44

* *
values of A assuming A, =4 , one obtains A (<2.5 cm) = 25.0 cm

*
with 536 stars and A (>2.5 cm) = 30.0 with 924 stars. These estimates

are 3.3 standard deviations apart, having a P(<F) of 5 (10_4).

In addition to a comparison by distance after emission, one may
also wish to compare particles by generation. Primary beam nuclei do
not have a short mfp component, while their progeny seem to evidence
one. Is this effect independent of generation {starting with the sec-
ondary! or does it change with different PF generations? For example,
if the “"damaged zone" idea is cn the right course, such a zone might
persist through several generations, decreasiag the average mfp in la-
ter generations.

To test this, cc re secondary PFs with tertiary and Tater gen-

eration PFs. Start with the P{<F) by lab and charge method. Here one
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computes FGEN = xzz(l,lab)lx;(z,lab) where the subscript denotes
generation; the histogram of P values :s fig., V-2b. There are six
charges at NRC and twenty-three at LBL (there were not enough tertiary
tracks in one charge to obtain any stars). For 29 events, P = .387,
with <P> = 1/2 ¢ llrﬁzﬁ} so P is equivalent to -2.11 SO. However, the

highest P value recorded is 0.778; the pinomial proracility to ooserve

72

0 events in the uniform distribution, out of 29 attempts, with o = 0.7
. .|
is 7(1077). Hence, the mere presence of no value of D(<FGEW) > 0.773

is rather unusual, as one would have expected about six events.

*
This also appears to some extent in tne vaiues o° ' by genera-

*
tion. Secondaries have 12 = 28.8 cm, 1196 stars, wnile later gen-
= 25.2 cm, 26 <tars. This has a probability of
- * -

about 0.03 to occur. On the face of things, it seems tnat * </,

erations have -
>3
which woL'd he indicative of a retained property or 3 larger admixtyre
of anomalons in later generations. 1 shall retyrn to thig topic in

Section V B.



After having opserved an apparent shorte~ing ¢ 7 1n the first

t
g
)
«
%)

several C¥, as calculatea by Method 4, turn attentior o

giving consiceration to interacting »Fs only.
First consider all interacting iracks wit=:~ thz fdntex: ~¢ tns

one—chain formula, earn. 1V-12. In tne cata, there are 1450 9% stars,

and assJming that . nas the values precdiciel by tne . an:i AT fits

to primary VOS beams, one obtains the P x 7, | o, A& nisiagran
in fig. ¥-3. P, = 869 £ 1/,1752Z0. This gorresponis 1o =40 stara-

b
s

arc deviations, with a prooatalaty of 2702

The logarithmic 1ixe'ingog Curve U¥ tness 3tz Vg O

~
3]
[s]
=1

-

fig. v-4; tne peak is at * =2 Tre primary De3T vaiue S S0w”

tnree ¢orders 3f magnituce on the 1ikellnoce Curve. Furtrermyrs, tne

same datz (now including nominteractirg tracks:' wiin'n tne contest 27
* .

Metnog A yielcs . = 28.7 Cm, which is down Sy mcre tnan twd orzers of

-
magnitude on the tikelihood curve. Thus, ‘5 < ',. However, Jne aor-
-,

maily expects these tw0 estiimatas to be congistent. One may zemin-

4%
ES

strate this physically by reference to frg. V-5, wnere 0
160 1ikelihood curve and the Method A result 1s Zisplavel.

Sirce all tertiaries that do interact come “rom a secConder

<
~
>
v
I

also interacted, one may profitably use the two-cneain formula, For
7 > 3, there are 215 secondary-tertiary two-thzins. In fact, tnhere
are 221 cases of tertiary stars, which means there are a few "forxs".
In this instance, I arbitrarily select one of the bpranches 2* random,

thus converting a fork geometry to chain geometry.
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Consize~ the likelihood curves for ' given the observed X, Y, and
5 = X + Y measurements for each event, fig. V-6. As can be seen, sec-
*
ondartes that gave a tertiary that interacted have,‘x = 21.8 cm, ter-

” *
tiaries nhave ', = 18.2 cm, and.ﬂS = 19.8 cm. An examination of the

Y
Yixelinood curves reveals that none reject the primary beam value; be-
fore accepting this conciusion, one should examine the P distributions.

Mistograms of P.S), P.{), and PZ(Y} are fig. v-7. 32(5) = 0.444 with

2

215 events, whicn is equivaient to -2.84 SD.  As a different point of

view, one can laok at EZ(X) = 0.465 and EE(Y) = 0.463, both of which

ar- deiom <2> = 1/2 but each only about -2 SO, wnich is not an outrage-
ous fluctuati~r. However, if one plots the PZ(X) distribution against

e PoY0 2tstrabution, an interesting observation emerges.

2.1 and PZ(Y} are independent as these guantities have haen nere
ca‘zulated, and thus a scatter plot of PQ(X) against PZ(Y) shou d pop-
4 ate un formiy the unit plane. The result is shown in fig. V-8, where
the gata are tinned in antervals 0 < v - 1/7, 1/2 < 2 < 1 on both axes.
One zonstr.ct: 7 {ean. IV-20 whicn has the value {73-46)/(47+47) =
0,205, nowsver, <«(> = = 0.0975, s0 the observed value corresponds

ctc .1 SO from the expectation. This 1s the first clear nint of
"memory", by which one mea~s that a "snort™ PF gives rise tc "short"
pragery. HWhat i1s observed 1s that a low Pz(x) value g./es rise to a
Tow PZ(Y) value. This may be . iustratec in a different way. Suppose
one examiresg PQ(YJ as a function of PE{X; < HZor > 1f2 . “rnce 02\“

is independent of P./X), one expects <P /2, and

u

YYs = fy)
o 1> <P2’\Y,>
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similarly for P2<(X) and P2>(X) ; here the subscript "<" refers to the
< 1/2 cut on the other P, variable, and ">" to the > 1/2 cut. One ob-
tains:

.428, 122 stars; Pay(Y)

Poc (¥) .509, 93 stars

Poc(X) = .435, 122 stars; Ppy(X) = .502, 93 stars

If taken at face value, hence that one is not merely looking at
an unusual fluctuation, interpretation of this result has several
pnysical conseguences. First, it strongly speaks against isotopic
effects and related classical nuclear physics. If this were the root
cause of the effect, one would not expect that 52> = 0.5 in both cases;
even though the fit AZ'b cannot be exact, these PF data do not vi-
ciously reject such a fit, as one symptom of a rejection would be P 4
172.

Recall P < 1/2 indicates short MFPs relative to the primary beam

fit and that P, removes any bias generated in either X or Y by the

2
requirement that both links in the two-—chain interact. As a second
point, a short X seems to give rise to a short Y. If "anomalons" ex-
ist, then an anomalon parent tends to enhance the chance of an anoma-

, lon progeny.

Third, the fact that F)(Y) does not significantly differ from 1/2
indicates that the seemingly "normal" PZ(X) > 0.5 secondary population
does not produce anomalous tertiaries as copiously as normal primaries
produce anomalous secondaries. One possible explanation would be the
existence of an energy threshold for production; this is also suggested

V-1

by some of Judek's cosmic ray observations If so, the threshold

must be about 1.7 A GeV.
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Before leaving the subject of 1ikelihood curves, I shall estimate
the fraction e of 2 Xa component, and A, itself simultaneously us-~
ing all 1460 interacting PFs. The likelihood is now displayed as con-
tours in fig. V-9 for o~ =0 to 0.5, x; - 0.1 to 20 cm. The peak is
at i, = 2.5 cm, o = 0.06.

As a consistency check, consider the N(X) distributions, eqn.
IV-21. While one can analyze the data using each track and its poten-
tial path (where now one includes both interacting and noninteracting
tracks; for noninteracting tracks T is the distance actually followed),
it is much more intelligible to perform the analysis at fixed T. To
fix T, demand each track could have gone at least T cm, even if it in-
teracted within T. The N(X) distributions for T = 3 and T = 9, summed
over all PFs, are displayed as fig. V-10. To assess the statistical
significance of this observation, examine the 7 = 3 result. There are
2386 incident PFs, and one expects 504.3 stars assuming the fits to
primary bheams. In the data, there are actually 581 stars. Crudely,
an rms deviation is (581-504.3)//504.3 = 3.4; more exactly, using re-
peat samples of identical charge composition, one has 3.85 rms devia-
tions from the binomial distribution. For comparison, I also display
in fig. V-10 the fits with « = 0.06, Ay = 2.5 cm. As 1s obvious,

the fit is again guite good.
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VI. Conclusions

If one accepts things from a purely statistical view and accepts

-b as fit to primary VOS beams, there are

the assumption that Ay = ¥4
fewer than five chances in 105 that all PFs could have these mfp val-
ues. This is based on the one-chain formula applied to all PFs; addi-
tionally, the lowering of P1 indicates a short mfp, as shown by the
likelihood curve.

From a more physical point of view, the test within the contex*
of Method A treating each laboratory separately by charge (thus avoi. -
ing assumptions about just what values should be ot.ained for xz) gives
fewer than five chances in 104 that the mfp is constant as a function
of distance after emission. One can fit the data by assuming that 94°,
0° PFs have A, as given by the fit on primary beams and that 6% of PFs
have A, = 2.5 cm, independent of Z. This X, corresponds to a cc .en-
t nal nuclear reaction cross section on the order of or larger than
uranium.

Taken l1iterally, the results imply the existence of a naw state
of multibaryonic matter with a hadronic reacticn cross section three
to ten times larger than the normal VOS occupant of the same charge.
However, before reaching such a profound conclusion, one must exhaust
all other possible avenues of interpretation.

The obvious conclusion is that one is dealing with a systematic
error. A trivial systematic, such as the incorrect assignment of in-
teraction distances or potential paths, is ruled out by the internal

checks and remeasurements. Likewise, the data stream was checked
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against the scanner's original notes and scan sheets. In every case,
all computed quantities (such as SN/N) were stable to at least four
significant fiqures. The Monte Carlo simulation also incorporated this
same rounding (to 100 ym units) without pathological consequences.

A potentially more troubling systematic is the charge measurement
algorithm, For distances on the order of 1 mm or larger, the observed
statistical error of zl charge should be adequate. For shorter dis-
tances, the charge balance method was used, which requires detection
of all relativistic singly charged tracks and correction for both mes-
on production and charge exchange. As an alternative, one can discard
all track lengths (interacting or not) less than some cutoff distance
and examine the significance of the results. For cuts less than 5 mm
( 20 fields of view at 500 magnification!), neither the Method A nor B
results change.

One may further query as to the energy spectra assumptions. This
has little effect since above =500 A Mev, total reaction cross sections
are remarkably constantVI'l. If anything, inclusion of such tracks
would bias the data against a short mfp effect. Considering the beam
kinetic energy is =2 A GeV, slower tracks would have a higher specific

vi-2 and thus a larger apparent charge. Such a larger

ionization
charge would be presume” to have an intrinsically shorter mfp. Be-
sides, the charge measurements showed no tracks were significantly
slowing.

A standard concern is differential scanning efficiency. In thisg

scenario, an observer detects events more efficiently at short track

lengtns than at longer distances. To counter this, note that one ob-
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serves the “"correct" mfp at "long" distances and sees an excess number
of interactions at short distances. LBL has rescanned and examined
the interactions; they are really there. Furthermore, as already men-
tioned, the LBL rescan showed no differential efficiency. The other
possibility is that all primary beam measurements are in error; but
here, too, cross checks have not discovered any such errors.

The possibility of gross defects or inhomogeneities in the emul-
sjon composition itself must also be examined. LBL and NRC used two
separate pours; that both could be iuentically defective seems absurd.
Moreover, one can perform internal checks on this, Such gross defects
would affect the sensitivity, the charge measurement, and the primary
mfp. This was not observed. Additionally, such effects would corre-
late with absolute positions in the plates, rather than relative dis-
tances after a star; this also was not seen.

The next possibility for a conventional effect would be real
background stars. These would have two sources: random background
from radiocactive contamination and neutron spatter and correlated
background from either a neutron or low-Z track situated directly on
.top of another track. For high-Z PFs, Coulomb repulsion must force
the two tracks apart. 1In either case, a cut at 5 mm should have el-
iminated the effect; as mentioned above, it does not. As a further
check, a background interaction as defined above must appear as a
charge change of the PF at the vertex of 0 or 1. The meximum charge
change that was used from NRC was 8 - 3 = 5. As a test, consider R
[ean. 1V-25] for the two—chain formula for sacondary-tertiary two-

chains as a function of the secondary charge minus the tertiary charge
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(the charge change s1). One may think that this depends on the branch-
ing ratio for aZ, but since one normalizes to those possible secondary
tertiary 2-chains of the same AZ, it does not.

For 0 < aZ < 1, there are 118 possible two-chains, one expects 59.1
tertiary stars, and 74 are observed, so R = 1.25 + 0.092; for 2 < aZ < 5,
164 possible, 65.2 expected and 84 observed, so R = 1.29 £ 0.0986. Thus,
in the potential "background" channel (0 < aZ < 1) R has a value that
agrees quite well with the value in the “non-background" channel.
Incidentally, converting both of the values of R to an rms deviation
[{R - 1)/RMS{R)] and then summing the squares, x2 = 16.5, 2 DOF, which
is equivalent to 3.5 SD. As a further note, this argues against g emit-
ters decaying in flight, which would also appear in the 0 < a7 < 1 cut.

Since there are no indications for background or coincident stars,

I conclude the search for possible conventional effects with those that
would simulate nuclear interactions but that are not. The first obvi-
ous candidate is hypernuclear decay in flight (along with g-delayed
proton emitters and such similar states}); this seems appealing in that
€T = 3 cm corresporius with hypernuclear lifetimes. Unfortunately, hy-
‘pernuclear production cross sections have been measured and are much

too small at the energies of these experiments to account for the ob-
servations.\”'3 Additionally, these "decay n flight" stars would ap-
pear as pure projectile fragmentations without any target prcigs (so-
called NH = 0 stars). The fact that one does not observe a relative
fractional excess in the NH = 0 channel argues against this. By 1 sim-

ilar argument, one can eliminate nuclear =~ capture from a pionic atom
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(a PF that has a »~ in an atomic orbital in the PF rest frame), which
again would appear as a pure projectile fragmentation. As for =~ atoms
interacting in flight, where either the orbital »~ or its binding PF
interacts with the emulsion, one would again expect the effect to be
enhanced in the Az < 1 channel. The fact that other channels display
the abnormality argues against this.

The last conventional possibility is a normal nuclear excited state
with a lifetime ¢t » 5mm. Such a state would y decay to ground, say,
and while in an excited state would have a larger reaction cross sec-
tion.

This explanation fails on numerous accounts. First, most iso-
topes will be in their ground states; isotopes alone would not produce
the P{<F) by laboratory and charge histogram since the "length scale"
of such effects would be >>2.5 cm (rather on the order of =~ 10 cm).
Second, one can calculate rms radii to the next shell model orbital
(for an orbital excitation) and then integrate the resulting density
to get effective excited state cross sections; the changes are less
than 10%. Moreover, the overwhelming majority of long-lived nuclear

,excited states that could affect these observations involve angular
momentum recoupling rather than orbital promotion, and for these the
reaction cross section change can be calculated to be quite small.
The results would require =100% of all PFs to be produced in isotopic
excited states with reaction cross sections > 20% larger than the VOS
occupant of the same charge and then to decay back to ground with a
mean cT ~3 cm. Even granting this, which seems very unlikely, it

fails to account for the observation that a short secondary PF gives
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rise to a short tertiary PF. There should be no relationship of this
sort if isotopic excited states were the cause.
Llet me summarize the findings:

1) The P(<F) distribution by Tab, charge, and a 2.5 cm cut, rules

out a homogeneous sample. To explain this result would require iso-

topic excited state reaction cross sections ﬁuch more deviant from

conventicnal predictions than can be accommodated.

2) Such extreme proposed isotopic explanations would not explain the

observations on the relation between short tertiary links and short

secondary links in two—chains and would also be very hard pressed to

reproduce the A*(D) curve by method A'.

3) Systematic and background effects can be essentially eliminated

by the observations themselves (normalA * at large distances, no out-

rageous relative enhancement of the aZ < 1 channel, etc.) and by the

checks for potential problems arising from the scanning and measuring

techniques.

One is thus left in a predicament. Conventional nuclear physics

and sytematics fail to explain the observations. The statistical prob-
“ability that one is dealing with a fluctuation is 55(10_4). The exist-
ence of a new type of multicharged, presumably multibaryon, state with
a hadronic reaction cross section between three and ten times that of
a VOS ground state nuclide of the same charge would explain the abser-
vations. However, it is impossible to accommodate such a state with a
lifetime ct » 5 cm within the context of conventional nuclear physics.

I must add that with the presaent statistics, one does not know precisely
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how many anomalous components are present nor their exact properties.
The evidence does argue strongly for the existence of at least one
component of PFs with a reaction mfp considerably shorter than any-
thing accepted within conventional nuclear physics.

To elucidate the exact nature of the phenomenon will require more
data and further experiments. The obvious questions concern the mass,
lifetime and decay mechanism for this presumed component. One is in-
terested in knowing its production mechanism; e. g., does it reguire
that both participants in the collision be muiti-baryonic, or will p-A
collisions give the same effect? By obtaining some insight into the
answers to these sorts of questions, one can presumably build a trig-
gered device to address further details of the phenomenon. It is clear
that with the present data, and further data of the same sort but with
somewhat better statistics, the evidence for the existence of such new
forms of matter must remain circumstantial. It is also clear that no
matter how strong the circumstantial evidence may eventually become, a
result potentially as profound as this must ultimately rest upon more

direct observations.
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Table V-1. Mean estimates for the mean free path x and the parameter £
{Eq. 11-3) at different distances D from the origins of PF's for
grouped charges. Expected values assuming Eq. I[I-3 are given in the
tast colum.

z 3D < 2.5 cm) 3*%(D > 2.5 cm) a>
{(cm) (cm) {cm)

3-8 12.4 = 0.7 14.0 # 0.5 14.6
9-16 8.3 0.7 11.6 * 1.0 10.6
17-26 6.0 = 0.6 8.0 # 0.8 8.4
(D < 2.5 em) A(D > 2.5 cm) <h>

cm {cm) {cm)

3-26 25.0 £ 1.1 30.0 = 1.0 30.4
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Fig. I1I-lab

Fig. I1I-2ab

Fig. Iv-1
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Figure Captions

The mean free path a(Z) versus Z. The large circles
with error bars are the LBL observations on primary
beams; the Targe triangles with error bars are the NRC
primary observations. The small circles are fitted the-
oretical predictions; the appearance of multiple circles
for the same Z represents istotopes of different A. The
straight line is 30.4 Z-'44 cm, which represents the
"average" fit to both data sets combined.

The observed charge measurement reproducibility for NRC
and LBL. Below the NRC observations are plotted the
mean Nd (number of s-rays) per mm to which the charge

in question corresponded in one of the ways NRC deter-
mined charge.

The calculated lab frame kinetic energy distribution of
PFs at NRC and LBL by generation.

The histogram of the P{F) distribution by lab, charge,
and 2.5 cm distance cut from repeated independent sam-
ples of the Monte Carlo simulation. Since each individ-
ual P value is represented, the distribution should be

u(o,1).
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Fig. 1v-2 The normalized likelihood curve for the parameter A
(eqn. 11-3) assuming b = 0.44 derived from the PZ(S)
distribution (egn. I1V-17ab} from repeated independent
samples of the Monte Carlo simulation. The error bars
represent the observed RMS deviations for each value
from the repeated samples.

Fig, v-1 Estimates A* for the parameter A4 (eqn. I1-3) at dif-
ferent distances O from the origins of PFs: full cir-
cles, experiment; dashed 1ine, prediction from Abeam;

solid line, prediction assuming a 6% admixture of PFs

with A, = 2.5 cm.

Fig. V-2 Experimental frequency distribution of (a) PD(FD) and

{b) Poan!

gen Fgen); see text; the dashed line is the expected

U{0,1) distribution; the points with error bars are the
experimental means P, to be compared to their expecta-
tion «P» = 1/2; the shaded area refers to the results
from NRC.

Fig. V-3 The experimental frequency distribution of Pl(x), eqn.
1V-12. The histogram is the data. The solid vertical
line is the expected value for the mean P, <P> = 1/2,
while the solid circle is the observed value of P; the
error bars on P are the size of the solid circle. The
dashed line is the expacted U{Q,1) distribution.

Fig. V-4 The normalized likelihood curve for the parameter A

(eqn. 11-3) from the same data as in Fig. Vv-3.
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The normalized 1ikelihood curve from the Pl(x) distri-
bution (eqn. IV-12) for the parameter i from the NR{ pri-
mary 160 data. For comparison purposes, the value of
the Method A estimator, x;, is also sihown by the arrow.
As can be readily seen, the two methods give consistent
estimates.

The normalized 1ikelihood curves for the parameter A
from the experimental X, Y, and S distributions (egns.
1v-18ab, IV-19, IV-17ab, respectively). The dashed 1ine
is the result from the X distribution, the dotted line
is the result from the Y distribution, and the solid
Tine is the S distribution {compare to Fig. IV-2, where
the S distribution Mont _a-lo simulation result is dis-
played). The curves have been displaced slightly at the
peak for clarity.

The same data as in Fig. V-6, but now examined from the
P distributions (which should be U(0,1)).

The scatter plot of the P2(x) distribution versus the
P2(Y) distribution as given in Fig. V-7.

Mormalized 1ikelihood contours for the parameters *a

and o (eqn. 1v-27) from al) 1460 one—chains, assuming
the primary beam fits as given in Chap. II. The cross
marks the maximum 1}ikelihood estimate.

Distributions of interaction distances x for events with
potential paths T > T,; dashed and solid lines have

the same meaning as in Fig. V-2.
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