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Abstract 

Accelerating the adoption of plug-in electric vehicles (PEVs), is critical to reduce GHG emissions 

in the light duty vehicle sector.  Conventional PEV usage and GHG assessments are largely based on 

assumptions drawn from stated preferences and choice experiments of potential or current PEV owners,  

or self-reported travel and refueling diaries of mainstream internal combustion engine(ICE) users. This 

dissertation focuses on observed behavior of current PEV users. I present three studies that seek to 

improve our understanding of PEV driving and charging typified by two levels of disaggregation- vehicle 

level and household level. 

First study develops an analytical procedure to quantify what aspects of driving and charging 

behavior contributes to the gap between observed PHEV Utility Factors and Society of Automotive 

Engineers (SAE) J2841 expectations. Results indicated that depending on the PHEV range,  roughly  

±45% of deviations is attributable charging behavior. Daily mileage was responsible for -20% to +3% of 

deviation. Annual mileage and effective charge depleting range achieved on-road influenced the UF 

deviation by ±25% and -20% to -4% respectively.    

In the second study, driving and charging behavior differences between short-range (20 miles or 

less) and long-range (35 miles or more)  PHEVs are investigated. It was found that diversity of charging 

locations is positively associated with electric miles from short-range PHEVs whereas encouraging more 

home charging increases the electrification benefits of longer-range PHEVs. 

Third study quantifies the well-to-wheel GHG mitigation potential of Nissan Leaf, Chevrolet Bolt 

and Tesla Model S at the household level using a multi-year actual usage data from 73  two-car (single 

BEV and single ICE) California households. Analysis shows that on average 25% of Leaf and Bolt, and 

30% of Tesla household’s GHG can be reduced from their current levels by driving the BEV instead of 

the ICE.  Upgrading to a longer-range efficiency oriented BEV and fully charging overnight can mitigate 

an additional 10-15% household GHG. Upgrading to longer-range sportier performance oriented BEV 

nearly offset the GHG abatement benefits, but it electrifies the highest share of household miles.   
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1 Background and Motivation 

 

Road transportation accounted for 23% of global Greenhouse Gas (GHG) emissions and 28% of 

GHG emissions in the U.S [1, 2]. In 2018, California’s total GHG was 430 MMTCO2e (million metric 

tons of Carbon-di-Oxide equivalent), of which the light duty vehicle(LDV) share of transportation sector 

emissions was approximately 30% [3]. Accelerating the adoption of battery electric (BEVs) and plug-in 

hybrid electric vehicles (PHEVs), collectively addressed as plug-in electric vehicles (PEVs), is a vital 

element in California’s long-term strategy to reduce GHG emissions from the LDV sector. California has 

adopted a comprehensive suite of policies to increase the market penetration of PEVs as part of its 

Advanced Clean Cars program[4]. Technology forcing Zero Emission Vehicle(ZEV) mandate[5], demand 

side purchase incentives,[6, 7] , and investments in charging infrastructure [8] have played a major role in 

enabling the state to lead the U.S. in terms of PEV market share{VELOZ, 2018 #1024}[9].  

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.1 Stakeholders in PEV Adoption 
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Figure 1.1 depicts the important stakeholders in growing the PEV–original equipment 

manufacturers (OEMs) of cars and electric vehicle supply equipment (EVSE), policy makers, and the 

PEV buyers. Studies have shown that states with ZEV mandate tend to have higher PEV model choices 

and sales [10].  There is also a positive relationship between demand side incentives such as rebates and 

tax credits and charging infrastructure accessibility on PEV adoption [11-13]. While such studies bode 

well for understanding the effectiveness of policies on PEV adoption [14] and capturing factors that 

influence PEV purchase decisions, the net environmental benefits of PEVs depend on the extent to which 

they are actually used, and their typical daily driving and charging needs.   

Understanding daily driving needs is crucial for automakers to better align their PEV model 

offerings, design, and performance attributes with consumer needs. Understanding when, where and how 

long PEVs are charged and what is the anticipated charging demand are important for charging 

infrastructure developers from cost recovery, charger accessibility, and charger utilization perspectives.  

Utility companies are particularly concerned about PEV charging patterns as it has the potential to create 

localized hot spots if not managed properly, necessitating network upgrade or expansion[15]. Utility 

companies can also design their PEV rates to incentivize charging during off-peak hours. Consumer’s 

perceptions on the ability of PEVs to meet their daily driving needs , higher upfront capital cost compared 

to ICEs, range anxiety, and reliable access to charging infrastructure continue to be major barriers to 

large-scale PEV adoption[16-19]. These barriers create uncertainties in the evolution of PEV market. 

Heterogeneities in daily driving patterns and needs across various sociodemographic indicators and 

household factors, further compound these uncertainties. From the perspective of policymakers, 

information about PEV usage is extremely valuable to quantify gasoline displaced and GHG reduction 
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potential. In addition, it will offer insights into the barriers and opportunities to increase the 

environmental benefits of PEVs in the long- run.   

  Prior research advocates the need to have realistic representation of PEV usage to increase their 

usefulness to policymakers. There is a good chance of overestimating emission reduction benefits from 

PEVs by relying on data from travel diaries due to the inherent biases [20], room for up to 25% 

underreporting of trips[21], and underreporting of long-distance travel [22] compared to GPS tracked 

studies. Given the relative scarcity of actual PEV usage data, researchers and policymakers create 

scenarios by combining various sources of travel data and superimposing a set of preconceived 

expectations about PEV driving and charging needs. These expectations about their driving and charging 

behavior are used to benchmark their energy consumption and emissions, which have consequential 

impacts on specific policies that rely on them such as credit allocation under the ZEV mandate [23] and 

PEV infrastructure projections and investments[8, 24]. 

An often ignored or inadequately addressed issue in contemporary PEV usage studies is the 

household context. Considering that household factors (vehicle ownership, size, and number of drivers) 

impact vehicle type choice, vehicle usage, and household travel demand [25, 26], studying PEV usage in 

isolation may lead to inaccurate estimates of their net environmental impacts, since it is based on partial 

information.   By using average daily distances as an objective metric to determine the feasibility of PEV 

to replace an ICE ignores the subjective behavioral changes necessitated by the adoption of PEV [27]. 

BEVs have entirely different recharging patterns compared to refueling behavior of ICEs. Assuming 

homogenous usage of a specific PEV model across diverse strata of demographics and travel needs, and 

subsequently their emission reduction potential presents an inaccurate picture of the day-to-day 

substitution patterns between an ICE and PEV,  since it depends on household factors and vehicle 

attributes. Even if high resolution data from actual PEV usage is available, it is necessary to observe them 

over a considerably longer duration of time compared to few weeks or months to capture the full 
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spectrum of trip and daily miles driven. Therefore , for a realistic assessment of their GHG benefits,  it is 

important to gain a better understanding of the dynamics of actual PEV usage. 

1.1 Research Context 

Expectations versus Experience aptly portrays the central theme of my dissertation – i.e. what we 

expect PEV users to do and usage patterns to be versus how PEVs are actually used in real-world. 

Analytical insights and policy implications presented in this dissertation are based on the 

refueling/recharging data of PEVs observed and collected as part of the Advanced Plug-in Electric 

Vehicle Travel and Charging Behavior (eVMT project)[28-30]. The eVMT projects aims to understand 

the driving and charging needs, emissions potential of plug-in electric vehicles (PEVs) under real world 

conditions, highlight the opportuntities and challenges, facilitate discussions and help inform future PEV 

policies.  

1.2 Research Objectives 

At the highest level, this dissertation seeks to answer two questions– i) what and how much do we 

know about the actual PEV usage, especially their driving and charging needs? and ii) what and how 

much do we know about PEV usage in the context of household  travel? The overarching goal is to 

improve our understanding of PEV driving and charging needs, provide an opportunity to scrutinize the 

consequences of revealed behavior deviating from assumptions and expectations on PEV policies, and 

leverage the insights to better inform future PEV policies.  Specific research questions answered include: 

• Why real-world utility factors of PHEVs differ from window sticker label 

expectations? 

• How user preferences are reflected and distinguished between electrification 

potential of short-range and longer-range PHEVs? 

• What is the current and prospective GHG mitigation and electrification benefits of 

BEVs at the household level? 
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1.3 Dissertation structure 

This dissertation is organized as follows: 

Chapter 1 provided the background and motivation and sets the context of this research.  

Chapter 2 examines the reasons attributable to real-world Utility Factor(UF) of PHEVs deviating 

from sticker label expectations. An analytical procedure is developed and applied on driving and charging 

dataset of 153 PHEVs which includes – 1st generation Toyota Prius (11 mile range), Ford CMax and 

Fusion Energi (20-miles), 1st generation Chevrolet Volts (35/38 mile range), and 2nd generation Chevrolet 

Volts(53 miles).  

Chapter 3 further builds upon this study and deduces eight characteristic driving and charging 

profiles of short-range (20 miles or less) and longer-range PHEVs (35 miles or more) that capture 

charging accessibility by location, charger utilization by frequency and duration of charging, driving 

style, and long distance travel needs. The relative importance of each of these profiles on the real-world 

electrification potential and how it varies between short-range and longer-range PHEVs are examined. 

Chapter 4 quantifies the current electrification and well-to-wheel GHG benefits of BEVs in 2-car 

households. The implications of travel day vehicle selection, overnight home charging, and BEV attribute 

upgrade on electrification of household travel and resulting GHG abatement potential are examined. This 

chapter discusses the interlinkage between user preferences and BEV range and how it manifests in the 

substitution potential of BEVs. Role of ICE class and future BEV attributes are discussed from the 

perspective of infrequent travel needs and its contribution to the share of hard to abate GHG. Concluding 

remarks and future research directions are presented in Chapter 5.  
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2 Plug-in Hybrid Electric Vehicle Utility Factors: Observed and SAE J2841 Expectations 

2.1 Background 

Light duty vehicle (LDV) electrification is a promising solution to mitigate the adverse impacts of 

GHG emissions on the environment and public health. Plug-in hybrid electric vehicles (PHEVs) are often 

considered a viable option to catalyze the transition towards LDV electrification [31, 32]. PHEVs are 

equipped with a larger battery pack compared to conventional hybrid vehicles (HEVs) that can be charged 

using grid electricity and have an internal combustion engine (ICE). PHEVs are not limited by the range 

of the battery and combine the advantages all-electric capabilities of a battery electric vehicle (BEV) with 

the engine downsizing, minimal energy losses due to no engine idling, and regenerative braking 

capabilities of a HEV. PHEVs are operated in two distinct modes: charge depleting (CD), when electrical 

energy stored in the battery after charging is used to propel the vehicle and charge sustaining (CS) mode 

in which the PHEV is driven on gasoline.  

Charge depleting (CD) mode can be categorized into CD-EV and CD-blended (CDB) modes. In 

the CD-EV mode of operation, the entire traction energy is met by discharging the energy stored in the 

battery. The vehicle is driven in all-electric mode by the motor and the engine is never turned on. This 

type of operation is called EV-mode, all-electric mode, or zero emission (ZE) mode because only 

electricity is consumed and there are no tail-pipe emissions. Depending on the powertrain configuration, 

road network topology, speed and acceleration characteristics, in the CD mode, engine may turn on to 

partially assist the motor in meeting the total energy demand at the wheels. This is called CDB mode of 

operation because both electricity and gasoline are consumed. The CD mode of operation continues until 

the battery is fully discharged, after which the PHEV is operated in the CS mode as a regular HEV with 

the ICE providing the propulsion energy and only gasoline is consumed.  Operational and fuel use 

flexibility enables PHEVs to substitute gasoline partially or completely with electricity. It is this same 
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attractive design feature that makes the exercise of characterizing PHEV emissions and energy 

consumption quite challenging. The test procedures for estimating their environmental performance need 

to combine both modes of operation.  

The distance driven in either CD or CS modes depends on battery capacity, electrical energy 

consumed in the CD mode, distribution of trip lengths and frequencies, and the recharging frequency.  A 

key performance metric of PHEVs from the perspective of gasoline displacement, GHG emissions, and 

local criteria pollutants is the fraction VMT electrified, also known as  Utility Factor (UF). At a 

conceptual level as the name implies, it denotes the limited utility of the CD mode of operation until the 

battery is fully depleted, hence called Utility Factor.  Society of Automotive Engineers (SAE) J2841[33] 

formally defines the UF and outlines recommended procedures to calculate the UF. Utility Factor 

essentially weighs the share of distance driven in CD and CS mode of operation relative to the total 

distance traveled and is expressed as a ratio between 0 and 1. These weights are incorporated into the test 

procedures for estimating combined fuel economy, and mode specific emissions and energy consumption 

according to the SAE J1711[34] standard.   

PHEVs are typically denoted as PHEVX, where “X” is the Charge Depleting Range (RCD) or 

simply range in miles, where RCD  is the distance traveled by a fully charged PHEV in the CD mode 

before the battery is completely depleted. The vehicle miles traveled (VMT) in the CD mode could be 

comprised of VMT on electricity (eVMT) only or electricity and gasoline (gVMT), whereas CS mode 

involves only gVMT. There are four different definitions of range in the SAE J1711–All Electric Range 

(AER), CD Cycle Range, CD Actual Range, and Equivalent All Electric Range. The AER of a PHEV is 

the total distance traveled from the beginning of a Full Charge Test (FCT) to the point when the first 

engine turn-on event occurs. The CD cycle range (RCDC) is the distance traveled either completely (no 

engine turn-on) in the CD-EV mode or partially in the CDB mode under a test-cycle until the battery is 

completely depleted. The CD cycle range is the sum of the distances traveled from the beginning of an 

FCT up until the end of the last test-cycle(s) prior to the cycle meeting the End-of Test (EOT) criterion 
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including the transition range where the engine might momentarily turn on though the battery is not fully 

depleted. The EPA label lists the AER and RCDC for applicable PHEV models. Full Charge Test as the 

name implies requires that the test begin with the battery state of charge (SOC) of 100% and transition 

range is the distance traveled between the CD and CS modes. Since the exact determination of the point at 

which the transition between CD and CS modes occur, the SAE J1711 employs analytical method to 

determine the CD actual range (RCDA) which is always less than or equal to the RCDC. The Equivalent All 

Electric Range (EAER) is the fraction of CD cycle range attributable to grid electricity and is equal to 

greater than the AER.  

The J2841 UF definitions for PHEVs explicitly assume that:  

i) travel day starts with a fully charged battery.  

ii)PHEV is charged once per day on days driven after the end of last trip.  

iii)impact of additional intra-day charging, and vehicle not being charged at the end of travel day offset 

each other equally, and 

iv)travel patterns of PHEVs are identical to the single-day trip diary information of ICEs in the 2001 

National Household Travel Survey (NHTS).  

These assumptions have widespread ramifications on energy and emissions estimates of PHEVs 

embodied in existing policies, charging infrastructure planning, and electricity grid impact studies [14, 24, 

35-37]. In the policy domain, the significance of the UF cannot be understated since it is the critical 

metric assessed for many policies in the U.S. including the Environmental Protection Agency (EPA) fuel 

economy labeling or window sticker [38, 39], credit allocations under California’s Zero Emission Vehicle 

(ZEV) mandate and Low Carbon Fuel Standard [40], and compliance with fuel economy and emission 

standards [41-43].  Though the SAE J2841 was developed from a U.S. centric perspective, at a 

methodological level, the concept of UF, core assumptions on charging behavior, relying on national 

driving statistics to represent PHEV driving patterns, and a standardized procedure to calculate the UF has 
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been adopted by regions outside the U.S. as well, albeit with few region specific modifications to the test 

cycles and driving database. China’s LDV fuel economy standards and energy consumption and emission 

estimates for type approval in European Union [44, 45], to name a few.  

The assumptions outlined in the J2841, though plausible, may not reflect how actual PHEV 

owners drive and charge their vehicles. Prior work in this area focused on alternative UF calculated using 

different cross-sectional or longitudinal travel survey datasets, incorporating additional charging 

scenarios, and performing sensitivity analysis of UF to various vehicle and sociodemographic attributes 

[41-43, 46-48]. More recently, with the availability of observed driving and charging data through on-

board telematics and data-loggers [49-55], estimating on-road emission mitigation potential and 

characterizing driving and charging patterns [56-60]  are other areas where analysis of UF is pertinent.  

UF has also been widely used in evaluating the life-cycle costs, emissions and value proposition of 

PHEVs [61, 62], and optimal battery size design and its impact on market acceptance [63, 64].  

In summary, many studies have been carried out to assess validity of J2841 UF assumptions on 

charging and driving by simulating different scenarios and comparing simulated UF to their theoretical 

J2841 UF equivalent. However, a straightforward approach that uses observed driving and charging 

behavior to reconcile their deviations from J2841 UF expectations is found lacking. To the best of my 

knowledge, no study attempted to delve deep into how key driving and charging traits such as annual 

VMT; daily VMT (DVMT) distribution and range utilization; charging behavior; and effective range 

achieved on-road, affect the disparities between observed UF and J2841 UF. Data availability of actual 

PHEVs is still scarce compared to the publicly available travel survey data of conventional ICEs. Even 

though observed data is valuable and desirable since they represent PHEV usage better compared to 

surveys, policy recommendations cannot be tailored and altered depending on the availability and quality 

of actual PHEV usage data. Therefore, it is necessary to interpret the UF observed in terms of the 

standardized UF.  This chapter addresses these two areas of need in the context of UF of PHEVs using 

year-long GPS enabled driving and charging data of 153 PHEVs (11-53 miles range) in California.  
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The objectives of this study are:  

i) quantitatively and qualitatively understand the deviations in observed UF from J2841 UF.  

ii) identify vital aspects of driving and charging that cause these deviations and ; 

iii) systematically estimate the direction and magnitude of impact individually attributable to these 

aspects.  

The outcomes of this work will augment policy insights gathered from contemporary efforts and 

elucidate how observations about PHEV usage today can better inform future vehicle design and policy 

needs. This study contributes to the evolving field of improving the accuracy of UF estimates to enhance 

PHEV emissions reduction benefits and market penetration. Furthermore, the methodology outlined in 

this chapter is intended to serve as a template for similar comparisons of PHEVs performance in different 

locations and settings using different standards. Rest of the paper is organized as follows. In Section 2.2, I 

briefly review the background of the standardized J2841 UF and the alternative definitions considered in 

literature. A concise overview of its developments in the European Union(EU), South Korea, Japan, and 

China is also presented in Section 2.2. Section 2.3 provides an overview of the data and analytical 

methods employed in this chapter to quantify deviations between observed and J2841 UF. Results are 

elaborated in Section 2.4. Research outcomes and its applicability are synthesized in  Section 2.5. 

2.2 J2841 UF in practice and its variants 

The foundational and procedural aspects of the SAE J2841 UF within the U.S. context is 

presented. I expand the scope and provide an overview of its how its estimated outside the U.S., in EU, 

South Korea, Japan, and China and summarize contemporary literature on UF and its variants.   

2.2.1  Conventional J2841 UF definitions 

The J2841 UF is calculated based on the trip and daily VMT distribution of mainstream ICE users 

in the U.S. represented in the 2001 NHTS, here after addressed as just NHTS[65]. The NHTS trip diary 

information captures a one-day snapshot of travel patterns self-reported by survey respondents. The raw 
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trip file has close to 642,000 trips and the following filters are applied in order to calculate the UF: i) 

subject was driver on this trip (DRVR_FLG=1); ii) national sample (SMPLSRCE=1); iii)non-zero trip 

miles and duration (TRPMILES and TRVL_MIN > 0)  and ; iv)only light duty vehicle trips (VEHTYPE 

is 1-4) are selected. DVMT is obtained by summing the trip distance and time for each unique household 

and vehicle used and roughly 32,000 vehicles or vehicle-days are in the filtered subset. Let ���� denote 

the distance traveled on travel day k. The VMT weighted daily distance based UF according to the J2841 

methodology is calculated as follows: If ���� > ���, then UF =1 and ��� ����⁄  otherwise. For a travel 

dataset with N days, the same logic is extended and the UF for a specific range is calculated according to 

Eq.(1).  

UF����� = ∑ ��������,��������  ∑ ��������            (1)  

                           
The VMT weighted UF described in Eq. (1) is called the Fleet Utility Factor (FUF) since 

represents the UF of an entire fleet of PHEVs. The numerator and denominator in Eq. (1) are the total 

eVMT and VMT of the fleet. The FUF represents the fraction of total miles in the NHTS fleet driven in 

the CD mode. In some instances, it might be desirable to convey information for an average PHEV since 

the VMT weighted FUF is biased towards long-distance trips. For this purpose, the Individual Utility 

Factor (IUF) is used which is the vehicle weighted UF. The basic approach to calculate the IUF is same as 

that of the FUF. Let NDays and NVehicles denote the number of days and vehicles in the dataset and d(i,j) 

denote the distance traveled by vehicle i on travel day j. The IUF is calculated according to Eq. (2). The 

IUF represents the arithmetic mean of the fraction of miles driven in CD mode over NVehicles . Depending 

on the whether the dataset has information about Single Day (SD) or Multiple Days (MD) of travel, the 

IUF calculated is expressed as SDIUF or MDIUF. The Commute Atlanta dataset[66] was used as a 

supplementary dataset to calculate the MDIUF but the FUF and IUF distribution was found to be the 

same between them. 
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�������� = ∑ ∑ min"�#,$, ���%&�'()$*+  ∑ �#,$&�'()$*+
&,-.#/0-)#*+

123ℎ56738  
(2) 

                

Since energy consumption is a function of driving speed, the J2841 method includes two methods 

to create FUF that are conditional upon driving style: City Specific (CSFUF) or Highway Specific 

(HSFUF). In the first method, average trip speed is calculated, and the entire trip is categorized as city or 

highway driving based on a cut-off speed. The conventional assumption on the split between city and 

highway driving is 55/45 [67] and the cut-off speed to obtain this is 42 mph. Trips with average speed 

greater than 42 mph are designated as highway driving and assigned a highway weight of 1 and city 

weight of 0 and vice-versa for the remaining trips designated as city driving. The second method selects 

two cut-off speeds to define city only and highway only. Trips with average speed below 25 mph or 

above 60 mph are categorized as city only and highway only respectively. The city/highway weight 

assignment is like the first method. For trips with average speed between the two cut-offs, the 

city/highway weight is linearly scaled between 0 and 1, wherein the weight for city driving decreases 

from 1 with increasing speed beyond 25 mph and vice-versa for the highway driving weights. These trips 

are considered to have an equal likelihood of being city or highway style driving.  At a travel day level, 

daily weights for city driving and highway driving are calculated based on the method chosen and the 

share of distance traveled in the respective driving style as a ratio of the total daily distance traveled. The 

dataset is divided into city and highway driving styles and the UF is estimated according to the basic form 

shown in Eq. (1). The J2841 method applies exponential fits to the generate FUF and IUF curves,  Eq. 

(3), where x is the RCD , 9# is the fit coefficient,  j is 6 for FUF and 10 for IUF, and Dn is the normalized 

distance (400 miles in the U.S.). The J2841 FUF and MDIUF, CSFUF and HSFUF curves are shown in 

Figure 2.1(a) and Figure 2.1(b)respectively.  

���:� = 1 − 3:= >− ?@ 9# A :BCD#$
#*+ EF (3) 
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(a) U.S.     (b) U.S. 

Figure 2.1 top left (a) U.S. J2841 FUF and MDIUF curves; top right (b) U.S. J2841 CSFUF and HSFUF 

curves for 55/45 and 43/57 city/highway driving splits  

2.2.2 Utility Factor developments and applications internationally  

The concept of UF, its purpose as a weighing factor and as an indicator of the environmental 

impact of PHEVs,  and the basic procedure to estimate the UF outlined in the SAE J2841 is also used as 

guideline to calculate energy consumption and emissions of PHEVs outside the U.S.. To account for the 

country-specific driving patterns and prevailing regulations, representative national driving statistics, test 

cycles, and testing procedure used outside the U.S. typically differ from the conventional SAE J1711 and 

SAE J2841 approach. Quality, sample size and resolution of national driving database, pre-conditioning 

requirements (for example soak time and temperature, test site conditions), end-of-test criterion, number 

of test cycles used for CD range determination, and city/highway driving split are some of the aspects that 

varies outside the U.S. in regards to UF determination and regulatory assessment of PHEVs[68]. A 

detailed cross-country comparative assessment of UF estimations is outside the scope of this study, 

therefore I limit the review of international studies to highlighting only its key features.  
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In the U.S. two test cycles are used Urban Dynamometer Driving Schedule(UDDS) and Highway 

Fuel Economy Test (HWFET) cycle, whereas in the EU, only one test cycle, namely the Worldwide 

Harmonized Light-duty vehicle Test Cycle (WLTC) and its associated Worldwide Harmonized Light-

duty vehicle Test Procedure (WLTP) are used [44, 69]. Prior to the introduction of WLTP in 2017, New 

European Drive Cycle (NEDC) was used the test cycle for type approval[70] but was phased out in favor 

of the WLTP in order to reduce the gap between on-road and type approval energy consumption and 

emission estimates. Realistic driving behavior, inclusion of diverse driving situations (urban, suburban, 

main road, and motorway), representing high speed and propulsion power demand, and stringent testing 

conditions are some of the notable benefits of the WLTP compared to the NEDC [71]. The CD range 

estimated based on the NEDC is reduced by 25% under the WLTP[72]. Measurements using the WLTP 

also considers optional equipment and add-ons for comfort, luxury, and performance that impacts the 

rolling resistance, vehicle aero-dynamics, and mass[73].  

The WLTP is sub-divided into four-phases (low, medium, high, and extra high) with the average 

speeds increasing with each subsequent phase representative of urban (up to 35 mph) , suburban (up to 47 

mph), main road(up to 60 mph) , and motorway (up to 81 mph) driving, respectively. Energy 

consumption (fuel and electricity) is calculated in each phase and aggregated based on the phase specific 

UF also known as fractional UF, to determine the combined energy consumption.  Currently two datasets 

are available in the EU to obtain representative driving patterns – European WLTP database which was 

used to develop the WLTC and the driving data provided by FIAT[69]. The single overnight charging at 

home and travel day starting on a fully charged battery assumption is retained in the WLTP for UF 

estimation in the EU. The WLTP allows EU member nations to develop their own UF curves.  

In Japan, prior to 2020, JC08 was the official test cycle, which is set to be replaced by the WLTP 

as part of its 2030 fuel economy standards for LDVs[74]. The procedure to estimate the UF of PHEVs in 

Japan is identical to that of the EU’s approach discussed above. China is currently developing its own 

LDV test cycle called the China Light-duty vehicle test cycle (CLTC) and it is expected to be the norm 
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from 2023 onwards. Between now and 2023, the WLTP will be used for estimating the UF. South Korea 

follows the SAE J1711 testing procedure and SAE J2841 for UF estimation[75, 76].  

 

Figure 2.2 U.S., South Korea, WLTP based EU, and Japan UF Curves 
Eq. (4) shows the WLTP based approach for UF estimation in the EU where – ��$":G%  is the 

fractional UF for phase p,  :G is the distance driven in km from the beginning of the full charge test to the 

end of phase p, 9$ is the jth coefficient, k is the order of the exponential fit (10 in EU, 5 in South Korea 

and 6 in Japan), Dn is the normalized distance, set at 800 km, 600 km, 400 km in the EU, South Korea, 

and Japan, respectively, and ∑ ��0GH+I*+  is the sum of calculated UF to phase p-1.  

��$":G% = 1 − 3:= >− ?@ 9$ A:GBCD#�
J*+ EF − @ ��0

GH+
I*+  (4) 

 

Figure 2.2 depicts the UF curves generated for the U.S., and WLTP based Fleet UF curves for 

EU, Japan, and South Korea. Because of the transition to WLTC and WLTP in many countries outside the 

U.S., only the generic procedure to estimate the UF using the WLTP in the EU was elaborated. The fit 

coefficients used for estimating the UF in the U.S, South Korea, EU, and Japan are summarized in Table 
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A1 of  Appendix A. Cross-country comparison of key test cycle parameters (speed, distance, acceleration) 

is summarized in Table A2 of  Appendix A.  

   

2.2.3 Alternatives to the conventional UF and empirical evidence from observational studies 

Bradley and Davis explore  alternatives to the J2841 UF using the 2009 NHTS instead of the 

2001 NHTS [42]. In addition to end of travel day charging, a mid-day opportunistic charging scenario is 

also considered. The authors report that the alternative UF is higher than the J2841 UF for ranges less 

than 65 miles. In [43], sensitivity of the J2841 UF to charging behavior, dwelling unit type, fuel economy, 

vehicle usage intensity, vehicle age, and vehicle type (passenger cars versus SUVs, vans, and light duty 

trucks) is studied. An energy based UF is proposed is also proposed in [43]. Their analysis shows that UF 

is highly sensitive to charging behavior, vehicle age and vehicle usage intensity but insensitive to vehicle 

class, fuel economy and dwelling unit type. Longitudinal travel data collected over a span of 18 months 

via GPS devices installed in approximately 400 ICEs operating in the Seattle metro area data is used in 

[77] to compare UF estimated under different gasoline and electricity prices, type of day (weekday and 

weekend UF) and the availability of workplace charging. Their study explores how the UF changes if 

only home-based tours are considered compared to considering the entire distribution of VMT. Authors in 

[77] report that UF estimated using the Seattle travel dataset is higher than the conventional J2841 UF, 

fuel and electricity prices have no significant impact on the UF, and if only home charging is available, 

UF is not sensitive to travel patterns and charging behavior. Paffumi et. al. in [78] conclude that the J2841 

UF method sufficiently captures the driving and charging behavior of PHEVs using GPS data of ICEs 

from six European cities. Their study mentions that future UF estimates should be capable of handling 

heterogeneous preferences in charging location, timing, and frequency.  

With advances in telematics data acquisition, big data analytics, and support for regional and 

nationwide PHEV demonstration projects such as the Idaho National Laboratory(INL) EV Project [53-

55], increasing efforts have been made to assess the performance of PHEVs by observing their actual 
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usage. In [53], it is  reported that the observed FUF of 1400 Model Year (MY) 2011-2013 Chevy Volts 

was higher than their J2841 FUF estimates by 6%. A similar study of close to 50,000 MY 2011-2014 

Chevy Volts in [56] report that the observed Volts were able to travel 74% of their total miles in EV mode 

alone without turning on the engine. The recent midterm review of the Advanced Clean Cars program by 

the California Air Resources Board (CARB) analyzed driving and charging data provided by the 

automakers and it was found that the observed FUF of Ford PHEVs with 20 mile range was lower than 

the J2841 FUF estimates by 4-6% and the observed FUF of Toyota Plug-in Prius PHEVs with 11 miles 

range was lower than the J2841 FUF by 8% [40]. Researchers in Germany [79] analyzed the real-world 

fuel economy and UF of 2000 PHEVs with 11-38 miles range and conclude that the deviations in 

observed fuel economy varied from the estimates based on standardized drive cycles could be anywhere 

between 2% to 120%. In [80]  supervised and unsupervised machine learning techniques are applied to 

predict the UF of 1800 Chevrolet Volts. Analyses indicated that the variance and skewness of the daily 

VMT distribution and frequency of long-distance travel are better predictors of UF compared to assuming 

a single charging event per day[80].   

Utility Factors of various PHEV models reported in related studies in the U.S. and EU alongside 

their label expected UF is compiled and presented in Table A3 of  Appendix A. Literature review 

indicated that depending on the region and data acquisition method (in-use observational, aggregated 

telematics data from the OBD port, or surveys),  the UF of 11-mile Prius and 20-mile Energi PHEVs 

could differ from label UF by +30 to -66% and -4% to -50% respectively. The UF of first generation 

35/38-mile range Volt could be +7% to 30% more than the label UF, whereas the second generation 50-

mile range Volt’s UF varies from label UF by -5% to +40%(Table A3, Appendix A). To summarize, the 

type of travel survey (stated or observed preferences), duration of data-collection, mode of data 

acquisition (self-reported trip diaries, data loggers with or without GPS), type of vehicle(s) used for data 

collection, survey population (mainstream ICEs or actual PHEV owners), and assumptions about 
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charging behavior will have consequential impacts on our understanding of PHEVs and their role in 

personal transport electrification.   

2.3 Data and Methods  
The source of the data used is from the Advanced PEV Driving and Charging Behavior project, a 

multi-year study to monitor PEV usage in California [29, 81]. This project consists of an online survey of 

current PEV buyers in California followed by a yearlong data collection study of a sub-sample of 

respondents. Data loggers that collect a second by second data on the vehicle energy use and travel 

characteristics were installed to understand how current PEVs being used a day to day basis. Online 

survey details is outlined followed by the  logger data acquisition and post processing steps involved .  

2.3.1 Online Survey Data 

Participants for the online survey were recruited randomly from the California Clean Vehicle 

Rebate Project (CVRP) data and the California Department of Motor Vehicles (DMV)  records [82]. 

Stratified random proportionate sampling strategy was primarily used to recruit participants. Stratification 

was based on the five major utility companies(investor and publicly owned). Investor owned utilities 

(IOUs) are Pacific Gas & Electric (PGE), San Diego Gas & Electric (SDGE), and Southern California 

Edison (SCE). Sacramento Municipal Utility District (SMUD) and Los Angeles Department of Water and 

Power (LADWP) are the two public owned utilities (POUs). California Air Resources Board emailed 

survey invitations to people who applied CVRP and sent postcards to people randomly selected from the 

DMV registration data who did not apply for the CVRP. Close to 19,000 PEV owners were recruited 

between April 2015 and Nov. 2017.  12,396 of the respondents indicated that they are willing to 

participate in the GPS logger study.  The overall response rate for the survey was 18% and 75% (14,000) 

of these respondents completed the survey. The study population is the list of people who purchased their 

PEV in the last 4 years. The sampling frame is the list of current PEV owners in CVRP database and the 

DMV records in the state of California. Apart from the socioeconomics, demographics, vehicle 

ownership, household size, information about charging behavior (location, charger level, charging 

frequency, membership with charging networks, perception of charger access at different locations) and 
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driving behavior in the last 30 days and the past week , electricity provider, availed incentives, self-

reported annual vehicle miles traveled, and how would they have changed their driving and/or charging 

behavior under different prices and charger availability at different locations were obtained.    

As it is true with similar real-world observational studies of PHEVs [10, 18, 54, 80], cross-

population generalizability of this study’s findings is limited by the small sample size. PHEV users in this 

study are early adopters who have unique sociodemographic characteristics (higher income, more 

educated, more likely to own rather than rent housing), behavioral patterns, and travel needs that may also 

differ from conventional ICE users[9, 10]. Correlation among socio-economics and demographic 

indicators and self-selection bias of PEV owners is inherent and it is prohibitively expensive (data 

collection period, travel logistics associated with logger installation and uninstallations, and staff hours) 

to control for every such correlation[17, 83].  Despite the small sample size of vehicles, the PHEV models  

considered in this study accounted for 77%1 of all rebates issued to PHEVs between 2010 and 2018 by 

California Clean Vehicle Rebate Project[7].  Table A11 of Appendix A  presents the proportional share of 

CVRP rebates issued by utility territory and OEM and the corresponding coverage of PHEVs analyzed in 

this study. Relevant socio-demographic attributes of the 153 PHEV owners recruited for the logger data 

analyzed in this study and the 2017 National Household Travel Survey California(CA) add-on[84] 

participants is summarized in Table A12 of Appendix A.  

I used the 2017 NHTS-CA add-on because it is more recent, geographical consistent, and 

overlaps with the survey administration and data collection timespan of this study. Given the sample and 

cross-population generalizability limitations, this study does not attempt to project the insights gathered 

on the larger PHEV market segment in California or nation-wide. As such the results presented here 

should be comprehended within the early developmental stage of the PHEV market.  

                                                      
1 On a one-to-one comparison between the PHEV models in this study and the CVRP database. This difference is due to  25-mile 
range Prius Prime PHEV launched in 2017, which was excluded when comparing the proportional shares. If we use the OEM, then 
the OEMs of the analyzed PHEVs in this study account for 87% of the CVRP rebates issued to PHEVs. 
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2.3.2 Logger Data Acquisition and Post Processing to Calculate eVMT 

 

FleetCarma C2 or C5 type data loggers [85]  were installed in the on-board diagnostics (OBD-II) 

port of the vehicles.  Key driving and charging related variables such as state of charge, distances, engine 

speed, battery voltages and currents, fuel and electrical energy consumption were collected. The eVMT is 

calculated based on the methodology outlined in the Idaho National Laboratory’s EV project [86, 87]. 

Every trip is classified along the same lines as described in the  above as one of the following types: i) 

charge-depleting-EV without any engine-turn on event ; ii) charge depleting blended (CDB)  which 

utilizes battery and engine for propulsion ; and iii) charge-sustaining (CS) in which the entire propulsion 

energy is derived from gasoline. For each PHEV type, the energy efficiency ratio (EER2) between the CS 

and CD-EV mode of operation is calculated using the official specifications provided in the EPA’s fuel 

economy database[88]. Since it is impractical and computationally exhaustive to calculate this at every 

possible operating point (every combination of vehicle speed, engine speed, engine torque, motor speed, 

motor torque, SOC etc.), I used the CD-EV mode kWh/mile and the CS mode MPG numbers from EPA’s  

fuel economy database. The equivalent gasoline displaced, which is the product of trip electrical energy 

consumed and the EER, is then calculated. In the CD-EV mode, trip VMT and trip eVMT are the same. 

The blended mode eVMT is calculated by multiplying the trip VMT by the ratio of displaced gasoline to 

total gasoline consumed (displaced plus consumed gasoline). The trip eVMT is the sum of eVMT in the 

CD-EV and CDB modes and these are shown in Eq. (5)-(6). 

KL5= 32MK�Blended� = Trip VMT × KL5= �Xℎ × AΔgallons per mileΔkWh per mile Dabbbbbbbbbcbbbbbbbbbd�#)G0'/-� e')f0#C-

B58=7g63� hg8i75j3 + KL5= hg8i75j3 
(5) 

KL5= 32MK�Kilg7� = 32MK�CD − Blended� + 32MK�9B − o2�      (6) 
  

                                                      
2 Ratio of gallons per mile (CS mode) to electrical energy consumed per mile in CD-EV mode (kWh/mile) 
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2.3.3 Aggregate Driving and Charging Data 

Table 2.1 summarizes the aggregate driving and charging data of the PHEVs analyzed. It includes 

153 PHEVs: 22 Toyota Plug-in Prius (11 miles range), 52 Ford CMax and Fusion Energi (20 miles 

range), 79 Chevrolet Volts (35, 38, and 53 miles range). The driving and charging data consist of 1.95 

million VMT, 190,934 trips, 52,223 charging sessions, and 259 MWh of charging energy collected over 

the course of 44,438 driving days (driving and charging or driving only). Data loggers was installed in the 

OBD-II port and monitored for at least a year. Out of the 52 Ford PHEVs, 28 were Ford C-Max Energi 

and 24 were Ford Fusion Energi. Since both have 20-mile range, I combined them into Energi. The 35 

and 38-mile range Volts were combined into First Generation Volts (Gen1 Volt) and the 53-mile range as 

Second Generation Volts(Gen2 Volt) matching with the OEM’s official specifications[89].  On average, 

every vehicle in the dataset was driven 291 days and among the PHEV models, it varied between 278 and 

312 during the data collection period (06/2015-06/2018). 

Table 2.1 Driving and charging data aggregate summaries (non-annualized) 

PHEV 
Number 

Vehicles 

Driving 

Days 

Number of  

Trips 

Total 

VMT 

Total  

eVMT& 

Prius 22 6870 31473 314231 46117 
Energi 52 14435 64076 667656 229926 

Gen1Volt 43 12523 50275 556092 353819 
Gen2Volt 36 10620 45110 413687 280390 
Aggregate 153 44448 190934 1951666 910253 

PHEV 
Model 

Year 

EPA Label 

RCD  
miles[88] 

Number of 

Charging 

 Sessions 

Total  

kWh 

Charged 

Charging 

Sessions/Driving 

Days* 

Prius MY12-14 11 7661 17606 1.12 
Energi MY12-17 20 19384 70817 1.34 

Gen1Volt MY11-15 35/38 15320 96220 1.22 
Gen2Volt MY16-17 53 9868 74710 0.93 
Aggregate   52223 259353  

* Average number of charging sessions on days driven.  
&eVMT is the sum of eVMT in CD-EV mode and CDB modes. 

 

Table 2.2 summarizes the average annualized VMT, eVMT, gVMT, and UF of observed PHEVs. 

The reference annual VMT is based on the EPA sticker label value of 15,000 miles. The eVMT and 

gVMT calculated from the J2841 FUF and IUF is summarized in Table 2.3. 92% of Prius, 53% of Energi, 
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47% of Gen1 Volts and 44% of Gen2 Volts charging sessions were at Level 1, up to 1.4 kW [90]. Except 

for the Gen2 Volts, on average all the other PHEVs charged more than once per day and drove more than 

15,000 miles annually and the average annual VMT of the dataset was 15868 miles.  

Table 2.2 Observed average annualized driving estimates and UF 

 Observed Fleet UF Gap Individual UF Gap 

PHEVX VMT 
e 

VMT 

g 

VMT 
IUF FUF 

FUFobs- FUFref 

(ΔFUF) 

IUFobs-  IUFref 

(ΔIUF) 

Prius11 16432 2467 13965 0.175 0.150 -0.097 -0.117 
Energi20 16705 5554 11150 0.384 0.332 -0.065 -0.072 

Gen1 Volt 16038 10273 5764 0.671 0.641 0.053 0.023 
Gen2 Volt 14115 9472 4643 0.679 0.671 -0.036 -0.080 

Overall 
fleet 

15868 7358 8510     

Mileage annualized based on number of days driven. Observed IUF are vehicle weighed average of UF 
by definition of IUF, Eq. (2)  

 

Table 2.3. Reference average annualized driving estimates and UF 

  Reference Fleet Reference Individual 

PHEVX VMT 
eVMT 

(FUF) 

gVMT 

(FUF) 

J2841 

(FUF) 

eVMT 

(IUF) 

gVMT 

(IUF) 

J2841 

IUF 

Prius11 15000 3705 11295 0.247 4395 10605 0.293 
Energi20 15000 5955 9045 0.397 6840 8160 0.456 

Gen1 Volt 15000 8820 6180 0.588 9720 5280 0.648 
Gen2 Volt 15000 10605 4395 0.707 11385 3615 0.759 

 

Throughout the rest of the paper unless otherwise specified: J2841 UF and eVMT estimates, 

NHTS, range and energy consumption found in EPA fuel economy data are addressed as Reference (Ref). 

Corresponding estimates and dataset of observed PHEVs are addressed as Observed (Obs). VMT, eVMT, 

and gVMT are annualized averages, range referred is the charge depleting range cycle (for notational 

simplicity I use RCD ), NHTS refers to the 2001 NHTS, and IUF referred is the Multiday Individual Utility 

Factor (MDIUF). Prius and Energy are collectively addressed as Short-range PHEVs (20-miles or less 

range) and the Volts as longer-range PHEVs (35- miles or more). Though the classification of PHEV into 

short or longer-range could arbitrarily differ between studies, it is appropriate resulting in a nearly even 
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split- 74 short-range (22 Prius and 52 Energi) and 79 longer-range PHEVs (43 Gen1 Volt and 36 Gen2 

Volt). 

  
(a)                                                                            (b) 

Figure 2.3 (a) Distribution of observed UF of every vehicle in the dataset; (b) Distribution of the ratio of 

observed UF to J2841 IUF 

(a)                                                                         (b) 

Figure 2.4 (a) Average observed IUF and J2841 IUF; (b) Annual eVMT differences between observed 

and J2841 estimates. Observed IUF are vehicle weighed average definition. 
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To reinforce the motivation behind this work, refer to Figure 2.3 and Figure 2.4. Fig. 3(a) 

presents the distribution of the UF of the 153 PHEVs and Fig. 3(b) shows the distribution of the ratio of 

observed UF to J2841 IUF. Fig. 4(a) shows the observed and J2841 IUF. In this dataset, the IUF of Prius, 

Energi, and Gen2 Volts was 60%, 84% and 89.5% of their respective J2841 IUF. The IUF of Gen1 Volts 

was slightly higher than their J2841 IUF by 3%. Fig. 2.4(b) shows the difference in average annualized 

eVMT between the PHEVs observed and their reference values based on three methods. The first bar for 

each vehicle type is the raw difference in eVMT found in Table 2.2 and Table 2.3. The second bar 

multiplies ∆IUF with Reference annual VMT and the third bar multiplies ∆IUF with observed annual 

VMT, respectively.  This further highlights the need and the value of reconciling observed UF in relation 

to the standardized J2841 UF form to better elucidate their role in LDV electrification.  Table 2.4 presents 

additional summary statistics of the IUF of PHEVs analyzed in this chapter. 

Table 2.4 Descriptive statistics of Observed IUF 

PHEV Mean 
Std. 

Dev 

Std. 

Err 

Mean 

95% C.I Mean 

[Lower, Upper] 

Inter 

quartile 

Range 

Median 

Median 

Absolute 

Deviation 

Prius 0.175 0.121 0.026 [0.122,0.229] 0.115 0.143 0.050 

Energi 0.384 0.231 0.032 [0.320,0.449] 0.322 0.358 0.159 

Gen1Volt 0.671 0.185 0.028 [0.614,0.727] 0.280 0.681 0.146 

Gen2Volt 0.679 0.190 0.032 [0.614,0.743] 0.290 0.697 0.145 

 

2.3.4 Procedure to explore observed IUF deviations from the reference J2841 IUF 

The goal of this procedure is to investigate what aspects of driving and charging could be 

probable reason(s) for Obs UF deviating from the J2841 UF expectations and calculate the individual 

contribution of each of these sources to the total deviation in UF. Consider Eq.(7) which is obtained from 

the basic buildup of the J2841 UF shown in Eq. (1) by rearranging the terms and expressing the 

denominator as the sum of eVMT and gVMT. For the sake of brevity, Eq. (7) is rewritten as Eq. (8), 

where e,g,v denotes the annual eVMT, gVMT, and VMT and similar expression can be written for the 

observed PHEVs. Disparities between Obs UF and  J2841 UF (∆�� = ��fr) − ��s-t  could be due to 
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variations in one or more of the following: i) Annual VMT "ufr) − us-t% which in turn manifests as 

differences in eVMT "3fr) − 3s-t%  and/or gVMT "vfr) − vs-t%  ; ii) charging behavior which directly 

impacts "3fr) − 3s-t%   ; iii) Daily VMT distribution which influences range utilization and thereby 

determines eVMT; and iv) Observed charge depleting range digressing from EPA label 

estimates"���fr) − ���s-t%. 

������� = ∑ min�����, ����&�H+abbbbbbcbbbbbbd�� ,wx �-,wx�  ∑ min�����, ����&�H+ + �∑ ���� − ∑ min�����, ����&�H+&�H+ �yzzzzzzzzzzz{zzzzzzzzzzz|�} ,wx �~,wx�
 (7) 

��s-t"���s-t% = -������� = -���-����~���   ;  ��fr)����fr)� = -������� = -���-����~���      (8) 

 

I break ∆�� into four components to represent the individual contribution of the four aspects to 

∆��. Due to the interrelationship between driving and charging, I consider one aspect at a time and then 

include the remaining, sequentially. I evaluate the effect of each of the variations individually as 

difference in eVMT ��-,wx�  and subsequently express these in J2841 UF fraction ����� terms by 

dividing  �-,wx by us-t as needed.  In order to ensure parity and methodologically consistency, I have to 

first apply the J2841 method, Eq. (1), on the analyzed dataset.  Eq. (9) describes the UF, eVMT and 

gVMT after applying the J2841 methodology. 

��fr)����+����fr)� = 3fr)����+
3fr)����+ + vfr)����+ (9) 

 

Since J2841 assumes that the travel day starts with a fully charged battery, the term "3fr) − 3fr)����+% is 

entirely due to charging behavior observed not aligning with the J2841 assumptions. "3fr) − 3s-t% can be 

rewritten as Eq. (10), where "3fr)����+ − 3s-t% represents the difference between Obs eVMT after applying 

J2841 method and Ref eVMT. The effect of charging can be further broken down based on whether the 

PHEVs were unable to use the full range due to inadequately charging or if the PHEVs exceeded the 
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range capabilities by charging more and this is detailed in section 2.4.2.  This enables characterizing the 

net impact of charging as positive or negative depending on the magnitude of 

δ-,wx�Inadequate Charging� and δ-,wx�Excess Charging�, Eq. (11).   

"3fr) − 3s-t% = "3fr) − 3fr)����+% + "3fr)����+ − 3s-t% (10) 
 ����������� ¡�� = −δ-,wx�Inadequate Charging� + δ-,wx�Excess Charging�    = 3fr) − 3fr)����+ (11) 

Next, I examine the effect of variations between Observed Daily VMT (DVMT) and Reference 

DVMT distributions. If the DVMT distribution is partitioned into two regions (DVMT less and more than 

range), charging cannot explain eVMT differences on days when DVMT exceeds the range. This is 

simply due to the fundamental feature of J2841 UF which assigns the minimum of range and DVMT as 

eVMT on that travel day and the PHEV is driven in the CS mode only after exhausting the range when 

DVMT exceeds range. Even if we consider the subset of days when DVMT was lower than the range, it is 

possible that the difference in eVMT may not be entirely captured by charging alone, i.e. "3fr) − 3s-t% ≠
"3fr) − 3fr)����+% . This is due to the differences in the DVMT distribution with respect to range. This in 

turn determines the fraction of range utilized on a given travel day.  Therefore, the impact of variations in 

DVMT distribution can be scrutinized in the form of range utilized or not utilized. I present an intuitive 

explanation as to why the term  "3fr)����+ − 3s-t% captures the impact of variations in DVMT distributions. 

Consider a hypothetical travel day where DVMT is less than range and the Obs DVMT is higher 

(lower) than the Ref DVMT. According to the J2841 UF, the eVMT estimated using the Obs DVMT is 

higher (lower) compared to that of the Ref DVMT. Consider the extreme scenario where every day, all 

the vehicles in Obs and Ref datasets are driven at least their range. The maximum theoretical annual 

eVMT in this scenario "3£'¤����+% based on the J2841 UF assumptions of travel day starting with a fully 

charged battery every day is 365 × ��� . "3fr)����+ − 3s-t% can be rewritten as shown in Eq. (12) by 

simply adding and subtracting "3£'¤����+% and rearranging the terms.   
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¨�����©ª«¬ ­ ®¯� °±¯ ²¡ �¡­ ��¡�³ ±¯ ´ µ�¯ ²¡ � = "3fr)����+ − 3s-t% = "3£'¤����+ − 3s-t% − "3£'¤����+ − 3fr)����+% (12) 

If "3fr)����+ − 3s-t% > 0 ⇒ "3£'¤����+ − 3s-t% > "3£'¤����+ − 3fr)����+% implying that  3fr)����+ is 

relatively closer in magnitude to 3£'¤����+ compared to 3s-t resulting in better range utilization by the Obs 

DVMT distribution. Alternatively, the fraction of range that remains unused by the observed PHEVs is 

lower than that of the vehicles in the Ref DVMT distribution. This is due to the fact that compared to the 

NHTS i) Obs DVMT distribution has  higher share of days where DVMT was closer to or more than  

range ; and ii) Average DVMT observed is higher irrespective of whether DVMT was more or less than 

range . Converse observations are applicable if"3fr)����+ − 3s-t% < 0. By subtracting "3£'¤����+ − 3s-t%  
from "3£'¤����+ − 3fr)����+%, I can directly estimate the effect of DVMT variations between Obs and Ref 

DVMT from Eq. (12). From a distribution perspective, "3fr)����+ − 3s-t% discerns how range utilized (or 

not utilized) responds to the separation of distance between the two cumulative distribution function 

(CDF) of DVMT.  

The portion of annual VMT difference that still remains to be accounted for is "vfr) − vs-t% =
"ufr) − us-t% − "3fr) − 3s-t%. Eq. (10) and Eq. (12) together represent the difference in eVMT between 

Observed and Reference "3fr) − 3s-t%. This surplus (or deficient) eVMT observed is equivalent to 

deficient (or surplus) gVMT in the reference travel dataset. Therefore, while examining the impact of 

variations in annual VMT, only the net gVMT that still has not been accounted for must be considered as 

shown in Eq. (13). Eq. (13) forces Δ~,wx to be negative in case the variations in eVMT captured by Eq. 

(10) and Eq. (12) subsumes the variations in total VMT so that in this case gVMT is not treated as excess 

gVMT observed.  

¨¹����º¡¡±�´ ª«¬� = »ufr) − us-t» − »3fr) − 3s-t» (13) 
 

Finally, I address the difference between EPA label and observed range. The label range is 

determined by testing the PHEV using standardized dynamometer drive cycles [91] in accordance with 
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the recommended practices outlined in J1711. In CD mode, electrical energy consumption is influenced 

by vehicle driving speed, acceleration, road network topology and prevailing traffic conditions. If the 

observed PHEVs are driven more aggressively (high speeds/acceleration, higher share of highway 

specific driving compared to city specific driving for example) compared to the test cycles, their 

kWh/mile will be higher than the label kWh/mile. By aggregating the kWh consumed and the miles 

driven in trips where the engine was never turned on (ZE trips), I calculate the kWh/mile consumed. The 

average usable electrical energy per eVMT when the PHEV is operated in the CD-EV mode (ZE trips) 

will be used as an indicator to gauge by how much on-road EPA label expected range differ. This 

quantifies the relative electrical energy efficiency, i.e., the ratio of observed kWh/mile to label kWh/mile 

or  ¼, Eq. (14). If ¼ > 1, effective range is lower than label estimates by ¼. Using this effective range, I 

recalculate the J2841 UF. The difference between the UF corresponding to effective and label estimates 

represents the impact of observed driving characteristics deviating from test cycle expectations. It is 

expressed in UF and as eVMT in Eq. (15)-(16) respectively. Though this approach is an approximation, it 

nevertheless provides valuable understanding of whether the test cycles adequately reflect real-world 

operation and on-road energy consumption. Estimating the impact of driving conditions and style on 

effective range at every operating point or understanding the relationship between kWh/mile and speed or 

acceleration was deemed out of scope for this study and therefore I use this simplified form.  

¼ = ½�¾¿ÀÁÂ�Ã���½�¾¿ÀÁÂ�Ã���
  in ZE trips (no engine turn-on event) (14) 

¨ÄÅ�ÆÇÇ È ³¡ÈÉ� = �� ½���fr) = ������Ê Ã − ��"���s-t% ; (15) �-,wx�Efficiency� = ����Efficiency� × us-t (16) 
 

  The left-hand side of Eq. (10), (12) and (13) are divided by us-t and then summed with the left-

hand side of Eq. (16). ∆�� is the actual deviation in UF, Eq. (17). ∆�� is expressed as the sum of 

deviations due to four aspects of driving and charging, Eq. (18). I use ± to indicate that the contribution 

to ∆ÄÅ  could be positive or negative except for annual VMT since it represents CS mode gVMT.  To 

account for circumstances which the four factors explained above may not entirely capture, an error 
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component to denote the unobservable factors has been included. The authors would like to draw the 

distinction between this error component from random errors and latent factors which varies from vehicle 

to vehicle. Error in the context of this methodology accounts for the remaining difference due to 

unobservable factors, Eq.(19). 

∆ÄÅ = ÎÄÅÏÐÑ − ÎÄÅÒ�Ó (17)       ∆ÄÅ ≅ ±¨ÄÅ������ ¡�� ± ¨ÄÅ�Õ�¡�³ Ö¯ ´ µ�¯ ²¡� ± ¨ÄÅ�º¡¡±�´ ª«¬� ±¨ÄÅ�ÆÇÇ È ³¡ÈÉ�    
               

(18)       

∆ÄÅ = ±¨ÄÅ������ ¡�� ± ¨ÄÅ�Õ�¡�³ Ö¯ ´ µ�¯ ²¡� ± ¨ÄÅ�º¡¡±�´ ª«¬�± ¨ÄÅ�ÆÇÇ È ³¡ÈÉ� ± ¨ÄÅ��ÒÒÏÒ� 

(19)       

 

The individual contribution, ����. � to ∆ÄÅ is expressed as a percentage of total absolute deviation as 

shown in  Eq.(20).  To check the accuracy of the procedure, I calculate IUF estimated by the 

procedure����fr).-)Ø� according to Eq. (21), compared it with the actual observed IUF ����fr).'/ØÙ'0� 

and express the percentage error as shown in Eq. (22). 

�ÖÚ�. � % = 
ÜÝÞ�.�|ÜÝÞ�àr)-s�-� �'/Øfs)�|�|ÜÝÞ�áââãâ�|                 (20)       

where|����äå83Lu3� �g6liL8�| = |����Charging�| + |����Range Utilization�| +|����Annual VMT�| + |����Efficiency�| ���-)Ø = ���s-t − ∆�� (21)       

% oLLiL = 
����fr).'/ØÙ'0 − ���fr).-)Ø�����.�  ; éℎ3L3 �. � ∈ ë�3ì, äå8, o8lí (22)       

 

2.4 Results 
In this section, I describe the consequences of implementing the procedure outlined in section 

2.3.4 using the driving and charging data collected from the 153 PHEVs.  First, I performed tests for 

statistically significant differences between the UF of observed PHEVs and the SAE J2841 reference 

estimates. Second, I apply the J2841 UF method on the observed data and discuss the impact of charging. 

I then investigate how daily VMT distribution influences range utilization. Relationship between annual 

VMT, charging frequency and UF is analyzed followed by a comparison between observed and label 

expected range and fuel economy. I synthesize my findings using the functional form represented in Eq. 

(19)-(22) in the concluding part of this section.   
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2.4.1 Tests for statistical significance 

Observed IUF and FUF of all PHEVs except Gen 1 Volt is  lower than their respective Reference 

UF estimates, Table 2.2  and Table 2.3. Though at an aggregate fleet and average vehicle level, there are 

differences between the Observed UF and Reference J2841 estimates, I want to ascertain if these 

differences are statistically significant and merit examining in detail. This was accomplished by 

comparing the UF (sample) of every vehicle in the dataset with the J2841 FUF and J2841 IUF 

(population) using t-tests and equivalence tests.  

I first performed two-tailed one sample t-tests between the UF of every vehicle in the dataset with 

the J2841 IUF and J2841 FUF. The null hypothesis if rejected indicates that the sample Obs UF value is 

not equal to the hypothesized population means. At 5% significance level, the null hypothesis test of 

J2841 IUF was rejected for the Prius, Energi, and Gen2 Volt. Null hypothesis test for the J2841 FUF was 

rejected for the Prius and Gen1 Volt. I then checked if the Obs UF is within a certain interval around the 

population means. To perform the equivalence tests, suitable upper and lower equivalence bounds need to 

be specified based on the smallest effect of interest. The null hypothesis is the existence of a true effect 

that is at least the chosen lower or upper equivalence bound and the alternative hypothesis is that the 

effect falls within the chosen equivalence bound or the absence of any worthwhile effect [92]. To 

determine the effect size, I used standardized differences between the two means, namely Cohen’s d and 

selected the small effect size of 0.2 [93, 94] .  

The equivalence bound is the product of d and the sample standard deviation. Analysis indicated 

that the observed IUF and FUF of all the four PHEV models are not equivalent to the J2841 IUF and 

J2841 FUF at 5% significance level respectively. The results of the t-tests and equivalence tests are 

summarized in Tables A4-A7 in Appendix A. Using G*power [95], post-hoc effect size and achieved 

statistical power for the sample size was calculated and summarized in Table A8 in Appendix A. I have 

included the FUF only as a guide and for the purpose of carrying out the statistical tests. Throughout the 

reminder the rest of the paper, I consider the multi-day (MDIUF) for analyzing UF discrepancies. Unless 

otherwise explicitly specified, UF and IUF refer to the MDIUF.   
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2.4.2 Effect of charging 
For each of the four PHEV models, I applied the J2841 method on the dataset and generated the 

UF curves.  Figure 2.5 depicts these UF curves alongside the J2841 IUF (solid black line) and J2841 FUF 

(dashed black line) curves. shows the observed IUF, observed IUF after applying the J2841 UF method, 

and the reference J2841 IUF.  

Figure 2.5 Comparison of J2841 UF curves (truncated) generated using NHTS/J2841 estimates and 

observed PHEVs 

 
Figure 2.6 Means and std. error of Observed IUF, 

observed IUF after applying J2841 UF method, and 

reference J2841 IUF.  

 
Figure 2.7 Percentage share of driving days by number 

of charging sessions 
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Figure 2.8 CDF plot of travel day starting SOC 

 
Figure 2.9 CDF plot daily charged SOC 

 

Referring to Figure 2.6, we can see that except for the Gen1 Volt, the IUF increased by varying 

degrees. The increase in IUF was highest for Gen2Volt followed Prius, and Energi. Figure 2.7 shows the 

percentage share of driving days by the number of charging sessions. We can see that on roughly 20%-

35% of driving days, the PHEVs charged more than once and  on 15%-30% of the driving days, the 

vehicles were not charged at all, both of these situations are not included in the J2841 UF. Referring to 

Figure 2.8, which shows the CDF of battery SOC at the beginning of travel day, on approximately 25% of 

driving days Prius and Energi started their travel on nearly empty battery (less than 5% SOC remaining 

indicated by the vertical dashed line in Figure 2.8), which also contradicts with the J2841 assumptions. 

The other charging related aspect not captured in J2841 UF is the possibility of PHEVs extending their 

CD mode of operation beyond their range by charging more than 100% of SOC. Figure 2.9 shows the 

CDF of daily charged SOC. On approximately 10-30% of days, PHEVs either charged more than 100% 

or did not charge at all depending on the range.   

At a daily level, I calculated the difference between the observed daily eVMT and the expected 

J2841 eVMT. I analyzed the effect of charging by categorizing the travel day into three types:  PHEVs 

inadequately charging when Daily VMT(DVMT) is less than range; ii) charging when DVMT exceeds 
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range; and iii) PHEVs exceeding their range capability by charging more than 100% SOC. The effect of 

charging on δeVMT is shown in Figure 2.10 I categorized the travel day into three types to illustrate how 

charging behavior influences δeVMT with respect to range.  Gen1 Volts overcompensates for the eVMT 

missed due to not charging adequately by regaining eVMT beyond their range by charging more than 

100% of SOC. 

 

Figure 2.10 Effect of charging on average annualized δeVMT 
 

The effect of charging is most pronounced in the case of short-range PHEVs (Prius and Energi) 

followed by Gen2 Volts. The eVMT missed due to inadequate charging and eVMT gained by charging 

more frequently by Gen2 Volt reduced appreciably compared to Gen1 Volt.   

Table 2.5  Kolmogorov-Smirnov Two-Sample Test Report$ 

 KS test statistic 

D = 

Max|F1-

F2| 

Observed 

CDF at D 

NHTS 

CDF 

at D 

Observed 

DVMT 

at D 

Prob 

>D 

Prius 0.058 0.152 0.264 0.416 20 <.0001* 

Energi 0.0638 0.137 0.429 0.567 30 <.0001* 

Gen1Volt 0.056 0.125 0.389 0.508 26 <.0001* 

Gen2Volt 0.043 0.099 0.203 0.303 14 <.0001* 
*Statistically significant at 5%. p <.0001* rejects null hypothesis that the two samples were drawn from 

the same distribution. $Table A10 in Appendix A  presents additional details including the test report 

for the two alternative one-sided hypothesis tests 
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2.4.3 Daily VMT distribution’s influence on range utilization 

Variations in DVMT distribution between analyzed data and NHTS expectations corresponds to 

variations in range utilization. Additional descriptive details of the distributions are summarized in Table 

A9 of Appendix A. To examine this further, I compared the CDF of DVMT of observed PHEVs with the 

NHTS using the two-sample Kolmogorov-Smironov (KS) test. The KS test report is presented in Table 

A10 of Appendix A. The KS test statistic D measures the maximum absolute deviation between the two 

CDFs. Of interest is the DVMT at which maximum deviation between the NHTS and observed PHEV 

CDF occurs in relation to the range. 

  

 

Figure 2.11 Comparison of daily VMT CDF (truncated) between NHTS and observed PHEVs 

 

Referring to Table 2.5, the observed DVMT at which maximum deviation (D) increases with 

range (up to Gen1 Volt) and then reduces. The maximum deviation for Gen1 and Gen2 Volts happens 

when DVMT is lower than their range –26 miles and 14 miles respectively. In the case of Prius and 

Energi, D occurs at a value of DVMT that is 10 miles more than their range. For the Prius and Energi, the 

D statistic indicates that the observed PHEVs have a higher share of DVMT beyond their range. This is 
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most noticeable for the Prius as evidenced by the value of NHTS CDF (0.416) and observed CDF at D 

(0.264), which is near the first quartile. For the Energi and Gen1 Volt this occurs closer to the median and 

in the case of Gen2 Volt, it is below the first quartile.  

From Table A9, we can see that the 10%, 25%, 50%, 75%, 90% quantile DVMT of NHTS is 

lower than those of the observed PHEVs, except for the 75% and 90% quantile DVMT of Gen2 Volt. The 

mean is higher than the median across all PHEV, indicative of the left-skewed nature of the distributions. 

However, their extent of separation displays a gradually decreasing trend with increasing range 

demonstrating that the left-tail of observed PHEVs being much longer than NHTS. This effect is 

measured using the expression in Eq. (12).  Referring to Figure 2.11 , the CDF of NHTS lies entirely 

above the CDF up to approximately 45 miles. We can observe that the J2841 UF based on the NHTS, 

under-represents the number of days, DVMT was higher than the range of all PHEVs except Gen2 Volt. 

In the case of Gen2 Volt, the NHTS over-represents share of days beginning approximately 10 miles 

below its range. This explains why the IUF of Gen2 Volt increased the most compared to the other 

PHEVs when the J2841 UF method was applied, Fig. (5). Expanded cumulative distribution and 

probability density function plots of DVMT are depicted in Figures A1-A2 respectively in Appendix A. 

2.4.4 Interactions between annual VMT, charging sessions and IUF 

Calculating the net gVMT portion of annual VMT variation between observed and NHTS due to 

differences in range utilization or charging behavior, is a straightforward task, Eq. (13). I examine the 

relationships between annual VMT, UF, eVMT, and charging. Table 2.6 summarizes the average 

annualized VMT, eVMT and UF of the observed PHEVs grouped based on whether Observed annual 

VMT was more (or less) than Reference annual VMT (15,000 miles). Overall, 48% of observed PHEVs 

(74 out of 153) drove longer than 15,000 VMT. Approximately 60% of Prius, 54% of Energi, 51% of 

Gen1 Volt, and 31% of Gen2 Volt drove more than 15,000 miles annually. Referring to Table 2.6, I can 

see that UF reduces as the total VMT increases, since the UF is a ratio of eVMT to total VMT. If we look 
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at ΔeVMT of Prius and Gen2 Volt that drove less than Reference annual VMT (15,000), their observed 

IUF was still less than the J2841 IUF.  

Table 2.6 Relationship between average annualized VMT, charging sessions, UF and eVMT 

 N Vehicles VMT eVMT gVMT 

 Below 
15000 

Above 
15000 

Below 
15000 

Above 
15000 

Below 
15000 

Above 
15000 

Below 
15000 

Above 
15000 

Prius 9 13 9597 21165 2444 2483 7153 18682 
Energi 24 28 11204 21422 5232 5831 5972 15591 

Gen1Volt 21 22 10727 21107 8236 12218 2491 8890 

Gen2Volt 25 11 12052 18806 8338 12050 3714 6756 

 
Observed 

IUF 

Reference 

 IUF 

Charging 

Sessions/DrivingD

ay 

ΔeVMT  

(Obs-Ref) 

 
Below 
15000 

Above 
15000 

Below 
15000 

Above 
15000 

Below 
15000 

Above 
15000 

Below 
15000 

Above 
15000 

Prius 0.255 0.117 0.293 1.47 1.24 -1951 -1912 
Energi 0.467 0.272 0.456 1.69 1.69 -1608 -1009 

Gen1 Volt 0.768 0.579 0.648 1.47 1.69 -1484 2497 
Gen2 Volt 0.692 0.641 0.759 1.06 1.28 -3047 665 

 

Increase in the annual VMT traveled is associated with increase in charging frequency of all 

PHEVs except the Prius and Energi. Table 2.6 shows that the IUF of Gen1 Volt being slightly more than 

the J2841 UF is stemming from the group that drove more than 15,000 miles. In the case of Gen1 Volt, 

though charging contributes to IUF slightly exceeding J2841 IUF, the effect of range utilization also plays 

an equally important role. Referring to Figure 10 , the additional eVMT beyond its range gained by Gen1 

Volt was the highest , followed by the Energi, Prius, and Gen2 Volt. On an absolute eVMT basis, Gen2 

Volt missed more eVMT by charging inadequately on days when the daily VMT was less than its range 

compared to the eVMT missed on days when daily VMT exceeded its range. than all other PHEV models 

(Figure 2.10). If we consider ΔeVMT of short-range PHEVs (Prius and Energi), it is worthwhile to note 

lower annual VMT was associated with slightly higher (Prius) or relatively comparable (Energi) 

frequency of charging when compared to the group that drove more than 15,000 miles annually.   
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The average annual VMT across the entire dataset of 153 PHEVs is 7% more (15,868 miles) than 

the EPA label reference 15,000 miles. I selected 15000 miles as the cut-off based on the EPA fuel 

economy label assumption[67] but in general annual mileage depends on a variety of aspects such as built 

environment characteristics (land-use mix, sprawl, housing and population densities) [96], socio-

demographic attributes, typical travel needs [97], rebound effects [98], and charging accessibility[99]. In 

this  study, the short-range PHEVs (Prius and Energi) have higher annual mileage than the longer-range 

PHEVs (Gen1 and Gen 2 Volts). From a directional perspective, this observed trend is consistent with 

evidence from nationwide studies in which the average annual VMT was estimated to be 12,400 miles , 

up to 20% lower than short-range PHEVs[86, 100]. Annual VMT comparisons between this study and 

other PHEV observational studies are summarized in Table A13 of  

Appendix A.  

To further understand annual mileage differences between short-range and longer-range PHEVs, I 

compared the frequency (days/year) of long-distance travel (daily VMT 50 miles or more) and charging 

accessibility as they are reasonable indicators of annual mileage and IUF deviations[99, 101, 102].  Prius, 

Energi, and Gen1 Volt had a comparable number of long-distance travel days (115 days/year), whereas 

Gen2 Volts were used for long-distance travel only on 78 days/year on average. Contribution of long-

distance travel (100 miles or more) to annual mileage of Prius and Energi exceeded the Gen1 Volt and 

Gen2 Volt by roughly 3% and 6% respectively. These are depicted in Figures A4 and A5 of  Appendix A.  

The online survey asks the respondents to specific over the past 30 days whether they charged at 

their home only or away from home only or both at home and away locations. I used this categorical 

variable for the purpose of examining the impact of charging accessibility on annual mileage and IUF. 

Figure A6 depicts the mean and standard error bars of annual VMT and IUF grouped by PHEV type 

(Prius, Energi, Gen1 Volt, Gen2 Volt) and charging accessibility (Home, Away, Home and Away).  

Overall, we find that PHEVs that charged at home on average have higher annual VMT compared to the 

sub-group that charged at away locations and this holds true for the IUF as well (except in the case of 
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Prius). My analysis indicated that Energi and Volts (Gen1 and Gen2) that charged at home and away 

locations have the highest UF and annual VMT among their respective sub-groups. We can also observe 

that short-range PHEVs (Prius and Energi) that charged at home and away locations on average have 

comparable annual mileage (17,000 miles) and the highest across the 12 groups (four PHEV types and 

three categories of charging accessibility).  

2.4.5 Impact of ZE trip efficiency on effective range  

In order to assess how efficiency of the ZE trips (kWh/mile) influences the effective range on 

road, I compare the results to three EPA dynamometer drive cycles that are integral to many of the 

performance and fuel economy standards: Urban Dynamometer Driving Schedule (UDDS), Highway 

Fuel Economy Test (HWFET) and Supplemental Federal Test Procedure (FTP) or US06. I express 

efficiency as the ratio of per-mile electrical energy consumption in ZE trips (trips where engine was never 

turned on) observed to the EPA label rated values. Considering  the powertrain design of the Volt, which 

enables it to be driven as a BEV up to its range [103], and for the purpose of not penalizing the short 

range PHEVs unfavorably due to their smaller range and blended mode of operation, I consider the 

efficiency of ZE trips alone. This is in consistent with California’s test procedures which measures the 

electrical energy consumed in CD-EV mode[104].  

 UDDS and HWFET are intended to characterize typical urban and highway driving styles 

respectively. The US06 finds its specific application to capture engine turn-on events under high speed 

and aggressive acceleration as part of determining the ZEV credit under California’s ZEV mandate. 

Figure 2.12 (a) shows the percentage share of VMT comparison between the commonly used test cycles 

for fuel economy and range measurements alongside the entire fleet of PHEVs observed and NHTS by 

speed in mph. For the test cycles and the observed PHEVs, the distances were grouped binned based on 

the actual distance driven in 5mph speed bin intervals. For the NHTS, I used the average trip speed to bin 

the trip distances. Figure 2.12 (b) compares the share of travel at different speeds between the PHEVs 

observed.  
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(a) 

 
(b) 

  

Figure 2.12 (a): Percentage share of VMT comparison between test cycles, observed PHEVs and NHTS 
by speed bins; (b): Percentage share of VMT comparison by speed bins 

 

 

Figure 2.13 Percentage difference between effective and label range 

  

Overall, we can see that there are noteworthy differences between the test cycles and observed 

PHEVs, especially high speed (60+ mph) travel which neither the UDDS nor HWFET capture. If we use 
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the average trip speed as a classifier to compare driving characteristics of NHTS vehicles with observed 

PHEVs, high speed travel (60+mph) is under-represented by roughly 30%. Figure 2.12 (b) illustrates that 

even among the PHEVs, there are differences in share of VMT above 45mph. The Volts accomplish a 

higher share of VMT at 45-60 mph but a lower share of VMT at 60+ mph compared to the Prius and 

Energi. If we use 45mph as cutoff to classify city driving (J2841 UF uses 42mph as the threshold to 

obtain 55/45 city and highway driving split on the NHTS data), the city/highway driving split observed is 

almost 40/60. Figure 2.13 shows the effective range calculated. For the sake of completeness I present the 

effective range when we consider only the ZE trips (trips where the engine did not turn) and ZE miles 

which includes the ZE trips and fraction of eVMT in the blended mode of operation before the first 

engine turn-on event. The effective range based on the energy consumption of ZE trips on average can be 

as low as only 83% (Gen2 Volt) of the label range or slightly more than label range (Gen1Volt).  

 

 

Figure 2.14 Distribution of observed PHEV charge sustaining mode fuel economy (mpg).  Standard 

deviation shown within parentheses below the mean values and label values shown inset.   
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If the actual range realized on-road is less than the label expected range, the vehicle enters the CS 

mode after driving relatively shorter distances compared to test cycle expectations. Furthermore, due to 

the underrepresentation of high-speed travel in the test cycles compared to the observed share of VMT by 

driving speeds (Figure 2.12)when considered in conjunction with the observed PHEVs not realizing the 

label expected range on-road (Figure 2.13), has direct implications on the fuel economy in CS mode. 

Figure 2.14 shows the distribution of observed CS mode fuel economy. On average observed CS mode 

fuel economy (mpg) differed from label values on average by -9% to +6%.  

 

 

Figure 2.15. Combining the effect of charging behavior, range utilization, ZE trip efficiency, and annual 

VMT.   Individual contribution is expressed as percentage of total absolute deviation, Eq. (19)-(20). 

Percentages shown are average and the standard errors are presented in Table 2.7.  
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Table 2.7 Distribution of the contribution to IUF deviations. Mean and standard error  

 Inadequate 

Charging 

Excess 

Charging 

Range 

Utilization 

ZE Trip 

Efficiency 

Annual 

VMT 

Prius 
-46.6% 
 ±6.7% 

4.6%  
±2.3% 

-20.2% ±1.6% 
-12.5%  
±8.6% 

16.0% 
±15.1% 

Energi 
-42.5% 
 ±6.4% 

22.0% 
 ±5.3% 

-16.1% ±3.1% 
-7.4%  
±9.0% 

-11.9% 
±13.6% 

Gen1Volt 
-20.1% 
 ±8.5% 

47.1% ±13.7% 
3.2% 

 ±15.7% 
-4.4%  
±4.3% 

-25.2% 
±28.9% 

Gen2Volt 
-43.4%  
±8.5% 

3.2%  
±2.0% 

-7.0% ±11.2% 
-21.0%  
±6.7% 

25.4% 
±13.3% 

Values are Means ± standard errors in italics 
 

2.4.6 Consolidated effect of all observed variations  

The individual effect of the four key driving and charging aspects are aggregated and depicted in 

Figure 15. The functional relationships between the observed IUF and the sources that contributed to its 

deviations from J2841 IUF were described in Section 2.3.4. The effect of charging, range utilization, 

annual VMT, ZE trip efficiency, and unobservable factors are expressed as percentage of total absolute 

deviation, Eq. (17) – Eq. (20) . The effect of charging is broken down into inadequate charging on both 

types of travel days (DVMT more and DVMT less than range) and excess charging on days when driving 

more than the range as explained in Section 2.4.2. With the inclusion of an error component to capture the 

unobservable factors, the absolute value of the percentages shown in Figure 15 will sum to 100%. For 

clarity, the mean along with the standard errors are summarized in Table 2.7.  

The net impact of charging is the dominant cause of Prius and Energi IUF being lower than J2841 

IUF expectations even though both on average charge more than once per day. On roughly 20-30% of 

days, Prius and Energi started their travel day on a nearly empty battery, and this is clearly illustrated in 

Figure 2.8. The second major reason is the influence of DVMT distribution on range utilization. This is 

mainly due to NHTS underrepresenting the share of travel accomplished on days when the Prius and 

Energi drove longer than their respective range. The negative impact of ZE trip mile efficiency (observed 

kWh/mile higher than EPA label rated kWh/mile) on Prius was slightly more compared to Energi. Despite 

Prius driving 1432 miles more than the reference annual VMT (15,000 miles), variations in charging and 
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range utilization together accounted for 1928 miles of missed eVMT. In the case of Energi, there is still a 

portion (419 miles), of annual VMT not captured by variations in charging and range utilization. 

Consequently, the effect of annual VMT on Prius and Energi are displayed as positive and negative 

respectively, Figure 2.15.   

There was considerable difference in the relative contribution of the four key driving and 

charging aspects towards the IUF deviations from label values between the Gen1 and Gen2 Volts.  

Average daily charging frequency of Gen1 Volt was the highest and its IUF was slightly higher than the 

J2841 UF expectations. This is mainly due to the negative impact of higher annual VMT (1,000 miles 

more than the reference annual mileage of 15,000) being almost entirely offset by the positive impact of 

charging more frequently. Furthermore, it is also aided in part by better range utilization and slightly 

better ZE trip mile efficiency. Among all PHEVs and especially within the Volts, a symbolic feature of 

Gen1 Volts observed is their effectiveness in coordinating travel needs with charging behavior. The Gen2 

Volt had the lowest annual VMT, lowest charging frequency/day and highest share of days on which it 

did not charge, Figure 2.7. The positive impact of lower annual driving was dominated by the negative 

effects of not charging adequately and kWh/mile of ZE trips being more than the label estimated values.  

Observed charging behavior differing from the baseline single charge session per day and the 

travel day starts with a fully charged battery alone contributed to IUF deviating from label values of Prius 

and Gen2 Volts by  -40% (Prius and Gen2 Volt),  -21% in the case of Energi , and +27% in the case of 

Gen1 Volt. Differences in range utilization between NHTS and observed was responsible for -20% to 

+3% of IUF deviation from J2841. Differences in annual VMT accounted for ±25% of deviation in 

observed IUF from J2841 UF. Observed PHEVs accomplish a higher share of VMT at speeds (45mph or 

more) that is not captured by EPA certification cycles or the NHTS. Therefore, effective range of 

observed PHEVs realized on-road was lower than EPA label range. Variations between effective range 

and EPA label range influenced the IUF deviation by -20% to +1%.  
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Figure 2.16 shows the observed IUF actual , observed IUF estimated by subtracting the deviations 

explained by Eq.(19) in Section 2.3.4 from the reference J2841 IUF "���-)Ø. = ���s-t − ∆��%, and the 

reference J2841 IUF. I calculated difference between the actual observed and estimated IUF. If we 

express this difference as a percentage of the of the observed IUF (actual) , the procedure outlined in this 

chapter underestimates the observed IUF (actual) of Prius by 2%, Energy by 15%, Gen1 Volt by 3 %, and 

Gen2 Volt by 5%.  

 

Figure 2.16. Comparison of actual IUF and IUF estimated alongside the reference J2841 IUF.  Observed 

IUF are vehicle weighed average of UF by definition of IUF. Estimated and observed IUF are average 

values.  
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2.5 Discussion 
 

Electrification of LDVs is essential to reduce gasoline consumption and emissions in the U.S.  In 

this regard, PHEVs continue to receive attention as an attractive vehicle technology option in the 

transition towards complete electrification. Utility Factor (UF), which denotes the fraction of travel 

electrified, is used to measure the performance of PHEVs and is formally defined in the SAE J2841 

standard. I used year-long driving and charging data of 153 PHEVs (22 Toyota Prius, 52 Ford 

CMax/Fusion Energi, 43 Gen 1 Volt and 36 Gen2 Volts) with 11-53 miles of range from California, and 

systematically evaluated how their real-world operation deviates from the J2841 assumptions. I then 

quantified how each of these deviations contribute to the observed UF of PHEVs varying from their 

respective J2841 estimates. I elaborated on the salient traits of PHEVs observed that are not sufficiently 

addressed or entirely excluded from the J2841 framework in its current form.  

Three charging aspects were observed that markedly differed from the J2841 UF charging 

assumptions of a single charging event per day and the travel day stating with a fully charged battery:  i) 

the tendency of PHEVs, especially those with short range (Prius and Energi) to start their travel day on an 

empty battery and be driven as a regular HEV; ii) PHEVs charging on average more than once per day 

(except Gen2 Volt) and on roughly 15-35% of days, PHEVs charged more than twice per day depending 

on the range and as a consequence iii) possibility for  PHEVs to fully recover or even exceed their range 

by charging more than 100% of their SOC.  This brings up an important feature missing in J2841, impact 

of additional charging beyond once per day on eVMT and UF and broadly speaking the value of public 

charging infrastructure on PHEV adoption and utilization[105]. Though my analysis indicates that the 

short-range PHEVs (Prius, Energi) and Gen2 Volt missed eVMT due to not charging adequately, it could 

be due to contrasting reasons. In the case of short-range PHEVs, lack of sufficient incentive maximize 

eVMT due to short-range, self-selction bias by users who are less likely to charge or their purchase 

motivation was other incentives like upfront rebate, HOV lane access, and preferential parking spaces 



 

46 
 

[106]. In contrast, Gen2 Volt not charging could be due to their higher range capabilities coupled with the 

fact that their average DVMT (39 miles) was the lowest among all the PHEVs analyzed in this chapter.  

Prius, Energi, and Gen2 Volt are presumed to electrify a higher share of VMT according to the 

J2841 UF estimates compared to what they accomplished in the California sample of 153 PHEVs 

analyzed in this study. The characteristics (average, quantile, median, share of travel below their range, 

skewness, and kurtosis) of daily VMT distribution observed varied noticeably from the NHTS. When 

combined with the basic feature of J2841 UF which assumes that the PHEV switches to the CS mode 

only when daily VMT exceeds range, induced diverse impacts on IUF.  Gen1 Volt had a slightly higher 

annual VMT, charged more on average, and has a higher IUF than the Gen2 Volt. Even though Gen2 Volt 

has a bigger battery and longer range, its IUF and annual eVMT was lower than that of Volt38. Moreover, 

the average daily VMT of Gen2 Volt (39 miles) was below its range. This could be to the misalignment 

between user’s driving needs and the range either and/or there were other factors in play such as desire for 

the occasional long trips without having to charge. Marginal increase in battery capacity did improve IUF 

and absolute eVMT in this dataset, except in the case of Gen2 Volt.  

The J2841 method presumes that all consumers utilize range equally and the marginal benefits of 

increasing the range is realized by all consumers in a homogenous manner. Moreover, this assumption 

dilutes the perception and adoption of PHEVs with varying range and drivetrain topologies in different 

market segments[107]. This suggests that irrespective of sociodemographic indicators, potential PHEV 

owners, are indifferent to range– meaning that their travel demand has no bearing on the range of the 

PHEV they eventually purchase. The NHTS draws its sample from mainstream ICE owners.  Assuming 

travel patterns of PHEVs are identical to ICEs irrespective of range presents an incomplete and uncertain 

picture of how different consumers value and utilize the same range. There is notable variation in UF for 

the same range (Figure 2.3), indicative of the fact that not all users value and utilize range homogenously. 

This is in stark contrast to the assumption in J2841 that users are indifferent to range which effectively 

decouples travel demand of potential PHEV users from the range of PHEV they eventually decide to buy.  
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The net environmental benefits of PHEVs depend on eVMT, which hinges on the ability of 

PHEVs to fully utilize their range. However, the effective range realized on the road depends on driving 

style (city dominant or highway dominant for example), ambient conditions, traffic, and road network 

topology.  Analysis indicated that the effective range realized on road was lower than the EPA label 

estimates for all four PHEV types. This could potentially be due to certification cycles underestimating 

travel at high speeds. In the medium to long-term if the trend towards high speed travel persists, it will 

adversely impact their life-cycle environmental and value proposition calculations. The share of VMT at 

60+mph by the short-range PHEVs (Prius and Energi) was higher than that of the Volts, where the share 

of travel at 45 mph-60 mph by the Volts were higher than that of the short-range PHEVs. EPA test cycles 

(UDDS and HWFET) and the J2841 method of trip allocation do not reflect the city/highway style 

driving observed across all the four PHEV types. The J2841 UF and the EPA CD test procedures are 

ultimately built on the hypothesis that daily VMT encapsulated in the NHTS is just a gradual extension of 

driving styles represented by the test cycles for range measurement [39, 108].  

A fundamental issue in evaluating the performance of PHEVs is understanding the context and 

experimental design under which the data was collected to estimate the UF. This is important for three 

reasons. First, results presented in this study clearly demonstrated that the observed PHEVs and J2841 

charging and driving assumptions vary across trip, daily, and annualized timescales. It is difficult to 

interpret the actual performance of PHEVs calculated from data sources that are neither comparable nor 

compatible from a vehicle technology, time-scale, or target respondent perspectives. Secondly, in the case 

of studies that report UF from actual PHEVs, though technological capabilities are geographically neutral, 

however ambient conditions, road network topology, travel demand and user behavior are not. California 

is considered as a leader in the U.S. for implementing policies to mitigate the adversarial impacts of 

climate change concerns and has a plethora of policies that encourage PEV adoption. The performance of 

PHEVs observed in this analyses will be markedly different from elsewhere. Finally, apart from regional 

differences, as this study indicated, travel demand and charging behavior varied with range. To ensure 
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consistency in the comparative assessment of UF with J2841 and also among the observed PHEVs, 

standardizing with J2841 is critical. I developed a procedure to precisely fill this need.  

2.5.1 PHEV Policy and performance implications 

 

The relevance of this article from demand (PHEV users) and supply (OEMs) sides, and 

regulatory design perspectives are described below. The paper concludes with few remarks on the course 

of action currently being explored globally which could augment the environmental benefits of PHEVs.  

The positive association between demand side purchase incentives, tax exemptions, and 

registration waivers, and PHEV uptake is well established across many countries. However, increasing 

efforts have been undertaken to ensure that they are better targeted. Currently the purchase incentives for 

PHEVs in California irrespective of the range (eligible PHEV models must have at least 10-mile range) is 

fixed at $1,500. Such a mechanism does not appropriately reward longer-range PHEVs (35-miles or 

more) even though they have a higher UF and gasoline displacement potential than short-range PHEVs. 

Furthermore, behavioral aspects particularly charging accessibility and utilization is overlooked. This is 

also the case in the J2841 methodology which assumes every PHEV is charged once overnight at home 

and travel day starts with a fully charged battery. By extension, we can posit that the impact of intra-day 

charging at public charging stations and workplace on the eVMT created is ignored. This could 

potentially lead to perverse effects being generated in the form of missed eVMT due to not charging and 

used as a regular HEV, self-selection bias by users who are less likely to charge buying short-range 

PHEVs, or purchase was motivated by access to car-pool lanes[36].  In The Netherlands and the U.K. 

,PHEVs are widely purchased as company cars for which the users get paid for fuel but not electricity is a 

practical example of a wrongly targeted demand side incentive that by design rewards perverse behavior 

[109].  

One of the globally adopted strategy to promote electrified vehicles (EVs and PHEVs) is to 

integrate them within corporate average fuel economy and consumption standards through super credits 
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or production multipliers and zero emission accounting provisions for the proportion of grid-electricity 

enabled operation [110-113]. The UF and thereby the assumptions on charging behavior, representative 

driving patterns, and test cycles for range estimation are intricately linked to the broader fuel economy 

standards. Deviations between on-road and label UF directly influences the gap between on-road and test 

cycle fuel consumption of PHEVs. Observed driving and charging behavior varying from the reference 

and test cycles not adequately representing real-world driving patterns highlight the need for 

incorporating realistic driving and charging scenarios for estimating the UF. Withdrawal of several PHEV 

models from the market in the EU due to non-compliance under the WLTP [114] ; taking advantage of 

the credit multiplier and zero emissions accounting loophole that rewards short-range PHEVs in fleet fuel 

consumption standards by treating PHEVs as merely “compliance cars” in the U.S. and EU[115]; and 

China’s proposed fuel economy standards that requires PHEVs to have a minimum range of 31 miles (50 

km) credit qualification [116] are few examples that demonstrate how regulatory mechanism and 

compliance flexibilities influence PHEV supply.  

Looking ahead, we can foresee four major developments that could influence the performance of 

PHEVs from the vantage point of eVMT and UF:  

• Incorporating realistic driving and charging behavior- 25% reduction in range under 

WLTP compared to NEDC is a tangible example that illustrates the consequences of 

adopting realistic test cycles for range measurement. To date no such measure has been 

considered to account for charging behavior deviating from the single charging session 

overnight at home and travel day starting on a fully charged battery. Generating UF 

curves by vehicle class (from compact to SUVs ), annual mileage, access to charging, and 

recharging frequency are potential variants to consider for future PHEV UF assessments. 

• Expanding OBD-II compliance requirements - Push towards remote monitoring and 

reporting of important in-use parameters would prevent tampering and increase the 

effectiveness of inspection and maintenance programs[117]. California’s OBD-II 
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regulations require reporting of blended mode and pure-EV mode eVMT and grid energy 

consumed, and fuel consumption in the CS mode[118]. Though out of scope of this 

study, better understanding of PHEV engine-on events and cold-start emissions is of 

topical interest and one can expect an increase in such efforts –for example Real-world 

Driving Emissions (RDE) test to complement SAEJ1711/WLTP to accurately measure 

criteria pollution using Portable Emissions Measuring Systems[119].  

• OEM trends and strategies – OEMs are gradually shifting towards electrifying larger 

foot-print vehicles by offering PHEV versions of SUVs with bigger batteries resonating 

with the growing number of consumers favoring SUVs over passenger cars, especially in 

the U.S.  Prospects for leveraging advancements in Information and Communication 

Technologies (ICT) through blockchain technology and geofencing capabilities are 

expected to improve. This serves multiple purposes from mitigating privacy and data 

security concerns, to accurately monitoring on-road emissions and tracking green miles 

traveled. This is currently being piloted in Cologne, Germany using a test fleet of 10 

PHEVs[120]. A related innovation in design is equipping the PHEVs that would 

automatically operate in the CD mode upon entering a low or zero-emission zone, such as 

the eDrive Zone project in Rotterdam, Netherlands[121].  

• Public charging infrastructure expansion - As the share of potential PHEV owners living 

in apartment complexes, especially as the uptake of PHEVs increase in dense urban 

metros, public charging infrastructure would play a crucial role in supplementing home-

charging infrastructure or lack thereof.  

J2841 UF is widely used to evaluate the performance of PHEVs despite its simplistic and 

restrictive assumptions about how PHEVs are driven and charged.  These assumptions determine how 

PHEVs are assessed in regulatory and incentive-based policies. The extent to which these assumptions 

capture real-world operation of PHEVs has a cascading effect on policy signals that inform automakers 

about future vehicle designs which in turn influences consumer expectations and purchase decisions. 
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Favorable policies accompanied by improvements in battery technology and powertrain architecture, and 

charging infrastructure expansion, will increase the number of PHEV model offerings for prospective 

PHEV users. Consequently, it will be valuable to consider real-world scenarios that deviate from J2841 

expectations to enhance the representativeness of UF estimates. As a step in this direction, this study 

examined PHEV usage and presented insights on their real-world usage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

52 
 

3 Impact of User Preferences on Plug-In Hybrid Electric Vehicle Utility Factors  

3.1 Background 

Climate change, air quality, and public health concerns have necessitated that governments across 

the world implement policies to promote battery electric (BEVs) and plug-in hybrid electric vehicles 

(PHEVs), collectively addressed as plug-in electric vehicles (PEVs). In the U.S., the transportation sector 

is responsible for 30% of total national greenhouse gas (GHG) emissions, and the light duty vehicle 

(LDV) segment alone contributed close to 60% of total transport GHGs in 2017 [1]. In the state of 

California, 40% of total GHGs comes from the transportation sector, and the contribution from the LDV 

segment was close to 70% of transport GHGs [2]. California and many other governments have 

implemented a suite of technology forcing mandates, performance standards for transportation fuels, 

GHG emissions, and incentive-based policies to increase the market penetration of PEVs [3–5].  

Plug-in hybrid electric vehicles are often considered to be a transitional technology with the 

potential to expedite the shift towards BEVs [6,7]. Plug-in hybrid electric vehicles are equipped with a 

larger battery pack compared to conventional hybrid vehicles (HEVs) that can be charged using grid 

electricity, and have an internal combustion engine (ICE). PHEVs are not limited by the range anxiety 

and higher upfront purchase cost concerns associated with BEVs, and they combine the pure electric 

driving capabilities of a BEV with the fuel and energy efficiency enhancements due to engine 

downsizing, low or no engine idling, and regenerative braking capabilities of an HEV. This design and 

operational flexibility allow them to be driven in Charge Depleting (CD) or Charge Sustaining (CS) mode 

depending on the source of motive power. Charge depleting (CD) mode can further be categorized into 

CD-EV and CD-blended (CDB) modes. In the CD-EV mode of operation, the entire motive power is 

provided by the electric motor by discharging the energy stored in the battery and the engine is never 

turned on. This type of operation is often called all-electric mode or zero emission (ZE) mode because 

only electricity is consumed and there are no tail-pipe emissions. Depending on the powertrain 

configuration, road network topology, speed and acceleration characteristics, and driver behavior, the 

engine may turn on to partially assist the motor in meeting the total propulsion energy demand in the CD 
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mode. This is called CDB mode of operation because both electricity and gasoline are consumed, and the 

motive power is provided by the electric motor and the ICE. The CD mode of operation continues until 

the battery is depleted, after which the PHEV is operated in the CS mode as a regular HEV with the ICE 

providing the entire propulsion energy demand and only gasoline is consumed. Driving in the CD mode 

could be entirely electric VMT (eVMT) or a combination of electricity and gasoline (gVMT) VMT, 

whereas CS mode comprises of only gVMT. The fundamental concept of UF, assumptions, and its 

applications domestically and outside the U.S. is elaborated in Sections 2.2 so omitted for the sake of 

brevity.  

Due to its simplistic and selective set of assumptions, the J2841 may not adequately reflect how 

PHEVs are driven and charged in real-world conditions. Using year-long longitudinal data collected via 

on-board data loggers from 153 PHEVs (11–53 miles AER) in California, this chapter systematically 

examines the disparities between observed PHEV driving, charging behavior and generalized 

expectations about their usage patterns, and its implications on UF estimates encapsulated in existing 

PEV policies. Prior studies that relied on cross-sectional travel survey data like the NHTS broadly 

focused on understanding the sensitivity of UF to different assumptions about travel patterns and charging 

behavior. In [13] alternatives to the J2841 UF is proposed using the 2009 NHTS instead of the 2001 

NHTS and a mid-day opportunistic charging, typically at the workplace, is also considered. Their study 

reported that the proposed UF is higher than the J2841 UF, but only for PHEVs with AER less than 65 

miles. While the J2841 UF is strictly a distance based metric, Ref. [14] proposes an energy based UF. 

Sensitivity of UF to different vehicle attributes such as age, class, annual VMT, and charging behavior 

depending on dwelling unit type is examined, and their analyses indicates that UF is largely insensitive to 

vehicle class and dwelling unit type, but highly sensitive to annual VMT, age, and charging behavior [14]. 

With the availability of real-world driving data collected using loggers albeit from ICEs, efforts have been 

undertaken to develop a more realistic PHEV driving cycle compared to dynamometer cycles [10] in 

order to better estimate their real-world energy consumption and emissions [15]. The scope of such efforts 

expanded by incorporating additional charging opportunities based on dwelling times and location. High 
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resolution GPS enabled travel data collected over a span of 18 months from 400 ICEs in the Seattle 

metropolitan area is utilized in [16] to investigate how UF would change if only home based tours are 

considered. Their study reports that gasoline and electricity prices have no statistically significant impact 

on the UF, and that workplace or away from home charging increases the UF only if the AER of PHEV is 

less than 40 miles. Studies also applied UF by utilizing longitudinal data from ICEs for evaluating the 

life-cycle costs, emissions, and value proposition of PHEVs [17,18], and optimal battery size design and 

its impact on market acceptance [19,20].  

Around early 2011, a nationwide PEV demonstration and charging infrastructure deployment was 

undertaken as part of the EV project [21,22] to understand Chevrolet Volt and Nissan Leaf usage patterns 

across 20 different U.S. metropolitan regions. This was the first project at such a scale that offered 

insights into the performance PHEVs by directly observing their actual usage via telematics loggers. In 

[21] it is reported that the observed UF of approximately 800 Chevy Volts with 35 miles AER (2011–

2012 model years) and 600 Chevy Volts (2013 model year) with 38 miles AER was higher than their 

respective SAE J2841 UF counterparts by at least 6%. Fewer share of long-distance travel days compared 

to the 2001 NHTS and charging more than once per day were attributed to be the reasons for deviating 

from J2841 UF estimates. A study of close to 60,000 Chevy Volts (2011–2014 model years) reported that 

the observed Volts were able to travel 74% of their total miles in CD-EV mode alone [23]. Charging more 

than once per day by taking advantage of day time opportunities was identified to be the major reason for 

exceeding the J2841 UF and EPA sticker label fuel economy estimates similar to the findings of [21,22]. 

In [24] a real-world fuel economy and UF of five PHEV models with 11–38 miles of AER is analyzed 

and their analysis indicates that deviation from certification cycle fuel economy were reported to be 

anywhere between 2% to 100% depending on the AER. 

Most of the literature on PHEV usage focused on energy, emissions, and value proposition 

mainly from the perspective of driving. Reliable access to charging infrastructure is also important factor, 

because apart from user preferences, it is the availability of charging infrastructure that determines 

charger utilization and the charging demand. Understanding when, where, how long PHEVs are charged, 
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and what the anticipated charging demand is are important factors for charging infrastructure developers 

from cost recovery, charger accessibility, user’s willingness to pay for charging, and charger utilization 

perspectives [25]. Utility companies are particularly concerned about the additional demand imposed on 

the grid from charging, as it has the potential to create localized hot spots if not managed properly, 

necessitating network upgrade or expansion. This highlights the importance of deploying coordinated or 

smart charging strategies that incorporate not only the economics of charging but also user preferences for 

charging location, time of day, duration of charging, and charging power levels [26]. Of concern are the 

competing objectives between the charging infrastructure developer and the user. The charging 

infrastructure developer seeks to minimize the cost of charging, which includes the fixed installation costs 

as well as the varying operating cost of providing electricity at the outlet. The PHEV driver, on the other 

hand, would like to maximize the convenience of charging without having to wait for a long duration, 

while simultaneously accomplishing this task at the lowest possible cost [27].  

In summary, apart from the J2841 assumptions, the nature of travel data (longitudinal or cross-

sectional), duration of data-collection, mode of data acquisition (self-reported trip diaries, data loggers 

with or without GPS), type of vehicle(s) used for data collection, and the targeted population (mainstream 

ICE users, actual PHEV owners or potential PHEV buyers) will also have consequential impacts on the 

techno-economic, electrification, and environmental benefits of PHEVs. The significance of UF cannot be 

understated since it is the vital environmental performance metric on which many federal and state level 

policies such as Corporate Average Fuel Economy (CAFE) and Pavley GHG emission standards 

[3,28,29], zero emission vehicle(ZEV) credit allocation under the ZEV mandate [30,31], vehicle 

emissions and label fuel economy estimates [32,33], and California’s Low Carbon Fuel Standards (LCFS) 

[34] rely on.  The main contributions of this study are the following: 

• Comparative assessment of observed PHEV driving and charging and EPA sticker label 

expectations and the SAE J2841 assumptions.  

• Eight dominant factors (four each for driving and charging) that explains the variations in 

observed PHEV usage patterns are extracted using Principal Components Analysis (PCA).  
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• Ordinary Least Squares (OLS) regression models are formulated to test the explanatory power of 

the factors by including them as dependent variables and the independent variable is the 

difference between observed and expected UF. 

• Relative importance of the extracted factors in terms of their contributions to the disparities 

between observed and expected UF is then quantified. 

• Though dimensionality reduction using PCA and regression modeling are commonly used, their 

specific application in the context of real-world observational study of PHEVs and UF is a new 

approach that is carried out in this study.  

This study advances to the body of literature that focuses on improving our understanding of the 

real-world UF of PHEVs by discerning influential driving and charging traits that contributes to the 

deviations from sticker label UF. To the best of my knowledge, compared to existing studies which limit 

their scope of analysis to either aggregate or daily levels [16,21,22,24,35], I focuses on explaining why 

real-world performance deviates from label expectations by methodically examining disparities at varying 

time-scales (trip/charging sessions, daily, and annual); incorporates locational aspects of charging 

infrastructure access and utilization and how it impacts the UF; and explores if the key driving and 

charging factors that introduces deviations in real-world UF from their label values are the same 

irrespective of the AER. The outcomes of this study will offer a realistic assessment of the real-world 

electrification potential of PHEVs, challenges, and/or validates conventional wisdom on PHEV usage, 

and subsequently their energy consumption and emissions. Understanding the causes, magnitude, and 

direction of differences between assumptions about PHEV usage and their observed usage will help the 

broader scientific community in parametric updates, calibration, and validation efforts to strengthen the 

representativeness or correct for the lack thereof in vehicle choice modeling [36], powertrain simulation 

tools [37], integrated assessment studies [38], charging infrastructure planning [39], and emissions 

inventory [40]. I expect the paper help in formulating policies aimed to incentivize PHEVs based on road 

performance and to inform automakers when exploring future vehicle design.  
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The assemblage of data analyzed consists of driving and charging data collected between June 

2015–June 2018 from 153 PHEVs in California. Five PHEV models are examined in this study: Toyota 

Prius (11-mile AER), Ford CMax and Fusion Energi (20-mile AER), Chevrolet Volts (35/38 miles and 53 

miles AER). The rest of the paper is organized as follows. Section 3.2 summarizes the aggregate driving 

and charging data and describes the quantitative methods used. Comparative assessment of observed 

driving and charging behavior with sticker label expectations, followed by the PCA and OLS model 

results are presented in Section 3.3. I discuss the findings in Section 3.4 and provide concluding remarks 

in  Section 3.5. 

3.2 Data and methods 

The source of the data is from the Advanced PEV Driving and Charging Behavior project, a 

multi-year study to monitor PEV usage in California [41,42]. Online survey was first administered to 

PEV owners randomly sampled from the California Clean Vehicle Rebate Project [43] and vehicle 

registration records. Sub-sample of respondents were selected and GPS enabled data loggers were 

installed in the on-board diagnostics (OBD) port and monitored for at least a year. The data loggers report 

more than two dozen variables related to driving, charging, performance, and comfort. The important 

vehicle usage parameters relevant to this analysis are: trip and charging session start and ending time 

stamps and locations; trip and charging session start and end state of charge (SOC); charger level, 

charging duration, and charged energy; trip distances, duration, and consumption (electricity and 

gasoline). Since the scope of this study is on real-world performance, my analysis strictly focuses on the 

data from the loggers, and the respondent’s home location is the only relevant survey information that I 

included. Five PHEV models with sticker label AER varying from 11–53 miles [44] are in the dataset: 

Toyota Prius (11 miles AER, N = 22), Ford CMax Energi (20 miles AER, N = 28), Ford Fusion Energi 

(20 miles AER, N = 24), Chevrolet Volts (35/38 miles AER, N = 43; 53 miles AER, N = 36). The 35- and 

38-mile AER Chevy Volts were grouped together as Volt-35/38 since there was little difference between 
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their AER capabilities. The PHEV models analyzed in this study accounted for close to 85% of rebates 

issued to PHEVs under the California Clean Vehicle Rebate Project [43]. 

3.2.1 Driving and charging data 

Table 3.1 presents the driving and charging data which consists of approximately 2 million VMT, 

200,000 trips, 52,000 charging sessions, and 260 MWh of charging energy collected over the course of 

45,000 driving days (driving and charging or driving only) between June 2015–June 2018 in California. 

On average, every vehicle in the dataset was driven 292 days, and among the PHEV types it varied 

between 268 and 315 days during the data collection period. Of the 52,237 charging sessions, 53% were 

at Level 1(L1), 1.4 kW rated and the rest were at Level 2 (L2), 3.3 kW rated [90]. Throughout the rest of 

the paper, unless otherwise specified, J2841 UF [33], AER and mode specific energy consumption, 

kWh/mile in CD-EV mode or Miles Per Gallon(MPG) in CS mode, found in EPA fuel economy labelling 

data [88] are collectively addressed as Expectations. The label UF refers to the EPA sticker label 

city/highway combined UF. Corresponding values estimated from the data analyzed in this study as 

Observed.  

 
Table 3.2  presents the average annualized and daily estimates of key PHEV driving and charging 

metrics.  

Table 3.1 Aggregate driving and charging data. 

    Distance in Miles 
Charging  

(L1 and L2) 

L1/L2 

Share 

(%) 
PHEV 

Model 
N 

Driving 

Days 
Trips VMT eVMT Sessions 

Charged 

kWh 
Sessions  

Prius-11 22 6921 33,421 315,166 46,573 7677 17,618 92/8 
Cmax-20 28 7516 33,434 322,526 122,732 9796 36,100 57/43 
Fusion-20 24 6972 34,028 346,720 108,136 9615 34,528 48/52 
Volt-35/38 43 12,574 53,274 557,498 355,048 15,292 96,046 47/53 

Volt-53 36 10,663 47,475 414,803 281,372 9857 73,956 33/67 
Total 153 44,646 201,632 1,956,713 913,862 52,237 258,248  

 
Table 3.2 Average annualized and daily driving and charging metrics. 

 Annualized Average daily 

PHEV Model eVMT gVMT VMT Charging Sessions 
Charged 

kWh 
VMT 
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Prius-11 2456 14,165 16,621 1.12 2.6 45.5 
Cmax-20 5960 9703 15,663 1.32 4.9 42.9 
Fusion-20 5661 12,489 18,151 1.39 5.0 49.7 
Volt-35/38 10,306 5877 16,183 1.23 7.8 44.3 

Volt-53 9632 4567 14,199 0.95 7.1 38.9 
 

Principal Component Analysis (PCA) is a statistical procedure to reduce the dimensionality of the 

dataset and it falls under the larger umbrella of Exploratory Factor Analysis (EFA). In this chapter, I used 

PCA to reduce the dimensionality of the observed driving and charging data which is highly susceptible 

to the problem of multicollinearity. Since Utility Factor is the ratio of eVMT to VMT and eVMT is a 

function of charging behavior, multicollinearity would persist and as such could severely undermine 

interpreting the statistical significance of driving and/or charging related independent variables (IV) on 

the dependent variable (DV). Combining both driving and charging related usage metrics and then 

performing the PCA may not eradicate the problem of multicollinearity. A correlation that existed in the 

higher dimensional space of the original data merely gets transformed and projected onto a new and 

lower- dimension space. This could complicate factor definition, number of factors to retain, determining 

the minimum loading criteria, and the rotation method to choose. To address these issues, I performed 

PCA of driving and charging related variables separately.  

 

3.2.2 Principal component regression 

The EFA involves four major steps. The first step is to check the appropriateness of the dataset for 

factor analysis. For this, I used the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy (MSA) 

[122, 123] and Bartlett’s Test for Sphericity [124]. The KMO MSA is an index between 0–1 which 

quantifies the ratio of observed correlations to partial correlations, the higher the better indication of the 

suitability of PCA [125, 126]. Literature recommends a empirical rule of thumb of at least 0.6 as a 

minimum for the KMO MSA [127, 128]. Bartlett’s Test for Sphericity tests the hypotheses that the 

correlation matrix is an identify matrix, thereby implying that variables are unrelated and not suitable for 

PCA. Bartlett’s test with a p-value of less than 0.05 is required for PCA. The KMO and Bartlett’s tests 

together determine whether the underlying structure of the dataset is suitable before proceeding to 
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perform the PCA. The second step is to decide how many factors to retain. The number of factors to 

extract and retain is typically determined based on the share of variance explained by each of the factors 

and a suitable threshold for the cumulative total variance captured by the PCA. Scree plot for Eigen Value 

of greater than one is a widely used method to select the number of factors to retain, which I used as 

benchmark. The resultant component matrix shows the factor loadings or correlation between variables 

used for PCA (row-wise) and the factors (column-wise). Factor loadings outside the interval of ±0.3 are 

typically omitted [128, 129]. The third step is to rotate the component matrix to simplify their structure 

and facilitate their interpretation. There are two major categories of factor rotation, Orthogonal and 

Oblique [130]. In orthogonal rotation, the factors are rotated by 90° to make them un-correlated, whereas 

in Oblique rotation, correlation between extracted factors are permissible. Varimax and Quartimax are the 

commonly used orthogonal rotation methods. The Quartimax method minimizes the number of factors 

needed to explain each variable used in the PCA and the Varimax method of rotation causes each variable 

to load heavily on one factor [131-133]. I used the Varimax method because of the simplicity of 

interpretation. Since the factors themselves are not correlated, Varimax rotated factors can be used in 

assessing the explanatory power of the factors in a regression model. The fourth and final step is to 

suitably name the rotated factors based on the factor loadings.  

The aggregate driving and charging data of 153 PHEVs was first annualized based on the number of 

days every PHEV was driven. Using PCA, I identified four dominant driving and charging factors, eight 

in total. The KMO MSA was close to 0.8 for both the driving and charging related PCA, which is 

considered “meritorious” [122, 125, 126]. The p-value of Bartlett’s test was extremely low and lower than 

the significance level of 0.05 for both the driving and charging related PCA, the data is suitable for PCA. 

The extracted factors captured 87% of the total variance in the dataset. Variables used for PCA, extracted 

factors, and their definitions are detailed in Section 3.3.  

To test the explanatory power of the extracted factors, I built Ordinary Least Squares (OLS) multi-

variate linear regression models with the extracted factors as the independent variables (IVs), and the 

deviation of observed UF from label UF as the dependent variable (DVs). The dataset was divided into 
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two based on the AER: short-range PHEVs (Prius, Ford CMax/Fusion Energi) and long-range PHEVs 

(Volts). OLS regressions models for short-range PHEVs and long-range PHEVs were developed 

separately. I carried out a-priori and post-hoc hypothesis tests and validated that the sample size and 

power are adequate for the given significance level (5%) and sample size for both models. To supplement 

the insights gathered from the regression models and gauge the practical utility rather than just their 

statistical significance of the IV, I performed a relative importance analysis of each of these extracted 

factors by quantifying their main and total effects. The main effect is the contribution by an IV to the total 

variance by itself, and the total effect is the contribution by an IV to the total variance in combination 

with other IVs [134-136]. I also examined the effect of including interaction terms in the regression 

models. The regression model estimates and outcomes of the relative importance analysis are detailed in 

Section 3.3. The PCA was done using IBM SPSS and the OLS regression modeling, and relative 

importance analysis were carried out using JMP Pro 15.3. 

3.3 Results 

In this section, I compare real-world performance of observed PHEVs with sticker label 

expectations from the perspectives of UF, daily driving distances and style, mode specific energy 

consumption, and charging behavior. Wherever applicable, I also contrast driving and charging behavior 

observed among the five PHEV models studied in this chapter. 

3.3.1 Descriptive comparisons 

 Figure 3.1 depicts the UF distribution of every PHEV observed in this study. The EPA label 

expected city/highway combined UF is shown inset in Figure 3.1 as well. Except for the Volt-35/38, all 

the other PHEV models performed below EPA expectations, and the deviations were most notable in the 

case of short-range PHEVs (AER 20 miles or less) compared to the longer-range PHEVs (35 miles or 

more AER). On average, the observed UF was anywhere between 60–103% of label UF. Figure 3.2 

shows the ratio of observed UF to label UF and its distribution by PHEV type. The observed UF of 82% 

(N = 18) of the Prius, 75% (N = 18) of Fusion, 66% (N = 24) of Volt-53, 54% (N = 15) of CMax, and 



 

62 
 

44% of Volt-35/38 (N = 19) were lower than the label UF estimates. Two interesting observations can be 

gleaned from Figure 3.1 and Figure 3.2. First, the range of UF deviations is higher for shorter-range 

PHEVs (Prius, CMax, and Fusion) compared to longer-range PHEVs (Volts); secondly, there are few 

short-range PHEVs that rarely or never plug in and are operated as a regular HEV. Referring to Table 2, , 

the annual VMT of PHEVs observed in this study is higher than estimates reported in other real-world 

PHEV usage studies [40, 54, 56, 137]. From Figure 3.1, we can see that except for the Volt-35/38, the UF 

of PHEVs observed in this study  was lower than the values reported in [40, 54, 56, 137] .  

 

 

Figure 3.1. Distribution of individual UF by PHEV model. Average and standard deviation of UF is 

indicated within parentheses. EPA label city/highway combined UF is shown inset. 

 

Figure 3.2. Ratio of observed UF to EPA label city/highway combined UF by PHEV model. Values above 

one indicates observed UF of PHEVs exceeded EPA estimates 
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3.3.2 Comparison with EPA certification cycles 

Figure 3.3(a) shows the percentage share of total driving time based on driving speed in mph of 

the observed PHEVs and Figure 3.3(b) depicts the share of total driving time by driving speed of 

certification cycles commonly used in fuel economy and exhaust emissions measurements.  The Urban 

Dynamometer Driving Cycle (UDDS) and Highway Fuel Economy Testing (HWFET) represent 

urban/city driving cycle and highway driving conditions (under 60mph) respectively [10,29,63]. The 

Federal Test Procedure (FTP) is an extension of the UDDS which consists of the UDDS followed by the 

first 505 seconds of the UDDS. The US06 is a high speed and acceleration aggressive highway driving 

cycle used by the California Air Resources Board (CARB) to determine additional credit allocation under 

its ZEV mandate[64]. Driving style within the context of this study refers to attributes such as stop 

frequency per mile, percentage share of driving time and distance driven at different speeds.   

 

(a)                                           (b) 

Figure 3.3 Percentage share of total driving time by driving speed in mph: (a) Observed PHEVs; 

(b)Comparison with EPA Test Cycles 

Figure 3.3 indicates some clear trends and divergences among the observed PHEVs as well as 

between the observed PHEVs and test cycles. Volts (Volt-35/38 and Volt-53 combined) have a higher 
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fraction of idling time and lower fraction of time in highway driving conditions (60mph or more) 

compared to shorter-range PHEVs. We can observe a certain level of conservativeness in driving style by 

the Volt-53 if we compare their share of time at different speeds, which gradually decreases with increase 

in speed. It can be noticed from Figure 3.3 that the test cycles do not adequately capture how the driving 

style varies among PHEVs with different AER capabilities. Moreover, the test cycles either underestimate 

or completely exclude the share of driving at highway speeds (60mph or more).  

 

 

 

(a)                                                                   (b) 
Figure 3.4 Distribution of stops per mile. (a) Cumulative distribution function (CDF); (b) Density plot. 

Vertical lines are drawn to indicate representative highway and urban drive cycles stops per mile. 
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Figure 3.4 shows the distribution of stops per mile at a trip level. Figure 3.4(a) shows the cumulative 

distribution and Figure 3.4(b) shows the probability density function. For reference, stops per mile of 

HWFET, UDDS, and FTP is also indicated in Figure 3.4 . It is interesting to note that the share of trips 

made with stop frequency lower than UDDS stop frequency per mile increases with AER, and varied 

from 60% for the Volt-53, to 75% for the Prius.  

(a)                                                                     (b) 

Figure 3.5 Percentage share of total driving distance by driving speed in mph: (a) Observed PHEVs; 

(b)Comparison with EPA Test Cycles 

Figure 3.5(a) shows the percentage share of total distance driven at different speed intervals 

among the observed PHEVs and Figure 3.5(b) shows the percentage share of total distance driven at 

different speed intervals under EPA test cycles. Approximately 40% of total distance was driven at 

highway speeds (60 or more mph) and the shorter-range PHEVs had a slightly higher share of travel at 

60mph or more compared to the Volts. As found in Figure 3.5(b), majority of the city/urban or highway 

test cycles overestimate the share of travel at 45mph or less, especially UDDS in the case of travel at 15-

30mph. Figure 3.3- Figure 3.5 clearly illustrate that the test cycles are more conservative when compared 

to real-world driving style of PHEVs. The gap between observed driving and test cycles, especially 

highway speed driving, manifests in the form of deviations in real-world fuel economy and UF.  

 

Table 3.3 Comparison of label expected and observed ZE and CS mode energy consumption 
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 CD-EV or ZE Mode Trips kWh/mile CS Mode Trips MPG 

  Label Observed ½îÐÑ�Òï�ðñòÐ�ó Ã  Label Observed ½îÐÑ�Òï�ðñòÐ�ó Ã   
Prius-11 0.29 0.33 87.9% 50 48 96.0% 
Cmax-20 0.37 0.39 94.9% 38 40 105.3% 
Fusion-20 0.37 0.40 92.5% 38 40 105.3% 
Volt-35/38 0.35 0.36 97.2% 37 34 91.9% 

Volt-53 0.31 0.38 81.6% 42 38 90.5% 
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Figure 3.6 Distribution of real-world fuel economy (MPG) in CS mode trips and electricity consumption 

in CD-EV or ZE mode (kWh/mile) trips.In the ZE mode the engine was never turned on and CS trips was 

accomplished entirely on gasoline. Values adjacent to the solid dashed line show the average and standard 

deviation. Since high speed driving consumes more energy (gasoline and/or electricity) compared to city 

or stop and go driving, the effective AER, fuel economy, and UF realized on-road by a fully charged PHEV 

could be lower than their respective sticker label estimates. This is highlighted in Table 3.3 and Figure 3.6. 

Table 3.3 compares the label and observed CS mode fuel economy in miles per gallon (MPG) and CD-EV 

or ZE mode per mile electricity consumption (kWh/mile) and Figure 3.6 shows their respective distributions 

of the CS mode MPG and CD-EV mode kWh/mile observed.  On average the observed CS mode fuel 

economy and ZE mode electricity consumption per mile was lower than the sticker label values for the 
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Prius and Volts (Volt35/38 and Volt-53). In the case of CMax and Fusion, their CS mode fuel economy 

was slightly higher than sticker label values but their CD-EV mode kWh/mile was lower than the label 

values. From Table 3.3, we can infer that the disparities between label and observed ZE mode kWh/mile 

translates into the effective AER realized on road being 3%-18% lower than of label AER. In the proceeding 

sub-sections, I specifically focus on driving and charging varied among the five PHEV models analyzed in 

this chapter.  

 

Figure 3.7 Percentage share of total VMT by distance traveled on weekdays and weekends  
 

3.3.3 Daily VMT comparisons 

Figure 3.7 shows the percentage share of total VMT categorized by distance and type of day 

(weekday or weekend). Using the criteria of daily VMT of 50 miles or more to define long-distance travel 

(LDT)[138], the share of LDT (50 miles or more) was highest for the Fusion(37%) and lowest for the 

Volt-53 (21%). Overall, daily travel of 50-100 miles contributed the most (24%-27%) to the share of total 

VMT (weekday and weekend combined) for the Prius, Fusion and Volt35/38. In the case of CMax and 

Volt53, daily travel of 5-20 miles contributed the most to the share of total VMT (28%). Referring to 

Figure 3.7, it is interesting to note that on weekends, all the five PHEV models had similar or comparable 
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share of travel across all distance bins. If I examine the weekday travel by distance bins, daily travel of 

50-100 miles still contributed the most (19%-23%) to the share of weekday VMT for the Prius, Fusion 

and Volt35/38. Relatively shorter driving distance of 5-20 miles dominated the share (20%) of weekday 

travel for the CMax and in the case of Volt-53, 20-35 miles of daily travel contributed the most (21%) to 

weekday VMT.  

The cumulative effect of travel distance preferences depending on type of day is reflected in 

Table 3.4 which summarizes the daily VMT distribution by type of day. The average weekday VMT was 

higher than the average weekend VMT for all PHEV models expect for the CMax and Volt-53, which 

were driven roughly the same 43 miles and 39 miles respectively, on weekdays and weekends. Fusions 

had the highest average daily VMT and the Volt-53 had the lowest average daily VMT, irrespective of the 

type of day. From Table 3.4, it can be seen that the AER had little or no impact on the average, median or 

the standard deviation of VMT of Volt-35/38 and Volt-53. 

Table 3.4  Daily VMT Summaries by type of day 
 Weekdays Weekends Overall  

Average± Std. Dev Median Average± 
Std. Dev 

Median Average± Std. Dev Median 

Prius-11 46.7±42.8 37.8 42.1±51.8 27.0 45.5±45.2 35.1 
Cmax-20 42.9±37.3 35.2 43.0±58.5 24.2 42.9±43.2 33.7 
Fusion-20 50.3±44.6 39.0 48.0±61.0 28.6 49.7±49.1 36.5 
Volt-35/38 45.9±39.6 36.6 39.7±47.0 25.1 44.3±41.7 33.6 
Volt-53 39.0±39.4 30.8 38.4±47.1 24.1 38.9±41.4 29.2 
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Figure 3.8 Percentage share of driven days by number of charging sessions on weekdays and 
weekends 
 

3.3.4 Charging frequency and travel day starting SOC  

Figure 3.8 depicts the percentage share of driving days by number of charging sessions on 

weekdays and weekends. If I compare Figure 3.7 with the J2841 assumptions of one charging session per 

day, it is very clear that the differences in charging behavior are salient. The J2841 method for UF 

estimation ignores two situations depicted in Figure 3.8: i) days when the PHEV was not charged at all; 

and ii) days when the PHEV charged more than once. Only on approximately 42%-47% of the driving 

days (weekdays and weekends combined) the PHEV charged at least once, on all other days, the observed 

daily charging frequency did not align with the J2841 assumptions of one charging per day. While 

conventional wisdom would suggest that shorter-range PHEVs (Prius, Cmax and Fusion) will have a 

higher proportion of days when they charged more than once due to AER limitations, analysis shows the 

counterfactual. On 44% of driving days, the Volt-35/38 charged more than once per day, whereas the 

CMax and Fusion charged more than once on 39% of the driving days, and the Prius charged only on 
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30% of the driving days. Depending upon the AER, on 13%-26% of driving days (weekdays and 

weekends combined), PHEV did not charge at all. 

The J2841 also assumes that the travel day starts with the fully charged battery. The effect of 

travel day starting state of charge (SOC) of the battery on the daily VMT and eVMT is illustrated in 

Figure 3.9. Empty battery refers to SOC of 5% or low and full battery refers to SOC of 95% or more. We 

can observe from Figure 3.9 that there are three additional situations that the J2841 does not address or 

adequately capture: i) PHEV driven as conventional HEV when travel day starts with an empty battery; ii) 

possibility that the PHEV might charge away from home; and iii) possibility for intra-day charging 

outside of overnight parked at home time windows, typically mid-day at workplace or any other non-

home location. Figure 3.10 reveals that on average, PHEVs drive longer when travel day starts with an 

empty battery compared to travel days starting with a fully charged battery. Except the Volt-53, all other 

PHEVs drive on average more than 50 miles when starting their travel day on an empty battery. We can 

also see that the average eVMT of Volt-35/38 and Volt-53 are almost similar on days when travel starts 

with a fully charged battery.  

 

Figure 3.9 Impact of Travel Day Starting SOC on Average daily eVMT and gVMT 
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Figure 3.10 Percentage share of L1 and L2 charging sessions by distance from home. Values less than or 

equal to 1% have been omitted for clarity. Distances are the great-circle distances calculated using the 

Haversine formula. Charging location distance from home 

Figure 3.10 portrays the percentage share of charging sessions by charger level and distance from 

the home location. Out of 52,237 charging sessions, 46,137 had valid GPS data. The percentage share by 

distance from home indicate Figure 3.10 is based on these 46,137 sessions. Overall, roughly 74% of all 

charging sessions (L1 and L2 for all PHEVs combined) occurred at locations that are less than a mile 

(great-circle distance) from home. Close to 80% of charging sessions (L1 and L2 combined) happen 

within 1 mile of the home location for Prius, CMax and Fusion. In the case of Volt-35/38 and Volt-53, the 

share of charging sessions less than a mile from home was 70% and 63% respectively. In terms of charger 

utilization by charger level, level 1 charging was the most frequently used by Prius and CMax as it 

accounts for 90% and 60% of their total number charging sessions respectively. Even though the Fusion 

also has the same 20-mile AER as CMax, it had an equal share of charging at L1 and L2, like the Volt-

35/38. Close to 60% of Volt-53 charging sessions were at L2 and 25% of which occurred at locations 
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more than a mile away from the home location. Approximately 90% of CMax and Volts (Volt-35/38 and 

Volt-53), 88% of Fusion, and 83% of Prius charging happened at locations that are less than their 

respective AER. Home or close to home seems to be the most preferred location for irrespective of AER.  

3.3.6 PCA of driving and charging behavior 

The goal of PCA is to deduce the most important driving and charging traits that significantly 

impact the UF and thereby its deviation from label UF. Since UF is the ratio of eVMT to VMT and 

eVMT is intricately linked to charging behavior, I perform PCA on driving and charging separately. In 

order to adequately represent important VMT indicators such as annual mileage, driving style (highway 

or stop and go city dominant), and long-distance travel needs, the following variables were used: 

i. Annual VMT (miles) 

ii. Share of annual VMT at 55mph or faster (%) 

iii. Long-distance travel (LDT) 100 miles or more share of annual VMT (%) 

iv. Daily VMT 50 miles or less share of annual VMT (%) 

v. Average number of stops per mile 

Table 3.5 summarizes the PC loadings, Eigen values, and the cumulative percentage of variance 

captured. The criteria to evaluate the suitability of data structure for PCA are indicated in Figure 3.5.  

KMO MSA index of 0.8 is considered as “meritorious”[122, 125, 126] , and KMO MSA of 0.711 yields 

reliable factors[139]. The KMO MSA was 0.799 and the p-value of Bartlett’s test was extremely low and 

lower than the significance level of 0.05 so the data is suitable for PCA.  

 

 

 

 

 

Table 3.5 PCA of Driving Behavior: Unrotated and Rotated PC Loadings, Eigen Values, and Percentage of 
Variance (σ2) Captured 
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PC Initial Eigenvalues 
Extraction Sums of 

Squared Loadings 

Rotated 

Sums of Squared 

Loadings 

 Total % of σ2 Cum. 
% σ2 

Total % of σ2 
Cum. 
% σ2 

Total % of σ2 
Cum. 
% σ2 

1 3.27 65.3 65.3 3.27 65.3 65.3 1.20 24.0 24.0 
2 0.70 14.0 79.4 0.70 14.0 79.3 1.09 21.8 45.9 
3 0.49 9.8 89.2 0.49 9.8 89.1 1.07 21.3 67.2 
4 0.39 7.8 97.0 0.39 7.8 97 1.03 20.6 87.8 
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 

normalization. Rotation converged in 5 iterations. Kaiser-Meyer-Olkin(KMO) Measure of 
Sampling Adequacy(MSA) = 0.799 ;  

Bartlett’s Test of sphericity: χ2 =406.410, df =10, p < 0.000 

 

Using the Scree test for Eigen values greater than 1 [140], four factors were retained which 

capture 88% of total variance and each factor roughly captures a similar proportion of variance. Table 6 

summarizes the Varimax rotated factor loadings. The KMO MSA of the individual driving related 

variables was at least 0.74. For notational convenience, the four factors extracted are named with the 

suffix .Drv in Table 3.6.  

Table 3.6 PCA of Driving Behavior: Varimax Rotated Factor Loadings and Influential Driving Traits 
Extracted 

Variables* 
KMO 

MSA ** 

PC1.Dr

v 
PC2.Drv PC3.Drv 

PC4.Dr

v 

Annual VMT (miles) 0.752 0.872 0.237 -0.266 0.232 
Share (%) of Annual VMT at 

55mph+ 
0.856 0.231 0.222 -0.269 0.892 

Long-distance travel(LDT) 100 
miles or more share (%) of annual 

VMT  
0.89 0.21 0.939 -0.105 0.195 

Daily VMT 50 miles or less share 
(%) of annual VMT  

0.74 -0.54 -0.305 0.227 -0.291 

Average Stops Per Mile 0.848 -0.228 -0.107 0.928 -0.241 

  

High 

Usage 
intensity 

Long-

distance 
travel 

Conservat
ive driving   

High 

energy 
intensity 

*All variables are annualized unless otherwise specified. ** KMO MSA of individual variable  

Significant loadings (absolute loadings greater than 0.3) shown in bold and underlined 

 

Based on the relative magnitude and direction of loading, the underlying factors can be described 

as follows. Loading of annual VMT is highest on PC1.Drv and it represents the high usage intensity. The 

loading of long-distance travel 100 miles or more share of annual VMT on PC2.Drv is highest, whereas 
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the loading of daily VMT 50 miles or less share of annual VMT is significant but negative on PC2.Drv. 

PC2.Drv thus represents driving behavior characterized by strong preferences for long-distance travel. 

The variable with the highest loading on PC3.Drv is the average stops per mile.  Annual VMT and share 

of VMT at high speeds loads negatively on PC3.Drv, but not significant, and conservative driving style is 

captured by PC3.Drv. Since the share of VMT at 55mph or more loads heavily on PC4.Drv, it concerns 

with the energy intensity of driving and inclination for high speed driving.  

Charger accessibility and utilization are key indicators of charging behavior and subsequently 

eVMT.  In order to uncover these, the following variables were selected for the PCA of charging 

behavior:   

i. Away: charged energy (kWh) 

ii. Away: Number of charging sessions 

iii. Away: Charging duration (minutes) 

iv. Share of charging at away locations (%) 

v. Home: charged energy (kWh) 

vi. Home: Number of charging sessions 

vii. Home: Charging duration (minutes) 

viii. Number of days vehicle charged both at home and away locations 

Where home based refers to locations that are less than a mile from home and away refers to all 

non-home locations. Charged energy, number of sessions and duration include both L1 and L2 charging.   

 

 

 

 

 

Table 3.7 PCA of Charging Behavior: Unrotated and Rotated PC Loadings, Eigen Values, and Percentage 
of Variance (σ2) Captured 
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PC Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotated 

Sums of Squared Loadings 
 Total % of σ2 Cum. % σ2 Total % of σ2 Cum. % σ2 Total % of σ2 Cum. % σ2 

1 4.3 53.5 53.5 4.3 53.5 53.5 2.9 35.7 35.7 

2 2.0 24.6 78.1 2.0 24.6 78.1 1.8 22.2 57.9 

3 0.8 9.5 87.6 0.8 9.5 87.6 1.2 15.5 73.3 
4 0.4 5.0 92.6 0.4 5.0 92.6 1.1 13.8 87.2 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser normalization. 

Rotation converged in 6 iterations. Kaiser-Meyer-Olkin(KMO) Measure of Sampling Adequacy(MSA) = 0.797  

Bartlett’s Test of sphericity: χ2 =1015.83, df =28, p < 0.000 

 
Table 3.8 PCA of Charging Behavior: Varimax Rotated Factor Loadings and Influential Charging 
Traits Extracted 

Variables* 
KMO 

MSA  
PC1.Chg PC2.Chg PC3.Chg PC4.Chg 

 Away: charged energy (kWh) 0.821 0.909 -0.121 -0.173 0.108 
  Away: Number of charging sessions 0.803 0.853 -0.188 -0.047 0.307 
 Away: Charging duration (minutes) 0.811 0.954 -0.116 -0.162 -0.013 

 Share of charging at away locations (%) 0.876 0.492 -0.338 -0.407 0.008 
 Home based: charged energy (kWh) 0.761 -0.158 0.752 0.537 0.081 

 Home based: Number of charging sessions 0.788 -0.242 0.336 0.822 0.284 
Home based: Charging duration (minutes) 0.781 -0.164 0.952 0.128 0.071 

  Number of days vehicle charged both at home 
and away locations 

0.565 0.197 0.104 0.184 0.953 

Charger Accessibility Away Home  Home  
Home 

and away 

Charger Utilization: Charging Frequency  Frequent 
Less 

frequent 
Frequent Balanced 

Charger Utilization: Charge Cycle  Deep Deep Shallow  

*All variables are annualized unless otherwise specified. Charging sessions, duration, and charged energy 

include both Level 1 and Level 2. Significant loadings (absolute loadings greater than 0.3) shown in bold and 

underlined 

 

Table 3.7 summarizes the PC loadings, Eigen values, and the cumulative percentage of variance 

captured by the PCA of charging behavior. Similar to the PCA of driving behavior, the suitability of data 

for PCA of charging behavior was validated. The Scree test for Eigen value criterion one was used and 

four factors were retained, which capture 87% of total variance. Table 3.8 summarizes the Varimax 

rotated factor loadings and the influential charging traits extracted by the PCA. From Table 3.8 , we can 

see that all away charging related variables load positively on PC1.Chg and are significant. Likewise, 

loading of all home charging related variables are positive and significant on PC2.Chg. Though the 

loading of home charging related variables on PC3.Chg is comparable to its loading on PC2.Chg, there is 

an important distinction between them. The loading of home charging duration is positive, significant and 
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numerically greater on PC2.Chg compared to PC3.Chg. In contrast, the loading of number of home 

charging sessions is positive, significant and numerically greater on PC3.Chg compared to PC2.Chg. 

Higher the loading of charging duration, longer is the charging duration, and thereby implying deep 

charge cycles. Likewise, higher loading of number of charging sessions indicates higher frequency of 

charging. The Number of days PHEV charged at both home and away location is strongly correlated with 

PC4.Chg and the loading is significant. This is indicative of enhanced charger accessibility at both home 

and away. The number of away charging session and to an extent the number of home charging session is 

also positively associated with PC4.Chg, though the absolute loading is only slightly below the threshold 

of 0.3. Based on these observations, I describe the factors based on charger accessibility, charger 

utilization measured in the form of charging frequency, and charger utilization measured in the form of 

charged duration. PC1.Chg describes frequent and deep charge cycles at away locations.  PC2.Chg 

describes less frequent, deep charge cycles at home, and PC3.Chg describes frequent, shallow charge 

cycles at home, and PC4.Chg is indicative of balanced utilization of charger at home and away locations.  

 

3.3.7 Principal component regression 

The eight retained PCs are the IVs and the DV is the difference between observed UF and EPA 

label city/highway combined UF (ΔUF=Observed UF – label UF). The purpose of developing regression 

models is to understand how well the extracted PCs can explain the difference between observed and 

label UF and also identify which PCs contribute the most to the ΔUF and how it varied between short-

range and longer-range PHEVs. Using the aggregate annualized dataset, I created OLS regression models 

for short-range (Prius, CMax, and Fusion) and longer-range PHEVs (Volt35/38 and Volt-53) separately. 

Statistical tests using G*Power 3 [95] was performed to verify and validate the following:  

• A priori: for given significance level, effect size, and power, computing the number of samples 

required 

• Post hoc: compute power achieved for the given sample size, significance level and effect size 
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For both regression models, all the a priori and post hoc test results confirmed that the sample 

size was adequate to detect a large effect size based on Cohen’s d , and the achieved statistical power was 

more than 95% [141-143]. These test results are summarized in Table B1-Table  in Appendix B.  To 

ensure consistency and parity across all the hypothesis and statistical significance tests, significance level 

of 5% was chosen.   

Table 3.9 OLS Regression Model Results: Short-range PHEVs (SRPHEVs) 

 
DV=ΔUF 

ΔUF =Observed UF – label UF 

Short-range(SR) PHEVs N=74 

 

PCs  Estimate 
Std. 

Error 
Prob>|t| 

t-
ratio 

Std. 
Estimates 

 Intercept -0.0662 0.0288 0.005 13.11  
PC1.Chg Away-frequent and deep cycle 0.0911 0.0430 0.0104* 1.8 0.1815 

PC2.Chg 
Home-less frequent and deep 

cycle 
0.047 0.0329 0.0799 3.76 0.2842 

PC3.Chg 
Home-frequent and shallow 

cycle 
0.0531 0.0157 <.0001* 3.17 0.2310 

PC4.Chg 
Home and away-balanced 

utilization 0.0593 0.0197 0.0004* 3.58 0.3595 

PC1.Drv High usage intensity -0.0703 0.0158 <.0001* -5.1 -0.4024 
PC2.Drv Long-distance travel -0.0152 0.0185 0.31 -0.11 -0.0084 
PC3.Drv Conservative driving -0.0208 0.0273 0.346 0.95 0.0655 
PC4.Drv High energy intensity -0.0718 0.0159 <.0001* -3.79 -0.2795 

 SRPHEV Model Fit 

R2 0.772 
Adjusted R2 0.744 

Root mean square error 0.103 
Akaike Information Criterion (AIC) -112.3 

Bayesian Information Criterion (BIC) -92.846 
*Factors that are statistically significant at 5%  

Std. error is standard error ; Std. estimates is the standardized estimates 

 

Table 3.9 and Table 3.10 summarizes the regression model coefficients (β) and summary of fit for 

the short-range and long-range PHEVs respectively. Referring to Table 3.9 for the short-range PHEVs, 

except long-distance travel and the conservative driving style, all other factors were statistically 

significant. At 5% significance level, except the PC that describes less frequent and deep cycle home 

charging, all other charging related PCs have a statistically significance and positive impact on the UF of 

short-range PHEVs. All the four charging related PCs are have statistically significant and positive impact 

on the UF of longer-range PHEVs. Except the PC that describes conservative driving, all other driving 
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related PCs have a statistically significant and negative impact on the UF of longer-range PHEVs. In the 

case of longer-range PHEVs, except conservative driving all other factors were statistically significant at 

5%. Long-distance travel had a statistically significant impact on ΔUF of LRPHEVs but not on short-

range PHEVs. When we compare the model fit, the R2 of LRPHEV regression model is lower than that of 

the SRPHEV regression model even though the LRPHEV model (Table 3.10) has a slightly higher 

number of observations and higher number of statistically significant factors compared to the SRPHEV 

regression model (Table 3.9). This could potentially be due to larger variations in LRPHEV usage 

patterns compared to SRPHEVs.  

Table 3.10 OLS Regression Model Results: Long-range PHEVs (LRPHEVs) 

 

DV=ΔUF 

ΔUF =Observed UF – label 

UF 

Longer-range(LR) PHEVs N=79 

PCs  Estimate 
Std. 

Error 
Prob>|t| t-ratio 

Std. 
Estimates 

 Intercept -0.0423 0.0170 0.015 38.56  
PC1.Chg Away-frequent and deep cycle 0.0462 0.0136 0.0011* 3.11 0.2777 

PC2.Chg 
Home-less frequent and deep 

cycle 0.0397 0.0139 0.0055* 2.47 0.2183 

PC3.Chg 
Home-frequent and shallow 

cycle 
0.0955 0.0144 <.0001* 5.91 0.4354 

PC4.Chg 
Home and away-balanced 

utilization 
0.042 0.0203 0.0385* 1.32 0.1026 

PC1.Drv High usage intensity -0.0894 0.0197 <.0001* -4.46 -0.4077 
PC2.Drv Long-distance travel -0.1118 0.0135 <.0001* -8.44 -0.6515 
PC3.Drv Conservative driving 0.0102 0.0118 0.386 1.46 0.1141 
PC4.Drv High energy intensity -0.0635 0.0148 <.0001* -4.06 -0.3102 

 LRPHEV Model Fit 
R2 0.673 

Adjusted R2 0.636 
Root mean square error 0.115 

Akaike Information Criterion (AIC) -102.48 
Bayesian Information Criterion (BIC) -82.02 

*Factors that are statistically significant at 5%  
Std. error is standard error ; Std. estimates is the standardized estimates 
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3.3.7.1 Relative importance analysis 
I ascertain the practical utility of the insights gathered from the regression models by carrying out 

relative importance analysis. Relative important analysis quantifies the contribution of an IV to the total 

predictable variance by itself (main effect) and in combination with other IVs (total effect), without 

making any assumptions about its statistical significance [136]. This would enable comparing the relative 

contribution of the eight PCs and how it varied between short-range and longer-range PHEVs. For each of 

the IV, Monte Carlo samples using Latin Hyper Cube sampling are obtained from its initial set of 

observed values and the process is iterated until the standard error of the main and total effects are below 

a certain threshold [144]. Error! Reference source not found.Table 3.11 summarizes the main and total 

effect of the IVs in the across the three models. The top three predictors based on the magnitude of their 

main effect are also highlighted in Table 3.11. 

Table 3.11 Relative contribution of IVs to total predictable variance Table 3.11 Relative contribution of IVs to total predictable variance 

 
DV=ΔUF 

ΔUF =Observed UF – label UF 
Short-range PHEVs Longer-range PHEVs 

PCs  
Main  
Effect 

Total Effect Main Effect Total Effect 

PC1.Chg Away-frequent and deep cycle 0.0873 0.1022 0.06 0.0857 
PC2.Chg Home-less frequent and deep cycle 0.0138 0.0228 0.034 0.0554 
PC3.Chg Home-frequent and shallow cycle 0.1184 0.1333 0.19732 0.2235 
PC4.Chg Home and away-balanced utilization 0.18813 0.203 0.0123 0.0257 
PC1.Drv High usage intensity 0.25311 0.2681 0.12933 0.1556 
PC2.Drv Long-distance travel 0.0036 0.0073 0.34631 0.3725 
PC3.Drv Conservative driving 0.0028 0.0062 0.0012 0.004 
PC4.Drv High energy intensity 0.23762 0.2526 0.0675 0.0933 
Inputs are independently resampled inputs using Monte Carlo. 1Most important predictor; 2Second most 

important predictor; 3Third most important predictor 
 

The magnitude of the main and total effects from Table 3.11 when examined in conjunction with 

the direction (positive or negative) of coefficient estimates in Table 3.9 and Table 3.10, provides a better 

picture of how dominant driving and charging traits impact the UF of short-range and longer-range 

PHEVs.  In the case of short-range PHEVs, high usage intensity, high energy intensity, and home and 

away balanced utilization capture close to 65% of total predictable variance, Table 3.11. For the longer-

range PHEVs, the main effect of long-distance travel accounts for 35% of total predictable variance, 

followed by the main effects of home-frequent and shallow cycle charging, and high usage intensity 
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respectively. While the UF of short-range PHEVs increases with the increase in charger access at home 

and away locations, for the longer-range PHEVs, encouraging more home based charging has a positive 

effect of UF. For the longer-range PHEVs, increasing the frequency of charging at home has a much 

bigger and positive effect on UF compared to deep charging cycles or longer charging duration. This is 

attributable to their AER capabilities coupled with lower annual mileage and daily driving distances . It 

can be inferred from Table 3.11 that the relatively aggressive and higher energy intensity of driving has a 

much bigger effect on the UF of short-range PHEVs compared to the longer-range PHEVs. 

 

3.3.7.2 Interaction effects 

I investigated whether inclusion of interaction terms to the regression models improves their 

explanatory power. To avoid confounding and conflating, which would hinder the interpretation of 

independent variables, I specifically focused on the statistically insignificant driving and charging in 

Table 3.9 and Table 3.10. This would clearly indicate the statistical significance of the interaction term 

and its effect on the overall model fit, which could not have been captured in the main effects only model 

(Table 3.9 and Table 3.10). The variables I considered for interaction effects are Long-distance travel 

(PC2.Drv), Conservative driving (PC3.Drv), and Home-less frequent and deep cycle charging (PC2.Chg). 

Since the driving and charging PCs themselves are orthogonal due the nature of component extraction 

using Varimax method, and to avoid overfitting, only one interaction term (between a driving related PC 

and charging related PC) were considered at a time and individual regression models were developed for 

each of the interaction terms.  In addition, I also interacted the top two predictors that contributed most to 

predictable variance from Table 3.11.  

I developed the four additional regression models with main and interaction effects.  For short-

range PHEVs, the following interaction terms were considered: i) PC2.Chg* PC3.Drv; ii) 

PC2.Chg*PC2.Drv ; and iii) PC4.Chg * PC1.Drv. For the longer-range PHEVs since only one term was 

statistically insignificant (PC3.Drv, Table 3.10), I included the top two predictors from Table 3.11, 

PC3.Chg * PC2.Drv as the interaction term. The parameter estimates and model fits of the four regression 
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models are summarized in Appendix B, Table A3. None of the interaction terms were statistically 

significant at 5% and there were no noticeable improvements in the model fit. Due to these two reasons, 

the relative importance of the interaction terms were not analyzed further.   

 

3.4 Discussion 
 

I analyzed year-long driving and charging behavior of 153 PHEVs in California and compared it 

against EPA test cycles and SAE J2841 assumptions. I expanded upon these observations by examining 

usage pattern differences among the five PHEV models included in this chapter. Observed PHEVs are 

driven more aggressively and accomplish a higher share of travel in non-urban driving conditions (45 

mph or faster or less than 3 stops per mile) compared to standardized dynamometer test cycles. The 

percentage share of time and distance traveled at highway speeds (60 mph or faster) is noticeably under-

represented or excluded in test cycles. Approximately 80% of VMT in the UDDS cycle is at 45mph or 

slower, whereas the overall average was only 40%. Short-range PHEVs (Prius, CMax and Fusion) are 

driven 4%-7% more at 60mph or faster compared to longer-range PHEVs (Volts). The above disparities 

clearly manifested in the form of increased energy consumption in the CD-EV mode, which reduces the 

effective AER realized on-road. Using PCA, I characterized driving behavior based on 4 factors: vehicle 

usage intensity, aggressive driving style at highway speeds which increases the energy intensity, 

preference for long-distance travel, and conservative driving style.  

Analysis of charging behavior revealed marked differences between the single, overnight, fully 

charged assumption of J2841. On average, observed PHEVs (except the Volt-53) charged more than once 

per day and the driving distance on days when the PHEV was not charged was more compared to the days 

on which they charged at least once. Results indicated that short-range PHEVs have a higher share of 

driving days when they are not charged at all. Possibility of PHEVs to charge away from home, charge 

more than once per day, and PHEV being used like a regular HEV are the other notable distinctions 

between this study and the generalized J2841 assumptions. The differences in charging behavior outlined 
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above are due to charger accessibility by location (home, away or both) and charger utilization which 

could be defined based on frequency of charging or duration of charging. These were characterized using 

four influential factors extracted by the PCA. Regression models and relative importance analysis 

indicated that for short-range PHEVs (Prius, CMax, and Fusion), higher annual VMT and share of travel 

at highway speeds contributed the most to the observed UF being lower than label rated estimates, 

whereas enhanced charging infrastructure at home and away increases the UF. In the case of the Volts, 

long-distance travel days (50 miles or more) and share of travel at highway speeds were the primary 

reason for lowering the observed UF below its label rated estimated, and increasing the frequency of 

charging at home increases the UF. 

Driving related differences could due to a combination of road infrastructure, early adopter 

preferences, and vehicle technology attributes like age, AER, maximum electric speed, and drivetrain 

design. California has the third highest rural interstate and the highest urban interstate highway system 

length[145], which was partly reflected in the relatively bigger share of highway speed driving observed 

in this study, compared to test cycles that are used in performance evaluation. California also scores low 

in proximity to major roadways[146] and ranks among the top three states by average VMT in urban and 

suburban census tract groups [147]. The cumulative effect of these California specific features were 

clearly revealed annual VMT and share of long-distance travel (50 miles or more) of the PHEVs observed 

in this study. The sub-sample of drivers in this dataset are PEV early adopters who purchased or leased a 

new PHEV and are generally more educated, wealthier, and own a home, compared to mainstream ICE 

user’s driving patterns in the NHTS on which the J2841 relies on[148, 149]. Rebound effect in the 

classical sense by which improvements in fuel economy of newer vehicles increases the travel 

demand[150], could also have played a part in higher vehicle usage intensity of all the PHEV models 

compared to sticker label annual mileage of 15,000 miles, except the Volt-53, which seem to have faced a 

slight backfire effect[151].  

Apart from differences among the PHEV models in terms of annual VMT, driving style 

(aggressive or conservative), and the magnitude of long-distance travel, the distribution of UF indicates 
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that heterogeneity in charging preferences exists among different as well as within the same PHEV 

model. The fact that some of PHEVs irrespective of AER electrified less than 20% of their rated label UF 

demonstrates that motivations for charging or not charging are far more complex in reality compared to 

the simplistic notion of one fully charged session per day per day at home. This study illustrates that 

charger accessibility and utilization have varying levels of influence on the UF depending on the AER. In 

the case of short-range (20 miles or less, Prius, CMax and Fusion), since their AER is less than their 

average daily VMT (about 46 miles), there was not enough incentive in the form of eVMT gained, to 

charge more for compensating their higher travel demand. Lower UF of observed PHEVs compared to 

their rated label estimates could also be due to self-selection bias by PHEV buyers who are less concerned 

about eVMT because their decision to purchase the PHEV was motivated by other reasons such as rebate, 

clean air vehicle decals, or preferential parking spaces. It is also evident that there are diminishing 

marginal returns in UF and eVMT with increase in the AER. The case in point being the UF of Volt-53, 

which was like that of Volt-35/38, in spite of the Volt-35/38 driving 2000 miles more than Volt-53 

annually.  

The performance of PHEVs depends on the intertwined relationships between driving behavior, 

charging behavior, vehicle technology attributes, and user preferences. The dual propulsion energy source 

(electric motor and conventional ICE) enables the automakers to offer a wide range of design options to 

potential buyers depending on the degree of emphasis of one driving mode over the other, which is 

influenced by the policy goals. Fuel economy and energy efficiency of the ICE were prioritized over the 

all-electric mode operation due to cost and charging infrastructure considerations in the infant stages of 

the PHEV market. To maximize the GHG reduction potential of PHEVs, policies that encourage longer-

range PHEVs, which emphasizes more on all-electric mode of are needed. While this has a direct impact 

on the policy signals sent to the automakers and subsequently the model offerings available for potential 

PHEV buyers, it is critical to consider aspects outside the domain of vehicle technology such as charging 

infrastructure expansion and heterogeneous user preferences. Though this study does not advocate 

moving away or replacing the J2841 UF as the metric to quantify the environmental impact of PHEVs, 
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there is definitely room for improving the accuracy UF estimates by incorporating additional scenarios 

that are more representative of real-world driving and charging behavior. Generalizability and 

applicability of insights to the broader PHEV market in general, or even within California is not feasible 

due to sample size limitations, which is very common and unavoidable, and intrinsic to real-world 

observational studies. Moreover, today’s PHEV users are early adopters, whose socio-demographic and 

economic indicators differ from the general population of mainstream ICE users [152].  

3.5 Conclusions 

 

This study systematically analyzed the driving and charging patterns of 153 PHEVs operating in 

California. The purpose of this study is to investigate why the observed performance of PHEVs deviated 

from their expectations and what were the influential factors that contributed to these disparities. I first 

compared observed with expected PHEV usage patterns. I also compared the usage patterns of the five 

PHEV models (Prius, CMax/Fusion Energi, first and second generation Chevrolet Volts) that were 

analyzed in this study at time-scales varying from trip-level to annual estimates. I utilized principal 

components analysis to reduce the dimensionality of the dataset while capturing at least 87% of the 

variance in dataset using just four driving and four charging related factors. The explanatory power and 

the statistical significance of the extracted factors were evaluated using multivariate regression models. I 

quantified the relative contribution of each of the extracted factors towards the difference in observed 

Utility Factor from label expected values. I also investigated if there are any statistically significance 

interaction terms which further improves the regression model fit and offers additional insights. 

Results indicated that higher annual mileage and higher energy intensity were the top two aspects 

that lowered the observed UF of short-range PHEVs (Prius, CMax/Fusion) when compared to label 

expectations. Enhanced charging infrastructure access and balanced utilization at home and away 

increases the observed UF of short-range PHEVs. In the case of longer-range PHEVs (Volts), their 

propensity towards more long-distance travel (50 or more miles/day) followed by their annual mileage 

contributed the most to lowering their UF from label values. Due to their bigger battery capacity, 
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increasing the frequency of shallow charging sessions has a bigger and positive effect on UF, rather than 

charging for longer-duration time but less frequently. Regression models indicated that the effect of long-

distance travel and deep cycle charging at home were statistically significant for longer-range PHEVs, but 

not for short-range PHEVs. Analyses also indicated the absence of any statically significant interaction 

terms. Distribution of UF (Figures 3.1)indicates that even within PHEVs with same AER, there is a 

diversity in usage patterns. Daily driving distances and style (Figure 3.2-Figure 3.5), number of charging 

sessions on days driven (Figure 3.8), charging location distance from home (Figure 3.10), demonstrates 

the linkage between travel and charging behavior and AER.    

Plug-in electric vehicles (BEVs and PHEVs) are essential to reduce transport sector GHG 

emission and energy consumption. Plug-in hybrid electric vehicles are considered as an intermediate and 

an enabling technology option which can catalyze large-scale adoption of PEVs. The environmental 

benefits of BEVs are unambiguous due to their zero tail pipe emissions, however the same cannot be said 

about the PHEVs. Operational and fuel-use flexibility helps the PHEVs in overcoming range anxiety 

related issues associated with BEVs, but the same flexibility complicates the task of evaluating their net 

environmental impact. To address this, the concept of UF has been developed and widely utilized in the 

policy domain and techno-economic assessments. There is a growing body of demonstrable evidence 

suggesting that a mismatch or gap exists between official EPA sticker label and real-world UF, which 

warrants a deeper examination to improve our estimates of the electrification potential of PHEVs. This 

study focused on this research need by scrutinizing real-world PHEV usage patterns and discerning 

salient facets of driving and charging that deviated from assumptions embodied in sticker label energy 

consumption and UF estimates. Superimposing a set of preconceived notions about driving and charging 

behavior has direct ramifications on how PHEVs are evaluated in command and control policies like the 

ZEV mandate, regulations governing their on-road performance, and policies that encourage their usage 

through economic incentives. Developments in battery technologies, diversification of PHEV model 

offerings, expansion of charging infrastructure, and a favorable policy environment will increase the 

market share of PHEVs. As the PHEV market evolves and grows, the need for observing PHEV through 
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studies such as the I presented here will become increasingly valuable. Recognizing real-world scenarios 

that diverged from assumptions will better inform future policies.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Behavioral and Technology Implications of Electromobility on Household Travel Emissions    

Evidence from Revealed Preferences of Electric Vehicle Owners in California  
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4.1 Background 

 The transportation sector emitted 1,900 million metric tons of carbon-di-oxide equivalent 

(MMTCO2e) in the U.S., roughly one-third of total greenhouse gas (GHG) emissions[153]. Nearly 60% 

of the total transportation sector emissions came from the light-duty vehicle (LDV) segment, which 

includes passenger cars(PC) and light-duty trucks(LT)[153]. In California, LDV segment alone 

contributed to 28% of  state’s total GHG emissions [3]. Plug-in hybrid electric vehicles(PHEVs) and 

battery electric vehicles (BEVs), collectively addressed as plug-in electric vehicles (PEVs), are being 

promoted at state and federal level to reduce LDV sector emissions and gasoline consumption[154]. 

Globally in 2019, cumulative PEV stock reached 7 million and new PEV sales exceeded 2.3 million[155, 

156]. Nearly 315,000 new PEVs were sold in the U.S. in 2019 and 75% (234,000) were BEVs[156].  

California is home to 47 % of nationwide PEV stock and leads the U.S. in PEV share (8%) of 2019 new 

car sales[157], but almost an eightfold growth within the coming decade[158] is required to reach its 2030 

target of 5 million PEVs[40] .  

Several demand-pull and supply-push strategies have been implemented to accelerate BEV 

adoption by mitigating barriers cost, range anxiety, charging infrastructure adequacy , and technology 

awareness barriers[159-161].  BEV and electric vehicle supply equipment(EVSE) purchase financial 

incentives, parking fee and high occupancy vehicle lane exemptions,  free public charging, and 

preferential time-of use (TOU) charging rates, are some of the demand side incentive-based policies that 

correlated with BEV adoption[13, 106, 162]. Command and control technology forcing Zero Emission 

Vehicle (ZEV) mandate[5] policy, performance standards like the Low Carbon Fuel Standards 

(LCFS)[163], Corporate Average Fuel Economy/Consumption (CAFE/CAFC)  targets and GHG 

standards[164] are considered to benefit BEV adoption though not as strongly as direct point-of-sale 

financial incentives[14]. The strength of association between BEV policies and market penetration may 

vary across geographies and demographics, but their direction is well documented and inferences are 

statistically probable[165]. The same cannot be posited if  we expand the context beyond BEV market 

shares to their GHG  mitigation potential, which is predicated upon their real-world usage patterns. BEV 
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usage depends on the interactions between driving and charging behavior, technology attributes (range, 

vehicle specifications) and user preferences.  In the policy domain, commonly used metrics for setting, 

standardizing, and monitoring GHG reduction targets are GHG/mile(gCO2e/mile) electric vehicle-miles 

traveled(eVMT) ,Utility Factor(UF). eVMT denotes the miles driven by off-board grid electricity and the 

role of electricity as a transportation fuel is expressed through the UF , which is the fraction of VMT 

electrified using off-board grid electricity. 

A crucial aspect often overlooked in BEV GHG assessments is the household(HH) context. HH 

factors such as vehicle ownership, household size, and number of drivers, socioeconomics, and 

demographics, have consequential impacts on long-term purchase decisions, intra-day vehicle usage, and 

household travel demand[96]. BEVs have unique features that differs from ICEs which will influence 

how they are driven and charged. Depending on travel needs, individual preferences, operating costs, 

charging access and opportunities, vehicle miles traveled(VMT) by the BEV has cascading effects on 

VMT by other household vehicles. Roughly 45% of BEVs belong to two-car households according to an 

online survey of 15,000 PEV owners[81]. Contemporary studies offer a limited vehicle-centric 

perspective on BEV GHG impacts using self-reported trip diary information in stated preferences and 

choice experiment surveys of mainstream ICE , current, and prospective BEV users.  

I quantify the GHG impacts of BEVs revealed from travel and recharging/refueling behavioral 

data of 73 ICE-BEV California households (73 ICEs, 30 Nissan Leaf, 21 Chevrolet Bolt, and 22 Tesla 

ModelS) observed over a year. Through scenario analysis, I further evaluate the effects of driving and 

charging behavior modifications and attribute upgrades on their prospective GHG abatement potential.  

4.1.1 Household travel GHG constituents 

 Various mechanisms underpinning household travel GHG can be informed using the ASIF[166] 

identity which expresses GHG as the product of 4 variables: A(activity or VMT), S(mode share), energy 

intensity(I), and fuel (F) carbon intensities. Household travel emissions is the sum of ICE driving 

emissions from gasoline consumption and emissions due to electricity required for charging the  BEVs. 

Household travel demand, share of ICE and BEV VMT, and energy intensities in gallons(kWh)/mile are 
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susceptible household preferences, on-road conditions (congestion, grade, terrain), driving styles (urban, 

suburban, highway), vehicle characteristics (size, power, weight), and powertrain efficiencies [167, 168]. 

The quantity and quality of ICE miles (high energy intensity highway driving miles or comparatively low 

energy intensity cruising miles) substituted will directly impact the BEV energy consumption,  volume of 

gasoline displaced, and thereby the HH GHG. If we include only the BEV, much of the insights on 

household travel demand and purpose of BEVs are lost. Furthermore, it is difficult to ascertain if there is 

any room for further abatement, compare across households and different BEV types to understand the 

relationships between travel needs, range, and GHG.  These interrelationships highlight the need and the 

importance of household context in BEV GHG assessments.  

4.1.2 Literature review 

 To assess BEV substitution and their GHG abatement potential, the first and the most critical 

information needed is their daily VMT and electrical energy required to accomplish their daily travel 

needs. In the absence of actual BEV usage data, daily VMT self-reported in trip diaries or collected via 

data loggers of mainstream ICE users are assumed to be indicative of typical daily driving patterns of 

BEVs[169-171]. Energy consumption is then calculated using the window sticker label and suitable 

charging scenarios are overlaid to estimate their charging needs by time of day, location, and charger 

level. In a Puget Sound Regional Council Traffic Choices data study[172], “BEV as second-car” concept 

is presented and suggests that a BEV with 60-mile range can electrify up to 55% of household travel and 

is acceptable to 90% of two-car households provided they tolerate the range inconvenience no more than 

three days per year and drive their other car[170].  

A heuristic  Household Activity Pattern Problem with Electric vehicle(HAPPE) model to 

randomly assign BEVs to 2-car households in the California Household Travel survey (CHTS)[173], 

reports that  up to 54% of household travel can be electrified using a BEV with 80-mile range[174].  Trip 

diaries from household travel surveys and week to 2 month in-use data logged from conventional ICEs 

are analyzed to determine the BEV market viability  in the Swedish and German LDV fleet and results 
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indicate that the entire demand of the second car in 70%  of all 2-car households can be met by a 138 mile 

range BEV, whereas a  244-mile BEVs is suitable to electrify the first car ( the car that is used on higher 

number of days and accounts for a higher share of household travel)[169]. An optimization model is 

formulated using 1-3 months of granular GPS enabled logger data from 64 commuter households with 2-

cars in Sweden, reinforces the notion suggested in a Seattle household study[175] that replacing the 

second car with a 91-105 mile range BEV is more favorable from days requiring adaptation and total cost 

of ownership(TCO) perspectives compared to the first car which requires 106-137-mile range[176]. By 

observing driving and charging behavior of  retrofitted 100-mile range  BMW Mini-E belonging to forty 

2-car households in Berlin as part of large scale field trial , range utilization is discussed from a  

psychological perspective and results indicate that majority of the participants were comfortable in 

utilizing  77% of available range and  prefer a safety buffer of  12%[177]. 

Average annual VMT of a Nissan Leaf (10,300 miles) and Tesla Model S ( 13,500 miles) BEVs  

is lower than that of conventional ICEs (14,600 miles)  by 10% and 30% respectively based on automaker 

provided U.S. wide sample data[40]. Similar values calculated using information provided in the self-

reported annual mileage and trip diaries of the 2017 National Household Travel Survey (NHTS)[178] 

noticeably underestimates the annual BEV VMT at 6,300 miles[179] . This illustrates short comings of 

relying on stated preferences or trip diary information that underestimate annual mileage and also 

progressively under-report long trips[22] (50/100/300-miles or more one-way), which is particularly 

important in the context of range-anxiety. The availability of real-world driving and charging data 

through U.S. wide demonstrations such as the Idaho National Laboratory (INL) EV project[180, 181], 

provided directly by the automakers for compliance and regulatory assessments in the U.S.[40],  targeted 

short-duration data collections studies in major European BEV markets like Norway[182], Denmark and 

Sweden[183] has improved our understanding of BEV driving and charging patterns, and energy 

consumption , albeit GHG abatement potential of BEVs within the household travel demand context is 

ignored or inadequately addressed.  
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4.1.3 Research gaps 

Prior research clearly advocates the need to have realistic representation of BEV usage to increase 

their usefulness to policymakers. Majority of studies irrespective  of whether survey data or short duration 

logger data of ICEs or BEVs were used, primarily focus on the feasibility of a BEV to replace an 

ICE[171, 184, 185]. These studies present a diverse mix of quantitative and qualitative interpretation of 

days and miles a choice set of BEVs and associated attributes  is unable to replace the ICE VMT. In 

studies that explicitly targeted 2-car households and monitor the BEV usage over few months duration, 

except for the improved granularity and the representativeness of the data compared to stated preference 

surveys, insights on relationship between range and household travel demand is found missing since only 

one type of BEV was used in short-duration field trials[169, 170, 174, 176, 186].   

Within the contours of household travel demand, BEV substitution and GHG mitigation potential,  

I address the following research gaps:   

• Quantifying BEV feasibility and substitution potential is necessary but not sufficient. It is 

important to articulate what these miles and days translate in GHG/mile. 

• Most of the antecedents in literature  ignore  inter-household variability in the driving energy 

intensity which is directly reflected in per-mile energy consumption (Gallons/mile, kWh/mile) 

and emission factor differentials.  

• Travel data collected from short-duration field trials and pilots may not be an adequate timeframe 

for the user to adapt and utilize the full BEV range. Observing actual usage for a year captures 

the full spectrum of trips and VMT.  

• Heterogeneity in BEV attributes like range and specifications is scarce in previous observational 

BEV usage studies. This precludes cross-household comparisons among BEVs with comparable 

range but disparate specifications, drivetrain architecture, and efficiencies.  

4.1.4 Study objectives 

I present a unified framework to quantify the substitution and well-to-wheel (WtW) emission 

abatement potential of BEVs at the household level. I utilize a highly resolved yearlong travel and 
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charging dataset  collected via on-board diagnostic port (OBD) data loggers of 146 vehicles (73 ICEs, 30 

Nissan Leaf, 21 Chevrolet Bolt, and 22 Tesla Model S) from 73 two-car ICE-BEV California households. 

I selected six scenarios to capture the individual and combined effects of travel day vehicle selection and 

overnight full charging depending on whether the household retained its current BEV attributes or 

replaced it with a longer-range efficiency or  longer-range sportier performance-oriented BEV.   

4.2 Data and Methods 

The primary source of data is from the Advanced Plug-in Electric Vehicle Travel and Charging 

behavior[28, 29]. This project was started in 2015 to understand how current PEVs being used a day-to-

day basis within the context of household travel in California. This study included an online survey 

followed  by a yearlong data collection study of a sub-sample of respondents. Data loggers were installed 

in all the vehicles in this sub-sample of households who expressed interest in participating in the logger 

study and planned to keep their PEV for at least a year. Details about the online survey, survey 

administration, and  comparisons of select indicators observed in this study with California statistics[17, 

82, 84, 178, 187] and prior literature are detailed in the Appendix C.  
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Table 4.1. Average annual driving and charging summaries 
  Battery Electric 

Vehicle (BEV) 
 

Internal Combustion Engine 

Vehicle (ICE) 
 

Household 

(HH) 

BEV 

type 
N HH eTrips eVMT  gTrips gVMT Gasoline  

HH  

Trips 

HH 

VMT 

Leaf 30 1382 10841  1089 9258 386  2471 20099 

Bolt 21 1303 12470  945 9625 367  2248 22095 

T60 12 952 17236  1097 7356 388  2049 24592 

T80 10 866 13507  902 6213 308  1768 19720 

Total 73 88899 929795  74700 631126 27040  163599 156091 

 
Number of charging sessions 

by 

charger type[90, 188, 189] 

 
Charged energy by 

charger type (kWh) 
 

Average charging 

session 

duration 

(minutes) 

BEV 

type 

All 

levels 
L1/L2 DCFC  All levels L1/L2 DCFC  L1/L2 DCFC 

Leaf 296 246 50  2455 1784 659  277 26 

Bolt 291 283 8  3374 3235 134  285 49 

T60 273 238 35  6345 5363 905  250 36 

T80 236 219 17  5121 4539 528  194 33 

Total 20637 18400 2237  271852 231194 38731    

prefix e and g denote electricity and gasoline ; total refers to the entire dataset ; all distances driven, 
electrical energy and gasoline consumed are in miles, kWh, and gallons respectively. 

Level 1 (L1) charger is rated 120VAC , 12-16A ; Level 2 (L2) charger is rated 208-240VAC, up to 
80A; Direct Current Fast Charger(DCFC) is rated 200-500VDC, up to 350A. Tesla Model S BEVs 

with 60-80kWh and more than 80kWh usable battery capacity are categorized as T60 and T80 
respectively for notational simplicity. 
Descriptive statistics on HH VMT allocation by driving distances and speeds and share of HH VMT by 

travel day usage patterns and its contribution to overall HH GHG are presented in the Supporting 
Information. 
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4.2.1 Logger data 

In the sub-sample of 73 households, Fleet Carma C2 or C5 data loggers[85] were installed in the on-

board diagnostic port of all vehicles belonging to the household (146 vehicles in total). These data loggers 

monitor and collect data at very high resolutions (1Hz to 10 Hz) which facilitates binning the ICE and 

BEV distance driven by three distinct energy intensities indicative of three driving styles : city or urban 

driving (0-45mph], mixed or suburban (45-60 mph] and highway driving styles (60mph or more). This 

accounts for inter household variability in driving energy intensity, an approach is entirely missing in all 

contemporary BEV usage studies, observational or otherwise. I do not use average trip speeds to associate 

a specific driving style to an entire trip, but rather break down the distance driven in every trip by speeds 

at 5 mph intervals and subsequently bin them as city, mixed or highway styles. Other important variables 

logged included but not limited to : date and time stamps, trip/charging session starting and ending battery 

state of charge (SOC), AC and DC currents and voltages, gasoline consumed, electrical energy consumed 

(discharged while driving), produced (due to regenerative braking), and charged, charger level, and trip 

distances.  Table 4.1 summarizes the average annualized household trips, miles, fuel and electricity 

consumption by source (ICE or BEV). The aggregate annualized data for this is study includes 164,000 

household trips (89,000 BEV etrips and 75,000 ICE gtrips), 1.56 million household VMT (930,000 

eVMT by the BEV and 630,000 gVMT by the ICE), spanning 25,000 days, consuming 27,040 gallons of 

gasoline, and 272 MWh of electricity. On average every household was monitored for 325-374 days 

depending on the BEV type.  
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Figure 4.1. Methodological framework, GHG abatement strategies,  scenario selection and nomenclature. 

    

4.2.2  Methodological framework for GHG abatement and scenario selection.  

I considered three GHG mitigation strategies – travel day vehicle selection, overnight fully charging 

behavior, and BEV attributes, Figure 4.1. Each of these strategies when combined, lends itself to a total of 

6 scenarios:   

Obs_Beh: Reference scenario. Observed driving and charging behavior, and travel day vehicle selection. 

The available range is calculated by scaling the usable range  proportionally to previous day’s ending 

state of charge (SOC) .  
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S1 Obs Select: I assume that at the beginning of a given travel day, users select the BEV instead of 

the ICE whenever feasible, i.e. range is sufficient to accomplish the ICE gVMT. The available 

range at the start of travel day is proportional to the previous day’s ending state of charge (SOC) 

observed. Households keep their current BEV attributes. 

S2 Obs Select FullChg: S1 Obs Select plus BEVs fully charge overnight at home. The available range 

at the starting of travel day is their full usable range. 

S3 Select LREffi/S4 Select LREffi FullChg: Follows S1 Obs Select/S2 Obs Select FullChg. 

Households upgrade to a longer-range efficiency-oriented BEV. 

S5 Select LRPerf/S6 Select LRPerf FullChg: Follows S1 Obs Select/S2 Obs Select FullChg. 

Households upgrade to a longer-range sportier performance-oriented BEV.  

I selected three strategies–Travel day vehicle selection, full overnight charging, and BEV 

attribute upgrade. Travel day vehicle selection as the name implies is among the choice set of vehicles 

available (ICE and/or BEV), what vehicle was chosen and how much distance was driven using the 

specific vehicle type. Referring to Table C-1 of the Appendix C, in this dataset more than two-thirds of 

the households have 2 or more drivers so on a given travel day, either one (ICE or BEV) or both the 

vehicles could be used depending on the household travel demand. Household travel demand on a given 

day which is the sum of VMT by the BEV and ICE, and the BEV range together influence which vehicle 

was chosen and the corresponding miles driven. The key determinants of the household GHG are the 

absolute miles and the carbon intensity of miles.  GHG reduction is ensued by : i) selecting the BEV and 

shifting the  ICE miles to the BEV on days only when the ICE was driven ; and ii) allocate ICE miles to 

the BEV and vice versa on days when both vehicles were driven and the ICE drove longer than the BEV. 

Travel day vehicle selection strategy thus captures shifting high carbon intensity gVMT to low carbon 

intensity eVMT whenever feasible. Feasibility here means that the BEV has enough range to accomplish 

the ICE gVMT at the same energy intensity levels. Referring to Figure 1 of the manuscript, on days when 

the BEV does not have enough range to replace or swap the ICE miles is classified as infeasible and the 

GHG as a result of these days is called hard to abate or unabatable GHG. Already optimal refers to the 
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days when users made the right travel day vehicle selection that contributes to minimal GHG. Days when 

only the BEV was driven, or BEV drove longer than the ICE are instances where additional GHG 

mitigation is not possible. 

 If the battery state of charge (SOC) is 100% (fully charged) then the available range and usable 

or maximum possible range are identical. Under-utilization of the BEV range occurs if the travel day 

starting battery SOC is less than 100%. The difference between usable range and available range at the 

beginning of the travel day depends on the overnight charging behavior. I wanted to study if everybody 

charged to full capacity overnight every day are the BEVs substituting more ICE miles compared to not 

fully charging overnight. This is of topical interest and concern to policymakers from the point of 

incentivizing home charging infrastructure through direct subsidies and encouraging home charger 

utilization when electricity prices are cheaper by designing charging rates by time of use (TOU) . The 

charging behavior strategy  is an insight into what would happen if all these BEV users charge overnight 

once their previous day's mission profile ended and thereby eliminating any possibility of range under-

utilization. An immediate consequence of this is the marginal positive effect on the number of days the 

BEV can be used instead of the ICE, irrespective of whether only the ICE or both ICE and BEV was 

driven.   

The third important GHG mitigation strategy I consider is what would happen if the attributes of 

the BEV (range and specifications) was retained or upgraded. I considered three specific situations: i) 

households keep their existing BEV as it is ; ii) households decide to replace their existing BEV and 

upgrade to a  longer-range efficient oriented BEV ; and iii)  households decide to replace their existing 

BEV and upgrade to a  longer-range sportier performance oriented BEV. In the following sub-section 

using the framework for GHG mitigation as discussed above, I elaborate on the scenario selection.    

4.2.3 Other Parametric assumptions and caveats 

  In this chapter, I use an all -or nothing substitution between BEV and ICE miles on days when 

there is sufficient battery capacity available for the BEV to replace or swap ICE miles. This perfect 
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foresight in of travel day VMT is acceptable considering that irrespective of which vehicle(s) were driven, 

their daily travel needs will be met. Since actual usage and VMT by both vehicles is monitored , any 

short-run elasticities with respect to prices , traffic, climate, respondent socio-economic and demographic 

indicator is explicitly measured in their actual VMT change. There is a general consensus among 

researchers on the importance of choosing a Cradle-to-grave (C2G) or WtW approach to account for the 

embodied GHG in battery manufacturing and explicitly acknowledging the sensitivity of BEV GHG 

assessments to regional diversity in electricity generation mix and ambient conditions[167, 168, 190-194]. 

Since we are strictly dealing with California sample, I used state-wide WtW emission factors[195, 196] 

for gasoline(11405.85 gCO2e/gallon) and electricity (378.54 gCO2e/kWh). 

Sample size and generalizability limitations are intrinsic and unavoidable as with any study that 

analyze real-world operation[10, 18, 54, 80],. The characteristics of survey respondents in this study 

followed general assumptions about BEV early adopter traits such as higher income and education levels, 

higher share of PEV owners living in detached or townhouses compared to general population[30]. 

Despite the small sample size of vehicles, the BEV make and models  considered in this study accounted 

for 73% of all rebates issued to BEVs between 2015 and 2020 under the California Clean Vehicle Rebate 

Project[7].  

 

4.3 Results 

I summarize select insights from observed behavior followed by the scenario specific implications on 

BEV substitution and GHG abatement potential. 

4.3.1 Observed behavior UF and GHG 
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(a) (b) 
 

Figure 4.2. Average annualized eVMT, gVMT, UF, and GHG observed.  

  (a)Average annual miles driven and the UF is shown on the secondary Y-axis ; (b) Per-mile WtW GHG 

emissions by vehicle type and for the household. The household GHG is normalized to the household 

VMT. Utility Factor (UF) is the share of household VMT electrified – ratio of BEV eVMT to total HH 

VMT and is shown in percentage (%).   

Figure 4.2 captures the relationship between average annualized mileage, UF, and GHG. Overall, 

Bolt households have the lowest GHG per mile and their UF is only slightly more than that of the Leaf 

HH UF despite the Bolts having more usable range (238-miles) than Leaf (87-miles). Figure 4.2 shows 

that the effect of increasing range and the resulting UF gains not necessarily translates into GHG benefits 

and potential trade-offs are involved. The T80 (235-mile) has more range than the T60 (205-mile) and 

comparable range as the Bolt. However, T60 can electrify highest share of HH VMT but it has the highest 

HH GHG. ICEs on average in the Tesla HHs (T60 and T80) are inefficient compared to the ICEs in Bolt 

or Leaf HHs. The above instances illustrate how our inferences could vary depending on the metric (UF 

or GHG) and level of disaggregation(BEV only or household level).  
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(a) (b) 
Figure 4.3. Observed HH VMT allocation by vehicle used. (a) by driving distances ; (b) by driving speeds 

 

Figure 4.3 depicts share of HH VMT allocated between the BEV and ICE binned by daily VMT 

and driving speeds . The percentage share of VMT by vehicle type in Leaf and Bolt HHs are comparable 

though Bolt’s usable range (238-miles) is more than double the usable range of a Leaf (87-milesFigure 

4.3(a) shows that ICEs are preferred over the BEVs in Leaf and Bolt HHs for traveling 100 miles or more 

but the Teslas (T60 and T80) were used for majority of daily travel 100 miles or more.  It is interesting to 

note that the Bolt HH VMT allocation between the BEV and ICE  is more aligned towards the Leaf rather 

than the T60 or T80. These trends are also reflected if we look at the HH VMT allocation by vehicle type 

and driving speeds binned into city, mixed or highway driving styles in Figure 4.3(b).The average usable 

range of Bolt (238-miles)  is more than the average usable range of T60 (205-miles) in this dataset(Figure 

S3). However, the proportional allocation of HH VMT between the ICE and the Bolt/T60 binned by daily 

distances driven and driving speeds diverge noticeably. 
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(a) (b) 
 

Figure 4.4 Observed HH VMT allocation and GHG contribution by type and number of vehicles used, and  

travel day starting SOC of the BEV.  (a)Observed HH VMT allocation and ; (b) contribution to HH GHG. 

The type of day was chosen to be along the same lines as the scenarios.  

 

Figure 4.4 captures the relationship between HH VMT and what it portends for the HH GHG if we 

disaggregate the travel day based on the number of vehicle(s) driven and the travel day starting SOC of the 

battery. It is not surprising that majority (60-75%) of the HH VMT and GHG is due to both vehicles being 

driven. However, nearly 9-13 % of HH VMT using the ICE alone causes nearly 20% of household GHG 

on average across all BEV types. At-least 4-15% of HH GHG (corresponding to ~12-30% of HH VMT) is 

optimal as is and further GHG mitigation is not possible because only the BEV was driven. With increase 

in range, the number of days and thereby the share of HH VMT by the BEV alone also increases from 7% 

in the case of Leaf HH to almost 25% in the case of T80 HHs. 
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4.3.2 Substitution potential of BEVs under different scenarios 

 

 

 

 

 
Figure 4.5. ICE gVMT substituted by driving style(primary Y-axis) and BEV feasibility in 
days/year/household (secondary Y axis).   

 

Figure 4.5 depicts the average annual number of days per household feasible for the BEV to 

replace the ICE, and the resulting ICE gVMT substituted by driving style. Scenario analysis indicated it is 
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feasible for the BEV to replace the ICE on 85-97 days/year and substitute 1544-3409 ICE gVMT/year by 

adopting the travel day vehicle selection strategy alone. By fully charging the BEVs overnight (S2) , 

feasibility and  substitution potential  increases to 90-108 days/year and 1993-4390 miles/year. Tesla HHs 

(T60 and T80) saw only slight improvements in the substitution potential if they are upgraded to a longer-

range efficiency oriented BEV or longer-range sportier performance oriented BEV. It is interesting to 

note how the observed user preferences manifests in the magnitude and type of ICE miles substituted. 

Excluding the BEV attribute upgrade scenarios, the average daily ICE gVMT substituted is close to 20 

miles in a Leaf HH. It increases to 25-30 miles in a Tesla HH (T60 and T80) and was highest in the Bolt 

HH (35 miles roughly). The energy intensity of ICE miles substituted markedly differed between the 

Tesla (T60 and T80) HHs and the Leaf and Bolt HHs. Nearly 50% (1132 out of 2348 miles) and 68% 

(1752 out of 2589 miles) of ICE miles substituted by the T60 and T80 respectively were of city driving 

type. In stark contrast, almost half of the ICE miles substituted by the Leaf (710 out of 1544 miles) and 

Bolt (1546 out of 3409 miles) were of highway driving style. These inferences accentuate the  household 

context which provides a deeper insight into driving and charging preferences, which influences GHG 

benefits of BEVs.    
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Figure 4.6. Percentage change in household UF and GHG (primary Y-axis) and average annual fuel 

savings in GGEq (secondary Y-axis) relative to Obs_Beh. 33.7 kWh/Gallon gasoline equivalent[197].   
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4.3.3  Overall impact on household utility factors , GHG abatement, and fuel savings 

 

Impact of different GHG abatement strategies on UF, GHG, and fuel savings relative to Obs_Beh is 

show in Figure 4.6. The UF increased on average by 20% for the Leaf and Tesla (T60 and T80) HHs, 

and 30% for the Bolt HH under the travel day vehicle selection strategy(S1). By fully charging overnight 

(S2), an additional improvement of 2-6% is possible. Leaf HHs can electrify on average 45-50% more 

miles relative to Obs_Beh by upgrading to a longer-range efficiency (S3 and S4) or sportier performance 

oriented BEV (S5 and S6).  Bolt HH UF slightly improves by upgrading to longer-range sportier 

performance oriented BEV in  S5 and S6 scenarios  compared to S1 and S2 scenarios.  

On average 12-16% of Leaf HH GHG can be reduced relative to Obs_Beh by travel day vehicle 

selection (S1) and full overnight charging behavior strategy (S2). These improvements almost doubled to 

27-31% if the Leaf was upgraded to a longer-range efficient oriented BEV(S3 and S4). However, if the 

attribute upgraded was a longer-range sportier performance oriented BEV (S5 and S6), only 15-18% of 

GHG abatement is possible even though it electrifies 45-50% more miles relative to Obs_Beh. Nearly 

20% of Bolt HH GHG can be mitigated through travel day vehicle selection and an additional 5% is 

possible by fully overnight charging strategy. By upgrading to a longer-range sportier performance 

oriented BEV,  30-40% improvement in Bolt HH UF (S5 and S6) translates into only 4-8% HH GHG 

abated relative to Obs_Beh. It is interesting to note that the HH GHG abatement potential is roughly 26-

28% if the Tesla HH (T60 and T80) upgraded to a longer-range sportier performance oriented BEV, about 

4% less than what they could achieve by retaining their current BEV attributes and adopting the travel 

day vehicle selection strategy.  

Relative to Obs_beh, on average across all scenarios and BEV types varying levels of fuel savings can 

be realized. However, UF improvements could come at the expense of an overall increase fuel 

consumption (GGEq). Compared to Obs_Beh, a leaf HH could save 141-160 GGEq/year and electrify 44-

50% more miles by upgrading to a longer-range efficiency oriented BEV. This fuel savings reduces by 

nearly 30% to 96-114 GGEq/year if the upgraded BEV attribute is a longer-range sportier performance 
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oriented BEV even though its UF improvement relative to Obs_Beh is comparable(46-52%).  Bolt HHs 

nullify 40-50% fuel savings (101-125 GGEq/year) achieved using their current BEV attributes and 

adopting the travel day vehicle selection and full overnight charging behavior by upgrading to a longer-

range performance oriented BEV (49-72 GGEq/year savings relative to Obs_Beh).  

(a) 400-mile BEV assigned to all 73 HHs (b) 400-mile BEV assigned to sub-sample of 38 
HHs 

Figure 4.7. Effect of upgrading to 400-mile BEV on UF and GHG. Percentage change in UF and 

GHG expressed relative to observed behavior, best GHG and best UF scenarios. (a) Entire sample 

of 73 HHs upgrade to 400-mile BEV; (b) Sub-sample of 38 HHs upgrade to 400-mile BEV.  
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4.3.4 Deeper GHG reductions and future BEV attributes 

Observed behavior and scenario specific outcomes on UF and GHG discussed thus far are based 

on ex-post availability of BEV make, model, and specifications.  To ascertain the UF and GHG prospects 

of advanced BEV designs, I assume all households upgrade to a 400-mile BEV, analogous to a just 

introduced Tesla Model S Long-range Plus[198].  I find that relative to Obs_Beh, UF and GHG improves 

by 20-50% and 20-30%  respectively, Figure 4.7(a). Their impact relative to the best UF and best GHG 

scenario, are comparatively smaller and could even be detrimental. UF increases by only 1-4% relative to 

the best UF scenario, and  GHG  could worsen  by 2-9% relative to the best GHG scenario.  

Considering the effect of long distance travel needs on range anxiety,  BEV purchase decision, 

usage patterns, and VMT allocation within the household[199, 200], I performed additional analysis to 

identify infrequent ICE gVMT that the BEV cannot substitute and the resulting GHG that is hard to abate.  

Analysis indicated that the source of hard to abate GHG is attributable to a total of 175 days  of travel 

from 38 HHs (17 Leaf, 11 Bolt, 7 T60, and 3 T80 HHs). The average ICE gVMT on these days was 306 

miles twenty-nine of the 38 ICEs in these HHs are LT. Within the sub-sample of 38 HHs, UF and GHG 

benefits of a 400-mile BEV relative to the best UF and GHG scenario was highest in T80 HH, followed 

by the Bolt HH, T60 HH, and Leaf HH stand to gain the least, Figure 4.7(b).  Conventional wisdom 

purports increasing the range can mitigate BEV adoption barriers , increase their usage, and thereby their 

GHG benefits[201, 202]. These observations demonstrate that range alone cannot be a reliable proxy to 

project GHG benefits of more and future BEV designs and trade-offs exist between different policy goals.  

 

4.4 Discussion 
The BEV market is expected to grow in the upcoming decades with many state, regional, and 

national governments tightening emission standards and implementing a suite of supply side technology 

forcing and demand side incentive policies to increase their penetration. Cost, range anxiety, and charging 

infrastructure accessibility barriers alongside user preferences and subjective valuation of BEVs in 

fulfilling their travel demand poses difficulties in examining their real-world GHG benefits.  Insights 
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gleaned from current works on BEV usage and their GHG abatement potential depend on type of survey  

(cross-sectional or longitudinal surveys), methodology (stated or revealed preferences), data acquisition 

method (online, mail, phone, in-person, data loggers), duration of study and spatiotemporal resolution of 

data, sample population (mainstream ICE users, current or prospective PEV buyers), geographical 

coverage, level of disaggregation (vehicle or household level), and system boundary for GHG 

quantification.  It is important to frame and appraise GHG benefits of BEVs  in a manner that reflects the 

current landscape of  consumer awareness, purchase decisions, BEV attribute perception, and driving and 

charging preferences.  Studying BEV usage in isolation could lead to inaccurate estimates of their GHG 

benefits since majority of BEVs belong to multi-car households. This highlights the importance of 

gauging the environmental performance of  BEVs from a household vehicle portfolio perspective that 

included vehicle substitution patterns by daily distances and driving styles, efficiency, and emission factor 

differentials of both BEVs and ICEs. As a step in this direction this study quantified the substitution and 

GHG abatement potential of BEVs using real-world observational data of 73 ICE-BEV California 

households. 

California sample of BEV households observed in this study are making sub-optimal decisions 

regarding their travel day vehicle selection , overnight charging behavior, and consequently their usable 

range from the perspective of GHG abatement. These are attributable to interlinkages between vehicle 

specifications and features (BEV and ICE) , driving and charging behavior, and household preferences 

Household preferences are reflected across different timescales– travel day vehicle selection and VMT 

allocation; overnight charging behavior ;  trip level driving styles ; perception, valuation, and alignment 

of BEV attributes with typical travel needs ; frequency, duration, and intensity of atypical travel needs ; 

and long-term purchase decisions. The underlying interactions between household preferences , and the 

choice set of abatement strategies can lead to diverse outcomes depending on the policy goal and the level 

of disaggregation (BEV only or household level).  Policy makers need to continually fine tune existing 

incentives (financial and/or non-financial) or introduce new incentives to encourage not just the adoption 

but also the utilization of BEVs to maximize their GHG benefits. In this regard , information about real-
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world BEV usage is extremely valuable for policy makers as it will offer insights into the current barriers 

and opportunities to better inform future policies. Understanding daily driving needs and how different 

market segments perceive and value BEV attributes is crucial for auto manufactures for optimal BEV 

design and model offerings. UF and GHG impacts of state-of-art 400-mile BEV presented in this study 

indicates that real-world implications of future BEVs are vulnerable to subjective and diversified user 

needs and how well it is aligned with BEV attributes.  Use cases and role of BEVs  in meeting household 

travel demand could be dictated by their features other than just the range.  Magnitude and direction of 

differences between other BEV GHG assessments and results presented in this study can also help 

researchers in parametric updates, calibration and validation efforts to strengthen the representativeness or 

correct for the lack thereof in vehicle choice modeling[203], powertrain simulation tools[204], and 

integrated assessment studies[205]. 
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5 Conclusions  

Contemporary studies on PEV usage rely on assumptions about their driving and refueling 

behavior using data from stated preferences of potential PEV owners or reported behavior of PEV early 

adopters, or household  travel survey trip diaries of ICE vehicle drivers.  These assumptions have 

widespread ramifications on the energy and emission estimates of PEVs embodied in existing policies. 

This dissertation utilized observational data and highlighted its implications on three PEV topics. The first 

chapter developed an analytical procedure to systematically quantify what aspects of observed driving 

and charging behavior contributes to PHEV utility factors diverging from sticker label estimates. The 

second chapter delved deeper into short-range and longer-range PHEVs and identified distinguishing 

driving and charging preferences that have the most positive and negative influence on their 

electrification potential. The third chapter examined the current and prospective GHG benefits of BEVs in 

two-car households using scenario analysis to capture one or combination of travel day vehicle selection, 

overnight charging behavior, and BEV attribute upgrades.   

A common theme that cuts across these chapters is that the California sample of PEVs charge less 

frequently and drive more aggressively than  the conventional wisdom embedded in standardized test 

cycles which often serve as benchmarks for policymakers and OEMs. Chapter 2 showed that perverse 

incentive exists especially for short-range PHEVs (20-miles or less) when they don’t charge at all and use 

their PHEV like a regular HEV nearly 20-30% of the time.  On the other hand, range-underutilization is 

was noticed in the case of second generation 53-mile Chevrolet Volt. These examples are illustrative of 

self-selection bias among potential PHEV buyers wherein users who are less likely to charge or do not 

have home charger access buying short-range PHEVs. In addition, potential PHEV buyers over or 

underestimating their typical daily travel needs which is out of alignment with the charge depleting range 

capabilities. Future PHEV policies could investigate the suitability of alternative performance metric such 

as eVMT instead of UF while designing the incentive structure.  

Household travel electrifications and emissions were investigated in Chapter 4. Results indicated 

that the potential tradeoffs exist between increasing share of household travel electrified and reducing 
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household GHG. Inclusion of the household context reinforces the value and the need for examining the  

environmental performance of BEVs in relation to the other car. Baseline observed behavior revealed that 

25-30% of household GHG can be reduced if users select their BEV instead of the ICE. Results of the 

scenario analysis indicated that miles substituted by the BEV when comprehended alongside the 

efficiency and emission factor differentials of both BEVs and ICEs yields two distinct pathways 

depending on the chosen policy goal. For household GHG mitigation, longer range efficiency oriented 

BEV are suited whereas a longer range sportier performance oriented BEV electrifies highest share of 

household travel. The presence of a larger footprint ICE plays a role in the hard to abate GHG alluding to 

the necessity of future PEV policies and OEM model offerings to focus on electrifying larger platform 

cars. 

The broader impacts of this research are: 

• Provides a realistic assessment of PEV emissions and energy consumption. 

• Helps policymakers in determining the most effective policies and strategies to encourage PEV 

usage and understand their true emission benefits. 

• Improves our understanding of how different market segments value different PEV technologies in 

meeting their travel needs  

• Facilitate discussions on how insights gathered from PEV experience today can better inform their 

future policy needs and potential impacts.  

 
5.1 Future Research Directions 

Chapter 2 quantified real-world UF differences from window sticker label/SAE J2841 estimates 

and the relative contributions to these deviations attributable to observed driving and charging behavior of 

PHEVs. Since PEV policies are integrated within the broader fuel economy and emission standards in the 

form of offsets and credit multipliers, better understanding of UF estimates is valuable in the calibration 

and regulatory assessments of PHEVs. Replicating the procedure developed in Chapter 2 to other and 

more recent PHEV models  and incorporating a life-cycle approach is worth investigating further. More 
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specifically, observed deviations could be parameterized in sensitivity analysis of life-cycle emissions , 

total cost of ownership , and cost parity studies. At an elemental level, SAE J2841 finds its application in 

type approval and credit allocation in European and Japanese fuel economy standards, and China’s stage 

VI LDV emission standards. Applying the analytical procedure outlined in Chapter 2 to such regions and 

scrutinizing the policy implications would be of resourceful and of timely value to the broader scientific 

community interested in improving the accuracy of UF assessments.  

Chapter 3 addressed charging accessibility by location (home, away, home and away) and 

utilization (frequency of charging, duration of charging session).  Results indicated that home charging 

frequency has the largest positive effect on the eVMT by long-range PHEVs (30 miles or more), whereas 

eVMT by short-range PHEVs (20 miles or less) increases by facilitating charging at home and away 

locations. The above circumstance presents a classic conundrum for policy makers in determining 

whether incentivizing longer-range PHEVs  or investing in public charging infrastructure expansion can 

enable create more eVMT. As the market share of PEVs belonging to multi-unit dwelling and apartment 

complexes increase,  role of public charging infrastructure becomes even more important. A more 

granular approach expanding upon  Chapter 3 that includes spatio-temporal aspects of charging to identify 

trip level variables that affect decision to charge or not charge, identify missed charging opportunities at 

public charging locations, and its implications on the net environmental impact (driving and charging) 

and electrification potential of PHEVs definitely merits a deeper analysis.  

Household level implications of PEV technologies is an unexplored research topic which can lend 

itself to several future research inquiries of tangible and immediate relevance to policymakers and 

automakers. In Chapter 4, I examined how the level of disaggregation (vehicle or household level) and the 

metric (UF or GHG) manifests in quantifying the net environmental impact of BEVs in 2-car California 

households. Scenario selection were based on the BEV alone and it will be valuable to consider scenarios 

that capture household fleet turnover and identifying optimal portfolio of household vehicles for maximal 

GHG benefits. The foundational aspects of the scenario analysis can readily be expanded to evaluate the 

impacts of cross-technology and cross-vehicle attribute substitutions. For example, replacing the BEV 
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with a PHEV and or  replacing the ICE with a PHEV. The expanded framework can be applied to the case 

of 2-car ICE-PHEV households whilst including ICE fuel economy standards. These research areas are 

very important in future household travel emission mitigation studies.  
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Appendix A 

Supporting Information for Chapter 2 
Exponential and fit coefficients for UF estimation 
 

Table A1. Exponential fit coefficients for UF estimation 

 USA South Korea EU Japan 

Coefficient Fleet Individual Fleet Fractional Fractional C1 10.52 13.1 26.5 26.25 11.9 C2 -7.282 -18.7 77.9 -38.94 -32.5 C3 -26.37 5.22 -1100 -631.05 89.5 C4 79.08 8.15 2960 5964.83 -134 C5 -77.36 3.53 -1960 -25094.6 98.9 C6 26.07 -1.34  60380.21 -29.1 C7  -4.01  -87517.2 11.9 C8  -3.9  75513.77 -32.5 C9  -1.15  -35748.8 89.5 C10  3.88  7154.94 -134 
Reference [33] [33] [75] [206] [206] 

Normalized distance 400 miles 600 km 800 km 400 km 

Test cycles and 
procedures 

SAE J2841 and SAE 
J1711 

SAE J2841 
and SAE 

J1711[33, 
34] 

WLTP[44, 68, 69, 206] 
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Regulatory test cycles in the U.S, EU, Japan, and China 
 

Table A2. Comparison of test cycle parameters used for range, fuel economy, energy and emission 
estimation in different regions 

Driving 

Cycle 

Parameters 

Units NEDC WLTP FTP75 HWFET CAFE JC08 CLTC 

Country  EU [72, 207] US [91, 207, 208] 
Japan 

[74] 

China 

[209, 210] 
Cycle 

distance 
km 11 23.25 11.99 16.5  8.17 14.5 

Average 
speed 

kmph 33.6 46.5 31.5 77.7 43 24.4 29 

Maximum 
speed 

kmph 120 131 91.2 96.4  81.6 114 

Cycle time s 1180 1800 1369 765  1204 1800 

Average 
Acceleration 

ms-2 0.53 0.53 0.5 0.19 0.42 0.42 0.45 

Average 
Deceleration 

ms-2 -0.75 -0.58 -0.58 -0.22 -0.49 -0.45 -0.5 

Acceleration 
fraction 

% 20.9 30.9 39.7 44.2 40.8 35.9 28.7 

Deceleration 
fraction 

% 15.1 28.6 34.7 38.8 35.7 33.6 26.4 

Cruising 
fraction 

% 40.3 27.8 8 16.5 10.1 1.7 22.8 

Idling 
fraction 

% 23.7 13.4 17.6 0.5 13.2 28.7 22.1 

Driving 
Style(s) 

 
Urban, 
Extra 
Urban 

4-
phase$ 

Urban Highway    

$Divided into 4 phases(low, medium, high, and extra high) with the average speeds increasing with 
each subsequent phase representative of urban (up to 35 mph) , suburban (up to 47 mph), up to 60 mph, 
and up to 81 mph driving, respectively. 
NEDC – New European Driving Cycle 
WLTP – Worldwide Harmonized Light duty vehicle Test Procedure 
FTP75 –Federal Test Procedure. Urban Dynamometer Driving Schedule (UDDS) plus the first 505 
seconds of another UDDS 
HWFET – Highway Fuel Economy Test cycle 
CAFE – Corporate Average Fuel Economy 
JC08 Japanese Test Cycle up to 2020 and from 2030 onwards will be replaced by WLTP 
CLTC – China Light-duty Vehicle Test Cycle. CLTC is currently under development and is expected 
to replace the WLTP. China currently uses modified NEDC and will use the WLTP until the transition 
to CLTC is complete 
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Summary of UF estimates from various studies 
Table A3. Summary of UF estimates from various studies 

PHEV Model Range (miles)# N Vehicles Reported UF 
Label 

UF$ 

% Deviation from 

Label UF 
Region Data Source

Chevy Gen1 Volt 35/38 1867 0.745 0.573/0.591 28.0% U.S.[53]

In use data logging 

Chevy Gen1 Volt 35 787 0.724 0.573 26.4% 
U.S.[86]

Chevy Gen1 Volt 38 618 0.739 0.600 23.2% 
Chevy Gen1 Volt 35/38 48000-63000 0.74 0.573/0.591 27.1% 

U.S. and Canada[56] 
Chevy Gen2 Volt 50 48000-63000 0.8 0.707 13.2% 

Ford Cmax 20 5368 0.328 0.396 -17.2% U.S.[86]
Ford Cmax 20 10253 0.328 0.396 -17.2% U.S.[100]
Ford Fusion 20 5803 0.352 0.396 -11.1% U.S.[86]
Ford Fusion 20 12842 0.343 0.396 -13.4% U.S.[100]
Toyota Prius 11 1523 0.164 0.247 -33.6%

U.S. [86, 100] 
Honda Accord 13 189 0.222 0.284 -21.8%
BMW i3 REX 72/80 8309 0.921 0.793/0.821 13.7% U.S.[100]

Chevy Gen1 Volt 38 1831 0.785 0.591 32.8% U.S. and Canada[60] 

User reported and aggregate 
OBD telematics data 

Toyota Prius 11 88 0.304 0.247 23.1% 

Germany[60] Opel Ampera 38 25 0.723 0.591 22.3% 

Mitsubishi Outlander 23 46 0.469 0.442 6.1% 

Volvo V60 24 15 0.486 0.534 -9.0%
Audi A3 31 197 0.59 0.755 -21.9%

Norway [211] 
Survey of existing PHEV users 

Opel Ampera 52 46 0.72 0.874 -11.9%
BMW C350e 19 11 0.41 0.607 -32.5%

VW Golf GTE 31 283 0.57 0.755 -12.6%
Mitsubishi Outlander 32 806 0.55 0.766 -11.2%

Toyota Prius 16 67 0.38 0.536 -6.7%
Volvo V60 31 104 0.51 0.755 -11.3%

Opel Ampera 51 1190 0.44-0.48 0.77 -40.3%

Netherlands[212] In use data logging 

Chevrolet Volt 51 203 0.44-0.49 0.77 -40.3%
Toyota Prius 15 906 0.15-0.19 0.5 -66.0%
Volvo V60 31 2738 0.23-0.3 0.67 -61.2%

Mitsubishi Outlander 32 5390 0.29-0.35 0.68 -52.9%
Ford Cmax 20 229 0.28-0.37 0.64 -48.4%
Audi e-tron 31 1345 0.21-0.34 0.67 -58.2%

VW Golf GTE 31 2235 0.21-0.3 0.66 -63.6%
VW Passat GTE 31 698 0.3 0.67 -55.2%
MercedesC 350e 19 895 0.25-0.4 0.55 -40.0%

BMW i3 72/80 86 0.84-0.89 0.86 0.0% 
#Range refers to charge depleting range estimated under region specific test cycles and procedures 
$ Germany, Norway, and Netherlands Range and Label UF based on NEDC. U.S. and Canada Range and UF based on U.S. EPA combined city/highway UF. 
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Tests for statistical significance 
Table A4. t-test results- Comparing UF of every vehicle observed with J2841 IUF 

ÄÅÏÐÑ òùð ÎÄÅÒ�Ó t Test Test Statistic Prob > |t| Prob < t Prob > t 

Prius -4.547 0.0002 <.0001 1.000 
Energi -2.237 0.030 0.015 0.985 

Gen1Volt 0.695 0.491 0.755 0.245 
Gen2Volt -2.538 0.016 0.008 0.992 

p-values significant at 5% are shown in italics 
 

Table A5. t-test results- Comparing UF of every vehicle observed with J2841 FUF 

ÄÅÏÐÑ òùð ÅÄÅÒ�Ó t Test Test Statistic Prob > |t| Prob < t Prob > t 

Prius -2.769 0.012 0.006 0.994 
Energi -0.394 0.696 0.348 0.652 

Gen1Volt 2.944 0.0053 0.997 0.0026 
Gen2Volt -0.897 0.376 0.188 0.812 

p-values significant at 5% are shown in italics 
 

Table A6. Equivalence tests- Comparing UF of every vehicle observed with J2841 IUF 

 Equivalence 

Region 

úû: ÄÅÏÐÑ ≤ ÎÄÅÒ�Ó − þ úû: ÄÅÏÐÑ ≥ ÎÄÅÒ�Ó + þ 

 t-Ratio p-Value t-Ratio p-Value 
Prius [0.269,0.317] -3.620 0.999 -5.475 <.0001 

Energi [0.410,0.502] -0.800 0.786 -3.673 0.000 

Gen1Volt [0.614,0.688] 2.02 0.024 0.605 0.274 

Gen2Volt [0.721,0.797] -1.339 0.905 -3.738 0.0003 

α=0.05, Δ = 0.2 �Cohen�s d� × sample Std. Dev.  

 

Table A7. Equivalence tests- Comparing UF of vehicle observed with J2841 FUF 

 Equivalence 

Region 
úû: ÄÅÏÐÑ ≤ ÅÄÅÒ�Ó − þ úû: ÄÅÏÐÑ ≥ ÅÄÅÒ�Ó + þ 

 t-Ratio p-Value t-Ratio p-Value 

Prius [0.223,0.271] -1.842 0.960 -3.697 0.001 

Energi [0.351,0.443] 1.043 0.151 -1.830 0.037 

Gen1Volt [0.551,0.625] 4.257 <0.0001 1.631 0.945 

Gen2Volt [0.669,0.745] 0.303 0.382 -2.096 0.022 

α=0.05, Δ = 0.2 �Cohen�s d� × sample Std. Dev.  
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Table A8. Post-hoc two-tailed t tests achieved power and effect size for given α and sample size 

 Observed IUF and J2841 IUF Observed IUF and J2841 FUF 

 
Power 

(1-β) 

Effect Size 

d 

Power 

(1-β err prob) 

Effect Size 

d 

Prius 0.992 0.975 0.947 0.801 
Energi 0.597 0.312 0.512 0.281 

Gen1Volt 0.109 0.1111 0.463 0.291 
Gen2Volt 0.690 0.421 0.44 0.189 

α=0.05,  Effect size d=0.2 (small), d=0.5(medium), d=0.8 Large 
 

Daily VMT descriptive summaries comparisons between NHTS and Observed PHEVs 
Table A9. NHTS and observed PHEVs: DVMT descriptive statistics 

 Quantiles  
 10 25 50 75 90 Mean 

NHTS 5 12 26 50 85.5 40 
Prius 8.7 19.2 35.2 56.9 94.7 46 

Energi 8.3 16.9 34.7 61.7 95.4 46 
Gen1Volt 7.1 16.2 33.8 60.6 88.6 44 
Gen2Volt 7.8 16.0 29.3 47.8 75.4 39 

 
Median 

Absolute 

Deviation 

Skewness Kurtosis 
Lower 

95% Mean 

Upper 

95% 

Mean 

IQR 

NHTS 16 5.2 52.0 39.5 40.7 38.0 
Prius 18 3.9 28.1 44.7 46.8 37.7 

Energi 20 3.8 26.3 45.5 47.0 44.8 
Gen1Volt 20 2.8 14.5 43.7 45.1 44.4 
Gen2Volt 15 5.1 48.5 38.2 39.7 31.8 

 

Table A10. KS test report: Comparing CDF of DVMT between NHTS and observed PHEVs 

 KS D =Max|F1-F2| 
NHTS 

CDF  at D 

Observed 

DVMT at D 
Prob >D 

Prius 0.058 0.152 0.416 20 <.0001* 
Energi 0.0638 0.137 0.567 30 <.0001* 

Gen1Volt 0.056 0.125 0.508 26 <.0001* 
Gen2Volt 0.043 0.099 0.303 14 <.0001* 

 KSa 
D+ =Max(F1-

F2) 
Prob > D+ D-=Max(F2-F1) Prob > D- 

Prius 11.42 0.0069 0.578 0.1519 <.0001* 
Energi 13.72 0.0057 0.520 0.1376 <.0001* 

Gen1Volt 11.85 0.0086 0.2678 0.1250 <.0001* 
Gen2Volt 8.92 0.0427 <.0001* 0.0999 <.0001* 
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Figure A1. Expanded CDF plot of observed PHEVs and NHTS 

 

 

Figure A2. Expanded PDF plot of observed PHEVs and NHTS 
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Sampling comparisons  
Table A11 Comparison between observed PHEVs and Clean Vehicle Rebate Project(CVRP) database 
by utility company and PHEV model 

Observed PHEVs (This Study) 

Utility Observed PHEVs Prius Energi Gen1Volt Gen2Volt 

LADWP 17 2 5 4 6 

PGE 59 11 16 17 15 

SCE 22 2 7 6 7 

SDGE 20 3 9 5 3 

SMUD 15 1 7 6 1 

Other 20 3 8 5 4 

Total 153 22 52 43 36 

      

Number of rebates issued under the California Clean Vehicle Rebate Project 

(CVRP)2012-2018 [82] 

Utility3 
CVRP 

Subset$ 

Total 

CVRP 
Prius Energi Gen1Volt Gen2Volt 

LADWP 11278 13688 1569 2212 4021 3476 

PGE 5848 7607 1028 1417 1695 1708 

SCE 30922 39550 5499 8306 8746 8371 

SDGE 29911 39711 6429 8242 8496 6744 

SMUD 7803 10409 1217 2861 1999 1726 

Other 1661 2343 251 580 404 426 
Total 87423 113308 15993 23618 25361 22451 

$Subset of CVRP includes the rebates issued to the PHEV models analyzed in this study:  Toyota 
Plug-in Prius , Ford CMax and Fusion Energi , Gen1 Chevrolet Volt (MY 2011-2015) and Gen2 
Chevrolet Volt (MY 2016 onwards). Total CVRP rebates includes rebates issued to all PHEV 
models between 2012-2018 

 

 

                                                      
3 Investor owned utilities (IOUs) are Pacific Gas & Electric (PGE) , San Diego Gas & Electric(SDGE), and Southern California 
Edison (SCE). Sacramento Municipal Utility District (SMUD) and Los Angeles Department of Water and Power (LADWP) 
are the two public owned utilities (POUs) 
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(left) 
 

(right) 
Figure A3 (Left) Percentage of PHEVs by utility company: observed and CVRP database ; (Right) 
Percentage of PHEVs by PHEV model : observed and CVRP database 
 
 
Table A12 Sociodemographic attributes comparisons between the 2017 NHTS California Add-on[84] 
and this study  

Household 

Ownership 
Own Rent Gender Male Female 

NHTS-CA 18436(71%) 7444(29%) NHTS-CA 26554(48%) 29180(52%) 
This Study 122(80%) 30(20%) This Study 106(69%) 44(29%) 

Educational 

Attainment 

Less than a 

high school 

graduate 

High 

school 

graduate 

or GED 

Some 

college or 

associates 

degree 

Bachelor’s 

degree 

Graduate or 

professional 

degree 

NHTS-CA 10204(18%) 7391(13%) 15043(27%) 11837(21%) 11282(20%) 
This Study   18(12%) 49(32%) 86(56%) 

Income 
Less than 

$50,000 

$50,000 to 

$99,999 

$100,000 to 

$149,999 

$150,000 to 

$199,999 

$200,000 and 

more 

NHTS-CA 9260(37%) 7541(30%) 4495(18%) 1844(7%) 2169(9%) 
This Study 11(7%) 33(22%) 33(22%) 31(20%) 43(28%) 
Household 

 Size 
1 2 3 4 5+ 

NHTS-CA 8459(32%) 10928(42%) 3218(12%) 2320(9%) 1187(5%) 
This Study 19(12%) 63(41%) 29(19%) 29(19%) 12(8%) 
Number of  

Drivers 
0 1 2 3 4+ 

NHTS-CA 935(4%) 9755(37%) 12971(50%) 1855(7%) 596(2%) 
This Study  23(15%) 109(71%) 14(9%) 6(4%) 
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Average annual VMT and long-distance travel 
 
Table A13 Average annual VMT reported in literature  

 This study EV project[86] CARB[100] Voltstats[102] MyFord Mobile[137] 
Prius 16432 15136 15283 12694  

Energi 16705 12403 13920/15076  12674/14058 

Gen1 Volt 16038 12238 12403 8517-10828  

Gen2 Volt 14115     
 

 

Figure A4 Average number of days/year daily VMT exceeded 50, 100, 200 miles or more.  

 

 

Figure A5 Share of annual VMT binned by daily VMT distance 
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Charging accessibility, annual VMT, and observed IUF 

 

 

Figure A6 Relationship between charging accessibility, annual VMT, and observed IUF. Share of 
PHEVs by type and charging access shown inset. 
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Appendix B 

Supporting information for Chapter 3 
 

This section summarizes the results of the power analysis regression models, and the rationale 
behind excluding interaction terms in the OLS regression models as well as their relative contribution 
to the overall model effects.  

Table B1 A-priori Test: Compute sample size for a given α, power, and effect size 

 
Effect 

Size 

α Err 

prob 

Power  

(1-β) 

Non-

centrality 

parameter 

Critical 

F 

Sample 

Size 
Actual 

Power 

Short-range 
PHEVs 

0.35 0.05 0.95 25.9 2.08 74 0.95 

Long-range 
PHEVs 

0.72 0.05 0.95 29.04 2.25 40 0.95 

 

Table B2 Post-hoc Test: Compute achieved power for a given α, sample size, and effect size 

 Effect 

Size 
α Err prob 

Non-centrality 

parameter 
Critical F 

Actual 

Power 

Short-range 
PHEVs 

1.02 0.05 75.48 2.08 0.999 

Long-range 
PHEVs 

1.84 0.05 145.71 2.07 0.999 

 

 

 

 

 

Table B1 presents the results of the A-priori test that determines the number of samples 

(number of PHEVs) required to given the significance level (α=5%), power (1-β), number of 

predictors (eight, the 4 driving and 4 charging related PCs) , and effect size. The probability of Type I 

and Type II error is α and β respectively. Table B2 is a post-hoc test which calculates the power 

achieved given the significance level, sample size and effect size. From Table B2, we can see that the 

achieved power of the OLS regression models is beyond sufficient.  

Table B3 presents the regression model estimates and the model fit summaries with 

interaction effects. When I compare the main effects only model results (Error! Reference source 

ot found.Table 3.9-Table 3.10) and the model results with main and interaction effects in Table B3, 

the estimates changed slightly. However, their statistical significance almost remained identical to the 

main effects only model, even after the inclusion of interaction effects across all the four models in 

Table . The only change was observed when interacting PC2.Chg * PC2.Drv (Home-less frequent and 

deep cycle * Long-distance travel) of short-range PHEVs, where the predictor PC2.Chg is statistically 
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significant, whereas in the main effects only model in Error! Reference source not found.Table 3.9, 

t was not statistically significant at 5%. Since the interaction terms were not statistically significant, 

no additional analyses was performed to assess their relative importance and only the main effects 

model were considered in my analysis.   
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Table B3 OLS Regression Model Results with Interaction Effects 
DV = ΔUF = Observed UF—Label UF SR PHEVs N = 74 SR PHEVs N = 74 SR PHEVs N = 74 LR PHEVs N = 79 

PCs Estimate Prob > |t| Estimate Prob > |t| Estimate 
Prob > 

|t| 
Estimate 

Prob > 

|t| 

Intercept −0.067 0.006 −0.055 0.023 −0.069 0.009 −0.044 0.010 
PC1.Chg Away-frequent and deep cycle 0.09 0.012 * 0.101 0.005 * 0.089 0.015 * 0.046 0.001 * 

PC2.Chg Home-less frequent and deep cycle 0.046 0.088 0.057 0.036 * 0.045 0.118 0.042 0.003 * 

PC3.Chg Home-frequent and shallow cycle 0.054 <0.0001 * 0.053 <0.0001 * 0.053 
<0.0001 

* 
0.100 

<0.0001 

* 

PC4.Chg Home and away-balanced utilization 0.058 0.001 * 0.056 0.001 * 0.059 0.000 * 0.049 0.018 * 

PC1.Drv High usage intensity −0.07 <0.0001 * −0.077 <0.0001 * −0.070
<0.0001 

* 
−0.099

<0.0001 

* 

PC2.Drv Long-distance travel −0.016 0.297 −0.018 0.234 −0.015 0.306 −0.121
<0.0001 

* 
PC3.Drv Conservative driving −0.022 0.324 −0.022 0.302 −0.021 0.346 0.011 0.340 

PC4.Drv High energy intensity −0.071 <0.0001 * −0.072 <0.0001 * −0.072
<0.0001 

* 
−0.066

<0.0001 

* 

PC2.Chg * 
PC3.Drv 

Home-less frequent and deep cycle * 
Conservative driving 

−0.023 0.679 - - - 

PC2.Chg* 
PC2.Drv 

Home-less frequent and deep cycle * Long-
distance travel 

- −0.008 0.802 - 

PC4.Chg * 
PC1.Drv 

Home and away-balanced utilization * High 
usage intensity 

- - −0.021 0.071 - 

PC3.Chg * 
PC2.Drv 

Home-frequent and shallow cycle *  Long-
distance travel 

- - - 0.028 0.096 

SRPHEV Model Fit SRPHEV Model Fit SRPHEV Model Fit LRPHEV Model Fit 

R2 0.773 0.772 0.783 0.687 
Adj. R2 0.741 0.740 0.753 0.646 

AIC −109.83 −109.70 −113.42 −102.98
BIC −88.74 −88.61 −92.33 −80.862

* Factors that are statistically significant at 5%; AIC and BIC-Akaike and Bayesian Information Criterion
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Appendix C 

Supporting information for Chapter 4 

 

Survey design and sampling comparisons 

I provide an overview of the online survey and compare select indicators of the 73 California 

households studied in Chapter 4 with state-wide surveys.  

Online survey 

Online survey was administered between June 2015 and July 2017 to current PEV owners 

who purchased or leased their PEV in the last 4 years. Participants were randomly sampled from the 

Clean Vehicle Rebate Project (CVRP) database  and vehicle registration records.  Stratified random 

proportionate sampling strategy was primarily used to recruit participants. The stratification was 

based on the territorial coverage of the three major investor owner (IOUs) and the two major publicly 

owned utilities (POUs). The unit of observation is at the household level for household level analysis 

and the study population is the list of households who purchased or leased their PEV (PHEVs and 

BEVs) in the last 4 years. The sampling frame is the list of PEV owners and lessors in CVRP database 

and the registration records in the state of California.  
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Table C-1. Socioeconomics, demographics, and vehicle characteristics sampling comparisons between 
this study and 2017 National Household Travel Survey[84, 178] (NHTS) California (CA) add-on 
participants 

 NHTS-CA This Study 
Home ownership  
Own 18436(71%) 66(90%) 
Rent 7444(29%) 7(10%) 
Gender 
Male 26554(48%) 51(70%) 
Female 29180(52%) 22(30%) 
Educational Attainment 
Less than a high school graduate 10204(18%) 1(1%) 
High school graduate or General Educational Development 7391(13%) 8(11%) 
Some college or associate degree 15043(27%) 18(25%) 
Bachelor’s degree 11837(21%) 3(4%) 
Graduate or professional degree 11282(20%) 43(59%) 
Income 

Less than $50,000 9260(37%) 3(4%) 
$50,000 to $99,999 7541(30%) 14(19%) 
$100,000 to $149,999 4495(18%) 10(14%) 
$150,000 to $199,999 1844(7%) 15(21%) 
$200,000 and more 2169(9%) 31(41%) 
Household size 

1 8459(32%)  

2 10928(42%) 30(41%) 
3 3218(12%) 17(23%) 
4 or more 3507(14%) 26(36%) 
Number of drivers 
0 935(4%)  

1 9755(37%) 1(1%) 
2 12971(50%) 67(92%) 
3 or more 2451(9%) 5(7%) 
Household vehicle count 
0 966(7%)  

1 4084(31%)  

2 4490(35%) 73(100%) 
3 or more 3505(27%)  

Share by vehicle class 

Car 56% 34% 

Light truck 44% 66% 

Average annual VMT 

ICE 9501 8645 
BEV 10503 12737 
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Table C-2. Sampling comparisons between observed and California Clean Vehicle Rebate Project[82] 

(CVRP) rebates issued to BEVs between 01/2015 and 01/2020.  

Utility 
Observed 

BEVs 

Nissan 

Leaf 

Chevrolet 

Bolt 
Tesla& 

Los Angeles Department of Water and Power 
(LADWP) 

10 1 6 3 

Pacific Gas and Electric (PGE) 21 14 4 3 
Southern California Edison (SCE) 16 6 5 5 

San Diego Gas and Electric (SDGE) 13 5 2 6 
Sacramento Municipal Utility District (SMUD) 6 2 2 2 

Other 7 2 2 3 
Total 73 30 21 22 

Percentage share (%)  41% 29% 30% 

     

Utility 
CVRP 

Subset^ 

Total 

CVRP 

Nissan 

Leaf 

Chevrolet 

Bolt 
Tesla& 

LADWP 10930 17516 707 2039 8184 
PGE 57256 76099 11630 10348 35278 
SCE 41217 57272 3113 5692 32412 

SDGE 14409 19543 1700 2039 10670 
SMUD 3359 4218 645 579 2135 
Other 9288 12657 1315 1690 6283 

Number of  BEV rebates issued  136459 187305 19110 22387 94962 

Percentage share of CVRP subset  14% 16% 70% 

Percentage share of Total CVRP 73% 10% 12% 51% 
^Subset of CVRP denotes the subset of all BEV rebates issued to the three BEV models analyzed 
in this study (Nissan Leaf, Chevrolet Bolt and Tesla). &CVRP does not categorize Tesla vehicles 
into Model S , Model X or Model 3. 

 

Table C-1 compares the key respondent indicators with state-wide sample statistics collected 

during the 2017 National Household Travel Survey, California add-on. Nearly 12,396 of the 

respondents indicated that they are willing to participate in the data logger study. The overall response 

rate for the survey was 18% and 82% (14,000) of these respondents completed the survey. The survey 

data has more depth of information and 15% more completed responses than similar studies carried at 

national level[161, 187] and 50% more completed responses than international studies[213]. The unit 

of observation is at the household level for household level analysis and the study population is the list 

of households who purchased or leased their PEV in the last 4 years. The sampling frame is the list of 

PEV owners and lessors in CVRP database and the registration records in the state of California. 

Stratified random proportionate sampling strategy was primarily used to recruit participants. Due to 

logistical concerns, travel and overheads associated with logger installation and uninstallation process, 
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convenience sampling strategy was used as a secondary option when needed. The stratification was 

based on the territorial coverage of the three major investor owned utilities (Pacific Gas and Electric-

PGE , Southern California Edison-SCE, San Diego Gas and  Electric-SDGE) and the two major publicly 

owned utilities (Los Angeles Department of Water and Power-LADWP and Sacramento Municipal 

Utility Devices-SMUD). Overall, the observed BEVs represent nearly 75% of the models that were 

issued the CVRP rebate during 2015-2020, Table C-2. 

Representativeness and generalizabilitySummary of key variables relevant to this work , sampling 

comparisons of the 73 households observed with the 2017 National Household Travel Survey 

(California add-on), and the CVRP database are outlined in the Supporting Information Tables S1-S3. 

I used the 2017 NHTS-California add-on because it is more recent , geographically, and temporally 

within with the data collection period of this study. There is a possibility of self-selection , but it is  

reflective of current market trends, early adopter buying preferences, and presents a reasonable 

snapshot of current BEV buyers. Correlation among socio-economics and demographic indicators and 

self-selection bias of PEV owners is inherent and it is prohibitively expensive (data collection period, 

logger installation and uninstallation logistics, participant availability, and staff hours) to eliminate all 

confounding and conflating variables by controlling for every such correlation[17].  The over (or) 

under-representation of the logger study participants by household size and number of drivers is just a 

natural consequence of selecting only 2-car households.  

Observed ICE and BEV Attributes 
ICE Class and Fuel Economy 

Out of the 73 ICEs, 48 belonged to the Light Truck (LT) class and alternative fuel or hybrid vehicles 

accounted for 17 of the 73 ICEs, Figure C-1 
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(a) (b) 

Figure C-1. Number of households by BEV type, ICE vehicle class and ICE fuel type 

 (a) Number of households by BEV type ICE vehicle class: Passenger Car(PC) or Light Truck(LT) . 

Light Truck class includes station wagons, sports utility vehicles (SUV), vans, and pickup trucks. 

(b) Number of households by BEV type and ICE fuel type: Conventional gasoline or hybrid. Of the 17 

Hybrid vehicles, 4 were flex-fuel (two in T60 households, one each in T80 and Bolt household). 

 

Figure C-2 shows the distribution of observed ICE fuel economy in MPG with their respective EPA 

window sticker label values.   

  

Figure C-2. Observed and EPA label fuel economy[88] (mpg) of the ICE by driving styles in different 

BEV households(HHs). Blue columns and the black bars depict the mean and standard error of observed 

fuel economy. Dark red dots are the EPA label average fuel economy. 

 

Charging accessibility and incentives availed 
Table C-3. Overview of data logger study participants’ charging access and incentives availed 

 Leaf HH Bolt HH T60 HH T80 HH Total 

Charger location (Home and/or Away)  

Away 2 3 0 0 5(7%) 

Home 9 10 3 2 24(33%) 

Home and Away 19 8 9 8 44(60%) 

Availability of charger at workplace 

No 13 8 4 5 19(26%) 

Yes 8 8 5 3 30(41%) 
Missing response/I don’t know 8 5 3 2 24(33%) 

Household on preferential time of use BEV rates 
No (currently and no plans in 

future) 
9 11 1 2 23(31%) 

No(currently but plan to in future) 4 2 2 2 10(14%) 

Yes(currently) 17 8 8 5 38(52%) 
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Missing response/I don’t know - - 1 1 2(3%) 

Availed California Clean Air Vehicle Decal (Carpool stickers*) 
No 11 3 1 1 16(22%) 

Yes 19 8 11 9 57(78%) 

Availed California Clean Vehicle Rebate Project Purchase Subsidy 
Yes 29 21 12 10 72(99%) 

Missing response/I don’t know 1 - - -  

*California Department of Motor Vehicles issue decals to qualified vehicles meeting emission 
standards that allows single occupancy use of HOV or carpool lanes. CAV decals potentially reduce 

commute time by 28% and save roughly $540 per vehicle in avoided tolls[214] 
 

BEV Usable Capacity, Range and Driving Efficiency 

Usable battery capacities are proprietary and confidential information and the usable range is 

a function of energy intensity of driving (kWh/mile). I calculated the usable battery capacity from  the 

charging session data using an ordinary least squares regression model fitted between the charged 

SOC (independent variable) and the charging electrical energy in kWh (dependent variable) for every 

BEV.  The electrical energy charged corresponding to 100% SOC was estimated to be the usable 

battery capacity.  I then calculated the electrical energy efficiency of driving as the ratio of aggregate 

net energy required for driving to its aggregate VMT for every BEV, where the net driving energy is 

the sum of energy discharged and the energy from regenerative braking. In this dataset, the usable 

range, i.e. maximum possible range corresponding to a fully charged BEV on average was 5-16% 

lower than the respective label values. Figure C-3 of depicts the distribution (mean and standard error 

bar) of the usable range of observed BEVs alongside the EPA window sticker label range. The 

accompanying Table S3 summarizes the efficiency (kWh/mile) under different driving styles , and the 

usable battery capacity. Figure S3 and Table S3 show the relevant attributes of the upgraded BEV that 

were considered for scenarios S4-S6.  
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Figure C-3. Observed and EPA label range[88] (miles) of the BEV by driving styles.  Light green 

columns and the black bars depict the mean and standard error of observed range. Dark green dots are 

the EPA label average fuel economy. Blue dots show the upgraded range for S3 LREffi  and S4 LREffi 

FullChg and S5 LRPerf and S6 LRPerf FullChg scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

86.6

238.0

205.0

235.3

0

50

100

150

200

250

300

Leaf(N=31) Bolt(N=20) T60(N=12) T80(N=10) LR_Effi LR_Perf

Obs_Beh S3/S4 S5/S6

B
E

V
 U

sa
b

le
  R

a
n

g
e

 (
m

il
e

s)

Observed Range (Mean and Std. Error) EPA Label Range



 

135 
 

Table C-4. Average driving efficiency (kWh/mile) by driving style, observed battery capacities (kWh) 

and range (miles) and EPA label range (miles).  

 Efficiency Label Observed* 

 City Mixed Highway Overall Range 
Battery 

Capacity 
Range 

Leaf (N=30) 0.238 0.198 0.276 0.248 93 22 87 
Bolt (N=21) 0.240 0.218 0.273 0.247 238 58 238 
T60(N=12) 0.442 0.254 0.307 0.350 240 72 205 
T80(N=10) 0.452 0.263 0.317 0.353 280 83 235 

        
Longer-range 

efficiency oriented 
BEV& 

0.240 0.218 0.273 0.247  58.1 238 

Longer-range 
sportier 

performance 
oriented BEV$ 

0.464 0.298 0.349 0.384  105 273 

400-mile BEV** 0.320 0.332 0.347 0.332 402  402 
*Observed range and battery capacities refer to their usable values. 
 
& For scenarios S3 Select and S4 Select FullChg. Average usable range, efficiency, and battery 
capacity of the 21 Bolts used. The S3 Select and S4 Select FullChg scenarios thereby defaults to S1 

Select and S2 Select FullChg so excluded from the charts and tables as needed. 
 
$ For scenarios S5 Select and S6 Select FullChg. Average usable range, efficiency, and battery 
capacity of  20 T80s monitored throughout the entire study period (2015-ongoing). It includes 10 
additional T80s that were dropped  because they were out of scope of this study which focuses only 
on 2-car households.  
 
** 2020 Tesla Model S Long Range Plus was chosen as the representative BEV.  EPA label values of 
driving efficiency from the fuel economy[88, 215] database (vehicle id 42755) was used. To account 
for divergence from real-world energy consumption, I assumed real-world driving energy to be 15% 
more than label estimates. This scaling by 15% was approximated using the average driving 
efficiency of all 21 Teslas observed in this study (twelve T60 and ten T80s).  
 
Both the Chevrolet Bolt and entry level Tesla Model S with 70kWh rated battery capacity have  
comparable  range of 235 miles but there are few significant differences. Tesla Model S is rear-wheel 
drive large car equipped with a 285 kW drivetrain motor and consumes 0.38 kWh/mile under city 
driving.  The Bolt is a front-wheel drive small station wagon, its drivetrain motor is rated at 150 kW 
(nearly half of Model S ),and consumes only 0.26 kWh/mile (30% more efficient than the Model S) 
under city driving conditions.  

 

The average driving efficiency, usable range, usable capacity of the four existing BEV types, 

the two upgraded BEVs used in the scenario analysis, and the additional sensitivity study using a 400-

mile BEV are tabulated in Table C-4.   
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BEV feasibility to replace the ICE 

I describe  the steps involved in determining usable battery capacity, usable range, feasibility 

criteria to determine if BEV can replace ICE or swap its miles, and the corresponding electrical 

energy and fuel consumed. I slightly modified the approach for calculating the usable range and 

instead of using a single aggregate net driving kWh, I binned the distance and the corresponding net 

driving kWh by city or urban driving, mixed or suburban driving and highway driving. In each of 

these three driving styles, I calculated three distinct net kWh/mile for every BEV. This was repeated 

for every ICE and its fuel economy calculations under the three driving styles. The feasibility of BEV 

to replace an ICE requires that at the start of travel day, there is sufficient energy remaining in the 

battery to accomplish the ICE gVMT at the same energy intensity (Eq 1), and the corresponding 

electrical energy and gasoline consumed is expressed using the Equation (2)-(3) respectively. 

Superscripts indicate one of the three driving styles-city, mixed or highway, �XℎC-ØØ�.�  denotes the net 

driving kWh/mile ; �=v�.�; �9o~�£Ø�.�  indicates the gVMT by the ICE; ; �o2-�£Ø�.�  indicates the eVMT 

by the BEV,  �o2�'(.)Ø'sØ��.  denotes the energy in kWh remaining in the battery at the start of travel 

day 

�o2�'(.)Ø'sØ��. ≥ "�XℎC-ØØ/#Ø( × �9o~�£Ø/#Ø( % + " �XℎC-ØØ£#¤-� × �9o~�£Ø£#¤-�% + "�XℎC-ØØ.�'( × �9o~�£Ø.�'(% (1) 

 

�o2��. = "�XℎC-ØØ/#Ø( × �9o~�£Ø/#Ø( % + " �XℎC-ØØ£#¤-� × �9o~�£Ø£#¤-�% + "�XℎC-ØØ.�'( × �9o~�£Ø.�'(%   (2) 

 

�9otÙ-0 = 	
�,��À
�Á
�
£G~�Á
��+ A
�,��À
ÀÁ���

£G~ÀÁ���D + 	
�,��À
¿���
£G~¿����        (3) 

Calculating Electrical Energy Required for Driving  
In the observed behavior scenario, all relevant information pertaining to the electrical energy 

required for driving and charging and gasoline consumed is directly available. Drivetrain efficiency 

depends on driving styles, ambient conditions, auxiliary loads, electric motor and on-board power 

electronics converter efficiencies[216-219].  To determine the driving net kWh required under 

different scenarios, I use the Recharge Allocation Factor (RAF). It is a standardized terminology used 

in the SAE J1634[220] procedure for determining the BEV range measurement and testing. 

According to the SAE J1634[220], RAF is the ratio of AC kWh required to fully charged the battery 

to the DC kWh needed for driving in the full depletion test. Equivalently it is the ratio of full recharge 

AC kWh (FRE) to usable battery energy DC kWh (UBE).  Observed and representative RAF values 

from range measurement and energy consumption tests under different ambient and auxiliary load 

conditions are summarized in Table C-5. 
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Table C-5 Observed and laboratory testing estimates[221] of Recharge Allocation Factors 

  Lab testing environment conditions 
 Observed 75°F 20°F  95°F H 20°F  95°F  BEV Model 
   HVAC OFF HVAC ON  

Leaf 1.171 1.165 1.161 1.151 1.161 1.153 2018 Nissan Leaf 
Bolt 1.158 1.133 1.178 1.181 1.178 1.189 2018 Chevrolet Bolt 
T60 1.203 

1.147 1.181 1.145 1.183 1.155 
2017 Tesla Model S 

75D T80 1.150 
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