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ABSTRACT

Motivation: Identifying the cellular wiring that connects genomic per-

turbations to transcriptional changes in cancer is essential to gain a

mechanistic understanding of disease initiation, progression and

ultimately to predict drug response. We have developed a method

called Tied Diffusion Through Interacting Events (TieDIE) that uses

a network diffusion approach to connect genomic perturbations to

gene expression changes characteristic of cancer subtypes. The

method computes a subnetwork of protein–protein interactions, pre-

dicted transcription factor-to-target connections and curated inter-

actions from literature that connects genomic and transcriptomic

perturbations.

Results: Application of TieDIE to The Cancer Genome Atlas and a

breast cancer cell line dataset identified key signaling pathways,

with examples impinging on MYC activity. Interlinking genes are pre-

dicted to correspond to essential components of cancer signaling

and may provide a mechanistic explanation of tumor character and

suggest subtype-specific drug targets.

Availability: Software is available from the Stuart lab’s wiki: https://

sysbiowiki.soe.ucsc.edu/tiedie.

Contact: jstuart@ucsc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

To optimize cancer treatment, whole-genome sequencing and

expression data for an individual patient must be synthesized

into a coherent explanation of disease-causing changes. Gene

networks encapsulate our understanding of how genes and

their products interact in the cell to mutually influence activity

through protein–protein, protein–DNA and coupled metabolic

reactions. However, different tumors usually harbor unique com-

binations of mutations, or other genomic or epigenomic changes.

A key question is how best to infer the structures of gene net-

works important for normal and diseased phenotypes using

high-throughput data and a priori biological knowledge.

Viewing cancer from a gene network perspective is expected to

enhance our understanding of disease initiation, progression and

therapy.

Given genes with functions disrupted in a particular type

of cancer, newly implicated genes can be identified by searching

for those with known regulatory connections to the input set.

However, this task is complicated by the presence of many

mutations whose functional significance in cancer is unclear,

leading to many false-positive discoveries. For example, using

data on copy number alterations, gene mutations and methyla-

tion status, it may be difficult to distinguish the genomic changes

that exert a physiologically meaningful influence on tumor biol-

ogy from numerous passenger events that result from loss of

genome integrity. One can identify subnetworks that intercon-

nect mutated genes, enriching the set of events for those proteins

participating in common pathways. The assumption underlying

this approach is that such mutations are more likely to be func-

tionally relevant. Approaches such as MEMo (Ciriello et al.,

2012) and Dendrix (Vandin et al., 2012b) have been applied suc-

cessfully in this manner. Several subnetwork enrichment methods

have been developed to identify regions of a network that con-

tain an unexpectedly high number of relevant genes (see

Supplementary Methods for an overview). Importantly, most

methods suffer from the influence of curation bias in the

network. The ‘hub’ genes that have many connections simply

because of being studied to a greater extent in the literature are

selected at high frequency even given random input genes. One

promising class of approaches that helps mitigate this problem is

the class based on heat diffusion, such as the HotNet algorithm

(Vandin et al., 2012a). Intuitively, a diffusion strategy makes the

a priori relevance of a hub comparable with a sparsely connected

gene because hubs might receive more total heat than a non-hub,

but the hub can also lose the same proportion out of its many

connections.
The Tied Diffusion of Interacting Events (TieDIE) method

described here extends on the heat diffusion strategies by lever-

aging different types of genomic inputs to find relevant genes on

a background network with high specificity, in an attempt to

reduce the false-positive rate of previous approaches. Figure 1

shows a simple schematic of TieDIE applied to two distinct sets*To whom correspondence should be addressed.
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of genes: a source set (e.g. mutated genes) and a target set

[e.g. transcription factors (TFs)]. Using two diffusion processes,

the method discovers newly implicated genes as linking nodes

residing on paths connecting sources to targets where the diffu-

sion processes overlap. A logically consistent solution can then

be extracted from the resulting network of sources, targets and

linkers (Supplementary Fig. S1).
We demonstrate that using two diffusion processes improves

our ability to recover pathway models. The overlay of genomic

perturbations in a single tumor sample with TieDIE solutions

reveals patient-specific networks that may provide insights into

therapy.

2 METHODS

TieDIE code is written in Python and is available at https://sysbiowiki.

soe.ucsc.edu/tiedie.

2.1 Tied diffusion

The TieDIE approach searches for relevant interconnecting genes on a

background network using a diffusion strategy. The method is given as

input an interaction network graph G containing N vertices V ¼ fv1::vNg

that represent genes, proteins or other biological pathway features such as

gene products, protein complexes and cellular abstract processes. The

nodes in G are interlinked by I edges E ¼ fe1::eIg representing both dir-

ected interactions as well as undirected relations such as protein–protein

interactions. The interactions can be derived from curated sources such

as the National Cancer Institute’s Pathway Interaction Database

(Schaefer et al., 2009), from functional genomics predictions, such as

undirected high-throughput protein–protein assays, or directed TF to

target interactions such as from genome-wide chromatin-immunoprecipi-

tation experiments, or from a mixture of both sources such as Reactome’s

Functional Interaction Network (Joshi-Tope et al., 2005). The diffusion

approaches used here make use of the adjacency matrix A of G, where

Aij¼ 1 if node i activates node j, Aij¼�1 if node i represses or inactivates

node j and 0 otherwise.

In addition to the graph, the method is given a set of scores for each

node in G. Let x¼ [x1, x2, . . . , xN] be a vector of scores assigned to the

nodes in the graph. Typically, only a limited set of genes (e.g. in the

range 10–50) will have known involvement in the disease process being

studied. For example, this involved set may consist of genes for which a

minimum number of mutations or copy number changes or DNAmethy-

lation silencing events have been detected in a given cohort of patient

samples. Nodes corresponding to these involved genes are assigned scores

between �1 and þ1 to reflect a positive or negative association of activity

with the disease state under study. Nodes associated with genes not

known to be involved in the disease process are assigned a value of 0

to reflect an a priori belief in no involvement. The values in x can repre-

sent different types of measurements on the genes. For instance, the

scores might reflect how often a gene is mutated in one subtype of

patients compared with another (e.g. from a –log of the P-value com-

puted from a Fisher’s exact test to detect differential mutation frequency).

Alternatively, the scores can reflect a gene’s differential expression in

tumor versus normal. Statistical techniques, such as significance analysis

of microarrays (SAM) (Tusher et al., 2001), may be used to compute the

significantly differentially expressed genes and the SAM score (d-statistic)

for each gene normalized to this range. The genomic events may be

prefiltered with algorithms such as MutSig (Chin et al., 2011) and

MEMo (Ciriello et al., 2012) that use sample statistics to find events

that are likely to be ‘driving’ the cancer phenotype. Note here that all

mutations are assumed to lower a gene’s activity (even though a minority,

oncogenic mutations in particular, increases gene activity) and to take

precedence over copy number alterations (e.g. amplifications) and expres-

sion events (e.g. overexpression), which will inflate the false-negative rate

of the algorithms tested here as some true paths will not be counted.

Relaxing this assumption is an important topic discussed in the

Supplementary Text. The input vector of positive scores is scaled to

match an intuition that the scores reflect a stationary probability distri-

bution of occupancy on the nodes in the network obtained from a

random walk process, i.e.
PN

i�1 xi ¼ 1.

A new vector of scores, x’, can be obtained for all of the genes in G by

diffusing the scores of the involved set onto the rest of the graph. The

diffusion process places high scores on nodes that are near the input set

of genes, which may implicate new genes with roles in the disease state.

Here we consider methods that update the state of all of the nodes in G by

some function computed on the original vector of scores from the known

involved set, i.e. x’¼ r(x,A) for some relevance function that is a function of

the input set of scores and of the full adjacency matrix. In this work, we

tested three different approaches for use as the relevance functions: HotNet,

which uses an undirected heat diffusion process; Google’s PageRank, which

incorporates direction of the links in a randomwalk; and signaling pathway

impact analysis (SPIA), which incorporates both directionality and the

excitatory and inhibitory nature of the interactions. These relevance func-

tions are described in more detail in the Supplementary Methods.

In contrast to previous approaches that implicate subnetworks by

running the relevance function with a single input set of genes, our algo-

rithm extends the strategy by using multiple diffusion processes and then

identifying overlapping regions in G, to find genes in a network that are

proximal to multiple input sets. We develop the approach here for the

special case of two input sets but the method generalizes to any arbitrary

number of input sets.

Suppose we are given a source set S and target set T where S acts

upstream of T. In the cancer setting, S may correspond to genes involved

in genomic alterations–mutations, deletions and amplifications–whereas

the target set may correspond to genes involved in transcriptional and

post-transcriptional activation or deactivation. However, any features in

the pathway diagram in addition to proteins can be included in the input

sets including protein complexes, small molecules or metabolites and

cellular processes. In the same spirit as the spanning tree approach

(Huang and Fraenkel, 2009), we are interested in identifying parsimoni-

ous networks that connect S to T. We now let x represent the vector of

scores for the source set and y the scores for the target set.

We can visualize the process for two input sets by imagining the

intermixing of different color dyes, diffusing from two sources through

a lattice representing G. The intensity and hue of the dye reveals whether

a particular node is close to either the source, target or to both sets. To

disambiguate these cases and identify points that reside only between the

sets, we determine a score for all nodes based on the relevance scores

already computed:

z ¼ fðrðx,AÞ, rðy,ATÞÞ, ð1Þ

Fig. 1. Schematic of TieDIE. Relevant genes from two distinct sets are

shown as nodes colored by dyes diffusing on a network from a source set

(e.g. mutated genes; red nodes) and target set (e.g. TFs; blue nodes).

‘Linker’ genes (purple nodes) residing between the source and target

sets are revealed through a diffusion process evolved over time; two

time slices are shown as stacked layers of the same network
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where AT is the transpose of the full adjacency matrix, the function f()

is chosen to assign high relevance scores to nodes where both

r(x,A) and r(y,AT) are high and lower scores when either of the two

are low. Note that the transpose of the adjacency matrix is used to

force the diffusion to proceed upward from the targets by supplying a

graph containing reversed edges. When applied to directional diffusion

approaches like PageRank and SPIA, this has the effect of running

the algorithm backward. Of course the transpose makes no differ-

ence for undirected approaches like HotNet’s heat diffusion, as

rHotNet(y,A)¼rHotNet(y,A
T). We refer to zi as the linking score for

node i. This form is attractive because it decomposes over the separate

relevance calculations, which can be ‘plugged in’ to the tied-diffusion

calculation. In this study, we chose f() equal to the min() operator to

extract genes that have intersecting evidence from both input datasets.

A set of linking genes is obtained by thresholding the linking scores

using a chosen value � selected to guarantee a desired level of specificity

as a fixed multiple of the input set size described in Supplementary

Methods.

The network solutions that interconnect sources and targets can be

large, containing hundreds of genes. In addition, plug-in diffusion

approaches like HotNet and PageRank ignore the logical consistency

of the set of identified genes identified. Although it may be advantageous

to maintain such contradictory influences (e.g. to highlight places of

possible model discrepancy), it is generally difficult and cumbersome to

extract meaningful information from large networks. Therefore, we intro-

duce a filter to specifically select for consistent regions of the network,

which focuses attention on better-defined and more interpretable subsets

of the solution space. To this end, we add an edge between each pair of

nodes belonging to the source, target or linker gene sets. This set of edges

and nodes defines an initial graph G’ that is reduced by finding the subset

of edges that connect S to T through paths that are logically consistent

with both the input data and the network model (see Supplementary

Methods).

3 RESULTS

3.1 Motivating synthetic example

Consider a toy network in which a predefined ‘core’ subnetwork

is embedded. Alterations to the state of expression of genes in the

core network are assumed to contribute, or ‘drive’, a disease

process, whereas alterations outside of the core are assumed

to have little effect. The scale-free graph simiulator in the

NetworkX library (version 1.7) was used to create a small but

realistic scale-free network (Barabasi and Albert, 1999) (see

Supplementary Methods). A core subnetwork of 12 genes con-

taining 4 ‘source’ genes and 2 ‘target’ genes was then embedded

in the NetworkX network for a total of 125 nodes and 195 edges.

In addition, six linking genes were simulated to connect the

sources to targets. The four sources and two targets are assumed

known, and their scores are provided. However, the scores for

the genes in the remainder of the embedded subnetwork are not

provided, simulating a case in which their involvement in the

disease process is unknown a priori. To identify linker genes,

scores for the core-network nodes were also simulated. For

sources, the scores reflect the degree of alteration such as muta-

tion frequency across a cohort or its predicted impact from

sequence-based analyses. For targets, the scores represent the

degree of differential expression observed in the targets of a

TF. We also simulated six false-positive sources representing

genes deleted or amplified by neutral ‘hitchhiking’ events or

genes with non–disease-specific tendencies to pick up passenger

mutations.

We assessed the precision of both single-source and tied-

diffusion when applied to finding a majority (four of six) of the

linking genes in the core subnetwork (Fig. 2). In the case of single-

source diffusion, the algorithm was given the same mixture of

true- and false-positive sources, including the two true-positive

targets. As expected, the single-source approach produced more

high-scoring nodes outside the core network after diffusion com-

paredwith the tied-diffusion, which reflects a lower precision (Fig.

2A). Note that the several dozen small dark ‘hot’ nodes distal to

the core pathway do not lie between the source and targets, and

thus represent false positives. In comparison, the tied-diffusion

approach produces far fewer off-core dark nodes; the only three

such false positives all reside between a source and target (Fig.

2B). The example demonstrates how the single-sourcemethod can

diffuse heat into peripheral regions of the network in situations,

whereas tied-diffusion focuses near the core subnetwork. This

occurs because we expect false positives to occur less frequently

between two sets than proximal to any one set.
We also tested the simple k-nearest-neighbors approach

for predicting new genes based on the fraction of sources and

targets in each gene’s neighborhood. Both the single- and

double-diffusion approaches achieved significantly higher preci-

sion on average compared with the k-nearest-neighbors

approach (see Supplementary Fig. S2). Thus, even though the

starting number of known genes is the same for all methods, the

biased diffusion toward the target leads to a higher quantifiable

precision in distinguishing between the true- and false-positive

core genes in this sestting.

3.2 Tied-diffusion predicts breast cancer-related genes

with high precision

We next asked whether the tied-diffusion approach maintains

this improvement when applied to actual patient datasets. The

main assumption behind TieDIE is that more accurate pathways

are obtained by directing diffusion processes to connect genes

involved in somatic mutations to observed transcriptional effects.

Therefore, we tested whether this approach could achieve higher

accuracy than the comparable single-source approaches like

HotNet that only consider the genomic perturbations without

regard to the state of the transcriptome. We chose breast

Fig. 2. Frequency of a discovered core and off-core genes in single-source

and tied-diffusion in a simulated network. (A) Single-source diffusion

over the synthetic network. Darker colors indicate genes in a larger frac-

tion of network solutions in repeated simulated trials at a fixed recall of 4

of 6 signaling genes. (B) The corresponding tied-diffusion frequencies at

identical recall and test conditions
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cancer as a test system because many mutations have been iden-

tified and diverse types of data are available. Lists of implicated

genes were collected from both WikiPathways-WP1984 (Kelder

et al., 2012), a list of frequently mutated breast cancer genes from

the Catalogue of Somatic Mutations in Cancer version 57

(Forbes et al., 2011) and collections from the breast cancer ana-

lysis working group of The Cancer Genome Atlas (TCGA) pro-

ject (TCGA Network, 2012). At the time of acquisition, the

breast cancer dataset included patient tumor samples for 533

patients and matched normal samples for a smaller subset,

each with genomic sequencing and microarray expression data.

To incorporate a diverse set of genomic and epigenomic alter-

ations specific to a subtype, genes within regions of predicted

copy number gain or loss based on the Genomic Identification

of Significant Targets in Cancer algorithm (GISTIC)

(Beroukhim et al., 2007) were identified as having at least five

samples with either high-copy amplifications or homozygous de-

letions (TCGA Network, 2012). We also included as sources the

frequently mutated genes published by the TCGA Network (i.e.

genes mutated in410 tumors). Altogether, 110 genes were col-

lected with significant numbers of events involving 41 amplified

genes in 1258 samples, 14 deleted genes in 147 samples and 54

mutated genes in 1115 samples. One gene, BRCA1, was methy-

lated in 15 samples and had gene expression inversely correlated

in these tumors and so was also included. The background net-

work (SuperPathway; see Supplementary Methods) contained a

collection of curated transcriptional, protein-level and complex

interactions for 4737 genes, proteins and abstract concepts, with

101526 interactions (Heiser et al., 2011). To enrich for nodes

with measured data, we removed complexes from the published

SuperPathway after transferring their interactions to the incident

constituent members (see Supplementary Data S1). All TFs used

in this study were taken as proteins linked by a transcriptional

regulatory interaction to at least one other gene in the

SuperPathway.
Compared with single-source diffusion, the tied-diffusion

approach demonstrated higher precision over an appreciable

range of recall (by varying the � parameter; Supplementary

Methods S1.5) when used to predict breast cancer-implicated

genes from the Catalogue of Somatic Mutations in Cancer

and WikiPathways gene sets (Supplementary Fig. S3). Because

WikiPathways includes genes related to breast cancer without

any documented mutations, these results imply that the method

may increase our ability to identify cancer essential genes as new

drug targets (see Discussion). In realistic settings with 20% recall,

the tied-diffusion approach approximately doubles the precision

for finding the genes. At recall levels higher than 30–40%, the

performance of TieDIE relative to single-source diffusion de-

creases but TieDIE is always equal or better than single diffusion

methods. Including more sets may help increase the precision fur-

ther (e.g. proteins with perturbed kinase activity). However, the

linear decline in precision past these levels of recall indicates that

any diffusion process searching sufficiently far from the input sets

may be nomore effective than randomly drawing candidate genes.

3.3 TieDIE reveals subtype-specific networks

We used our approach to elucidate breast cancer-related net-

works that distinguish the major breast cancer subtypes—the

so-called basal and luminal A subtypes. We chose to compare
these two because they have a clear transcriptional signature
compared with other subtypes that have a more intermediate

or heterogeneous signature, such as the luminal B and HER2-
amplified. Basal breast cancer is known to be a more prolifera-
tive form of cancer compared with the luminal type, and the

subtypes are thought to result from mutagenic transformation
of different originating cell types. Because these subtypes respond
differently to both general cytotoxic and targeted therapies, it is

important to identify pathway mechanisms that differentiate the
two subtypes to discover new treatments. The subtypes are easily
identifiable from transcriptome signature analysis. However,

different genomic alterations within each subtype can lead to
the same transcriptional profile. For example, PIK3CA muta-
tions or PTEN deletions are both correlated with the luminal A

expression subtype. On the other hand, it is possible that seem-
ingly synonymous genomic alterations can lead to different tran-
scriptional subtypes. For example, whereas TP53 mutations are
enriched in basal cancers, some luminal cancers also harbor

TP53 mutations. Thus, network-diffusion approaches may
reveal how genomic alterations correlate with transcriptional
signatures in a subtype-specific manner.

To find the significant pathway differences between these
cancer subtypes, we performed a differential analysis between
99 Basal and 235 luminal A samples from the TCGA dataset.

We used a set of 110 genomic perturbations published by the
TCGA Network (TCGA Network, 2012) and applied a �2 pro-
portions test to find those that occur with significantly different

frequency in one subtype as compared with the other. These
uncovered 12 genes with mutations significantly associated
with either the basal or luminal subtypes at the P¼ 0.05 level,

used as the source gene set S. We used this set for network
search, while also weighting each source gene in proportion to
the absolute log-ratio of its perturbation frequencies in basal-

versus luminal A tumors. A small constant was added to the
frequencies to avoid log transforms of zero. The absolute log-
ratio was normalized to values between 0 and 1, by dividing

by the maximum absolute log-ratio.
The target set T was defined similarly. TFs were determined by

inspecting the differential expression of each TF’s predicted

target genes. TFs with activity more associated with basal
tumors should have a set of targets with high and/or low expres-
sion compared with chance expectation. We used a simplified

version of the Califano laboratory’s MARINa algorithm
(Lim et al., 2009) to find TFs with targets differentially expressed
in basals compared with luminals. Predicted target genes were

collected from the SuperPathway. SAM (Tusher et al., 2001) was
run to derive ‘delta’ scores representing the degree of differential
expression in basal tumors compared with luminal A tumors

for each target gene. Gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) analysis was then used to identify
TFs having targets with a non-random distribution of SAM

delta scores. Rather than apply a strict multiple-hypothesis
correction at the level of significance, we instead retained TFs
with scores at a relaxed cutoff of P¼ 0.05 and then associated a

relevance score to each retained TF by dividing its absolute
GSEA score by the maximum absolute score. Similarly, source
genes were retained that had a Fisher’s exact of 0.05 and were

assigned relevance scores equal to the normalized absolute
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log-transformed P-value. These data were used to test various

relevance measures for use in single-source and tied-diffusion

described next.

3.3.1 Evaluation of relevance scores and competing methods We

evaluated the precision of different methods for their ability

to find true network paths in the presence of randomly generated

false-positive ‘decoy’ links, which were added to the

SuperPathway to increase its number of interactions by 50%.

Any paths in the final solutions that contained even a single

decoy link were considered to be false positive. By computing

the number of such paths that exist in the entire SuperPathway

network, we calculated the total number of true-positive paths

and used this to compute the precision and recall of the solutions

(Fig. 3).
We compared tied-diffusion with its single-source counterpart

and with competing approaches such as prize-collecting Steiner

trees as implemented by Dittrich et al. (2008), and Dijkstra’s all-

pairs-shortest-paths algorithm as a baseline approach. Three

plug-in relevance score functions were included: heat-diffusion,

Google’s personalized PageRank and SPIA (see Methods).

Diffusion strategies performed comparably with the three com-

peting methods at the specific levels of recall obtained with each

approach (green, blue and red points in Fig. 3). In addition,

we found that tied-diffusion had higher precision over varying

recall compared with the single-source equivalents. Also, the

heat-diffusion relevance function performs comparably with

personalized PageRank over moderate levels of recall, after

which personalized PageRank outperforms the heat-diffusion

kernel. Thus, given the significant computational benefits

of using a precomputed kernel (see Methods), we opted to

use the heat-diffusion approach as the principal algorithm for

the remainder of our analysis as it allowed for a greater amount

of experimentation.
We next ran TieDIE with heat diffusion as the relevance

score to solve for a basal–luminal network as shown in

Figure 4. A network connecting basal-enriched genomic

events, such as TP53, to basal-associated activated TFs, such

as MYC, was found to be significant (P50.002) using a

permutation-based simulation (Supplementary Methods;

Supplementary Fig. S4). As expected, these paths involve sev-

eral DNA damage checkpoint genes such as ATM, retinoblast-

oma (RB1), CCNE1 and p16-ARF (CDKN2A). On the other

hand, the luminal pathways include expected genes such as the

often-targeted estrogen receptor protein (ESR1), the frequently

mutated kinase PIK3CA and E-cadherin (CDH1), a protein

that interacts with PIK3CA in the cell membrane. The two

subtypes also differ in their copy number profiles with basal

tumors characterized by amplifications in MYC and Cyclin E1

and deletions in p16-ARF (CDKN2A). In contrast, luminal A

tumors tend to have amplifications in Cyclin D1, which inter-

acts in an opposing fashion on the RB1 compared with basal

samples. This suggests that these luminal A tumors may have

either ‘flipped’ or lost the functional interaction between Cyclin

D1 and RB1, or that the increase in transcriptional activity of

RB1 can be explained by other upstream nodes such as TP53

or E2F1. Linking genes in the map may represent breast cancer

‘essential’ genes whose functions are required for altered signal-

ing logic in tumors. In support of this idea, inhibitors to PLK3

and HDAC1 were found to sensitize breast cancer cell lines

(Heiser et al., 2011), and targeting chromatin remodelers,

such as the HDACs, are currently the focus of clinical trial

work. Thus, TieDIE’s breast cancer network represents a

data-driven graphical summary of testable hypotheses that

can explain the simultaneous protein activation, transcriptional

activity and edge interactions found between many of the key

genes involved in breast cancer.

Fig. 3. Precision of single-source (blue points) and tied-diffusion (orange

points) with different relevance scores for identifying pathways in a breast

cancer. Any paths containing even a single randomly injected ‘decoy’ link

were considered false positives. Recall measures the number of logically

consistent paths (X-axis; see Methods) out of the total possible; precision

measures the number of such consistent paths in the total number

returned. Relevance scores tested are heat diffusion (circles), personalized

PageRank (triangles) and SPIA (green circles). For comparison, included

are all-pairs shortest paths (APSP; blue circle) and prize-collecting Steiner

trees (PCST; red dot). Randomly generated networks of various sizes

were obtained to estimate the background distribution (gray dots).

Different levels of precision and recall were obtained by varying algo-

rithm parameters (e.g. the � parameter for single and tied diffusion;

Supplementary Methods S1.5)

Fig. 4. Tied-diffusion result for luminal A versus basal breast cancer

subtypes. The inner coloring of the rings represents the differential

expression in luminal A as compared with basal samples. The outer

ring represents differential frequency of genomic perturbations in luminal

samples as compared with basal samples: differential mutation (upper

right), amplification (lower right), deletion (lower left) and DNA-

methylated CpG islands near the promoter (upper left)
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3.3.2 Confirmation of subtype-specific network in cell
lines Studies in immortalized cell lines provide a convenient
method for exploring the biology of various cancer subtypes.

One strategy is to identify perturbations such as drug exposure,

small interfering RNA knock-down or sets of extracellular

ligands that block or induce cell death in cancer cell lines. An

assumption in such studies is that results in cell culture can be

transferred to real tumors in vivo. At a minimum this requires

that the molecular networks in cell lines and primary tumors

have significant similarity. Therefore, we tested the ability of

TieDIE to infer basal–luminal networks generated from a com-

pletely independent dataset collected in breast cancer cell lines.

Data for a panel of 36 breast cancer cell lines (17 basal and 19

luminal) were obtained from the Gray laboratory at Oregon

Health Sciences University (Heiser et al., 2011). We used micro-

array gene expression data from these lines to get the target input

scores and repeated the TieDIE analysis, using the same set of

TCGA sample-derived genomic perturbations as the source set.

The resulting network was found to have a high degree of over-

lap with the basal versus luminal A network derived from TCGA

data. Removing either source or target genes used in either the

cell line or tumor input sets from consideration, the linking 416

edges and 77 nodes in the cell line-derived network overlapped

with 213 edges and 52 nodes in the TCGA-derived network.

We found this result to be surprising, given the fact that a

much smaller overlap of 14 nodes (22% of the TCGA and

25% of the cell line target sets, respectively) was found in the

‘downstream’ input sets of each. Also the significance of the

overlap was much higher according to the hypergeometric test

for the tied-diffusion result, with a P-value of 4� 10�73

(Supplementary Fig. S5), compared with 2� 10�3 for the down-

stream sets only. Therefore, we conclude that each of the input

sets is close in pathway space despite the low fractional overlap,

allowing TieDIE to find a similar set of linker genes that repre-

sent the connecting topology between each pair of input sets.

Interestingly, metabolism and biosynthetic processes were

found only in the tumor-derived networks, reflecting the excep-

tional characteristics of cell line growth and their media.

3.3.3 Application to sample-specific networks We next applied
diffusion approaches to characterize the specific pathways of

individual samples. For each sample, we identified which of

the TFs in the ‘downstream’ set—identified by GSEA on the

cohort-wide expression data—had at least one differentially

expressed target for that sample. We then connected these

tumor-specific active TFs to the genomic perturbations in that

sample present in a scaffold network, a background network

derived from a TieDIE solution from the cohort similar to the

one shown in Figure 4 except using a smaller � parameter to

obtain a larger starting network of 106 nodes and 423 edges.

To test if TieDIE provides an accurate scaffold, we performed

a search for sample-specific networks over TieDIE networks of

multiple sizes as well as the entire SuperPathway. Using the pro-

cedure of adding random decoy links as described earlier, we

measured the ratio of ‘true’ and ‘false’ paths in each sample-

specific network solution, and plotted them for each choice of

network ‘scaffold’ (Supplementary Fig. S6). The precision of the

sample-specific networks was plotted, and the mean precision

was significantly higher when using the TieDIE summary

networks compared with using the entire SuperPathway. This

precision declines gradually as the TieDIE summary networks

increase in size, which is expected, given that they capture a

larger fraction of the possible edges in the starting network

and in the limit are identical to the SuperPathway. This shows

that the improved precision achieved by the TieDIE summary

networks is transferred to sample-specific networks, thereby

using data from the entire cancer cohort to inform the network

predictions for individual samples.
We evaluated the ability of TieDIE to connect differentially

expressed genes to at least one of the genomic perturbations

represented in the sample-specific network. Differentially

expressed genes were collected from those downstream of the

input set of TFs in the cohort’s TieDIE network. For the ma-

jority of samples, these specific networks explained a significant

fraction of differential expression (20–80%), although for a

subset of samples none of the expression could be explained

(Supplementary Fig. S7). This may be because of missing links

in the starting network, which greatly affects the TieDIE solu-

tions, because the method cannot infer missing links. In addition,

genomic perturbations that only occur in a small minority of

samples may not be represented in the TieDIE network, as the

method, by design, will filter out pathway elements that cannot

be supported by a sufficient amount of sample data. This trade-

off increases the overall quality of the networks, at the expense of

missing potentially novel, but rare, molecular mechanisms that

may drive the cancer phenotype in a small minority of samples.

3.3.4 Mapping the network of an abnormal luminal A tumor A
major goal in cancer systems biology is to infer a specific network

for each patient’s tumor and, as data become available, each sub-

clone identified within the tumor. Accurate networkmodels could

be used to explore a large space of potential targets to kill the

tumor in silico. Therefore, we applied TieDIE to identify a path-

way solution for every tumor sample in the TCGA breast cohort.

To illustrate the results, we focus here on the non-canonical tumor

sample TCGA-BH-A0BR, which had an intermediate pathway

state between the classic basal and luminal A subtypes as evi-

denced in its CircleMap plot (Fig. 5). Tumor heterogeneity may

contribute to such ‘mixed’ samples or may reflect a tumor evolu-

tion distinct from the classic basal and luminal pattern. The

sample-specific analysis (Supplementary Methods S2.5) of this

tumor reveals it has a hybrid set of genomic perturbations with

both luminal A-like events, such as an AKT1 mutation, and sev-

eral basal-like events, such as aTP53mutation, and amplifications

in insulin-like growth factor receptor (IGF1R) and PAK1.
Even though the patient sample has a luminal-associated

AKT1 mutation, the surrounding network is more consistent

with wild-type AKT1 activity. Namely, HIF1A is active, reflect-

ing a basal program of hypoxic response and angiogenesis, fur-

ther evidenced by increased EDN1 expression. In addition, IRS1

and PIK3CA expression are basal-like, and these network prop-

erties are maintained by a basal-like PAK1 amplification that, in

this patient, may promote the activity of RAC1 and MAP2K1.

Interestingly, IGF1R is known to be involved in the control of

breast cancer cell growth. Blocking or reducing the activity of

this receptor has been found to reduce growth in at least one

luminal breast cancer cell line (Guvakova and Surmacz, 1997),

and increased sensitivity in trastuzumab-resistant cells are
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associated with IGFR1 as well as PAK1 (Rayala et al., 2006).

The TieDIE network suggests that IGF1R and PAK1 amplifi-

cations may be driving the growth signaling pathways of this

tumor in the absence of HER2 amplification. Experimental val-

idation of such hypotheses are difficult to perform within patient

samples, but the concordance of TCGA sample-expression-

derived and cell line-expression-derived networks (see above)

suggests that experiments in cell lines could be used to address

such patient-specific hypotheses in the future.

4 DISCUSSION

We describe a new tied-diffusion method, TieDIE, that is able to

integrate transcriptional and genomic perturbation data with

biological pathway models yielding subnetworks that connect

the two distinct data sources. We demonstrate the ability of

TieDIE to generate better precision than single-source diffusion

methods in recovering both genes and paths across a wide range

of recall, with both a simulated toy example and patient data.

Current limitations of the method are described in the

Supplementary Methods section.

Because many TFs are not conventionally regarded as being

druggable, approaches such as TieDIE that pinpoint influences

upstream of these factors but still in neighborhoods proximal to

key driving mutations may provide key starting points for iden-

tifying new drug targets. A unique set of genes may be essential

for a specific tumor to thrive in its transformed environment—

the so-called synthetic-lethal partners to those genes mutated in

the tumor. Essential genes would be less likely to appear among a

list of ‘cancer drivers’ based on frequently mutated genes because

negative selection would eliminate alterations to essential genes.

Thus, methods like TieDIE can aid in finding these important

genes to potentially inhibit their activity, which can be tested

with specific inhibitors. In support of these observations, we

found that the TieDIE solutions enrich for genes that are more

sensitive to small interfering RNA targeting in cell lines

(Supplementary Results; Supplementary Fig. S8). Thus, TieDIE

might be used to provide a scaffold for simulation of the effects

of gene knockouts or drug treatments, potentially improving

both computational costs and pathway specificity, when com-

pared with a simulation performed on the entire starting

network.

The method can be used to characterize individual tumor sam-

ples, which may display unique changes in pathway logic that do

not conform to the canonical clinical subtypes. In such cases,

tumor heterogeneity and tumor evolution may produce a mix-

ture of subtypes. The challenge is to identify which pathways are

significantly impacted in complex primary tumors and metas-

tases, and how we can leverage such information to specifically

target therapy for a particular patient.

Using data from the TCGA breast cancer cohort, we identified

a core signaling pathway that recapitulates several known aspects

of the biology distinguishing the major basal and luminal A sub-

types that was highly concordant with models derived from

breast cancer cell lines. In addition, the non-overlapping regions

of these pathways lie in areas where we expect to find differences

such as tumor metabolism. One exciting possibility would be to

compare a patient-specific network with a previously recorded

set of networks derived from a bank of stable cell lines grown

under different conditions. Exploring therapeutic options for

that patient would then involve searching the library of cell

lines and growth conditions for those that maximally match

the patient’s network.
TieDIE holds promise for uncovering pathways relating gen-

omic perturbations to downstream transcriptional changes.

Higher precision over single diffusion was obtained both in simu-

lations and in human tumor sample datasets where a large set of

genes involved in oncogenesis are known. Even though we chose

breast cancer as a test case, the approach can be applied to a

wide variety of datasets for both basic molecular biology appli-

cations and human disease applications outside of cancer.
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