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Abstract

This paper presents a departure-time user equilibrium model that explicitly considers the

most important determinants of congestion behavior in cities during the morning

commute: different commuter origins, merge interactions and queue spillovers. The

proposed model combines three previous works: the departure-time equilibrium theory in

Vickrey (1969), the traffic flow model of Newell (1993) and the merge theory in

Daganzo (1996). The paper examines the simplest possible network exhibiting the three

important features and discusses the ensuing policy implications. The solution algorithm

can be used as a building block for equilibrium analysis of more complex, single-

destination networks with departure-time choice.  The results reveal unexpected

situations where ramp-metering can be beneficial, and others where the provision of more

freeway storage can be counterproductive.
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Introduction

Vickrey (1969) describes the first traffic model where commuters can adapt their

departure time to avoid periods of high congestion. The model is very simple – a single

bottleneck with a fixed number of commuters – but also very revealing of possible policy

actions for congestion reduction. Empirical evidence confirms that trip-scheduling

adaptation occurs during the morning commute, and that its derived effects are

sometimes very important; e.g., “peak shifting” as a result of capacity expansions (Small,

1992).

Because of its appeal and simplicity, Vickrey’s model has been extensively analyzed

under different demand assumptions (Hendrickson et al., 1983; Kocur et al., 1984; Smith,

1984; Daganzo, 1985; Newell, 1987, Arnott et al., 1993a) and has also been adopted to

analyze various toll policies (Arnott et al., 1990; Laih, 1994; Daganzo and Garcia, 2000).

The model, however, only applies to cases where congestion is concentrated at a single

location, affecting all commuters equally. These conditions are violated when the access

network is itself congested. For example, freeway queues caused by bottlenecks often

spill over long distances imposing different penalties on its access points. (Experimental

evidence shows that congestion affects most severely origins far upstream of a

bottleneck; Cassidy and Mauch, 2001). Obviously, network effects should be

investigated.

Unfortunately, existing extensions of Vickrey’s model to multi-origin/multi-destination

networks (Kuwahara and Newell, 1987; Bernstein et al., 1993; Arnott et al, 1993b; Ran et

al., 1996; Akamatsu et al., 1996) invariably ignore the spatial extent of queues (by
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assuming point-queues that do not take up space) and oversimplify merging interactions.1

These omissions may lead in general to wrong predictions, hence the insights derived for

policy-making must be regarded with care.

This paper fills some of these gaps by introducing a network model that integrates

Vickrey’s theory with a realistic traffic flow model (Newell,1993) and a reasonable

merging mechanism (Daganzo, 1996). Our ultimate goal is the qualitative understanding

of the relationship among congestion, departure time choice and the spatial distribution of

population for the morning commute, recognizing the networks are congested and have

different origins. In this paper, we consider the simplest network with all the relevant

characteristics. It consists of two origins, one destination and two links merging into a

third, as shown on Figure 1. (This is the same network used in Arnott et al, 1993b to

analyze departure-time equilibrium under the point-queue assumption.) Extensions to

multi-origin networks will be considered in a sequel.

The paper is structured as follows. Section 1 introduces relevant background and

discusses the single bottleneck (Vickrey) model. Section 2 presents the equilibrium

model; first, basic concepts (Section 2.1), and then results (Section 2.2). It is found that

merging and spillover effects affect equilibrium solutions significantly and in a rather

counterintuitive way. Section 3 compares the solutions with those obtained under point-

queue assumptions. Finally, section 4 discusses policy implications and relates them to

earlier work.

                                                            
1 Kuwahara and Newell (1987) analyzes equilibrium on a population of commuters continuously
distributed over space which must choose one (and only one) among several point-queue bottlenecks to
reach a common destination. Friesz et al. (1994) describes a heuristic to solve network problem with point
queues. Tests are done for a single origin-destination network. Akamatsu et al. (1999) considers general
many-to-one/one-to-many networks under point-queues and constant saturation outflows.
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1. The single bottleneck model

It is commonly assumed that traffic conditions during the morning commute are similar

day-after-day. Commuters, aware of these, choose their departure time to minimize their

individual trip cost, which consist of a trip-time component and a schedule penalty. The

latter is associated with the arrival time at the destination relative to a preferred time. In

the case where the only traffic restriction is a single bottleneck of capacity m with no

delay elsewhere, it is customary to express commuter decisions as a function of the

preferred passage time through the bottleneck or deadline. If w is the deadline for the

commuter that passes the bottleneck at time t and we express costs in units of trip time,

then the trip cost for that commuter is

)( wtpc -+= t (1)

where t is the trip time and p(.) is a schedule penalty function such that 0(.) ≥p and

p(0)=0. It will be assumed here that p(.) is piecewise linear and V-shaped, where e and L

are the positive conversion rates for earliness and lateness into trip time; i.e.,
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Normally, earliness is preferable to both queuing and lateness, i.e., e<L, e<1 (Small,

1982).

Vickrey’s objective was to determine an equilibrium schedule of departures from a single

origin such that no commuter/vehicle would have an incentive to change its departure

time given the queues that resulted. The model also applies to multiple origins if all

access routes to the bottleneck are uncongested and pass through a common point, O ;

i.e., point O can be modeled as the single origin.
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The solution can be represented by means of continuous cumulative plots, assuming that

the number of commuters is so large that vehicles can be treated as a continuous variable;

see Figure 2. W(t) expresses the cumulative number of commuters wishing to pass the

bottleneck by time t , and it will be called the deadline curve. It will be assumed that W(t)

is S-shaped, with slope greater than the capacity m  during some interval so that a queue

must necessarily develop. W(t) is a step function if all the commuters have the same

deadline, as shown in Figure 2a. The objective is to finding an equilibrium curve of

cumulative arrivals at the common point O , AO(t) – or equivalently the curve of

cumulative virtual arrivals at the bottleneck, A(t)=AO(t-tOD) where tOD is the fixed

uncongested trip time from O to the bottleneck location, D.2 According to standard

queuing analysis, the curve of cumulative departures from the bottleneck, D(t), is the

highest curve with slope less than or equal to m  such that )()( tAtD £ .3 Under a FIFO

(first-in-first-out) queue, the delay t for any given vehicle number is the horizontal

distance between curves A and D for the given vehicle number. Likewise, the scheduled

delay s is given by the horizontal distance between D and W if vehicles depart from the

bottleneck in the order of their deadlines. It is known that if the penalty function p(.) is

convex and common to all commuters, the solution exists (Smith, 1985) and is unique

(Daganzo, 1986). Furthermore, in the equilibrium solution, vehicles depart from the

bottleneck in the order of their deadlines. An example of such equilibrium is represented

in Figure 2 both for the case where commuters have a common deadline (Figure 2a) and

                                                            
2 A vehicle virtual arrival time to D is the time at which the vehicle would have passed D if it had travel
unhindered from O to D.
3 In queuing lingo, the terms arrivals and departures refer to the bottleneck. Therefore, they have the
reverse meaning assigned to them in the economics literature where arrivals to the bottleneck correspond to
the departures from the origin and vice-versa.
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when they do not (Figure 2b). Both solutions exhibit a unique queuing episode with two

clearly differentiated phases. In the first phase, commuters depart from the bottleneck

earlier than desired and queuing delay increases with vehicle number at a rate that

precisely compensates for the reduction in earliness. Therefore, the slope of A(t) is given.

In the second phase, commuters depart from the bottleneck later than desired and queuing

time declines with vehicle number to compensate for increasing lateness penalties. As a

result, the slope of A(t) is also given. Note that the vehicle arriving on time experiences

the highest delay (as given by the length of segment AO, |AO|, in Figure 2). In the single

deadline case of Figure 2a, |AO| is the common cost suffered by all commuters.

If st and ft  are the times when the queue starts and vanishes, equilibrium requires

sf tetL -==AO . Furthermore, if we use N to denote the number of commuters who

queue, then )( sf ttN -= m  since all these commuters depart when the bottleneck is at

capacity. In the single deadline case, N is known (all the commuters queue), therefore

these three equations define the three remaining unknowns: AO , st and ft . Since the

slopes of A(t) above and below AO are given, it follows that there is only one possible

geometry for the equilibrium curves. Figure 2a shows that the number of commuters

departing early at equilibrium is )/( LeLN + and the number departing late is

)/( LeeN + . One can also see that the common cost is )/( LeeLN +=AO . Finally note

that the equilibrium delay for a commuter departing at time t, t(t), is:

0 if

 0 if  

)(

)(
)(

≥

<
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Ï
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=
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(3)

which precisely balances the schedule penalty as required.
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Consideration shows that a similar geometric pattern is an equilibrium for S-shaped

deadline curves; see Figure 2b. The main difference is that in this case not all the

commuters queue and therefore, one also needs to find N.

Most of the existing literature deals with fixed-capacity bottlenecks, but the analysis can

be extended to variable capacities, m(t), if m(t)  induces a single queuing episode.4 Then,

st , ft  and A(t) can be determined as before since (3) continues to hold. This means that

in any equilibrium, such  as that shown in Figure 3a, the horizontal separation between A

and D at )(# tD= continues to be given by (3). Therefore, if the equilibrium diagram is

rescaled vertically by means of the transformation )(## 1-= D  which makes the departure

rate equal to 1 at all times, i.e., ttDD =- ))((1 , then we recover Figure 2a. This is shown

in Figure 3b. The re-scaled arrival curve, ))(()( 1 tADtT -= , now returns the departure

time td (on the vertical axis) as a function of the arrival time ta (on the horizontal axis).

We shall refer to T(t) as the arrival-departure schedule curve (or A/D curve) to

differentiate it from the equilibrium arrival curve, A(t). The invariance of the rescaled

diagram with respect to m(t) will become useful later.

It should be remembered that the single bottleneck model does not apply if delays

suffered by vehicles entering the network at different locations are different, as is

normally the case for freeway networks. Unfortunately, no existing model addresses the

three key effects required to model a simple freeway: multiple origins, merging

interactions and queue spillovers. The next section describes a first step in this direction.

                                                            
4 This is always true if commuters have a common deadline.
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2. Departure-time equilibrium with different origins and realistic traffic behavior

We shall consider here the simplest network exhibiting all three effects; see Figure 1. On

this network, N(A) and N(B) commuters travel everyday from origins A and B to a common

destination D. The routes from these origins merge at an intermediate location, M, and

share a final link MD of length l. A bottleneck of time-dependent capacity mD(t) may

exist just upstream of D. Thus, queues may form on the common link and spill over the

merge.5

Traffic is assumed to behave as in the kinematic wave (KW) theory. It will be modeled as

in Newell (1993), where traffic obeys a triangular fundamental relationship linking flow,

q, with density, k, as in Figure 4a. The relationship is defined by three parameters: a fixed

free-flow speed (vf), a maximum flow or capacity (m) and a jam density (kj).
6 We shall

assume that the network is homogeneous (i.e. its three links have the same

characteristics). The traffic model needs to be completed by defining how vehicles

interact at the merge. We will use the rules in Daganzo (1996) as explained below.

Finally, we shall assume that all commuters have the same deadline and penalty function

(i.e., commuters are only distinguishable by their origin). Generalizations for networks

with non-homogeneous links and different deadlines are discussed in Lago (2002).

2.1. Formulation

We express our equilibrium solution in terms of cumulative flows. As in Newell (1993),

we shall use a delay-based formulation that ignores free-flow trip times. In this

                                                            
5 The flow restriction could be due to a variable inflow from another ramp (not depicted in the figure) very
close to D.
6 Jointly they define a wave speed (w) which represents the unique speed at which flow disturbances
propagate upstream within a moving queue; see Figure 4.
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formulation, a solution is defined in terms of the cumulative curves of virtual arrivals at

point D { )()( tA r , BAr ,= } – instead of the actual departure curves from origins A and B

{ )()( tA r
r ,  BAr ,= } – and the cumulative curves of departures from D  { )()( tD r

D ,

BAr ,= }.7 Delays are given by ))(()( )(1)()( tDAtt r
D

rr -
-=t , BAr ,= .  Newell (1993)

shows that the delay-based traffic problem can be solved as a standard problem with the

modified fundamental diagram of Figure 4b, which has the same m and kj but •=fv .

The actual departure curves from the origins can be obtained by shifting the virtual

curves back in time by the origin-specific free-flow trip times (i.e.,

)/()( )()(
frD

rr
r vtAtA l+=  where rDl  is the distance from origin r to point D). Thus,

from now on, and without loss of generality we take •=fv  and use the diagrams of

Figure 4b.

To solve the traffic-equilibrium problem, one could consider the arrival curves { )()( tA r ,

BAr ,= } as the only unknowns since they define uniquely the cumulative departures

from D { )()( tD r
D , BAr ,= } and the delays for each origin { )()( trt , BAr ,= } through

the traffic model. For our purposes, however, it will turn out to be more convenient to use

{ )()( tD r
D , )()( trt , BAr ,= } as the unknowns and { )()( tA r , BAr ,= } as the derived

curves. Equilibrium conditions are more naturally expressed in terms of these unknowns

as shown in section 2.1.1. On the other hand, since not every set of functions

                                                            
7 From now on, superscripts identify the origin to which the variable or function refers, while subscripts
refer to the physical location over which the variable or function is defined; e.g,, )()( tq r

D
is the flow at D of

commuters from origin r. Furthermore, we will refer to A(r)(t) as arrival curve and )()( tD r
D

as departure

curves following standard queuing notation.
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{ )()( tD r
D , )()( trt , BAr ,= } is consistent with the traffic model, additional conditions

must be specified. Fortunately, this is easy to do as explained in section 2.1.2.

Finally, for notational convenience, the origin-specific departure curves { )()( tD r
D ,

BAr ,= } will be expressed as a function of the aggregated  departure curve,

)()()( )()( tDtDtD B
D

A
DD += , and the proportion of departures by origin at time t, { )()( tr

Db ,

BAr ,= } so that )()()( )()( tqttq D
r

D
r

D b= . We shall make use too of )(tDM , the

aggregated departure curve just downstream of merge M.

2.1.1. Equilibrium conditions

Equilibrium conditions have to be verified for each origin separately. The tuple

{ )(tDD , )()( tr
Db , )()( trt }, BAr ,=  must be such that the trip cost for each origin r is

equal for all the departure times from D with positive origin r outflows, 0)()( >trb , and

higher or equal elsewhere. Recall from (2) that the equilibrium delay t(t) is affected by

D(t) through st and ft  only. Obviously the same simple principle applies now but with

origin-specific )(r
st and )(r

ft . Thus if the departure processes { )(tDD , )()( tr
Db , BAr ,= }

are given and { )(r
st , )(r

ft } known, the equilibrium delays { )()( trt , BAr ,= } are given too.

They in turn define the arrival processes { )()( tA r , BAr ,= }. If the traffic model

generates the original departure processes from the equilibrium curves

{ )()( tA r , BAr ,= }, then the equilibrium is feasible. Thus, our problem is reduced to

finding two departure processes { )(tDD , )()( tA
Db } and { )(tDD , )()( tB

Db } that define

feasible equilibrium curves { )()( tA A , )()( tA B } and { )()( tAt , )()( tBt }. The feasibility

conditions imposed by the traffic model are presented below.
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2.1.2. Feasibility conditions

Our solutions should be consistent with both link and node dynamics.

(a) Link dynamics: FIFO conditions.

Since KW queues are FIFO, we must guarantee that commuters from different origins

passing M at the same time incur the same delay on link MD.8 Therefore, the common

delays in that link needs to be predicted. We use Newell’s method (Newell, 1993). First,

a capacity curve at M , )(tDM + , is defined from the departure curve at D by the shift,

ll j
j

DM k
k

tDtD +-=+ )()(
m

(4)

The capacity curve sets an upper bound to the cumulative number of commuters that can

pass M by time t; see Figure 4c. The actual cumulative curve of vehicles passing through

M, DM(t), is the lower envelope of DM+(t) and the cumulative number of commuters who

would have passed M in the absence of a queue.

It is convenient to express Newell’s method in terms of delays and to index delays by

time of departure. To this end, note that )()( tDtD DM -+  is an upper bound for the length

of the queues at MD at time t. Hence, the horizontal separation between DM+ and DD for a

given departure time, nMD(t), is also an upper bound for the delay on link MD for a given

the history of departures. For this reason, we will call nMD the maximum delays or M-

delays. The actual delay in the link MD for a given departure time t, tMD(t), is the lesser

of nMD(t) and the delay that would arise from an arrival curve at M obtained by ignoring

the spillover effects but including the merge effects. Since we have two origins with

                                                            
8 FIFO is not an issue for links AM and BM because these links handle traffic from a unique origin.
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known equilibrium delays )()( tAt and )()( tBt , we can compare these delays with nMD(t)

in an attempt to infer the actual delays  tMD(t).

Since MDMD nt ££0  and },{0 )()( BA
MD ttt ££ , four cases can arise:

(i) },{0 )()( BA
MDMD tttn £==  (i.e., delays only upstream of M)

(ii) },{0 )()( BA
MDMD tttn £=<  (i.e., delays upstream and downstream of M  with

maximum delays on MD)

(iii) MD
BA

MD nttt <== )()(   (i.e., delays only downstream of M)

(iv) MD
BA

MD nttt <£ },{ )()(  (i.e., delays upstream and downstream of M but with less

than the maximum delay on  MD).

We restrict our search to solutions where only (i), (ii) or (iii) occur, since this is the

common case in most equilibrium solutions.9 With this provision, )(tMDt  can be

expressed as a function of the data; i.e.,

)}}(),(max{),(min{)( )()( tttt BA
MDMD ttnt = . (S1)

Furthermore, the FIFO feasibility conditions can be expressed as:

)()()()()( )()( ttttt MD
BA

MDMD tttnt ==fi< (S2a)

)()(),()()( )()( ttttt MD
BA

MDMD tttnt ≥fi= . (S2b)

                                                            
9 Case (iv) does not arise as long as the capacity of the bottleneck mD(t) does not increase sharply before the
deadline.When case (iv) arises, an equivalent method can be used based on a different (but more
cumbersome) expression of tMD(t); see Lago (2002).
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(b) Node dynamics: merge rules

Daganzo (1996) proposes that the discharge flows from the two upstream approaches of

merge M, { )()( , B
M

A
M qq }, should be a function of the capacity of the upstream approaches

(i.e., m), the available capacity downstream (mM) and a priority ratio (a). For the case of

interest here where mm £M , the upstream approach capacity does not play a role and the

rules reduce to the following two:

(i) During periods when there are no queues upstream of M , arrival flows equal

discharge flows and M
B

M
A

MM qqq m£+= )()( ,

(ii) When there is a queue on approach r then MMq m=  and the departure ratio

)()()( / r
M

r
M

r
M qq ab ≥≡ , where 1)()( =+ BA aa .

It follows from (ii) that when there is a queue in both approaches, then ( )()( / B
M

A
M qq ) =

(a(A)/a (B)).10 These rules are illustrated in Figure 5. Recall that the downstream capacity

may be time-dependent since )()( tDt MM +¢≡m .

Again, we need to express the merging rules in terms of our candidate departure and

delay curves. Conditions (i) and (ii) imply that

)()()()( tDttqtD MMMM +¢=£=¢ m . (M1)

Recall that )()()( tt MD
r nt >  implies that vehicles departing at t from approach r

experienced delay at the merge. Hence, in view of condition (ii), they entered the merge

in a proportion )()( rr
M ab ≥ . Since traffic on MD satisfies FIFO conditions, this proportion

must be preserved at D (i.e., )())(( )()( ttt r
DMD

r
M btb =- ) and we can write:
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)()()( )()()( rr
DMD

r ttt abnt ≥fi> (M2a)

),())(),(()()(),()( )()()()()()( BAB
D

A
DMD

B
MD

A tttttt aabbntnt =fi>> . (M2b)

(M2a) defines the conditions when the merge is at capacity with one congested approach

and (M2b) with two. When the merge is not saturated, any flow proportions are allowed.

2.2. Analysis

We consider the single deadline problem and analyze it in two phases: (i) cases with no

bottleneck restriction at D  ( mm =)(tD ) where queues cannot form on link MD  and

merging effects dominate, and (ii) cases with time-dependent flow restrictions at D

( mm £)(tD ) where queue spillovers can affect performance.

2.2.1. No downstream restrictions (Merging effect)

When no restrictions exist downstream of merge M , no delays can arise beyond it.

Therefore, we can ignore link MD  and treat M  as if it was the destination (using

)()( tDtD DM ≡ , )()( )()( tt r
D

r
M bb ≡ ). In essence, the system is modeled as a pair of single-

origin bottlenecks with departure rates coupled by the merging rule.

We shall look for equilibrium solutions in which the aggregated departure curve, )(tDM ,

is given by the single bottleneck solution with capacity m and total population N(A) + N(B);

i.e., where the merge is saturated only during the preferred interval P=[ts, tf] of Figure 2a.

This is reasonable since the bottleneck mechanism allows undelayed travel from both

origins when the merge is undersaturated (therefore, commuters would have an incentive

to saturate the merge at the preferred times).

                                                                                                                                                                                    
10 A more detailed description of the dynamics of the merge section can be found in Daganzo, 1996.
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Since MD  is given, the capacity shares { )(),( )()( tt BA bb } need to be found. If we assume

that only one queuing episode occurs on each approach, the solution is as shown in

Figure 6a. The figure displays the arrival and departure pattern on the two approaches

separately. Commuters from one origin (B in the figure) flow through the bottleneck

during an interval when the other approach is queued and therefore use a fixed share of

the capacity )()( )( BB
M t ab = . The solution for B-users is a single bottleneck equilibrium

with population N(B) and capacity ma )(B , see the bottom part of

Figure 6a, curves )(B
MD  and )(BA . Commuters from A flow at full capacity m when the

approach B is not active and at a reduced capacity ma )( A  otherwise. The solution for A-

users is also a single bottleneck equilibrium, albeit with time-dependent capacity; see the

top part of

Figure 6a, curves )( AA  and )( A
MD .

The two diagrams of

Figure 6a can be re-scaled and superimposed following the procedure explained in

section 2 to show the A/D curves for both origins and the common departure curve on a

single diagram, see

Figure 6b.11 The quantities in parenthesis following each colon are { )(),( )()( tt B
D

A
D bb }.

The curves on the figure must be similar, as shown, since commuters share a common

deadline and penalty function. Commuters from A experience the same commuting cost

                                                            
11 Remember that the horizontal distances between the A/D curves and DM define the individual vehicle
delays on each approach for any departure time t.
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as if everybody had the same origin, since AO is equal in length to the corresponding

segment of a single bottleneck solution with population N(A) + N(B). Commuters from B,

however, experience a reduced cost, |BO|. From the figure, it is clear that B-commuters

experience less cost if )()()()( / AABB NN aa < . The reverse is true if

)()()()( / AABB NN aa > . The worst case arises if )()()()( / AABB NN aa = when all

commuters experience the highest cost. The best case arises if )(Ba  = 0 or 1 (complete

priority) when one of the origins experiences the least possible cost.

These results have an economic interpretation. Since the capacity of M  is a scarce

resource, commuters impose onto each other an external cost (delay) as they jockey for

their preferred departure times. In the single bottleneck scenario, everybody is affected

equally by the actions of the others and the result of this game is a symmetric

equilibrium. A saturated merge, however, allocates its capacity in fixed shares – )( Aa  and

)(Ba –  to the two approaches, which insulates A-drivers from actions of B-drivers and

vice versa.  This allows one part of the population to reduce its cost by traveling at the

most desired times. The effect can be exploited by manipulating ( )( Aa , )(Ba ). This shows

that Pareto-improving ramp metering schemes exist for single-destination freeways with

elastic demand.

2.2.2. Downstream restrictions (Spillover effect)

Let us now assume that mm £)(tD , with the possibility of spillovers from link MD. We

shall find a feasible equilibrium in a sequential manner. Figure 7 illustrates the steps.

Step 1: Aggregate departure curve and maximum delay. We look for solutions in which

the aggregate departure curve, DD(t), is given by the single bottleneck solution with time-
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variable capacity mD(t) and  total population N(A) + N(B) (see Figure 7a). This defines the

duration of the queuing episode, P=[ st , ft ]. We shall assume that A-vehicles discharge

uninterruptedly in the interval P(A)= P, (i.e., )( A
st = st , f

A
f tt =)( ), and that B -vehicles

discharge in an interval P(B)Ã P (i.e., )()( A
s

B
s tt ≥  a n d  )()( A

f
B

f tt £ ), possibly with

interruptions. The roles of the origins can be reversed, of course, and we show below that

this depends on the population-to-priority ratio.

Since )( A
st  and )( A

ft  are given, we can define an equilibrium delay function for origin A,

t(A), as explained in section 2.1.2. This can be expressed graphically in conjunction with

curve DD by means of an A/D curve )( AT such that the horizontal difference between

)( AT and DD for any departure time t is the A-delay: ))(()(
1)()( tDTtt D

AA -
-=t ; see Figure

7a.  Neither DD  nor )( AT are cumulative counts for A-vehicles since DD gives the

cumulative count for A and B-vehicles together. Note too that the equilibrium delays for

vehicles from origin B can never be larger than those of A  since P (B)Ã P; i.e.,

)()}(),(max{ )()()( ttt ABA ttt = .

Step 2: Delays on the common link. Since the aggregate departure curve DD is given, we

can shift it according to (4) to obtain the capacity curve at M, DM+, and the M-delays,

nMD(t); see Figure 7b. Since t(A)(t) are the maximum delays, we can use (S1) to obtain the

actual delays on link MD: )}(),(min{)( )( ttt A
MDMD tnt = . In other words, the actual delays

are the least of the horizontal difference between DM+ and D D and the horizontal

difference between T(A) and DD. Therefore, the curve of cumulative flows through M, DM,

is the lower envelope of DM+ and T(A) and the horizontal difference between DM and DD is
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the actual delay tMD; see Figure 7c. These delays are highlighted by the shaded area of

the figure.

Step 3: Solution for secondary origin (B). We first look for a starting time )(B
st > st = )( A

st .

For each candidate )(B
st , the equilibrium delays )()( tBt  are given. Thus, we can again

define a curve )(BT  such that the horizontal difference between )(BT and DD gives directly

the equilibrium delay for origin B; see Figure 7d. Since )()( tBt  cannot be less than

)(tMDt , no departures from B can take place when the curve )(BT  dips below DM (non-

shaded band of Figure 7d). Positive departures rates for B-vehicles can only occur on the

shaded areas in Figure 7d. Note that all B-users experience a delay )()()( tMD
BA ntt ≥> ,

so that they cross the merge when both approaches have queues. Hence, they will always

flow through the merge using a share )(Ba  of the capacity. This means that

)()( )( BB
D t ab =  in the shaded intervals and 0)()( =tB

Db  outside. The total number of B-

vehicles passing through D is, therefore, the product of a and the vertical projection of

the shaded areas. By changing the starting time )(B
st  we can ensure that the correct

number of B-vehicles, N(B), is discharged. This is the equilibrium starting time. Figure 7e

shows the final result. This completes the procedure since the arrival and departure

curves for origin B are just rescaled versions of the delay curve )(BT  and the departure

curve DD: eeeb dDtD
t

D
B

D
B

D Ú •-
= )(')()( )()(  and eeeb dTtA

t BB
D

B
D Ú •-

= )(')()( )()()( . If )(B
st  has

to be at a (later) point where DD < DM, the procedure still applies but 0)()( =tB
Db  until

M
B DT ≥)( . Similarly, if )(B

ft  is at a time when DD < DM , again 0)()( =tB
Db  where

M
B DT <)( .
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Step 4: Solution for primary origin (A). Since )(1)( )()( tt BA bb -= , the departure and

arrival curve for origin A  can be built by scaling curves DD and )( AT :

eeeb dDtD
t

D
A

D
A

D Ú •-
= )(')()( )()(  and eeeb dTtA

t AA
D

A
D Ú •-

= )(')()( )()()( . Note )()( )( AA
D t ab =

or 1 in agreement with our assumption that 0)()( >tA
Db during P . This completes the

solution.

Figure 8 shows the spatial evolution of the queues in Figure 7e for time intervals where

different queuing patterns arise. Thin black arrows represent the observed flows at the

critical sections; thick white narrows, the movements of the head and tail of the queues.

Note that the queuing state (iv) of section 2.1.2 never arises as assumed.

Three different solution types can arise depending on the populations )()( , BA NN and the

priority ratios )()( , BA aa .

Solution 1A. If the number of B-vehicles is so small that )(B
st > )( A

st , the solution is as

illustrated by Figure 7e. In this case, B-commuters suffer less cost then A-commuters

since |OB’|<|OA’|. This solution arises if U
BABB NNNN -+£< )(/0 )()()()( a , where NU

is the total number of vehicles that find the merge uncongested; see Figure 7c.

Solution 1B. A symmetric solution to 1A where A-vehicles experience less cost is

obtained by interchanging the superscripts A and B and replacing )(Ba  by )( Aa . This

solution arises if U
BAAA NNNN -+£< )(/0 )()()()( a .

Solution 2. It is also possible to find an equilibrium for the remaining situations with

intermediate values of )()( / AB NN . In these cases, )(B
st  = )( A

st  and both origins share the
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same cost |OA’|= |OB’|. Consideration shows that the solution is now as in Figure 7f. As

required by the traffic model, ( )(),( )()( tt B
D

A
D bb ) = ( )()( , BA aa ) in the intervals when both

approaches are queued (shaded area) and ( )(),( )()( tt B
D

A
D bb ) is arbitrary in the middle

period when M is below capacity (cross-hatched area). An equilibrium is reached for any

( )(),( )()( tt B
D

A
D bb ) that generates total discharges matching the populations N(A) and N(B).

This solution arises if U
BABBBA NNNNNN -+≥≥+ )(/)( )()()()()()( a .12

A comparison of Figure 7e and Figure 7f with the single origin solution (Figure 3) and

the solution with merging effects only (

Figure 6) reveals some interesting insights. In all cases, the population from the origin

with the largest population-to-priority ratio, A , always experiences the same cost

equivalent to the cost they would suffer in a single origin scenario with total population

N(A) + N(B). But commuters from the other origin, B, can incur lower cost. Curiously, this

cost reduction decreases with the number of vehicles that can be stored in link MD (kjl).

In the extreme case where kjlÆ0, we recover the solution of section 2.2.1 (albeit with a

time-dependent capacity) which is actually the least total cost scenario. This is may seem

paradoxical at first sight since the provision of extra storage space in link MD makes

things worse even though the link capacities remain unchanged (!). The explanation is

that the extra space allows A-commuters to mix with B-commuters in the downstream

queue. This dilutes part of the segregation advantages that the merge gave to origin B.

Again the policy-making implications of these effects are discussed in the final section.

                                                            
12 Note that since the value of NU  changes continuously with ( )()( BA NN + ) and ljk , a solution always

exists.
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3. Departure time equilibrium in point queue models with fixed link capacities

In the last decade, a number of works (Bernstein et al., 1993; Arnott et al., 1993b; Ran et

al., 1996; Akamatsu et al., 1996) have proposed point-queue models with fixed link

capacities to solve network equilibrium subject to departure-time choice. These models

improve the realism of previous static models by including transient queuing phenomena,

but they are still quite restrictive since they neglect two important forms of link-to-link

interaction: tail-to-head (spillovers) and head-to-head (merging competition). These

omissions lead to predictions that substantially overstate total cost as shown below. It is

therefore important to incorporate link interactions in network models. The goal is

achievable because the complexity of the problem appears not to be increased by doing

so.

Consider first the issue of over-prediction and start with the constant-capacity case,

mm =)(tD . Since the above-mentioned point queue models do not restrict merging flows

they allow queues to develop at D, although these queues would never appear in reality.

The delays produced by these queues must be common to both origins. The ideas of

section 2.2.2 can now be used to see that Figure 9b is a point-queue equilibrium with

queues at D when )(')(' tDtD DM > . This can be compared with Figure 9a, which is the

solution of section 2.2.1 with ( )()( , BA aa ) = (0.5,0.5).  Clearly, the point-queue models

predict a significantly larger equilibrium cost for B-users, |OBPQ|, and the wrong location

and length of the queues. In the variable capacity case, the delay overstatement is

exacerbated by the omission of spillovers as well (Lago, 2002).

Apart from their realism, an advantage of models with spillover and merge effects is that

can be solved more easily. The biggest complication with all models (see Figure 9) is



21

keeping track of the common delays on link MD. But, with merges and spillovers, these

delays turn out to be a function of the downstream conditions and the maximum delays,

which are known; see condition (S1). This knowledge can be used to decouple the

equilibrium solution by origin, and to simplify the solution method. (The decomposition

is so effective that it can even be applied to most multi-origin networks; see Lago, 2002,

and the sequel to this paper).  The same simplification does not work with fixed-capacity,

point-queue models, however, because in this case the delays on link MD always depend

on the origin-specific flows from upstream. Thus, point-queue models are more difficult

to generalize.

4. Policy implications

It was shown in Arnott et al. (1993b) that total system cost could decrease if one

decreases the capacity of a link in a fixed-capacity point-queue network without a route

choice. The result is interesting because it suggests that ramp-metering schemes could

yield benefits in situations where the conventional wisdom (with fixed departure times)

would say that none are to be had. On the other hand, the finding is of limited use

because the assumptions underlying it rarely arise in ramp-metering practice. Thus, it is

fair to ask whether the effect would also arise under the less restrictive assumptions of

this paper, and whether it would be any more prevalent.  The findings at the end of

section 2.2.1 suggest that the answer to both questions should be affirmative—since it

was shown that if storage capacity is not an issue then a Pareto-improvement can always

be achieved by giving some priority to one of the origins. Although this result was only

demonstrated for a network where both approach capacities were equal or greater than

the capacity at the destination, the result is completely general. This is true because the
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analysis for the general case turns out to be identical both in form and outcome to that of

section 2.2.1 if the metering rate is constrained never to starve the destination bottleneck

for flow. The beneficial effects of metering also arise in the time-dependent case with

finite storage; see Lago (2002). The reason for the generality is that the merge allows the

origin flows to interact in a detrimental way, and this happens whether or not the queue-

mixing effect identified in Arnott et al (1993b) also arises. Since in most cases priority

should go to the narrower approach, the results suggest that contrary to common practice

priority in multi-origin freeways should go to the ramps closest to the bottleneck.

It was also shown in section 2.2.2 that reducing the storage capacity of link MD (i.e., its

length) can reduce delay. This result is just as interesting because it shows that bringing

the origins closer to the destination not only decreases free-flow travel time, but it also

decreases delay (!). If the effect continues to arise with multi-origin networks, as we

expect, it should have significant policy ramifications because it indicates that the travel

costs added by congestion decrease with population density, if one holds the total

population constant. This may seem paradoxical because it says that the denser a city the

lesser its crowding cost. If such an effect turns out to be real, it should become part of the

policy debate on urban sprawl.

It should be obvious from this discussion that further modeling efforts are needed if one

is to develop a deeper appreciation for the effects of policy actions on congestion

reduction. A reasonable second step, explored in the sequel, would extend the analysis to

multi-origin networks with variable deadlines.
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Figures

Figure 1. A simple network: 2 origins – 1 destination with merging routes.

Figure 2. Equilibrium solution of the single bottleneck problem with fixed capacity.

Figure 3. Equilibrium solution of the single bottleneck problem with variable capacity.

Figure 4. Traffic flow model.

Figure 5.  Merge diagram.

Figure 6. Equilibrium solution without queues in link MD.

Figure 7. Equilibrium solution with queues in link MD.

Figure 8. Physical queue evolution in equilibrium solution (type 1A). Sequence numbers

refer to states shown in the cumulative plot.

Figure 9. Comparison of solutions under the KW model and the point-queue model, no

downstream restrictions.
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Figure 1. A simple network: 2 origins – 1 destination with merging routes.

Figure 2. Equilibrium solution of the single bottleneck problem with fixed capacity.
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Figure 3. Equilibrium solution of the single bottleneck problem with variable capacity.

Figure 4. Traffic flow model.
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Figure 5.  Merge diagram.

Figure 6. Equilibrium solution without queues in link MD.
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Figure 7. Equilibrium solution with queues in link MD.
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Figure 8. Physical queue evolution in equilibrium solution (type 1A). Sequence numbers
refer to states shown in the cumulative plot.



33

Figure 9. Comparison of solutions under the KW model and the point-queue model. No downstream
restrictions.




