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Abstract

Stacky Resolutions of Singular Schemes

by

Matthew Bryan Satriano

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin C. Olsson, Chair

Given a singular scheme X over a field k, we consider the problem of resolving the singularities
of X by an algebraic stack. When X is a toroidal embedding or is étale locally the quotient of a
smooth scheme by a linearly reductive group scheme, we show that such “stacky resolutions” exist.
Moroever, these resolutions are canonical and easily understandable in terms of the singularities of
X.
We give three applications of our stacky resolution theorems: various generalizations of the Chevalley-
Shephard-Todd Theorem, a Hodge decomposition in characteristic p, and a theory of toric Artin
stacks extending the work of Borisov-Chen-Smith. While these applications are seemingly different,
they are all related by the common theme of using stacky resolutions to study singular schemes.
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Chapter 1

Introduction

In [Hi], Hironaka proved his celebrated theorem that every scheme X in characteristic 0
has a resolution of singularities. A resolution of singularities of X, however, is usually not canonical,
and oftentimes hard to control. In this thesis, we show that in certain cases one can introduce a
canonical smooth stack which well-approximates X and serves as a replacement for the resolution
of singularities. The first known instance of this is if X has quotient singularities: it is a folklore
theorem (see for example [Vi, 2.9]), that if X is a scheme over a field k with quotient singularities
prime to the characteristic of k (i.e. X is étale locally a quotient of a smooth scheme by a group
whose order is prime to the characteristic of k), then there is a canonical smooth Deligne-Mumford
stack X with coarse space X such that the stacky structure of X is supported on the singular locus
of X. We refer to this folklore theorem as the stacky resolution theorem for quotient singularities.

We generalize this above stacky resolution theorem in two different directions. The first of these
generalizations is most interesting in positive characteristic. We say that a scheme X has linearly
reductive singularities if it is étale locally the quotient of a smooth scheme by a finite linearly re-
ductive group scheme. In characteristic 0, this simply recovers the notion of quotient singularities.
The focus of Chapter 2 is to prove the following stacky resolution theorem for linearly reductive
singularities:

Theorem 2.1.10. If k is a perfect field of characteristic p, and X is a k-scheme with linearly
reductive singularities, then there exists a smooth tame Artin stack X (as defined in [AOV, Def
3.1]) and a morphism f : X→ X realizing X as the coarse space of X. Moreover, the base change
of f to Xsm is an isomorphism.

In Chapter 3 we present the second of our stacky resolution theorems, which holds for
toroidal embeddings (which are not necessarily strict). We recall that a pair (U,X) consisting of a
k-scheme X and an open subset U ⊂ X is called a toroidal embedding if for every point of x ∈ X
there is an étale neighborhood X ′ of x, a toric variety Yx, and an isomorphism X ′ → Yx sending
U ×X X ′ to the torus of Yx. A toroidal embedding (U,X) is called strict if every irreducible com-
ponent of X − U is normal.

It follows from [Ka1, Thm 4.8] that toroidal embeddings are precisely fs log smooth log schemes
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over k endowed with the trivial log structure. Under this equivalence, the log scheme (X,MX)
corresponds to the (not necessarily strict) toroidal embedding (Xtriv, X). We can now state the
stacky resolution theorem for toroidal embeddings:

Theorem 3.3.2. Let k be field and X be a toroidal embedding over k. Then there exists a smooth
Artin stack X over k and a morphism f : X→ X over k which realizes X as the good moduli space
of X (in the sense of [Al, Def 1.4]). Moreover, the base change of f to the smooth locus of X is an
isomorphism, and X carries a natural log structure in the sense of [Ka2, 1.2] which makes it log
smooth.

The technique of studying a singular scheme through a canonical smooth stack sitting over
it seems to be quite broadly applicable. We apply the two resolution theorems above to Invariant
theory, Hodge theory, and toric geometry. These applications are the focuses of Chapters 4, 5, and
6 respectively.

1.1 Generalizations of the Chevalley-Shephard-Todd Theorem

We begin by recalling the Chevalley-Shephard-Todd theorem ([Bo, §5 Thm 4]). Suppose
G is a finite group with order prime to the characteristic of a field k and suppose G acts faithfully
on a finite-dimensional k-vector space V . We say an element g of G is a pseudo-reflection if the
fixed subspace V g is a hyperplane. The Chevalley-Shephard-Todd theorem then states

Theorem 1.1.1 ([Bo, §5 Thm 4]). If G → Autk(V ) is a faithful representation of a finite group
and the order of G is not divisible by the characteristic of k, then k[V ]G is polynomial if and only
if G is generated by pseudo-reflections.

There is a strong connection between the Chevalley-Shephard-Todd theorem and the
stacky resolution theorem for quotient singularities. When constructing the canonical smooth
Deligne-Mumford stack, the local problem one is faced with is precisely the Chevalley-Shephard-
Todd theorem. Therefore, the stacky resolution theorem for quotient singularities gives a global
reformulation of the Chevalley-Shephard-Todd theorem.

In the same vein, the local manifestations of the two stacky resolution theorems we prove give
two generalizations of the Chevalley-Shephard-Todd theorem. Given a faithful action of a finite
linearly reductive group scheme G on a finite-dimensional k-vector space V , we define a subgroup
scheme N to be a pseudo-reflection if V N is a hyperplane. The local version of Theorem 2.1.10 is
then:

Theorem 2.1.3. If G is a finite linearly reductive group scheme with a faithful action on a finite-
dimensional k-vector space V and k is algebraically closed, then k[V ]G is polynomial if and only if
G is generated by pseudo-reflections.

We also prove a more technical verison of this theorem for fields which are not algebraically
closed (see Theorem 2.1.6). Similarly, we show that the local version of Theorem 3.3.2 gives a gen-
eralization of the Chevalley-Shephard-Todd theorem to the case of arbitrary diagonalizable group
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schemes (see Theorem 4.1.2). We remark that this generalization to the case of diagonalizable
group schemes recovers [We, Thm 5.6], where the result is shown for tori.

Although the following is not the main point of the thesis, it should nonetheless be mentioned
that as a subtheme we hope to convince the reader that Chevalley-Shephard-Todd type theorems
(at least within the setting of reductive group schemes) are roughly equivalent to proving stacky
resolution theorems. The proof of the stacky resolution theorem for quotient singularities (and
for linearly reductive singularities) rests on first proving the Chevalley-Shephard-Todd theorem to
obtain a local version of the stacky resolution theorem. These local solutions are then “glued”
(using canonicity of the stack) to obtain a global solution. However, the generalization of the
Chevalley-Shephard-Todd theorem we obtain for diagonalizable group schemes is proved by first
proving a stacky resolution theorem for toroidal embeddings and then noticing that the local man-
ifestation of this theorem is a generalization of the Chevalley-Shephard-Todd theorem to the case
of diagonalizable group schemes.

1.2 De Rham theory for schemes with linearly reductive singular-
ities

In Chapter 5, we use the stacky resolution theorem for linearly reductive singularities
to obtain a positive characteristic analogue of a theorem due to Steenbrink. In [St, Thm 1.12],
Steenbrink shows that if k is a field of characteristic 0 and X is a proper k-scheme with isolated
quotient singularities and smooth locus j : Xsm → X, then the hypercohomology spectral sequence

Est1 = Ht(j∗Ωs
Xsm)⇒ Hn(j∗Ω•

Xsm)

of the Steenbrink complex j∗Ω•
Xsm degenerates. (Here j∗Ω•

Xsm denotes the complex obtained by
applying the functor j∗ term-by-term to Ω•

Xsm , as opposed to the derived push-forward.) Moreover,
Steenbrink shows that if k = C, then Hn(j∗Ω•

Xsm) agrees with the singular cohomology Hn(Xan,C).
Our characteristic p analogue of this theorem is:

Theorem 5.4.7. Let k be a field of characteristic p and X be a k-scheme with isolated linearly
reductive singularities. If X lifts mod p2 and the dimension of X is at least 4, then the hypercoho-
mology spectral sequence

Est1 = Ht(j∗Ωs
Xsm)⇒ Hn(j∗Ω•

Xsm)

degenerates for s+ t < p, where j : Xsm → X is the inclusion of the smooth locus.

The idea of the proof is as follows. We show that the method of Deligne-Illusie [DI] extends
to tame Artin stacks; that is, if X is a smooth proper tame Artin stack which lifts mod p2, then the
“Hodge-de Rham spectral sequence” for X degenerates. Here, “Hodge-de Rham spectral sequence”
is in quotes because it is not a priori clear what the differentials on an Artin stack should be. In
Section 3 of Chapter 5, a definition is chosen and it is shown that this yields a resonable theory.
We then make use of Theorem 2.1.10 to show that degeneracy of the Hodge-de Rham spectral
sequence for a smooth proper tame Artin stack X implies degeneracy of the hypercohomology
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spectral sequence of j∗Ω•
Xsm , where X is the coarse space of X. We remark that Theorem 5.4.7 is

a purely scheme-theoretic statement, but we are able to prove it by using Theorem 2.1.10 which
allows us to pass through smooth stacks.

1.3 Toric Artin Stacks.

In [BCS], Borisov, Chen, and Smith develop a theory of toric Deligne-Mumford stacks
by extending techniques developed in [Cox]. They introduce a notion of a stacky fan Σ which is
essentially a fan Σ together with marked points along the rays of the fan. When the underlying fan
of Σ is simplicial, they associate to Σ a smooth Deligne-Mumford stack X(Σ) whose coarse space
is X(Σ). Moreover, X(Σ) has a dense open stacky torus whose action on itself extends to an action
on the stack. Toric Deligne-Mumford stacks are therefore the natural analogue of simplicial toric
varieties within the class of smooth Deligne-Mumford stacks.

Smith asked whether the theory of toric Deligne-Mumford stacks can be extended to a theory
of toric Artin stacks. In other words, what is the analogue of arbitrary toric varieties within the
class of smooth algebraic stacks? There have so far been three main approaches to developing
a theory of toric Deligne-Mumford stacks: one is a log geometric approach due to Iwanari [Iw];
another is the aforementioned theory of Borisov, Chen, and Smith using stacky fans; and the last is
an approach taken by Fantechi, Mann, and Nironi [FMN] giving an intrinsic geometric description
of toric Deligne-Mumford stacks. In Chapter 6, we generalize and unite the first two of these three
approaches to produce a theory of toric Artin stacks.

Our generalization of Iwanari’s approach rests on a variant of Theorem 3.3.2. We show in Chapter
6 that if X is a toric variety rather than just a toroidal embedding, then there are many log smooth
log Artin stacks X other than the canonical stack given by Theorem 3.3.2. All of these stacks
have X as a good moduli space and they all have moduli interpretations in terms of log geometry
(however, only the canonical stack is isomorphic to X over Xsm). Each of these Artin stacks has
a dense open torus whose action on itself extends to an action on the stack. Thus, these stacks
should all naturally be thought of as toric Artin stacks.

We also give a stacky fan “explanation” of this theory which both generalizes the approach to
toric Deligne-Mumford stacks taken in [BCS] and unites it with Iwanari’s approach. That is, we
define a notion of generalized stacky fan and recast the above construction of toric Artin stacks in
terms of these stacky fans. The key difference between the generalized stacky fans we introduce
and the stacky fans of [BCS, p.193] is that we allow marked points which do not lie on the rays of
the fan. It is this extra bit of leverage that allows one to capture big stabilizers which occur in the
setting of non-simplicial toric varieties.
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Chapter 2

Stacky Resolutions of Schemes with
Linearly Reductive Singularities

2.1 Introduction

Given a field k and an action of a finite (abstract) group G on a k-vector space V , we
obtain a linear action of G on the polynomial ring k[V ]. A central theme in Invariant Theory is
determining when certain nice properties of a ring with G-action are inherited by its invariants. In
particular, it is natural to ask when k[V ]G is polynomial. If G acts faithfully on V , we say g ∈ G
is a pseudo-reflection (with respect to the action of G on V ) if V g is a hyperplane. The classical
Chevalley-Shephard-Todd Theorem states

Theorem 2.1.1 ([Bo, §5 Thm 4]). If G → Autk(V ) is a faithful representation of a finite group
and the order of G is not divisible by the characteristic of k, then k[V ]G is polynomial if and only
if G is generated by pseudo-reflections.

In this chapter we generalize this theorem to the case of finite linearly reductive group
schemes. To do so, we first need a notion of pseudo-reflection in this setting.

Definition 2.1.2. Let k be a field and V a finite-dimensional k-vector space with a faithful action
of a finite linearly reductive group scheme G over Spec k. We say that a subgroup scheme N of G
is a pseudo-reflection if V N has codimension 1 in V . We define the subgroup scheme generated by
pseudo-reflections to be the intersection of the subgroup schemes which contain all of the pseudo-
reflections of G. We say G is generated by pseudo-reflections if G is the subgroup scheme generated
by pseudo-reflections.

Over algebraically closed fields, Theorem 2.1.1 generalizes to

Theorem 2.1.3. Let k be an algebraically closed field and V a finite-dimensional k-vector space
with a faithful action of a finite linearly reductive group scheme G over Spec k. Then G is generated
by pseudo-reflections if and only if k[V ]G is polynomial.
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A more technical version of this theorem holds over fields which are not algebraically
closed; however, the “only if” direction does not hold for finite linearly reductive group schemes in
general (see Example 2.2.3). We instead prove the “only if” direction for the smaller class of stable
group schemes, which we now define (see Proposition 2.2.1 for examples). Over an algebraically
closed field, the class of stable group schemes coincides with that of finite linearly reductive group
schemes. Recall from [AOV, Def 2.9] that G is called well-split if it is isomorphic to a semi-direct
product ∆ o Q, where ∆ is a finite diagonalizable group scheme and Q is a finite constant tame
group scheme; here, tame means that the degree is prime to the characteristic.

Definition 2.1.4. A group scheme G over a field k is called stable if the following two conditions
hold:

(a) for all finite field extensions K/k, every subgroup scheme of GK descends to a subgroup
scheme of G

(b) there exists a finite Galois extension K/k such that GK is well-split.

Remark 2.1.5. If G is a finite linearly reductive group scheme over a perfect field k, then [AOV,
Lemma 2.11] shows that condition (b) above is automatically satisfied.

Theorem 2.1.3 is then a special case of the following generalization of the Chevalley-
Shephard-Todd theorem. This is the first main result of this chapter.

Theorem 2.1.6. Let k be a field and V a finite-dimensional k-vector space with a faithful action
of a finite linearly reductive group scheme G over Spec k. If G is generated by pseudo-reflections,
then k[V ]G is polynomial. The converse holds if G is stable.

We also prove a version of this theorem for an action of a finite linearly reductive group
scheme on a smooth scheme.

Definition 2.1.7. Let U be a smooth affine scheme over Spec k with a faithful action of a finite
linearly reductive group scheme G which fixes a field-valued point x ∈ U(K). The cotangent space
mx/m

2
x at x is therefore a GK-representation. We say a subgroup scheme N of G is a pseudo-

reflection at x if NK is a pseudo-reflection with respect to this representation. We define what it
means for G to be generated by pseudo-reflections at x in the same manner as in Definition 2.1.2.

Theorem 2.1.6 then has the following corollary whose proof is given in Section 2.3.

Corollary 2.1.8. Let k be a field, let U be a smooth affine k-scheme with a faithful action by a
finite linearly reductive group scheme G over Spec k. Let x ∈ U(K), where K/k is a finite separable
field extension, and suppose x is fixed by G. If G is generated by pseudo-reflections at x, then U/G
is smooth at the image of x. The converse holds if G is stable.

The second main result of this chapter is

Theorem 2.1.9. Let k be a field and let U be a smooth affine k-scheme with a faithful action by
a stable group scheme G over Spec k. Suppose K/k is a finite separable field extension and G fixes
a point x ∈ U(K). Let M = U/G, let M0 be the smooth locus of M , and let U0 = U ×M M0. If G
has no pseudo-reflections at x, then after possibly shrinking M to a smaller Zariski neighborhood
of the image of x, we have that U0 is a G-torsor over M0.
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We remark that in the classical case, Theorem 2.1.9 follows directly from Corollary 2.1.8
and the purity of the branch locus theorem [SGA1, X.3.1]. For us, however, a little more work is
needed since G is not necessarily étale.

As an application of Theorem 2.1.9, we generalize the well-known result (see for example [Vi,
2.9] or [FMN, Rmk 4.9]) that schemes with quotient singularities prime to the characteristic are
coarse spaces of smooth Deligne-Mumford stacks. We say a scheme has linearly reductive singu-
larities if it is étale locally the quotient of a smooth scheme by a finite linearly reductive group
scheme. We show that every such scheme M is the coarse space of a smooth tame Artin stack (in
the sense of [AOV, Def 3.1]) whose stacky structure is supported at the singular locus of M :

Theorem 2.1.10. Let k be a perfect field and M a k-scheme with linearly reductive singularities.
Then it is the coarse space of a smooth tame stack X over k such that f0 in the diagram

X0
j0 //

f0

��

X

f

��
M0

j
//M

is an isomorphism, where j is the inclusion of the smooth locus of M and X0 = M0 ×M X.

This chapter is organized as follows. In Section 2.2, we prove the “if” direction of Theorem
2.1.6 and reduce the proof of the “only if” direction to the special case of Theorem 2.1.9 in which
U = V∨(V ) for some k-vector space V with G-action (see the Notation section below). This special
case is proved in Section 2.3. The key input for the proof is a result of Iwanari [Iw, Thm 3.3] which
we reinterpret in the language of pseudo-reflections. We finish the section by proving Corollary
2.1.8. In Section 2.4, we use Corollary 2.1.8 to complete the proof of Theorem 2.1.9. In Section
2.5, we prove Theorem 2.1.10.

Notation. Throughout this chapter, k is a field and S = Spec k. If V is a k-vector space with an
action of a group scheme G, then we denote by V∨(V ), or simply V∨ if V is understood, the scheme
Spec k[V ] whose G-action is given by the dual representation on functor points. Said another way,
if G = SpecA is affine and its action on V is given by the co-action map σ : V −→ V ⊗k A, then
the co-action map k[V ] −→ k[V ]⊗kA defining the G-action on V∨ is given by

∑
aivi 7→

∑
aiσ(vi).

All Artin stacks in this chapter are assumed to have finite diagonal so that, by Keel-Mori [KM],
they have coarse spaces. Given a scheme U with an action of a finite flat group scheme G, we
denote by U/G the coarse space of the stack [U/G].

If R is a ring and I an ideal of R, then we denote by V (I) the closed subscheme of SpecR
defined by I.
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2.2 Linear Actions on Polynomial Rings

Our goal in this section is to prove the “if” direction of Theorem 2.1.6 and show how the
“only if” direction follows from the special case of Theorem 2.1.9 in which U = V∨. We begin
with examples of stable group schemes and with some basic results about the subgroup scheme
generated by pseudo-reflections.

Proposition 2.2.1. Let G be a finite group scheme over S. Consider the following conditions:

1. G is diagonalizable.

2. G is a constant group scheme.

3. k is perfect, the identity component ∆ of G is diagonalizable, and G/∆ is constant.

If any of the above conditions hold, then G is stable.

Proof. It is clear that finite diagonalizable group schemes and finite constant group schemes are
stable, so we consider the last case. Let Q = G/∆. Since k is perfect, the connected-étale sequence

1 −→ ∆ −→ G −→ Q −→ 1

is functorially split (see [Ta, 3.7 (IV)]). Let K/k be a finite extension and let P be a subgroup
scheme of GK . Letting ∆′ = P ∩∆K and Q′ = P/∆′, we have a commutative diagram

1 // ∆K
// GK // QK // 1

1 // ∆′ //

ϕ

OO

P //

OO

Q′ //

ψ

OO

1

with exact rows. Since ∆ is connected and has a k-point, [EGA4, 4.5.14] shows that ∆ is geomet-
rically connected. In particular, ∆K is the connected component of the identity of GK , and so ∆′

is the connected component of the identity of P . Therefore, the bottom row of the above diagram
is the connected-étale sequence of P , and so

P = ∆′ oQ′

as k is perfect. Since Q′ is a constant group scheme, it clearly descends to a subgroup scheme of
Q over k. Similarly, since ∆′ is diagonalizable, it is of the form SpecK[A] for some finite abelian
group A, and so it descends to a subgroup scheme of ∆. To show that P descends, note that its
underlying scheme is ∆′ ×K Q′ and its group structure is given by an action of Q′ on ∆′. This
action of Q′ is equivalent to an action of Q′ on A. We can therefore define a group scheme structure
on Spec k[A]×k Q′ using the same action of Q′ on A. This group scheme P0 over k then pulls back
to P over K.

Lastly, we must show that P0 is a subgroup scheme of G. Let ∗ denote the action of QK (resp. Q′)
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on ∆K (resp. ∆′). Since the splitting of the connected-étale sequence of a finite group scheme over
a perfect field is functorial, we see that for all q′ ∈ Q′ and local sections δ′ of ∆′,

ψ(q′) ∗ ϕ(δ′) = ϕ(q′ ∗ δ′).

We therefore obtain a morphism from P0 to G whose pullback to K is the morphism from P to
GK .

Lemma 2.2.2. Let V be a finite-dimensional k-vector space with a faithful action of a stable group
scheme G over S, and let H be the subgroup scheme generated by pseudo-reflections. If K/k is
a finite field extension, then a subgroup scheme of GK is a pseudo-reflection if and only if it de-
scends to a pseudo-reflection over k. Furthermore, HK is the subgroup scheme of GK generated by
pseudo-reflections.

Proof. Note that if N is a pseudo-reflection of G, then NK is a pseudo-reflection of GK , as

(VK)NK = (V N )K .

Since G is stable, this proves the first claim. The second claim follows from the fact that if P ′ and
P ′′ are subgroup schemes of G, then P ′

K contains P ′′
K if and only if P ′ contains P ′′.

We remark that even in characteristic zero, Lemma 2.2.2 is false for general finite linearly
reductive group schemes G, as the following example shows. Note that this example also shows
that the “only if” direction of Theorem 2.1.6 and of Corollary 2.1.8 is false for general finite linearly
reductive group schemes.

Example 2.2.3. Let k be a field contained in R or let k = Fp for p congruent to 3 mod 4.
Let K = k(i), where i2 = −1, and let G be the locally constant group scheme over Spec k whose
pullback to SpecK is Z/2× Z/2 with the Galois action that switches the two Z/2 factors. Let g1
and g2 be the generators of the two Z/2 factors and consider the action

ρ : GK −→ AutK(K2)

on the K-vector space K2 given by

ρ(g1) : (a, b) 7→ (−bi, ai)

ρ(g2) : (a, b) 7→ (bi,−ai).

Then ρ is Galois-equivariant and hence comes from an action of G on k2. Note that Z/2 × 1
and 1 × Z/2 are both pseudo-reflections of GK , as the subspaces which they fix are K · (1, i) and
K · (1,−i), respectively. Since GK is not a pseudo-reflection, it follows that there are no Galois-
invariant pseudo-reflections of GK , and hence, the subgroup scheme generated by pseudo-reflections
of G is trivial; the subgroup scheme generated by pseudo-reflections of GK , however, is GK .

Corollary 2.2.4. If V is a finite-dimensional k-vector space with a faithful action of a stable group
scheme G over S, then the subgroup scheme generated by pseudo-reflections is normal in G.
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Proof. We denote by H the subgroup scheme generated by pseudo-reflections. Let T be an S-
scheme and let g ∈ G(T ). We must show the subgroup schemes HT and gHT g

−1 of G are equal.
To do so, it suffices to check this on stalks and so we can assume T = SpecR, where R is strictly
Henselian. By [AOV, Lemma 2.17], we need only show that these two group schemes are equal
over the closed fiber of T , so we can further assume that R = K is a field. Since G is finite over S,
the residue fields of G are finite extensions of k. We can therefore assume that K/k is a finite field
extension.

By Lemma 2.2.2, we know that HK is the subgroup scheme of GK generated by pseudo-reflections.
Note that if N ′ is a pseudo-reflection of GK , then gN ′g−1 is as well since

V gN ′g−1

K = g(V N ′
K ).

As a result, gHKg
−1 = HK , which completes the proof.

Lemma 2.2.5. Given a finite-dimensional k-vector space V with a faithful action of a finite linearly
reductive group scheme G over S, let {Ni} denote the set of pseudo-reflections of G and let H be
the subgroup scheme generated by pseudo-reflections. Then

k[V ]H =
⋂
i

k[V ]Ni .

Proof. Let R =
⋂
i k[V ]Ni . Consider the functor

F : (k-alg) −→ (Groups)

A 7−→ {g ∈ G(A) | g(m) = m for all m ∈ R⊗k A}.

Since each k[V ]Ni is finitely-generated, we see that R is as well. Let ri ∈ k[V ] be generators for
R. We see then that F is the intersection of the stabilizers Grj , and so is represented by a closed
subgroup scheme of G. Since F contains every pseudo-reflection, we see H ⊂ F . We therefore have
the containments

R ⊂ k[V ]F ⊂ k[V ]H ⊂
⋂
i

k[V ]Ni

from which the lemma follows.

If N is any subgroup scheme of G, it is linearly reductive by [AOV, Prop 2.7]. It follows
that

V ' V N ⊕ V/V N (2.1)

as N -representations. If N is a pseudo-reflection, then dimk V/V
N = 1. Let v be a generator of the

1-dimensional subspace V/V N and let σ : V → V ⊗k B be the coaction map, where N = SpecB.
Then via the isomorphism (2.1), σ is given by

V N ⊕ V/V N −→ (V N ⊗k B)⊕ (V/V N ⊗k B)

(w,w′) 7−→ (w ⊗ 1, w′ ⊗ b)
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for some b ∈ B. It follows that there is a k-linear map h : V → B such that for all w ∈ V ,

σ(w)− (w ⊗ 1) = v ⊗ h(w).

If we continue to denote by σ the induced coaction map k[V ] −→ k[V ]⊗k B, we see that h extends
to a k[V ]N -module homomorphism k[V ] −→ k[V ] ⊗k B, which we continue to denote by h, such
that for all f ∈ k[V ],

σ(f)− (f ⊗ 1) = (v ⊗ 1) · h(f).

We are now ready to prove the “if” direction of Theorem 2.1.6. Our proof is only a slight variant
of the proof of the classical Chevalley-Shephard-Todd Theorem presented in [Sm].

Proof of “if” direction of Theorem 2.1.6. By Lemma 2.2.5, we know that the intersection R of the
k[V ]N is k[V ]G, where N runs through the pseudo-reflections of G. By the proposition on page
225 of [Sm], to show R is polynomial, we need only show that k[V ] is a free R-module. By graded
Nakayama, the projective dimension of k[V ] is the smallest integer i such that TorRi+1(k, k[V ]) = 0,
where k is viewed as an R-module via the augmentation map

ε : k[V ]G → k[V ]→ k

sending all positively graded elements to 0. We must therefore show TorR1 (k, k[V ]) = 0.

Tensoring the short exact sequence defined by ε with k[V ], we obtain a long exact sequence

0 −→ TorR1 (k, k[V ]) −→ ker ε⊗R k[V ]
φ−→ R⊗R k[V ] ε⊗1−→ k ⊗R k[V ] −→ 0.

To show TorR1 (k, k[V ]) = 0, we must prove that φ is injective. We in fact show

φ⊗ 1 : ker ε⊗R k[V ]⊗k C −→ k[V ]⊗k C

is injective for all finite-dimensional k-algebras C. If this is not the case, then the set

{ξ | C is a finite-dimensional k-algebra, 0 6= ξ ∈ ker ε⊗R k[V ]⊗k C, (φ⊗ 1)(ξ) = 0}

is non-empty and we can choose an element ξ of minimal degree, where ker ε is given its natural
grading as a submodule of k[V ] and the elements of C are defined to be of degree 0. We begin by
showing ξ ∈ ker ε⊗R R⊗k C. That is, we show ξ is fixed by all pseudo-reflections.

Let N = SpecB be a pseudo-reflection. Let σ : k[V ] −→ k[V ] ⊗ B be the coaction map. As
explained above, we get a k[V ]N -module homomorphism h : k[V ] −→ k[V ] ⊗ B. Note that this
morphism has degree -1. Since

(1⊗ σ ⊗ 1)(ξ)− ξ ⊗ 1 = (1⊗ h⊗ 1)(ξ) · (1⊗ v ⊗ 1⊗ 1),

the commutativity of

ker ε⊗ k[V ]⊗B ⊗ C φ⊗1⊗1 // k[V ]⊗B ⊗ C

ker ε⊗ k[V ]⊗ C

1⊗σ⊗1

OO

φ⊗1 // k[V ]⊗ C

σ⊗1

OO
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implies
(φ⊗ 1⊗ 1)(1⊗ h⊗ 1)(ξ) · (v ⊗ 1⊗ 1) = 0.

It follows that (1⊗h⊗1)(ξ) is killed by φ⊗1⊗1. Since h has degree -1, our assumption on ξ shows
that (1⊗h⊗1)(ξ) = 0. We therefore have (1⊗σ⊗1)(ξ) = ξ⊗1, which proves that ξ is N -invariant.

Since G is linearly reductive, we have a section of the inclusion k[V ]G ↪→ k[V ]. We therefore,
also obtain a section s of the inclusion j : R ↪→ k[V ]. Let ψ : ker ε ⊗R R −→ R be the canonical
map, and consider the diagram

ker ε⊗ k[V ]⊗ C φ⊗1 //

1⊗j⊗1

��

k[V ]⊗ C

j⊗1

��
ker ε⊗R⊗ C

ψ⊗1 //

1⊗s⊗1

OO

R⊗ C

s⊗1

OO

We see that

(j ⊗ 1)(ψ ⊗ 1)(1⊗ s⊗ 1)(ξ) = (φ⊗ 1)(1⊗ j ⊗ 1)(1⊗ s⊗ 1)(ξ) = (φ⊗ 1)(ξ) = 0.

But j ⊗ 1 and ψ ⊗ 1 are injective, so (1⊗ s⊗ 1)(ξ) = 0. Since ξ ∈ ker ε⊗R R⊗k C, it follows that
ξ = 0, which is a contradiction.

Now that we have proved the “if” direction of Theorem 2.1.6, we work toward reducing
the “only if” direction to the special case of Theorem 2.1.9 where U = V∨. The main step in this
reduction is showing that if G acts faithfully on V , and H denotes the subgroup scheme generated
by pseudo-reflections, then the action of G/H on V∨/H has no pseudo-reflections at the origin. In
the classical case, the proof of this statement relies on the fact that G has no pseudo-reflections if
and only if V∨ → V∨/G is étale in codimension one. In our case, however, this relation between
pseudo-reflections and ramification no longer holds. For example, if k has characteristic 2 and
G = µ2 acts on V = kx⊕ ky by sending x to ζx and y to ζy, then V∨ → V∨/G is ramified at every
height 1 prime, but G has no pseudo-reflections.

Nonetheless, we introduce the following functor which, for our purposes, should be thought of
as an analogue of the inertia group. If v ∈ V and P is the ideal of k[V ] generated by v, then let

IP : (k-alg) −→ (Groups)

R 7−→ {g ∈ G(R) | for all R-algebras R′ and all f ∈ (V ⊗R′)∨

such that f(v ⊗ 1) = 0, we have (g(f))(v ⊗ 1) = 0}.
Note that in the above example, IP = 1 for all homomgeneous height one primes P. So our “inertia
groups” do not capture information about ramification, but they are related to pseudo-reflections,
as the following lemma shows.

Lemma 2.2.6. If G acts faithfully on V and stabilizes the closed subscheme V (P) of V∨ defined
by P = (v) for some v ∈ V , then IP = 1 if and only if G has no pseudo-reflections acting trivially
on P.
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Proof. Since G stabilizes V (P), we have a morphism G→ Aut(V (P)) of sheaves of groups. We see
then that IP is a closed subgroup scheme of G, as it is the kernel of the above morphism. If N is any
pseudo-reflection of G which acts trivially on V (P), then it is clearly contained in IP. Conversely,
since IP is a closed subgroup scheme of G which acts trivially on V (P), it is a pseudo-reflection.
This completes the proof.

We now prove a general result concerning faithful actions by group schemes.

Lemma 2.2.7. Let G be a finite group scheme which acts faithfully on an affine scheme U . If H
is a normal subgroup scheme of G, then the action of G/H on U/H is faithful.

Proof. Let X = [U/H] and let π : U → U/H be the natural map. We must show that if G′ is a
subgroup scheme of G such that G′/H acts trivially on U/H, then G′ = H. Replacing G by G′,
we can assume G′ = G.

Since G acts faithfully on U , there is a non-empty open substack of X which is isomorphic to
its coarse space. That is, we have a non-empty open subscheme V of U/H over which π is an
H-torsor. Let P = V ×U/H U . Since G acts on P over V , we obtain a morphism

s : G −→ Aut(P ) = H.

Note that s is a section of the closed immersion H → G, so H = G.

With the above results in place, we are ready to prove that after quotienting by the
subgroup scheme generated by pseudo-reflections, there are no pseudo-reflections in the resulting
action. We then use this result to prove the “only if” direction of Theorem 2.1.6, assuming the
special case of Theorem 2.1.9 in which U = V∨.

Proposition 2.2.8. Let G be a finite linearly reductive group scheme over S with a faithful action
on a finite-dimensional k-vector space V . Let U = V∨ and H be the subgroup scheme of G generated
by pseudo-reflections. Then the induced action of G/H on U/H ' An

k has no pseudo-reflections at
the origin.

Proof. By the “if” direction of Theorem 2.1.6, we have k[V ]H = k[W ] for some subvector space
W of k[V ]. The proof of [Ne, Prop 6.19] shows that the degrees of the homogeneous generators of
k[V ]H are determined. As a result, the action of G/H on k[W ] is linear. Lemma 2.2.7 further tells
us that this action is faithful.

Suppose N/H is a pseudo-reflection at the origin of the G/H-action on U/H. Then there is some
w ∈ W such that N/H acts trivially on the closed subscheme V (p) of U/H defined by p = (w).
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Let H = SpecA, N = SpecB, and N/H = SpecC. We have a commutative diagram

k[V ]⊗k A

k[V ]

σA

88qqqqqqqqqqq

σB

// k[V ]⊗k B

OO

k[V ]H

i

OO

σC

// k[V ]H ⊗k C

j

OO

where the σ denote the corresponding coaction maps. Since H is linearly reductive, there is a
section s of i. Since N/H is a pseudo-reflection, we see that w ⊗ 1 divides σC(f) − f ⊗ 1 for all
f ∈ k[V ]H . In particular, this holds when f = s(v) for any v ∈ V . There is some v ∈ V such that
σB(v)−v⊗1 is non-zero, as the action of G on V is faithful. Since w⊗1 divides σC(s(v))−s(v)⊗1,
applying j shows that w ⊗ 1 divides σB(v) − v ⊗ 1. Since σB(v) − v ⊗ 1 lies in V ⊗ B, it follows
that w has no higher degree terms; that is, w ∈ V .

Let P be the height one prime of k[V ] generated by w. Since jσC(w) = σB(i(w)), we see that N
stabilizes the closed subscheme V (P) of U . Note that the diagram

V (P) //

��

V∨

��
V (p) // V∨/H

is cartesian, as P = i(p)k[V ]. Since H is linearly reductive, it follows that

V (P)/H = V (p).

Let IP denote the “inertia group” of the N -action on V∨. Then, by Lemma 2.2.6, to complete the
proof we must show that IP is non-trivial. Since IP is the kernel of

N → Aut(V (P)),

if IP = 1, then N acts faithfully on V (P). Since the action of N/H on V (p) is trivial, Lemma 2.2.7
shows that N = H, and so N/H is not a pseudo-reflection.

Proof of “only if” direction of Theorem 2.1.6. LetH be the subgroup scheme generated by pseudo-
reflections. By the “if” direction, k[V ]H is polynomial and as explained in the proof of Proposition
2.2.8, the G/H-action on k[V ]H is linear. Since G/H acts on U/H without pseudo-reflections at the
origin by Proposition 2.2.8, and since M = U/G is smooth by assumption, Theorem 2.1.9 implies
that U/H is a G/H-torsor over U/G after potentially shrinking U/G. Since the origin of U/H is
a fixed point, we conclude that G = H.
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2.3 Theorem 2.1.9 for Linear Actions on Polynomial Rings

In Section 2.2, we reduced the proof of the “only if” direction of Theorem 2.1.6 to

Proposition 2.3.1. Let G be a stable group scheme over S which acts faithfully on a finite-
dimensional k-vector space V . Then Theorem 2.1.9 holds when U = V∨ and x is the origin.

The proof of this proposition is given in two steps. We handle the case when G is diago-
nalizable in Subsection 2.3.1 and then handle the general case in Subsection 2.3.2 by making use
of the diagonalizable case.

2.3.1 Reinterpreting a Result of Iwanari

The key to proving Proposition 2.3.1 for diagonalizable G is provided by Theorem 3.3 and
Proposition 3.4 of [Iw] after we reinterpret them in the language of pseudo-reflections. We refer the
reader to [Iw, p.4-6] for the basic definitions concerning monoids. We recall the following definition
given in [Iw, Def 2.5].

Definition 2.3.2. An injective morphism i : P → F from a simplicially toric sharp monoid to a
free monoid is called a minimal free resolution if i is close and if for all injective close morphisms
i′ : P → F ′ to a free monoid F ′ of the same rank as F , there is a unique morphism j : F → F ′

such that i′ = ji.

Given a faithful action of a finite diagonalizable group scheme ∆ over S on a k-vector
space V of dimension n, we can decompose V as a direct sum of 1-dimensional ∆-representations.
Therefore, after choosing an appropriate basis, we have an identification of k[V ] with k[Nn] and
can assume that the ∆-action on U = V∨ is induced from a morphism of monoids

π : F = Nn −→ A,

where A is the finite abelian group such that ∆ is the Cartier dual D(A) of A. We see then that

U/∆ = Spec k[P ],

where P is the submonoid {p | π(p) = 0} of F . Note that P is simplicially toric sharp, that
i : P → F is close, and that A = F gp/i(P gp).

We now give the relationship between minimal free resolutions and pseudo-reflections.

Proposition 2.3.3. With notation as above, i : P → F is a minimal free resolution if and only if
the action of ∆ on V has no pseudo-reflections.

Proof. If i is not a minimal free resolution, then without loss of generality, i = ji′, where i′ : P → F
is close and injective, and j : F → F is given by

j(a1, a2, . . . , an) = (ma1, a2, . . . , an)
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with m 6= 1. We have then a short exact sequence

0 −→ F gp/i′(P gp) −→ F gp/i(P gp) −→ F gp/(m, 1, . . . , 1)(F gp) −→ 0.

Let N be the Cartier dual of F gp/(m, 1, . . . , 1)(F gp), which is a subgroup scheme of ∆. Letting
{xi} be the standard basis of F , we see that

k[F ]N = k[xm1 , x2, . . . , xn],

and so V N , which is the degree 1 part of k[F ]N , has codimension 1 in V . Therefore, N is a pseudo-
reflection.

Conversely, suppose N is a pseudo-reflection. Since N is a subgroup scheme of ∆, it is diago-
nalizable as well. Let N = Spec k[B], where B is a finite abelian group and let ψ : A → B be the
induced map. We see that

V N =
⊕
i6=j

kxi

for some j. Without loss of generality, j = 1. It follows then that

{f ∈ F | ψπ(f) = 0} = (m, 1, . . . , 1)F

for some m dividing |B|. Since the ∆ action on V is assumed to be faithful, we see, in fact, that
m = |B|. Therefore, i factors through ·(m, 1, . . . , 1) : F −→ F , which shows that i is not a minimal
free resolution.

Having reinterpreted minimal free resolutions, the proof of Proposition 2.3.1 for diagonal-
izable group schemes G follows easily from Iwanari’s work.

Proposition 2.3.4. Let G = ∆ be a finite diagonalizable group scheme over S which acts faithfully
on a finite-dimensional k-vector space V . Then Theorem 2.1.9 holds when U = V∨ and x is the
origin. In this case it is not necessary to shrink M to a smaller Zariski neighborhood of the image
of x.

Proof. Let F and P be as above, and let X = [U/∆]. By Proposition 2.3.3, the morphism i : P → F
is a minimal free resolution. Theorem 3.3 (1) and Proposition 3.4 of [Iw] then show that the natural
morphism X×M M0 →M0 is an isomorphism. Since X×M M0 = [U0/∆], we see U0 is a ∆-torsor
over M0.

2.3.2 Finishing the Proof

The goal of this subsection is to prove Proposition 2.3.1. The main result used in the
proof of this proposition, as well as in the proof of Theorem 2.1.9, is the following.

Proposition 2.3.5. Let notation and hypotheses be as in Theorem 2.1.9. Let X = U/∆ and
G = ∆oQ, where ∆ is diagonalizable and Q is constant and tame. If in addition to assuming that
G acts without pseudo-reflections at x, we assume that ∆ is local and that the base change of U to
Xsm is a ∆-torsor over Xsm, then after possibly shrinking M to a smaller Zariski neighborhood of
the image of x, the quotient map f : X →M is unramified in codimension 1.



17

Proof. Let g be the quotient map U → X. For every q ∈ Q, consider the cartesian diagram

Zq //

��

U

∆
��

U
Γq // U × U

where Γq(u) = (u, qu). We see that Zq is a closed subscheme of U and that Zq(T ) is the set of
u ∈ U(T ) which are fixed by q. Let Z be the closed subset of U which is the union of the Zq for
q 6= 1. Since the action of G on U is faithful, Z is not all of U . Let Z ′ be the union of the codimen-
sion 1 components of Z. Since fg is finite, we see that fg(Z ′) is a closed subset of M . Moreover,
fg(Z ′) does not contain the image of x, as G is assumed to act without pseudo-reflections at x. By
shrinking M to M−fg(Z ′), we can assume that no non-trivial q ∈ Q acts trivially on a divisor of U .

Let U = SpecR. The morphism f is unramified in codimension 1 if and only if the (traditional)
inertia groups of all height 1 primes p of R∆ are trivial. So, we must show that if q ∈ Q acts
trivially on V (p), then q = 1. Since g is finite, and hence integral, the going up theorem shows that

pR = Pe1
1 + · · ·+ Pen

n ,

where the Pi are height 1 primes and the ei are positive integers. Note that X is normal and so
the complement of Xsm in X has codimension at least 2. As a result,

h : U ×X SpecOX,p −→ SpecOX,p

is a ∆-torsor. Since ∆ is local, h is a homeomorphism of topological spaces, so there is exactly one
prime P lying over p. We see then that U ×X V (p) = V (Pe) for some e.

Let V (p)0 be the intersection of V (p) with Xsm, and let Z0 = U ×X V (p)0. Then Z0 is a ∆-
torsor over V (p)0. Since q acts trivially on V (p), we obtain an action of q on Z0 over V (p)0, and
hence a group scheme homomorphism

ϕ : Q′
V (p)0 −→ Aut(Z

0/V (p)0) = ∆V (p)0 ,

where Q′ denotes the subgroup of Q generated by q. Since V (p)0 is reduced, we see that ϕ factors
through the reduction of ∆V (p)0 , which is the trivial group scheme. Therefore, q acts trivially on Z0.

Since the complement of Xsm in X has codimension at least 2, and since g factors as a flat map
U → [U/∆] followed by a coarse space map [U/∆]→ X, both of which are codimesion-preserving
(see Definition 4.2 and Remark 4.3 of [FMN]), we see that the complement of Z0 in V (Pe) has
codimension at least 2. Note that if Y is a normal scheme and W is an open subscheme of Y whose
complement has codimension at least 2, then any morphism from W to an affine scheme Z extends
uniquely to a morphism from Y to Z. Since the action of q on V (Pe) restricts to a trivial action
on Z0, the action of q on V (Pe) is trivial. Therefore, q acts trivially on a divisor of U , and so
q = 1.
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Proof of Proposition 2.3.1. Let k′/k be a finite Galois extension such that Gk′ ' ∆ oQ, where ∆
is diagonalizable and Q is constant and tame. Let S′ = Spec k′ and consider the diagram

U ′ //

��

U

��
M ′ //

��

M

��
S′ // S

where the squares are cartesian. We denote by x′ the induced k′-rational point of U ′. Since ∆
is the product of a local diagonalizable group scheme and a locally constant diagonalizable group
scheme, replacing k′ by a further extension if necessary, we can assume that ∆ is local.

Since G is stable, Gk′ has no pseudo-reflections at x′. It follows then from Proposition 2.3.5
that there exists an open neighborhood W ′ of x′ such that U ′ ×M ′ W ′ −→ W ′ is unramified in
codimension 1. Since k′/k is a finite Galois extension, replacing W ′ by the intersection of the
τ(W ′) as τ ranges over the elements of Gal(k′/k), we can assume W ′ is Galois-invariant. Hence,
W ′ = W ×M M ′ for some open subset W of M . We shrink M to W .

To check that U0 is a G-torsor over M0, we can look étale locally. We can therefore assume
S = S′. Let X = U/∆, and let g : U → X and f : X → M be the quotient maps. We denote by
X0 the fiber product X ×M M0 and by f0 the induced morphism X0 →M0.

By Proposition 2.3.4, we know that the base change of U to Xsm is a ∆-torsor over Xsm. Since f is
unramified in codimension 1, we see that f0 is as well. Since M0 is smooth and X0 is normal, the
purity of the branch locus theorem [SGA1, X.3.1] implies that f0 is étale, and hence a Q-torsor.
Since X0 is étale over M0, it is smooth. As a result, U0 is a ∆-torsor over X0 from which it follows
that U0 is a G-torsor over M0.

This finishes the proof of Proposition 2.3.1, and hence also of Theorem 2.1.6. We conclude
this section by proving Corollary 2.1.8.

Proof of Corollary 2.1.8. Let U = SpecR and M = U/G. We denote by y the image of x. Since
G being generated by pseudo-reflections at x implies that GK is generated by pseudo-reflections
at x for arbitrary finite linearly reductive group schemes G, and since smoothness of M at y
can be checked étale locally, we can assume that x is k-rational. Let V = mx/m

2
x be the cotan-

gent space of x. As G is linearly reductive, there is a G-equivariant section of mx → V . This
yields a G-equivariant map Sym•(V ) → R, which induces an isomorphism k[[V ]] −→ ÔU,x of G-
representations. That is, complete locally, we have linearized the G-action. Since ÔM,y = k[[V ]]G,
the corollary follows from Theorem 2.1.6, as M is smooth at y if and only if ÔM,y is a formal power
series ring over k.
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2.4 Actions on Smooth Schemes

Having proved Theorem 2.1.9 for polynomial rings with linear actions, we now turn to the
general case. We begin with two preliminary lemmas and a technical proposition.

Lemma 2.4.1. Let U be a smooth affine scheme over S with an action of a finite diagonalizable
group scheme ∆. Then there is a closed subscheme Z of U on which ∆ acts trivially, and with the
property that every closed subscheme Y on which ∆ acts trivially factors through Z. Furthermore,
the construction of Z commutes with flat base change on U/∆.

Proof. Let U = SpecR and ∆ = Spec k[A], where A is a finite abelian group written additively.
The ∆-action on U yields an A-grading

R =
⊕
a∈A

Ra.

We see that if J is an ideal of R, then ∆ acts trivially on Y = SpecR/J if and only if J contains
the Ra for a 6= 0. Letting I be the ideal generated by the Ra for a 6= 0, we see that SpecR/I is
our desired Z.

We now show that the formation of Z commutes with flat base change. Note that

U/∆ = SpecR0.

Let R′
0 be a flat R0-algebra and let R′ = R′

0 ⊗R0 R. The induced ∆-action on SpecR′ corresponds
to the A-grading

R′ =
⊕
a∈A

(R′
0 ⊗R0 Ra).

Since R′
0 is flat over R0, we see that I ⊗R0 R

′
0 is an ideal of R′, and one easily shows that it is the

ideal generated by the R′
0 ⊗R0 Ra for a 6= 0.

Recall that if G is a group scheme over a base scheme B which acts on a B-scheme U ,
and if y : T → U is a morphism of B-schemes, then the stabilizer group scheme Gy is defined by
the cartesian diagram

Gy //

��

G×B U
ϕ

��
T

y×y // U ×B U

where ϕ(g, u) = (gu, u). If U is separated over B, then Gy is a closed subgroup scheme of GT .

Lemma 2.4.2. Let B be a scheme and G a finite flat group scheme over B. If G acts on a B-
scheme U , then U → U/G is a G-torsor if and only if the stabilizer group schemes Gy are trivial
for all closed points y of U .
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Proof. The “only if” direction is clear. To prove the “if” direction, it suffices to show that the
stabilizer group schemes Gy are trivial for all scheme valued points y : T → U . This is equivalent
to showing that the universal stabilizer Gu is trivial, where u : U → U is the identity map. Since
Gu is a finite group scheme over U , it is given by a coherent sheaf F on U . The support of F is
a closed subset, and so to prove Gu is trivial, it suffices to check this on stalks of closed points.
Nakayama’s Lemma then shows that we need only check the triviality of Gu on closed fibers. That
is, we need only check that the Gy are trivial for closed points y of U .

Proposition 2.4.3. Let U be a smooth affine scheme over S with a faithful action of a stable
group scheme G fixing a k-rational point x. If N has a pseudo-reflection at x, then there is an étale
neighborhood T −→ U/G of x and a divisor D of UT defined by a principal ideal on which NT acts
trivially.

Proof. Let M = U/G and let y be the image of x in M . As in the proof of Corollary 2.1.8, we
have an isomorphism k[[V ]] −→ ÔU,x of G-representations, where V = mx/m

2
x. If N is a pseudo-

reflection at x, then there is some v ∈ V such that N acts trivially on the closed subscheme of
Spec k[[V ]] defined by the prime ideal generated by v.

Consider the contravariant functor F which sends an M -scheme T to the set of divisors of UT
defined by a principal ideal on which NT acts trivially. As F is locally of finite presentation and
U ×M Spec ÔM,y = Spec ÔU,x, Artin’s Approximation Theorem [Ar] finishes the proof.

We are now ready to prove Theorem 2.1.9. Our method of proof is similar to that of
Proposition 2.3.1; we first prove the theorem in the case that G is diagonalizable and then make
use of this case to prove the theorem in general.

Proposition 2.4.4. Theorem 2.1.9 holds when G = ∆ is a finite diagonalizable group scheme.

Proof. Let g : U → M be the quotient map. Since any subgroup scheme N of ∆ is again finite
diagonalizable, Lemma 2.4.1 shows that for every N , there exists a closed subscheme ZN of U on
which N acts trivially, and with the property that every closed subscheme Y on which N acts
trivially factors through ZN . Let Z be the union of the finitely many closed subsets ZN for N 6= 1.
Since the action of ∆ on U is faithful, Z has codimension at least 1. Let Z ′ be the union of all
irreducible components of Z which have codimension 1. Since ∆ acts without pseudo-reflections at
x, we see x /∈ Z ′. Note that g(Z ′) is closed as g is proper. Since the construction of Z commutes
with flat base change on M and since flat morphisms are codimension-preserving, replacing M with
M − g(Z ′), we can assume that there are no non-trivial subgroup schemes of ∆ which fppf locally
on M act trivially on a divisor of U .

By Lemma 2.4.2, to show U0 is a ∆-torsor over M0, it suffices to show that for every closed
point y of U which maps to M0, the stabilizer group scheme ∆y is trivial. Fix such a closed point
y and let T = Spec k(y). Since T is fppf over S, we see from Proposition 2.4.3 that the closed
subgroup scheme ∆y of ∆T acts faithfully on UT without pseudo-reflections at the k(y)-rational
point y′ of UT induced by y. Since y maps to a smooth point of M , it follows that y′ maps to a
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smooth point of MT . Corollary 2.1.8 then shows that ∆y is generated by pseudo-reflections. Since
∆y has no pseudo-reflections, it is therefore trivial.

Proof of Theorem 2.1.9. If G = ∆oQ, where ∆ is diagonalizable and Q is constant and tame, then
letting Z ′ be as in Proposition 2.4.4 and letting U , X, f , and g be as in the proof of Proposition
2.3.1, the proof of Proposition 2.4.4 shows that after replacing M by M − fg(Z ′), the base change
of U to Xsm is a ∆-torsor over Xsm. As in the proof of Proposition 2.3.1, we can then reduce the
general case to the case when G = ∆ oQ, where ∆ is local diagonalizable and Q is constant tame.
The last paragraph of the proof of Proposition 2.3.1 then shows that U0 is a G-torsor over M0.

2.5 Schemes with Linearly Reductive Singularities

Let k be a perfect field of characteristic p.

Definition 2.5.1. We say a scheme M over S has linearly reductive singularities if there is an
étale cover {Ui/Gi →M}, where the Ui are smooth over S and the Gi are linearly reductive group
schemes which are finite over S.

Note that if M has linearly reductive singularities, then it is automatically normal and in
fact Cohen-Macaulay by [HR, p.115].

Our goal in this section is to prove Theorem 2.1.10, which generalizes the result that every scheme
with quotient singularities prime to the characteristic is the coarse space of a smooth Deligne-
Mumford stack. We remark that in the case of quotient singularities, the converse of the analogous
theorem is true as well; that is, every scheme which is the coarse space of a smooth Deligne-Mumford
stack has quotient singularities. It is not clear, however, that the converse of Theorem 2.1.10 should
hold. We know from Theorem 3.2 of [AOV] that X is étale locally [V/G0], where G0 is a finite flat
linearly reductive group scheme over V/G0, but V need not be smooth and G0 need not be the
base change of a group scheme over S. On the other hand, Proposition 2.5.2 below shows that X

is étale locally [U/G] where U is smooth and G is a group scheme over S, but here G is not finite.

Before proving Theorem 2.1.10, we begin with a technical proposition followed by a series of lemmas.

Proposition 2.5.2. Let X be a tame stack over S with coarse space M . Then there exists an étale
cover T →M such that

X×M T = [U/Gr
m,T oH],

where H is a finite constant tame group scheme and U is affine over T . Furthermore, Gr
m,T o H

is the base change to T of a group scheme Gr
m,S oH over S, so X×M T = [U/Gr

m,S oH].

Proof. Theorem 3.2 of [AOV] shows that there exists an étale cover T →M and a finite flat linearly
reductive group scheme G0 over T acting on a finite finitely presented scheme V over T such that

X×M T = [V/G0].
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By [AOV, Lemma 2.20], after replacing T by a finer étale cover if necessary, we can assume there
is a short exact sequence

1→ ∆→ G0 → H → 1,

where ∆ = SpecOT [A] is a finite diagonalizable group scheme and H is a finite constant tame
group scheme. Since ∆ is abelian, the conjugation action of G0 on ∆ passes to an action

H → Aut(∆) = Aut(A).

Choosing a surjection F → A in the category of Z[H]-modules from a free module F , yields an
H-equivariant morphism ∆ ↪→ Gr

m,T . Using the H-action on Gr
m,T , we define the group scheme

Gr
m,T oG0 over T . Note that there is an embedding

∆ ↪→ Gr
m,T oG0

sending δ to (δ, δ−1), which realizes ∆ as a normal subgroup scheme of Gr
m,T oG0. We can therefore

define
G := (Gr

m,T oG0)/∆.

One checks that there is a commutative diagram

1 // ∆ //

��

G0
//

��

H //

id

��

1

1 // Gr
m,T

// G
π // H // 1

where the rows are exact and the vertical arrows are injective.

We show that étale locally on T , there is a group scheme-theoretic section of π, so that G =
Gr
m,T o H. Let P be the sheaf on T such that for any T -scheme W , P (W ) is the set of group

scheme-theoretic sections of πW : GW → HW . Note that the sheaf Hom(H,G) parameterizing
group scheme homomorphisms from H to G is representable since it is a closed subscheme of G×|H|

cut out by suitable equations. We see that P is the equalizer of the two maps

Hom(H,G)
p1 //
p2
// H×|H|

where p1(φ) = (πφ(h))h and p2(φ) = (h)h. That is, there is a cartesian diagram

P //

��

Hom(H,G)

(p1,p2)

��
H×|H| ∆ // H×|H| ×H×|H|

Since H is separated over T , we see that P is a closed subscheme of Hom(H,G). In particular,
it is representable and locally of finite presentation over T . Furthermore, P → T is surjective as
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[AOV, Lemma 2.16] shows that it has a section fppf locally. To show P has a section étale locally,
by [EGA4, 17.16.3], it suffices to prove P is smooth over T .

Given a commutative diagram
X0 = SpecA/I //

��

P

��
X = SpecA //

88qqqqqq
T

with I a square zero ideal, we want to find a dotted arrow making the diagram commute. That is,
given a group scheme-theoretic section s0 : GW0 → HW0 of πW0 , we want to find a group scheme
homomorphism s : GW → HW which pulls back to s0 and such that πW ◦ s is the identity. Note
first that any group scheme homomorphism s which pulls back to s0 is automatically a section of
πW since H is a finite constant group scheme and πW ◦ s pulls back to the identity over W0. By
[SGA3, Exp. III 2.3], the obstruction to lifting s0 to a group scheme homomorphism lies in

H2(H,Lie(G)⊗ I),

which vanishes as H is linearly reductive. This proves the smoothness of P .

To complete the proof of the lemma, let U := V ×G0 G and note that

X×M T = [V/G0] = [U/G].

Since V is finite over T and G is affine over T , it follows that U is affine over T as well. Replacing
T by a finer étale cover if necessary, we have

X×M T = [U/Gr
m,T oH].

Lastly, the scheme underlying Gr
m,T oH is Gr

m,T ×TH and its group scheme structure is determined
by the action H → Aut(Gr

m,T ). Since Aut(Gr
m,T ) = Aut(Zr), we can use this same action to

define the semi-direct product Gr
m,S o H and it is clear that this group scheme base changes to

Gr
m,T oH.

Lemma 2.5.3. If V is a smooth S-scheme with an action of finite linearly reductive group scheme
G0 over S, then [V/G0] is smooth over S.

Proof. Let X = [V/G0]. To prove X is smooth, it suffices to work étale locally on S, where, by
[AOV, Lemma 2.20], we can assume G0 fits into a short exact sequence

1→ ∆→ G0 → H → 1,

where ∆ is a finite diagonalizable group scheme and H is a finite constant tame group scheme. Let
G be obtained from G0 as in the proof of Proposition 2.5.2 and let U = V ×G0 G. Since X = [U/G],
it suffices to show U is smooth over S. The action of G0 on V ×G, given by g0 · (v, g) = (vg0, g0g),
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is free as the G0-action on G is free. As a result, U = [(V × G)/G0] and G/G0 = [G/G0]. Since
the projection map p : V ×G→ G is G0-equivariant, we have a cartesian diagram

V ×G
p //

��

G

��
U

q // G/G0

Since p is smooth, q is as well. Since G→ [G/G0] = G/G0 is flat and G is smooth, [EGA4, 17.7.7]
shows that G/G0 is smooth, and so U is as well.

Lemma 2.5.4. Let X be a smooth S-scheme and i : U ↪→ X an open subscheme whose complement
has codimension at least 2. Let P be a G-torsor on U , where G = Gr

moH and H is a finite constant
étale group scheme. Then P extends uniquely to a G-torsor on X.

Proof. The structure map from P to U factors as P → P0 → U , where P is a Gr
m-torsor over P0

and P0 is an H-torsor over U . Since the complement of U in X has codimension at least 2, we
have π1(U) = π1(X) and so P0 extends uniquely to an H-torsor Q0 on X. Let i0 : P0 ↪→ Q0 be the
inclusion map. Since Q0 is smooth and the complement of P0 in Q0 has codimension at least 2, the
natural map Pic(Q0)→ Pic(P0) is an isomorphism. It follows that any line bundle over P0 can be
extended uniquely to a line bundle over Q0. We can therefore inductively construct a unique lift
of P over X.

Our proof of the following lemma closely follows that of [FMN, Thm 4.6].

Lemma 2.5.5. Let f : Y →M be an S-morphism from a smooth tame stack Y to its coarse space
which pulls back to an isomorphism over the smooth locus M0 of M . If h : X→M is a dominant,
codimension-preserving morphism (see [FMN, Def 4.2]) from a smooth tame stack, then there is a
morphism g : X→ Y, unique up to unique isomorphism, such that fg = h.

Proof. We show that if such a morphism g exists, then it is unique. Suppose g1 and g2 are two
such morphisms. We see then that g1|h−1(M0) = g2|h−1(M0). Since h is dominant and codimension-
preserving, h−1(M0) is open and dense in X. Proposition 1.2 of [FMN] shows that if X and Y
are Deligne-Mumford with X normal and Y separated, then g1 and g2 are uniquely isomorphic.
The proof, however, applies equally well to tame stacks since the only key ingredient used about
Deligne-Mumford stacks is that they are locally [U/G] where G is a separated group scheme.

By uniqueness, to show the existence of g, we can assume by Proposition 2.5.2 that Y = [U/G],
where U is smooth and affine, and G = Gr

m oH, where H is a finite constant tame group scheme.
Let p : V → X be a smooth cover by a smooth scheme. Since smooth morphisms are dominant
and codimension-preserving, uniqueness implies that to show the existence of g, we need only show
there is a morphism g1 : V → Y such that fg1 = hp. So, we can assume X = V .

Given a stack Z over M , let Z0 = M0 ×M Z. Given a morphism π : Z1 → Z2 of M -stacks,
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let π0 : Z0
1 → Z0

2 denote the induced morphism. Since f0 is an isomorphism, there is a mor-
phism g0 : V 0 → Y0 such that f0g0 = h0. It follows that there is a G-torsor P 0 over V 0 and a
G-equivariant map from P 0 to U0 such that the diagram

P 0 //

��

U0

��
V 0

��

// Y0

'}}{{
{{

{{
{{

M0

commutes and the square is cartesian. By Lemma 2.5.4, P 0 extends to a G-torsor P over V .

Note that if X is a normal algebraic space and i : W ↪→ X is an open subalgebraic space whose
complement has codimension at least 2, then any morphism from W to an affine scheme Y extends
uniquely to a morphism X → Y . As a result, the morphism from P 0 to U0 extends to a morphism
q : P → U . Consider the diagram

G× P
id×q //

��

G× U

��
P

q // U

where the vertical arrows are the action maps. Precomposing either of the two maps in the diagram
from G × P to U by the inclusion G × P 0 ↪→ G × P yields the same morphism. That is, the two
maps from G× P to U are both extensions of the same map from G× P 0 to the affine scheme U ,
and hence are equal. This shows that q is G-equivariant, and therefore yields a map g : V → Y
such that fg = h.

Proof of Theorem 2.1.10. We begin with the following observation. Suppose U is smooth and affine
over S with a faithful action of a finite linearly reductive group scheme G over S. Let y be a closed
point of U mapping to x ∈ U/G. After making the étale base change Spec k(y)→ S, we can assume
y is a k-rational point. Let Gy be the stabilizer subgroup scheme of G fixing y. Since

U/Gy −→ U/G

is étale at y, replacing U/G by an étale cover, we can further assume that G fixes y. Then by
Corollary 2.1.8, we can assume G has no pseudo-reflections at y, and hence, Theorem 2.1.9 shows
that after shrinking U/G about x, we can assume that the base change of U to the smooth locus
of U/G is a G-torsor.

We now turn to the proof. Since M has linearly reductive singularities, there is an étale cover
{Ui/Gi → M}, where Ui is smooth and affine over S and Gi is a finite linearly reductive group
scheme over S which acts faithfully on Ui. By the above discussion, replacing this étale cover by
a finer étale cover if necessary, we can assume that the base change of Ui to the smooth locus of
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Ui/Gi is a Gi-torsor. Let Mi = Ui/Gi and Xi = [Ui/Gi]. We see that the Xi are locally the desired
stacks, so we need only glue the Xi. Let Mij = Mi ×M Mj and let Vi → Xi be a smooth cover.
Since Mij is the coarse space of both Xi ×Mi Mij and Xj ×Mj Mij , and since coarse space maps
are dominant and codimension-preserving, Lemma 2.5.5 shows that there is a unique isomorphism
of Xi ×Mi Mij and Xj ×Mj Mij . Identifying these two stacks via this isomorphism, let Iij be the
fiber product over the stack of Vi ×Mi Mij and Vj ×Mj Mij . We see then that we have a morphism
Iij → Ui ×M Uj . This yields a groupoid∐

Iij →
∐

Ui ×M Uj ,

which defines our desired glued stack X. Note that X is smooth and tame by [AOV, Thm 3.2].
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Chapter 3

Stacky Resolutions of Toroidal
Embeddings

3.1 Introduction

This chapter is concerned with proving the second of our stacky resolution theorems. As
mentioned in Chapter 1, it is a well-known result (see for example [Vi, 2.9] or [FMN, Rmk 4.9])
that if k is a field and X is a k-scheme with quotient singularities prime to the characteristic of
k, then there is a canonical smooth Deligne-Mumford stack X with coarse space X such that the
stacky structure of X is supported on the singular locus of X. If the singularities of X are worse
than quotient singularities, however, we can no longer hope to find a stacky resolution of X by us-
ing Deligne-Mumford stacks. Typically Artin stacks do not have coarse spaces and the appropriate
notion that replaces coarse space is that of good moduli space (in the sense of J. Alper [Al, Def 1.4]).

Inspired by the work of Iwanari [Iw], we take a different approach toward the problem of find-
ing a stacky resolution of X by a smooth algebraic stack. Namely, we restrict attention to a class
of schemes which carry more structure in hopes of being able to both construct our desired stacky
resolution and say more about that stack than we could for an arbitrary scheme. This richer class
of schemes we look at is that of fs log smooth log schemes X over k, where Spec k is given the trivial
log structure (or equivalently, the class of toroidal embeddings which are not necessarily strict).
Our main stacky resolution theorem of this chapter is then:

Theorem 3.3.2. Let k be field and X be an fs log scheme which is log smooth over S = Spec k,
where S is given the trivial log structure. Then there exists a smooth, log smooth log Artin stack
X over S and a morphism f : X → X over S which realizes X as the good moduli space of X.
Moreover, the base change of f to the smooth locus of X is an isomorphism.

This is a generalization of [Iw, Thm 3.3] where the result is proved for X all of whose
charts are given by simplicial toric varieties. Our method of proof is a direct generalization of
Iwanari’s. In particular, our stack X has a moduli interpretation (in terms of log geometry) and
agrees with the stack Iwanari constructs when X is as in [Iw, Thm 3.3]. We also give a slight
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improvement of [Iw, Thm 3.3(2)] in Remark 3.3.3.

This chapter is organized as follows. In Section 3.2, we define minimal free resolutions and sliced
resolutions. In Section 3.3, we construct the canonical stack of Theorem 3.3.2 as the moduli space
of sliced resolutions. We also construct several other smooth log smooth log Artin stacks having
our given log scheme as a good moduli space. These stacks are constructed as moduli spaces para-
materizing what we call admissible sliced resolutions. This line of thought is continued further in
Chapter 6 where we restrict to the case when X is a toric variety and construct several other “toric
Artin stacks” having X as their good moduli space.

3.2 Minimal Free Resolutions

In this section, we define the objects which will be parameterized by the canonical stack
X of Theorem 3.3.2. A morphism f : P → Q of monoids is called close if for all q ∈ Q there is
a positive integer n such that nq is in the image of f . A fine sharp monoid P with P gp free of
rank r is called simplicially toric if there is a submonoid Q generated by r elements such that Q
is close to P . We recall ([Iw, Def 2.5]) that an injective morphism i : P → F from a saturated
simplicially toric sharp monoid to a free monoid is called a minimal free resolution if i is close and
if for all injective close morphisms i′ : P → F ′ to a free monoid F ′ of the same rank as F , there is a
unique morphism j : F → F ′ such that i′ = ji. The stack Iwanari constructs in [Iw, Thm 3.3] has
a moduli interpretation in terms of minimal free resolutions, so our first step is to generalize this
notion. The key is to replace his use of closeness in the above definition with that of exactness.

Definition 3.2.1. A morphism f : P → Q of integral monoids is exact if the diagram

P
f //

��

Q

��
P gp

fgp
// Qgp

is set-theoretically cartesian.

Note that if f : P → Q is sharp and exact, then it is automatically injective.

Let P be an fs sharp monoid and let C(P ) denote the rational cone of P in P gp ⊗ Q. Let d
be the number of rays of the dual cone C(P )∨. For 1 ≤ i ≤ d, we denote by vi the first lattice
point on each of the rays of C(P )∨ and by F (P ) the free monoid on the vi. We obtain a morphism
i : P → F (P ) defined by p 7→ (vi(p)).

Proposition 3.2.2. The morphism i : P → F (P ) is exact. Moreover, for any exact morphism
i′ : P → F to a free monoid F of the same rank as F (P ), there is a unique morphism j : F (P )→ F
such that i′ = ji.
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Proof. The exactness of i follows easily from the discussion on the top of page 12 of [Fu]. Arbitrarily
choosing an isomorphism of F with F (P ), we can assume F (P ) = F . Let i′ = (ϕi). Exactness of i′

shows that p ∈ P gp is in P if and only if ϕgpi (p) ≥ 0 for all i. Since p is in P if and only if f(p) ≥ 0
for all f ∈ C(P )∨, we see

Cone(ϕi) = C(P )∨ = Cone(vi).

Since C(P )∨ has d rays, it follows that every ϕi lies on a ray. Composing i′ by a uniquely determined
permutation, we can assume that ϕi lies on ray generated by vi. Since ϕi takes integer values on
P , we see that ϕi is a lattice point of C(P )∨. Since vi is defined to be the first lattice point on
the ray defined by vi, we have ϕi = nivi for uniquely determined ni ∈ N. Hence, multiplication by
(n1, . . . , nd) is our desired j.

In light of this proposition, we make the following definition.

Definition 3.2.3. Let P be an fs sharp monoid and let F (P ) have rank d. A morphism i : P → F
to a free monoid of rank d is a minimal free resolution if it is exact and if for every exact morphism
i′ : P → F ′ to a free monoid F ′ of rank d, there is a unique morphism j : F → F ′ such that i′ = ji.

If all of the charts of X are given by simplicial toric varieties (as in the case Iwanari con-
siders), then in constructing the canonical stack X, one need only consider minimal free resolutions.
As we see shortly, in the non-simplicial case, however, certain quotients of minimal free resolutions
naturally arise:

Definition 3.2.4. Let P be an fs sharp monoid and let F (P ) have rank d. A morphism i′ : P → F ′

to a free monoid is a sliced resolution if it is of the form

P
i→ F

π→ F/H,

where i is a minimal free resolution, H is a face of F such that i(P ) ∩H = 0, and π is the natural
projection.

Example 3.2.5. For example, let P be the submonoid of N4 generated by x = (1, 0, 0, 1), y =
(0, 1, 1, 0), z = (1, 0, 1, 0), and w = (0, 1, 0, 1). Note that the only relation among the generators
is x + y = z + w. This is an fs sharp monoid which is non-simplicial. Its minimal free resolution
is given by the embedding into F = N4 that is used to define it. If H is any of the four faces of
F which are generated by a single element, then P0 := H ∩ P = 0. So, P = P/P0 → F/H ' N3

cannot be a minimal free resolution since the rank of F/H is too small. Nonetheless, this morphism
is a sliced resolution.

If P is a saturated simplicially toric sharp monoid, then the rank of F (P ) is equal to the
rank of P gp. If i : P → F is a morphism to a free monoid of rank equal to P gp, then i is exact if
and only if it is injective and close. Hence, i is a minimal free resolution in the sense of [Iw, Def
2.5] if and only if it is a minimal free resolution in the sense of Definition 3.2.3 if and only if it is a
sliced resolution. As in [Iw, Def 2.11], we define a minimal free resolution morphism of log schemes.
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Definition 3.2.6. A morphism f : (Y,MY ) → (X,MX) of fs log schemes is a minimal free
resolution, resp. is a sliced resolution if for all geometric points y of Y , the induced morphism

M̄X,f(ȳ) → M̄Y,ȳ

is a minimal free resolution, resp. is a sliced resolution.

Proposition 3.2.7. Let P be an fs sharp monoid with minimal free resolution i : P → F . If P0 is
a face of P and F0 is the face of F generated by P0, then the induced morphism P/P0 → F/F0 is
a minimal free resolution.

Proof. One easily checks that P/P0 is an fs sharp monoid. Let π : P → P/P0 be the natural
morphism. Let {vi}di=1 be the extremal rays of C(P )∨. If vi(P0) = 0, then we obtain a well-defined
morphism wi : P/P0 → N given by wi(p̄) = vi(p). Note that the span of wi is an extremal ray of
C(P )∨ since if ψ + ψ′ = wi, then ψπ + ψ′π = vi. It follows that ψπ = avi for some a ∈ Q≥0, and
so ψ = awi.

We claim that the wi generate C(P/P0)∨. Let ψ ∈ C(P/P0)∨. Then ψπ =
∑

j ajvj for some
aj ∈ Q≥0. If there is some p0 ∈ P0 such that vk(p0) 6= 0, then since

0 = ψπ(p0) =
∑
j

ajvj(p0),

we see akvk(p0) = 0 and so ak = 0. Therefore, the wi generate C(P/P0)∨.

To complete the proof of the proposition, we need only show that ei /∈ F0 if and only if vi(P0) = 0.
If vi(p0) 6= 0 for some p0 ∈ P0, then

ei + ((vi(p0)− 1)ei +
∑
j 6=i

vj(p0)ej)

is in the image of P0 and so ei ∈ F0. Conversely, if ei ∈ F0, then there exists some p0 ∈ P0 and
bj ∈ N such that

ei +
∑
j

bjej =
∑
j

vj(p0)ej .

As a result, vi(p0) 6= 0.

We remark that if H is any face of F and P0 = H∩P , then P/P0 → F/H is not in general
a minimal free resolution: in Example 3.2.5, the morphism P → F is a minimal free resolution, but
P = P/P0 → F/H ' N3 is not; it is however a sliced resolution. This general phenomenon is the
content of the following proposition which generalizes [Iw, Prop 2.12].

Proposition 3.2.8. Let P be an fs sharp monoid and let i : P → F be its minimal free resolution.
If R is a ring, then the induced morphism f : SpecR[F ] → SpecR[P ] on log schemes is a sliced
resolution.
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Proof. Let t̄ be a geometric point of SpecR[F ] and let p be the corresponding prime ideal of R[F ].
Let H be the face of F consisting of elements which map to units under F → R[F ]→ R[F ]p. Then
M̄P,f(t̄) → M̄F,t̄ is given by the natural map η : P/P0 → F/H, where P0 = H ∩ P . If we let F0 be
the face of F generated by P0, we see F0 ⊂ H and so η factors as

P/P0
π→ F/F0 → F/H.

By Proposition 3.2.7, we see that π is a minimal free resolution. Since H/F0 ∩ P/P0 = 0, we see
then that η is a sliced resolution.

We now prove an analogue of [Iw, Prop 2.17].

Proposition 3.2.9. Let P be an fs sharp monoid and i : P → F an injective morphism to a free
monoid F . Let R be a ring and let (f, h) : (T,MT )→ SpecR[P ] be a morphism of fine log schemes.
If we have a commutative diagram

P
i //

��

F

α
��

f−1M̄P,s̄
h̄s̄ // M̄s̄

and α étale locally lifts to a chart, then there is an fppf neighborhood of s̄ and a chart ε : F →M
making the diagram

P
i //

��

F

α

��
f∗MP

h //M
commute.

Proof. The proof is the same as that of [Iw, Prop 2.17], except here the ranks of P gp and F gp are
no longer the same. Letting the ranks be r and d, respectively, but otherwise keeping Iwanari’s
notation, we can choose isomorphisms φ : P gp → Zr and ψ : F gp → Zd so that a is given by
ei 7→ λiei for 1 ≤ i ≤ r. Note that the λi are positive integers since P gp → F gp is injective. Letting

O′ = OT,s̄[T1, . . . , Tr]/(T λi
i − ui),

we define η : F gp →Mgp
t̄

as Iwanari does on the ei for 1 ≤ i ≤ r, and for r < i ≤ d, we send the ei
to 0.

3.3 The Stacky Resolution Theorem

Throughout this section k is a field and S = Spec k has the trivial log structure. Given X
a log scheme over S, we define a fibered category X over X-schemes as follows. Objects are sliced
resolutions (T,N )→ (X,MX), where N is a fine log structure on T , and morphisms are maps of
(X,MX)-log schemes h : (T,N ) → (T ′,N ′) with h∗N ′ → N an isomorphism. Then X is a stack
on the étale site of X, and in fact also on the fppf site by [Ol2, Thm A.1].
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Proposition 3.3.1. Let P be an fs sharp monoid with minimal free resolution i : P → F . Let R
be a ring and G be the group scheme SpecR[F gp/P gp]. If X = SpecR[P ], then X is isomorphic to
Y := [SpecR[F ]/G] over SpecR[P ].

Proof. Let h : Y → SpecR[P ] and π : SpecR[F ] → Y be the natural morphisms. By [Ol2, Prop
5.20], the stack Y has the following moduli interpretation. The fiber over f : T → SpecR[P ] is the
groupoid of triples (N , η, γ), where N is a fine log structure on T , where γ : F → N̄ is a morphism
which étale locally lifts to a chart, and where η : f∗MP → N is a morphism of log structures such
that

P
i //

��

F

γ

��
f−1M̄P

η̄ // N̄
commutes. We claim that η is a sliced resolution. Let g : T → Y be the morphism representing
(N , η, γ) and let t̄ be a geometric point of T . Since smooth morphisms étale locally have sections
by [EGA4, 17.16.3], we have a dotted arrow making the diagram

SpecR[F ]

π

��
t̄ //

66mmmmmmmm
T

g //

f $$I
IIIIIIIII Y

h
��

SpecR[P ]

commute. Recall from the proof of [Ol2, Prop 5.20] that η is simply the pullback under g of the
natural morphism h∗MP →MY . Therefore, η̄t̄ is the morphism

M̄P, ¯hπ(t) = (π∗h∗M̄P )t̄ → (π∗M̄Y)t̄ = M̄F,t̄,

which is a sliced resolution by Proposition 3.2.8.

We have, then, a morphism Φ : Y → X of stacks which forgets γ. To prove full faithfulness of
Φ, we must show that if

(ηi : f∗MP → Ni, γi : F → N̄i)

are objects of Y for i = 1, 2, then any isomorphism of log structures ξ : N1 → N2 such that ξη1 = η2

automatically satisfies ξ̄γ1 = γ2. The equality ξ̄γ1 = γ2 can be checked on stalks. Let t ∈ T . Since
the γi étale locally lift to charts εi : F → Ni, we see that N̄i,t̄ ' Nr for some r and that (εi)t̄ is a
projection followed by a permutation of coordinates. We have therefore reduced to proving that if

(φj), (ψj) : F → Nr

are morphisms given by projecting and permuting coordinates, and if

(φj(p)) = (ψj(p))
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for all p ∈ P , then φj = ψj for all j. Post-composing (φj) and (ψj) by the projection to the jth

factor for some fixed j, we may assume that r = 1. That is, we have reduced to the statement that
if j 6= j′, then there is some p ∈ P such that vj(p) 6= vj′(p), which is clearly true.

We now prove essential surjectivity of Φ. Let f : (T,N ) → SpecR[P ] be a sliced resolution.
By full faithfullness, we need only show that f is fppf locally in the image of Φ. Let t̄ be a geomet-
ric point of T . Then M̄P, ¯f(t) = P/P0 for some face P0 of P . If F0 is the face of F generated by P0,
then by Proposition 3.2.7, the natural morphism P/P0 → F/F0 is a minimal free resolution. Since
f̄t̄ : M̄P, ¯f(t) → N̄t̄ is a sliced resolution by assumption, it has the form

P/P0 → F/F0 → (F/F0)/F1

for some face F1 of F/F0 such that F1∩P/P0 = 0. Letting H be the face of F such that H/F0 = F1,
we see that

P → f−1M̄P,t̄ → N̄t̄
factors as

P → F → F/H.

Proposition 3.2.9 then shows that fppf locally, f is in the image of Φ.

Theorem 3.3.2. Let X be an fs log scheme which is log smooth over S. Then there exists a smooth,
log smooth log Artin stack X over S and a morphism f : X→ X over S which realizes X as the good
moduli space of X. Moreover, the base change of f to the smooth locus of X is an isomorphism.

Proof. By [Ka1, Thm 4.8], since X is log smooth over S, we have an étale cover h : Y → X and
a smooth strict morphism g : Y → Z, where Z = Spec k[P ] with P an fs sharp monoid. Let
i : P → F be the minimal free resolution. Then Proposition 3.3.1 shows that X is étale locally
[U/G], where

U = Y ×Z Spec k[F ]

and G is Spec k[F gp/P gp]. Hence, X is a smooth Artin stack. Moreover, the log structure on
[Spec k[F ]/G] induces a log structure on X which makes it log smooth over S. We see that X →
X is a good moduli space by [Al, Ex 8.3]. Lastly, the base change of this map to Xsm is an
isomorphism since M̄X,x̄ is free if and only if x ∈ Xsm by [Iw, Lemma 3.5], which shows that if
(f, h) : (T,N )→ (Xsm,MX |Xsm) is a sliced resolution, then h is an isomorphism.

Remark 3.3.3. We can improve slightly on [Iw, Thm 3.3(2)]. If X is a good toroidal embedding
([Iw, 1.2]), then X is a tame Artin stack in the sense of [AOV, Def 3.1]. It follows from Lemma
2.5.5 that [Iw, Thm 3.3(2)] still holds for such X. That is, we do not need to assume that X is a
tame toroidal embedding ([Iw, 1.2]).

We end this section by showing that Iwanarai’s stack of admissible free resolutions can
also be generalized to the case when the charts of X are given by toric monoids which are not
necessarily simplicial. Throughout the rest of this section, k is a field, S = Spec k has the trivial
log structure, and X is a log scheme which is log smooth over S.
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Definition 3.3.4. If P is an fs sharp monoid, i : P → F is its minimal free resolution, and bi are
positive integers for every irreducible element vi of F , then P → F ′ is an admissible free resolution
of type (bi) if it is isomorphic to

P
i→ F

·(bi)→ F.

We say that P → F ′ is an admissible sliced resolution of type (bi) if it is isomorphic to

P
i′→ F → F/H,

where i′ is an admissible free resolution of type (bi), and whereH is a face of F such that H∩i′(P ) =
0.

Note that if P is simplicial, then i′ : P → F ′ is an admissible free resolution of type (bi)
in the sense of [Iw, Def 2.5] if and only if it is in the sense of Definition 3.3.4 if and only if it is an
admissible sliced resolution of type (bi).

To define the corresponding notions for morphisms of log schemes, we first generalize [Iw, Prop
3.1].

Proposition 3.3.5. For every geometric point x̄ of X, there is a canonical bijection between the
irreducible elements of the minimal free resolution of M̄X,x̄ and the irreducible components of
X −Xtriv on which x̄ lies.

Proof. As the proof of [Iw, Prop 3.1] shows, we need only address the case when X = Spec k[P ],
where P is an fs sharp monoid. We can further assume that x̄ maps to the torus-invariant point,
so that M̄X,x̄ = P . Then the irreducible components of X −Xtriv are the torus-invariant divisors
of X, and we see that x̄ lies on all of them. The torus-invariant divisors are in canonical bijection
with the extremal rays of C(P )∨, which are precisely the irreducible elements of the minimal free
resolution of P .

Definition 3.3.6. Let bi be a positive integer for every irreducible component Di of X − Xtriv.
For every geometric point x̄ of X, let I(x̄) be the set of irreducible components of X − Xtriv on
which x̄ lies. Then a morphism f : (Y,MY ) → (X,MX) from a fine log scheme is an admissible
free resolution of type (bi), resp. is an admissible sliced resolution of type (bi) if for all geometric
points ȳ of Y , the induced morphism

M̄X,f(ȳ) → M̄Y,ȳ

is an admissible free resolution of type (bi)i∈I(f(ȳ)), resp. is an admissible sliced resolution of type
(bi)i∈I(f(ȳ)).

With this definition in place, for any choice (bi) of positive integers indexed by the irre-
ducible components of X −Xtriv, let X(bi) be the fibered category over X-schemes whose objects
are morphisms (T,N )→ (X,MX) which are admissible sliced resolutions of type (bi), and whose
morphisms are maps of (X,MX)-log schemes h : (T,N ) → (T ′,N ′) with h∗N ′ → N an isomor-
phism. As before, this fibered category is a stack on the fppf site by [Ol2, Thm A.1].
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The proofs of Propositions 3.2.8 and 3.3.1 apply word for word after replacing “minimal free res-
olution” by “admissible free resolution of type (bi)”, and “sliced resolution” by “admissible sliced
resolution of type (bi)” to show the following two propositions:

Proposition 3.3.7. Let P be an fs sharp monoid and i : P → F its minimal free resolution. Let
bi be a positive integer for every irreducible element vi of F . If i′ : P → F ′ is an admissible free
resolution of type (bi) and X = Spec k[P ], then the induced morphism

f : X → Spec k[F ′]

of log schemes is an admissible sliced resolution of type (bi); here we are using Proposition 3.3.5 to
identify the irreducible components of X −Xtriv and the irreducible elements of F .

Proposition 3.3.8. Let P be an fs sharp monoid and i : P → F its minimal free resolution. Let
bi be a positive integer for every irreducible element vi of F . If i′ : P → F ′ is an admissible free
resolution of type (bi) and X = Spec k[P ], then

X(bi) ' [Spec k[F ′]/D(F ′gp/i′(P gp))]

over X.

Using Proposition 3.3.8, we prove an analogue of Theorem 3.3.2. Note that if some bi > 1,
then a morphism F → F ′ which is an admissible sliced resolution of type (bi) has automorphisms.
As a result, the stacks X(bi) are not isomorphic to X over Xsm; they are, however, isomorphic to
X over Xtriv:

Theorem 3.3.9. Let bi be a positive integer for every irreducible component Di of X−Xtriv. Then
X(bi) is a smooth, log smooth Artin stack over S. The natural morphism X(bi) → X is a good moduli
space and the base change of this morphism to Xtriv is an isomorphism.

Proof. The proof is the same as that of Theorem 3.3.2. We address only the last assertion. If
(f, h) : (T,N )→ (Xtriv,MX |Xtriv) is an admissible sliced resolution of type (bi), then h̄ = 0 is an
isomorphism, and so h is strict.

The X(bi) are all root stacks over the stack X = X(1) in Theorem 3.3.2. As we will see in
Chapter 6, if we restrict X to being a toric variety, rather than an arbitrary log smooth log scheme,
then we can construct many other smooth log smooth stacks having X as a good moduli space.



36

Chapter 4

The Chevalley-Shephard-Todd
Theorem for Diagonalizable Group
Schemes

4.1 Polynomial Invariants of Diagonalizable Group Schemes

Throughout this chapter, k is a field and D(B) denotes the diagonalizable group scheme
over k associated to a finitely-generated abelian group B. Throughout this chapter, we fix a finitely-
generated abelian group A, we let G = D(A) and we fix a faithful action of G on a finite-dimensional
k-vector space V . Our goal is to give necessary and sufficient conditions for when the invariants
k[V ]G is a polynomial algebra over k. In the process of working toward this goal, we give neces-
sary and sufficient conditions for when Spec(k[V ]G) is a simplicial toric variety (see Theorem 4.1.5).

Since G is diagonalizable, there is a free monoid F ′ such that k[V ] = k[F ′] and such that the
action of G on k[V ] is induced from a morphism of monoids π : F ′ → A. Then there is an exact
morphism i′ : P → F ′ such that A = F ′gp/i′(P gp) and the induced morphism k[P ]→ k[F ′]G is an
isomorphism.

We state the main theorem of this chapter after first giving a definition.

Definition 4.1.1. Given a torus T = Spec k[M ] over k and a faithful action of T on a finite-
dimensional k-vector space W , we say the action is orderly if there are weights m1, . . . ,mk ∈ M
such that themi⊗1 are a basis forM⊗ZQ and all other weights are non-positive linear combinations
of the mi. We say that m1, . . . ,mk is an orderly basis.

Theorem 4.1.2. If the induced action of the torus of G on V is not orderly, then k[V ]G is not
polynomial. If the action is orderly, then fix an orderly basis m1, . . . ,mk and let F ′

0 be the face
generated by the elements of F ′ which map to the positive orthant of m1, . . . ,mk. If B denotes
the image of F ′

0
gp in A under πgp, then A/B is a finite abelian group and the induced action of
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D(A/B) on k[F ′/F ′
0] has the property that

k[V ]G = k[F ′/F ′
0]
D(A/B);

therefore k[V ]G is polynomial if and only if the action of D(A/B) on k[F ′/F ′
0] is generated by

pseudo-reflections, as defined in Definition 2.1.2.

We begin with some observations. Let i : P → F be the minimal free resolution (as in
Section 3.2) and let the ranks of F and F ′ be d and d′, respectively. Choosing an isomorphism
F ′ ' Nd′ , we see that i′(p) = (wj(p))j , where the wj are morphisms from P to N. As in the proof of
Proposition 3.2.2, exactness of i′ shows that Cone(wj) = C(P )∨ and so rechoosing our isomorphism
of F ′ with Nd′ if necessary, we can assume wj = cjvj for 1 ≤ j ≤ d and positive integers cj . We see
then that d ≤ d′. For d < j ≤ d′, we have

wj =
d∑
i=1

cijvi

for cij ∈ Q≥0. We can therefore find a positive integer n and isomorphisms F ' Nd and F ′ ' Nd′

such that the diagram

F ′ ·n // F ′ ' // Nd′

P

i′

OO

i // F

OO

' // Nd

ψ

OO

commutes, where bi = cin and bij = cijn, and ψ is given by the d′×d matrix whose top d×d block
is diag(bi) and whose bottom block has entries bij . For the rest of this section, we identify F with
Nd and F ′ with Nd′ via the above isomorphisms.

We now show the necessity of the condition that the action be orderly in Theorem 4.1.2.

Proposition 4.1.3. If k[V ]G is a polynomial algebra, then the action of the torus of G on V is
orderly.

Proof. If k[V ]G is polynomial, then P is free. So, i is an isomorphism and we can take n = 1. If C
denotes the torsion-free part of A, then the torus T of G is D(C) and the action of T on k[F ′] is
induced from the morphism σ : F ′ π→ A→ C. From the explicit description of ψ, we see σ(ei)⊗ 1
for i > d form a basis for C ⊗Z Q and the σ(ej) for j ≤ d are all non-positive linear combinations
of the σ(ei) for i > d. Hence, the action of T is orderly.

Lemma 4.1.4. The action of the torus of G on V is orderly if and only if there is a subset S of
{1, 2, . . . , d′} and a basis {pj}j /∈S of P gp⊗Q with each pj ∈ P satisfying wj(pj) > 0 and wk(pj) = 0
for j 6= k /∈ S. There is a canonical bijection

S 7→ {ēi ⊗ 1 | i ∈ S}

between such subsets and the set of orderly bases, where ēi denotes the image in A of the standard
generators ei ∈ Nd′ ' F ′.
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Proof. To prove the “if” direction we show that the ēi ⊗ 1 with i ∈ S form an orderly basis. Let
aj = wj(pj) and let aij = wi(pj) ≥ 0 for i ∈ S. Since the pj form a basis for P gp ⊗Q, we see that

|S| = d′ − rankP gp,

which is the rank of the torus of G. To prove that the ēi ⊗ 1 form a basis, we therefore need only
show that they are linearly independent. If

∑
i∈S ciēi = 0 for some ci ∈ Q, then∑

i∈S
ciei = i′(p)

in F ′gp for some p ∈ P gp⊗Q. Writing p =
∑

j /∈S c
′
jpj for c′j ∈ Q, and comparing the ej coordinates

above, we see c′jaj = 0, which shows that p = 0, and so the ci = 0 as well.

To show that the ēi ⊗ 1 form an orderly basis, note that for j /∈ S,

ajej +
∑
i∈S

aijei =
d′∑
k=1

wk(pj)ek = i′(pj).

Since the aij ≥ 0, we see then that ēj⊗1 is a non-positive linear combination of the ēi⊗1 for i ∈ S.

We now prove the “only if” direction. If j /∈ S, then ēj ⊗ 1 is a non-positive linear combina-
tion of the ēi ⊗ 1 for i ∈ S. We therefore have some positive integer aj , non-negative integers aij ,
and some pj ∈ P gp such that

ajej = −
∑
i∈S

aijei +
d′∑
k=1

wk(pj)ek.

We see then that wj(pj) = aj , wi(pj) = aij if i ∈ S, and wk(pj) = 0 otherwise. Since w`(pj) is
non-negative for all `, exactness of i′ shows that pj ∈ P .

We prove that the pj form a basis for P gp⊗Q. Since the rank of P gp is d′−|S|, we need only show
that the pj are linearly independent. If

∑
j /∈S cjpj = 0 for cj ∈ Q, then applying wj0 for j0 /∈ S

shows that cj0aj0 = 0. Since aj0 is positive, we have cj0 = 0, as desired.

The following theorem gives necessary and sufficient conditions for when k[V ]G is simplicial
(c.f. [We, Thm 4.1]).

Theorem 4.1.5. The action of the torus of G on V is orderly if and only if P is simplicial.
Furthermore, when these equivalent conditions are satisfied, if we let S ⊂ {1, 2, . . . , d′} correspond
to our choice of an orderly basis as in Lemma 4.1.4, then the extremal rays of C(P )∨ are precisely
the rays defined by the wj for j /∈ S, each lying on a distinct extremal ray.
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Proof. Suppose first that P is simplicial. Then the minimal free resolution i : P → F is a close
morphism (see the first paragraph of Section 3.2). For all j ≤ d, let pj ∈ P such that i(pj) = λjej for
some λj ∈ N. Since P is simplicial, we see that the pj form a basis for P gp⊗Q, that vj(pj) = λj > 0,
and that vk(pj) = 0 for j 6= k ≤ d. Since wj is a multiple of vj for j ≤ d, we see that Lemma 4.1.4
finishes the proof of the “if” direction.

Assume now that the action of the torus of G on V is orderly, and let S be as in Lemma 4.1.4.
We prove the “only if” direction in the process of proving the second assertion of the theorem. We
begin by showing that the wj for j /∈ S lie on extremal rays. Fix j0 /∈ S and suppose that wj0 does
not lie on an extremal ray. Then we have

wj0 =
r∑

k=1

c′kvik

for positive rational numbers c′k, distinct ik, and r ≥ 2. If j /∈ S and j 6= j0, then wj0(pj) = 0.
Since the pj ∈ P , we see the vik(pj) ≥ 0, and so vik(pj) = 0. Since the pj for j /∈ S form a basis for
P gp ⊗ Q, we see that the vik are determined by their values on pj0 . They therefore all define the
same extremal ray, which is a contradiction.

To prove that the wj for j /∈ S lie on distinct extremal rays, assume that wk = cwj for some
positive rational number c. Then we see

0 = wk(pj) = cwj(pj) = caj > 0

which is a contradiction.

Lastly, we show that every extremal ray actually does occur as one of the wj for j /∈ S. Note
that this implies that P is simplicial, for then

d = d′ − |S| = rankP gp.

Since the wj for j /∈ S lie on distinct extremal rays, they define a basis for the Q-vector space
Hom(P gp,Z)⊗Q. Hence for i ∈ S, we have c′ij ∈ Q such that

wi =
∑
j /∈S

c′ijwj .

Since 0 ≤ wi(pj) = c′ijaj , we see that the c′ij ≥ 0. Therefore, if wi is an extremal ray, it must be
one of the wj for j /∈ S. This finishes the proof, as every extremal ray of C(P )∨ must occur as
some wk.

Proof of Theorem 4.1.2. The necessity of the orderly condition is shown in Theorem 4.1.3, so we
assume now that the action of the torus of G on V is orderly. By Proposition 4.1.5, we can assume
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that the ēi⊗ 1 for i > d is an orderly basis. Then F ′
0 is the face of F ′ generated by the ei for i > d.

Note that F ′/F ′
0 is free of rank d and that we have a commutative diagram

F ′/F ′
0

·n // F ′/F ′
0

' // Nd

F ′ ·n //

π′

OO

F ′ ' //

π′

OO

Nd′

ψ′

OO

P

i′

OO

i // F

OO

' // Nd

ψ

OO

where ψ′(a1, . . . , ad′) = (a1, . . . , ad). We see then that ψ′ψ = diag(bi) and is therefore exact. Since
the multiplication by n map from F ′/F ′

0 to itself is exact, [Og, Prop I.4.1.3(2)] shows that π′i′ is
exact as well. Hence,

k[V ]G = k[P ] = k[F ′/F ′
0]
D((F ′/F ′0)gp/π′i′(P gp)).

Furthermore, since P is simplicial by Theorem 4.1.5, and since F ′/F ′
0 is free of rank d, we see that

(F ′/F ′
0)
gp/π′i′(P gp) is a finite group. Note that by the definition of B, there exists a morphism ϕ

making the diagram

F ′gp π′ //

��

F ′gp/F ′
0
gp

ϕ

��
A // A/B

commute. One easily checks that the kernel of ϕ is π′i′(P gp), and so A/B is isomorphic to
(F ′/F ′

0)
gp/π′i′(P gp). This proves that A/B is a finite group and that

k[V ]G = k[F ′/F ′
0]
D(A/B)

as desired. Lastly, since D(A/B) is a finite diagonalizable group scheme, we see from Theorem 2.1.6
and Proposition 2.2.1 that k[V ]G is polynomial if and only if the action of D(A/B) on k[F ′/F ′

0] is
generated by pseudo-reflections.
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Chapter 5

de Rham Theory for Schemes with
Linearly Reductive Singularities

Given a scheme X smooth and proper over a field k, the cohomology of the algebraic de
Rham complex Ω•

X/k is an important invariant of X, which, when k = C, recovers the singular
cohomology of X(C). When the Hodge-de Rham spectral sequence

Est1 = Ht(Ωs
X/k)⇒ Hn(Ω•

X/k)

degenerates, the invariants dimkH
n(Ω•

X/k) break up into sums of the finer invariants dimkH
t(Ωs

X/k).
The degeneracy of this spectral sequence for smooth proper schemes in characteristic 0 was first
proved via analytic methods. It was not until much later that Faltings [Fa] gave a purely algebraic
proof by means of p-adic Hodge Theory. Soon afterwards, Deligne and Illusie [DI] gave a sub-
stantially simpler algebraic proof by showing that the degeneracy of the Hodge-de Rham spectral
sequence in characteristic 0 is implied by its degeneracy for smooth proper schemes in character-
istic p that lift mod p2. Their method therefore extends de Rham Theory to the class of smooth
proper schemes in positive characteristic which lift. A form of de Rham Theory also exists for
certain singular schemes. Steenbrink showed [St, Thm 1.12] that if k is a field of characteristic
0, M a proper k-scheme with quotient singularities, and j : M0 ↪→ M its smooth locus, then the
hypercohomology spectral sequence

Est1 = Ht(j∗Ωs
M0/k)⇒ Hn(j∗Ω•

M0/k)

degenerates and Hn(j∗Ω•
M0/k) agrees with Hn(M(C),C) when k = C. As we explain in this chap-

ter, a version of this theorem is true in positive characteristic as well: if k has characteristic p and
M is proper with quotient singularities by groups whose orders are prime to p, then the above
spectral sequence degenerates for s + t < p provided a certain liftability criterion is satisfied (see
Theorem 5.1.14 for precise hypotheses).

As a warm-up for the rest of the chapter, we begin by showing how Steenbrink’s result can be
reproved using the theory of stacks. The idea is as follows. Every scheme M as above is the coarse
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space of a smooth Deligne-Mumford stack X whose stacky structure is supported at the singular lo-
cus of M . We show that the de Rham cohomology Hn(Ω•

X/k) of the stack agrees with Hn(j∗Ω•
M0/k).

After checking that the method of Deligne-Illusie extends to Deligne-Mumford stacks, we recover
Steenbrink’s result as a consequence of the degeneracy of the Hodge-de Rham spectral sequence for
X.

The above extends de Rham Theory to the class of schemes with quotient singularities by groups
whose orders are prime to the characteristic, but in positive characteristic this class of schemes
contains certain “gaps” and it is natural to ask if de Rham Theory can be extended further. For
example, in all characteristics except for 2, the affine quadric cone Spec k[x, y, z]/(xy − z2) can be
realized as the quotient of A2 by Z/2Z under the action x 7→ −x, y 7→ −y. In characteristic 2,
however, this action is trivial. If we allow quotients not just by finite groups, but rather finite
group schemes, then we can realize the cone as A2/µ2 where ζ ∈ µ2(T ) acts as x 7→ ζx, y 7→ ζy.
This is an example of what we call a scheme with linearly reductive singularities; that is, a scheme
which is étale locally the quotient of a smooth scheme by a finite flat linearly reductive group scheme.

One of the main results of this chapter is that de Rham Theory can be extended to the class
of schemes with isolated linearly reductive singularities. As with Steenbrink’s result, we prove this
by passing through stacks. In light of our stacky resolution theorem for schemes with linearly re-
ductive singularities (Theorem 2.1.10), we begin by showing the degeneracy of a type of Hodge-de
Rham spectral sequence for tame stacks. We should emphasize that, unlike in the case of Deligne-
Mumford stacks, there are technical barriers to extending the method of Deligne-Illusie to Artin
stacks or even tame stacks, first and foremost being that relative Frobenius does not behave well
under smooth base change. It should also be noted that it is a priori not clear what the definition
of the de Rham complex of a tame stack X should be. One can use the cotangent complex LX of the
stack (see [LMB, §15] and [Ol3, §8]) to define the derived de Rham complex

∧• LX; alternatively,
one can use a more naive sheaf of differentials $1

X on the lisse-étale site of X whose restriction to
each Uet is Ω1

U , for every U smooth over X. The latter has the advantage that it is simpler, but it
is not coherent ; the cotangent complex, on the other hand, has coherent cohomology sheaves. We
take the naive de Rham complex as our definition, but it is by comparing this complex with the
derived de Rham complex that we prove our main result for tame stacks:

Theorem 5.3.7. Let X be a smooth proper tame stack over a perfect field k of characteristic p. If
X lifts mod p2, then the Hodge-de Rham spectral sequence

Est1 = Ht($s
X/k)⇒ Hn($•

X/k)

degenerates for s+ t < p (see the Notation section below).

From Theorem 5.3.7 and Theorem 2.1.10, we are able to deduce

Theorem 5.4.6. Let M be a proper k-scheme with isolated linearly reductive singularities, where
k is a perfect field of characteristic p. Let j : M0 ↪→ M be the smooth locus of M and let X be as
in Theorem 2.1.10. If X lifts mod p2, then the hypercohomology spectral sequence

Est1 = Ht(j∗Ωs
M0/k)⇒ Hn(j∗Ω•

M0/k)
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degenerates for s+ t < p.

We should mention that unlike in the case of quotient singularities, the cohomology groups
Hn($•

X/k) and Hn(j∗Ω•
M0/k) no longer agree, so some care is needed in showing how Theorem 5.4.6

follows from the degeneracy of the Hodge-de Rham spectral sequence of the stack.

It is desirable, of course, to remove the stack from the statement Theorem 5.4.6. We show in
Theorem 5.4.7 that if the dimension of M is at least 4, the liftability of M implies the liftability of
X. In this case, we therefore have a purely scheme-theoretic statement of Theorem 5.4.6. We end
the chapter by proving a type of Kodaira vanishing theorem within this setting.

This chapter is organized as follows. In Section 5.1, we begin by reviewing some background
material and giving an outline of [DI, Thm 2.1] as some of the technical details will be used later.
We then consider de Rham Theory for Deligne-Mumford stacks and show how stacks can be used
to recast Steenbrink’s result. The purpose of Section 5.2 is to find a way around the problem
that the method of Deligne and Illusie does not carry over directly to the lisse-étale site of Artin
stacks. Since relative Frobenius does behave well under étale base change, our solution is to prove a
Deligne-Illusie result on the étale site of X•, where X → X is a smooth cover of a smooth tame stack
by a scheme, and X• is the simplicial scheme obtained by taking fiber products over X. The key
technical point here is showing that étale locally on the coarse space of X, the relative Frobenius for
X lifts mod p2. In Section 5.3, we prove that the naive de Rham complex and the derived de Rham
complex above compute the same cohomology, and show how this result implies the degeneracy of
the Hodge-de Rham spectral sequence for smooth proper tame stacks which lift mod p2. In Section
5.4, we prove Theorem 5.4.6.

Notation. Unless otherwise stated, all Artin stacks in this chapter are assumed to have finite
diagonal. If X is an Artin stack over a scheme S, we let X′ denote the pullback of X by the ab-
solute Frobenius FS . We usually drop the subscript on the relative Frobenius FX/S , denoting it
by F . Given a morphism g : X1 → X2 of S-stacks, we denote by g′ : X′

1 → X′
2 the induced morphism.

Given a morphism g : X1 → X2 of Artin stacks and complex of sheaves F• on X1, we do not
use the shorthand g∗F• when we mean Rg∗F•. For us, g∗F• always denotes the complex obtained
by applying the functor g∗ to the complex F•.

Lastly, we say a first quadrant spectral sequence Er0 “degenerates for s + t < N” if for all r ≥ r0
and all s and t satisfying s+ t < N , all of the differentials to and from the Estr are zero.

5.1 Steenbrink’s Result via Stacks

5.1.1 Review of Deligne-Illusie

We briefly review the proof of [DI, Thm 2.1] and explain how it generalizes to Deligne-
Mumford stacks. Having an outline of this proof will be useful for us in Section 5.2.
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Let S = Spec k be a perfect field of characteristic p. For any S-scheme X, let FX : X → X
be the absolute Frobenius, which acts as the identity on topological spaces and sends a local sec-
tion s ∈ OX(U) to sp. We have the following commutative diagram, where FX/S is the relative
Frobenius and the square is cartesian

X

  B
BB

BB
BB

B
FX/S //

FX

��
X ′ //

��

X

��
S

FS // S

We drop the subscript on the relative Frobenius FX/S , denoting it by F . If X is locally of finite
type over S, so that it is locally Spec k[x1, . . . , xn]/(f1, . . . , fm), where fj =

∑
aj,Ix

I , then X ′ is
locally Spec k[x1, . . . , xn]/(f

(p)
1 , . . . , f

(p)
m ), where f (p)

j :=
∑
apj,Ix

I . The relative Frobenius morphism
is then given by sending xi to xpi and a ∈ k to a.

Our primary object of study is the de Rham complex Ω•
X/S . The maps d : Ωk

X/S → Ωk+1
X/S in

the complex are defined as the composite

Ωk
X/S = OX ⊗OX

Ωk
X/S

d⊗id−→ Ω1
X/S ⊗OX

Ωk
X/S −→ Ωk+1

X/S ,

where the last map is given by η ⊗ ω 7→ η ∧ ω. Note that the maps in the complex Ω•
X/S are not

OX -linear. To correct this “problem” we instead consider F∗Ω•
X/S , whose maps are OX′-linear. It

is now reasonable to ask how the cohomology of this new complex compares with the cohomology
of the de Rham complex on X ′. An answer is given by:

Theorem 5.1.1 (Cartier isomorphism). If X is smooth over S, then there is a unique isomorphism
of OX′-graded algebras

C−1 :
⊕

Ωi
X′/S −→

⊕
Hi(F∗Ω•

X/S)

such that C−1d(x⊗ 1) is the class of xp−1dx for all local sections x of OX′.

Note that once C−1 is shown to exist, uniqueness is automatic. For a proof of this theo-
rem, see [Ka, Thm 7.2].

We are now ready to discuss [DI, Thm 2.1].

Theorem 5.1.2. Let W2(k) be the ring of truncated Witt vectors and let S̃ = SpecW2(k). If X is
smooth over S, then to every smooth lift X̃ of X to S̃, there is an associated isomorphism

ϕ :
⊕
i<p

Ωi
X′/S [−i] −→ τ<pF∗Ω•

X/S

in the derived category of OX′-modules such that Hi(ϕ) = C−1 for all i < p.



45

We give a sketch of the argument. To define ϕ, we need only define ϕi : Ωi
X′/S [−i] →

τ<pF∗Ω•
X/S such that Hi(ϕ) = C−1 for each i < p. We take ϕ0 to be the composite

OX′
C−1

−→ H0F∗Ω•
X/S −→ F∗Ω•

X/S .

Suppose for the moment that ϕ1 has already been defined. For i > 1, we can then define ϕi to be
the composite

Ωi
X/S [−i] a[−i]−→ (Ω1

X/S)⊗i[−i] (ϕ1)⊗i

−→ (F∗Ω•
X/S)⊗i b−→ F∗Ω•

X/S ,

where
a(ω1 ∧ · · · ∧ ωi) =

1
i!

∑
σ∈Si

(signσ)ωσ(1) ⊗ · · · ⊗ ωσ(i)

and b(ω1 ⊗ · · · ⊗ ωi) = ω1 ∧ · · · ∧ ωi.

Thus, we are reduced to defining ϕ1. Suppose first that Frobenius lifts; that is, there exists F̃
filling in the diagram

X //

F

��

��

X̃

F̃
���
�
�

��

X ′ //

��

X̃ ′

��
S // S̃

where X̃ ′ = X̃ ×S̃,σ S̃ and σ is the Witt vector Frobenius automorphism. Let p : OX
'→ pOX̃ be

the morphism sending x0 to px for any local section x of OX̃ reducing mod p to x0. Note that if
x ⊗ 1 is a local section of OX̃ ⊗W2(k),σ W2(k) = OX̃′ , then F̃ ∗(x ⊗ 1) = xp + p(u(x)) for a unique
local section u(x) of OX . We define a morphism f : Ω1

X′/S → F∗Ω1
X/S by

f(dx0 ⊗ 1) = xp−1
0 dx0 + du(x).

Deligne and Illusie show that ϕ1 can be taken to be f . Given two different choices F̃1 and F̃2 of F ,
we obtain a homotopy h12 relating f1 and f2, defined by h12(dx0 ⊗ 1) = u2(x)− u1(x).

Note that F lifts locally since the obstruction to lifting it lies in

Ext1(F ∗Ω1
X′/S ,OX) = H1(X,F ∗TX′/S).

So, to define ϕ1 in general, we need only patch together the local choices. This is done as follows.
Let U = {Ui} be a cover on which Frobenius lifts and let Č•(U ,F) denote the sheafified version of
the Čech complex of a sheaf F . We define ϕ1 to be the morphism in the derived category

Ω1
X′/S [−1] Φ−→ Tot(F∗Č•(U ,Ω•

X/S)) '←− F∗Ω•
X/S ,
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where
Φ = (Φ1,Φ2) : Ω1

X′/S → F∗Č1(U ,OX)⊕ F∗Č0(U ,Ω•
X/S)

is given by (Φ1(ω))ij = hij(ω|U ′
ij) and (Φ2(ω))i = fi(ω|U ′

i). Deligne and Illusie further show that
this is independent of the choice of covering. This completes the proof.

Remark 5.1.3. In the local case where Frobenius lifts, ϕ is a morphism of complexes. It is only
when patching together the local choices that we need to pass to the derived category.

Remark 5.1.4. Using the fact that for any étale morphism g : Y → Z of S-schemes, the pullback
of FZ/S : Z → Z ′ by g is FY/S , one can check that the proof of Theorem 5.1.2 works when X is a
Deligne-Mumford stack. Alternatively, this will follow from the proof of Theorem 5.2.5 below.

Given any abelian category A with enough injectives, a left exact functor G : A →
B to another abelian category, and a bounded below complex of objects A• of A, we obtain a
hypercohomology spectral sequence

Est1 = RtG(As)⇒ RnG(A•).

If X is a Deligne-Mumford stack over a scheme Y , the hypercohomology spectral sequence Est1 =
Ht(Ωs

X/Y )⇒ Hn(Ω•
X/Y ) obtained in this way is called the Hodge-de Rham spectral sequence.

As Deligne and Illusie show, Theorem 5.1.2 implies the degeneracy of the Hodge-de Rham spectral
sequence for smooth proper schemes. We reproduce their proof, which requires no modification
to handle the case of Deligne-Mumford stacks, after first isolating the following useful fact from
homological algebra.

Lemma 5.1.5. Let K be a field and r0 a positive integer. Let Estr0 ⇒ Es+t be a first quadrant
spectral sequence whose terms are finite-dimensional K-vector spaces and whose morphisms are
K-linear. If n is a non-negative integer and∑

s+t=n

dimK E
st
r0 = dimK E

n,

then for all r ≥ r0 the differentials to and from the Es,n−sr are zero. Hence, if the above equality
holds for all n < N , then the spectral sequence degenerates for s+ t < N .

Proof. Note that for all r ≥ r0 ∑
s+t=n

dimK E
st
r+1 ≤

∑
s+t=n

dimK E
st
r

with equality if and only if all of the differentials to and from the Es,n−sr are zero. Hence∑
s+t=n

dimK E
st
∞ ≤

∑
s+t=n

dimK E
st
r0
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with equality if and only if the differentials to and from the Es,n−sr are zero for all r ≥ r0. Since
the E∞ terms are K-vector spaces, the extension problem is trivial, and so

dimK E
n =

∑
s+t=n

dimK E
st
∞ ≤

∑
s+t=n

dimK E
st
r0 = dimK E

n,

which completes the proof.

Corollary 5.1.6 ([DI, Cor 2.5]). If X is a Deligne-Mumford stack over S, which is smooth, proper,
and lifts mod p2, then the Hodge-de Rham spectral sequence

Est1 = Ht(Ωs
X/S)⇒ Hn(Ω•

X/S)

degenerates for s+ t < p.

Proof. By Theorem 5.1.2 and Remark 5.1.4, we have an isomorphism⊕
s<p

Ωs
X′/S [−s] −→ τ<pF∗Ω•

X/S

in the derived category of OX′-modules. It follows that for all n < p,⊕
s+t=n

Ht(Ωs
X′/S) = Hn(Ω•

X/S).

Using the fact that Ht(Ωs
X′/S) = Ht(Ωs

X/S)⊗k,Fk
k, we see∑

s+t=n

dimkH
t(Ωs

X/S) =
∑
s+t=n

dimkH
t(Ωs

X′/S) = dimkH
n(Ω•

X/S),

which, by Lemma 5.1.5, proves the degeneracy of the spectral sequence.

Deligne and Illusie further show that the degeneracy of the Hodge-de Rham spectral
sequence in positive characteristic implies the degeneracy in characteristic 0. While its degeneration
in characteristic 0 had previously been known by analytic means, this provided a purely algebraic
proof.

Corollary 5.1.7. Let X be a Deligne-Mumford stack which is smooth and proper over a field K of
characteristic 0. Then the Hodge-de Rham spectral sequence

Est1 = Ht(Ωs
X/K)⇒ Hn(Ω•

X/K)

degenerates.

The proof given in [DI, Cor 2.7] for schemes requires only a minor modification. It uses
that if X is a smooth proper scheme over a field K of characteristic 0, then there is an integral
domain A of finite type over Z, a morphism A → K, and a smooth proper scheme Y over SpecA
which pulls back over SpecK to X. Since this statement remains true when we allow X and Y
to be Deligne-Mumford stacks ([MO, p.2]), the proof given in [DI, Cor 2.7] implies Corollary 5.1.7
above.
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5.1.2 De Rham Theory for Schemes with Quotient Singularities

Let k be a field of characteristic 0 and let S = Spec k. Our goal in this subsection is to
use stacks to reprove [St, Thm 1.12] which states:

Theorem 5.1.8. Let M be a proper S-scheme with quotient singularities, and let j : M0 →M be
its smooth locus. Then the hypercohomology spectral sequence

Est1 = Ht(j∗Ωs
M0/S)⇒ Hn(j∗Ω•

M0/S)

of the complex j∗Ω•
M0/S degenerates. Furthermore, if k = C, then Hn(j∗Ω•

M0/S) agrees with the
Betti cohomology Hn(M(C),C) of M .

The following proposition gives the relationship between Deligne-Mumford stacks and
schemes with quotient singularities.

Proposition 5.1.9. Let M be an S-scheme and let j : M0 → M be its smooth locus. Then M
has quotient singularities if and only if it is the coarse space of a smooth Deligne-Mumford stack X

such that f0 in the diagram

X0
j0 //

f0

��

X

f

��
M0

j
//M

is an isomorphism, where X0 = M0 ×M X.

For a proof, see [FMN, Rmk 4.9] or [Vi, Prop 2.8]. Vistoli’s proposition is slightly more
general than the proposition above.

We give the proof of Theorem 5.1.8 after first proving a lemma which compares j∗Ω•
M0/S to the de

Rham complex of a Deligne-Mumford stack.

Lemma 5.1.10. If M is an S-scheme with quotient singularities and X is as in Proposition 5.1.9,
then

j∗Ω•
M0/S = f∗Ω•

X/S .

Proof. To prove this equality, we need only show j0∗Ω
•
X0/S = Ω•

X/S . That is, given an étale morphism
U → X, we want to show i∗Ω•

U0/S = Ω•
U/S , where U0 := M0 ×M U and i is the projection to U .

Since Ωk
U/S is locally free, hence reflexive, the following lemma completes the proof.

Lemma 5.1.11. Let X be a normal scheme and i : U ↪→ X an open subscheme whose complement
has codimension at least 2. If F is a reflexive sheaf on X, then the adjunction map F → i∗i

∗F is
an isomorphism.
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Proof. Since F is reflexive, F = Hom(G,OX), where G = F∨. Therefore,

i∗i
∗F = i∗Hom(i∗G,OU ) = Hom(G, i∗OU )

and since X is normal, i∗OU = OX .

Proof of Theorem 5.1.8. Let X be as in Proposition 5.1.9. From Lemma 5.1.10, we see that
j∗Ω•

M0/S = f∗Ω•
X/S and j∗Ωs

M0/S = f∗Ωs
X/S for all s. Since the Ωs

X/S are coherent, it follows
from [AV, Lemma 2.3.4] that

j∗Ω•
M0/S = Rf∗Ω•

X/S and j∗Ωs
M0/S = Rf∗Ωs

X/S .

We see then that

Hn(j∗Ω•
M0/S) = Hn(Ω•

X/S) and Ht(j∗Ωs
M0/S) = Ht(Ωs

X/S).

Keel-Mori [KM] shows that f is proper, and so the Hodge-de Rham spectral sequence for X degen-
erates by Corollary 5.1.7. It follows that∑

s+t=n

dimkH
t(j∗Ωs

M0/S) =
∑
s+t=n

dimkH
t(Ωs

X/S) = dimkH
n(Ω•

X/S) = dimkH
n(j∗Ω•

M0/S),

which, by Lemma 5.1.5, proves the degeneracy of the hypercohomology spectral sequence for
j∗Ω•

M0/S .

We now show that if k = C, then Hn(j∗Ω•
M0/S) = Hn(M(C),C). We have shown Hn(j∗Ω•

M0/S) =
Hn(Ω•

X), and GAGA for Deligne-Mumford stacks ([To, Thm 5.10]) shows

Hn(Ω•
X) = Hn(Ω•

Xan),

where Xan is defined in [To, Def 5.6]. Note that C → Ω•
Xan is a quasi-isomorphism since this can

be checked étale locally. It follows that

Hn(Ω•
Xan) = Hn(Xan,C).

Lastly, the singular cohomology of Xan and that of its coarse space, M(C), are the same. This
is shown in [Be, Prop 36] for topological Deligne-Mumford stacks with Q-coefficients, but the
proof works equally well in our situation once it is combined with [To, Prop 5.7], which states
[Uan/G] = [U/G]an.

We end this section with some remarks about the situation in positive characteristic.
Suppose k is a perfect field of characteristic p and let S = Spec k.

Definition 5.1.12. We say an S-scheme M (necessarily normal) has good quotient singularities if
it has an étale cover {Ui/Gi → M}, where the Ui are smooth over S and the Gi are finite groups
of order prime to p.
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Both the proof in [FMN] and in [Vi] (along with Vistoli’s Remark 2.9) cited above work
in positive characteristic. So, we have the following generalization of Proposition 5.1.9.

Proposition 5.1.13. Let M be an S-scheme, and let j : M0 →M be its smooth locus. Then M has
good quotient singularities if and only if it is the coarse space of a smooth tame Deligne-Mumford
stack X ([AV, Def 2.3.1]) such that f0 in the diagram

X0
j0 //

f0

��

X

f

��
M0

j
//M

is an isomorphism, where X0 = M0 ×M X.

If X is a smooth proper tame Deligne-Mumford stack, then the Hodge-de Rham spectral
sequence for X degenerates by Corollary 5.1.6, and f∗F = Rf∗F for any quasi-coherent sheaf on X

by [AV, Lemma 2.3.4]. The proof of Theorem 5.1.8 therefore gives the following result as well.

Theorem 5.1.14. Let M be a proper S-scheme with good quotient singularities, and let j : M0 →
M be its smooth locus. If X, as in Proposition 5.1.13, lifts mod p2, then

Est1 = Ht(j∗Ωs
M0/S)⇒ Hn(j∗Ω•

M0/S)

degenerates for s+ t < p.

As will follow from Theorem 5.4.7 below, if M has dimension at least 4, lifts mod p2, and
has isolated singularities, then X automatically lifts mod p2.

5.2 Deligne-Illusie for Simplicial Schemes

Let k be a perfect field of characteristic p and let S = Spec k. In this section, we prove
a Deligne-Illusie result at the simplicial level. To do so, we must first make sense of the Cartier
isomorphism for simplicial schemes.

Lemma 5.2.1. Let X and Y be smooth schemes over S and let ρ : X → Y be a morphism of
S-schemes. If C−1 denotes the Cartier isomorphism, then the following diagram commutes

ρ′∗Ωi
X′/S

ρ′∗C−1
//

��

ρ′∗Hi(F∗Ω•
X/S)

��
Ωi
Y ′/S

C−1
// Hi(F∗Ω•

Y/S)
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Proof. Using the canonical morphism ρ′∗Hi(F∗Ω•
X/S) → Hi(ρ′∗F∗Ω•

X/S) and the multiplicativity
property of the Cartier isomorphism, we need only check that the diagram commutes for i = 0, 1.
For i = 0, the Cartier isomorphism is simply the kernel map, so the i = 0 case follows from the
commutativity of

ρ′∗F∗OX
ρ′∗d //

��

ρ′∗F∗Ω1
Y/S

��
F∗OY

d // F∗Ω1
X/S

To handle the i = 1 case, let f be a local section of OX and note that

df � //
_

��

fp−1df_

��
d(ρ(f)) � // ρ(f)p−1d(ρ(f))

Corollary 5.2.2. Let X be a smooth Artin stack over S and let X0 → X be a smooth cover by a
scheme. If X• is the simplicial scheme obtained by taking fiber products of X0 over X, and X ′

• is
its pullback by FS, then there exists a unique isomorphism

C−1 : Ωi
X′
•/S
→ Hi(F∗Ω•

X•/S
)

such that C−1(1) = 1, C−1(ω ∧ τ) = C−1(ω) ∧ C−1(τ), and C−1(df) is the class of fp−1df .

Proof. If such a C−1 exists, then its restriction to the nth level of the simplicial scheme is the
Cartier isomorphism for Xn. Therefore, we need only show existence, which follows from Lemma
5.2.1.

We have now proved the Cartier isomorphism for simplicial schemes. The other main
ingredient in extending Deligne-Illusie to simplicial schemes X•, is showing that relative Frobenius
for X• lifts locally. We note that there are, in fact, simplicial schemes for which relative Frobenius
does not lift.

Example 5.2.3. Let X• be obtained by taking fiber products of S over BGa. Lifting Frobenius
for X• is then equivalent to lifting Frobenius F of Ga to a morphism F̃ of group schemes

SpecW2(k)[x] = Ga,S̃ → Ga,S̃ = SpecW2(k)[x].

Since F̃ reduces to F , we must have F̃ (x) = xp + pf(x) for some f(x) ∈W2(k)[x]. The condition
that F̃ be a group scheme homomorphism implies

(x+ y)p + pf(x+ y) = xp + yp + p(f(x) + f(y)),

and an easy check shows that this is not possible.
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Although the above example shows that relative Frobenius need not lift locally for an
arbitrary simplicial scheme, we show that relative Frobenius does lift locally for those simplicial
schemes which come from smooth tame stacks. This is the key technical point of this section.

Proposition 5.2.4. Let X be a smooth tame stack over S with coarse space M . Then étale locally
on M , both X and the relative Frobenius FX/S lift mod p2.

Proof. Since the statement of the proposition is étale local, by Proposition 2.5.2, we can assume
that M is affine and X = [U/G], where G = Gr

m,S o H and H is a finite étale constant group
scheme. Note that U is affine and that the smoothness of G and X imply that U is smooth over S.

As a first step in showing that X and FX/S lift mod p2, we begin by showing that BG and its
relative Frobenius lift. Since the underlying scheme of G is Gr

m,S ×S H and its group structure is
determined by the action

H → Aut(Gr
m) = Aut(Zr),

we can use this same action to define a group scheme G̃ = Gr
m,S̃

oH which lifts G. It follows that

BG̃ is a lift of BG. Lifting the relative Frobenius of BG is the same as lifting the relative Frobenius
FG/S : Gr

m,S o H −→ Gr
m,S o H to a group scheme homomorphism. Note that FG/S is given by

the identity on H and component-wise multiplication by p on Gr
m,S . It therefore has a natural

lift mod p2 to the group scheme homomorphism given by the identity on H and component-wise
multiplication by p on Gr

m,S̃
.

We now prove that X and FX/S lift. There is a natural map π : X→ BG which makes

U //

��

S

��
X

π // BG

a cartesian diagram. To lift X mod p2, it suffices to show that there a stack X̃ and a cartesian
diagram

X //

π

��

X̃

π̃
��

BG // BG̃

The obstruction to the existence of such a diagram lies in Ext2(LX/BG,OX); here LX/BG denotes
the cotangent complex. Since π is representable and smooth, LX/BG is a locally free sheaf. It
follows that

RHom(LX/BG,OX) = Hom(LX/BG,OX),

which is a quasi-coherent sheaf. Since π is affine and G is linearly reductive, for any quasi-coherent
sheaf F on X, we have

RΓ(X,F) = RΓ(BG,Rπ∗F) = Γ(BG, π∗F).
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In particular,
RHom(LX/BG,OX) = Γ(X,Hom(LX/BG,OX))

and so Ext2(LX/BG,OX) = 0.

To show that FX/S lifts mod p2, it suffices to show that it lifts over our choice F̃BG/S . That
is, it suffices to show that there exists a dotted arrow making the diagram

X

FX/S

��

// X̃

���
�
�

F̃BG/S◦π̃

��

X′

π′

��

// X̃′

π̃′

��
BG′ // BG̃′

commute. The obstruction to finding such a dotted arrow lies in Ext1(LX′/BG′ , (FX/S)∗OX). As
before, we have

RHom(LX′/BG′ , (FX/S)∗OX) = Hom(LX′/BG′ , (FX/S)∗OX),

which is again a quasi-coherent sheaf. An argument similar to the one above then shows Ext1(LX′/BG′ , (FX/S)∗OX) =
0, thereby completing the proof.

We now prove Deligne-Illusie for simplicial schemes coming from smooth tame stacks.

Theorem 5.2.5. Let X be a smooth tame stack over S. Let X0 → X be a smooth cover by a scheme
and let X• be the simplicial scheme obtained by taking fiber products of X0 over X. Then, to every
lift X̃0 → X̃ of X0 → X, there is a canonically associated isomorphism

ϕ :
⊕
i<p

Ωi
X′
•/S

[−i]→ τ<pF∗Ω•
X•/S

in the derived category of OX′
•-modules such that Hi(ϕ) = C−1 for i < p.

Proof. To prove this theorem we simply check that all of the morphisms in the proof of Deligne-
Illusie extend to morphisms on the simplicial level (see Section 5.1.1 for an outline of Deligne-Illusie
and relevant notation).

Let ρ : Xn → Xm be a face or a degeneracy map of X•. To ease notation, we denote Xn by
Y and Xm by X. In addition, we use F to denote all relative Frobenii.

To show that ϕ0 extends to a morphism OX′
• → F∗Ω•

X•/S
, we show

ρ′∗OX′
ρ′∗C−1

//

��

ρ′∗H0F∗Ω•
X/S

//

��

ρ′∗F∗Ω•
X/S

��
OY ′

C−1
// H0F∗Ω•

Y/S
// F∗Ω•

Y/S
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commutes. The left square commutes by Lemma 5.2.1. The right square commutes since for any
morphism A• → B• of complexes concentrated in non-negative degrees, the following diagram
commutes

ker d0
A

//

��

A0

��
ker d0

B
// B0

To show that ϕi extends to a morphism on the simplicial level for i > 0, we must check

ρ′∗Ωi
X′/S [−i]ρ

′∗a[−i]//

��

(Ω1
X′/S)⊗i[−i] ρ′∗(ϕ1)⊗i

//

��

(F∗Ω•
X/S)⊗i ρ′∗b //

��

F∗Ω•
X/S

��
Ωi
Y ′/S [−i] a[−i] // (Ω1

Y ′/S)⊗i[−i] (ϕ1)⊗i

// (F∗Ω•
Y/S)⊗i b // F∗Ω•

Y/S

commutes. It is clear that the outermost squares commute, and so we are reduced to checking the
commutativity of

ρ′∗Ω1
X′/S [−1] ρ

′∗ϕ1
//

��

ρ′∗F∗Ω•
X/S

��
Ω1
Y ′/S [−1] ϕ1

// F∗Ω•
Y/S

Suppose now that Frobenius (for the simplicial scheme) lifts. So, we have a commutative square

Ỹ
F̃ //

ρ̃

��

Ỹ ′

ρ̃′

��
X̃

F̃ // X̃ ′

of S̃-schemes which pulls back to

Y
F //

ρ

��

Y ′

ρ′

��
X

F // X ′

over S. In this case ϕ1 = f , and to check that it defines a morphism Ω1
X′
•/S

[−1] → F∗Ω1
X•/S

, we
need to check that

ρ′∗Ω1
X′/S [−1] ρ′∗f //

��

ρ′∗F∗Ω1
X/S

��
Ω1
Y ′/S [−1] f // F∗Ω1

Y/S
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commutes. Under these morphisms,

dx0 ⊗ 1 � //
_

��

xp−1
0 dx0 + du(x)

_

��
dρ(x0)⊗ 1 ρ(x0)p−1dρ(x0) + dρ(u(x))

We see dρ(x0)⊗ 1 is sent to ρ(x0)p−1dρ(x0) + dρ(u(x)) since

F̃ ∗(ρ̃(x)⊗ 1) = F̃ ρ̃′(x⊗ 1) = ρ̃F̃ ∗(x⊗ 1) = ρ̃(xp + p(u(x))) = ρ̃(x)p + p(u(ρ̃(x))).

Given two different choices F̃1 and F̃2 of F , we obtain a homotopy h12 relating f1 and f2. It is
clear that h12 extends to a morphism on the simplicial level since h12(dx0⊗ 1) = u2(x)−u1(x) and
ρ̃(p(ui(x))) = p(ui(ρ̃(x))).

We now need to handle the general case when Frobenius does not lift. We begin by proving
that Frobenius lifts étale locally on X•. To do so, we can, by Proposition 5.2.4, assume that there
is a lift F̃ of FX/S . Let U0 = {Ui} be a Zariski cover of X0 where Frobenius lifts and let F̃i be a lift
of FUi/S . Then Un := {Ui1 ×X · · · ×X Uin} is a Zariski cover of Xn and F̃i1 ×F̃ · · · ×F̃ F̃in is a lift of
Frobenius on Ui1 ×X · · · ×X Uin . Moreover, these lifts of Frobenius are compatible so we see that
Frobenius for the simplicial scheme does lift étale locally.

To finish the proof of the theorem, we need only prove the commutativity of

ρ′∗F∗Ω•
X/S

' //

��

Tot(ρ′∗F∗Č•(Um,Ω•
X/S))

��

ρ′∗Ω1
X′/S [−1]ρ′∗Φoo

��
F∗Ω•

Y/S
' // Tot(F∗Č•(Un,Ω•

Y/S)) Ω1
Y ′/S [−1]Φoo

The right square commutes because the Φ are defined in terms of the f ’s and h’s. The middle
vertical map is induced by the morphism of the respective double complexes given by

(ω1,s ∧ · · · ∧ ωa,s)s∈Sm 7→ (ρsts (ω1,s ∧ · · · ∧ ρsts (ωa,s))s∈Sm,t∈Sn

where ρsts : Us ×X Ut → Us and Sk is the symmetric group. So, under the morphisms in the left
square,

ω1 ∧ . . . ωa � //
_

��

(ω1|Us ∧ · · · ∧ ωa|Us)s

ρ(ω1) ∧ . . . ρ(ωa) � // (ρ(ω1)|Us × Ut ∧ · · · ∧ ρ(ωa)|Us × Ut)s,t
Under the middle vertical map, (ω1|Us ∧ · · · ∧ ωa|Us)s is sent to (ρsts (ω1|Us) ∧ · · · ∧ ρsts (ωa|Us))s,t.
But

Us ×X Ut //

ρst
s

��

Y

ρ

��
Us // X



56

commutes, so this completes the proof.

Remark 5.2.6. If X is a smooth Artin stack which lifts mod p2, then there automatically exists
a smooth cover X → X by a smooth scheme such that the cover lifts mod p2. This can be seen as
follows. Let Y → X be any smooth cover by a smooth scheme Y and let

⋃
Ui = Y be a Zariski

cover of Y by open affine subschemes. We can then take X =
∐
Ui.

5.3 De Rham Theory for Tame Stacks

Let S be a scheme and X → Y a morphism of Artin stacks over S. We denote by $1
X/Y

the sheaf of OX-modules on the lisse-étale site of X such that $1
X/Y |Uet = Ω1

U/Y for all U smooth
over X. We define $s

X/Y to be
∧s$1

X/Y . Given a morphism f : V → U of smooth X-schemes, note
that the transition function

f∗Ω1
U/Y −→ Ω1

V/Y

need not be an isomorphism, and so the $s
X/Y are never coherent. Note also that $1

X/X is not the
zero sheaf.

As mentioned in the introduction, the sheaf $1
X/S gives us a naive de Rham complex $•

X/S . In this
section we prove that when S is spectrum of a perfect field of characteristic p, the hypercohomology
spectral sequence

Est1 = Ht($s
X/S)⇒ Hn($•

X/S)

degenerates for smooth proper tame stacks X that lift mod p2. The reason the proof of Corollary
5.1.6 and the Deligne-Illusie result proved in the last section do not immediately imply the degen-
eracy of this spectral sequence is that, as mentioned above, the $s

X/S are not coherent, and so we
do not yet know that the Ht($s

X/S) and Hn($•
X/S) are finite-dimensional k-vector spaces. The

main goal of this section, which implies the degeneracy of the above spectral sequence, is to prove
that they are by comparing them with the cohomology of the cotangent complex.

We begin by proving three general lemmas and a corollary which require no assumptions on the
base scheme S. The first two lemmas are concerned with relative cohomological descent. For back-
ground material on cohomological descent, we refer the reader to [Ol3, §2] and [Co, §6].

In what follows, given a smooth hypercover a : X• → X of an Artin stack by a simplicial al-
gebraic space, Xlis−et|Xs denotes the topos of sheaves over the representable sheaf defined by Xs

and Xlis−et|X• denotes the associated simplicial topos.

Lemma 5.3.1. Let X be an Artin stack over S and let a : X• → X be a smooth hypercover
by a simplicial algebraic space. If f : X → M is a morphism to a scheme, then for any F• ∈
Ab(Xlis−et|X•), there is a spectral sequence

Est1 = Rt(fas)∗(Fs|Xs,et)⇒ ε∗R
n(f∗a∗)F•,
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where ε : Mlis−et →Met is the canonical morphism of topoi. If F• = a∗F for some F ∈ Ab(Xlis−et),
then ε∗R

n(f∗a∗)F• = ε∗R
nf∗F .

Proof. Let ηs : Xlis−et|Xs → Xs,et be the canonical morphism of topoi and note that

Ab(Xs,et)
(fas)∗

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Ab(Xlis−et|Xs)

ηs∗

OO

as∗
// Ab(Xlis−et)

f∗
// Ab(Mlis−et) ε∗

// Ab(Met)

commutes. By general principles (see proof of [Co, Thm 6.11]), there is a spectral sequence

Est1 = Rt(ε∗f∗as∗)(Fs)⇒ Rn(ε∗f∗a∗)F•.

As ε∗ is exact, Rn(ε∗f∗a∗)F• = ε∗R
n(f∗a∗)F•. Since ηs∗ is exact and takes injectives to injectives,

the commutativity of the above diagram implies that Est1 ' Rt(fas)∗(Fs|Xs,et), which shows the
existence of our desired spectral sequence. Lastly, since

a∗ : Ab(Xlis−et)→ Ab(Xlis−et|X•)

is fully faithful, it follows ([Co, Lemma 6.8]) that Ra∗a∗ = id. As a result, ε∗R(f∗a∗)a∗F =
ε∗Rf∗F .

Lemma 5.3.2. With notation and hypotheses as in Lemma 5.3.1, we have

Rn(fa)∗(η∗F•) = ε∗R
n(f∗a∗)F•,

where η : Xlis−et|X• → X•,et is the canonical morphism of topoi.

Proof. We see that the diagram

Ab(X•,et)
(fa)∗

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Ab(Xlis−et|X•)

η∗

OO

a∗
// Ab(Xlis−et)

f∗
// Ab(Mlis−et) ε∗

// Ab(Met)

commutes. It follows that

R(fa)∗(η∗F•) = R(fa)∗(Rη∗F•) = ε∗R(f∗a∗)F•,

as ε∗ and η∗ are exact and take injectives to injectives.

Using Lemma 5.3.1, we prove a base change result for sheaves on an Artin stack which
are not necessarily quasi-coherent, but are level-by-level quasi-coherent on a smooth hypercover of
the stack.
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Corollary 5.3.3. Let f : X→M be a morphism from an Artin stack to a scheme and let a : X• →
X be a smooth hypercover by a simplicial algebraic space. Let h : T →M be an étale morphism and
consider the diagram

Y•
j //

b
��

X•

a

��
Y i //

g

��

X

f

��
T

h //M

where all squares are cartesian. If F is an OX-module such that each F|Xs,et is quasi-coherent,
then the canonical map

h∗ε∗R
nf∗F −→ α∗R

ng∗i
∗F

is an isomorphism, where ε and α denote the canonical morphisms of topoi Mlis−et → Met and
Tlis−et → Tet, respectively.

Proof. By Lemma 5.3.1, we have a spectral sequence

Est1 = Rt(fas)∗(F|Xs,et)⇒ ε∗R
nf∗F .

Applying h∗, we obtain another spectral sequence

8Est1 = h∗Rt(fas)∗(F|Xs,et)⇒ h∗ε∗R
nf∗F .

Flat base change shows

h∗Rt(fas)∗(F|Xs,et) = Rt(gbs)∗j∗s (F|Xs,et) = Rt(gbs)∗(i∗F)|Ys,et.

Another application of Lemma 5.3.1 then shows that 8E in fact abuts to α∗Rng∗i∗F .

Before stating the next lemma, we introduce the following definitions. Let Z be an S-
scheme equipped with an action ρ : G ×S Z → Z of a smooth reductive group scheme G over
S and let p : G × Z → Z be the projection. We denote by (G-lin OZet-mod) the category of
G-linearized OZet-modules. That is, the category of quasi-coherent OZet-modules F together with
an isomorphism φ : p∗F → ρ∗F satisfying a cocycle condition. From such a φ we can define a
“coaction map”

σ : F −→ p∗p
∗F p∗(φ)−→ p∗ρ

∗F = F ⊗OZ ,ρ OZ×SG

which satisfies an associativity relation as in [GIT, p.31]; here F → p∗p
∗F is the canonical map.

Letting f : Z → Z/G be the natural map, we define the G-invariants FG of F to be the equalizer
of

f∗σ : f∗F −→ f∗p∗ρ
∗F = f∗p∗p

∗F

and f∗ of the canonical map s 7→ s⊗ 1.
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If Y is also an S-scheme equipped with a G-action and h : Z → Y is a G-equivariant map over S,
then for every G-linearized OZet-module F , there is a natural G-linearization on h∗F . So, we have
a commutative diagram of categories

(G-lin OZet-mod) //

h∗
��

(OZet-mod)

h∗
��

(G-lin OYet-mod) // (OYet-mod)

where the horizontal arrows are the obvious forgetful functors. If g : Z/G → Y/G denotes the
map induced by h, then it is not hard to see that (h∗F)G = g∗FG. In particular, FG = (f∗F)G

where G acts trivially on Z/G. Note that for any sheaf G of OZ/G-modules, f∗G comes equipped
with a canonical G-linearization. If the G-action on Z is free, so that f is a G-torsor, then
(f∗G)G = (f∗f∗G)G = G.

By descent theory, (G-lin OZet-mod) is equivalent to the category of quasi-coherent sheaves on
[Z/G]. Under this equivalence, taking G-invariants in the above sense corresponds to pushing for-
ward to the coarse space Z/G.

When the action of G on Z is trivial, we denote (G-lin OZet-mod) by (G-OZet-mod). We can
similarly define the categories (G-lin OZ•,et-mod) and (G-OZ•,et-mod) for simplicial schemes Z•.

Lemma 5.3.4. Let U be a smooth S-scheme with an action of a smooth affine linearly reductive
group scheme G over S. Let X = [U/G] and a : X• → X be the hypercover obtained by taking fiber
products of U over X. Consider the diagram

Y•
π //

b
��

X•

a

��
U

a0 //

g
!!C

CC
CC

CC
C X

f

��
M

where the square is cartesian and M is a scheme. Then

Rn(fa)∗F• = (Rn(gb)∗π∗F•)G

for all OX•,et-modules F• such that the Fs are quasi-coherent.

Proof. Note that the following diagram

(G-lin OY•,et-mod)
(gb)∗ //

π∗
��

(G-OMet-mod)

(−)G

��
(G-OX•,et-mod)

(−)G

// (OX•,et-mod)
(fa)∗ // (OMet-mod)
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of categories commutes. As a result,

R(fa)∗R(−)G(Rπ∗π∗F•) = R(−)G(R(gb)∗π∗F•) = (R(gb)∗π∗F•)G,

where the second equality holds because R(gb)∗π∗F• has quasi-coherent cohomology. It suffices
then to prove

F• = R(−)G(Rπ∗π∗F•).

We begin by showing Rπ∗π∗F• = π∗π
∗F•. Let

0→ π∗F• → I0
• → I1

• → . . .

be an injective resolution of OX•,et-modules. To show Rnπ∗π
∗F• = 0 for n > 0, we need only do

so after restricting to each level Xs. Since the restriction functor ress : Ab(X•,et) → Ab(Xs,et) is
exact, we see

ressR
nπ∗π

∗F• = ressHn(π∗I•• ) = Hn(π∗I•s ) = Rnπ∗π
∗Fs = 0,

where the last equality holds because π is affine and Fs is quasi-coherent.

A similar argument shows R(−)G(π∗π∗F•) = (π∗π∗F•)G as every π∗π
∗Fs is quasi-coherent. The

lemma then follows from the fact that π is a G-torsor, and so (π∗π∗F•)G = F•.

For the rest of the section, we let S = Spec k, where k is a perfect field of characteristic
p. We remind the reader that if X is a smooth Artin stack and X• → X is a hypercover, then
the cotangent complex LX/S of the stack ([Ol3, §8]) is the bounded complex of OX-modules with
quasi-coherent cohomology such that

LX/S |X•,et = Ω1
X•/S

→ Ω1
X•/X

with Ω1
X•/S

in degree 0; that is,
LX/S = $1

X/S → $1
X/X.

In Theorem 5.3.5 below, we compare $s
X/S with

∧sLX/S , the sth derived exterior power of LX/S .
Given an abelian category A, the derived exterior powers L

∧s, as well as the derived symmetric
powers LSs, of a complex E ∈ D−(A) are defined in [Il, I.4.2.2.6]. Since LX/S is not concentrated
in negative degrees, we cannot directly define

∧sLX/S ; however, it is shown in [Il, I.4.3.2.1] that for
E ∈ D−(A),

LSs(E[1]) = (L
s∧
E)[s]

so we may define
∧sLX/S as LSs(LX/S [1])[−s]. It follows, then, from [Il, I.4.3.1.7] that∧s

LX/S = $s
X/S → $s−1

X/S ⊗$
1
X/X → · · · → $1

X/S ⊗ S
s−1$1

X/X → Ss$1
X/X

with $s
X/S in degree 0. Note that we have a canonical map from

∧sLX/S to $s
X/S .
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We remark that
∧sLX/S ∈ Db

coh(X) for all s. This can be seen as follows. We have an exact
triangle

a∗0LX/S −→ LX0/S −→ Ω1
X/X.

By [Il, II.2.3.7], LX0/S has coherent cohomology. Since Ω1
X/X is coherent and coherence can be

checked smooth locally, we see LX/S and hence all
∧sLX/S are in Db

coh(X).

We are now ready to prove the comparison theorem.

Theorem 5.3.5. If X is smooth and tame over S and f : X → M is its coarse space, then the
canonical map

ε∗R
tf∗(

∧s
LX/S) −→ ε∗R

tf∗$
s
X/S

is an isomorphism.

Proof. By Lemma 2.5.2, there exists an étale cover h : T →M and a cartesian diagram

[U/G] //

g

��

X

f

��
T

h //M

where G is linearly reductive, affine, and smooth over S. Since X and G are smooth, we see that
U is as well. Let Y = [U/G] and let ϕ : ε∗Rtf∗(

∧sLX/S)→ ε∗R
tf∗$

s
X/S be the canonical map. By

Corollary 5.3.3, we see that h∗ϕ is the canonical map

ε∗R
tg∗(

s∧
LY/S) −→ ε∗R

tg∗$
s
Y/S .

To show that ϕ is an isomorphism, we can therefore assume X = [U/G] and M = T .

To prove the theorem, it suffices to show ε∗R
tf∗($s−k

X/S ⊗ Sk$1
X/X) = 0 for all k > 0 and all t.

With notation as in Lemma 5.3.4, we see

ε∗R
tf∗($s−k

X/S ⊗ S
k$1

X/X) = ε∗R
t(f∗a∗)a∗($s−k

X/S ⊗ S
k$1

X/X) = Rt(fa)∗(Ωs−k
X•/S

⊗ SkΩ1
X•/X

),

where the first equality is by Lemma 5.3.1 and the second is by Lemma 5.3.2. It now follows from
Lemma 5.3.4 that

Rt(fa)∗(Ωs−k
X•/S

⊗ SkΩ1
X•/X

) = (Rt(gb)∗(π∗Ωs−k
X•/S

⊗ SkΩ1
Y•/U

))G.

Fix t and k > 0. It suffices then to prove by (strong) induction on s that for every flat OX•-module
G which is restriction to Y•,et of some O-module F on the lisse-étale site of U ,

Rn(gb)∗(π∗Ωs
X•/S

⊗ G ⊗ SkΩ1
Y•/U

) = 0.
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We begin with the case s = 0, which is handled separately. An application of Lemmas 5.3.1 and
5.3.2 shows

Rn(gb)∗(G ⊗ SkΩ1
Y•/U

) = ε∗R
ng∗(F ⊗ Sk$1

U/U ).

If we let α : Ulis−et → Uet be the canonical morphism of topoi, we see then that

ε∗R
ng∗(F ⊗ Sk$1

U/U ) = Rng∗(α∗F ⊗ SkΩ1
U/U ) = 0,

where the last equality holds since k > 0.

Assume now that s > 0. Since π is smooth, we have a short exact sequence

0 −→ π∗Ω1
X•/S

−→ Ω1
Y•/S

−→ Ω1
Y•/X•

−→ 0.

As a result, we have a filtration Ωs
Y•/S

⊃ K1 ⊃ · · · ⊃ Ks ⊃ 0 with Ks = π∗Ωs
X•/S

and short exact
sequences

0 −→ K1 −→ Ωs
Y•/S

−→ Ωs
Y•/X•

−→ 0

0 −→ K2 −→ K1 −→ π∗Ω1
X•/S

⊗ Ωs−1
Y•/X•

−→ 0

...

0 −→ π∗Ωs
X•/S

−→ Ks−1 −→ π∗Ωs−1
X•/S

⊗ Ω1
Y•/X•

−→ 0.

Since G ⊗ SkΩ1
Y•/U

is flat, tensoring each of the above short exact sequences by it results in a new
list of short exact sequences. Since

Ω1
Y•/S

⊗ G ⊗ SkΩ1
Y•/U

= ($1
U/S ⊗F ⊗ S

k$1
U/U )|Y•,et

and
Ω1
Y•/X•

⊗ G ⊗ SkΩ1
Y•/U

= (LU/X ⊗F ⊗ Sk$1
U/U )|Y•,et,

the s = 0 case shows

Rn(gb)∗(Ω1
Y•/S

⊗ G ⊗ SkΩ1
Y•/U

) = Rn(gb)∗(Ω1
Y•/X•

⊗ G ⊗ SkΩ1
Y•/U

) = 0.

As a result, Rn(gb)∗(K1 ⊗ G ⊗ SkΩ1
Y•/U

) = 0. Using the inductive hypothesis, we conclude

Rn(gb)∗(Ki ⊗ G ⊗ SkΩ1
Y•/U

) = 0

for all i, in particular for i = s.

Corollary 5.3.6. If X is a smooth proper tame stack over S, then Ht($s
X/S) and Hn($•

X/S) are
finite-dimensional k-vector spaces for all s, t, and n.
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Proof. Let f : X→M be the coarse space of X. For each s, there is a Leray spectral sequence

Eij2 = H i(ε∗Rjf∗$s
X/S)⇒ Ht($s

X/S).

By Theorem 5.3.5, the canonical map

ε∗R
jf∗(

∧s
LX/S) −→ ε∗R

jf∗$
s
X/S

is an isomorphism. As we remarked above,
∧sLX/S ∈ Db

coh(X). Since f is proper by Keel-Mori
[KM], and M is proper by [Ol1, Prop 2.10], we see the Eij2 are finite-dimensional k-vector spaces.
It follows that Ht($s

X/S) is a finite-dimensional k-vector space for every s and t.

Since the morphisms in the complex $•
X/S are k-linear, the hypercohomology spectral sequence

Est1 = Ht($s
X/S)⇒ Hn($•

X/S)

consists of finite-dimensional k-vector spaces with k-linear maps. As a result, Hn($•
X/S) is a finite-

dimensional k-vector space as well.

Theorem 5.3.7. Let X be a smooth proper tame stack over S that lifts mod p2. Then the Hodge-de
Rham spectral sequence

Est1 = Ht($s
X/S)⇒ Hn($•

X/S)

degenerates for s+ t < p.

Proof. By Remark 5.2.6, there exists a smooth cover X → X by a smooth scheme such that the
cover lifts mod p2. Theorem 5.2.5 now shows⊕

s<p

Ωs
X′
•/S

[−s] ' τ<pF∗Ω•
X•/S

,

where X• is obtained from X by taking fiber products over X. Since Ht($s
X/S) = Ht(Ωs

X•/S
) and

Hn($•
X/S) = Hn(Ω•

X•/S
), we see that for n < p,

dimkH
n($•

X/S) =
∑
s+t=n

dimkH
t(Ωs

X′
•/S

) =
∑
s+t=n

dimkH
t(Ωs

X•/S
) =

∑
s+t=n

dimkH
t($s

X/S),

which proves the degeneracy of the spectral sequence by Lemma 5.1.5.

5.4 De Rham Theory for Schemes
with Isolated Linearly Reductive Singularities

Let k be a perfect field of characteristic p and let S = Spec k. Recall that a scheme M
over S has linearly reductive singularities if there is an étale cover {Ui/Gi →M}, where the Ui are
smooth over S and the Gi are linearly reductive group schemes which are finite over S. Note that if
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M has linearly reductive singularities, then it is automatically normal and in fact Cohen-Macaulay
by [HR, p.115].

Our goal in this section is to prove that if M is proper over S, and j : M0 → M is its smooth
locus, then under suitable liftability conditions, the hypercohomology spectral sequence Est1 =
Ht(j∗Ωs

M0/S)⇒ Hn(j∗Ω•
M0/S) degenerates.

5.4.1 Relationship with Tame Stacks, and the Cartier Isomorphism

Let M and X be as in Theorem 2.1.10. Then the proof of Lemma 5.1.10 goes through
word for word (after replacing “an étale morphism U → X” by “a smooth morphism U → X”) to
show

j∗Ω•
M0/S = ε∗f∗$

•
X/S ,

where ε : Mlis−et →Met is the canonical morphism of topoi.

Remark 5.4.1. Since ε∗f∗$
s
X/S = ε∗f∗H0(

∧sLX/S), the above equality shows that j∗Ωs
M0/S is

coherent, which is not a priori obvious.

To simplify notation, throughout the rest of this subsection we suppress ε.

Proposition 5.4.2 (Cartier isomorphism). Let X be a smooth tame stack over S which lifts mod
p2, and let f : X→M be its coarse space. Then there is a canonical isomorphism

Ht(f ′∗F∗$•
X/S) '→ f ′∗$

t
X′/S .

If we further assume that X and M are as in Theorem 2.1.10, then

Ht(F∗j∗Ω•
M0/S) '→ j′∗Ω

t
M0/S .

Proof. For any left exact functor G : A → B of abelian categories and any complex A• of ob-
jects of A, there is a canonical morphism Ht(GA•) → GHt(A•): the map GA• → RGA• induces
a morphism fromHt(GA•) to the E0t

2 -term of the spectral sequence Est2 = RsGHt(A•)⇒ RnG(A•).

For us this yields the (global) map φ : Ht(f ′∗F∗$•
X/S) → f ′∗Ht(F∗$•

X/S) = f ′∗$
t
X′/S . To prove

this is an isomorphism, we need only do so locally. So, by Lemma 2.5.2 and Proposition 5.2.4, we
are reduced to the case X = [U/G], where U is smooth and affine, G = Gr

m,S o H for some finite
étale constant group scheme H, and both X and the relative Frobenius lift mod p2. Let X• be
the simplical scheme obtained by taking fiber products of U over X, and let a : X• → X be the
augmentation map. Since U → X lifts mod p2, Theorem 5.2.5 yields a quasi-isomorphism

ϕ :
⊕
t<p

Ωt
X′
•/S

[−t] '→ τ<pF∗Ω•
X•/S

.

In this local setting, ϕ is a morphism of complexes by Remark 5.1.3. We can therefore apply (f ′a)∗.

Subsequently taking cohomology, we have a morphism f ′∗$
t
X′/S

f ′∗ϕ
t

−→ Ht(f ′∗F∗$•
X/S). We show that

ψ : f ′∗Ht(F∗$•
X/S)

(f ′∗C
−1)−1

−→ f ′∗$
t
X′/S

f ′∗ϕ
t

−→ Ht(f ′∗F∗$•
X/S)
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and φ are inverses. Note that in this local setting f ′∗ is simply “take G-invariants”, and that
φ : Ht((F∗Ω•

U )G)→ Ht(F∗Ω•
U )G is [α] 7→ (α), where we use square, resp. round brackets to denote

classes in Ht((F∗Ω•
U )G), resp. Ht(F∗Ω•

U )G.

In general, one does not expect the map (α) 7→ [α] to be well-defined, but we show here that this is

precisely what ψ is. Let (ω) ∈ Ht(F∗Ω•
U )G. Via the Cartier isomorphism Ωt

U ′
(C−1)G

−→ Ht(F∗Ω•
U )G,

we know that (ω) is of the form

(
∑

fi1,...,itx
p−1
i1

. . . xp−1
it

dxi1 ∧ · · · ∧ dxit),

where ∑
fi1,...,it(dxi1 ⊗ 1) ∧ · · · ∧ (dxit ⊗ 1) ∈ (Ωt

U ′)
G.

The Deligne-Illusie map ϕq sends this G-invariant form to

η =
∑

fi1,...,it(x
p−1
i1

dxi1 + du(xi1)) ∧ · · · ∧ (xp−1
it

dxit + du(xit)),

where u(x) is the reduction mod p of any y satisfying F̃ ∗(dx̃⊗ 1) = x̃pdx̃+ py. So, ψ sends (ω) to
(η). But since (du(x)) = 0, we see that ψ is the map sending (α) to [α].

5.4.2 Degeneracy of Various Spectral Sequences and a Vanishing Theorem

Let X andM be as in Theorem 2.1.10. Our immediate goal is to show the degeneracy of the
hypercohomology spectral sequence for j∗Ω•

M0/S when X is proper and lifts mod p2. If$1
X/S were co-

herent, then since X is tame, we would have j∗Ω•
M0/S = ε∗f∗$

•
X/S = ε∗Rf∗$

•
X/S . The proof of Theo-

rem 5.1.8 would then apply directly to show the degeneracy of Est1 = Ht(j∗Ωs
M0/S)⇒ Hn(j∗Ω•

M0/S).
Since $1

X/S is not coherent, we must take a different approach. As we explain below, the Cartier
isomorphism for j∗Ω•

M0/S proved in the last subsection implies that the degeneracy of the above hy-
percohomology spectral sequence is equivalent to the degeneracy of the conjugate spectral sequence
Est2 = Hs(Ht(j∗Ω•

M0/S))⇒ Hn(j∗Ω•
M0/S). We show that this latter spectral sequence degenerates

by comparing it to the spectral sequence Est2 = Hs(Rtf∗$•
X/S) ⇒ Hn($•

X/S) over which we have
more control due to the Deligne-Illusie result of Section 5.2.

As in the last subsection, we suppress ε : Met → Mlis−et. The following is the key technical
lemma we use to prove the degeneracy of the hypercohomology spectral sequence for j∗Ω•

M0/S .

Lemma 5.4.3. Let E and 8E be two first quadrant E2 spectral sequences. Suppose that for s 6= 0,
every differential 8Estr → 8E

s+r,t−(r−1)
r is zero. Suppose further that we are given a morphism

E → 8E of spectral sequences such that the induced morphism Estr → 8E
s+r,t−(r−1)
r is zero for all r,

s, and t, and such that Est2 → 8Est2 is an injection for all s and t. Then E degenerates.
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Proof. We claim that the morphism Estr → 8Estr is an injection for s ≥ r. Note that this is enough
to prove the lemma since for all s, the square

Estr
//

dst
r
��

8Estr

��

E
s+r,t−(r−1)
r

// 8E
s+r,t−(r−1)
r

commutes, the composite is zero, and E
s+r,t−(r−1)
r → 8E

s+r,t−(r−1)
r is an injection; this shows that

all differentials dstr are zero.

We now prove the claim by induction. It is true for r = 2, so we may assume r > 2. Let
s ≥ r and consider the commutative diagram

E
s−(r−1),t+(r−2)
r−1

//

��

Estr−1
//

��

E
s+r−1,t−(r−2)
r−1

��
8E

s−(r−1),t+(r−2)
r−1

// 8Estr−1
// 8E

s+r−1,t−(r−2)
r−1

By the inductive hypothesis, all vertical arrows are injective and all arrows on the bottom row are
zero. It follows that all arrows on the top arrow are zero, and so Estr → 8Estr is injective.

Theorem 5.4.4. Let X and M be as in Theorem 2.1.10. If M has isolated singularities, and X is
proper and lifts mod p2, then the conjugate spectral sequence

Est2 = Hs(Ht(j∗Ω•
M0/S))⇒ Hn(j∗Ω•

M0/S)

degenerates for s+ t < p.

Proof. Let X• be as in Remark 5.2.6 and let a : X• → X be the augmentation map. By Theo-
rem 5.2.5, we have an isomorphism

⊕
i<p Ωi

X′
•/S

[−i] '→ τ<pF∗Ω•
X•/S

in the derived category, and
therefore, also an isomorphism⊕

i<p

R(f ′∗a∗)Ω
i
X′
•/S

[−i] '−→ τ<pR(f ′∗a∗)F∗Ω
•
X•/S

.

The first of these isomorphisms implies that the Leray spectral sequence

88Est2 = Rsf ′∗Ht(F∗$•
X/S)⇒ Rnf ′∗F∗$

•
X/S

degenerates and that the extension problem is trivial. The second of the two isomorphisms shows
that the spectral sequence

8Est2 = Hs(Rtf ′∗F∗$
•
X/S)⇒ Hn($•

X/S)
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decomposes as the direct sum
⊕ 8

iE of Leray spectral sequences, where

8
iE

st
2 = Hs(Rt−if ′∗$

i
X′/S)⇒ Hn−i($i

X′/S).

Note that the morphism f ′∗F∗$
•
X/S → Rf ′∗F∗$

•
X/S induces a morphism of spectral sequences E →

8E, where
Est2 = Hs(Ht(f ′∗F∗$•

X/S))⇒ Hn(f∗$•
X/S).

By the degeneracy of 88E, the morphism ϕ : Ht(f ′∗F∗$•
X/S)→ Rtf ′∗F∗$

•
X/S factors as

Ht(f ′∗F∗$•
X/S)→ f ′∗F∗$

t
X/S ↪→ Rtf ′∗F∗$

•
X/S .

But this first morphism is precisely how the Cartier isomorphism of Proposition [?] was defined.
From this and the fact that the extension problem for 88E is trivial, we have a split short exact
sequence

0 −→ Ht(f ′∗F∗$•
X/S)

ϕ−→ Rtf ′∗F∗$
•
X/S −→

⊕
i+j=t
j>0

Rjf ′∗$
i
X′/S −→ 0.

It follows that Est2 is mapped isomorphically to the direct summand 8
tE

st
2 of 8Est2 . This implies that

for all r, s, and t, the induced morphism Estr → 8E
s+r,t−(r−1)
r is zero.

Note that

j′∗Rtf ′∗$
i
X′/S = j′∗Rtf ′∗

i∧
LX′/S = (f0)′∗Ht(

i∧
L(X0)′/S) = 0

It follows that Rtf ′∗$
i
X′/S is supported at the singular locus of M ′, and since M is assumed to have

isolated singularities, Hs(Rtf ′∗$
s
X/S) = 0 for s and t positive. We see then that 8

iE
st
2 is zero if t > i

and s > 0, or if t < i. Therefore, the differential 8Estr → 8E
s+r,t−(r−1)
r is zero if s 6= 0. From Lemma

5.4.3, it follows that E degenerates.

Remark 5.4.5. Let E be a locally free sheaf on M ′. Tensoring the isomorphism⊕
i<p

R(f ′∗a∗)Ω
i
X′
•/S

[−i] '−→ τ<pR(f ′∗a∗)F∗Ω
•
X•/S

with E, we see that the Leray spectral sequence

8Est2 = Hs(Rtf ′∗F∗$
•
X/S ⊗ E)⇒ Hn(Rf ′∗F∗$

•
X/S ⊗ E)

decomposes as the direct sum of spectral sequences. The proof of Theorem 5.4.4 then shows that the
spectral sequence

Est2 = Hs(Ht(f ′∗F∗$•
X/S)⊗ E)⇒ Hn(Rf ′∗F∗$

•
X/S ⊗ E).

degenerates for s+ t < p.
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Theorem 5.4.6. Let X and M be as in Theorem 2.1.10. If M has isolated singularities, and X is
proper and lifts mod p2, then the hypercohomology spectral sequence

Est1 = Ht(j∗Ωs
M0/S)⇒ Hn(j∗Ω•

M0/S)

degenerates for s+ t < p.

Proof. By the Cartier isomorphism

Hs(Ht(j∗Ω•
M0/S)) = Hs(Ht(f ′∗F∗$•

X/S)) = Hs(f ′∗$
t
X′/S).

But Hs(f ′∗$
t
X′/S) = Hs(f∗$t

X/S)⊗k,Fk
k; in particular,

dimkH
s(Ht(j∗Ω•

M0/S)) = dimkH
s(f∗$t

X/S).

By Corollary 5.3.7, the above cohomology groups are finite-dimensional k-vector spaces. The
degeneracy of the conjugate spectral sequence shows

Hn(j∗Ω•
M0/S) '

⊕
s+t=n

Hs(Ht(j∗Ω•
M0/S)),

and so
dimkH

n(j∗Ω•
M0/S) =

∑
s+t=n

dimkH
s(f∗$t

X/S),

which implies the degeneracy of the hypercohomology spectral sequence by Lemma 5.1.5.

Although our proof of Theorem 5.1.8 goes through stacks, the statement of the theorem
is purely scheme-theoretic. We would similarly like to remove the stack from the statement of
Theorem 5.4.6. We can do so when M has large enough dimension.

Theorem 5.4.7. Let M be a proper S-scheme with isolated linearly reductive singularities. If
dimM ≥ 4 and M lifts mod p2, then

Est1 = Ht(j∗Ωs
M0/S)⇒ Hn(j∗Ω•

M0/S)

degenerates for s+ t < p.

Proof. Let m = dimM and let X be as in Theorem 2.1.10. If we can prove X lifts mod p2, then we
are done. The exact triangle

Lf∗LM/S −→ LX/S −→ LX/M

gives rise to the long exact sequence

. . . −→ Ext2(LX/M ,OX) −→ Ext2(LX/S ,OX) −→ Ext2(Lf∗LM/S ,OX) −→ Ext3(LX/M ,OX) −→ . . . .

Note that

RHom(Lf∗LM/S ,OX) = RHom(LM/S , Rf∗OX) = RHom(LM/S ,OM )
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since Rf∗OX = f∗OX by tameness and f∗OX = OM by Keel-Mori [KM]. Since the obstruction
to lifting X lies in Ext2(LX/S ,OX), we need only show Ext2(LX/M ,OX) = 0. We in fact prove
Exts(LX/S ,OX) = 0 for s ≤ m− 2.

Since (j0)∗LX/M = LX0/M0 = 0, we see

0 = Rj0∗RHom((j0)∗LX/M ,OX0) = RHom(LX/M , Rj
0
∗OX0).

A local cohomology argument given below will show Rtj0∗OX0 6= 0 if and only if t = 0,m − 1.
Assuming this for the moment, let us complete the proof. We have a spectral sequence

Est2 = RsHom(LX/M , R
tj0∗OX0)⇒ RnHom(LX/M , Rj

0
∗OX0) = 0.

The only page with non-zero differentials, then, is the mth. Since LX/M is concentrated in degrees
at most 1, RsHom(LX/M , R

tj0∗OX0) = 0 for s < −1. It follows that

RsHom(LX/M , j
0
∗OX0) = 0

for s ≤ m− 2, which proves the theorem since j0∗OX0 = OX.

We now turn to the local cohomology argument. To prove Rtj0∗OX0 6= 0 if and only if t = 0,m− 1,
we can make an étale base change. We can therefore assume X = [U/G], where U is smooth and
affine, and G is finite linearly reductive. Since M has isolated singularities, we can further assume
U0 = U\{x}, where U0 is the pullback

U0 i //

h
��

U

g

��
X0

j0 // X

The following lemma, then, completes the proof.

Lemma 5.4.8. Let U be a normal affine scheme of dimension m and let x ∈ U be Cohen-Macaulay.
If U0 = U\{x} and i : U0 ↪→ U is the inclusion, then Rti∗OU0 6= 0 if and only if t = 0,m− 1.

Proof. Note thatRti∗OU0 is the skyscraper sheafHt(OU0) at x. By normality, H0(OU0) = H0(OU ).
Since U is affine, the long exact sequence

. . . −→ Hn
x (OU ) −→ Hn(OU ) −→ Hn

x (OU0) −→ Hn
x (OU ) −→ . . .

shows Ht(OU0) = Ht+1
x (OU ) for t > 0. Since x is Cohen-Macaulay, Ht+1

x (OU ) 6= 0 if and only if
t+ 1 = m.

We now prove an analogue of [DI, Lemma 2.9] which Deligne and Illusie use to deduce
Kodaira Vanishing.
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Lemma 5.4.9. Let X and M be as in Theorem 2.1.10. Suppose M has isolated singularities, and
X is proper and lifts mod p2. Let d be the dimension of M and let N be an integer such that
N ≤ inf(d, p). If M is an invertible sheaf on M such that

Ht(j∗Ωs
M0/S ⊗M

p) = 0

for all s+ t < N , then
Ht(j∗Ωs

M0/S ⊗M) = 0

for all s+ t < N .

Proof. Let M′ be the pullback ofM to M ′. Since F ∗M′ =Mp, the projection formula shows

Ht(j∗Ωs
M0/S ⊗M

p) = Ht(f ′∗F∗$
s
X/S ⊗M

′).

From the hypercohomology spectral sequence

Est2 = Ht(f ′∗F∗$
s
X/S ⊗M

′)⇒ Hn(f ′∗F∗$
•
X/S ⊗M

′),

we see that Hn(f ′∗F∗$
•
X/S ⊗M

′) = 0 for all n < N . Remark 5.4.5 shows that the Leray spectral
sequence

Est2 = Hs(f ′∗$
t
X′/S ⊗M

′)⇒ Hn(f ′∗F∗$
•
X/S ⊗M

′)

degenerates, and so Hs(f ′∗$
t
X′/S ⊗M

′) = 0 for all s+ t < N . Since

dimkH
s(f ′∗$

t
X′/S ⊗M

′) = dimkH
s(j∗Ωt

M0/S ⊗M),

the lemma follows.

Unfortunately, we cannot quite deduce from Lemma 5.4.9 a general Kodaira Vanishing
result. Following Deligne and Illusie, we would like to show that if M is a projective scheme of
dimension d with isolated linearly reductive singularities and L is an ample line bundle on M , then
Ht(j∗Ωs

M0/S ⊗ L
−pm

) = 0 for m sufficiently large. Lemma 5.4.9 would then imply that m can be
taken to be 1. The issue is that the vanishing of these cohomology groups for m large enough is
not clear. Under certain hypothesis, however, we obtain a vanishing theorem.

Proposition 5.4.10. Let M be a projective scheme of dimension d with isolated linearly reductive
singularities. Let L be an ample line bundle on M . If the j∗Ωs

M0/S are Cohen-Macaulay for all s,
then

Ht(j∗Ωs
M0/S ⊗ L

−1) = 0

for all s+ t < inf(d, p).

Proof. By Lemma 5.4.9, we need only prove that Ht(j∗Ωs
M0/S ⊗L

−pm
) = 0 for m sufficiently large.

Grothendieck Duality shows

Ht(j∗Ωs
M0/S ⊗ L

−pm
)∨ = Extd−t(j∗Ωs

M0/S ⊗ L
−pm

, ω0
M ).
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Since the Extd−t(j∗Ωs
M0/S , ω

0
M ) are coherent, the local-global Ext spectral sequence shows that for

m sufficiently large,

Ht(j∗Ωs
M0/S ⊗ L

−pm
)∨ = Γ(Extd−t(j∗Ωs

M0/S , ω
0
M )⊗ Lpm

).

For all x ∈M ,
Extd−t(j∗Ωs

M0/S , ω
0
M )x = Extd−tOx

((j∗Ωs
M0/S)x, ω0

Ox
).

Since M and the j∗Ωs
M0/S are Cohen-Macaulay, local duality then shows that for t < d,

Extd−t(j∗Ωs
M0/S , ω

0
M ) = 0,

thereby completing the proof.

We conclude by showing that the hypercohomology spectral sequence

Est1 = Rtf ′∗F∗$
s
X/S ⇒ Rnf ′∗F∗$

•
X/S

degenerates at E2 and that the only potentially non-zero differentials on the first page are those on
the zero-th row.

Lemma 5.4.11. Let A and B be abelian categories and let F : A → B be a left exact functor.
Suppose that A has enough injectives. If A• is a complex of objects in A and C• denotes the cone
in the derived category D(A) of the canonical morphism FA• → RFA•, then there is a spectral
sequence

8Est1 =
{
RtFAs t > 0
0 t = 0

⇒ Hn(C•).

If in the hypercohomology spectral sequence Epq1 = RqFAp ⇒ RnFA•, the differentials Es−r,r−1
r →

Es,0r are zero for all r ≥ 2, then for every n,

0→ Hn(FA•)→ RnFA• → Hn(C•)→ 0

is a short exact sequence.

Proof. The existence of the spectral sequence 8E is shown as follows. Let As → Is,• be an injective
resolution of As. The cone C• is then quasi-isomorphic to the total complex of

...
...

FI01 FI11 . . .
F I00 FI10 . . .
FA0 FA1 . . .

where FA0 has bidegree (−1, 0). The spectral sequence associated to this double complex in which
we begin by taking cohomology vertically is our desired 8E.

Note that there is a morphism of spectral sequences E → 8E. If the differentials Es−r,r−1
r → Es,0r

are zero for all r ≥ 2, then the morphism of spectral sequences induces an isomorphism Est∞
'→ 8Est∞

for t 6= 0. It follows that Hn(C•) is equal to RnFA• modulo the bottom part of its filtration,
namely En0

∞ = Hn(FA•).



72

Proposition 5.4.12. Let X and M be as in Theorem 2.1.10. If M has isolated singularities, and
X is proper and lifts mod p2, then the hypercohomology spectral sequence

Est1 = Rtf ′∗F∗$
s
X/S ⇒ Rnf ′∗F∗$

•
X/S

degenerates at E2, and for t 6= 0, the differentials Est1 → Es+1,t
1 are zero.

Proof. Let C• be the cone of the canonical morphism f ′∗F∗$
•
X/S → Rf ′∗F∗$

•
X/S . Note that for

t > 0, we have

j′∗Rtf ′∗F∗$
s
X/S = F∗j

∗Rtf∗
∧s
LX/S = (f0)′∗Ht(

s∧
L(X0)′/S) = 0,

and so Rtf ′∗F∗$
s
X/S is supported at the singular locus of M ′; in particular, the Rtf ′∗F∗$

s
X/S are

torsion. On the other hand, R0f ′∗F∗$
s
X/S = F∗j∗Ωs

M0/S , which is reflexive, and hence torsion-free.

As a result, for r ≥ 2 every differential Es−r,r−1
r → Es,0r is zero, and Estr is supported at the singular

locus of M ′ for all t 6= 0 and all s and r. So, to prove the proposition, we need only show that the
spectral sequence

8Est1 =
{
Rtf ′∗F∗$

s
X/S t > 0

0 t = 0
⇒ Hn(C•)

of Lemma 5.4.11 degenerates.

Since M is assumed to have isolated singularities, for any short exact sequence

0→ F → G → Q → 0

with F supported at the singular locus,

0→ Γ(F)→ Γ(G)→ Γ(Q)→ 0

is short exact as well. Furthermore, Γ(F) =
⊕

x∈M Fx, so F is zero if and only if Γ(F) is zero. It
follows that we have a spectral sequence

88Est1 =
{

Γ(Rtf ′∗F∗$
s
X/S) t > 0

0 t = 0
⇒ Γ(Hn(C•))

whose degeneracy is equivalent to that of 8E. By Lemma 5.4.11, there is a short exact sequence

0 −→ Hn(f ′∗F∗$•
X/S) −→ Rnf ′∗F∗$

•
X/S −→ H

n(C•) −→ 0.

Comparing this with the short exact sequence

0 −→ Ht(f ′∗F∗$•
X/S)

ϕ−→ Rtf ′∗F∗$
•
X/S −→

⊕
i+j=t
j>0

Rjf ′∗$
i
X′/S −→ 0
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proved in Theorem 5.4.4, we see

Hn(C•) =
⊕
s+t=n
t>0

Rtf ′∗$
s
X′/S .

It follows that ∑
s+t=n

dimk
88Est1 = dimk Γ(Hn(C•))

which shows the degeneracy of 88E by Lemma 5.1.5.
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Chapter 6

Toric Artin Stacks

In this chapter, we develop of a theory of toric Artin stacks which generalizes and unites
the approach to toric Deligne-Mumford stacks taken by Iwanari in [Iw] and Borisov-Chen-Smith
in [BCS]. In Chapter 3 we proved the stacky resolution theorem for toroidal embeddings X and
through a slight variant of the proof (see Theorem 3.3.9), also constructed several other smooth
log smooth Artin stacks each of which has X as its good moduli space and is isomorphic to X over
the trivial locus Xtriv.

When X is a toric variety, rather than just a toroidal embedding, we can construct even more
such smooth log smooth Artin stacks (see Theorem 6.2.6). Each of these Artin stacks has a dense
open torus whose action on itself extends to an action on the stack. Thus, these stacks should all be
thought of as toric Artin stacks. Along the lines of [BCS], we develop a theory of generalized stacky
fans and recast the construction of the above toric Artin stacks in terms of these stacky fans (see
Theorem 6.2.8). We imagine that along the lines of [FMN], there is a more intrinsic description of
the toric Artin stacks we introduce in this chapter, but we do not attempt to prove such a result here.

The key difference between our stacky fans and those of [BCS, p.193], is that we allow marked
points which do not lie on an extremal ray. More precisely, we define a generalized stacky fan Σ
to be the choice of a finitely-generated abelian group N , a rational fan Σ ⊂ N ⊗ Q, a choice of
r ∈ N, and a morphism β : ZΣ(1) × Zr → N . We require that if ρi ∈ Σ(1), then β(ρi) ⊗ 1 lie
on the the ray ρi, and we require that if ej ∈ Zr, then β(ej) ⊗ 1 lie in some cone of the fan. In
particular, we allow β to be the zero map. We remark that the toric Artin stack associated to
(N = 0,Σ = 0, β : Zn → N) is Lafforgue’s toric Artin stack [An/Gn

m]. Therefore, the theory of
toric Artin stacks we develop here helps to unite that of [BCS] with that of [La].

Throughout this chapter, let k be a field and S = Spec k have trivial log structure. In Section
6.1, we generalize the definition of stacky fan given in [BCS, p.193] and associate to a generalized
stacky fan Σ a smooth log smooth Artin stack X(Σ) having X(Σ) as a good moduli space. In
Section 6.2, we show that if N is torsion-free, then X(Σ) has a natural moduli intepretation in
terms of log geometry.
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6.1 Generalized Stacky Fans

In keeping with the notation of [BCS], for this section only, we let A∗ = Hom(A,Z) for an
abelian group A; recall that P ∗ usually denotes the units of a monoid P . Given a finitely-generated
abelian group N and a rational fan Σ ⊂ N⊗Q, we let Σ(1) be the set of rays of the fan. We denote
by d the rank of N and n the order of Σ(1).

We introduce the following notion of a generalized stacky fan. We frequently drop the word “gen-
eralized” when referring to it.

Definition 6.1.1. A generalized stacky fan Σ consists of a finitely-generated abelian group N , a
rational fan Σ ⊂ N ⊗Q, a choice of r ∈ N, and a morphism β : ZΣ(1) × Zr → N . We require that
if ρi ∈ Σ(1), then β(ρi)⊗ 1 lie on the the ray ρi, and we require that if ej ∈ Zr, then β(ej)⊗ 1 lie
in some cone σj of the fan. We often suppress r and write Σ = (N,Σ, β).

Throughout this section, we fix for every stacky fan Σ = (N,Σ, β) an ordering on the
rays of Σ(1) so that β is a map from Zn+r. In the next section, however, canonicity will be more
important.

Note that in the above definition we do not require that the rays ρi span N ⊗ Q or that the
β(ej) be distinct. Some of the β(ej) can even be zero, which as we will see, corresponds to the fact
that the associated stack X(Σ) contains a dense “Artin stacky torus”.

We remark that in [Ji, §2], Jiang introduces a notion of extended stacky fans which is equiva-
lent to our definition above, but the stacks he associates to them are all Deligne-Mumford. His
goal is to obtain suitable presentations of toric Deligne-Mumford stacks rather than construct toric
Artin stacks.

We show now how to associate to a stacky fan Σ = (N,Σ, β) an Artin stack X(Σ), which we
refer to as a toric Artin stack. We follow the procedure in [BCS]. As in [BCS, p. 195], we obtain
an exact sequence

N∗ β∗→ (Zn+r)∗ → H1(Cone(β)∗)→ Ext1Z(N,Z)→ 0.

Letting DG(β) := H1(Cone(β)∗), we define β∨ : (Zn+r)∗ → DG(β) to be the connecting homo-
morphism above. More concretely, let

0→ Z` Q→ Zd+` → N → 0

be a projective resolution of N . If B : Zn+r → Zd+` is a lift of β, then

DG(β) = coker([BQ]∗)

and β∨ is the composite
(Zn+r)∗ → (Zd+r+`)∗ → DG(β).
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The construction of X(Σ) is then essentially the same as in [BCS, p.198]. Consider the ideal

JΣ = 〈
∏

β(ei)⊗1/∈σ

xi | σ ∈ Σ〉

of k[x1, . . . , xd+r]. Letting GΣ be the diagonalizable group scheme associated toDG(β), then via β∨

we obtain a morphism GΣ → Gn+r
m and hence an action of GΣ on Ad+r = Spec k[x1, . . . , xd+r] via

the action of Gn+r
m . Since V (JΣ) is a union of coordinate subspaces, we see that ZΣ := Ad+r−V (JΣ)

is GΣ-invariant. We obtain a log structureMZΣ
on ZΣ by pulling back the canonical log structure

on Ad+r. Note that the GΣ-action on ZΣ extends to the log scheme (ZΣ,MZΣ
). We define

X(Σ) = [ZΣ/GΣ]

and obtain a log structure on X(Σ) by descent theory. We see then that X(Σ) is smooth and log
smooth.

Example 6.1.2. If Σ = (N, 0, β : Zd → 0) with N torsion-free of rank d, then X(Σ) = [Ad/Gd
m],

which is a smooth toric Artin stack in the sense of Lafforgue [La, IV.1.a].

Remark 6.1.3. Given N and a rational fan Σ, we can define a canonical stacky fan Σcan =
(N,Σ, βcan : Zn → N) by letting βcan(ei) be the first lattice point on the ith ray. However,
unlike in the theory of toric Deligne-Mumford stacks, given a stacky fan Σ = (N,Σ, β), we do not
necessarily have a morphism from X(Σ) to X(Σcan) as in [FMN, Thm I]. It is sometimes necessary
to take a root construction of X(Σ) in order to get a map to X(Σcan).

Note that given a stacky fan Σ, we can always write N = N ′ × N ′′, where N ′′ is a free
abelian group, the rays of Σ span N ′ ⊗ Q, and the span of the rays of Σ does not intersect N ′′.
We then obtain another stacky fan Σ′ = (N ′,Σ, β) in the evident way, and the above construction
shows that X(Σ) = Gd−n

m × X(Σ′).

We work now toward showing that X(Σ) is the good moduli space of X(Σ). Given a stacky
fan Σ and σ ∈ Σ, along the lines of [Cox, §1], we let

xσ =
∏

β(ei)⊗1/∈σ

xi

and let Uσ = Ad+r − V (xσ). Note that Uσ is GΣ-invariant and that ZΣ is the union of the Uσ.

Proposition 6.1.4. Let Σ be a stacky fan and σ ∈ Σ. If Xσ = Spec k[σ∨ ∩M ], then there is a
natural map [Uσ/GΣ]→ Xσ which is a good moduli space.

Proof. We may assume n = d. Let Pσ = σ∨ ∩M and note that Uσ = Spec k[Fσ], where

Fσ = N{i|β(ei)⊗1∈σ} × Z{i|β(ei)⊗1/∈σ}.
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Let iσ : Pσ → Fσ be defined by iσ(p) = ((β(ei) ⊗ 1)(p)). If N is torsion-free, we can choose ` = 0
and B = β in the above construction of X(Σ) so that the diagram

P gp
iσ //

id

��

F gpσ

ϕ'
��

N∗ B∗ // (Zn+r)∗

commutes; here ϕ sends ei to the dual basis vector e∗i . This shows that

k[Pσ] = k[Fσ]GΣ

and so the morphism [Uσ/GΣ]→ Xσ induced by iσ is a good moduli space.

We now handle the case when N is not torsion-free. Let Ntors '
∏

Z/miZ, where the mi > 1. Let
N ′ = N/Ntors and Σ′ = (N ′,Σ, β′) where β′ is the composite of β and the projection of N to N ′.
We have then a commutative diagram

Z`

Q=0×diag(mi)
��

N ′ × Z` π //

��

N ′

id
��

Zn+r

B
99ttttttttt

β
// N // N ′

where the columns are projective resolutions. Let B′ = πB. We then obtain a commutative
diagram

(Zn)∗
(B′)∗ //

��

(Zn+r)∗
(β′)∨ //

��

β∨

&&LLLLLLLLLL
DG(β′)

η

��
(N ′ × Z`)∗

(BQ)∗
// (Zn+r+`)∗ // DG(β)

The left and middle vertical arrows are injective. One easily checks that the left square is cartesian,
and so η is injective. This shows that the induced map

k[Fσ]GΣ′ → k[Fσ]GΣ

is an isomorphism, and hence, the composite

[Uσ/GΣ]→ [Uσ/GΣ′ ]→ Xσ

is a good moduli space as well.
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Theorem 6.1.5. If Σ is a stacky fan, then there is a natural map X(Σ)→ X(Σ) which is a good
moduli space such that for all σ ∈ Σ,

[Uσ/GΣ] //

��

X(Σ)

��
Xσ

// X(Σ)

is cartesian; here Xσ = Spec k[σ∨ ∩ M ] and [Uσ/GΣ] → Xσ is the morphism constructed in
Proposition 6.1.4.

Proof. We may assume n = d. For every σ ∈ Σ, let Pσ, Fσ, and iσ be as in the proof of Proposition
6.1.4. We denote also by iσ the induced morphism Uσ → Xσ. Note that if τ is face of σ, then the
diagram

Uτ //

iτ
��

Uσ

iσ
��

Xτ
// Xσ

commutes. We claim that it is, in fact, cartesian. To prove this, we show that if we have a
commutative diagram of monoids

Q

Fτ

__@
@

@
@

Fσoo

φ

ggPPPPPPPPPPPPPPP

Pτ

iτ

OOψ

WW000000000000000

Pσ

iσ

OO

oo

then there is a unique dotted arrow making the diagram commute. This is equivalent to showing
that if β(ei)⊗1 is in σ but not in τ , then φ(ei) is a unit. By [Fu, §1.2 Prop 2], there is some p ∈ Pσ
such that τ = σ ∩ p⊥ and Pτ = Pσ + N · (−p). Note then that ψ(p) is a unit and that

ψ(p) = φ iσ(p) =
∑
i

((β(ei)⊗ 1)(p))φ(ei).

Let i be such that β(ei) ⊗ 1 is in σ but not in τ . Since it is in σ, we see that (β(ei) ⊗ 1)(p) ≥ 0.
Since β(ei)⊗ 1 is not in τ and since τ = σ ∩ p⊥, we must have (β(ei)⊗ 1)(p) > 0, and so φ(ei) is a
unit, as desired.

We see then that
[Uτ/GΣ] //

��

[Uσ/GΣ]

��
Xτ

// Xσ

is cartesian. By Lemma 6.3 and Proposition 7.9 of [Al], it follows that there is a natural map
X(Σ)→ X(Σ) which is a good moduli space whose base change to Xσ is as claimed.
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6.2 Admissible Sliced Resolutions and a Moduli Interpretation of
X(Σ)

We begin this subsection by associating to a stacky fan Σ = (N,Σ, β) with N torsion-free,
a smooth log smooth Artin stack XΣ having X(Σ) as a good moduli space. The stack XΣ is con-
structed as a moduli space along the same lines of the constructions in Theorems 3.3.2 and 3.3.9.
We then show that X(Σ) is isomorphic to XΣ as log stacks over X(Σ), thereby giving a moduli
interpretation to X(Σ).

Note that if Σ = (N,Σ, β) is a stacky fan with N torsion-free, then giving the map β is equivalent
to choosing a positive integer bi for every ρi ∈ Σ(1) and choosing for every j ∈ {1, 2, . . . , r} an ele-
ment wj ∈ N which lies in some cone σj ∈ Σ. Given this equivalence, throughout this subsection,
we denote stacky fans by Σ = (N,Σ; bi;wj).

Let us work toward defining the morphisms which XΣ will parameterize.

Definition 6.2.1. If P is an fs sharp monoid and i : P → F its minimal free resolution, then we
say a datum D for P is a choice of r ∈ N, a positive integer bi for every irreducible element vi of F ,
and morphisms wj : P → N for j ∈ {1, 2, . . . , r}. We frequently suppress r and write D = (bi;wj).

If Σ = (N,Σ, bi;wj) is a stacky fan with N torsion-free, then given a geometric point x̄
of X = X(Σ), let I(x̄) be the set of irreducible components of X −Xtriv on which x̄ lies and let

Fx̄ = α−1
x̄ (O∗X,x̄),

where α :MX → OX is the structure morphism of the log structure MX . If wj(Fx̄) = 0, then we
obtain a morphism w̄j : M̄X,x̄ → N. We can therefore define a datum for M̄X,x̄ by

DΣ,x̄ = (bi s.t. i ∈ I(x̄); w̄j s.t. wj(Fx̄) = 0);

here we are using Proposition 3.3.5 to identify I(x̄) with the set of irreducible elements of the
minimal free resolution of M̄X,x̄.

Definition 6.2.2. If P is an fs sharp monoid, i : P → F its minimal free resolution, and D =
(bi;wj) a datum for P , then we say a morphism P → F ′ is an admissible free resolution of type D
if it is isomorphic to i′ : P → F × Nr, where i′ is such that the diagram

F
·(bi) // F

P

i

OO

i′ //

(wj) ##G
GGGGGGGG F × Nr

OO

��
Nr
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commutes; the two arrows out of F × Nr are the natural projections. We say that P → F ′ is an
admissible sliced resolution of type D if it is isomorphic to

P
i′→ F × Nr → (F × Nr)/H,

where i′ is an admissible free resolution of type D and H ∩ i′(P ) = 0.

Definition 6.2.3. If Σ is a stacky fan with N torsion-free and if X = X(Σ), then a morphism
f : (Y,MY )→ (X,MX) from a fine log scheme is an admissible sliced resolution of type Σ if for all
geometric points ȳ of Y , the induced morphism M̄X,f(ȳ) → M̄Y,ȳ is an admissible sliced resolution
of type DΣ,f(ȳ).

Note that if D is a datum for P in which r = 0, then P → F ′ is an admissible free
resolution of type D, resp. an admissible sliced resolution of type D in the sense of Definition 6.2.2
if and only if it is in the sense of Definition 3.3.4. Similarly, if Σ is a stacky fan for which r = 0
(i.e. a stacky fan in the sense of [BCS, p.193]) and for which N is torsion-free, then a morphism
f : (Y,MY )→ (X,MX) from a fine log scheme is an admissible sliced resolution of type Σ if and
only if it is an admissible sliced resolution of type (bi) in the sense of Definition 3.3.6.

Given a stacky fan Σ, let X = X(Σ). We define XΣ as the fibered category over X-schemes
whose objects are morphisms (T,N ) → (X,MX) which are admissible sliced resolutions of type
Σ, and whose morphisms are maps of (X,MX)-log schemes h : (T,N )→ (T ′,N ′) with h∗N ′ → N
an isomorphism. As before, this fibered category is a stack on the fppf site by [Ol2, Thm A.1].

The proof that these stacks are algebraic and have the properties mentioned earlier is similar
to the proofs of Theorems 3.3.2 and 3.3.9, so we indicate only where changes are necessary.

Proposition 6.2.4. Let Σ be a stacky fan such that X := X(Σ) = Spec k[P ] for some fs sharp
monoid P . Let D = DΣ,0̄, where 0 ∈ X is the point such that M̄X,0̄ = P . If i′ : P → F ′ is an
admissible free resolution of type D, then the induced morphism f : X → Spec k[F ′] on log schemes
is an admissible sliced resolution of type Σ.

Proof. Choosing an approporiate isomorphism, we can assume that F ′ = F ×Nr and that i′ is as in
Definition 6.2.2. Let H ′′ = H ×H ′ be a face of F ′ and let P0 = i′(P ) ∩H ′′. Let ı̄′ be the resulting
morphism which makes the diagram

P
i′ //

��

F ′

��
P/P0

ı̄′ // F/H × Nr/H ′

commute. We must show that ı̄′ is an admissible sliced resolution of the appropriate type. Note
first that if H ′

0 denotes the face of Nr generated by the ej with wj(P0) 6= 0, then commutativity of
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the above diagram shows that H ′ ⊃ H ′
0. Similarly, we see that H ⊃ F0, where F0 denotes the face

of F generated by i(P0). As a result, we have a commutative diagram

P
i′ //

��

F ′

))RRRRRRRRRRRRRRR

π
��

P/P0
i′′ // F/F0 × Nr/H ′

0
π′ // F/H × Nr/H ′

where the bottom row composes to ı̄′, and π and π′ are the natural projections. Recall that by
Proposition 3.2.7, the natural morphism from P/P0 to F/F0 is a minimal free resolution. Note now
that i′′ is given by i′′(p̄) = (bivi(p);wj(p)) for i such that vi(P0) = 0 and j such that wj(P0) = 0;
that is, i′′ is an admissible free resolution of the correct type.

To complete the proof, we must therefore show (H/F0 ×H ′/H ′
0) ∩ i′′(P/P0) = 0. This amounts to

showing that if bivi(p)vi ∈ H for all i such that vi(P0) = 0 and if wj(p)ej ∈ H ′ for all wj(P0) = 0,
then bivi(p)vi ∈ H for all i and wj(p)ej ∈ H ′ for all j. If i is such that vi(P0) 6= 0, then vi ∈ F0 ⊂ H
and so bivi(p)vi ∈ H. Similarly, if j is such that wj(P0) 6= 0, then ej ∈ H ′

0 ⊂ H ′ and so wj(p)ej ∈ H ′.
This shows that the above intersection is trivial.

The proof of Proposition 3.3.1 then yields:

Proposition 6.2.5. Let Σ be a stacky fan such that X := X(Σ) = Spec k[P ] for some fs sharp
monoid P . Let D = DΣ,0̄, where 0 ∈ X is the point such that M̄X,0̄ = P . If i′ : P → F ′

is an admissible free resolution of type D and G = D(F ′gp/i′(P gp)), then XΣ is isomorphic to
[Spec k[F ′]/G] over X.

The first main theorem of this section is then:

Theorem 6.2.6. If Σ = (N,Σ; bi;wj) is a stacky fan and X = X(Σ), then XΣ is a smooth log
smooth Artin stack over Spec k having X as a good moduli space. Moreover, we have a cartesian
diagram

T × [Az/Gz
m]

π

��

// XΣ

��
T // X

where T is the dense open torus of X, π is the natural projection, and z is the number of wj which
are zero.

Proof. Zariski locally, X is of the form Y × T ′, where T ′ is a torus and Y = Spec k[P ] for some fs
sharp monoid P . The proof of Theorem 3.3.2 then shows that XΣ is a smooth log smooth Artin
stack and that the natural map XΣ → X is a good moduli space. Now note that we have a cartesian
diagram

XΣ′

��

// XΣ

��
T // X
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where Σ′ = (N, 0; ∅;wj s.t. wj = 0). Then by the first part of this proof, we see that XΣ′ = T×XΣ′′ ,
where Σ′′ = (0, 0; ∅;wj s.t. wj = 0). Proposition 6.2.5 then shows that

XΣ′′ ' [Az/Gz
m],

thereby completing the proof.

We work now toward comparing the stacks XΣ and X(Σ). If σ ∈ Σ, then let Pσ, Fσ, iσ,
Uσ, and Xσ be as in the proof of Proposition 6.1.4.

Proposition 6.2.7. Let Σ = (N,Σ; bi;wj) be a stacky fan in which N is torsion-free. If σ ∈ Σ is
a maximal cone, then

[Uσ/GΣ] ' XΣ ×X(Σ) Xσ

as log stacks over Xσ.

Proof. We may assume that n = d, so that Pσ is sharp. Let Dσ = DΣ,0̄, where 0 ∈ Xσ is a
point such that M̄Xσ ,0̄ = Pσ. Let i′σ : Pσ → F ′

σ be an admissible free resolution of type Dσ as in
Definition 6.2.2. Let A = F gpσ /iσ(P

gp
σ ), A′ = F ′gp

σ /i′σ(P
gp
σ ), and Gσ = D(A′). From the proof of

Theorem 6.2.6, we have a cartesian diagram

[Spec k[F ′
σ]/Gσ] //

ε

��

XΣ

��
Xσ

// X(Σ)

where ε is induced from i′σ. Let I be the set of rays in σ union the set of wj ∈ σ. Let J be the
set of rays not in σ union the set of wj /∈ σ. Then, we see that F ′

σ is a direct sum of copies of N
indexed by I. We have a commutative diagram

Fσ
π // F ′

σ

Pσ

iσ

OO

i′σ

>>}}}}}}}}

where π is the natural projection.

To prove the proposition, we show that Uσ and the pushout GΣ ×Gσ Spec k[F ′
σ] are isomorphic

as schemes with GΣ-action. By definition,

GΣ ×Gσ Spec k[F ′
σ] = Spec k[A× NI ]A

′
.

Since iσ and i′σ are injective, we see that the induced morphism

ZJ = ker(F gpσ → F ′gp
σ )→ ker(A→ A′)
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is an isomorphism. It follows that

k[A× NI ]A
′ ' k[ZJ ]⊗k k[A′ × NI ]A

′ ' k[ZJ ]⊗k k[Q],

where Q ⊂ A′×NI is the submonoid of elements of the form (−q̄, q). Since the projection of A′×NI

to NI induces an isomorphism of Q with NI , we have an induced isomorphism

k[A× NI ]A
′ ' k[ZJ ]⊗k k[NI ].

Via the isomorphism ϕ : ZJ × NI → Fσ sending (a, b) to (−a, b), and the automorphism of GΣ

sending g to its inverse, we obtain an isomorphism of GΣ ×Gσ Spec k[F ′
σ] and Uσ respecting the

GΣ-actions. We see that this isomorphism respects the log structures as well.

Theorem 6.2.8. If Σ = (N,Σ; bi;wj) is a stacky fan in which N is torsion-free, then X(Σ) and
XΣ are isomorphic as log stacks over X(Σ).

Proof. We show first that the composite ZΣ → X(Σ) → X(Σ) is an admissible sliced resolution
of type Σ. Note that this can be checked Zariski locally on X(Σ). By Theorem 6.1.5, we have a
cartesian diagram

Uσ //

gσ

��
iσ

""

Z

��
h

}}

[Uσ/GΣ] //

��

X(Σ)

��
Xσ

// X(Σ)

for any cone σ ∈ Σ. By Proposition 6.2.7, we see that if σ is maximal, then the morphism iσ is an
admissible sliced resolution of type Σ. Since the Xσ for σ maximal form a Zariski cover of X(Σ),
we see that h is an admissible sliced resolution of type Σ.

We therefore have a strict morphism f : Z → XΣ over X(Σ). We have a GΣ-action on Z over
X(Σ). Since this action respects the log structure of Z, we see that GΣ acts on Z over XΣ.

We claim that f is a GΣ-torsor. This can be checked Zariski locally on X(Σ). Since the above
diagram is cartesian, we obtain a morphism

g′σ : Uσ → XΣ ×X(Σ) Xσ

over Xσ. By the construction of f , we see that for σ a maximal cone, ϕσg′σ = gσ, where ϕσ is
the isomorphism from Proposition 6.2.7. It follows that g′σ is a GΣ-torsor, and since the Xσ for σ
maximal form a Zariski cover of X(Σ), we see that f is as well. Hence,

XΣ ' [ZΣ/GΣ] = X(Σ).

This is, moreover, an isomorphism of log stacks as the morphisms from ZΣ to XΣ and to X(Σ) are
strict.
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