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THE DERIVATION OF THE ABSORPTION MODEL 

* FROM }'EYNMAN DIAGRAMS 

Clifford Risk 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

January 14, 1970 

Lectures given at ~he theory seminar summarizing work 

by Frank Henyey and Clifford Risk 

ABSTRACT 

In these lectures I will present a summary of work* carried out 

by Frank Henyeyand I that derives the absorption model from field 

theoretic diagrams. The work developed from a program being carried 

out at Michigan that describes a large number of quasi-two-body reactions 

wi th the absorption model. This model involves a Regge cut correction 

to Regge pole amplitudes which is generated by the exchange of the-. 

Regge pole and aPorneranchuk. The cut features the product of the 
. .', " 

Reggeon and Pomeron (without complex conjugation of either) and a large 

magnitude for the cut (coherent inelastic effects add to the original 

cut term). 

* A final version is being prepared for publication. 

• 
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The fundamental physical assumption of our derivation is that 

physical particles are composite objects of constituent pieces of 

matter. In a scattering process, some of the constituent matter ta):<:.es 

part in the scattering while the rest stands by as a spectator. These 

ideas lead us to describe double scattering processes by a class of 

diagrams involving exchange of two Reggeons in the cross channel and 

propagation of composite physical particles in the direct channel. 

When the direct channel particles are Reggeized, we obtain an expression 

for the Regge box diagram. 

We begin our analysis of diagrams by discussing the AFS 

diagram and similar diagrams to demonstrate how the absence of third 

double spectral functions leads to the absence of a cut. For simple 

diagrams, we find that we are forced to invoke properties of form factors 

to show absence of the cut, but that for sufficiently composite diagrams 

the absence of the cut rests solely on the absence of the third double 

spectral functions. 

Next we discuss the Mandelstam diagram and similar diagrams 

to demonstrate how the presence of third double spectral functions 

leads to cuts. For each diagram we bring the expression for the amplitude 

to the form of the absorption model. 

Finally, we study the general class of diagrams referred to 
.. 

above. These diagrams contain (i) compositeness in the direct channel 

(physical particles are composite), (ii) thirCi double spectral functions 

(physical particles have definite signature), and (iii) two Reggeon 



-vi-

exchange (double scattering and the Glauber spectator approximation). 

(iv) By assuming saturation of direct channel amplitudes by physical 

states, we are led (v) to an absorption formula~-no complex conjugations) 

that (vi) includes the coherent inelastic factor A. (diffraction 

production of direct channel resonances). 

" 
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NOTE ,j 

The Sudakov variable techniques, used extensively here, were 

first applied to diagrams with Reggeons in a comprehensive work to 

develop a Reggeon calculus by V. N. Gribov (1967). In the present 

"dork we have employed these techniques to analyze the diagrams 

considered here in obtaining the absorption model. After our work was 

completed (August, 1969), a series of six papers appeared by Gribov 

and Migdal, Kaidalov and Karnakov, and ter-Martirosyan which extended 

the earlier work of Gribov, and, among other things, obtained the 

absorption model. In Part III we compare our approach with theirs 

and discuss the similarities and differences. 
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1. INTRODUCTION 

The idea that the asymptotic behavior of a scattering amplitude 

A(s,t) is determined by singularities of the partial wave amplitude 

1 in the complex j plane is ten years old. During this decade, 

this idea has been studied both phenomenologically with various models 
r) 

that describe specific reactions,C and theoretically with the investiga-

tion of sums of Feynman diagrams that define amplitudes with various 

t f · 1 . ul "·t· 3,4 ypes 0 J pane slng arl leSe 

The main school of thought ha.s been that f. (t) 
J 

in the j plane with simple poles at values j = a. (t) 
1 

is meromorphic 

that correspond 

to physical particles. Phenomenological models with these Regge poles 

were used to fit a large number of elastic and quasi-two body reactions. 

Meanwhile, the theoretical study of various field theories led to the 

conclusion that Regge poles arise there also. 

However, the use of phenomenological models with poles alone 

led to several difficulties and complications in the attempting to 

explain features of differential cross sections7-such as dips, crossovers, 

and forward peaks (in rt exchange reactions)-and of total cross sections-

such as the rise at Serpukhov energies. This suggested that in the 

j plane the properties of f. (t) might be more involved than containing 
J 

poles only. Meanwhile, the study of field theory models produced 

amplitudes with fixed poles, moving cuts, fixed cuts, and essential 

singularities. 
, 

One of the earlier models with more complicated singularities 

6 was developed by Abers et al (following earlier work by Udgaonkar 

, I 
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and G€11-Mann5 ) in the study of n-deuteron scattering. Glauber8 ,9 

had shown that the amplitude And could be expressed as a sum of 

31 terms 

+ . f 2 ~/2 G(p) 
2n 

-I 

-G -£)?Jd2 P 
(1 ) 

where A rrp' .A are single scattering terms, s. are center-of-mass 
rrn l 

t 2 is two-dimensional vector perpendicular energy squares, = -q , p a 
"-

to the incident direction, and G(p2) is the deuteron form factor. 

Abers et al then showed that the terms of-Eq. (1) correspond to the 

amplitudes for the diagrams of Fig. 1, 

r"\ ""'IT 

~ + ?~ n 

~ -rr 
t 
s 

Fig. la Fig. Ib 

where the particles in the direct channel (cut by the dashed line) 

are to be evaluated near mass shell. Furthermore, if the single 

scattering terms were given by Regge poles 

A (s,t) np = B(t) s 
a( t) 

then the double scattering term of Eq. (1) took the form of an 

ampli tude with a cut \n the j plane at j (t) := 2a(~) - 1, 

(2 ) 
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A(double) 
j(t) 

s 
= .en s 

This cut term, the Glauber shadow correction;;'\~as observed experimen-

tally in differential and total cross sections. However,· it was next 

shown that if in Fig. lb the contribution was evaluated from the 

region of integration where the n was far off mass shell, this 

exactly cancelled the earlier cut term of Eq. (3). The sum of both 

contributions behaved as 1/s3 and had no leading cut. 30 

This type of difficulty also occurs in recent models that 

,describe two-body processes in terms of a multiple scattering series. 
'37_ 

In describing n-p ~non, one is led to the formula 

A(s,t) = A (s, t) - ~ JdD ~p ( s , t l ) Ae n (s , t 2 ) , 
P 32n"- .l/ 

(4 ) 

is the elastic where Ap is the amplitude for p exchange, and Ae.e 

n-nucleon amplitude. This can be derived from either a Glauber 

eikonal serieslO,ll or from the Sopkovitch formula. 7 It can also be 

derived from Feynman diagrams of the type 

"ITO. /' \ 

>r~ n- ~. 

Fig. 2a Fig. 2b 

The second term in Eq. (4) corresponds to the contribution from 

Fig. 2b in which the direct channel nO,n are Evaluated·near mass 
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shell. However, if one evah1ates the contribution from the region 

where the :n:o,n go off mass shell, the previous term is again exactly 

cancelled, and their sum has no cut. 

The difficulty encountered in both of these examples is 

related to the diagram version of the work of AFS. If one evaluates, 

the discontinuity of the amplitude of Fig. 3a across the branch cut 

of the two particle direct channel state (Fig. 3b), 

-~ .1 

A _ , \.-J-

·A'"L. 

Fig. 3a Fig. 3b Fig. :3c 

then one finds
12 

that 

(5 ) 

Hence A(s,t) has a branch point at j(t) = 2a(t/4) - 1. 'However, 

it is known that a Reggeon can be represented as a surnof ladder 

diagrams.3 If thes'e are substituted in Fig. 3a to give Fig .3c, 

and it' the new contributions to the unitarity equation are added to 

13 Eq. (5), then the cut is exactly cancelled. 

While the three diagrams considered do not have cuts; there 

are diagrams which do have cuts, for example, the double cross 
1 ' 

diagram3 ,1+ of Fig. 4. 

..' 

'~ 
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Fig. L~ 

In the present work we will reconcile these results for 

Feynman diagrams on the one hai1d with the experimentally valid 

multiple scattering models on the other. To do this, we start from 

assumptions about the composite structure of physical particles, and 

combine this with the ideas of multiple scattering. This leads us 

to a class of Feynman diagrams, which can be evaluated in the high­

energy limit. The final expression we are led to agrees with the 

multiple scattering models discussed above. 

The organization of the paper is as foJ,.lows. In Sec. 2 we 

discuss the AFS diagram; it provides the simplest example of a diagram 

without a cut. In Sec. 3 we discuss the double cross diagram of 

Fig. 4, the simplest example of a diagram with acut,andbring the 

expression for the amplitude to a form similar to the absorption model. 

Next we extend the results to a more complicated diagram with a cut. 

In Sec. 4we discuss two further diagrams without cuts, drawing out 

the role that third double spectral functions and form factors play 

in the analysis of cuts. All this leads to the analysis in Sec. 5 

of a very general class of diagrams, in which the presence of a cut 

is thro"wn completely onto the presence of third double spectral 

functions. 
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In Part. II we pres'ent our view of the composite structure of 

physical particles and combine this with the diagram results to 

obtain the derivation of the absorption model. 

In Part III we .compare our results with the work of Gribov 

et 'ale 

lriPart IV we summarize theassurriptions, results, and 

unsolved problems of the paper. 

~. · 

.. 

; 
I 

. ! 
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PART I. MATHEMATICAL DERIVATIONS 

Two approaches have b'=en developed in the study of asymptotic 

behavior of Feynman diagrams. 3 1'" One approach' ) has involved the study 

of diagrams with internal elementary particles only (as opposed to 

internal Reggeons). The ampli tude~ is written in terms of Feynman 

parameters 

A(s,t) 

1 . 

L 
.. 0(1 - ID.) 

.. 1 ()p-2 == J1 d 0:. . Co:, 
o 1 [D(o:,s,t)JP . 

(6) 

and the integraion·is performed explicitly over the region of integration 

where the leading behavior in s is attained. For example, for the 

box diagram with spinless particles one finds 

A (s, t) -:,>...en s s K ( t ) (7) 

where K(t) is a known function. It is then foundthat by summing 

over certain classes of diagrams, amplitudes are obtained which 

correspond to moving Regge poles, fixed poles, moving cuts, fixed 

cuts, and essential singularities. 

The second approach (which we shall use) is used in studying 

diagrams that contain both internal Reggeons and internal elementary 

particles. The amplitude is writteri directly in terms of its internal 

Regge amplitudes and elementary propagators, and then certain principles 

are invoked to extra.ct the asymptotic behavior and display it in a 

recognizable form. This approach has been developed in two forms-by 

Rothe
16 

and Wilkin17 (using m~ss variables) and by Gribov18 (using 

Sudakov variables). We shall use both of these methods. 
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2. THE AFS DIAGRAM 

To begin with we consider the AFS diagrain of Fig. 5. We 

briefly discuss Rothe's treatment 

/ 

1>' 
s 

Fig. 5 

" 

because it illustrates principles we shall need later on. The 

amplitude is given by 

A(s,t) (8) 

To evaluate the asymptotic behavior of A(s,t) it is convenient to 

introduce mass variables 

= k
2 

3 

Then, in the limit of large s, Eq. (4) becomes 

A(s,t) .~ If dtl dt2 f - I· dsl dS 2 s ~ , 
11.< 0 (-A) . 11.>0 

where 

R(s,tl ; sl,s2) R(S,t2 ; sl,s2) 

(sl - m
2 

+iE)(s2 - m
2 

+ iE) 

(10) 

ella) 

(lIb) 

and the ranges of integration are shown in Fig. 6. 
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5, 

Fig. 6a Fig. 6b 

Now as a function of sl' tte integrand of Eq. (10) has singularities 

in the lower half plane con~isting of a pole at 2 
s = m - iE 

1 
and 

cuts from the form factors of the Regge amplitudes. Also, it is 

. 14 19 
known ' that as sl becomes large 

(12) 

(This is valid in the limit s fixed, and also in the 

The integration runs from to 

.1 +·1 + I ... ~~ 
~ ~ -r=:=: .--r==-

Fig: 7b ~ Fig. 7e Fig. 7a 

Therefore, if we distort the sl-and similary s2-integration in the 

lower half plane, we obtain 

A(s,t) cc 

1 
I 
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where R(s,t.) is the Regge amplitude evaluated on mass shell, A2 l 

is the contribution from the cuts in the mass variables, and A
3
(s,t) 

is the contribution from the large semicircles • . This last term is 

negligible because of Eq. (12). The first term in Eq. (13) is the 

usual AFS amplitude [but without the complex conjugation of R(s,t2 )­

see Part III). 

On the other hand, if we were to close the contour of s. 
l 

integration in the upper half plane, we would obtain for A(s,t) 

only a term similar to A
3
(s,t), which vanishes as s -;00. Hence 

we conclude that A(s,t) must vanish as S.-c 00 (the Feynman parameter 

t~chnique referred to earlier gives tn s/s3), and the apparent cut 

of the first term ;in Eq. (13) is cancelled by A2 (s, t). 
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3 . DIAGRAMS WITH CUTS 

We now turn to diagrams that do have cuts, leading to the 

general diagram of Sec. '5 thE, t:. will connect with our ideas of the 

composite structure of physical particles and yield the absorption 

model. 

First vie consider the double cross diagram of Fig. 8. We 

briefly review the treatment of Gribov (1968)18, and then extend the 

analysis further to obtain a result resembling the absorption model. 

Fig. 8 

lie ,18 
The amplitude of Fig. 8 is given by 

A(s,t) 

(14) 

The essential·feature of the analysis is to note from Eg.· (12) that 

the internal Regge amplitudes Rand R' become small if their 

external masses d. become large as fast or faster than s. Therefore, 
l 

the dominant contribution to Eq. (14) comes from the region of integra-

tionwhere d. remains finite relative to s as s goes to infinity. 
l 

I' 



-12- UCRL-194S3 

After s has become asymptotic, the integration over the remaining 

large values of d. 
1 

can be completed. To express this precisely, 

let A be a finite number, and define 

flS. e(A - d.
2

) 
R'. 1 

d. 
1 1 

Then, the above arguments state that the leading behavior of A(s,t) 

is given by 

s-)OO 

lim (lim AA(s,t)} . 
·A--'700 S-j 00 

(16) lim A(s,t) 

To perform the analysis embedded in Eq. (15) and Eq. (16), 

it is convenient to replace the external momenta Pl,P2 bylight-like 

momenta pi, P2 defined by 

p,2 
1 

p,2 
2 0, 2p' 'p' 1 2 

:= S . 

To order lis they are given by 

2 2. 
p' m p' m 

PI ... 
sP2 == P2 - s Pl 1 2 

(lS) 

The momentum transfer is given by 

t 
(P2 - p' ) + Q q s 1 , (19) 

where Q is a two dimensional vector perpendicular to the incident· 

·'-.'1 

! ., 
, I 
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It is also convenient to introduce new variables of integration 

(the Sudakov variables) defined by 

k ap' + t3P' + K 2 1 
(20a) 

k. 
1. 

a.P2' + t3.Pl' + K. , 
1. 1. 1. 

, (20b) 

where, K,Ki are again two dimensional vectors perpendicular to Pl,P2' 

In terms of these variables, ,the denominators for the left side of 

Fig. 8 become 

d
3 

= (k
l 

- k)2 - m2 + iE 

m2 2 2 
(a - -)(e - l)s + Kl - m -/- iE 1 s 1 

(21a) 

(21b) 

+ iE 

(21c) 

t _ l)s 
s 

+ (K - K _ Q)2 
1 

2 
-m + if 

with similar expressions on the right side. The energies of the 

internal Reggeons become 

2 
m 

+ -­
S 

(21d) 

(22a) 

(22b) 
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And the momentum transfers become 

2 ,2 
k := af3s + K (22c) 

(q - k)2 := (~ _ a)(-~ 6)~ + (Q _ K)2 (22d) 

The transformation of voluml; elements is 

.4 hl ' 
d k := '2 da d6 dK .' etc. (22e) 

The direct channel energies of the left and right crosses are 

2 2 2 
(Pl - k) := (1 - 6)(: - a)s + K (22f) 

2 2 2 
(P2 + k) := (1 + a)(: + 6)s + K (22g) 

We can now perform the analysis of Eq. (15) and Eq.'(16). 

, We are first to find the region of integration over which d. < 1\. 
1. -

By solving the equations d
l
,d

2 
== O(A) for a

l
,6

l
, we find from 

Eq • (2la , b) . 

(23a) 

a :=O(~), f3 := O(A) (23b ) 

O(~) ; O(A) • (23c) 

'. 

." 

i .. ! 

i 
i 
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Combining all results, we conclude that the dominant region of 

integr~tion as s ~oo is given by 

::: O(A) • 

Comparing Eq. (21+) with Eqs. (2l), (22), we see that we can neglect 

(3 relative to f31 , and a relative to a
2

• Changir:y~ variables 

a l s ~ a l , as -, a, f3s -7 (3, :3 2S -7 (3, Eq. (21) becomes 

d l 
2 2 

+ iE = a101 + IS.. - m 

2 2 2 d2 - (al -' m )«(31 - 1) + Kl - m + iE 

d
3 

(al - a)(31 + (K
l 

- K)2 2 
+ iE - m 

(24a) 

(24b) 

(24c) 

(a - a + t - m2 )«(3 - 1) + (K _ K _ Q)2 
1 11· 

2 
- m + iE 

the Regge energies become 

the ·momentuffi transfers become 

2 (q - k) 

and the direct channel energies are 

i 
I' I 

;. " Ii 
i 

(25b) 

(25d) 
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2 + K2 (25 e ) sl = m - 0: 

2 2 
(25f ) s2 = m + [3 + K 

The factors 0;2,[31' etc. in Eq. (25a,b) tell what fraction of the 

original energy s flows through the Reggeons and what portion flows 

down the sides of the diagram. (We shall see later than OS 0:2 , 

[31 S 1.) We see that the terms dl ,"',d4 depend only on the 

variables of the left looP-cxl ,[31,Kl -and on o:,K, but not on [3. 

Similarly for the terms d
5
,···,d8 . 

Next we assume that the Regge amplitudes of Eq. (15) can be 

written in the factorized form 

R' 

Then, Eq. (15) can be recast into the following form: 
2 2 { _i:rcll (K )+92 [(Q.-K) ]-1 

OC! dK \.e 2 s/' Nl (K,Q)N2(K,Q) 

O(A) 

r 
:= 1 d[3 

JO(A) 

, I ! , ~ 

, , 

" (26a) . 

(27b ), 

,.. 

,. 
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Here we see. that AA is an integral over the usual energy term 

¢1+¢2-1 
s ". times structure functions Nl and N2 that involve the 

Feynman amplitudes, form factors, and the Regge energy factors on 

each side of the diagram. 

To bring Eq. (27) to a more recognizable form, we first 

let A ~oo in accord with Eq. (16). Next, we define the amplitude 

Al(CX,K,Q) by 

. ¢ 
_ 6 ) 2 

1 

Note from Eq. (28; ) that f\ runs between 0 and +1 only. If 

(28) 

~l < 0, then the integrand, as a function of CXl ' has singularities 

that all lie in the upper half plane [see Eq. (24) and Fig~ 9J; the 

CXl contour of integration can be closed in the lower half plane to 

give zero. If 61 > 1, the singularities all lie in the lower half 

plane. But if 0 < 61 < 1, then the singularities pinch the contour 

of integration and the integral is nonzero. 

~ I:r. 

ell d'l. ch d"". 
)(, x )( )(. 

0( 
11\ 

Fig. 9 

d~ d~ 
x 'l( 

x i-
I 

d, da 
OLPIL\ 

Next we observe that except for the extra factors in the 

numerator of Eq. (28), Al is the amplitude Al (sl,t; t l ,t2 ) of 

the Feynman diagram of Fig. 10. 
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t, 

Y'Y'\4 -\..1-
--~--~-..::.. 

t 
s, 

Fig. 10 

The form factors gl,gi are functions of the invariants d. and 
1 

t
l

, t 2 . It is easily seen that f\ is also an invariant of the 

diagram of Fig. 9. Therefore we can write 

Equation (27) can then be written as 

(29a) 

A(s,t) Nl(t,tl,t2)N2(t,tl,t2) 

(29b ) 

(29c) 

with similar expression for A2 • 

To bring Eq. (29b) into a form resembling the absorption 

model, -we shall find it necessary to understand the analytic 

properties of Al • In the first place, we note that Al has all the 

singularities that the amplitude Al of Fig. 10 has, because these 

~. 

-; 

I 
i 

; I 

.' .1 i 
i , ! 

'I, "r 
: " i 
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are determined by the propagators of Eq. (29d). These singularities 

consist of normal thresholds at 4 2. 
sl = m - 1€ 

2 and u
l 

= 4m - i € , 

and a Landau curve fl(sl'ul ) = ° (Fig. ll)~ 

t~ c;;. = '-+- ¥'<'I .... -, 

Fig. 11 

The singularities introduced in· ~ by the presence of the 

form factors gl,g± can be discussed by dispersing in their mass 

. bl . 20,21 d t t· th kIf th t f . t var1a es an rea 1ng e erne s 0 e . rans orm as propaga ors. 

We have found that they do not change the resultsbelow,sQ for 

simplicity we neglect them and take gl,gi. as constants. 

¢l ¢2 
It remains to discuss the terms ~l ' (1 - ~l) . We 

assume the trajectories satisf'y ¢. > -1, so that these terms by 
.1 

themselves are integrable. However it is,p6ssible that at ~l = 0,1 

they can pinch with a singularity of the propagators and introduce a 

new singularity into AI" We have been able to investigate this 

possibility by two different methods, and we present them both. 

I' I 
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First.Method 

Looking at Fig. 9 with 0.< Bl < 1, we see that if we close 

the a
1 

contour of integration in the lower half plane, we pick up 

contributions from the poles in a
1 

of the termsd1 ,dy Writing 

d. (j) as the value of d. at the pole of d
J
., and writing 

1 1 
I 

D.(j) = B
1
· d. (j), we obtain 

1 . 1 

(C r (ax r ~ di3
1 J) \ Jo 

where 

d
3
(1)- -aB + (K. - K)2 _ K 2 

1-"]. 1 
" (29a) 

2 2 . 2 2 
= -em - B1 (1 - B1 )(m + a - t)] + (1 - B1 )K1 + B1 (K1 + Q- K) 

" (29b) 

2 2 2 2 
- [m - Bl (1 - B1 )(m + a - t)] + (1 - Bl )K1 + Bl (K1 + Q - K) 

.-
(29d) 

= 
2 2 2. 2 

- [m - B (1 - B)(m - t)] + B (K - K + Q) + (1 - B )(K ·-K) 1 1 1 1 1 1 
/ 

(2ge) 

We immediately see that at the endpoints of integration - Bl = 0,1 -

the terms D. (j) are strictly negative and cannot vanish. The term 
1 

" .. 



,. 
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d
3

(1) can vanish, but i~s residue is zero [i.e., d
3

(1) is' a factor 

of the terms in the brackets]. He'nce we conclude that the terms 

~l " 92 
,131 ' (1 -(31 ) , do not introduce any new singularities. 

Finally, Ive observ~ that Al is a real quantity for those 
I . " 

values of its arguments for which the ,::D. (j)' s are negative for all 
1 

131 between 0 and l. This occurs when the terms in brackets of 

Eq. 
~ 

(29b-e) are positive. Since the maximum value of 13 (1 -1 

is 1/4, this condition is satisfied for 

4 2 2 ' 
m > m + 0: - t, 

2 
m - 0:, 

2 
m ;.. t 

This is equivalent to the region 

, 2 2 
sl <4m + K , 

and is shown in Fig. 11 as region Dl . 

Comb:i.ning this with the earlier result, we conclude: 

~(sl,t; t l ,t2 ) is real analytic in the same region as 

A(sl,t; t l ,t2 ), and has the same singularities. 

. 25 Second Method 

20 22 . Introduce Feynman parameters 'lnto Eq. (28) via 

~~= I \ d. 
. 1 J J= 

. 1n4 (~)4 .' dA.. 
1 , J 

o 1 

4 
i [ A..d. 
'. 1 J J 

e 

(31 ) 

(jOa) 

(30b ) 

(The iE in d guaranties convergence.) Then, the dKl integration 

can be done directly. The 001 integration can be done using, 

, 
1, iii ,I' 
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(32a ) 

The coefficient B involves ~l' and this allows the del integral 

to be performed. We find 

and 

e 

where 

iD(A.,Sl'Ul)/C(A.) 

2 2 
- m C(A.) 

(33a ) 

(33b) 

(33c) 

This can be written in the more familiar Feynman representation as 

x 1 (33e) 

Note that for ¢l = ¢2 :=: 0, Al reduces to Al· 

I 



," 
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From Eq. (33) the analytic prop,erties of 'AI c,an be read 9ff 

in~t~ntly. First, Al 

come from D(a,sl'ul ). 

has the same Landau curves as Al , because these 
¢ 

Second, the term 6
1 

1 does not introduce a 

new singularity, because if a 2 a} = 0, then + ' 

since D is strictly negative and cannot pinch with 

Finally, it can be seen from Eq. (33b) that for 

r 2 
C'm , 

D is strictly negative. Therefore Al is strictly real. This region, 

labelled D2, is shown in Fig. 11. 

Hence we reach the same conclusions as before. (The region 

D2 is, larger than Dl ,but of course Al is real where Al is in 

both cases because they have the same singularities.) 

We summarize the results in Fig. 12a 

1~:' 
rec .... \ Q.X'\ 0.. \. j -\- \ C. 

~1: 

l ~ .~ --l( 

) ;> - ') ~~ 11. 

0 ) 

(;' 

Fig. 12 

We can now bring A(s, t) to the form of the absorption model. In 

Fig. 12 we distort the contour of integration around the right hand 



.. 

cut. Since A behaves as 2 
l/sl as sl -700, therefore so dOE:s 

(At the endpoints . CX2 '" CX
3 

'" 0, f\ and (1 - 61) do not vanish, 

so Al has the same asymptotic behavior as A
l

.) Therefore 

Since A
l

· is real analytic between the cuts of Fig. 12a, note that 

and Since the discontinuity is generated_by the denominators d2,dy 
since Al is real analytic, we can invoke a Cutkosky type theorem to 

give 

whereF involves the Jacobian of the transformation to mass variables. 

Integrating on the 6 functions 

where 

, = 
d =d =0 

2 3 d2=d~=0 . ) 

(Yje) 

., 
! 
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In terms of graphs, 

'BV 

J ;81 x- ~11 co dslfdK1 TT ~ -'I< 4<-

14m
2 

4m
2 f3L 

(35f) 

Thus we see that we can split Nl into an integral of factors 

BUBL, where BU involves the upper part of the diagram, and BL 

involves the lower part. Now perform the same operation on N2, 

Collecting Eq. (35f,g) and returning to Eq. (29b), we can 

bringA(s,t) to the form 

A(s,t) oc -ifdt,1 dt2 
- 'I dK 
s . (-i-)2 1 

(36b) 

we finally arrive at 

(36c) 

where 
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and 

A(s,t) 

(36e) 

We shall extend Eq. (36) to more general diagrams. With B,C real, 

Eq. (36a) agrees with the absorption model. In particular, \,ihen 0
1 

is the Pomeranchuk, then A( s, t} interferes destructively ,'-lith the 

pole termof¢2' For more general B,C, A(s,t) is written in 

Eq. (36c), with the extra phase term introduced to restore the correct 

phase to the ~ amplitude. 

~\ 

Fig. 13 

As an extension of the work above and as preparation for the 

general diagram of Sec. 5, we briefly discuss the diagram of Fig. 13. 

There are several noteworthy features. 

Ii! 
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In the first place, one sees that on the left side of the 

diagram only the lines 1,3,5;7 attach to Regge amplitudes. Hence 

we might suspect that only these are subject to. the finite mass 

.condition. It turns out this would not give enough conditions to 

provide an immediate solution for the Sudakov variables. There are 

two ways we can argue to extend the class 1,3,5,7. On the one hand 

we can argue that, in the spirit of Arnold, HPKR, and of the work to 

follow in Part II, the external physical particles should themselves 

also be Reggeized. This would place form factors on the external 

vertices also, and would lead to the requirement that the lines 2,(; 

also satisfy the finite mass condition, and would provide enough 

lines to perform the Gribov analysis. On the other hand, polkinghorne23 

has recently extended the Gribov analysis to diagrams with internal 

Reggeons constructed from Veneziano amplitudes without any form 

factors at all. The integrations are done by a steepest descent 

analysis, and as it turns out this leads to the desired finite mass 

conditions on all internal lines. 

In any event, after carrying out the finite mass conditions, 

one finds, analogous to before, 

A/s C36a) 

< 1 

Proceeding as before, one obtains the amplitude A(s,t) in the same 

form as before, with the amplitude Al(sl,t; t l ,t2 ) now given by 
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The amplitude Nl (t,tl ,t2 ) is given by a sum of four unitarity terms 

l 'fflJ TI 100

' 100

' "' 

N = . dSl-X . = dSl JX-<5r- L dSll~ <ElJ 
, -00 4 2 ~ J 4 2 \:, 

m' m' 

(YTb) 

Therefore, A(s,t) takes the form 

A(s,t) Cl:! 

a sum of all possible unitarity cuts on the left side of the diagram 

times all possible cuts on the right. 

j, 
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4. DIAGRAMS WITHOUT CUTS 

We now pass on to diagrams that do not have cuts. The 

essential point we shall demonstrate is that a diagram has a cut if 

it has third double spectral functions on its sides. As we shall see 

in Part II, this will tie in conveniently with our physical ideas 

about the composite structure of physical particles. 

The manner in which vJe shall demonstrate this relation is to 

show that the amplitude of any diagram with tvlO Reggeon exchange 

(Fig. 14) can be brought to the form 

where N. 
1 

~St 
~ ~~ 

---.----~~----------~/ 
S 

Fig. 14 

24 is related to the amplitude of the blobs 

(38a) 

(38b) 

Furthermore, if Al has a third double spectral function, then the 

integral in Eq. (38b) is nonzero, but if Al has no third double 

spectral function, then Nl is identically zero. For the second 
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case, this means that Eq. (38a) is also zero, and that the leading 

behavior of A(s,t) is given by a lower order (in s) term than that 

of Eq. C38a). 

We shall bring our amplitudes, then, to the form of Eq. (38a) 

I 

because it focuses so sharply on the requirfment of a third double 

spectral function. In addition, Eq. (38a) lends itself to a general 

defini tion proposed by F. Henyey that we would like to make . Namely, 

we will say that a diagram involving the exchange of two particles of 

spin J
l 

and J 2 persists if its asymptotic behavior is given by 

J l +J2 -1 
s , to within powers of logarithms. As examples we list: 

leading behavior persists? 

yes 

no 

.en s' 1 (spin of 
s 

yes 

is 0) 
T. 

I I 
J l +J2-l 

"'s yes 

V'-

~ 
s 

We saw earlier in Sec. 2 that the AFS diagram does not persist 

because its leading behavior vanishes as s ~oo[Eq. (13) and s~q.J. 

--"-' 
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We now show quickly that its amplitude can be brought to the form of 

'" 
Eq. (38a) , even though the coefficients Nl ,N2 · are zero. To do this, 

,'Ie apply the Gribov analysis to Fig. 15· 

~~r~ ~,. "- " .. ,.' ?,-~ ~ 
____ ~--,.·v 
~-):L . 

Fig. 15 
Then, we have 

d
l (Pl k)2 (1 - 6)(:2 - 0 s + K2 2 iE - :=: - m + 

(P2 
2 (1 + a)(:2 + 6)s 2 2 

d2 + k) :=: + K - m + iE 

:= s 

To satisfy dl ,d2 ~ O(A), we obtain 

a ~ 6 ~ O(A/s) (40) 

in which case, with a -7 as, 6 -c 6s, we have 

d 
1 

:=: ,.,a + K2 + iE 

d2 
:=: 6 + 

2 iE K -
(In) 
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Since we have kept d
l

,d2 finite as s went to infinity, we can 

write the Regge amplitudes in factorized form 

R 

(42) 

R' 

And hence, the amplitude for Fig. 1'5 takes the form we anticipated 

all along 

A(s,t) 1
+00 

dadf3· 
oc dK· d d gl 

.. 1 2 

= 

-00 

gl (dl ,tl )gi(dl ,t2 ) 

d
l 

In Eq. (43b) the integrand, as a function of Q, has pole and cut 

(43a) 

(43b) 

singularities in the lower half plane (Fig. It;). Further, the form 
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I 

Fig. 17 

factors decrease as dl ~ 00. 

Therefore, we can close the ex contour of integration in the upper 

half plane and get for Nl zero, as expected. We conclude that Eq. 

(38) holds for the AFS amplitude, but its value is zero. 

In the discussion of the AFS diagram, we need to invoke 

properties of the form factors in order to prove that the amplitude 

does not persist. As it turns out, for the diagram of Fig. 18 we 

must also employ knowledge of the form factors. However, for diagrams 

more complicated (Fig. 20 for example), the absence of the cut rests 

completely on the absence of the third double spectral functions·. 

Consider, Fig. 18. 

PI ~\ 
.' '" -~ 

I I , 
\l'. - }.., . , 

,"t 

Fig. 18 



Applying the finite mass conditions on the right cross we obtain 

and from the left cross 

The Regge energies become 

a a rv A 
2' 

and setting as,-, a, i3s --) 13, etc., the denominators on the left 

become 

d 2 2 
+ iE = ali31 + K - m 1 1 

2 2 , 2 
. d2 (a - m )(~ - 1) + Kl - m + iE 1 1 

d
3 

(a
l - a)i31 (Kl 

K)2 2 
+ iE + - m 

= 

The amplitude takes ·the form of Eq. (43a), where now 

, !I 

(44a) 

(44b) 

(46) 

(47a ) 
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Now as a function of sl' Al has only a right hand cut in the lower 

half plane, so in Eq. (47b) we are tempted to close the sl contour 

of integration in the upper half plane (Fig. 19). 

"A,.-__ _ 

'\-'"" "-. 

Fig. 19 

However, this will not do because for large sl' 

Therefore, the contour cannot necessarily be closed. 

We can circumvent this difficulty by interchanging the orders 

of integration in Eq. (47b,c) and first integration on a. Then 

The a,..integrand has singularities in ain the upper half plane. 

The contour can be closed in the lower half plane. Invoking the 

decrease of as becomes large, we see that the a:-integral 

is zero. The remaining integrals in Eq. (49) converge, and hence 
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Finally, we discuss the diagram of Fig. 20, which will lead to 

the general case of Sec. S. 

\,1 ..hI ~ ~"!. 
~~.;...------

).. ~ 

-\:~ 
,+ 

S <0 
,I 

-'--~ ~.'';>'' 
...\i. '1 

l' 
-4.. 

Fig. 20 

From the finite mass condition, we obtain 

and this leads to 

Again, Al has only a right cut, but now 

A 
1 

as 

p .. 

(Slb) 

and hence the contour of integration in Eq. (Sla) can be closed in the 

upper half plane to give Nl = O. For Fig. 20 the absence of the cut 

is thrOwn entirely on the absence of the third double spectral function. 

.. 1 
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5 . THE GENERAL CASE 

We now come to a general class of two Reggeon exchange diagrams 

which is the basis for our derivation of the .absorption model. Just 

how general can this class be? As we have pointed out before, what ,'Ie 

are interested in is the amplitude for a diagram of the type of Fig. lie. 

However, we do not wish the amplitudes A. 
l 

to be completely arbitrary, 

because in the form of the absorption model we are interested in vie 

require that they be strictly low-energy amplitudes relative to s. 

That is, we require that the incident energy s flow across the 

Reggeons and not down the sides of the diagram. This is because we 

will want to identify the 

near mass shell. 

A. 
:L 

with direct channel physical particles 

Note that the diagrams we have studied satisfy this condition. 

For example, we have found that ldhile the 4-momenta on the sides of 

the diagrams can become large (e.g., kl = B1Pi + ~P2 + Kl , 
_A) 
s 

the energies s. remain finite relative to 
l 

s (e.g., sl = -as + m2 + K2, a '"V A/S). The large energy s flows 

only across the Reggeons. 

It is not hard to convince oneself that a general type of 

diagram satisfying these conditions is that of Fig. 21 below. The 

effect of the elementary lines· is to tell us where the 

internal Reggeon line ends and to prevent Al from having Regge 

behavior in ~ o. 



/ 
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Fig. 21 
Thus, Fig. 2i excludes all the diagrams of Fig. 22. 

XIX 
Fig. 22 

UCRL-19453 

It includes all.the diagrams discussed before. (For the double cross 

/ 

diagram, Al would be various 5-functions.) It also includes the 

diagram of Fig. 23, if the lines n. 
1 

Fig. 23 . 

are grouped into the mass Ml . 

Most important, it includes the diagram of Fig. 24a. When the rungs 

in the direct channel are summed over, this provides a model f'orthe 

Regge bbxdiagram of Fig. 24b (first introduced by Arnold and discussed 

in HPKR).·· 
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--

Fig. 24a Fig. 24b 

We consider, of Fig. 25. 

<.0 
--7-----~~~~--~~.~~~~~---+----~--------

'----..-~:>... ..J (1)" - h. 
s, 

Fig. 25 

We use the notation: 

A :=: A(s,t) 

The amplitude Ai is to be quite general; we are interested only in 

whether or not it has a third double spectral function, and so write 

it in the form 

. I I 
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1 00 g(Sl'.O 
+ ds -....:::....-
.. 2 S -ui 

4m 

That is, we ca~ treat Ai as a propagator of mass 
2 S > 4m • The 

analysis now goes through as before. We indicate the essential 

features .. 

After performing the finite mass analysis, A(s,t) takes 

the expected form 

A(s,t) 

gl g2 A i 

(53) 

(:s4a) 

. (54c) 

where 

dl 
2 2 iE alf31 +.~ - m + 

(C). 
2 

- 1) 
2 2 

d == .- m )(f31 + Kl - ill + iE 
2 

d
3 

. (al 
- a)f31 + (Kl 

_K)2 2 +iE (55 ) == - m 

d4 
2 2 + iE a2f32 + K2 - ill 

(a
2 

2 1) (Q 
2 2 

d
5 == + t - m )(f32 - + + Kr,) - m + iE 

L 

( ex.., - a)i3 2 (K" + Q _K)2 2 iE d- + t + - ill + 
6 c: c:. 
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(57) 

u' 2 2 
(al + a2 + t - a - m )(~l + ~2 - 1) + (Kl + K2 + Q - K) 1 

We consider separately the cases of the 

contributions. 

The u' 
1 

Contribution 

t' 
1 and ui dispersion 

As before, the first task is to establish the analytic 

properties of the amplitude Al . This cah again be done either by 

direct integration on al ,a2 or by introduction of Feynman parameters. 

We briefly discuss each. 

Let U denote the denominator 

consider the integral in Eq. (S4c), 

1 

I 
= JI 

-0 

Fig. 26 

s - u' in Eq. (53), and . 1 
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For 0 < Pl + P2 < 1, the singularities in 0:1 ,0:2 lie as shown in 

Fig. 27a, and for 1 < Pl + [32 they lie as shown in Fig. 27b. 

4
·cll~. ' 

)(. . 

. " " .J<. r.( 
\ .a V '\ ..... Bd..·,.··· 'g(~'>'-.I ... . ~~., ~ 0 ... . 

Il 10. ~. -<- . 

'x 'fo.. oli.R ~ ..... 
\ <1. 4~. 

Fig. 27a Fig. 27b 

Hence in region 1 "'de close both contours of integration in the upper 

half plane, and obtain 

I· 
1 1f 

I 

We spare the reader the expressions for u(2,S) and D.( j), and 
l 

simply remark that they have the following properties: 

(1) They are strictly negative at Pl ,P2 = 0,1. Therefore the 

contribution to 11 ,from the endpoints is analytic, and hence 

~i 
11 has no new singularities from the factors Pi • 

(2 ) They are strictly negative for 0 < Pl ,P2 < 1 when 

sl <. 4m
2 2 

+ k2 ' -3m 
2 

< t < 0 (60) 

Therefore 11 is real there. 

A similar analysis is carried out for the region 2, this time 

closing the ex. 
l 

contours of integration in the lower half planes 

(see Fig. 27b). There are now four contributions of the type of 

Eq. (59). 

The end result of the analysis is that Al has the same real 

analytic properties of the amplitude Al defined without the gi 

~i 
Pi terms. 
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: Introducing Feynman parameters as before, the amplitude Al 

takes the form: 

where 

Bl(O:) = 

B2(0:) = 

C(o:) 

x 

0:2 (0:4 + 0: . 5 

0:
5 

(0:
1 

+ 0:
2 

7 

)0:. 
J l 
~ 

1 

iD(A,Sl,ul,~)/C(A) 
e 

+ 0:6 + 0:
7

) + 0:
7 

(0:4 + 0:6 ) 

c(o:) 

+ 0:
3 

+ 0:
7

) 

C(o:) . 

+ 0: (0:
1 

+ 0: ) .. 7 . 3 

(61a) 

(6lb ) 

(61C) 

(61d) 

(61e) 

(61f) 
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+ ul CX1CX4 CX ' 
. 7 

+ m
2

[cxl cx2 (cx4 + ds+ CX6+CX7 ) +CXlcx~7J 

2 
K [CX

l 
CX

3 
(CX4 + CXs + CX6+ CX

7
) + CX

l 
CX

S
CX

7 
] + 

2 
+ (Q - K) [CX4CX6 (CX

l 
+ CX

2
+ CX

3
+ CX

7
) + cx

3
cx4cx

7
J 

6 
[cx

7
· t;, + L CX.· m

2 
] 

1 ). 

.... . 

UCRL-194S3 

(61g) 

The analytic properties of Al now follow easily. First, Al has 

all the singularities that Al has, because they are determined by 

the Feynman discriminate D of Eq. (61g). Second, Al does not have 

any new singularity arising from the. 6. factors. If 61 vanishes, 
. ). 

say, then various CX. in Eq. (61d) also vanish. Further, since we 
J '¢l 

have assumed '¢l > -1, then Bl is integrable; therefore, we are 

only interested in those singularities in which the propagators 

This means that all the remaining cx.'s must 
J 

either vanish or pinch. However, these are just the conditions for a 

Landau singularity of the Feynman amplitude A
l

. So we can conclude 

that any singularity of Al associated with the vanishing ofBl 

must already be a singularity of A
l

. Since the sheet structure of the 

'0, 
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singularities is determined by the iE prescription in D, and is 

unaffected by the presence of the 
,01 . 

f\ ,we see that Al has no more 

singularities than AI. 

Third,it is easily seen from Eq. (6Ig) that D is strictly 

negative for 
. 2 

sl,ul < 2m ; hence Al is real there. 

So we conclude that Al bas the same real analytic properties 

Now we can return to Nl [in Eq. (54b)] and bring it to the 

unitarity form. Since Al has left and right thresholds (Fig. 28), 

----' r ~t- " rx. ) ~ .... ~ .- ~ ~\'" 
.~ 

Fig. 28 

we can close the contour of integration around the right cut to 

obtain 

') 
L... 1

00 

i 6. 
l 

U .. L* 
dS l B. B. 

l l 
(62a) 

~ 'i- IdSl tHo. 1!. +M} 
J (62b) 

The sums in Eq. (62) are over all possible sl channel unitarity cuts. 
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Returning to Eq. (54a), we again obtain. 

A(s,t) 

t' 
1 

== -2i 

Contribution 

UCRL-19453 

The calculations proceed as before. One again verifies that 

Ai has the same real analytic structure as A
l

. When we come to 

consider N
l

, we observe that as a function of a 
. 2 2 

(s == -a+K +m), 1 

the integrand of Eq. (54b) has singularities in a from d
3

,d6,sl 

that all lie in the upper half plane. (This is another way of saying 

that Ai has no left cut.) Hence we can close the sl contour of 

integration in the upper half plane to get zero. Therefore Nl == 0, 

and A(s,t) does not persist. 
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PART II. PHYSICAL IMPLICATIONS, COMPOSITENESS, 

MULTIPLE SCATTERING, AND THE ABSORPTION MODEL 

Now consider the relationship between the mathematical results 

obtained and the physical meaning of compositeness and multiple 

scattering. It is not hard to see why the AFS diagram does not give 

the double scattering we would expect. On the one hand, the form of 

a Reggeon amplitude, 

j-:-~(. 
M t "".., 
. I 5 

implies a compositeness of the external particles M. 
~ 

which is 

reflected,in the form factor dependence on M •• 
~ 

It was through just 

this dependence that the Rothe cancellation occurs. This compositeness 

is also reflected through the ladder representation of a Reggeon, 

I+II+TII+··· 

On the other hand, when the Reggeon of Eq. (64) is inserted in an 

AFS diagram, the external particles Ml'M4 are given elementary 

particle propagators. We claim it is this inconsistency that deprives 

theAFS diagram of a cut. 

What must be done is either to remove the M. dependence 
~ 

from Eq. (64), or to represent the external particles M. by more 
~ 

realistic propagators. We would like to discuss the second alternative. 
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It is our belief, in the spirit of Arnold and HPKR, that 

physical particles are complicated composite objects. In a Bethe­

Salpeter framework, for example, one writes 

X + ••.•. 
(65 ) 

where the right side represents the physical pole of the left side. 

In a scattering process of a physical particle, some of the 

constituent pieces of matter take part in the scattering, while the 

rest stands by as a spectator not taking part. A single scattering 

process that is drawn as 

microscopically looks like 

where the double lines are the physical particles .andthe single 

lines are their constituents. Similarly, a double scattering process 

that is drawn as 

.~ 
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should actually as 

,I 

'., 

Fig. 29 

The incident particle at C~) separates into scattering and spectator 

constituents. At ~ the constituents unite to form a physical 

particle in the intermediate state. At the same process 

occurs again, and the physical particle emerges at ~ 

In a field theory model, the intermediate physical particle 

can be represented by the direct channel ladders of Eq. (65). We 

can interpret this as a direct channel Reggeon. This suggests Fig. 30. 

Fig. 30 

From the results of Sec. 5, we know Fig. 30 does not have a cut 

because the sides lack third double spectral functions. Physically, 

this corresponds to an apparent cancellation between the contributions 

to JdSl Al (sl' t; t l , t 2 ) that come from even and odd signature 

physical particles. A direct channel Reggeon with signature is 

represented as 
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Figure 30 becomes replaced: by Fig. 31, which has a cut. 

Fig. 31 

In a phenomenological calculation, "lve replace the direct 

channel amplitudes of Fig. 31 by the known physical particles. Thus, 

n 

the contribution is written as 

d;,.<- {~. I J : d."" tI+ ~ · ---- .-3E.-- } 
r N ,-\"Wo) 

Fig. 32 
Ivhere we include all recurrences of the p. and continuum states. 

A typical term contributes 



The scattering amplitude becomes 

3~ 
This is the absorption model. 
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In HPKR the contributions of the remaining terms of Fig. 32 

are assumed to have the same s,t dependence as that of Eq. (67b), 

and are added by multiplying Eq. (67b)by a factor A.. It has been 

26 shown tha.t the amplitude for 

p + P 4 P + anything (68a) 

proceeding via Pomeranchuk exchange, can be as large as 50"b of the 

elastic amplitude 

p+p-7p+p •. (68b) 

This suggests that A. could be about 2. 
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PART III. COMPARISON WITH THE WORK OF GRIBOV ET A.L 

In Ref. 27, Gribov and Migdal· studied amplitudes generated 

by the exchange of a Regge pole. Their program is to write a Reggeon 

field theory that can be solved by summing Reggeon diagrams to determine 

the scattering amplitude. For example, the amplitude involving the 

Pomeranchuk and the PP cut is given by 

H + ~+ ~+---. 

Fig. 33 

This implies for the absorption model that in addition to the diagrams 

(a) 

)TI~ 

Fig. 34 

1. 
(b) 

one must consider effects of t-channel iterations 

~ 
(a) 

~ 

)~. 
~ 

(b) 

Fig. 35 

(c) 

It is well known that if the diagrams of Fig. 35c are $ummed,the 
i 

sum has a pole term related to the pole of Fig~ 34a, and a cut term 

related to the cut of Fig. 34b. Is one double counting by including 

the pole of Fig. 34a separately? Compelling physical arguments have 
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been given in HPKR for why this is not so, and that the physics of 

elastic absorption is different from the physics of quantum number 

exchange. 

Gribov et a127 ,28 derived the absorption model from diagrams. 

We compare their derivation with ours. For their discussion of N
l

, 

they write that generally 

.~=.y 
,..~ r +- R~--· 

They argue in a general fashion that 

complexity from the presence of the 

Al has no new singularities or 
¢. 

l e. . Therefore the discontinuity 
l 

of ~ can be calculated as for ordinary amplitudes by cutting the 

diagram and replacing the lower amplitude by its complex conjugate. 

They also give a proof for elastic scattering that f-..... > 1. 

Our approach differs from theirs in that we have attempted to 

present a specific model for the two Reggeon diagram that is based 

on our physical understanding of compositeness and multiple scattering, 

and to derive the absorption formula from that model. 
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Ter-Martirosyan29 has derived the two Reggeon cut from the 

AFS diagram by using form factors for the internal Reggeons that are 

evaluated on mass shell. The Rothe cancellation mechanism is removed 

and the contribution :from the "elementary" propagatdrs evaluated near 

mass shell gives the expected form of the cut. 

He also considers higher order cuts, 

and derives the eikonal formula of Arnold. How do his results affect 

ours? In our program we only need to consider the pP cut. All 

elastic multiple scatterings are grouped into a single P term, which 

is parameterized and fit by experiment (Fig. a,b). 

The PPp cut (Fig. c) is found to be small. Any cut involving Pp 

and a non-Pomeranchon is smal~ because the branch point is well below 

the p pole. 

.,' 
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PART IV. ASSUMPTIONS, CONCLUSIONS, AND 

FUTURE AREAS OF WORK 

Assumptions 

1. Physical particles are composite objects and when regarded 

as Reggeons they have definite signature. 

2. Multiple scattering of composite systems can be treated in 

a Glauber scatterer-spectatorapproach. 

3. The leading behavior of a Feynman amplitude is given by 

the Gribov-Polkinghorne finite mass conditions; the second order 

term in this analysis is down by a factor of lis from the leading 

behavior .. 

Conclusions 

The amplitude for the diagram 

t-1~ 
A, 1'~ A .... 

where A.· are low energy amplitudes relative to s, is given by the 
1. 

absorption formula 

Future Areas of Work 

1. What is the effect of t-channel iterations? 

2. What is the relation between the absorption model approach 

and the bootstrap approach? 

3. Is A. > l? 
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3l. Where A ~ i 
a( t) 

s " . TIP 

32 . Where Ae£ rv -i (a( t) - +1). 

33· Where Me£ ~ 
C~_)a(t) . 

<;l' 
l 
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