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THE DERIVATION OF THE ABSORPTION MODEL

‘FROM FEYNMAN DIAGRAMS

Clifford Risk
Lawrence Radiation Laboratory

University of California
Berkeley, California

January 14, 1970

Lectures given at the theory seminar summarizing work

by Frank Henyey and Clifford Risk

ABSTRACT

In these lectures I ulll present a summary of work carried out
by Frank Henyey and I that derives the absorptlon model from field
theoretlc dlagrams. The work developed from a program belng carrled "
out at Mlchlgan that descrlbes a large number of quas1 -two- body reactrons
with the absorptlon model. This modelvlnvolves a Regge cut correctlon
to Regge pole amplltudes whlch is generated by the exchange of the .
Regge pole and a Pomeranchuk. The .cut features the product of the
Reggeon and Pomeron (w1thout complex conJugatlon of elther) and a large
magnitude for the cut (coherent 1nelast1c effects add to the orlglnal_

cut term).

N _ _ o _ .
"+ A final version is being prepared for publication.
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The fundamental physical assumption of our derivation is~that
physical pérticles are composite objects of constituenﬁ piecés of
métfert In a scéttering process; soﬁe of‘the-constituent matter takes
part in the scéttering while tﬁe fest stands by as a spectator. These
%deas lead ué to describé double scattering processes by a clasgs of
diagramé'invoiving exéhangé df two Reggeons in thé cross channel and
propagation of composite physical particles in the diréct channel.

Whén the direc£ channel particles. are Eeggeized, we 6btain an expression

' for the Regge box diagram.

We.begin oﬁr analysig 6f aiagramévby discussing the AFS |
diagrém and'similar diagrams to demonstrate how the absencé of third
_double.spectral functidns iéads to the abseﬁce éf a cut. For simple
diagrams, we find that we are forced to invoké propeft;es of form factors
to»show'absenéé of the cut, but that for sufficientl& coﬁpoSite diagrams
the absence of the cut rests solely on fhe absencé of:the_thifd double
spectrai.functions.

Next'we discuss the Mandelstam diagram and similar diagrams
to deﬁonstrate how the présence Qf‘third double spectfal functions
leads tb cuts. .For each diégfém we bringvthe exﬁréssion for the amplitude
to the form of the absorption model.’, | |

,ﬁinally, we study‘the general,class»of diagrams referredvtoi
above. Tﬁese diagrams contain (i) compositeness in the direct channel

(physical particles are composite), (ii) third double spectral functions

(physical particles have definite signature), and (iii) two Reggeon

5
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exchange.(double_séattering’and the Glauber spectator.approximation).
(iv) By assuming saturation of directvchannel_amplitﬁdes by physical
states, we are led (v) to an absorpﬁion formula'éno complex gonjugafions)
that (vi) includes the coherent inelastic factor X-‘(diffractioh

production of direct channel resonances).

I
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ST
NOTE |
The Sudakov'variable techniques, dsgd'extenéively‘here, were
first applied to diagrams with Reggeons in a comprehensive work to

develop a Reggeon calculus by V. N. Gribov (1967). 1In the present

work we have employed these techniques to analyze the diagrams

considered here in obtaining the absorption model. After our work was
completed (August, 1969), a éeries of six papers appeared by Gribov
and Migdal, Kaidalov and Karnakov, and ter-Martirosyan which extended
the earlier work of Gribov, and, among other things, obtained.the v
absorption model. 'In Part III we compare our approaCh with theirs

and discuss the similarities and differences.
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1. INTRODUCTION

The idea that the asymptotic behavior of a scattering amplitﬁde
A(s,t) is determined by singularities of the partial wave amplitude |
fj(t) in the cémplex-j plane is ten years o]_d..l Duriné this‘decadé,
this idea hés been studied both phenomenologically with various models
that describe specific reactions,g and theoretically with thé investiga-
tion éf sums of Feynman diagrams that define amplitudes with Vafious
types of j plane singulafities.5’h

The.main'school of thought has been that fj(t)' is meromorphic
in the j plane with.simple pbles atvvaluésv-j - ai(t) that corfespondl
to physicallpafticles. ‘Phenomenologic?l models with these Regge poles
were used to fit @ large_number of elastic and quasi-two body reactions;
Meanwhiie,‘the theqretical study of varipus field theories led to the
conclusion that Regge péles arise:there also. |

However, the usébof phenomenological models with poles.aléhe
led to sevefal difficulties and complications»in the'attemptiﬁg to

7

explaiﬁ features of differential cross sections -such as dips, crossovers,
and forward peaks (in # exchange reactions)-and of total ctoss sections-
such as the rise ét Serpukhov eﬁergies; This suggésted thdt in the
J plane the properties of fj(t) might bé more inyolyed than containing
poles only. Meanwhile;bthe study of field thedry models producéd
amplitudeé with fixed poles, moving cuts, fixed cuts, and essential
singularities.

Oﬁe of the earlier models with'mbfe compliéated singularities

was developed by Abers6 et al (following earlier work by Udgaonkar
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and Gell-Mann’) in the study of rn-deuteron scattering. Glauber8’9

could be expressed as a sum of

had shown that the .amplitude And

31

terms

Aa(sst) = 6 (FE)A (s9,8) + 4 (55,0)]

. W ' 3
. (B 7 q 2 el oo
" L [e(p®) A s —<3+p) A lss, {=-p &€ p
0 0/2 xpit1? TN2 T X/ yTmfT2? T\2 7 X e
257 P ) .
(1)
where Anp"Ann are single scattering terms, §; are center—df-mass
energy squares,'_t = —qe, p is a two-dimensional vector perpendicular

~ ~

" to the incident direction,'and G(pg) is the deuteron form factor.
Abers et al . then showed that the terms of Eg. (1) correspond to thé‘

amplitudes for the diagrams of Fig. 1,

S .
Fig. la ' ' ~ Fig. 1b
where the particles in the direct channel (cut by the dashed line)

‘are to be evaluated near mass shell. Furthermore, if the single

scattering terms were given by Regge poles
' ’ _ ot o - :
A (s,%) = ps) ) | (2)

then the double scattering term of Eq. (1) took the form of an

amplitude with a cut in the j plane at. j(t) = 2@(%) -1,
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S

n s

A(double) . ) : ‘.  (3)

This cut term, the Glauber shadbw correctidn;%Was observed ex?erimen-
tally in-differeﬁtial and total croés sections. However, it was next
shown that if in Fig. 1b the contribution was evaluated from the
regidn of;iﬁtegration where the x was fér off ﬁass shell, this
exaétly canéelled the earlier cut term of Eq. (5).. The sum of both P
contfiﬁutions behaved as l/s5 énd had no leading‘cut.}O
This type of difficﬁlty also occurs in'recent mddels that

describe two-body procésses in terms of a muitiple scaﬁterihg»series.

' 32 .
In describing x"p — 7°n, one is led to the formula

Als,8) = A (s,) - 3;2 jom A (s,) Alsity) , ()

where Ap is the amplitude -for o exchaﬁge, and Aeﬂ is the elastic

n-nucleon amplitude. This can be derived from either a Glaubér_

eikonal sérieslo?ll or from the Sopkovitch formula.? It can also be
derived from Feynman diagrams of the type
. e 4 } 0
TT° " N T WONGRRP, Wy Vo
AN A 1 e
Fig. 2a Fig. 2b

The second term in Eq. (4) corresponds to the gohtribution from-

Fig. 2b in which the direct channel x°,n are evaluated'near mass
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' shell. However, if one eveluates fhe_COntribnticnsfromvﬂhedreglen :
Where the #O,n goboffvmass shell,dthe_previons;term is.again_eXdctly
cancelled, and their sum has no cut.. | |

"The difficulty.encountered in both of these'examples is
related to the diagram version of the work of AFS. lf one evaluates:
the dlscontlnulty of the amplltude of Fig. 3a across the branch cut |

of the two particle direct channel state (Fig. 3b),

t, =]
A = ™ : el
A,
-——-'J-’\/af""‘"‘&————- [ |
Fig. a Pig. 3c
then one finds™® that
Im A(s,t)- c fdsl,s Al(s,‘tl)‘ Ag(s,tg).. ‘ o (5)

Hence lA(s,t)' has.a branch point at-‘j(t)b= Qa(f/hjl- l}'.HOWever,x ;
.1t is known that a Reggeon can be represented as a sum ofvladder .
dlagrams.5 lf these are substltuted in Flg 5a to glve Flg 3c,
_and if the new contrlbutlonS'to the unltarlty equatlonvare added-tq‘"
vK (5), then the cut is exactly cancelled 13 | |

‘While the three dlagrams con31dered do.not have cuts,'there'
_ ere diagrams which do have cuts, for example, the double cross

. dlagrama’ of Pig. 4.
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Fig. L

In the present.work we will reconcilevthese results for
Feynman diagrams_on the one hand with £he experimentaliy valid
multiple‘séattering modéls on the other. To do this, we start from
assumptiohs abdut the composite structuré of physical particles, éndv
combine this with the ideas bf multiple séattering.' This leads us.
té a class of‘Feynman diagrams,vwhich can be evaluated in the ﬁigh-
enérgy limit. The final expression we are led to agrees with the

multiple sCattering models discussed above.

.The organizétion of the papervis as follqws.‘ In Sec. 2 we

discusswthe AFS diagram; it ﬁrévides tﬁe simpiést examplé of a‘diagram
. : | :

without.a cut. In Sec. 5vwe diSCUSS'the double cross diagram df
Fig. b, fhe simplest example of.a diagram wifh a.éut,:and-bring the
expreséion for the amplitude .to a form similar to the absorption model.
Next we extend the results to a more complicated diagram with‘a cut.
In Sec. ﬁ'we discuss two further diagrams without cuﬁs;}drawingfout
the role that third double spectral functions and formvfactors play
in the analysis of cuts. All this leads to the analysis in Sec. 5
of a very general class of diagrams, in which the presence 6f a cut

is thrown completely onto the presence of third double spectral

functions.
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In Part.II we present our Qiew.of the'comesite structure of

_physiéal parﬁiélesvana ébmbiné‘this'wifhvthe diagram results to
- obtain tﬁé derivatibn.éf the‘absdrptigh model. |

“In PartvIII we'cbmpa?e'our results with théIWOfk>of:Gribov
et ‘al. | o .

 iﬁ'Pért_IV we summarize thé.aésumptioﬁs,'rééults, and -

'unsdlved:problems of the paper.
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PART I. MATHEMATICAL DERIVATIONS
Two approacheé have been developed in. the Study of asymptotic
behavior of Feynman diagrams. One approach5’15~has ihvolved.the study
of diagrams with internal elementary particles onlyv(as opposed to
internal Reggeons). Tﬁe amplitgdé‘is written in terms of Feynman
parameters. |
5(1 - ;ai)

c(@P?, (6)

A(s,t) = n d ai.[D(a v

0
and the integraion is perforﬁed explicitly over the region of integration
- . . ’ |
where the leading behavior in s is attained. For ekample, for the

box diagram with spinleés particles one finds

Ao - Bieey ()

where K(f) .is a knowﬁ funétion; It ié,theﬁ'fouﬁd‘thét by summiﬁg
over céftain clésses.of diagrams, amélitudes;arevébtained which
corresﬁdhd‘to moving Regge poles, fixedvpoles, ﬁdvingkcuts,-fixed
cuts, and eéséﬁtial singularities. |

Tﬁé'second approach.(which we shéll use) is uséd in stﬁdying
_diagrams'thét contain both internal‘Reggeons andiiﬁternai elementary
?articles:"The amplitude is written directly in terms §f its internal
Regge amplitudes‘and eleﬁeﬁtary propagators, and then cértain principlés
are invokéd to e#tract the asymptotic behavior and dis?lay it in a
recognizable form} This approach has been‘deveioped in twbvforms—by
RothelG_and Wilkin®' (using mass vafiables} and by Gribovl8'(using

Sudakov variables). We shall use both of these methods.
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2. THE AFS DIAGRAM
To begin with we consider the'AFS-diagfam'of Fig. 5.S-We

briefly discuss Rothe's treatment

>PL | Je : Pz,_
% > _X;L\/ | 11}1* .
e
_~a§y~/\~ .
Fig. 5

because it illustrates pr1nc1ples we shall need later on. The

amplitude is given by

' > o o

‘ R(s,k Lk ) R(s k ; kT, ) r
A(st)cc | R B B SN

. - m + l€)(ku -m o+ ie) - :

To'evaluatevthe‘asymptotic behavior of  A(s,t) it is convenient to

introduce mass variables

Then, in the limit of large s, Eq. (4) becomes

1 ~dtdt, ' R(S’tl;'Si’S ) R(s,tz, S8 2)

A(s,t) cc 5 —— [ ds;ds, 5 5

. e 2 - 7z
- A<O (-») \>0 7 (sl m +_1e)(s2 m? ie)
(10)

where
x(t % )-'—"t2 5.2 262 - ot - o2tt, - 266, (1la)
2%y = 1 2 1 TEMy T e L
) ' 2. 2 2 _

K(S,sl,sg) = 5" +8," + 82___ 2ss) - 2ss, - 255, | (11b)

and the ranges of integrationvare shown in Fig. 6.
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A .
e 7%
—
/
"

Fig. 6a » - ‘ Fig. 6b

Now as a fﬁnction of 895 tre integrand of Eq. (10) has singularities

in the lower half plane consisting of.a'pole at- s = m2 - i€ and
cuts'from the form factors of the Regge amplitudes. Also, it is
'knownlu 19 -that as S becomes lafge

R(s,t; sl,sg) = 1/s . C v : ' (12)

(This is Valid in the limit s fixed, 8] = @ and also in the

limit s é.sl‘;aw.) The s, integration runs from s, = o to

Fig. 7a Fig. 7b : Fig. Tc

Therefore, if we distoft the sl-and similary.sg—intégration in the

lower half plane; we obtain

’ 1 dtld‘t2 -
A(S:t) a '5 —'—T_R(S:t ) R(S t ) + Ag(syt) + AB(S)t) ’ (15)

(-1)?
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where R(é;ti) is thé Eegée amplitude’é&éiuétgd on mass shell, A2
‘is the contribution frqm ﬁhe cuts in the mass QariableS,-andv Aﬁ(é,f)
is the contribution from the large»éemiciréles; 'This last term is
negligible because of Eq. (lé). The first‘term in Eq. (13)His the
usual AFS aﬁplitude [but without the compléx conjugétion of R(s,t,)F
see Part III). . | - .

On the other hand, if we were to close the contour of S

integration in the upper half plahe, we would obtain for A(S,t)

only a term Similaf to vA5(S’t)’ which-vanisheé as s — . Hence

we conclude that A(s,t) must vaniéh_as s — . (the Feynman parameter
technique referred to earlier gives 4n s/sB), and the apparént cut

of the first term in Eq. (1%) is cancelled by Aé(s,t).'
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3. ﬁIAGRAMS WITH CUTS
We now turn to diagrams that do have cuts,‘leading td the .
genefal diagram of Sec. 5 that will connect with our ideas of.the
compdsite struéfure of‘physical particles and yield the absorption
.ﬁodel._ | | |
First we coﬁsider the double cross diagram of Fig. 8. We
brieflyvrevieW‘the treatment 6f Gribov <l968)18, and then extend the

anélysis‘further to obtain a result resembling the absorption model.

. ‘)‘-\ \jz_\ L Jv:?" ) '&l 2. N ,. ?L
7 >~r W <
P ¥ 3 - S
o -

N \‘i— o

Vd 7 ] . . 7
»“}’\“r 9 ,Ra_\—jz*{l; P S+ ‘3)_

o ‘ Fig. 8 °

16,18

~ The amplitude'of Fig. 8 is given by

Loooh b

- <] dkdk d kp , , : S
A(S’t) =3 ) ) - R(kl;kggk) R’ (Pi - kl’ P2 - KQ’ q - k)
’ ’ ./! I d. o -
1t . ' (1k)

Thevesséntialffeaturé éf the'anélyéis is to néte'frqm Eg}'(lQ) that |
the intérndi Regge amplitﬁdes R aﬁd R become‘smal; if théir '
.external'@aéses d;- become large as faét or faster than s. Therefore,
the dominanf contribution to Egq. (14) comes from the region of integfé-

tion where di remains finite relative to s as s goes to infinity.
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After s has become'asymptotic; the integration over the remaining
large values of di can be completed. To express this pfecisely,,'v
let - A De avfinite,numbér, and define

: 8 2 _ '
N R R oA - d;7)
— - ! o e ———————————— [
_ AA(s,t)vv_ k ¢k d'k, R R! , T . _ (15)
v i
Then, the above arguments state that the leading behavior of A(s,t)
is given by | ‘ ' ‘

lim A(s,t) _=. lim {1im .AA(s,t)} .. - “A , ; (16)

S . ‘A—s oo S

~ To perform the analysis embedded in Eq. (15) and Eq. (16),
it is convenient to replace the external momenta PysPs by"light-like

momenta pi, pé defined_by
a2 12 _ 1ot - R b‘ .
P17 = P o= 0 s 2pi*P, = 5 .- SR .(17)

To order . l/s they are given by

[ L m____ ' S ' - _ m____ ) B h
Pl. - ,pl s -P2 b4 . pp - PE pl s . (;8)

The momentum transfer is given by

@ = Ty - va , a9

where Q is a two dimensional vector perpendicular to the incident

a

vectors 'pl,p?. .
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"It is also convenient to introduce new variables of integration

(the Sudakov variables) defined by

k

I

op) Bpi +K v ' (20a)

kg o= oupp e ByP f Ky, i=L,2 . (200)

where: K,Ki"are'again two dimensional vectors perpendicular to PysDP5-
In teims of these variables, the denominators for the left side of

Fig. 8 become

2 . 2 2 . ~
d =k~ -m +die=o0ps FKT om0 + e (e1a)
'2 » m2 | 2 2
d, = (pl - kl) - m” + ie = (al - E_)(Bl - 1)s + K)” -m o+ ie
(21b)
L B-EE-I - : N2 2,
d5 = (kl.- k)T - m® + ie = (al - a)(Bl - B)s + (Kl —-K) - m” o+ ie
(21c)
a (k, =k +q - p,)" -m° +ie = (' o+ ==, -pB - . 1)s
R e 1 % s s 1 S

(21d)
with similar expressions on the right side. . Thevenergies of ‘the
internal Reggeohs become

A S R (N TR ) PR S O G
1= g F K 1 T OB By K K

A 5 2 P -
Up = (py #mp - Xy = Xp)" = (L + gm0y -0p)(L w57 -8y - By)s

(22b)
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And the momentum transfers become

2 2

k" = ops + K - (22¢)
2 b % 42 (ond)
(@ - k)™ = (g -a)(-z - B)s + (Q - K)™ . (224)
The transformation of volumu elements is
vGAk = l%l do dg dK , etec. A _ ' (22e)
~ The direct channel energies of'the left and right crosses are
' 2 | m2 | 2 :
s; = (pp ~kK)" = (1 -8)(--a)s +K (22er)
'Sg = (p2 + k) = (1 + a)(g— +B)s + K . ' (22g)

" We can now petfbrm the analysiS‘of Eq. (15) and Eq. (16).
\We are first to find the region of integration over which d. < A.
By SOlving the equations 4 ,d, = 0(A) for"al,ﬁl, we find from
Eq. (21a,b) - |
L=
while from:'dB,dh = 0(4),
o = 0(3), B = o) .. (23b)
From a similar analysis on dS?dé’QTédS we g?t.

BsBy = ’o(f) ;o S,y = 0(a) . SRR o (23¢)
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Combining all results,vwe conclude that the‘dominant region of °
integration as s — o .is given by

; Ay ’

al)a:B:Bg = O(’g) 5 _Bl}ag = O(A) . (2)+)
Comparinngq. (éh) with Egs. (21), (22), we see that we can neglect
g relative to Bl; and «a relative to ag. Changing variables

as —»Q, Bs —»B, B.5 —B, Eg. (21) becomes

Oéls -—>Oél,_‘
4 = aigl + K12 - o+ i; , o (2ha)
2 - - |
dy = .(ql J.m )(5l -.1) + KT o-m ke , (2Lb)
d, = (a, -a)p, + (K, - K)2 - mt o+ e ‘ ' (24e)
3 1 1 1 _
. ' ‘ 2 2
a = (0, -+t -n)(e, - 1) (g - K- Q)T - m e
| | o (2k44)

the Regge energies become

8] -

1 Bis - S | S (25a)

»ngfo> (1 - ag)(lv- Byls » R - (25p)

the. momentum transfers become

B . o (25e)

@-10% = @-0° N

and the direct channel energies are
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s; = ‘mg-va+K2'_ - T . ‘3(2'56)

i

The faétors ,ag,Bi, etg; in Eq. (25a,b) tell wﬁét-fraction of th§'
original-enefgy s floWs through the Reggeons and what portion lews
down the side; of tﬁe diégram.v (We shall see later than Q $.a2,
Bl < 1.) We.see that the terms dl,;';,du depeﬁd onlyvon the
vafiables»df the left loop-al;Bl,Kl;and on ,K, but‘ﬁot on fB.
Similarly for the.terms.'ds,..;,dB. ' |

Next we assume fhat_thé RéggE'amplitudés of Eq. (15) cdn béi
written‘in the factérized fqrm' ' | ' |

4,05 8,68) K

| N , 2 BTN
R o= gy(a,dK) e L .gg(d5,d7,k) - | :.(_2_63)
- T AECE I ATCE S o
R = gi(dg,du,(q -k)7) e | U, g2<d6,d8,(q - x)°)
| | © (26b)
Then, Eq. (15) can be recast into the foliowing form? | |
| . \9751 (KW, L0711 R
A (s,6) ocf dakNe s N, (K,QN,(K,Q)  (27a)
N, (K,Q) - = doy —:lg———l-—l.glg'l B, (1 - By) ¢ - (em)
O(A) /[_],_Tdi. . ' e
s do.,dp ,dK g9, |
N (K,Q) = | a8 e 4y (1 - ) 2 ; - (ere)

| J!O(A) T:T a,
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Here we see‘ﬁhat AA is én integral over the usual éﬁergy term

s "~ , times structure functions N

, and N, that involve the

Feynman amplitudes, form factors,'and the Regge energy factors on
eac.h” ‘side: ‘of" thé diagram, | |
: Té briﬁg EqQ. (27)vto a.moré recognizable férm, we first
let A —o in accord with Eq. (16). Next, we define the amplitude
A, (@,%,Q) by | | |
e dor s, K

al Po

A (0,K,Q) = gel B, (1-8)°. . (28)

~c0 d.
1 1

Note from Eq. (28 ) that B, runs between 0 and +1 only. If

gl < 0, then the integrand, as a function of Q) hasbsingularities

that all 1ie in the upper half plane [see‘Eq. (24) and Fig. 9]; the
al contouf of.inﬁegration can be closed in the 1ower half blane to
give zero. If gy > 1, the singularities all lie in the lower half
plane._'But.if Q < Bl < 1, . then the singularitiés pinch the contour

of integratibn and the integral is nonzero.

o, o ' o
Td" 6163 d“_, TAL a\g, _
KX X X\ ) X e

2ol . S
l 'R XX % X | ' l x x !
. d\d’“éadq dl 63
i 40 |
. : /5‘> \ | 0 < f3\ &)
o Fig. 9 ' v

Next we observe that except for the extra factors in the

is the amplitude A

numerator of Ed. (28 ), A l(sl,

the Feynman diagram of Fig. 10.
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,_*;?

The form factors g,8] are functions of the invariants d; and

t It is easily seen that Bl is also an invariant of the

1%
diagram of Fig. 9. Therefere we can write
Ay = Al(sl,t3 tl,tg) .. - | v‘(29a)

Equation'(27) can then be written as’

- dt.dt @, (t, )0, (¢ )21 .
A(-S_:.t) : L _2_ i) 1 l -2 2 Nl.(t’t t )N (t) l’ )
. (-»)2 . ,
, ._(29b)
. T +oo | , . , S ‘
| Nl(t’tl’tE) = _d-si Ai(si:tS tl’tg) - V, - (290)
_ _ A1
A (st tl,tg) = | a8 8 t(1-
' 0

with similar expression for A,. |

To brlng Eq. (29b) 1nto a form resembllng the absorptlon -
medel, we shall find it necessary to understand the analytlc |
propertles of Al’ In the first place, we note that’ Al has é}l the

singularities that the amplitude Ki of Fig.'lQ has, because fhesev
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are determined by the propagators of Eq. (29d). These singularities
consist of normal thresholds at s, = hmze— ie and u, = hmg.- ie,

and a Landau curve fl(sl,ui) =0 (Fig. 11).

Fig. 11

1The sinéularities introduced‘inj Al by fhe presence'ef:the
form factors gl,gi can.be‘discussed by disﬁersiﬁg'iﬁvtheir mass
variablesgo’gl and treating the kernels of the transform as propagators
We have found that they do not change the results below, ‘SO for
simplicity we negleet them and take‘ gl;gi as constant;.

It remains to discuss the termSZVBl (1 ;”Bl) 2. We

assume the trajectories satisfy ¢i > -1, so_that these terms by
themselves are integrable. Howeﬁer it ;s:pessibie that.at 51 = O;l
they can pinch with a singuiarity of the propagators and introduce a

neW‘singularity into Al' We have been able to investigate this

possibility by two different methods, and we present them both.
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First Method

t

Looklng at Flg 9 with 0.< 51 <1, we see that if we close

- the al contour of 1ntegrat10n in the lower half plane, we plck up

contributions from the poles in «, of the terms a. ,d, . Writing

v 1 , . 1773
di(j) as the value:of d, at the pole of dj’ and writing

D. (J) Bld (J), we obtaln

!’ dK: l‘da Bl'l (1 -8y) ° 1 B
Qac - ,
J Jo 1 dB(l) | D?(l)Duﬁl)' DE(B)DAFB)

(253}
where _ _ o
dB(l)j.s’ -0B, +'(K1 - x)° - K12 N o | (292)
Do(1) = -In -8y (1 - e w o= )]+ (1= gy, s (5 a-K)°
o (29b)
D,(3) - <l - o, (- 8)(E - a)) s P ¢ (1)K, - 0P
| <29c>
(1) = -[n® - (1 -8 - t)] (- e+ B, (K, +@Q - K)
| | (29a)
D,(3) = -[n” B T C ) S N S Ly (1 - By)(-5)

(25e)

We immediately see that at the endpoints of integration - Bl = 0,1 -

the terms Di(j) are strictly negative and cannot vanish. The tern
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d (l) can vanish, but its residue is zero [i.e., dB(l)* is'a factor

of the terms 1n the brackets] Henee we conelude that the-termsb o

3

Bl s (l - Bl) 2 do not introduce any new Singularities.

Finally, we observe that A, is a real quantity for those B

1

values of 1ts arguments for which the . D i(J)‘S, are negative for all

. | | S

Bl between o) and 1. This occurs’when'the'terms in brackets of
(29b-e) are positive. Since the maximum value of Bl(l - Bl)

is 1/k, this condition is satisfied for
b >m” +a-t, m -, m =t . . (30a)

This is equivalent to the>region

5, <.u'm2 _+‘K2, v—5m2 <t <0, 's'l + % >-72m? P K5 - (30b)

and is shown in Fig. 11 as region D, -
Combining this with the earlier result, we conclude:
Ai(sl,t; tl’tg) is real analytic in the‘sameiregion‘as

_ K(si,t tl’tg)’ and has the same singularities.

Second Method25

Iﬁtroduce Feynman paramet'erszo’22 .into Eq. (28).Via

/W (l)uf/rﬁh : o | 1)
; _ ,

J=1

(The ie in d guaranties convergence.) Then, the *dK, integration

can be done directly; The dai integration'can bevdonevusing.
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ioB

B R e )

The coefficient B involves B> and this allows the dBl integral
to be performed. We find v
Mo Ny

, 1
and ‘ V : - |

A (s 't 65t ‘/F " ‘ an, <:; "y t) X hls
1D(>\; l’u )/C(k)

X e

R
r .

(33a)

where

R o : _ Y- N
DOusysty) = Mohgsy Ay * MRty ¥ Ny a0+ gy, )

-n’e()® T (3%v)
c(n) = Kl + x2_+vx5 + xh . : | ._ B _:(5507

o 2 - ) - ) ' o
Sp*EAu s Aoty ity o B3

This can be written in the more familiar Feynman representation as

 : : | 1L '7‘32'+ o, ¢l oy ;id ¢2
- - Jo 1 L o

1
X Som o
- o [D(cy5,,0y)]
Note that.for @ =@, =0, A reduces to A.
| o

(33e)
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. . ' . . ‘ P
. From Eq. (33) the analytic properﬁies.of"Ai can be read off

iﬂétantly, " First, Al has the SameLandau curves as Kl’ because these

come from D(d,sl,ul). Second, the term By l‘does.not introduce a

new singularity, because if 'a2 =Q, = 0, then \
ID(Ocs u, ) = !ozoc.tv—(oz +oz.)2‘m2-' (3kha)
’h1r 17371 1 3 2 ’
sinéé' t, <0, D 1is strictly negative and canﬁot pinch with 51 l.

1

Finally, it can be seen from Eq. (33%b) that for
§ ' Is 2 . ‘ o I S ’ ’
S ; Pn o, K (3L4p)

D is strictly negative.. Therequé A, is strictly real. This region,

labelled Dg, is shown in.Fig. 11.
Hence we reach the same conclusions as before. (The'region
D2 is larger than D

both cases because they have the same singularifies}) o

but of course A

l’

1 is real where A, is in

1

We summarize the résults in Fig..lQa

Sy

A recd umo\\.yi—\c, ' A

> } V%SR:: — _ %

Fig. 12

We can now bring A(s,t) to the form of the absorption‘modél.: In

Fig. 12 we distort the contour of integration around the right hand
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cut. Since“:K ,behaves.as- l/sl2 as Sy — w, therefore so dqes'rAi;

(At the endpoints -a, ~a, ~ 0, g.. and (1 - p,) do not vanish,

2 Y3 1 SR R Py
50 .Al has the same asymptotic behavior as Ki.):‘Therefore o
Ny (t,ty,t,) oc dsl.dlsc[Al(sl,t;_tl,tE)lb. o (352)

R ‘ ‘b’ .

Since Al'-is real analytic betweén the cuts of Fig.'lEa, noté that

disc[A] = 2i ImA

1 (35b>~

Since the diécontinuitj is generated by the denominators 0, 5, anq.

since A is real. analytlc, we can 1nvoke a Cutkosky type theorem to

1
give
A L S p, - '
T A B e B CRVAE CHL R
hm?v ; E : - '>(55C)

where F involves thé Jacobian of the transformation to mass variables.

Integratlng on the o functlons

N (t, l,t ) @ J/f ;/rdK SR " V' o (55@)

where
g
1 1
U Bl 1 L (l - Bl) 1
B = — (F)2 K} B = - F)2 : *
d,=4,=0 | | dp=d;=0

 (35e)

il
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‘bring A(s,t) to the form

S=25- SR o UCRL¥19L53

In terms of graphs,

. ) . i . . l l ‘
(35€)

Thus we see that we can split Ny into an integral of factors

UL L

B'B ,'whére BU involves the upper part of the diagram, and B

involves the lower part. Now perform the same operation on Né,

*® ’ ' '
dK., oVl . S (358)

Collecting Eq. (35f,g) and returning to Eq. (29b), we can

o {at.at | P (t) |, Po(t) *l
. -1 172 U,s : s L
A(s,t) ¢ —f———= K, dK, (B (3) CAILB" (&) ¢ )
8 5 1 72 i AR i |
“(=\) /
, , . 4/‘ {563)
Writing ; - , 4
o v sl i g |
M= B () ¢, M, = B (3) (360)
we finally arrive atbs
| . L . 5in¢2(t2) B o |
| A(s,t) < 5 &K dK dK, M, M, e | o o (%6c)

where
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X %

=

=
; i

and :
T o N

vA(s,t? oc g an ( s j*tlfi SALE: T S (364)

= 5% X L xX* - | (36e)

" We shall exfend Eq. (%36) to more general diégrams. Wwith _B,C'-feal,
Eq. (36a) agreeg with the absorption_model. In particular, when.‘¢l
is the ?omeraﬁchuk,,theﬁi A(s,t)y interferes aestfuéti&eiy with the
pole.térm'of .¢2. For more general B,C, A(s,t) xis_writtgn in

Eq. (560), with the.extra phase term intrqduéed,to reéfore the correét

phase to the M, amplitude.

L .
\?‘ \)ﬂ .32’ 2
Y, STEE A gy B €
Py 3
1%
5\ /6
)‘_7 ——
kl . }ll.’
Fig. 13 “

~ As an extension of the work abovevand as'preparation for the
general diagram of Sec. 5, we briefly discuss the diagram of Fig. 13.

There are several noteworthy features.
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In the first place, one sees that>on.thé left side of the
diagram only the lines 1,3,5,7 attach:to Régge émplifﬁde§. Hence
we might suspect‘that oniy these are subject‘to,the finite maés
.condition. It turns out this woﬁld nét give énough chditions to
provide an-immédiate solution for the Sudakov Variables, There are
two ﬁays we can argue to extend the class 1,3,5,7. On the one hand
we can afgue:that, in the spifit.of Arnold, HPKR, and Sf the work to
follow in Part IT, the external physical parficles should themsélves
also be Reggeiéed.: This would piace form‘factors on'tﬁe'externél
vertices also, and would ieadvto the requirement that thé lines 2,6
also éatisfy the finite mass condition,vdnd would provide enough
lines fo perform the Gribov analysis. On the other hand; Poikinghorne25
has redentiy‘exfendéd the Gribo& ana;ysié:to diagrams with internal
Reggeons cénstructed‘from Veneziano amplitudes without any form
factors af all. The integrations aré doﬁe by a’steepest descent
analysis, and as it turns §ut this:leads to thé desired finite mass
-.chditions on all internal lineé. |
In any event,'afﬁer carrying out the fiﬁité,mass cqnditions,

one finds, analogous to before,
oal,ocg,a,B,Bj,Bu ~ Afs " | . - (36a)

0 < 61’62’063’0‘11, < 1 . ’ v ) . (56b) :

Proceeding as before, one obtains the amplitude A(s,t) "in the same

form as before, with the amplitude Al(sl,t; tl’t?) .now given by
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.
. L ¢ dalda

e ey 23K, Ky
Alsy,ts ty5tp) = | 48y Ay By 7 By glgz '

o . o : - d.

(372)

The amplitude N (t,tl,t ) is given‘by'é sum of~four-unitarity terms

/ H [Ty

| ) G
- Therefore, ' A(s,t) takes the form |
As,t) @ ;i a0, (B u ngil ¢.Yys. " s¢2 c .L*} | o (37¢)
> o S itP1 (N_l__) 3 3 (_17_) 3 2 . 37

1,d

a sum of all possible unitarity cuts on the left side of the»diagram

times all pbssib1e cuts on the right.
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4. DIAGRAMS WITHOUT CUTS'
We now pass on to diagrams that do not have cuts. The
essential point we shall demonstrate is that a diagram hés a cut'if

it has third double spectral functions on its sides. As we shall see

~in Part II, this will tie in conveniently with our physicai ideas

about the Compositevstructure_of physicél particles.
The manner in which we shall demonstrate this relatlon is to .
show that the amplitude of any dlagram w1th two Reggeon exchange

(Fig. 1L4) can be brought to the form

A(s,tv) @ | dK(E)_ NN, | S (.58a)‘

Fig. 1b

- where Ni is relatedgu_to the amplitude of the blobs

Wltty) o as P (o5 855) - o (380)

~-00

Furthermore; if -Al has a third double spectral funétion, then the

integral in'Eq. (38b) is nonzero, but if A; has no third double

spectral function, then N

1 is identically zero. TFor the second
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case, this means fhétnEq.'(BBQ) is alsofzero,fand that the leading
behavior of A(s)f)v is given bj a lower“ofdef  (i¢ s) term than thaﬁ
of Bq. (38a). | | |

We shall bring our amplitudes, then, to‘the form of Eq:v(38a)
because if focuses so shafply onlthe requir?ment of a third double
spéctral‘function. In addition, Eq. (58&) iends itsélf to a‘general
definitionjéroposedby'F. Henyey that we'would‘like to make.' Namely,
we will say that a diagram involving the-exchange of twobﬁarticles'of
spin J, and J, persists if its_asymptofic behaviér is giyenvby 
J -1 ' '

s 2 , to within'powers.of logarithms. As'examples we list: -

: : leading behaviqr persists?
XA S e :
—\ s Jin s ~ yes

i ' ~ l/s5 A no -
fms- = yes {spin of F—{
s ' ¥
. ' .
oL “is 0)
. . V 3—. i
Jl+J2-l_ _ , :
~s L yes
I '

We saw earlier in Sec. 2 that the AFS diagram does not pefsiét

because its leading behavior vanishes as s -« [Eq. (13) and,seq5].
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We now show quickly that its amplitude can be brought to the form of
Eq. (%8a), even though the coefficients N ,N, are zero. To do this, -
we apply the Gribov analysis to Fig. 15.

R Jn LV
.—-—"T___.__..'\/\#\,«:_,\,ndb-—«-—' -

p- e T O per h

Then, we have

» 2
4 = (pl—k)2= (l-B)(rgn—"a)S+K2'm2+i€_
2 (n° v 2 2
d2 = (p2+k) = .(l +oc)<§—+5>s 41{ - m o+ ie |
- o - (39)
R N CEe D () FRNC
U, = U, = s . ‘ o -

172

To sdtisfy d

1.4y~ 0(A), we .obtain

@ ~ B ~o(a/s) | W)

in which case, with o —»as, B - Bs, we have

dlz .—Of+K2"}‘i€
d; = 5+K2'- ie :
b, = K° )
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Since we have kept dl,d finite as s went to infinity, we can

write the Regge amplitudes in factdfized‘form

j=s]
i

- #(t)
g (a6 )3 T Ya(a,t,)

=
I

s 2‘t°

And hence, the ampliﬁude for Fig. 1% takes the form we anticipated

all aloﬁg"
| - dods: ¢1+¢2
A(s,t) o K- T2 g g (3) & g2
S o l o L .
+oo o ' .
¢ +@_-1 I
= dK N (t: 17 2)(§) 1re N (t: l’ 2) ' ‘ ;(_453)
N, (t,t,,%,) _
. - o
1, .
= w3y g = 5 t5t,) o (h30)
"Al(sl’t; ﬁl;tg)
g(,t)g(d,t) | S
1'71 et - . _
= ) . o ({{39)

1 - g /
In Eq. (43b) the integrand, as a function of «, has pole and cut

singularities in the lower half plane (Fig. 16). 'Further, . the form'
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L] | -]
W
Fig. 17

f
factors decrease as dl — 00,

'

-gl(dl,tl) - 0 as d; —w

Therefore, we can close the « contour of integration in the upper
half plane. and get for Nl zero, as expected. We conclude that Eq.

(38) holds for the AFS amplitude, but its value is zero.
. ) f

In'ﬁhe discuésioﬁ of the AFS diagram, we ﬁeed to invoke
properties.of the fofm factors in order to prove thaf the amplitude
does not peréiét;' As it turns out,  for the diagram of Fig. 18 we
must aisp.émpioy knowledgé_of the form factors. However, for diagrams
more.complicated (Fig. 20 for éxamplé), the absénée of the.cuf rests
completely.én the abéence of thé third double spectral functions,

Consider, Fig. 18. -

P JQ.\ s (I
P\“’ i.’ ’X\‘ S‘l
‘ \
% \,* /\/\./'\/\./\/\/\,\‘.
A
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Applying the.finite mass conditions on the right cross we obtain .
Bé,B ~ As ;- 0y 5 0 ~ 'A_A S T  (bha)

| and from the left cross

177

a0~ Afss B~ AL (bho)

The Regge energies become

) 2 ) . . ;
U = (kl + kg) - aggl s | o , (ﬁba)
R | 2 | ' n
pg = (p2 + kl,— k - kg) - (1 - ae):al s | (Lsbp)

and setting as - o, Bs — B, etec., thé denominators on the left

become

172737,

' 2 2
G = Py v K mm e
o oy, S U
_'d2  = _Kal_-_m )(Bl - 1) + S m” + ie o
c . )
by = (o - a)61;+,(Kl - K)" - m" + ie S
. . 22
du = (C(l - t)Bl + (Kl - Q) = .I_n + l‘€ .
The amplitude takes the form of Eg. (43a), where now
N, = dol Al(a,t; tl,tg)v = | ds, A~ o ..(h7a):
1 00 -
A = Gl —Efiffl—‘ Pt (4,4, ,t. )l (4,4, ttj
fo= 4By Tadad P1 81161793001 /81 V00 Cyntn)

o)

(k7o)
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Now as.a function of s A, has iny a right hand cut in the lower

1’ 1
half plane, so in Eq. (47b) we are tempted to close the s, contour
of integration in the upper half plane (Fig. 19).
3\ T, . ) N S ‘I
. . ' /yA%\\~
. \.T i i - - ‘
. ! } ’ M, _S - ’ ,’__‘_______-_\’ b\p\
i ‘el e
Fig. 19

However,’this will not do because for large S5

Al(sl?t; tl,te)- - £n sl/sl . T ,~(48)

_Therefore,‘thé contour cannot necessarily be'closed.

We can circumvent this difficulty by interchanging the orders

of integration in Eq. (47b,c) and first integration on . Then

: - : o ’ S .
N > _ dBldaldKl'B ¢l+¢2_, ' da_qlq2. : . (h9)
1,_ d,dd, 1 N Ch o

The «a-integrand hds singularities in & in the upper-half-piane.
The contour can be closed in the lower half plaﬁe. InVoking’the

decrease of gl,gé as d becomes large, we see that the a-integral

i,

is zero. The remaining integrals in Eq. (L9) converge, and hence

Nl = 0.
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Finally, we discuss the diagram of Fig. 20,_which will lead to

the general case of Sec. 5. - ’ SR o B i
? } o, i S X P o =
\ h)
- —é, ¥ !
5 ©
5! — f ‘
K N
1\ )c«:\_‘_
A
‘Fig. 20

From the finite mass condition, we obtain

'al:ag:d)6:65:‘v8u ~ A/S

(50)
"0 < BysBps0z,0, < 1,
and this_leads to

o D AK, do,dpLaK, @) .¢2 R ( . | ,
7( By " Bs &8 - 5
dj_ o o o ,
1 L . ) o
Again, A, has only a right cut, but now. , _ ”
A, — fn s /s 2 a5 S. -0 . R S — 3.
1 S i . . , ,

and hence the contour of integration in Eq. (5la) ¢an'bé closed in the

.upper half plane to give N, = 0. TFor Fig. 20 the absence of the cut {

is thrown entirely on the absence of the third double spectral function.
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5. THE GENERAL CASE

We now come tq a general ciéss”of_two:Reggeéh exchénge diagrams
which is the bésis fornour derivation of the‘absorpfion model. Just
how general can thié class be? As we ha&e pointed out before,.what we
are interésted in is the amplitude.for a diagram of the type of Fig. 1lh.
However, wé do not wi;h the amplitudes'-Ai to be completely arbitrary,
becauée in the form of the absorption model we.afe intereéted in we
require that they be strictly low-energy amplifudés,ielative'td s,
That is, we réquifevthat fhe-incident energy s flow across the
Reggeons and not down the.sides of fhe diagram. This‘is'because we
will wént to,identify the Ai with direct channel physical particles
near mass shell. . |

Noﬁe fhaf'the diagrams we have_sﬁudied satisfy this COﬁaitioh.
For'example, we have found tﬁéf while the L-momenta on the sides of
‘the diag?ams can become lafge (e.g., kl = Blpi + alpé + Kl’

0<p, <1, o ~ %) the energies s, remain finite relative to

1
N - | -
s (e.g., s; ==-as +m + K, &~ Afs). The large energy s flows

only across the Reggeons.

It is not hard to convince oneself that a general type of

diagram satisfying thesé conditions.is.that'of-Fig. 21 below. The
effect of the elementary lines [ ‘I ~is to tell us_where the

internal Réggeon line ends and to prevent A.. from having Regge

1

behavior in s,
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| AQ' // ‘\3 77\“&
. A,

i R . Fig. 21 ‘
Thus, Pig. 21 excludes all the diagrams of Fig. 22.

Fig. 22 v .
It includes all the dlagrams discussed before. (For the double cross .

diagram, A{ would be various O-functions.) It also includes the

diagram'of Fig; 23, if the lines n, are grouped into the mass M

. 1’
AN o
/ . 4
Fig. 23 .

'Mbst important,'it includes the diagram of Fig. 2ha. - When the rungé
in the direct channel are summed over, _this prov1des a model for ‘the

Regge box dlagram of Flg 2o (flrst 1ntroduced by Arnold and dlscussed
in HPKR) N
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e W

Fig. 2la

' We consider, then, the diagram of Fig. 25.

B
? <
>
%~ ™
We use the.notation:
A = A(s,t)
Al = 'Al(sl,tlful; di) .

The amplitude 'Ai is to be quite general; we are’interested only in
whether or not it has a third double Spectral function, and so write

it in the form
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(o] e o]

f( ] ) g(l )C) -
v Ai = - ac __ii_g_ + dg_-efi——é L. L (83)
- t! ' Eo-oul o ' o :
hmg : hmg } 1

That is, we can‘treatr Ai as a propagator of mass Cﬂz Mme. The -
analysis now goes through as beforé. We indicate the essential
features;. | |

After perforhing the finite mass analysis, A(s,t) takgé'

the expected form

A(s t) oc dfidK( ) 1727 NlN2 - | . "~ (5ha)
S | do do dK 4K, @, @ o
. _ 1995 % A P ,
Ap(systs tl’tg)“a/p 8,98 J[- TP By 8 EAy
L . Ay : - (5he)
wheréf":
4= %Py %.Kig.;'mg vie
' . 2y, I
-d2 = (Qi~- m )(Bl,— 1) + K,” -m + ie
i, = (a B d)B + (K -K)° -n° +ie o (555
3TN I o ST
-.Hdh‘ = q252 + K22 - m2 + ie
, dﬁj_z (a2 +;t'f,m2)<62 -1) + (Q + K2)27— m° +ie -

' ' 2 - 2 ;
4, = (o, +t - oc)BD + (Ko +Q - K) -n" + ie
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0
Il

. P
-0+ K2 +m

1 |

| . (56)

uy = m2'+oz-t+(K-Q)2

s E - | | -

t] = (o, + e - )(By - By) (K F Q- Ky .
1 2 »1 2 " P 2 | (57)
v o - - 1) _ x)e

W= (ql o, v+t -a-m )(5l + By, l) + (Kl + K, +Q - K)f

We consider separately the cases of the ti and ui, dispersion

contributions.

The ui Contribution

As before, the first task is to establish the analytic

properties of the amplitude A | This cah again be done either by

1

direct integration on or by introduction of Feynman parameters.

1%

We briéfly discuss each.

Integratlon on  ,0,

Let U denote the denominator ¢ - ur in Eq. (53), and

consider the integral in Eq. (5u¢)’ | .:..: o
1 oo o o ) B
/ _ _
=) ®1 % _[‘f : o (58)
.foj o 2 5 u dU '

PF”“
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For 0O < Bl'+ By < 1, the singularities.in al,aé lie as shown in .

Fig. 27a, and for 1 < @, + B, they lie as shown in Fig. 27b{, 
> N l 2

‘T ‘ APy : Ao "la.x' o
. . | 5 . > J T s vJ o
L. S i ~ } R LS N *. ~
. N . -~ .
] [ ’ ? Ay L ' ? 7 o
» : 0 0(\9 l AN % w . ' AN dLK ’ L S TR
' > 4L A a :

- Fig. 27a , o S Fig. 27b

Hence in region 1 we close both contours Of'integration in the_upper

half plane,‘ahd obtain

2

g2
ﬂ dBldsg 8, 1B, © (1 -8)° (1-8y) -
u(Z,5) D, (2)D;(2) Du(5) 55 ﬂ."f()?)

We spare-the reader the expressions for u(2,5) and D, (J), and
simply remark that they have the following propertleS"
(1) They are strictly negatlve at 31,62 = 0,1. Therefore the

contrlbutlon to Il from the endp01nts is analytlc, and hence

i N

I has no new 31ngular1t1es from the factors Bi

1
(2) ‘They are strlctly negative for 0 < 51,52 <1 when

sy < hm_‘+ k22, -5m_ <t <0 o . (60)

Therefore Il is real there.
A similar analysis is carried out for the region 2, tﬁis time
vclosing fhe ai; contoers ef integration in the.lewer half plenes.‘;
(see Fig. 27b). There'are‘now four contributions of the type of
Ea. (59). |
The end result of the analysis is that A has the eeme_reel

1

ahalytic properties of the amplitude Ki defined without the gs

N .
Bi_ terms.
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2
Feynman Parameters

‘T

‘ Introducing Feynman parameters as before, the amplitﬁde Alb

takes the form:»"
A (su5 8 ,t,) =[ at £(s,t) Fosyougs t,85,8) (61a)
hm
B : ' ' 525]_ | .‘ ¢2
F =Jf‘ dry - e edi, (g, (VT 7 [8,(3)]
'eiD(X’Si’ul’C)/C(X) _ : )
: = £1b
X eo)r
w | doy-eeda B(1 - ) — (@) >
. O . ' [D(a) Sl’ul"‘ {:‘\ ) ] .
Cx I8 @)1 ()] ? (61c)
~where. | - |
'ag(au YO T gt a7) + a?(au + a6) o
Bl(a) = ' - : C(OC) A : (61(1)
oo ra, va, +a) o (o + o) . _
Bg(a) _ 51 2 BC(Q)7 A 3 (61¢)
cla) = Zai . D (6e)
1 ' .
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D '.=«- Sl[QQO%(O‘Lﬁ o+ G .a7) + cx5a6(ocl+- ay+ oz5+v.oc7) 00t a5a6a7]

_ | |
+ ‘m2[o¢lo¢2(ozu+ oé5f a6+‘a7) +_oclq6q7]

[

+m2[ococ(oc+oc+oc+o¢)+ocaoc>] | '
C LR - T ¢ 37h77
+ K‘[aloza(ozuﬁk aif O+ oc7) + ozla5o¢7]
o , |
v @ - ) oyaglog ¥ ot agr ay) +asma
S 6 5
_f  [a7€'*i %; Q- m ]

5 >

X A L(alf Oyt a3)(o‘u+ _oc5+ aé) + oc,r(_oal+ Qg o+ .oc_+ o¢6)] _,
(61g)

The analytic properties of Al now follow easily. -Firét, Al has

all thé singularities that Al has, because they are determined by

the Feynman discriminate D of Eq. (flg). Second, A, does not have

1
any neW'éingularity arisingvfrom fhe,»Bi factors. If Aai vanishes;
say, then Various -aj in Eq. (614d) élso'vanish.z'Fﬁrther, sipce we
have assumed ¢l > -1, then_ Bl * is integrable; fheréforé, we are
only interested in those singularities in which ﬁhe.propagators 

d ++,d, participate. This means that all the remaining «.'s must
6 = : _ J

17
either vanish or pinéh. However, these are Just the conditions for.a' : 3
Landau singularity of the.Feynman amplitude Ki. So we can- conclude -

that any'singularity of A associated with the vanishing of -Bl ,

1

must . already be a singularity of Ki. Since the sheet structure of the
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singularities is. determined by the ie prescription,ih. D, and is
unaffected'by the presence. of the Bl l, we see that . Al has no more
sihgularifies than Ki.
,'Third;»it is easily seen from Eq. (61g) that ‘D is strietly
negative for Sy < 2m 3 hence Al

.-So we conclude that A, has the same real analytic properties

ig real there.

as Al.
Now we can return to Nl.{in Eq. (54b)] and bring it to the

unitarity form. Since A, has left and right thresholds (Fig. 28),

LS

S | - :
Ty T Y R 1

4 = X

- 3 S
—_— | . l K“ (LN
‘ ' o Fig. 28
‘we can close the contour of integrationvarbund”the right cut to
obtain-
o ’ . oo

s ,' U L*
Nl: = Z dsl dJ,sc[Al] = 2i Z ~ ds, B, B, (62a)

A

N

hm

e jL?E +:&} . E;Idsl &ﬂ+ Y 4,51_ }
T e

The sums in Eq. (62) are over all possible s, channel unitarity cuts.

1
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Réturning to Eq. (5ka), we again obtain.
S — o s ul) 1es e 1
-21 E Jf 6K as,ds, ¢ B, () = C; p9B;~ (3) ° ¢

i,J _ : '

A(s,t) = S
| Y - S (€3).

The ti Contribution -

The calculations proceed as befofe. One agaih verifies that

A has the same real analytic structure as A When we come ‘to

1 1°

| ' : | ' o g
consider N., we observe that as a function of « -(sl = -a+ XK + me),

1

the integrand of Eq. (54b) has singularities.in o from’ d}’d6isl
that all iie in the“upper half plane. (This is another way of saying

that A has no left cut.) Hence we can close the si éontour‘of'

integration in'the upper half plane to get zero. Therefore Nl =0,

and . A(s,t) does not persist.
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"PART II. PHYSICAL IMPLICATIONS, COMPOSITENESS,'
MULTIPLE SCATTERING, AND THE ABSORPTION MODEL
Now consider the relatioﬁ;hi§ betﬁeen“the mathematical results
obtained and the physicai méaning of‘compositenesé and multiple
scattering.' It is not hard to see why the AFS diagram does not give
the double scattefing we Qbuld expect. On the one hand, the form of

a ReggeOn'amplitude,

M, M, - | |
‘ 2. 2 t 2 2
* M = g 0020 S g 02w (e
- t My, ' | :
. M| S . h . . - '

implies a compositeness of the external particles Mi which is
reflected, in the form factor_dependence on Mi' It was thrdugh just
this dependence thatvthe Rothe cancellation occurs. This compositeness

is aiso'reflected through the ladder fepresentation of a Reggeon,

P = reTmeTace )
On the other hand, when the.Reggeon of Eq; (64) is inserted“in an
AFS diagraﬁ; the external particie; Ml’Mh are.given elementar&
particle pfopagators.~ We. claim it is this inconsistency that deprives
the "AFS diagfam_of a put. |
What must bevdone is eithef to remoye_ﬁhe» Mi dependence
from Eq; (64); or to represént the external particles bMi . by more

realistic propagators. We would like to’discuss the second alternative.
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Tt is our belief, in the spirit of Arnold and HPKR, that
physical particles are éompliéated composite objects. In a Bethe-

Salpeter framework, for example, one writes o _ ‘ o
- - (6%)

where the right side représents the physical pole.bf the left side.
In‘a scattering proceSs of a physical particle, some of the

constituent pieces of'ﬁatter take part in the scattéring, while the

rest stands by as a spectator nof taking part. .A singié scattering 

process that is drawn as

microscopically looks like

where the double lines are the physical particles and -the single
lines are their constitﬁents. Similarly, a dduble scattering procesé

that is drawn as
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Fig. 29
The incidenﬁ particle at <§) separafes into scattering‘aﬁd spectator
constifueﬁts. At (g) the.constitueﬁts unite;to form a physical
pafticlé iﬁ.the intermédiate state. At {E) the‘éame process
occurs.again, and the éhysical particle emerges ét‘  (E)
FIn:a-fiéld theory‘model, fhe intermediate physical pafticle
can be'represented by‘the'difect chanﬁél ladders of Eq. (65). We

can interprét this as a direct channel Reggeon. This suggests Fig. 30.

Fig. 30

From thé feéults‘of Seé. 5, we. know Fig. 30 does nof have a cut
because the sides lack third'double spectrai functions. 'Physiéally,
this corresponds to an apparent canceliation between the coﬁtributions
to ‘}%sl Al(sl,t; ti’tg) that come from even and odd'signatufe
physicai particles. A direct channel Réggeon with signaturé is

represented ds
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Figure 30 becomes replaced by Fig. 31, which has a cut.

Fig. 31

“:In a phenomenological calculation, we replace the direct

channel'amplitudes of Fig. 31 by the known physical particles. Thus; -

for x"p - «°n, : :
. ow©e g N

~r P
Y= £ P
the_contributlon J/ig dsg‘dlsc Ag(sgft5 tl’tg) ‘is written a;
. "f . - o ' — R ,
dise { g 3 dise | T+T .- A N___}
’ P N*L\WOC:\.~ S )
Fig. 32 -

where we include all recurrences of the p . and continuum states.

A typical term contributes
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The scattering amplitude becomes

(67a)

_ v -i ' s ¢l | - 48 ¢2 '
. A(S’t)'v 5 [dK gmp(g) €ngp ¢ mP(T) Eppp
. dt.dt ' : : '
-1 1 2 I : ’
* 5](-x)§ Mooty Megleste) e

' : : 33
This is the absorption model.

_in HPKR the contributions of the remaining terms of Fig. 32
are assumed to have the same s,t dependence as that of Eg. (67b),
and are added by multiplying Eq; (670) by a factor a. It has been
shown26 that the amplitude for

“p +Pp =>p + anything : _ . (68a.)
proceeding via Pomeranchuk exchange, can be as large-as 50% of the

elastic amplitude
P + PP +pP . ' , ) g (68b)

This suggests that A coﬁld be about 2.
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PART IIT. COMPARISON WITH THE WORK OF GRIBOV ET AL
In Ref. 27, Gribov and Migdal'studied.amplitudeS'geherated

by the exchange of a Reggé pole. - Their program is“to write a Reggeon-
field theory that can be solved by summing Reggeon diagrams to‘determinej
the scattering amplitude. For example, the amplitude involviﬁgfthé.
Pomeranchuk and the PP cut is given by R

DR ERTD et e GRS oy S S TS

o Fig. 33 '

This implies for the absorption model that in addition to the diagrams

o R
b G <[

OO
- Fig. 34

one must consider effects of t-channel iterations

(a) | | (b) (c)

It is well known that if the diagrams of Fig. 35c are summed, the .
sum has a pole term related to the pole of Fig; 3ha, and a cut term :
related to the cut of Fig; 34b. Is one double cpunting by including

the pole of Fig. 3ha separately? Compelling physical arguments have
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been given in HPKR for why this is not so, and that the physics of

elastic absorption is different from the physics of qhantum number

exchange.

-Gribov_et a127’28

derived the absorption model from diagrams.

We compare their derivation with ours. For:their'discussion3of Nl’

g [o]

N, = ds; Al(sl,t:; ty5t,)

they write that genefally

Théy argue in a general faéhion that Al has nd-new'singularities or
complexiﬁy‘from ihé presence of the Bigi' vThereforg.the discontinuity
of Al can be calculated gs fdr ordinary gmplitﬁdés by’éutting the:
diagram and répl@cing the lower amplitude bj ifs compléx éonjugate.
| Théy also give a proof for eiastic:scattering that ‘A;>ﬂl.

Qur approach differg.from théirs:in that Qe have atfeﬁpted to
present a specific model for the two ReggeonAdiagram that is.based‘
on our physical understanding of compositeneés4and muitiplé scéttering,

and to derive the absorption formula from that'modél.
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Ter—Martifosyan29'has dgrived the.two Reégeon cut from thé
AFS diagram‘by using férm'féctors for the inﬁ¢rnal Reggeoﬁs that are
evalﬁéted on mass shell;.'The Rdfhe'cancéllatioaneghanism is removed'
and the éontriﬁﬁtionjfrom the "elementary”'propagators evaluated neér
mass shgll gives the expected form'Qf the cut. |

'

He also considers higher order cuts,

| H . m_f =]

and derives the eikonal formula of Arnold. How do his reéults affecf

ours? In our program wevohly need to consider the pP cut. All
elasticvmultiple scatterings are grouped into a single P term, which

is parameterized and fit by experiment (?ig. a,b).

Ty e} T, %
. [ g N
et Ty T

The PPp Cﬁt (Fig.'c) is found to be small. Any cut involving Pp
and a non-Pomeranchon is small because the branch pdint is wéll‘below'

the p pole.
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PART IV. ASSUMP‘IIIONS,. CCNCLUSIONS', "AND
| FUTURE AREAS OF WORK |
Assﬁmgtions
l;' Physicai particles'are composite dbjécts and wheh regarded
és Réggedns_ they have definits signatﬁre.
| '2; Multlple scatterlng of comp051te systems can be treated in
a Glauber scatterer spectator approach
3. vThe leadlng behav1or of a Feynman'amplitude is given by -
’éhe Gribo#-P@lkinghorne finite mass_conditiOns; fhe'secOnd order
terﬁ ih'this analysis-is dsﬁn“by a factor of 1/s from the leading

behavior.

Conclu51ons

The amplltude for the dlagram

‘h——,\‘

x

A\ /r A"
where A. are low energy amplltudes relative to s,ris given by the

absorption formula .
- : B+P,-1 5 (P +8,)
A(s,t) oc+1f dK s Tre s g2 et ey
' 172 .
oc=2 %{_Ml(s,tl) Mg(s,te) e

Future Areas of Work

1. What is the effect of t—chanhel itérations? '
2. What is the relation between the absorptioh model approach
and the bootstrap approach?

5. Is A >1%¢
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32. Where A_, ~ - ~(a(t) = +1).

. ' sya(t)
33, Where_vMegfv(i—)
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