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ABSTRACT OF THE THESIS 

Harmonic Analysis of Limit-Cycle Oscillations Induced by 

Optical Injection to a Semiconductor Laser 

by 

Chun-Ju Lin 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2014 

Professor Jia-Ming Liu, Chair 

Analysis of the limit-cycle, also known as period-one (P1), dynamics induced by 

strong optical injection to a semiconductor laser is carried out. Based on the 

well-established laser rate equations, an approximate solution of the P1 dynamics can be 

obtained by starting with a general limit-cycle solution. Our results are in good agreement 

with numerical and experimental results by taking the second harmonic of the P1 

frequency into account. Our analysis shows that the strong coupling between the 

oscillating carrier density and the oscillating optical field is responsible for the high 

nonlinearity of these P1 dynamics. 
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Chapter 1  
 

Introduction 
 

1.1 Introduction 

Semiconductor laser dynamics are easily invoked by an external perturbation. For instance, 

nonlinear dynamics induced by optical injection, optical feedback and optoelectronic feedback 

have been demonstrated [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Among them, the optical injection is 

favorable because it can be precisely controlled to effectively induce numerous types of 

dynamics. These dynamics, such as stable-locking, periodic oscillation, quasi-periodic motion 

and chaos, are all intensively studied [7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 

25, 26, 27, 28]. In particular, the period-one (P1) oscillations induced by the optical injection 

have attracted considerable attention because of their unique characteristics for many 
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applications. The advantages of such P1 oscillations include that the system can be simple, free 

from complicated circuitry, and easily controlled by the operational parameters. These 

operational parameters usually are the injection strength, the detuning frequency, and the bias 

current. The injection strength refers to the normalized optical field amplitude from the master 

laser to the slave laser. The detuning frequency is the difference between free-running frequency 

of the master and the slave lasers. The P1 oscillations induced and controlled by optical injection 

of semiconductor lasers have been demonstrated with many important applications such as 

photonic microwave generator, amplitude modulation to frequency modulation (AM-FM) 

converter, and lidar [29, 30, 31, 32, 33]. A detailed study of these P1 dynamics is therefore 

desired for designing and characterizing such systems. 

All the aforementioned dynamics can be predicted by numerically solving the well-established 

rate equations [11, 27, 34]. Also, there is much work established on the qualitative approach such 

as bifurcation analysis that gives the macroscopic view of the dynamics [25, 35]. However, due 

to the nonlinear behavior of these dynamics, the exact analytical solution cannot be 

quantitatively characterized. Recently, a two-frequency approximation of the P1 oscillation has 

been reported [36]. The two dominant frequency components are assumed to be in the steady 

state, and the detuning frequency and the P1 frequency are used as input parameters. When the 

slave laser is injected by the master laser with a relatively high injection strength and a positive 
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detuning frequency that is higher than its free-running relaxation resonance frequency, the 

system is less nonlinear and the two-frequency approximation is in good agreement with the 

numerical simulation result. Nevertheless, such approach is not valid when the detuning 

frequency is on the same order or lower than the free-running relaxation resonance frequency 

because the system becomes highly nonlinear in this region. Not only the deviation from the 

numerical simulation result grows as the detuning frequency is reduced, but the existence of 

multiple solutions also arises when the P1 frequency is used as an input to derive the 

corresponding injection strength. Without numerical simulation, the detailed dynamical 

characteristics become unpredictable especially when the system is under the injection condition 

between the chaotic region and the Hopf bifurcation line. Hence, a different approach to 

analyzing the P1 dynamics is needed. 

Perturbation techniques are often considered to derive an analytical solution to a nonlinear 

system [9]. Generally, perturbation techniques employ the small-parameter assumption for the 

perturbation toward the approximate solution. However, this assumption is not directly 

applicable to the dynamics in the highly nonlinear regions. Conventional perturbation techniques 

using a small-parameter perturbation include the two-timing approach and the well-known 

Poincare-Lindstedt method. The latter is a widely used approach to a weakly nonlinear problem 

that has a periodic solution. However, when these techniques are used to analyze the rate 
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equations of the optically injected laser for the P1 dynamics, it is found that the result 

degenerates to the four-wave mixing condition. The small-parameter assumption that attempts to 

decouple the rate equations significantly suppresses the nonlinearity. In other words, the 

traditional perturbation technique is equivalent to perturbing the four-wave mixing phase portrait, 

which is far from the real orbit of the P1 oscillation; thus such approach is not applicable. New 

methods, such as the homotopy analysis method and the variational iteration method [37, 38, 39, 

40], have been proposed for solving highly nonlinear systems without using the small-parameter 

perturbation. Nevertheless, these methods cannot be easily implemented in a three-dimensional 

coupled system such as the optically injected laser due to the complicated calculation. For these 

reasons, a simpler approach is developed, which is based on the knowledge of the general 

solution of the limit cycle. 

In this thesis, instead of studying the optical frequency domain, we focus on the microwave 

power spectrum where the P1 oscillation frequency manifests itself. An approximate solution can 

be acquired by examining the spectral components and the phase trajectory of the optical field 

found by numerically solving the rate equation model for one operating point as the initial step. 

Then, the general solution of the limit cycle with initial coefficients determined from the 

previous step is substituted into the rate equations. The conditions for balancing the coefficients 

of the self-consistent solutions are thus generated. With the understanding of the typical P1 orbit 
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and its harmonics, our result can be applied to the P1 dynamics in the highly nonlinear region 

with sufficient accuracy. The region where the harmonics of the P1 frequency must be taken into 

account is shown as the lower shaded region as illustrated in Fig. 1.1.  Based on our solution, 

we can then further investigate the average and the oscillating terms of each field and see how 

they are affected by each other. 

1.2 Outline of Thesis 

In Chapter 2, the discussion starts from the well-established rate-equation model of 

semiconductor lasers under optical injection in autonomous from. It is shown that the solution of 

the rate equations can be analytically obtained by series expansions and exploiting the time 

invariance property. On the other hand, by rewriting the rate equation model in non-autonomous 

form, the boundary between the bounded/unbounded phase regions is derived. This boundary 

plays an important role in characterizing the P1 dynamics. Chapter 3 elaborates the accuracy 

dependence of the approximate solutions on the highest order of the harmonic terms. The 

application of this analytical model in the AM-FM conversion is also discussed in this chapter. 

Chapter 4 presents the characterization about the photon density and carrier density. This gives a 

better understanding to the coupling between the optical fields and the carrier density. In the final 

chapter, the result is summarized and concluded with the future research.  
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Figure 1.1: Map of dynamics of the injected laser as a function of optical injection strength and 
detuning frequency at J ̃= 1.222. The lower boundary (lower thick curve) is the Hopf bifurcation 
line, which separates the P1 region above and the stable-locking region below. The upper 
boundary (upper thick line) delineates the transition line of bounded/unbounded phase P1 
dynamics. Separated by this line are the less nonlinear P1 region above and the highly nonlinear 
P1 region below. 
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Chapter 2  
 

Theoretical model 
 

In this thesis, the analysis of the P1 dynamics of an optically injected semiconductor laser is 

based on the approximate solution which is derived from the well-developed rate equations in 

autonomous form. By inspecting the phase trajectories of the optical fields, it is shown that the 

P1 dynamics can be approximated by harmonic terms. In order to have enough conditions to 

solve for unknown coefficients, the time invariance property is exploited in the derivation. After 

the derivation, the three coupled nonlinear differential equations can be simplified to three 

algebraic equations which can be iteratively solved. On the other hand, in the region close to the 

Hopf bifurcation line, it is noted that more harmonic terms are needed to properly describe the 

P1 dynamics due to its high nonlinearity. This significantly increased nonlinearity can be related 

to the bounded/unbounded phase transition, which is manifest through the phase trajectories.  
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2.1 Coupled Rate Equations 

A single-mode semiconductor laser is categorized as a class B laser because its material 

polarization has a much larger relaxation rate compared to the photon and electron relaxation 

rates. Hence, the laser is reduced to a two-dimensional system. With the external perturbation of 

optical injection, the laser system becomes a three-dimensional system and, therefore, can have 

complex nonlinear dynamics. The rate equations describing this three-dimensional system have 

been previously reported, showing excellent agreement with experiment. For mathematical 

simplicity, in the following analysis we use the normalized dimensionless form of the coupled 

equations [41]:  

( )d ˆ
d

x zx bz y ξ
τ

= + − Ω + , (2.1) 

( )d ˆ
d

y zy bz x
τ

= − − Ω , (2.2) 

( )( )2 2d 1 2 1
d

z Az B z x y
τ

= − − + + − . (2.3) 

The two variables x and y represent the quadrature optical field components, and z represents 

the carrier density, as defined in Table 2.1. Because the optical gain provided by the carrier 

density is consumed by the optical field, these three variables are coupled. The linewidth 

enhancement factor, b, represents the amplitude-phase coupling of the optical field due to 

changes in the carrier density. The operational parameters Ω̂  and ξ are the normalized detuning 

frequency and the injection strength, respectively; both are defined relative to the free-running 
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slave laser [42]. As defined in Table 2.1, the parameters A and B in (2.3) are normalized 

parameters related to the laser parameters [43]. In Table 2.1, ar and ai are, respectively, the real 

and imaginary parts of the complex optical field; ñ is the normalized carrier density; 2 fπΩ =  

and 0 02 fπΩ =  are the detuning frequency and the P1 frequency before normalization, 

respectively; 0Ω̂  is the normalized P1 frequency; J ̃stands for the normalized bias current, γc for 

the cavity decay rate, γs for the spontaneous carrier relaxation rate, and γn for the differential 

carrier relaxation rate [44]. The value of these parameters used in the analysis are determined 

experimentally for a well-studied semiconductor laser [45]: J ̃ = 1.222, γc = 5.36× 1011 s-1,       

γs = 5.96× 109 s-1, γn = 7.53× 109 s-1, and b = 3.2. The nonlinear carrier relaxation rate γp [44] is 

ignored in this analysis for mathematical simplicity. To account for the nonlinear gain effect, γp 

has to be added into (2.1)-(2.3), which does not affect the validity of the approach described 

below. 

2.2 Solution to the Coupled Equations 

The system described by (2.1)-(2.3) is autonomous. Such systems have time-invariance property. 

This property can be utilized in the process of generating solutions. On the other hand, using the 

autonomous equations can avoid the artificial bifurcation which exists in the non-autonomous 

equations [35]. These advantages of autonomous systems are the basis of our approach.  
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Table 2.1 
Normalized Variables and Parameters 

rx a=  iy a=  n

s2
z n

J
γ
γ

= 
  

ctτ γ=  
c

ˆ
γ
Ω

Ω =  0
0

c

ˆ
γ
Ω

Ω =  

( )n s

c

A
γ γ

γ
+

=  n

c2
B γ

γ
=   
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The general solution of a limit cycle can be expressed as a Fourier series [46, 47]: 

( )0 o 0 e 0
1

ˆ ˆsin cos ,
m

n n
n

x x x n x nτ τ
=

= + Ω + Ω∑  (2.4) 

where x0, xno, and xne are constants, and m is an integer determined by the highest harmonic 

necessary to describe the limit-cycle orbit. A limit cycle that deviates more from a circular orbit 

requires more high-harmonic terms. The subscript o stands for the odd function, and e for the 

even function. Hence, x, y, and z can be expressed in this form. The conditions for the 

self-consistent solutions are generated by substituting the general solution into (2.1)-(2.3) and 

requiring both sides of each equation to be consistent. However, these conditions are not 

sufficient to determine all unknowns. For example, if the highest order is m = 1, three 

coefficients are to be determined for each x, y, and z. The normalized P1 frequency 0Ω̂  is also 

unknown. Therefore, there are ten unknowns whereas only nine conditions are generated for the 

self-consistent solution. The time-invariant property of the autonomous systems is then utilized 

to reduce one unknown. The time invariance allows the system status at any time to be the initial 

condition without changing the solution. Hence, the initial condition for the carrier density z can 

be assumed to be the sum of the average value z0 and the amplitude of the cosine term z1: 

( ) ( )0 0 1 0 .z z z zτ τ τ= = + = =  (2.5) 

The sine term of the carrier density is thus eliminated with this initial condition. Therefore, the 
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solution considering only the first harmonic of the P1 frequency can be written as 

0 1o 0 1e 0
ˆ ˆsin cos ,x x x xτ τ= + Ω + Ω  (2.6) 

0 1o 0 1e 0
ˆ ˆsin cos ,y y y yτ τ= + Ω + Ω  (2.7) 

0 1 0
ˆcos ,z z z τ= + Ω  (2.8) 

where x0 and y0 are the average values of the normalized optical field components, (x1o, y1o) 

and (x1e, y1e) are the amplitudes of the sine and cosine terms of the normalized optical field 

components, respectively, and 0Ω̂  is the normalized P1 frequency to be solved. Substituting 

(2.6)-(2.8) into (2.1)-(2.3) results in nine equations to be solved for nine unknowns. These nine 

equations are the self-consistent conditions in our analysis when only the average terms and 

first-harmonic terms are considered by choosing m = 1. 

The well-known cavity resonance frequency shift in the stable locking region [42, 48, 49] can 

be similarly defined in our model, which is simply bz0 because γp is neglected. The difference 

between this normalized shift bz0 and the normalized detuning frequency Ω̂  is then defined as 

dΩ̂ :  

d 0
ˆ ˆ bzΩ = Ω − . (2.9) 

In the two-frequency approximation [36], this frequency difference is assumed to be the 

beating signal that results in the P1 frequency. This approximation is not valid in the highly 

nonlinear region of P1 dynamics. The P1 dynamics in this highly nonlinear region, shown as the 
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lower shaded region in Fig. 1.1, have sophisticated characteristics, such as low-sensitivity points 

[41], that have profound implications in physics and applications. The approach described in this 

thesis is valid for these highly nonlinear P1 dynamics.   

By substituting (2.6)-(2.8) into (2.3), it is found that the second-harmonic components 

generated by the term x2+y2 in (2.3) can be neglected without significant consequences. On the 

other hand, by rearranging the self-consistent conditions corresponding to the oscillating optical 

fields in (2.1) and (2.2), a system of linear equations can be obtained. The amplitudes of the 

optical fields, which are x1o, x1e, y1o, and y1e, can thus be expressed in terms of the other variables 

x0, y0, z0, z1, and 0Ω̂ : 

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 2
1o 0 1 0 0

1 2
1e 1 d 0 0 0 d 0

1 2
1o 0 1 0 0

1 2
1e 1 0 d 0 d 0 0

ˆ1 ,

ˆ ˆ1 ,

1 ,

ˆ ˆ1 ,

x D b z x y

x D b z z x z y

y D b z x y

y D b z z x z y

β α

α β α β

α β

α β α β

−

−

−

−

 = + Ω +

  = − + Ω + + − Ω  


= + Ω − +


  = − + − − Ω + Ω +   (2.10) 
where 

( ) ( )2 2
d 0 0 d

ˆ ˆ ˆ ˆ ,z bα = Ω + Ω + Ω − Ω
 (2.11) 

( )2 2 2 2
0 0

ˆ ˆ1 ,b zβ = + + Ω − Ω  (2.12) 

2 2.D α β= +  (2.13) 

The two parameters α and β are defined for convenience. They are functions of Ω̂ , z0, and 

0Ω̂  only. The determinant of (2.10) is α 2+β 2 and is defined as D. It can be seen by substituting 
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(2.11) and (2.12) into (2.13) that the determinant D rapidly increases with z0
2. In general z0 has a 

negative value representing the gain deficit. When |z0| becomes large, the system degenerates to 

the stable-locking condition. On the other hand, when the detuning frequency Ω becomes much 

larger than the free-running relaxation resonance frequency Ωr, D increases with Ω̂ , resulting in 

a decreasing amplitude of the optical field oscillating at P1 frequency. The system behaves less 

nonlinearly in this circumstance where the P1 frequency can be described by the beating signal 

between the detuning frequency and the shifted cavity resonance frequency as in the 

two-frequency approximation. Between the stable locking and the less nonlinear P1 regions, the 

small D requires a large amplitude of the optical field at P1 frequency for the self-consistent 

solution. This is the highly nonlinear P1 region where the two-frequency approximation is not 

valid. It is also noted that the field amplitude is directly proportional to the oscillating carrier 

density. This dependence is discussed in the next chapter. 

Substitution of x1o, x1e, y1o, and y1e as expressed in (2.10) into the other self-consistent 

conditions yields 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 32 2 2 2 2 4

0 0 d 1 1

2 2
0 1 0 d

1ˆ 1 1
4

1 ˆ1 ,
2

x z D b z b b z

Dz b z b z b

α β

ξ α β α β

−
−  = − + Ω + + − + + 

 
  × + + − − + Ω   

 (2.14) 
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( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 32 2 2 2 2 4

0 0 d 1 1

2 2
d 1 0 d

1ˆ 1 1
4

1ˆ ˆ1 ,
2

y z D b z b b z

D b z b z b

α β

ξ α β α β

−
−  = + Ω + + − + + 

 
  × Ω + + + + − Ω   

 (2.15) 

( ) ( ) ( )( )22 2 2 2
0 1 d 0 0 0

ˆ2 1 1 2 2 0,DA B b z z z x yα β − + + − Ω + + =   (2.16) 

( )( ) ( )2 2 2
0 0 02 1 1 2 0,D B b z x yβ− + + + =  (2.17) 

( ) ( ) ( )( ){
( ) ( ) ( ) ( ) }( )

2 2 2 2
0 0 0 d 0

2 2
2 2 2 2 2 2 2

1 0 d 0 0 d 0 0

ˆ2 1 1 2 1 2

ˆ ˆ ˆ1 0.

D A B x y B b D z z

b z z z x y

α β

α β α β α β

 + + − + + − + Ω + 

 + + Ω + + Ω + + − Ω + =  

 (2.18) 

The average optical field amplitudes increase with the injection strength ξ, as seen in (2.14) 

and (2.15). It is also noted that the nonlinearity of (2.14) and (2.15) significantly increases with 

z1. The expressions of x0 and y0 obtained in (2.14) and (2.15) can be further substituted into 

(2.16)-(2.18) such that only three unknowns z0 , z1, and 0Ω̂  are left. Following the approach 

described above, the nine conditions for the self-consistent solution can be combined into three 

algebraic equations. These algebraic equations can be easily solved to find the relations among 

the unknowns though their solutions cannot be expressed in simple analytical forms. This 

approach allows us to readily introduce other parameters or effects and to derive the 

corresponding solution. If necessary, high-order harmonics of the P1 frequency can be included 

with a similar approach by choosing an integer m > 1 in the series expansions of the x, y, and z 

variables to improve the accuracy of the solution. To have a more complete model, the nonlinear 
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gain effect can also be taken into account by using a nonzero γp and a gain saturation factor b′  

that might be different from the linewidth enhancement factor b [50]. 

2.3 The Bounded/Unbounded Phase Transition 

The highlighted highly nonlinear region in Fig. 1.1 is bounded by a boundary curve derived from 

the rate equations in non-autonomous form. The non-autonomous form can be obtained by 

rewriting (2.1)-(2.3) as 

( ) ( )i
r i 0i 1 e ta a A a φΩ ++ = + . (2.19) 

( ) ( )c n
c

s

1 1 cos
2

da n a t
dt J

γ γ
ξγ φ

γ
= + + Ω +

 . (2.20) 

( )c n c

s

sin
2 1

d b n t
dt J a

γ γ ξγφ φ
γ

= − − Ω +
+


 . (2.21) 

( ) ( )2 2
s n s1 2dn n a n J a a

dt
γ γ γ= − − + − +

   . (2.22) 

where |A0| stands for the free-running intracavity field amplitude at the free-running slave laser 

frequency ω0, a for the normalized field amplitude, and φ for the phase difference between the 

injection field and the injected laser. Equations (2.20)-(2.22) can be viewed as the result of 

coordinate transformation for the system to be described in polar coordinates. It is noted that the 

phase discussed in the following is the total phase difference Ωt+φ(t) is the phase discussed in 

the following. In this polar coordinate system, P1 dynamics can have bounded or unbounded 
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phases, and the transition between them can be considered as an artificial bifurcation [35]. The 

boundary curve that separates the bounded/unbounded phases also separates the highly nonlinear 

P1 region from the less nonlinear P1 region. It can be shown by examining the trajectories of the 

state variables that the concepts of the highly/less nonlinear P1 dynamics and the 

bounded/unbounded phases are closely related. Figure 2.1 presents the phase trajectories of ar 

and ai with the injection strength ξ = 0.2 and the detuning frequency from -8 GHz to 30 GHz. 

These injection conditions form a vertical line in the map of dynamics, which experiences the 

bounded/unbounded phase transition without crossing the chaos region. The highly nonlinear and 

less nonlinear P1 regions can be clearly identified through these conditions. As shown in Fig. 

2.1(e) and (f), the less nonlinear P1 has a more circular trajectory enclosing the origin of the 

coordinates; thus the phase monotonically increases or decreases with time. By contrast, the 

highly nonlinear P1 has a bean-shaped trajectory that does not enclose the origin; thus the phase 

only varies in an interval so that it is bounded, as in Fig. 2.1(a)-(d). To describe this bean-shaped 

trajectory, more harmonics of the P1 frequency in the power spectrum are needed. For this 

reason, the two-frequency approximation is no longer valid in this region. 

The boundary curve can be obtained from (2.21) with the understanding that the P1 dynamic 

with an unbounded phase has the monotonically increasing phase Ωt+φ(t). When the transition 

from the unbounded phase to the bounded phase occurs, the time derivative of the phase  
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Figure 2.1: Phase trajectories of ar and ai at J ̃= 1.222 with the injection strength ξ = 0.2 and the 
detuning frequency f = (a) -8 GHz, (b) -5 GHz, (c) 0 GHz, (d) 10 GHz, (e) 20 GHz, and (f) 30 
GHz. 
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becomes zero. This signifies the change of the phase behavior such that the phase alternately 

increases and decreases in this bounded phase region. Because dφ(t)/dt changes with time in the 

P1 region, the boundary curve is obtained by requiring the minimal value of Ω+dφ(t)/dt to be 

positive in the unbounded phase region, which is 

( ) ( )c n c

s

Min sin 0
2 1
b n t t t

J a
γ γ ξγ

φ
γ

 
Ω − − Ω + =   + 




. (2.23) 

As show in Fig. 1.1, the region above the higher boundary curve has the minimal value of 

Ω+dφ/dt larger than zero, which indicates that the phase monotonically increases. Below this 

boundary curve is the bounded phase region where Ω+dφ/dt alternately takes positive and 

negative values; this region is also the highly nonlinear P1 region. The system becomes more 

nonlinear as the operating condition moves closer to the Hopf bifurcation line because another 

attractor coexists [35]. Therefore, in this region close to the Hopf bifurcation line, despite the 

total phase of our approximate solution becomes continuously negative, such P1 dynamics is still 

highly nonlinear. This can also be seen from Fig. 2.1(a) and (b) that the trajectories tend to 

converge to one fixed point which corresponds to the stable locking fixed point. 
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Chapter 3  
 

P1 Frequency Mapping 
 
The P1 dynamics have many useful applications such as photonic microwave generator, 

amplitude modulation to frequency modulation (AM-FM) converter, and lidar [29, 30, 31, 32, 

33]. The P1 frequency dependence on the operational parameters, including injection strength 

and detuning frequency, needs to be thoroughly investigated for designing such systems. 

However, most published work are based on the numerical simulation [11, 27, 34] or the 

bifurcation analysis [25, 35]. This is because of the nonlinear behavior of the P1 dynamics, 

which make it difficult to obtain the exact analytical solution. Although numerical simulation can 

give highly accurate result with high computation cost, the relation between parameters is 

difficult to be characterized. A two-frequency approximation of the P1 oscillation has been 
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reported for this purpose; however, it is only valid in the less nonlinear P1 region [36]. To show 

the validity of our approximated solution, the P1 frequency mapping is present and is compared 

with the results from the numerical simulation and the two-frequency approximation. The 

relation between parameters can be characterized by investigating our approximated solution, 

and this will be shown in the next chapter. 

3.1 Introduction 

The following results are obtained by using the iteration method based on the trust-region dogleg 

algorithm to solve the self-consistent conditions. The dogleg method finds the step by combining 

Cauchy step and Gauss-Newton step. All the parameters used in this thesis are experimentally 

found by the well-known four-wave mixing technique [44]. In addition, to support the validity of 

our model, the results of the numerical simulation of (2.1)-(2.3) are also presented for direct 

comparison with the results obtained from the analytical approach described above. The 

numerical simulation is based on the second-order Runge-Kutta method with high accuracy and 

is already corroborated by many experimental results [27].    
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3.2 Oscillation Frequency 

Figure 3.1 shows the P1 frequency maps obtained from our analysis (red squares) using series 

expansions of different values of m to include different numbers of harmonics: in (a), only terms 

up to the first harmonic are considered in the series expansions by choosing m = 1; in (b), terms 

up to the second harmonic are considered by choosing m = 2; in (c), terms up to the third 

harmonic are considered by choosing m = 3. For direct comparison, the results obtained by 

numerical simulation (black curves) are also shown. The horizontal axis represents the injection 

strength ξ and the vertical axis represents the detuning frequency f = Ω/2π. The contour curves 

and symbols represent the P1 frequency obtained by numerical simulation and analytical 

iteration, respectively. The Hopf bifurcation line (thick curve) separates the P1 region above 

(colored) and the stable locking below (uncolored). Above the Hopf bifurcation line, the P1 

dynamics covers the majority of the map, whereas two island regions surrounded by P1 

dynamics represent complex dynamics such as period-doubling and chaos [23].   

In Fig. 3.1(a), it can be seen that the result obtained from the analysis up to only first harmonic, 

though not very accurate compared to the numerical simulation result, already has a better 

validity over the whole map than the two-frequency approximation (open circles), which 

completely fails in the most nonlinear region in the lower part of the map. In particular, along the 

Hopf bifurcation line, our result matches the bifurcation points, whereas the two-frequency  
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Figure 3.1 P1 frequency map as a function of optical injection strength and detuning frequency at 
J ̃ = 1.222. The results obtained from our analytical approach (red squares) using series 
expansions up to (a) first-harmonic, (b) second-harmonic, and (c) third-harmonic terms are 
compared to those obtained from numerical simulation (black curves). The open circles in (a) 
show the results from the two-frequency approximation. The boundary curves and the regions 
separated by them are the same as those described in Fig. 1.1.  
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approximation cannot predict the bifurcation points. Nevertheless, in the highly nonlinear region 

right above the Hopf bifurcation line, the P1 frequencies obtained from our analysis including 

only up to the first harmonic significantly disagree with those obtained from the numerical 

analysis. In addition, the upper boundary of the small region of complex dynamics above the 

Hopf bifurcation line characterizes the saddle-node bifurcation of limit cycles [41]; hence the 

assumed first-harmonic solution form is no longer adequate. The large island region corresponds 

to mostly period-two (P2) dynamics, which are signified by the emergence of a subharmonic 

frequency. Hence, the P2 dynamics do not affect the solution form. Nevertheless, the P1 

frequency obtained in this region is not the fundamental frequency of a P2 dynamic. To 

accurately obtain the fundamental P2 frequency, the subharmonics must also be included in the 

self-consistent conditions. The four-wave mixing region, however, cannot be distinguished 

because the oscillating frequency is just the detuning frequency, which is the same as the P1 

frequency in the four-wave mixing region. Therefore, there is no criterion to separate the two 

conditions in our model. 

In the highly nonlinear region bounded by the Hopf bifurcation line below and the curve 

(2.23), it is necessary to include higher harmonics in our analysis to increase the accuracy of the 

analysis. The results obtained with m = 2 including the second-harmonic terms are shown in Fig. 

3.1(b), and those obtained with m = 3 including the third-harmonic terms are shown in Fig. 
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3.1(c). As seen in Fig. 3.1(b), the accuracy is significantly increased by adding only the 

second-harmonic terms to this analysis. Along the Hopf bifurcation line, the resonance frequency 

near these bifurcation points are all identified correctly. The remaining disagreement with the 

numerical simulation results occurs near the saddle-node bifurcation of limit cycles as in Fig. 

3.1(a) or where a P1 frequency contour has a large curvature. It is emphasized that only the 

second-harmonic terms of the optical field components x and y are considered in the analytical 

results shown in Fig. 3.1(b). The second-harmonic term of the carrier density z turns out to be 

negligible without causing much deviation from the numerical simulation results. This implies 

that the high-order harmonics of the optical field, but not those of the carrier density, are 

important in the highly nonlinear P1 region. From Fig. 3.1(c), it can be seen that the frequency 

map obtained from the analysis including the terms up to the third-harmonic for the optical field 

components is in excellent agreement with the numerical simulation results except in the small 

region of high nonlinearity right below the saddle-node bifurcation of limit cycles. Practically, 

including the second-harmonic is sufficient for a very good approximate solution except for a 

small region of very high nonlinearity; therefore, the second harmonic solution is used to 

generate the following results. 

 



 

27 

3.3 Dynamic Range of the P1 Frequency 

The relation between the injection strength and the P1 frequency is shown in Fig. 3.2. This figure 

is important for its application in the AM-FM conversion [31]. Our harmonic analysis (red 

squares) is presented in comparison with the numerical simulation (black curves). For each 

model, the results from left to right correspond to the detuning frequency f = −5, 5, 15, and 25 

GHz, respectively. The results from the harmonic analysis are in good agreement with the 

numerical simulation results. This plot shows the dynamic range of the P1 frequency in the 

practical application. The results from the two-frequency approximation are also shown for 

comparison (open circles). It is observed that even when the detuning frequency f = Ω/2π is still 

larger than the resonance frequency fr = Ωr/2π, which is about 10 GHz, the results from the 

two-frequency approximation already differ significantly from the correct results because only 

part of the P1 oscillating field is considered in that approximation. 

3.4 Summary 

The dependence of the accuracy on the number of the harmonic terms is discussed in this chapter. 

It is shown that with up to second-harmonic terms for optical fields and up to first-harmonic 

terms for carrier density, the accuracy of our approximate solution is adequate for most regions 

in the dynamics map. Therefore, this condition is used for the following chapter. This   
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Figure 3.2: Injection strength versus P1 frequency. The black curves are from the numerical 
simulation, the open squares are from our harmonic analysis, and the open circles are from the 
two-frequency approximation.  For each model, the results from left to right are obtained by 
setting the detuning frequency f = Ω/2π at −5, 5, 15, and 25 GHz, respectively.  
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dependence also reflects the fact that the carrier density has a more circular phase trajectory than 

the optical fields such that less terms are needed for this accuracy. The dynamical range of the P1 

frequency for the practical application is also shown in this chapter. Our results are in excellent 

agreement with the numerical simulation, which implies the sufficiency of using up to 

second-harmonic terms for optical fields and up to first-harmonic terms for carrier density 

expansion. 
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Chapter 4  
 

Photon Density and Carrier Density 
Characterization 
 
In the process of deriving solutions, the strong coupling between the optical fields and the carrier 

density is shown. It is expected that the approximation solution with series expansion to m = 2 

has similar behavior as the solution with series expansion to m = 1. To investigate the correlation 

of the optical fields and the carrier density in the solution with higher order series expansions, 

the same procedure is used to solve for the unknown coefficients and then calculate the 

corresponding optical fields and the carrier density.  
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4.1 Photon Density 

The output power of the laser is proportional to the intracavity photon density s, which is related 

to the optical field as 

( )0
ˆi 2 2

0 1e c.c. higher harmonics ,s s s x yτ− Ω= + + + = +  (4.1) 

where s0 is the average photon density and s1 is the amplitude of the photon density oscillating at 

the P1 frequency, c.c. denotes the complex conjugate. Figure 4.1 presents the map of the average 

photon density s0 with m = 2, which can be expressed as 

2 2 2 2 2
0 0 1o 1e 2o 2e

2 2 2 2 2
0 1o 1e 2o 2e

1 1 1 1
2 2 2 2

1 1 1 1 .
2 2 2 2

s x x x x x

y y y y y

= + + + +

+ + + + +
 (4.2) 

The results from our analysis (red squares) are in good agreement with those from the 

numerical simulation (black curves) even in the area near the P2 dynamics region. In the 

stable-locking region below the Hopf bifurcation line, our results also agree with the numerical 

results. This is straightforward because in this region the oscillating terms of the optical field and 

carrier density all vanish; thus our solution degenerates to the steady-state solution of the 

stable-locking condition. From (2.14) and (2.15), we can also see that the average optical field 

amplitudes x0 and y0 are proportional to ξ. 
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Figure 4.1: Average photon density map as a function of optical injection strength and detuning 
frequency at J ̃= 1.222. The contour curves are obtained from our harmonic analysis with m = 2 
(red squares), the numerical simulation (black curves) and the two-frequency approximation 
(open circles). The boundary curves and regions separated by them are the same as those 
described in Fig. 1.1. 
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However, the average photon density shown in Fig. 4.1 is not simply proportional to 2ξ  

because the oscillating terms of the optical field amplitudes also contribute to it. The results from 

the two-frequency approximation (open circles) are also shown for comparison. It is seen that the 

two-frequency approximation gives a good estimation except in the highly nonlinear region. The 

small discrepancy between the results from our analysis and those from the numerical simulation 

in the highly nonlinear P1 region implies that the nonlinearity is mostly caused by the coupling 

among the oscillating terms. 

In our harmonic analysis, the oscillating amplitude of the optical field is used in the derivation. 

Experimentally, the microwave signal power measured by a photodetector is proportional to the 

square of the oscillating laser output power, which is proportional to |s1|2 given by 

( )

( )

2 2

1 0 1o 1o 2e 1e 2o 0 1o 1o 2e 1e 2o

2

0 1e 1o 2o 1e 2e 0 1e 1o 2o 1e 2e

1 2 2
4
1 2 2 .
4

s x x x x x x y y y y y y

x x x x x x y y y y y y

= − + + − +

+ + + + + +
  (4.3) 

The microwave power map is shown in Fig. 4.2. The results from our analysis with m = 2 (red 

squares) are compared to those from the numerical simulation (black line) and the two-frequency 

approximation (open circles). Figure 4.2 shows that in the highly nonlinear region the 

two-frequency approximation completely fails to predict the microwave power. In this region, 

the oscillating field is stronger than the second-harmonic model predicts. From (2.10), we can  
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Figure 4.2: Microwave power map as a function of optical injection strength and detuning 
frequency at J ̃= 1.222. The contour curves are obtained from our harmonic analysis with m = 2 
(red squares), the numerical simulation (black curves) and the two-frequency approximation 
(open circles). The boundary curves and regions separated by them are the same as those 
described in Fig. 1.1. 
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see that the amplitudes of the oscillating optical field components are related to the average 

optical field components are related to the average optical field amplitudes, x0 and y0, and the 

oscillating carrier density z1. Because x0 and y0 generally decrease with a more positive Ω or a 

smaller ξ, the behavior of the oscillating optical field is more influenced by z1. 

Figure 4.2 can be divided into two P1 regions by the boundary curve given in (2.23): the upper 

part is the less nonlinear P1 region, and the lower part is the highly nonlinear P1 region. In the 

less nonlinear P1 region, Ω is generally large compared to Ωr. In this region |s1|2 increases with ξ 

but is still smaller than its values in the highly nonlinear P1 region. This also implies that the less 

positive Ω in the highly nonlinear P1 region than those in the less nonlinear region result in a 

larger amplitude of the oscillating carrier density |z1|. In the highly nonlinear P1 region, the 

increase of x0 and y0 close to the Hopf bifurcation line results in a decrease in z0 because of the 

gain deficit due to stimulated emission. Between the Hopf bifurcation line and the boundary 

curve of (2.23), the injection is strong enough to cause the system to behave highly nonlinearly. 

Therefore, the largest amplitude of the oscillating carrier density |z1| and the largest amplitudes of 

the optical field components are found in an area of a less positive Ω and an intermediate ξ . 

With the understanding that the microwave power |s1|2 is proportional to the amplitude of the 

oscillating optical field components as shown in (4.3), the location of its maximum seen in Fig. 

4.2 can be expected. 
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4.2 Carrier Density 

The normalized carrier density is related to z by  

( ) ( )

( )

0
ˆi s

0 1
n

s
0 1 0

n

2e c.c. higher harmonics 1

2 ˆ1 cos .

Jn n n z

J z z

τ γ
γ

γ τ
γ

− Ω= + + + = +

 = + + Ω 


  


 (4.4) 

The average carrier density, ñ0, obtained from our analysis is presented in Fig. 4.3. It shows 

that in the stable-locking region, the average carrier density ñ0 decreases with increasing ξ, as 

expected. It is known that the optical injection can reduce the laser threshold; hence ñ0 is reduced. 

However, in the region of P1 dynamics, a significant part of gain is shared by the oscillating P1 

harmonic fields. This means that the gain for the average optical field decreases and the 

threshold reduction becomes less significant. As a result, the average carrier density is clamped 

at a higher level than that in the stable-locking case. 

In Fig. 4.4, the amplitude of the normalized oscillating carrier density, |ñ1|, is shown. As can 

be seen in (4.4), |ñ1| is directly proportional to |z1|. As discussed above for Fig. 4.2, |s1|2 increase 

with |z1|. Consequently, the microwave power |s1|2 and the oscillating carrier density |ñ1| have 

similar characteristics as functions of detuning frequency and injection strength. This 

relationship is seen by comparing Fig. 4.2 and 4.4: Both |ñ1| and |s1|2 gradually increase when 

both Ω and ξ are decreased to a relatively low level. 
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Figure 4.3: Average carrier density as a function of optical injection strength and detuning 
frequency at J ̃= 1.222. The boundary curves and the regions separated by them are the same as 
those described in Fig. 1.1. 
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The P1 frequency predicted by the two-frequency approximation is assumed to be the beating 

between the detuning frequency and the shifted cavity resonance frequency as expressed in (2.9). 

From Fig. 4.3, it can be seen that above the boundary curve of (2.23) ñ0 increases with the 

detuning frequency such that z0 actually increases to a small value close to zero. The resultant P1 

frequency is thus close to the detuning frequency, as expected. By contrast, when the oscillating 

term is large as in the region bounded by curve of (2.23) and the Hopf bifurcation line, the 

two-frequency approximation is no longer valid. Although the amplitude of the oscillating term 

only doubles in strength from the outskirt of the highly nonlinear P1 region to the center, its 

influence is much more significant than that because of the high nonlinearity, as can be seen 

from (2.14) and (2.15) which have terms of z1 to the fourth power. 

4.3 Summary 

From the calculated photon density and the carrier density, it is shown that the oscillating terms 

are strongly coupled. The effects of the average terms are less significant on the change of 

nonlinearity of P1 as compared with the oscillating terms. The gradients of the oscillating terms 

on both maps points to similar directions. In the region near the Hopf bifurcation line, the large 

discrepancy between the numerical simulation and the two-frequency approximation shows that 

the P1 dynamics exhibit higher nonlinearity than in the region above the boundary curve of  
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Figure 4.4: Amplitude of the oscillating carrier density as a function of optical injection strength 
and detuning frequency at J ̃= 1.222. The boundary curves and the regions separated by them are 
the same as those described in Fig. 1.1. 

  



 

40 

(2.23). This strong coupling is also shown from the derivation of the approximate solution. The 

contour shape of the oscillating terms also implies that similar effect should be observed in 

optical spectrum, such as sideband ratio. 
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Chapter 5  
 

Conclusion 
 
5.1 Summary 

This thesis illustrates the harmonic analysis of the P1 dynamics of an optically injected 

semiconductor laser. This approach is based on the general solution form of a limit cycle. The 

rate equations are solved by balancing the coefficients of the self-consistent solutions. Our 

analysis starts from the first harmonic of the P1 frequency, and it shows that the first-harmonic 

optical fields are strongly coupled with the oscillating carrier density. This observation implies 

that the typical P1 frequency of an optically injected semiconductor laser is not just the beating 

between the regenerative injection frequency and the shifted cavity resonance frequency.  

We also demonstrate that by including up to the third harmonic, we can get excellent 
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agreement between the analytical and numerical solutions.  In addition, our analysis reveals the 

importance of the second harmonic of the optical field, which must be included to give a good 

approximation. In contrast, the second harmonic of the carrier density is less important. The 

strong coupling between the amplitude of the optical field and the first harmonic of the 

oscillating carrier density is corroborated by the numerical simulation. The maps show that the 

regions where these oscillating terms dominate are largely overlapped. They also show that a 

boundary curve exists between the region of relatively low nonlinearity where the two-frequency 

approximation is useful and the region of high nonlinearity where the harmonics of the P1 

frequency must be considered so that the two-frequency approximation completely fails. When 

the detuning frequency Ω is higher than the resonance frequency Ωr, the regenerative injection 

optical field is strong and the two-frequency approximation can be applied. When Ω is lower and 

ξ is strong, the system easily degenerates into the stable-locking region. In between, when the 

injection is not strong enough to lock the resonance frequency and the injection optical frequency 

is not far from the cavity resonance frequency, the P1 oscillation arises from the strong coupling 

between the oscillating carrier density and the optical fields. In this region, the two-frequency 

approximation fails whereas our harmonic analysis still yields accurate results. The accuracy 

further improves when higher harmonic terms are included in the analysis, if necessary. 
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5.2 Future Research 

This thesis provides the analytical approach to solving the coupled nonlinear differential 

equations for the P1 dynamics. Many P1 characteristics can be investigated through this 

approach including the noise performance, the optical spectrum and the effect of the linewidth 

enhancement factor b and the gain saturation factor b′ . It is expected that the P1 dynamics in 

the highly nonlinear region can exhibit sophisticated characteristics. Low-sensitivity point [41] is 

one of the important application. The sidebands in the optical spectrum are affected by the 

operation parameters and should be predictable through the similar procedure calculating the 

oscillating photon density terms. Calculating the sideband ratio could have important application 

in the signal modulation of the communication system using P1 dynamics for microwave signal 

generation. Finally, this model can also help to design the values of the intrinsic parameters, such 

as b and b′ , for the optimal operation. 
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